NASA Astrophysics Data System (ADS)
Antipov, A. A.; Losev, Leonid L.; Meshalkin, E. A.
1988-09-01
High-frequency electric currents were generated by irradiation of a metal target with CO2 laser pulses. It was found that the region where the ambient gas was photoionized had a decisive influence on the hf current amplitude. A method for increasing the amplitude of the current by creating an auxiliary laser jet on the target was proposed and used. An hf current of up to 1 A amplitude was observed at a frequency of 75 MHz and this current lasted for 1.5 μs.
Effect of Pulse Rate on Loudness Discrimination in Cochlear Implant Users.
Azadpour, Mahan; McKay, Colette M; Svirsky, Mario A
2018-03-12
Stimulation pulse rate affects current amplitude discrimination by cochlear implant (CI) users, indicated by the evidence that the JND (just noticeable difference) in current amplitude delivered by a CI electrode becomes larger at higher pulse rates. However, it is not clearly understood whether pulse rate would affect discrimination of speech intensities presented acoustically to CI processors, or what the size of this effect might be. Intensity discrimination depends on two factors: the growth of loudness with increasing sound intensity and the loudness JND (or the just noticeable loudness increment). This study evaluated the hypothesis that stimulation pulse rate affects loudness JND. This was done by measuring current amplitude JNDs in an experiment design based on signal detection theory according to which loudness discrimination is related to internal noise (which is manifested by variability in loudness percept in response to repetitions of the same physical stimulus). Current amplitude JNDs were measured for equally loud pulse trains of 500 and 3000 pps (pulses per second) by increasing the current amplitude of the target pulse train until it was perceived just louder than a same-rate or different-rate reference pulse train. The JND measures were obtained at two presentation levels. At the louder level, the current amplitude JNDs were affected by the rate of the reference pulse train in a way that was consistent with greater noise or variability in loudness perception for the higher pulse rate. The results suggest that increasing pulse rate from 500 to 3000 pps can increase loudness JND by 60 % at the upper portion of the dynamic range. This is equivalent to a 38 % reduction in the number of discriminable steps for acoustic and speech intensities.
Effect of low-frequency oscillation on performance of Hall thrusters
NASA Astrophysics Data System (ADS)
Liqiu, WEI; Wenbo, LI; Yongjie, DING; Daren, YU
2018-07-01
In this paper, a direct connection between the discharge current amplitude and the thruster performance is established by varying solely the capacitance of the filter unit of the Hall thrusters. To be precise, the variation characteristics of ion current, propellant utilization efficiency, and divergence angle of plume at different low-frequency oscillation amplitudes are measured. The findings demonstrate that in the case of the propellant in the discharge channel just meets or falls below the full ionization condition, the increase of low-frequency oscillation amplitude can significantly enhance the ionization degree of the neutral gas in the channel and increase the thrust and anode efficiency of thruster. On the contrary, the increase in the amplitude of low-frequency oscillation will lead to increase the loss of plume divergence, therefore the thrust and anode efficiency of thruster decrease.
NASA Astrophysics Data System (ADS)
Hepkema, Tjebbe M.; de Swart, Huib E.; Zagaris, Antonios; Duran–Matute, Matias
2018-05-01
In a tidal channel with adjacent tidal flats, along-channel momentum is dissipated on the flats during rising tides. This leads to a sink of along-channel momentum. Using a perturbative method, it is shown that the momentum sink slightly reduces the M2 amplitude of both the sea surface elevation and current velocity and favours flood dominant tides. These changes in tidal characteristics (phase and amplitude of sea surface elevations and currents) are noticeable if widths of tidal flats are at least of the same order as the channel width, and amplitudes and gradients of along-channel velocity are large. The M2 amplitudes are reduced because stagnant water flows from the flats into the channel, thereby slowing down the current. The M4 amplitudes and phases change because the momentum sink acts as an advective term during the fall of the tide, such a term generates flood dominant currents. For a prototype embayment that resembles the Marsdiep-Vlie double-inlet system of the Western Wadden Sea, it is found that for both the sea surface elevation and current velocity, including the momentum sink, lead to a decrease of approximately 2 % in M2 amplitudes and an increase of approximately 25 % in M4 amplitudes. As a result, the net import of coarse sediment is increased by approximately 35 %, while the transport of fine sediment is hardly influenced by the momentum sink. For the Marsdiep-Vlie system, the M2 sea surface amplitude obtained from the idealised model is similar to that computed with a realistic three-dimensional numerical model whilst the comparison with regard to M4 improves if momentum sink is accounted for.
Cortical inhibition and excitation by bilateral transcranial alternating current stimulation.
Cancelli, Andrea; Cottone, Carlo; Zito, Giancarlo; Di Giorgio, Marina; Pasqualetti, Patrizio; Tecchio, Franca
2015-01-01
Transcranial electric stimulations (tES) with amplitude-modulated currents are promising tools to enhance neuromodulation effects. It is essential to select the correct cortical targets and inhibitory/excitatory protocols to reverse changes in specific networks. We aimed at assessing the dependence of cortical excitability changes on the current amplitude of 20 Hz transcranial alternating current stimulation (tACS) over the bilateral primary motor cortex. We chose two amplitude ranges of the stimulations, around 25 μA/cm2 and 63 μA/cm2 from peak to peak, with three values (at steps of about 2.5%) around each, to generate, respectively, inhibitory and excitatory effects of the primary motor cortex. We checked such changes online through transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs). Cortical excitability changes depended upon current density (p = 0.001). Low current densities decreased MEP amplitudes (inhibition) while high current densities increased them (excitation). tACS targeting bilateral homologous cortical areas can induce online inhibition or excitation as a function of the current density.
Kalinin, Sergei V.; Balke, Nina; Borisevich, Albina Y.; Jesse, Stephen; Maksymovych, Petro; Kim, Yunseok; Strelcov, Evgheni
2014-06-10
An excitation voltage biases an ionic conducting material sample over a nanoscale grid. The bias sweeps a modulated voltage with increasing maximal amplitudes. A current response is measured at grid locations. Current response reversal curves are mapped over maximal amplitudes of the bias cycles. Reversal curves are averaged over the grid for each bias cycle and mapped over maximal bias amplitudes for each bias cycle. Average reversal curve areas are mapped over maximal amplitudes of the bias cycles. Thresholds are determined for onset and ending of electrochemical activity. A predetermined number of bias sweeps may vary in frequency where each sweep has a constant number of cycles and reversal response curves may indicate ionic diffusion kinetics.
NASA Astrophysics Data System (ADS)
Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Itoh, Yuji; Iramina, Keiji
2014-05-01
The present study analyzed the effects of monophasic magnetic stimulation to the motor cortex. The effects of magnetic stimulation were evaluated by analyzing the motor evoked potentials (MEPs). The amplitude and latency of MEPs on the abductor pollicis brevis muscle were used to evaluate the effects of repetitive magnetic stimulation. A figure eight-shaped flat coil was used to stimulate the region over the primary motor cortex. The intensity of magnetic stimulation was 120% of the resting motor threshold, and the frequency of magnetic stimulation was 0.1 Hz. In addition, the direction of the current in the brain was posterior-anterior (PA) or anterior-posterior (AP). The latency of MEP was compared with PA and AP on initial magnetic stimulation. The results demonstrated that a stimulus in the AP direction increased the latency of the MEP by approximately 2.5 ms. MEP amplitude was also compared with PA and AP during 60 magnetic stimulations. The results showed that a stimulus in the PA direction gradually increased the amplitude of the MEP. However, a stimulus in the AP direction did not modulate the MEP amplitude. The average MEP amplitude induced from every 10 magnetic pulses was normalized by the average amplitude of the first 10 stimuli. These results demonstrated that the normalized MEP amplitude increased up to approximately 150%. In terms of pyramidal neuron indirect waves (I waves), magnetic stimulation inducing current flowing backward to the anterior preferentially elicited an I1 wave, and current flowing forward to the posterior elicited an I3 wave. It has been reported that the latency of the I3 wave is approximately 2.5 ms longer than the I1 wave elicitation, so the resulting difference in latency may be caused by this phenomenon. It has also been reported that there is no alteration of MEP amplitude at a frequency of 0.1 Hz. However, this study suggested that the modulation of MEP amplitude depends on stimulation strength and stimulation direction.
Eddy current standards - Cracks versus notches
NASA Astrophysics Data System (ADS)
Hagemaier, D. J.; Collingwood, M. R.; Nguyen, K. H.
1992-10-01
Eddy current tests aimed at evaluating cracks and electron-discharge machined (EDM) notches in 7075-T6 aluminum specimens are described. A comparison of the shape and amplitude of recordings made from both transverse and longitudinal scans of small EDM notches and fatigue cracks showd almost identical results. The signal amplitude and phase angle increased with an increase of EDM notch and crak size. It is concluded that equivalent eddy current results obtained from similar-size surface cracks and notches in aluminum can be used to establish a desired sensitivity level for inspection.
Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V
2013-12-01
Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current amplitudes (0-900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.
Method for exciting inductive-resistive loads with high and controllable direct current
Hill, Jr., Homer M.
1976-01-01
Apparatus and method for transmitting dc power to a load circuit by applying a dc voltage from a standard waveform synthesizer to duration modulate a bipolar rectangular wave generator. As the amplitude of the dc voltage increases, the widths of the rectangular wave generator output pulses increase, and as the amplitude of the dc voltage decreases, the widths of the rectangular wave generator output pulses decrease. Thus, the waveform synthesizer selectively changes the durations of the rectangular wave generator bipolar output pulses so as to produce a rectangular wave ac carrier that is duration modulated in accordance with and in direct proportion to the voltage amplitude from the synthesizer. Thereupon, by transferring the carrier to the load circuit through an amplifier and a rectifier, the load current also corresponds directly to the voltage amplitude from the synthesizer. To this end, the rectified wave at less than 100% duty factor, amounts to a doubled frequency direct voltage pulse train for applying a direct current to the load, while the current ripple is minimized by a high L/R in the load circuit. In one embodiment, a power transmitting power amplifier means having a dc power supply is matched to the load circuit through a transformer for current magnification without sacrificing load current duration capability, while negative voltage and current feedback are provided in order to insure good output fidelity.
Plasma fluctuations in a Kaufman thruster
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Terdan, F. F.
1973-01-01
Measurements of the RMS magnitude, spectra, and cross correlations for the fluctuations in the beam, discharge, and neutralizer keeper currents are presented for a 30 cm diameter dished grid ion thruster for a range of magnetic baffle currents. The ratio of RMS to mean ion beam current varied from 0.04 to 0.23. The spectra of the amplitudes of the beam and discharge current fluctuations were taken up to 9 MHz and show that the predominant amplitudes occur at frequencies of 10 kHz or below. The falloff with increasing frequency is rapid. Frequencies above 100 kHz the spectral levels are 45 kb or more below the maximum peak amplitudes. The cross correlations revealed the ion beam fluctuations to have large radial and axial scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahmi, Kinanti Aldilla, E-mail: kinanti.aldilla@ui.ac.id; Yudiarsah, Efta
By using tight binding Hamiltonian model, charge transport properties of poly(dA)-poly(dT) DNA in variation of backbone disorder and amplitude of base-pair twisting motion is studied. The DNA chain used is 32 base pairs long poly(dA)-poly(dT) molecule. The molecule is contacted to electrode at both ends. The influence of environment on charge transport in DNA is modeled as variation of backbone disorder. The twisting motion amplitude is taking into account by assuming that the twisting angle distributes following Gaussian distribution function with zero average and standard deviation proportional to square root of temperature and inversely proportional to the twisting motion frequency.more » The base-pair twisting motion influences both the onsite energy of the bases and electron hopping constant between bases. The charge transport properties are studied by calculating current using Landauer-Buttiker formula from transmission probabilities which is calculated by transfer matrix methods. The result shows that as the backbone disorder increases, the maximum current decreases. By decreasing the twisting motion frequency, the current increases rapidly at low voltage, but the current increases slower at higher voltage. The threshold voltage can increase or decrease with increasing backbone disorder and increasing twisting frequency.« less
The detailed characteristics of positive corona current pulses in the line-to-plane electrodes
NASA Astrophysics Data System (ADS)
Xuebao, LI; Dayong, LI; Qian, ZHANG; Yinfei, LI; Xiang, CUI; Tiebing, LU
2018-05-01
The corona current pulses generated by corona discharge are the sources of the radio interference from transmission lines and the detailed characteristics of the corona current pulses from conductor should be investigated in order to reveal their generation mechanism. In this paper, the line-to-plane electrodes are designed to measure and analyze the characteristics of corona current pulses from positive corona discharges. The influences of inter-electrode gap and line diameters on the detail characteristics of corona current pulses, such as pulse amplitude, rise time, duration time and repetition frequency, are carefully analyzed. The obtained results show that the pulse amplitude and the repetition frequency increase with the diameter of line electrode when the electric fields on the surface of line electrodes are same. With the increase of inter-electrode gap, the pulse amplitude and the repetition frequency first decrease and then turn to be stable, while the rise time first increases and finally turns to be stable. The distributions of electric field and space charges under the line electrodes are calculated, and the influences of inter-electrode gap and line electrode diameter on the experimental results are qualitatively explained.
Discharge Oscillations in a Permanent Magnet Cylindrical Hall-Effect Thruster
NASA Technical Reports Server (NTRS)
Polzin, K. A.; Sooby, E. S.; Raitses, Y.; Merino, E.; Fisch, N. J.
2009-01-01
Measurements of the discharge current in a cylindrical Hall thruster are presented to quantify plasma oscillations and instabilities without introducing an intrusive probe into the plasma. The time-varying component of the discharge current is measured using a current monitor that possesses a wide frequency bandwidth and the signal is Fourier transformed to yield the frequency spectra present, allowing for the identification of plasma oscillations. The data show that the discharge current oscillations become generally greater in amplitude and complexity as the voltage is increased, and are reduced in severity with increasing flow rate. The breathing mode ionization instability is identified, with frequency as a function of discharge voltage not increasing with discharge voltage as has been observed in some traditional Hall thruster geometries, but instead following a scaling similar to a large-amplitude, nonlinear oscillation mode recently predicted in for annular Hall thrusters. A transition from lower amplitude oscillations to large relative fluctuations in the oscillating discharge current is observed at low flow rates and is suppressed as the mass flow rate is increased. A second set of peaks in the frequency spectra are observed at the highest propellant flow rate tested. Possible mechanisms that might give rise to these peaks include ionization instabilities and interactions between various oscillatory modes.
NASA Astrophysics Data System (ADS)
Zhou, Yun-Liang; Lühr, Hermann; Alken, Patrick
2018-02-01
Based on 5 years (2001-2005) of magnetic field measurements made by the CHAMP satellite, latitudinal profiles of the equatorial electrojet (EEJ) have been derived. This study provides a comprehensive characterization of the reverse current EEJ sidebands. These westward currents peak at ±5° quasi-dipole latitude with typical amplitudes of 35% of the main EEJ. The diurnal amplitude variation is quite comparable with that of the EEJ. Similarly to the EEJ, the intensity is increasing with solar EUV flux, but with a steeper slope, indicating that not only the conductivity plays a role. For the longitude distribution we find, in general, larger amplitudes in the Western than in the Eastern Hemisphere. It is presently a common understanding that the reverse current EEJ sidebands are generated by eastward zonal winds at altitudes above about 120 km. In particular, a positive vertical gradient of wind speed generates westward currents at magnetic latitudes outside of 2° dip latitude. Interesting information about these features can be deduced from the sidebands' tidal characteristics. The longitudinal variation of the amplitude is dominated by a wave-1 pattern, which can primarily be attributed to the tidal components SPW1 and SW3. In case of the hemispheric amplitude differences these same two wave-1 components dominate. The ratio between sideband amplitude and main EEJ is largely controlled by the tidal features of the EEJ. The longitudinal patterns of the latitude, where the sidebands peak, resemble to some extent those of the amplitude. Current densities become larger when the peaks move closer to the magnetic equator.
Clarke, Jessica D.; Caldwell, Jessica L.; Horn, Margaux A.; Bode, Elizabeth F.; Richards, Mark A.; Hall, Mark C.S.; Graham, Helen K.; Briston, Sarah J.; Greensmith, David J.; Eisner, David A.; Dibb, Katharine M.; Trafford, Andrew W.
2015-01-01
Heart failure (HF) is commonly associated with reduced cardiac output and an increased risk of atrial arrhythmias particularly during β-adrenergic stimulation. The aim of the present study was to determine how HF alters systolic Ca2 + and the response to β-adrenergic (β-AR) stimulation in atrial myocytes. HF was induced in sheep by ventricular tachypacing and changes in intracellular Ca2 + concentration studied in single left atrial myocytes under voltage and current clamp conditions. The following were all reduced in HF atrial myocytes; Ca2 + transient amplitude (by 46% in current clamped and 28% in voltage clamped cells), SR dependent rate of Ca2 + removal (kSR, by 32%), L-type Ca2 + current density (by 36%) and action potential duration (APD90 by 22%). However, in HF SR Ca2 + content was increased (by 19%) when measured under voltage-clamp stimulation. Inhibiting the L-type Ca2 + current (ICa-L) in control cells reproduced both the decrease in Ca2 + transient amplitude and increase of SR Ca2 + content observed in voltage-clamped HF cells. During β-AR stimulation Ca2 + transient amplitude was the same in control and HF cells. However, ICa-L remained less in HF than control cells whilst SR Ca2 + content was highest in HF cells during β-AR stimulation. The decrease in ICa-L that occurs in HF atrial myocytes appears to underpin the decreased Ca2 + transient amplitude and increased SR Ca2 + content observed in voltage-clamped cells. PMID:25463272
Influence of humidity on the characteristics of negative corona discharge in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Pengfei, E-mail: xpftsh@126.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn
Detailed negative corona discharge characteristics, such as the pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under various air humidities with a single artificial defect electrode. The experimental result reveals that the pulse amplitude increases with the increase of air humidity; meanwhile, the repetition frequency deceases as the air humidity increases. Empirical formulae are first established for the pulse amplitude and repetition frequency with the humidity factor taken into consideration. The effective ionization integral is calculated and a positive correlation is found between the integral and the pulse amplitude. Furthermore, a simplified negative-ionmore » cloud model is built up to investigate the mechanism of the humidity's influence on negative corona discharge. Based on the theoretical analyses, the correlation between pulse amplitude, repetition frequency, and air humidity is well explained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saikia, P., E-mail: partha.008@gmail.com; Goswami, K. S.; Saikia, B. K.
2014-03-15
In this study the effect of hydrogen addition on the formation and properties of soliton in direct-current (DC) argon plasma is theoretically investigated. By coupling fluid equations with Poisons equation for such multi-component plasma, the Mach number and amplitude of the soliton are determined following pseudo potential method. Addition of hydrogen in argon discharge leads to the decrease of electron, Ar{sup +} ion density while a reverse trend was observed for ArH{sup +} and hydrogen like ions. It was found that presence of hydrogen like ions in argon plasma affects the formation of soliton with its amplitude significantly decreases asmore » concentration of hydrogen increases. On the other hand, increase in ion to electron temperature ratios of the lighter ions in the discharge also has a significant influence on the amplitude and formation of soliton. The inverse relation between solitons width and amplitude is found to be consistent for the entire range of study.« less
The effects of ion channel blockers validate the conductance-based model of saccadic oscillations
Shaikh, Aasef G.; Zee, David S.; Optican, Lance M.; Miura, Kenichiro; Ramat, Stefano; Leigh, R. John
2012-01-01
Conductance-based models of reciprocally inhibiting burst neurons suggest that intrinsic membrane properties and postinhibitory rebound (PIR) determine the amplitude and frequency of saccadic oscillations. Reduction of the low-threshold calcium currents (IT) in the model decreased the amplitude but increased the frequency of the simulated oscillations. Combined reduction of hyperpolarization-activated cation current (Ih) and IT in the model abolished the simulated oscillations. We measured the effects of a selective blocker of IT (ethosuximide) in healthy subjects on the amplitude and frequency of saccadic oscillations evoked by eye closure and of a nonselective blocker of Ih and IT (propronolol) in a patient with microsaccadic oscillation and limb tremor syndrome (mSOLT). Ethosuximide significantly reduced the amplitude but increased the frequency of the saccadic oscillations during eye closure in healthy subjects. Propranolol abolished saccadic oscillations in the mSOLT patient. These results support the hypothetical role of postinhibitory rebound, Ih, and IT, in generation of saccadic oscillations and determining their kinematic properties. PMID:21950976
Passini, Elisa; Mincholé, Ana; Coppini, Raffaele; Cerbai, Elisabetta; Rodriguez, Blanca; Severi, Stefano; Bueno-Orovio, Alfonso
2016-07-01
Hypertrophic cardiomyopathy (HCM) is a cause of sudden arrhythmic death, but the understanding of its pro-arrhythmic mechanisms and an effective pharmacological treatment are lacking. HCM electrophysiological remodelling includes both increased inward and reduced outward currents, but their role in promoting repolarisation abnormalities remains unknown. The goal of this study is to identify key ionic mechanisms driving repolarisation abnormalities in human HCM, and to evaluate anti-arrhythmic effects of single and multichannel inward current blocks. Experimental ionic current, action potential (AP) and Ca(2+)-transient (CaT) recordings were used to construct populations of human non-diseased and HCM AP models (n=9118), accounting for inter-subject variability. Simulations were conducted for several degrees of selective and combined inward current block. Simulated HCM cardiomyocytes exhibited prolonged AP and CaT, diastolic Ca(2+) overload and decreased CaT amplitude, in agreement with experiments. Repolarisation abnormalities in HCM models were consistently driven by L-type Ca(2+) current (ICaL) re-activation, and ICaL block was the most effective intervention to normalise repolarisation and diastolic Ca(2+), but compromised CaT amplitude. Late Na(+) current (INaL) block partially abolished repolarisation abnormalities, with small impact on CaT. Na(+)/Ca(2+) exchanger (INCX) block effectively restored repolarisation and CaT amplitude, but increased Ca(2+) overload. Multichannel block increased efficacy in normalising repolarisation, AP biomarkers and CaT amplitude compared to selective block. Experimentally-calibrated populations of human AP models identify ICaL re-activation as the key mechanism for repolarisation abnormalities in HCM, and combined INCX, INaL and ICaL block as effective anti-arrhythmic therapies also able to partially reverse the HCM electrophysiological phenotype. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Koh, S D; Ward, S M; Dick, G M; Epperson, A; Bonner, H P; Sanders, K M; Horowitz, B; Kenyon, J L
1999-01-01
We used intracellular microelectrodes to record the membrane potential (Vm) of intact murine colonic smooth muscle. Electrical activity consisted of spike complexes separated by quiescent periods (Vm≈−60 mV). The spike complexes consisted of about a dozen action potentials of approximately 30 mV amplitude. Tetraethylammonium (TEA, 1–10 mM) had little effect on the quiescent periods but increased the amplitude of the action potential spikes. 4-Aminopyridine (4-AP, ⋧ 5 mM) caused continuous spiking.Voltage clamp of isolated myocytes identified delayed rectifier K+ currents that activated rapidly (time to half-maximum current, 11.5 ms at 0 mV) and inactivated in two phases (τf = 96 ms, τs = 1.5 s at 0 mV). The half-activation voltage of the permeability was −27 mV, with significant activation at −50 mV.TEA (10 mM) reduced the outward current at potentials positive to 0 mV. 4-AP (5 mM) reduced the early current but increased outward current at later times (100–500 ms) consistent with block of resting channels relieved by depolarization. 4-AP inhibited outward current at potentials negative to −20 mV, potentials where TEA had no effect.Qualitative PCR amplification of mRNA identified transcripts encoding delayed rectifier K+ channel subunits Kv1.6, Kv4.1, Kv4.2, Kv4.3 and the Kvβ1.1 subunit in murine colon myocytes. mRNA encoding Kv 1.4 was not detected.We find that TEA-sensitive delayed rectifier currents are important determinants of action potential amplitude but not rhythmicity. Delayed rectifier currents sensitive to 4-AP are important determinants of rhythmicity but not action potential amplitude. PMID:10050014
Increased confinement and beta by inductive poloidal current drive in the RFP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarff, J.S.; Lanier, N.E.; Prager, S.C.
1996-10-01
Progress in understanding magnetic-fluctuation-induced transport in the reversed field pinch (RFP) has led to the idea of current profile control to reduce fluctuations and transport. With the addition of inductive poloidal current drive in the Madison Symmetric Torus (MST), the magnetic fluctuation amplitude is halved, leading to a four- to five-fold increase in the energy confinement time to {tau}{sub E}{approximately}5 ms as a result of both decreased plasma resistance and increased stored thermal energy. The record low fluctuation amplitude coincides with a record high electron temperature of {approximately}600 eV (for MST), and beta {beta} = 2{mu}{sub 0} / B(a){sup 2}more » increases from 6% to 8% compared with conventional MST RFP plasmas. Other improvements include increased particle confinement and impurity reduction. 19 refs., 4 figs., 1 tab.« less
Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.
2010-04-01
Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.
Zhu, Yaohui; Huizinga, Jan D
2008-01-01
Abstract Nitrergic nerves are structurally and functionally associated with ICC. To further understand mechanisms of communication, the hypothesis was investigated that NO might affect large conductance K channels. To that end, we searched for IbTX-sensitive currents in ICC obtained through explant cultures from the mouse small intestine and studied effects of the NOS inhibitor omega N-nitro-L-arginine (LNNA) and the NO donor sodium nitroprusside (SNP). IbTX-sensitive currents acquired in the whole-cell configuration through nystatin perforated patches exhibited high noise levels but relatively low amplitude, whereas currents obtained in the conventional whole-cell configuration exhibited less noise and higher amplitudes; depolarization from −80 to + 40 mV evoked 357 ± 159 pA current in the nystatin perforated patch configuration and 1075 ± 597 pA using the conventional whole-cell configuration. Immunohistochemistry showed that ICC associated with ganglia and Auerbach's plexus nerve fibers were immunoreactive to BK antibodies. The IbTX-sensitive currents were increased by SNP and inhibited by LNNA. BK blockers suppressed spontaneous transit outward currents in ICC. After block of BK currents, or before these currents became prominent, calcium currents were activated by depolarization in the same cells. Their peak amplitude occurred at −25 mV and the currents were increased with increasing extracellular calcium and inhibited by cobalt. The hypothesis is warranted that nitrergic innervation inhibits ICC excitability in part through activation of BK channels. In addition, NO is an intracellular regulator of ICC excitability. PMID:18194464
Kuo, Ping-Chung; Yang, Chia-Jung; Lee, Yu-Chi; Chen, Pei-Chun; Liu, Yen-Chin; Wu, Sheng-Nan
2018-01-15
Curcumin (CUR) has been demonstrated to induce insulin release from pancreatic β-cells; however, how curcuminoids (including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)) exert any possible effects on membrane ion currents inherently in insulin-secreting cells remains largely unclear. The effects of CUR and other structurally similar curcuminoids on ion currents in rat insulin-secreting (INS-1) insulinoma cells were therefore investigated in this study. The effects of these compounds on ionic currents and membrane potential were studied by patch-clamp technique. CUR suppressed the amplitude of delayed-rectifier K + current (I K(DR) ) in a time-, state- and concentration-dependent manner in these cells and the inhibition was not reversed by diazoxide, nicorandil or chlorotoxin. The value of dissociation constant for CUR-induced suppression of I K(DR) in INS-1 cells was 1.26μM. Despite the inability of CUR to alter the activation rate of I K(DR) , it accelerated current inactivation elicited by membrane depolarization. Increasing CUR concentrations shifted the inactivation curve of I K(DR) to hyperpolarized potential and slowed the recovery of I K(DR) inactivation. CUR, DMC, and BDMC all exerted depressant actions on I K(DR) amplitude to a similar magnitude, although DMC and BDMC did not increase current inactivation clearly. CUR slightly suppressed the peak amplitude of voltage-gated Na + current. CUR, DMC and BDMC depolarized the resting potential and increased firing frequency of action potentials. The CUR-mediated decrease of I K(DR) and the increase of current inactivation also occurred in βTC-6 INS-1 cells. Taken these results together, these effects may be one of the possible mechanisms contributing their insulin-releasing effect. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoneking, M.R.; Lanier, N.E.; Prager, S.C.
1996-12-01
Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% andmore » the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.« less
Transverse Mode Dynamics of VCSELs Undergoing Current Modulation
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind
2000-01-01
Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling
Noble, Marlene A.; Rosenberger, Kurt J.; Xu, Jingping; Signell, Richard P.; Steele, Alex
2009-01-01
The topography of the Continental Shelf in the central portion of the Southern California Bight has rapid variations over relatively small spatial scales. The width of the shelf off the Palos Verdes peninsula, just northwest of Los Angeles, California, is only 1 to 3 km. About 7 km southeast of the peninsula, the shelf within San Pedro Bay widens to about 20 km. In 2000, the Los Angeles County Sanitation District began deploying a dense array of moorings in this complex region of the central Southern California Bight to monitor local circulation patterns. Moorings were deployed at 13 sites on the Palos Verdes shelf and within the northwestern portion of San Pedro Bay. At each site, a mooring supported a string of thermistors and an adjacent bottom platform housed an Acoustic Doppler Current Profiler. These instruments collected vertical profiles of current and temperature data continuously for one to two years. The variable bathymetry in the region causes rapid changes in the amplitudes and spatial structures of barotropic tidal currents, internal tidal currents, and in the associated nonlinear baroclinic currents that occur at approximate tidal frequencies. The largest barotropic tidal constituent is M2, the principal semidiurnal tide. The amplitude of this tidal current changes over fairly short along-shelf length scales. Tidal-current amplitudes are largest in the transition region between the two shelves; they increase from about 5 cm/s over the northern San Pedro shelf to nearly 10 cm/s on the southern portion of the Palos Verdes Shelf. Tidal-current amplitudes are then reduced to less than 2 cm/s over the very narrow section of the northern Palos Verdes shelf that lies just 6 km upcoast of the southern sites. Models suggest that the amplitude of the barotropic M2 tidal currents, which propagate toward the northwest primarily as a Kelvin wave, is adjusting to the short topographic length scales in the region. Semidiurnal sea-level oscillations are, as expected, independent of these topographic variations; they have a uniform amplitude and phase structure over the entire region. Because the cross-shelf angle of the seabed over most of the Palos Verdes shelf is 1 to 3 degrees, which is critical for the local generation and/or enhancement of nonlinear characteristics in semidiurnal internal tides, some internal tidal-current events have strong asymmetric current oscillations that are enhanced near the seabed. Near-bottom currents in these events are directed primarily offshore with amplitudes that exceed 30 cm/s. The spatial patterns in these energetic near-bottom currents have fairly short-length scales. They are largest over the inner shelf and in the transition region between the Palos Verdes and San Pedro shelves. This spatial pattern is similar to that found in the barotropic tidal currents. Because these baroclinic currents have an approximate tidal frequency, an asymmetric vertical structure, and a somewhat stable phase, they can produce a non-zero depth-mean flow for periods of a few months. These baroclinic currents can interact with the barotropic tidal current and cause an apparent increase (or decrease) in the estimated barotropic tidal-current amplitude. The apparent amplitude of the barotropic tidal current may change by 30 to 80 percent or more in a current record that is less than three months long. The currents and surficial sediments in this region are in dynamic equilibrium in that the spatial patterns in bottom stresses generated by near-bed currents from surface tides, internal tides, and internal bores partly control the spatial patterns in the local sediments. Coarser sediments are found in the regions with enhanced bottom stresses (that is, over the inner shelf and in the region between the Palos Verdes and San Pedro shelves). Finer sediments are found over the northwestern portion of the Palos Verdes shelf, where near-bottom currents are relatively weak. The nonlinear asymmetries in the i
NASA Astrophysics Data System (ADS)
Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, Jiu-Qing; Niu, Peng-Bin
2018-04-01
In this work, we study the generation of spin-current in a single-molecule magnet (SMM) tunnel junction with Coulomb interaction of transport electrons and external magnetic field. In the absence of field the spin-up and -down currents are symmetric with respect to the initial polarizations of molecule. The existence of magnetic field breaks the time-reversal symmetry, which leads to unsymmetrical spin currents of parallel and antiparallel polarizations. Both the amplitude and polarization direction of spin current can be controlled by the applied magnetic field. Particularly when the magnetic field increases to a certain value the spin-current with antiparallel polarization is reversed along with the magnetization reversal of the SMM. The two-electron occupation indeed enhances the transport current compared with the single-electron process. However the increase of Coulomb interaction results in the suppression of spin-current amplitude at the electron-hole symmetry point. We propose a scheme to compensate the suppression with the magnetic field.
Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V
2013-01-01
This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.
Radman, Thomas; Lisanby, Sarah H
2017-04-01
Electroconvulsive therapy remains a key treatment option for severe cases of depression, but undesirable side-effects continue to limit its use. Innovations in the design of novel seizure therapies seek to improve its risk benefit ratio through enhanced control of the focality of stimulation. The design of seizure therapies with increased spatial precision is motivated by avoiding stimulation of deep brain structures implicated in memory retention, including the hippocampus. The development of two innovations in seizure therapy-individualized low-amplitude seizure therapy (iLAST) and magnetic seizure therapy (MST), are detailed. iLAST is a method of seizure titration involving reducing current spread in the brain by titrating current amplitude from the traditional fixed amplitudes. MST, which can be used in conjunction with iLAST dosing methods, involves the use of magnetic stimulation to reduce shunting and spreading of current by the scalp occurring during electrical stimulation. Evidence is presented on the rationale for increasing the focality of ECT in hopes of preserving its effectiveness, while reducing cognitive side-effects. Finally, the value of electric field and neural modelling is illustrated to explain observed clinical effects of modifications to ECT technique, and their utility in the rational design of the next generation of seizure therapies.
The effects of ion channel blockers validate the conductance-based model of saccadic oscillations.
Shaikh, Aasef G; Zee, David S; Optican, Lance M; Miura, Kenichiro; Ramat, Stefano; Leigh, R John
2011-09-01
Conductance-based models of reciprocally inhibiting burst neurons suggest that intrinsic membrane properties and postinhibitory rebound (PIR) determine the amplitude and frequency of saccadic oscillations. Reduction of the low-threshold calcium currents (I(T)) in the model decreased the amplitude but increased the frequency of the simulated oscillations. Combined reduction of hyperpolarization-activated cation current (I(h)) and I(T) in the model abolished the simulated oscillations. We measured the effects of a selective blocker of I(T) (ethosuximide) in healthy subjects on the amplitude and frequency of saccadic oscillations evoked by eye closure and of a nonselective blocker of I(h) and I(T) (propronolol) in a patient with microsaccadic oscillation and limb tremor syndrome (mSOLT). Ethosuximide significantly reduced the amplitude but increased the frequency of the saccadic oscillations during eye closure in healthy subjects. Propranolol abolished saccadic oscillations in the mSOLT patient. These results support the hypothetical role of postinhibitory rebound, I(h), and I(T) , in generation of saccadic oscillations and determining their kinematic properties. © 2011 New York Academy of Sciences.
Metabolic and Respiratory Costs of Increasing Song Amplitude in Zebra Finches
Zollinger, Sue Anne; Goller, Franz; Brumm, Henrik
2011-01-01
Bird song is a widely used model in the study of animal communication and sexual selection, and several song features have been shown to reflect the quality of the singer. Recent studies have demonstrated that song amplitude may be an honest signal of current condition in males and that females prefer high amplitude songs. In addition, birds raise the amplitude of their songs to communicate in noisy environments. Although it is generally assumed that louder song should be more costly to produce, there has been little empirical evidence to support this assumption. We tested the assumption by measuring oxygen consumption and respiratory patterns in adult male zebra finches (Taeniopygia guttata) singing at different amplitudes in different background noise conditions. As background noise levels increased, birds significantly increased the sound pressure level of their songs. We found that louder songs required significantly greater subsyringeal air sac pressure than quieter songs. Though increased pressure is probably achieved by increasing respiratory muscle activity, these increases did not correlate with measurable increases in oxygen consumption. In addition, we found that oxygen consumption increased in higher background noise, independent of singing behaviour. This observation supports previous research in mammals showing that high levels of environmental noise can induce physiological stress responses. While our study did not find that increasing vocal amplitude increased metabolic costs, further research is needed to determine whether there are other non-metabolic costs of singing louder or costs associated with chronic noise exposure. PMID:21915258
Jardemark, K; Nilsson, M; Muyderman, H; Jacobson, I
1997-02-01
The aim of the study was to investigate the divalent cation permeability of native alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors expressed in interneurons of the olfactory bulb. Kainic acid (KA) was used as agonist to activate AMPA-receptor-mediated currents, which were recorded with the use of the patch-clamp technique. In interneurons acutely isolated from the olfactory bulb, the current responses to KA showed linear/outwardly rectifying current-voltage (I-V) relationships with a positive average reversal potential of +7 mV in normal external medium (1 mM Ca2+, 1 mM Mg2+). Raising the external Ca2+ concentration to 10 mM suppressed the amplitude, whereas omission of Ca2+ enhanced the amplitude of the current. Spectral analysis of the increase in current variance produced by KA indicated that the decreased amplitude observed in 10 mM Ca2+ was accompanied by a reduction in the apparent single-channel conductance. Raising the concentration of Mg2+ from 1 to 10 mM had a weak depressant effect on the KA-evoked current amplitude. No shift in the reversal potential was observed when the concentration of Ca2+ or Mg2+ was changed from 1 to 10 mM. Increasing the external medium concentration of Ca2+ to 60 mM not only further depressed the amplitudes of the KA-evoked currents but also gave a pronounced leftward shift in the average reversal potential to -32 +/- 9 (SE) mV (N = 7). For neurons in primary culture, current responses to KA also showed linear/outwardly rectifying I-V relationships with a positive average reversal potential in normal external medium. Substituting N-methylglucamine for Na+ and increasing the Ca2+ concentration to 10 mM gave a leftward shift in the average reversal potential from +9 +/- 3 mV to -47 +/- 4 mV (N = 11) and caused a marked reduction in the amplitude of the KA-evoked currents at negative potentials. The permeability properties of the studied AMPA receptors were well predicted by the Eyring rate model (symmetrical, 2 barriers, 1 site). The model gave a pCa2+/pK+ permeability ratio of 0.06 for acutely isolated interneurons and 0.14 for interneurons in primary culture. The constant field theory, which failed to successfully reproduce all the experimental data, gave corresponding low permeability ratios of 0.18 and 0.40 for acutely isolated cells and cells in primary culture, respectively. Thus it is concluded that interneurons in the olfactory bulb mainly express AMPA receptors with low permeability to Ca2+ ions.
The sea anemone toxin AdE-1 modifies both sodium and potassium currents of rat cardiomyocytes.
Nesher, Nir; Zlotkin, Eliahu; Hochner, Binyamin
2014-07-01
AdE-1, a cardiotonic peptide recently isolated from the sea anemone Aiptasia diaphana, contains 44 amino acids and has a molecular mass of 4907 Da. It was previously found to resemble other sea anemone type 1 and 2 Na+ channel toxins, enhancing contractions of rat cardiomyocytes and slowing their twitch relaxation; however, it did not induce spontaneous twitches. AdE-1 increased the duration of the cardiomyocyte action potential and decreased its amplitude and its time-to-peak in a concentration-dependent manner, without affecting its threshold and cell resting potential. Nor did it generate the early and delayed after-depolarizations characteristic of sea anemone Na+ channel toxins. To further understand its mechanism of action we investigated the effect of AdE-1 on the major ion currents of rat cardiomyocytes. In the present study we show that AdE-1 markedly slowed inactivation of the Na+ current, enhancing and prolonging the current influx with no effect on current activation, possibly through direct interaction with the site 3 receptor of the Na+ channel. No significant effect of AdE-1 on the Ca2+ current was observed, but, unexpectedly, AdE-1 significantly increased the amplitude of the transient component of the K+ current, shifting the current threshold to more negative membrane potentials. This effect on the K+ current has not been found in any other sea anemone toxin and may explain the exclusive reduction in action potential amplitude and the absence of the action potential disorders found with other toxins, such as early and delayed after-depolarizations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Man; Shi Wenjie; Fei Xiaowei
2008-02-01
The effect of non-steroidal anti-inflammatory drugs (NSAIDs) on ion channels has been widely studied in several cell models, but less is known about their modulatory mechanisms. In this report, the effect of mefenamic acid on voltage-activated transient outward K{sup +} current (I{sub A}) in cultured rat cerebellar granule cells was investigated. At a concentration of 5 {mu}M to 100 {mu}M, mefenamic acid reversibly inhibited I{sub A} in a dose-dependent manner. However, mefenamic acid at a concentration of 1 {mu}M significantly increased the amplitude of I{sub A} to 113 {+-} 1.5% of the control. At more than 10 {mu}M, mefenamic acidmore » inhibited the amplitude of I{sub A} without any effect on activation or inactivation. In addition, a higher concentration of mefenamic acid induced a significant acceleration of recovery from inactivation with an increase of the peak amplitude elicited by the second test pulse. Intracellular application of mefenamic acid could significantly increase the amplitude of I{sub A}, but had no effect on the inhibition induced by extracellular mefenamic acid, implying that mefenamic acid may exert its effect from both inside and outside the ion channel. Furthermore, the activation of current induced by intracellular application of mefenamic acid was mimicked by other cyclooxygenase inhibitors and arachidonic acid. Our data demonstrate that mefenamic acid is able to bi-directionally modulate I{sub A} channels in neurons at different concentrations and by different methods of application, and two different mechanisms may be involved.« less
NASA Astrophysics Data System (ADS)
Liu, Tonghua; Wang, Wei; Qiang, Wenjiang; Shu, Guogang
2018-04-01
To study the thermal aging embrittlement of Z3CN20.09M duplex stainless steel produced in China, accelerated thermal aging experiments were carried out at 380 °C up to 9000 h. Microhardness measurements, Charpy impact and eddy current tests were performed on aged samples to characterize their thermal aging embrittlement. The results showed that the signal amplitude of eddy current decreased with the increase in aging time. Two quantitative correlations of the eddy current signal amplitude with both the Charpy impact energy, and the Vickers microhardness of the ferrite phase are obtained. The study showed that eddy current testing could be used to non-destructively evaluate the thermal aging embrittlement of cast duplex stainless steels.
Influence of internal waves on the dispersion and transport of inclined gravity currents
NASA Astrophysics Data System (ADS)
Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.
2016-02-01
Brine discharge from desalination facilities presents environmental risks, particularly to benthic organisms. High concentrations of salt and chemical additives, which can be toxic to local ecosystems, are typically mitigated by dilution close to the source. Our laboratory experiments investigate how breaking internal tides can help to dilute gravity currents caused by desalination effluents and direct them away from the benthic layer. In laboratory experiments, internal waves at the pycnocline of an ambient stratification were directed towards a sloping shelf, down which ran a gravity current. The breaking internal waves were seen to increase the proportion of the fluid from the gravity current diverted away from the slope into an intrusion along the pycnocline. In a parametric study, increasing the amplitude of the internal wave was seen to increase the amount of dense fluid in the pycnocline intrusion. The amplitude required to divert the gravity current into the intrusion compares well with an analytical theory that equates the incident energy in the internal wave to the potential energy required to dilute the gravity current. These experimental results suggest that sites of breaking internal waves may be good sites for effluent disposal. Effluent diverted into the intrusion avoids the ecologically sensitive benthic layer.
Competing effects of pain and fear of pain on postural control in low back pain?
Mazaheri, Masood; Heidari, Elham; Mostamand, Javid; Negahban, Hossein; van Dieen, Jaap H
2014-12-01
A cross-sectional, observational study. To determine whether pain and fear of pain have competing effects on postural sway in patients with low back pain (LBP). Competing effects of pain and pain-related fear on postural control can be proposed as the likely explanation for inconsistent results regarding postural sway in the LBP literature. We hypothesized that although pain might increase postural sway, fear of pain might reduce sway through an increased cognitive effort or increased cocontraction to restrict body movement. The cognitive strategy would be less effective under dual-task conditions and the cocontraction strategy was expected to be less effective when standing on a narrow base of support surface. Postural sway was measured in combined conditions of base of support (full and narrow) and cognitive loading (single and dual tasks) in 3 experimental groups with current LBP, recent LBP, and no LBP. Sway amplitude, path length, mean power frequency, and sample entropy were extracted from center-of-pressure data. The current-LBP group and recent-LBP group reported significantly different levels of pain, but similar levels of pain catastrophizing and kinesiophobia. The current-LBP group tended to display larger sway amplitudes in the anteroposterior direction compared with the other 2 groups. Mean power frequency values in mediolateral direction were lower in patients with the current LBP compared with recent LBP. Smaller sample entropy was found in the current-LBP group than the other groups in most experimental conditions, particularly when standing on a narrow base of support. Alterations of postural sway are mostly mediated by pain but not pain-related fear. LBP tends to increase sway amplitude, which seems to be counteracted by increased effort invested in postural control leading to decreased frequency and increased regularity of sway particularly under increased task demands. Cross-sectional study.
PACAP/PAC1R signaling modulates acetylcholine release at neuronal nicotinic synapses
Pugh, Phyllis C.; Jayakar, Selwyn S.; Margiotta, Joseph F.
2009-01-01
Neuropeptides collaborate with conventional neurotransmitters to regulate synaptic output. Pituitary adenylate cyclase-activating polypeptide (PACAP) co-localizes with acetylcholine in presynaptic nerve terminals, is released by stimulation, and enhances nicotinic acetylcholine receptor- (nAChR-) mediated responses. Such findings implicate PACAP in modulating nicotinic neurotransmission, but relevant synaptic mechanisms have not been explored. We show here that PACAP acts via selective high-affinity G-protein coupled receptors (PAC1Rs) to enhance transmission at nicotinic synapses on parasympathetic ciliary ganglion (CG) neurons by rapidly and persistently increasing the frequency and amplitude of spontaneous, impulse-dependent nicotinic excitatory postsynaptic currents (sEPSCs). Of the canonical adenylate cyclase (AC) and phospholipase-C (PLC) transduction cascades stimulated by PACAP/PAC1R signaling, only AC-generated signals are critical for synaptic modulation since the increases in sEPSC frequency and amplitude were mimicked by 8-Bromo-cAMP, blocked by inhibiting AC or cAMP-dependent protein kinase (PKA), and unaffected by inhibiting PLC. Despite its ability to increase agonist-induced nAChR currents, PACAP failed to influence nAChR-mediated impulse-independent miniature EPSC amplitudes (quantal size). Instead, evoked transmission assays reveal that PACAP/PAC1R signaling increased quantal content, indicating it modulates synaptic function by increasing vesicular ACh release from presynaptic terminals. Lastly, signals generated by the retrograde messenger, nitric oxide- (NO-) are critical for the synaptic modulation since the PACAP-induced increases in spontaneous EPSC frequency, amplitude and quantal content were mimicked by NO donor and absent after inhibiting NO synthase (NOS). These results indicate that PACAP/PAC1R activation recruits AC-dependent signaling that stimulates NOS to increase NO production and control presynaptic transmitter output at neuronal nicotinic synapses. PMID:19958833
Apparatus and method for critical current measurements
Martin, Joe A.; Dye, Robert C.
1992-01-01
An apparatus for the measurement of the critical current of a superconductive sample, e.g., a clad superconductive sample, the apparatus including a conductive coil, a means for maintaining the coil in proximity to a superconductive sample, an electrical connection means for passing a low amplitude alternating current through the coil, a cooling means for maintaining the superconductive sample at a preselected temperature, a means for passing a current through the superconductive sample, and, a means for monitoring reactance of the coil, is disclosed, together with a process of measuring the critical current of a superconductive material, e.g., a clad superconductive material, by placing a superconductive material into the vicinity of the conductive coil of such an apparatus, cooling the superconductive material to a preselected temperature, passing a low amplitude alternating current through the coil, the alternating current capable of generating a magnetic field sufficient to penetrate, e.g., any cladding, and to induce eddy currents in the superconductive material, passing a steadily increasing current through the superconductive material, the current characterized as having a different frequency than the alternating current, and, monitoring the reactance of the coil with a phase sensitive detector as the current passed through the superconductive material is steadily increased whereby critical current of the superconductive material can be observed as the point whereat a component of impedance deviates.
NASA Technical Reports Server (NTRS)
Serafini, J. S.; Terdan, F. F.
1973-01-01
Measurements of the RMS magnitude, spectra and cross-correlations for the fluctuations in the beam, discharge and neutralizer keeper currents are presented for a 30-cm diameter dished grid ion thrustor for a range of magnetic baffle currents and up to 2.0 amperes beam current. The ratio of RMS to mean ion beam current varied from 0.04 to 0.23. The spectra of the amplitudes of the beam and discharge current fluctuations were taken up to 9 MHz and show that the predominant amplitudes occur at frequencies of 10 kHz or below. The fall-off with increasing frequency is rapid. Frequencies above 100 kHz the spectral levels are 45 kb or more below the maximum peak amplitudes. The cross-correlations revealed the ion beam fluctuations to have large radial and axial scales which implied that the beam fluctuates as a whole or 'in-phase.' The cross-correlations of the beam and neutralizer keeper current fluctuations indicated the neutralizer contributions to the beam fluctuations to be small, but not negligible. The mode of operation of the thrustor (values of beam and magnetic baffle currents) was significant in determining the RMS magnitude and spectral shape of the beam fluctuations. The major oscillations were not found to be directly dependent on the power conditioner inverter frequencies.
Nanou, Evanthia; Sullivan, Jane M; Scheuer, Todd; Catterall, William A
2016-01-26
Short-term synaptic plasticity is induced by calcium (Ca(2+)) accumulating in presynaptic nerve terminals during repetitive action potentials. Regulation of voltage-gated CaV2.1 Ca(2+) channels by Ca(2+) sensor proteins induces facilitation of Ca(2+) currents and synaptic facilitation in cultured neurons expressing exogenous CaV2.1 channels. However, it is unknown whether this mechanism contributes to facilitation in native synapses. We introduced the IM-AA mutation into the IQ-like motif (IM) of the Ca(2+) sensor binding site. This mutation does not alter voltage dependence or kinetics of CaV2.1 currents, or frequency or amplitude of spontaneous miniature excitatory postsynaptic currents (mEPSCs); however, synaptic facilitation is completely blocked in excitatory glutamatergic synapses in hippocampal autaptic cultures. In acutely prepared hippocampal slices, frequency and amplitude of mEPSCs and amplitudes of evoked EPSCs are unaltered. In contrast, short-term synaptic facilitation in response to paired stimuli is reduced by ∼ 50%. In the presence of EGTA-AM to prevent global increases in free Ca(2+), the IM-AA mutation completely blocks short-term synaptic facilitation, indicating that synaptic facilitation by brief, local increases in Ca(2+) is dependent upon regulation of CaV2.1 channels by Ca(2+) sensor proteins. In response to trains of action potentials, synaptic facilitation is reduced in IM-AA synapses in initial stimuli, consistent with results of paired-pulse experiments; however, synaptic depression is also delayed, resulting in sustained increases in amplitudes of later EPSCs during trains of 10 stimuli at 10-20 Hz. Evidently, regulation of CaV2.1 channels by CaS proteins is required for normal short-term plasticity and normal encoding of information in native hippocampal synapses.
Smith, Michael G; Croy, Ilona; Ogren, Mikael; Persson Waye, Kerstin
2013-01-01
A substantial increase in transportation of goods on railway may be hindered by public fear of increased vibration and noise leading to annoyance and sleep disturbance. As the majority of freight trains run during night time, the impact upon sleep is expected to be the most serious adverse effect. The impact of nocturnal vibration on sleep is an area currently lacking in knowledge. We experimentally investigated sleep disturbance with the aim to ascertain the impact of increasing vibration amplitude. The impacts of various amplitudes of horizontal vibrations on sleep disturbance and heart rate were investigated in a laboratory study. Cardiac accelerations were assessed using a combination of polysomnography and ECG recordings. Sleep was assessed subjectively using questionnaires. Twelve young, healthy subjects slept for six nights in the sleep laboratory, with one habituation night, one control night and four nights with a variation of vibration exposures whilst maintaining the same noise exposure. With increasing vibration amplitude, we found a decrease in latency and increase in amplitude of heart rate as well as a reduction in sleep quality and increase in sleep disturbance. We concluded that nocturnal vibration has a negative impact on sleep and that the impact increases with greater vibration amplitude. Sleep disturbance has short- and long-term health consequences. Therefore, it is necessary to define levels that protect residents against sleep disruptive vibrations that may arise from night time railway freight traffic.
Ballistic induced pumping of hypersonic heat current in DNA nano wire
NASA Astrophysics Data System (ADS)
Behnia, Sohrab; Panahinia, Robabe
2016-12-01
Heat shuttling properties of DNA nano-wire driven by an external force against the spontaneous heat current direction in non-zero temperature bias (non averaged) have been studied. We examined the valid region of driving amplitude and frequency to have pumping state in terms of temperature bias and the system size. It was shown that DNA could act as a high efficiency thermal pump in the hypersonic region. Amplitude-dependent resonance frequencies of DNA indicating intrinsic base pair internal vibrations have been detected. Nonlinearity implies that by increasing the driven amplitude new vibration modes are detected. To verify the results, an analytical parallel investigation based on multifractal concept has been done. By using the geometric properties of the strange attractor of the system, the threshold value to transition to the pumping state for given external amplitude has been identified. It was shown that the system undergoes a phase transition in sliding point to the pumping state. Fractal dimension demonstrates that the ballistic transport is responsible for energy pumping in the system. In the forbidden band gap, DNA could transmit the energy by exceeding the threshold amplitude. Despite of success in energy pumping, in this framework, DNA could not act as a real cooler.
Isaeva, Elena; Isaev, Dmytro; Savrasova, Alina; Khazipov, Rustem; Holmes, Gregory L.
2011-01-01
Neonatal seizures are associated with a high likelihood of adverse neurological outcomes, including mental retardation, behavioral disorders, and epilepsy. Early seizures typically involve the neocortex, and post-neonatal epilepsy is often of neocortical origin. However, our understanding of the consequences of neonatal seizures for neocortical function is limited. In the present study, we show that neonatal seizures induced by flurothyl result in markedly enhanced susceptibility of the neocortex to seizure-like activity. This change occurs in young rats studied weeks after the last induced seizure and in adult rats studied months after the initial seizures. Neonatal seizures resulted in reductions in the amplitude of spontaneous inhibitory postsynaptic currents and the frequency of miniature inhibitory postsynaptic currents, and significant increases in the amplitude and frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and in the frequency of miniature excitatory postsynaptic currents (mEPSCs) in pyramidal cells of layer 2/3 of the somatosensory cortex. The selective N-methyl-d-aspartate (NMDA) receptor antagonist d-2-amino-5-phosphon-ovalerate eliminated the differences in amplitude and frequency of sEPSCs and mEPSCs in the control and flurothyl groups, suggesting that NMDA receptors contribute significantly to the enhanced excitability seen in slices from rats that experienced recurrent neonatal seizures. Taken together, our results suggest that recurrent seizures in infancy result in a persistent enhancement of neocortical excitability. PMID:20384780
Moszkowski, Tomasz; Kauff, Daniel W; Wegner, Celine; Ruff, Roman; Somerlik-Fuchs, Karin H; Kruger, Thilo B; Augustyniak, Piotr; Hoffmann, Klaus-Peter; Kneist, Werner
2018-03-01
Neurophysiologic monitoring can improve autonomic nerve sparing during critical phases of rectal cancer surgery. To develop a system for extracorporeal stimulation of sacral nerve roots. Dedicated software controlled a ten-electrode stimulation array by switching between different electrode configurations and current levels. A built-in impedance and current level measurement assessed the effectiveness of current injection. Intra-anal surface electromyography (sEMG) informed on targeting the sacral nerve roots. All tests were performed on five pig specimens. During switching between electrode configurations, the system delivered 100% of the set current (25 mA, 30 Hz, 200 μs cathodic pulses) in 93% of 250 stimulation trains across all specimens. The impedance measured between single stimulation array contacts and corresponding anodes across all electrode configurations and specimens equaled 3.7 ± 2.5 kΩ. The intra-anal sEMG recorded a signal amplitude increase as previously observed in the literature. When the stimulation amplitude was tested in the range from 1 to 21 mA using the interconnected contacts of the stimulation array and the intra-anal anode, the impedance remained below 250 Ω and the system delivered 100% of the set current in all cases. Intra-anal sEMG showed an amplitude increase for current levels exceeding 6 mA. The system delivered stable electric current, which was proved by built-in impedance and current level measurements. Intra-anal sEMG confirmed the ability to target the branches of the autonomous nervous system originating from the sacral nerve roots. Stimulation outside of the operative field during rectal cancer surgery is feasible and may improve the practicality of pelvic intraoperative neuromonitoring.
High speed, high current pulsed driver circuit
Carlen, Christopher R.
2017-03-21
Various technologies presented herein relate to driving a LED such that the LED emits short duration pulses of light. This is accomplished by driving the LED with short duration, high amplitude current pulses. When the LED is driven by short duration, high amplitude current pulses, the LED emits light at a greater amplitude compared to when the LED is driven by continuous wave current.
Generation of runaway electron beams in high-pressure nitrogen
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh
2017-07-01
In this paper the results of experimental studies of the amplitude-temporal characteristics of a runaway electron beam, as well as breakdown voltage in nitrogen are presented. The voltage pulses with the amplitude in incident wave ≈120 kV and the rise time of ≈0.3 ns was used. The supershort avalanche electron beam (SAEB) was detected by a collector behind the flat anode. The amplitude-time characteristics of the voltage and SAEB current were studied with subnanosecond time resolution. The maximum pressure at which a SAEB is detectable by collector was ∼1 MPa. This pressure increases with decreasing the voltage rise time. The waveforms of the discharge and runaway electron beam currents was synchronized with the voltage pulses. The mechanism of the runaway electron generation in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.
NASA Astrophysics Data System (ADS)
Tao, Xie; Shang-Zhuo, Zhao; William, Perrie; He, Fang; Wen-Jin, Yu; Yi-Jun, He
2016-06-01
To study the electromagnetic backscattering from a one-dimensional drifting fractal sea surface, a fractal sea surface wave-current model is derived, based on the mechanism of wave-current interactions. The numerical results show the effect of the ocean current on the wave. Wave amplitude decreases, wavelength and kurtosis of wave height increase, spectrum intensity decreases and shifts towards lower frequencies when the current occurs parallel to the direction of the ocean wave. By comparison, wave amplitude increases, wavelength and kurtosis of wave height decrease, spectrum intensity increases and shifts towards higher frequencies if the current is in the opposite direction to the direction of ocean wave. The wave-current interaction effect of the ocean current is much stronger than that of the nonlinear wave-wave interaction. The kurtosis of the nonlinear fractal ocean surface is larger than that of linear fractal ocean surface. The effect of the current on skewness of the probability distribution function is negligible. Therefore, the ocean wave spectrum is notably changed by the surface current and the change should be detectable in the electromagnetic backscattering signal. Project supported by the National Natural Science Foundation of China (Grant No. 41276187), the Global Change Research Program of China (Grant No. 2015CB953901), the Priority Academic Development Program of Jiangsu Higher Education Institutions (PAPD), Program for the Innovation Research and Entrepreneurship Team in Jiangsu Province, China, the Canadian Program on Energy Research and Development, and the Canadian World Class Tanker Safety Service.
Lee, Won H; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V
2017-05-01
Lowering and individualizing the current amplitude in electroconvulsive therapy (ECT) has been proposed as a means to produce stimulation closer to the neural activation threshold and more focal seizure induction, which could potentially reduce cognitive side effects. However, the effect of current amplitude on the electric field (E-field) in the brain has not been previously linked to the current amplitude threshold for seizure induction. We coupled MRI-based E-field models with amplitude titrations of motor threshold (MT) and seizure threshold (ST) in four nonhuman primates (NHPs) to determine the strength, distribution, and focality of stimulation in the brain for four ECT electrode configurations (bilateral, bifrontal, right-unilateral, and frontomedial) and magnetic seizure therapy (MST) with cap coil on vertex. At the amplitude-titrated ST, the stimulated brain subvolume (23-63%) was significantly less than for conventional ECT with high, fixed current (94-99%). The focality of amplitude-titrated right-unilateral ECT (25%) was comparable to cap coil MST (23%), demonstrating that ECT with a low current amplitude and focal electrode placement can induce seizures with E-field as focal as MST, although these electrode and coil configurations affect differently specific brain regions. Individualizing the current amplitude reduced interindividual variation in the stimulation focality by 40-53% for ECT and 26% for MST, supporting amplitude individualization as a means of dosing especially for ECT. There was an overall significant correlation between the measured amplitude-titrated ST and the prediction of the E-field models, supporting a potential role of these models in dosing of ECT and MST. These findings may guide the development of seizure therapy dosing paradigms with improved risk/benefit ratio.
Improved measurement of vibration amplitude in dynamic optical coherence elastography
Kennedy, Brendan F.; Wojtkowski, Maciej; Szkulmowski, Maciej; Kennedy, Kelsey M.; Karnowski, Karol; Sampson, David D.
2012-01-01
Abstract: Optical coherence elastography employs optical coherence tomography (OCT) to measure the displacement of tissues under load and, thus, maps the resulting strain into an image, known as an elastogram. We present a new improved method to measure vibration amplitude in dynamic optical coherence elastography. The tissue vibration amplitude caused by sinusoidal loading is measured from the spread of the Doppler spectrum, which is extracted using joint spectral and time domain signal processing. At low OCT signal-to-noise ratio (SNR), the method provides more accurate vibration amplitude measurements than the currently used phase-sensitive method. For measurements performed on a mirror at OCT SNR = 5 dB, our method introduces <3% error, compared to >20% using the phase-sensitive method. We present elastograms of a tissue-mimicking phantom and excised porcine tissue that demonstrate improvements, including a 50% increase in the depth range of reliable vibration amplitude measurement. PMID:23243565
Aldayel, Abdulaziz; Muthalib, Makii; Jubeau, Marc; McGuigan, Michael; Nosaka, Kazunori
2011-05-01
This study compared between alternating and pulsed current electrical muscle stimulation (EMS) for muscle oxygenation and blood volume during isometric contractions. Nine healthy men (23-48 years) received alternating current EMS (2500 Hz) modulated at 75 Hz on the knee extensors of one leg, and pulsed current EMS (75 Hz) for the other leg separated by 2 weeks in a randomised, counter-balanced order. Pulse duration (400 μs), on-off ratio (5-15 s) and other stimulation parameters were matched between conditions and 30 isometric contractions were induced at the knee joint angle of 100° (0° full extension). Changes in tissue oxygenation index (∆TOI) and total hemoglobin volume (∆tHb) of vastus lateralis and medialis muscles over 30 contractions were assessed by a near-infrared spectroscopy, and were compared between conditions by a two-way repeated measures ANOVA. Peak torque produced during EMS increased over 30 contractions in response to the increase in the stimulation intensity for pulsed current, but not for the alternating current EMS. The torque during each isometric contraction was less stable in alternating than pulsed current EMS. The changes in ∆TOI amplitude during relaxation phases and ∆tHb amplitude were not significantly different between conditions. However, the decreases in ∆TOI amplitude during contraction phases from baseline were significantly (P < 0.05) greater for the pulsed current than alternating current from the 18th contraction (-15.6 ± 2.3 vs. -8.9 ± 1.8%) to 30th contraction (-10.7 ± 1.8 vs. -4.8 ± 1.5%). These results suggest that the muscles were less activated in the alternating current EMS when compared with the pulsed current EMS.
So, Edmund Cheung; Hsing, Chung-Hsi; Liang, Chia-Hua; Wu, Sheng-Nan
2012-05-15
Mdivi-1 is an inhibitor of dynamin related protein 1- (drp1)-mediated mitochondrial fission. However, the mechanisms through which this compound interacts directly with ion currents in heart cells remain unknown. In this study, its effects on ion currents and membrane potential in murine HL-1 cardiomyocytes were investigated. In whole-cell recordings, the addition of mdivi-1 decreased the amplitude of tail current (I(tail)) for the rapidly activating delayed-rectifier K⁺ current (I(Kr)) in a concentration-dependent manner with an IC₅₀ value at 11.6 μM, a value that resembles the inhibition requirement for mitochondrial division. It shifted the activation curve of I(tail) to depolarized voltages with no change in the gating charge. However, mdivi-1 did not alter the rate of recovery from current inactivation. In cell-attached configuration, mdivi-1 inside the pipette suppressed the activity of acetylcholine-activated K⁺ channels without modifying the single-channel conductance. Mdivi-1 (30 μM) slightly depressed the peak amplitude of Na⁺ current with no change in the overall current-voltage relationship. Under current-clamp recordings, addition of mdivi-1 resulted in prolongation for the duration of action potentials (APs) and to increase the firing of spontaneous APs in HL-1 cells. Similarly, in pituitary GH₃ cells, mdivi-1 was effective in directly suppressing the amplitude of ether-à-go-go-related gene-mediated K⁺ current. Therefore, the lengthening of AP duration and increased firing of APs caused by mdivi-1 can be primarily explained by its inhibition of these K⁺ channels enriched in heart cells. The observed effects of mdivi-1 on ion currents were direct and not associated with its inhibition of mitochondrial division. Copyright © 2012 Elsevier B.V. All rights reserved.
Rogue waves in a multistable system.
Pisarchik, Alexander N; Jaimes-Reátegui, Rider; Sevilla-Escoboza, Ricardo; Huerta-Cuellar, G; Taki, Majid
2011-12-30
Clear evidence of rogue waves in a multistable system is revealed by experiments with an erbium-doped fiber laser driven by harmonic pump modulation. The mechanism for the rogue wave formation lies in the interplay of stochastic processes with multistable deterministic dynamics. Low-frequency noise applied to a diode pump current induces rare jumps to coexisting subharmonic states with high-amplitude pulses perceived as rogue waves. The probability of these events depends on the noise filtered frequency and grows up when the noise amplitude increases. The probability distribution of spike amplitudes confirms the rogue wave character of the observed phenomenon. The results of numerical simulations are in good agreement with experiments.
Smith, Michael G.; Croy, Ilona; Ögren, Mikael; Persson Waye, Kerstin
2013-01-01
Background A substantial increase in transportation of goods on railway may be hindered by public fear of increased vibration and noise leading to annoyance and sleep disturbance. As the majority of freight trains run during night time, the impact upon sleep is expected to be the most serious adverse effect. The impact of nocturnal vibration on sleep is an area currently lacking in knowledge. We experimentally investigated sleep disturbance with the aim to ascertain the impact of increasing vibration amplitude. Methodology/Principal Findings The impacts of various amplitudes of horizontal vibrations on sleep disturbance and heart rate were investigated in a laboratory study. Cardiac accelerations were assessed using a combination of polysomnography and ECG recordings. Sleep was assessed subjectively using questionnaires. Twelve young, healthy subjects slept for six nights in the sleep laboratory, with one habituation night, one control night and four nights with a variation of vibration exposures whilst maintaining the same noise exposure. With increasing vibration amplitude, we found a decrease in latency and increase in amplitude of heart rate as well as a reduction in sleep quality and increase in sleep disturbance. Conclusions/Significance We concluded that nocturnal vibration has a negative impact on sleep and that the impact increases with greater vibration amplitude. Sleep disturbance has short- and long-term health consequences. Therefore, it is necessary to define levels that protect residents against sleep disruptive vibrations that may arise from night time railway freight traffic. PMID:23409055
Increasing the intensity of an induction accelerator and reduction of the beam breakup instability
NASA Astrophysics Data System (ADS)
Coleman, J. E.; Moir, D. C.; Ekdahl, C. A.; Johnson, J. B.; McCuistian, B. T.; Sullivan, G. W.; Crawford, M. T.
2014-03-01
A 7 cm cathode has been deployed for use on a 3.8 MV, 80 ns (FWHM) Blumlein, to increase the extracted electron current from the nominal 1.7 to 2.9 kA. The intense relativistic electron bunch is accelerated and transported through a nested solenoid and ferrite induction core lattice consisting of 64 elements, exiting the accelerator with a nominal energy of 19.8 MeV. The principal objective of these experiments is to quantify the space-charge limitations on the beam quality, its coupling with the beam breakup (BBU) instability, and provide an independent validation of the BBU theory in a higher current regime, I >2 kA. Time resolved centroid measurements indicate a reduction in BBU >10× with simply a 50% increase in the average B-field used to transport the beam through the accelerator. A qualitative comparison of experimental and calculated results are presented, which include time resolved current density distributions, radial BBU amplitude relative to the calculated beam envelope, and frequency analyzed BBU amplitude with different accelerator lattice tunes.
Akuzawa-Tateyama, M; Tateyama, M; Ochi, R
1998-01-01
The effects of large reductions of [K+]o on membrane potential were studied in isolated rabbit ventricular myocytes using the whole-cell patch clamp technique.Decreasing [K+]o from the normal level of 5.4 mm to 0.1 mm increased resting membrane potential (Vrest) from −75.6 ± 0.3 to −140.3 ± 1.9 mV (means ± s.e.m; n = 127), induced irregular, transient depolarizations with mean maximal amplitudes of 19.5 ± 1.5 mV and elicited action potentials in 56.7 % of trials. The action potentials exhibited overshoots of 37.9 ± 1.5 mV (n = 72) and sustained plateaux.Addition of 0.1 mm La3+ in the presence of 0.1 mm[K+]o significantly increased Vrest but decreased the amplitude of transient depolarizations and suppressed the firing of action potentials.Replacement of external Na+ or Cl− with N-methyl-D-glucamine or aspartate, respectively, or internal dialysis with 10 mm EGTA or BAPTA had little effect on low [K+]o-induced membrane potential changes.Hyperpolarizing voltage clamp pulses to potentials between −110 and −200 mV activated irregular inward currents that increased in amplitude and frequency with increasing hyperpolarization and were depressed by 0.1 mm La3+.The generation of transient depolarizations by low [K+]o can be explained as being a consequence of decreasing the inward rectifier K+ current (IK1) and the appearance of inward currents reflecting electroporation resulting from strong electric fields across the membrane. PMID:9824717
Glahn, David; Nuccitelli, Richard
2003-04-01
Voltage-clamped mature, jelly-intact Xenopus eggs were used to carefully examine the ionic currents crossing the plasma membrane before, during, and after fertilization. The bulk of the fertilization current was transient, of large amplitude, and reversed at the predicted Cl- reversal potential. However, the large amplitude fertilization current was preceded by a small, step-like increase in holding current. This small increase in holding current is referred to in this paper as Ion to acknowledge its qualitative similarity to the Ion current previously described in the sea urchin. It was observed in both fertilized and artificially activated eggs, and was found to be unaffected by 10 mm tetra-ethyl ammonium (TEA), a concentration found to block K+ currents in Rana pipiens. Current-voltage relationships are presented for the large fertilization potential, and show that the fertilization currents have a marked outward rectification and are voltage sensitive. These properties are in contrast to the total lack of rectification and slight voltage sensitivity seen before or after the fertilization currents. The time required for sperm to fertilize the egg was found to be voltage dependent with a relatively more depolarized voltage requiring a longer time for fertilization to occur. The percentage of eggs blocked with varying potential levels was determined and this information was fitted to a modified Boltzmann equation having a midpoint of -9 mV.
Schvartz-Leyzac, Kara C; Pfingst, Bryan E
2016-11-01
Electrically evoked compound action potential (ECAP) measures of peak amplitude, and amplitude-growth function (AGF) slope have been shown to reflect characteristics of cochlear health (primarily spiral ganglion density) in anesthetized cochlear-implanted guinea pigs. Likewise, the effect of increasing the interphase gap (IPG) in each of these measures also reflects SGN density in the implanted guinea pig. Based on these findings, we hypothesize that suprathreshold ECAP measures, and also how they change as the IPG is increased, have the potential to be clinically applicable in human subjects. However, further work is first needed in order to determine the characteristics of these measures in humans who use cochlear implants. The current study examined across-site patterns of suprathreshold ECAP measures in 10 bilaterally-implanted, adult cochlear implant users. Results showed that both peak amplitude and slope of the AGF varied significantly from electrode to electrode in ear-specific patterns across the subjects' electrode arrays. As expected, increasing the IPG on average increased the peak amplitude and slope. Across ears, there was a significant, negative correlation between the slope of the ECAP AGF and the duration of hearing loss. Across-site patterns of ECAP peak amplitude and AGF slopes were also compared with common ground impedance values and significant correlations were observed in some cases, depending on the subject and condition. The results of this study, coupled with previous studies in animals, suggest that it is feasible to measure the change in suprathreshold ECAP measures as the IPG increases on most electrodes. Further work is needed to investigate the relationship between these measures and cochlear implant outcomes, and determine how these measures might be used when programming a cochlear-implant processor. Published by Elsevier B.V.
Amplitude-frequency effect of Y-cut langanite and langatate.
Kim, Yoonkee
2003-12-01
Amplitude-frequency effect of a Y-cut langanite (LGN) resonator and a Y-cut langatate (LGT) resonator were measured. The frequency shifts from the baseline frequency with 1 mA were measured as a function of drive currents up to 28 mA. High-drive current shifted the frequency, but it also heated the crystal locally, causing temperature-related frequency changes. The local heat transfer and its influence on the frequency were analyzed. The amplitude-frequency shift was effectively measured, and was not affected by the temperature-related frequency changes. The 3rd, 5th, and 7th overtones (OT's) were found to behave as soft springs, i.e., resonant frequency decreases as drive current increases. The drive sensitivity coefficients of the 3rd and 5th OT's are in the vicinity of -2 ppb/mA2 for both resonators. The 7th OT's are higher than the other OT's: -5 approximately -7 ppb/mA2. The lowest drive sensitivity is -1.2 ppb/mA2 on the 5th OT of the LGT.
[Effect of pulse magnetic field on distribution of neuronal action potential].
Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling
2014-08-25
The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.
Setién, Raúl; Alday, Aintzane; Diaz-Asensio, Cristina; Urrutia, Janire; Gallego, Mónica; Casis, Oscar
2013-01-01
In diabetic ventricular myocytes, transient outward potassium current (Ito) amplitude is severely reduced because of the impaired catecholamine release that characterizes diabetic autonomic neuropathy. Sympathetic nervous system exhibits a trophic effect on Ito since incubation of myocytes with noradrenaline restores current amplitude via beta-adrenoceptor (βAR) stimulation. Here, we investigate the intracellular signalling pathway though which incubation of diabetic cardiomyocytes with the βAR agonist isoproterenol recovers Ito amplitude to normal values. Experiments were performed in ventricular myocytes isolated from streptozotocin-diabetic rats. Ito current was recorded by using the patch-clamp technique. Kv4 channel expression was determined by immunofluorescence. Protein-protein interaction was determined by coimmunoprecipitation. Stimulation of βAR activates first a Gαs protein, adenylyl cyclase and Protein Kinase A. PKA-phosphorylated receptor then switches to the Gαi protein. This leads to the activation of the βAR-Kinase-1 and further receptor phosphorylation and arrestin dependent internalization. The internalized receptor-arrestin complex recruits and activates cSrc and the MAPK cascade, where Ras, c-Raf1 and finally ERK1/2 mediate the increase in Kv4.2 and Kv4.3 protein abundance in the plasma membrane. β2AR stimulation activates a Gαs and Gαi protein dependent pathway where the ERK1/2 modulates the Ito current amplitude and the density of the Kv4.2 and Kv4.2 channels in the plasma membrane upon sympathetic stimulation in diabetic heart. Copyright © 2012 S. Karger AG, Basel.
Reduced Current Spread by Concentric Electrodes in Transcranial Electrical Stimulation (tES).
Bortoletto, M; Rodella, C; Salvador, R; Miranda, P C; Miniussi, C
2016-01-01
We propose the use of a new montage for transcranial direct current stimulation (tDCS), called concentric electrodes tDCS (CE-tDCS), involving two concentric round electrodes that may improve stimulation focality. To test efficacy and focality of CE-tDCS, we modelled the current distribution and tested physiological effects on cortical excitability. Motor evoked potentials (MEPs) from first dorsal interosseous (FDI) and abductor digiti minimi (ADM) were recorded before and after the delivery of anodal, cathodal and sham stimulation on the FDI hotspot for 10 minutes. MEP amplitude of FDI increased after anodal-tDCS and decreased after cathodal-tDCS, supporting the efficacy of CE-tDCS in modulating cortical excitability. Moreover, modelled current distribution and no significant effects of stimulation on MEP amplitude of ADM suggest high focality of CE-tDCS. CE-tDCS may allow a better control of current distribution and may represent a novel tool for applying tDCS and other transcranial current stimulation approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
Wakita, Masahito; Shoudai, Kiyomitsu; Oyama, Yasuo; Akaike, Norio
2017-10-01
4,5-Dichloro-2-octyl-4-isothiazolin-3-one (DCOIT) is an alternative to organotin antifoulants, such as tributyltin and triphenyltin. Since DCOIT is found in harbors, bays, and coastal areas worldwide, this chemical compound may have some impacts on ecosystems. To determine whether DCOIT possesses neurotoxic activity by modifying synaptic transmission, we examined the effects of DCOIT on synaptic transmission in a 'synaptic bouton' preparation of rat brain. DCOIT at concentrations of 0.03-1 μM increased the amplitudes of evoked synaptic currents mediated by GABA and glutamate, while it reduced the amplitudes of these currents at 3-10 μM. However, the currents elicited by exogenous applications of GABA and glutamate were not affected by DCOIT. DCOIT at 1-10 μM increased the frequency of spontaneous synaptic currents mediated by GABA. It also increased the frequency of glutamate-mediated spontaneous currents at0.3-10 μM. The frequencies of miniature synaptic currents mediated by GABA and glutamate, observed in the presence of tetrodotoxin under external Ca 2+ -free conditions, were increased by 10 μM DCOIT. With the repetitive applications of DCOIT, the frequency of miniature synaptic currents mediated by glutamate was not increased by the second and third applications of DCOIT. Voltage-dependent Ca 2+ channels were not affected by DCOIT, but DCOIT slowed the inactivation of voltage-dependent Na + channels. These results suggest that DCOIT increases Ca 2+ release from intracellular Ca 2+ stores, resulting in the facilitation of both action potential-dependent and spontaneous neurotransmission, possibly leading to neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Serotonin regulates voltage-dependent currents in type Ie(A) and Ii interneurons of Hermissenda
Jin, Nan Ge
2011-01-01
Serotonin (5-HT) has both direct and modulatory actions on central neurons contributing to behavioral arousal and cellular-synaptic plasticity in diverse species. In Hermissenda, 5-HT produces changes in intrinsic excitability of different types of identified interneurons in the circumesophageal nervous system. Using whole cell patch-clamp techniques we have examined membrane conductance changes produced by 5-HT that contribute to intrinsic excitability in two identified classes of interneurons, types Ii and IeA. Whole cell currents were examined before and after 5-HT application to the isolated nervous system. A 4-aminopyridine-sensitive transient outward K+ current [IK(A)], a tetraethylammonium-sensitive delayed rectifier K+ current [IK(V)], an inward rectifier K+ current [IK(IR)], and a hyperpolarization-activated current (Ih) were characterized. 5-HT decreased the amplitude of IK(A) and IK(V) in both type Ii and IeA interneurons. However, differences in 5-HT's effects on the activation-inactivation kinetics were observed in different types of interneurons. 5-HT produced a depolarizing shift in the activation curve of IK(V) and a hyperpolarizing shift in the inactivation curve of IK(A) in type Ii interneurons. In contrast, 5-HT produced a depolarizing shift in the activation curve and a hyperpolarizing shift in the inactivation curve of both IK(V) and IK(A) in type IeA interneurons. In addition, 5-HT decreased the amplitude of IK(IR) in type Ii interneurons and increased the amplitude of Ih in type IeA interneurons. These results indicate that 5-HT-dependent changes in IK(A), IK(V), IK(IR), and Ih contribute to multiple mechanisms that synergistically support modulation of increased intrinsic excitability associated with different functional classes of identified type I interneurons. PMID:21813747
Parameter estimation of extended free-burning electric arc within 1 kA
NASA Astrophysics Data System (ADS)
Sun, Qiuqin; Liu, Hao; Wang, Feng; Chen, She; Zhai, Yujia
2018-05-01
A long electric arc, as a common phenomenon in the power system, not only damages the electrical equipment but also threatens the safety of the system. In this work, a series of tests on a long electric arc in free air have been conducted. The arc voltage and current data were obtained, and the arc trajectories were captured using a high speed camera. The arc images were digitally processed by means of edge detection, and the length is formulated and achieved. Based on the experimental data, the characteristics of the long arc are discussed. It shows that the arc voltage waveform is close to the square wave with high-frequency components, whereas the current is almost sinusoidal. As the arc length elongates, the arc voltage and the resistance increase sharply. The arc takes a spiral shape with the effect of magnetic forces. The arc length will shorten briefly with the occurrence of the short-circuit phenomenon. Based on the classical Mayr model, the parameters of the long electric arc, including voltage gradient and time constant, with different lengths and current amplitudes are estimated using the linear least-square method. To reduce the computational error, segmentation interpolation is also employed. The results show that the voltage gradient of the long arc is mainly determined by the current amplitude but almost independent of the arc length. However, the time constant is jointly governed by these two variables. The voltage gradient of the arc with the current amplitude at 200-800 A is in the range of 3.9 V/cm-20 V/cm, and the voltage gradient decreases with the increase in current.
Spectrum 101: An Introduction to Spectrum Management
2004-03-01
are used to manage spectrum. 1.1 Signals A signal is broadly defined as a detectable quantity (e.g., current, voltage, electromagnetic field ...A pulse consists of a short burst of radiation. These pulses may be a simple increase in the electromagnetic field (referred to as baseband...changing current, in turn, induces an electromagnetic field about itself, with a field strength that corresponds to the current amplitude. This
Dolphin, A C; Wyatt, C N; Richards, J; Beattie, R E; Craig, P; Lee, J-H; Cribbs, L L; Volsen, S G; Perez-Reyes, E
1999-01-01
The effect has been examined of the accessory α2-δ and β subunits on the properties of α1G currents expressed in monkey COS-7 cells and Xenopus oocytes. In immunocytochemical experiments, the co-expression of α2-δ increased plasma membrane localization of expressed α1G and conversely, the heterologous expression of α1G increased immunostaining for endogenous α2-δ, suggesting an interaction between the two subunits. Heterologous expression of α2-δ together with α1G in COS-7 cells increased the amplitude of expressed α1G currents by about 2-fold. This finding was confirmed in the Xenopus oocyte expression system. The truncated δ construct did not increase α1G current amplitude, or increase its plasma membrane expression. This indicates that it is the exofacial α2 domain that is involved in the enhancement by α2-δ. β1b also produced an increase of functional expression of α1G, either in the absence or the presence of heterologously expressed α2-δ, whereas the other β subunits had much smaller effects. None of the accessory subunits had any marked influence on the voltage dependence or kinetics of the expressed α1G currents. These results therefore suggest that α2-δ and β1b interact with α1G to increase trafficking of, or stabilize, functional α1G channels expressed at the plasma membrane. PMID:10432337
Phase resetting in a model of cardiac Purkinje fiber.
Guevara, M R; Shrier, A
1987-01-01
The phase-resetting response of a model of spontaneously active cardiac Purkinje fiber is investigated. The effect on the interbeat interval of injecting a 20-ms duration depolarizing current pulse is studied as a function of the phase in the cycle at which the pulse is delivered. At low current amplitudes, a triphasic response is recorded as the pulse is advanced through the cycle. At intermediate current amplitudes, the response becomes quinquephasic, due to the presence of supernormal excitability. At high current amplitudes, a triphasic response is seen once more. At low stimulus amplitudes, type 1 phase resetting occurs; at medium amplitudes, a type could not be ascribed to the phase resetting because of the presence of effectively all-or-none depolarization; at high amplitudes, type 0 phase resetting occurs. The modeling results closely correspond with published experimental data; in particular type 1 and type 0 phase resetting are seen. Implications for the induction of ventricular arrhythmias are considered. PMID:3663827
Dual amplitude pulse generator for radiation detectors
Hoggan, Jerry M.; Kynaston, Ronnie L.; Johnson, Larry O.
2001-01-01
A pulsing circuit for producing an output signal having a high amplitude pulse and a low amplitude pulse may comprise a current source for providing a high current signal and a low current signal. A gate circuit connected to the current source includes a trigger signal input that is responsive to a first trigger signal and a second trigger signal. The first trigger signal causes the gate circuit to connect the high current signal to a pulse output terminal whereas the second trigger signal causes the gate circuit to connect the low current signal to the pulse output terminal.
METHOD OF PEAK CURRENT MEASUREMENT
Baker, G.E.
1959-01-20
The measurement and recording of peak electrical currents are described, and a method for utilizing the magnetic field of the current to erase a portion of an alternating constant frequency and amplitude signal from a magnetic mediums such as a magnetic tapes is presented. A portion of the flux from the current carrying conductor is concentrated into a magnetic path of defined area on the tape. After the current has been recorded, the tape is played back. The amplitude of the signal from the portion of the tape immediately adjacent the defined flux area and the amplitude of the signal from the portion of the tape within the area are compared with the amplitude of the signal from an unerased portion of the tape to determine the percentage of signal erasure, and thereby obtain the peak value of currents flowing in the conductor.
Ponnath, Abhilash
2010-01-01
Sensitivity to acoustic amplitude modulation in crickets differs between species and depends on carrier frequency (e.g., calling song vs. bat-ultrasound bands). Using computational tools, we explore how Ca2+-dependent mechanisms underlying selective attention can contribute to such differences in amplitude modulation sensitivity. For omega neuron 1 (ON1), selective attention is mediated by Ca2+-dependent feedback: [Ca2+]internal increases with excitation, activating a Ca2+-dependent after-hyperpolarizing current. We propose that Ca2+ removal rate and the size of the after-hyperpolarizing current can determine ON1’s temporal modulation transfer function (TMTF). This is tested using a conductance-based simulation calibrated to responses in vivo. The model shows that parameter values that simulate responses to single pulses are sufficient in simulating responses to modulated stimuli: no special modulation-sensitive mechanisms are necessary, as high and low-pass portions of the TMTF are due to Ca2+-dependent spike frequency adaptation and post-synaptic potential depression, respectively. Furthermore, variance in the two biophysical parameters is sufficient to produce TMTFs of varying bandwidth, shifting amplitude modulation sensitivity like that in different species and in response to different carrier frequencies. Thus, the hypothesis that the size of after-hyperpolarizing current and the rate of Ca2+ removal can affect amplitude modulation sensitivity is computationally validated. PMID:20559640
NASA Astrophysics Data System (ADS)
Bendana, Sylvana; Brand, Brittany D.; Self, Stephen
2014-05-01
The flanks of Mt St Helens volcano (MSH) are draped with thin, cross-stratified and stratified pyroclastic density current (PDC) deposits. These are known as the proximal bedded deposits produced during the May 18th, 1980 eruption of MSH. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The deposits along the flank thus vary greatly from those found in the pumice plain, which are generally thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow (Brand et al, accepted. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA). JVGR). We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs.
DeMonte, Tim P; Wang, Dinghui; Ma, Weijing; Gao, Jia-Hong; Joy, Michael L G
2009-01-01
Current density imaging (CDI) is a magnetic resonance imaging (MRI) technique used to quantitatively measure current density vectors throughout the volume of an object/subject placed in the MRI system. Electrical current pulses are applied externally to the object/subject and are synchronized with the MRI sequence. In this work, CDI is used to measure average current density magnitude in the torso region of an in-vivo piglet for applied current pulse amplitudes ranging from 10 mA to 110 mA. The relationship between applied current amplitude and current density magnitude is linear in simple electronic elements such as wires and resistors; however, this relationship may not be linear in living tissue. An understanding of this relationship is useful for research in defibrillation, human electro-muscular incapacitation (e.g. TASER(R)) and other bioelectric stimulation devices. This work will show that the current amplitude to current density magnitude relationship is slightly nonlinear in living tissue in the range of 10 mA to 110 mA.
Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H
2015-08-01
Electroconvulsive therapy (ECT) at conventional current amplitudes (800-900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112-174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, Youngdo, E-mail: Ydjoo77@postech.ac.kr; Yu, Inha; Park, Insoo
After three years of upgrading work, the Pohang Light Source-II (PLS-II) is now successfully operating. The final quantitative goal of PLS-II is a top-up user-service operation with beam current of 400 mA to be completed by the end of 2014. During the beam store test up to 400 mA in the storage ring (SR), it was observed that the vacuum pressure around the radio frequency (RF) window of the superconducting cavity rapidly increases over the interlock level limiting the availability of the maximum beam current storing. Although available beam current is enhanced by setting a higher RF accelerating voltage, it is bettermore » to keep the RF accelerating voltage as low as possible in the long time top-up operation. We investigated the cause of the window vacuum pressure increment by studying the changes in the electric field distribution at the superconducting cavity and waveguide according to the beam current. In our simulation, an equivalent physical modeling was developed using a finite-difference time-domain code. The simulation revealed that the electric field amplitude at the RF window is exponentially increased as the beam current increases, thus this high electric field amplitude causes a RF breakdown at the RF window, which comes with the rapid increase of window vacuum pressure. The RF accelerating voltage of PLS-II RF system was set to 4.95 MV, which was estimated using the maximum available beam current that works as a function of RF voltage, and the top-up operation test with the beam current of 400 mA was successfully carried out.« less
Bedwell, Jeffrey S; Bohil, Corey J; Neider, Mark B; Gramlich, Michael A; Neer, Sandra M; OʼDonnell, John P; Beidel, Deborah C
2018-06-01
There is a need for a better understanding of underlying pathology in posttraumatic stress disorder (PTSD) to develop more effective treatments. The late positive potential (LPP) amplitude from electroencephalogram has been used to assess individual differences in emotional reactivity. There is evidence that olfaction is particularly important in emotional processing in PTSD. The current study examined LPP amplitudes in response to olfactory stimuli in 24 combat veterans with PTSD and 24 nonmilitary/non-PTSD controls. An olfactometer delivered three negatively valenced odorants, with 12 trials of each delivered in a random order. The groups did not differ in LPP amplitude across odorants. However, within the PTSD group, higher Clinician-Administered PTSD Scale scores related to an increased LPP amplitude after diesel fuel and rotten egg, but not n_butanol, odorants. Results provide specific targets and theory for further research into clinical applications such as selection of idiographic odorants for use in virtual-reality exposure therapy.
About plasma points' generation in Z-pinch
NASA Astrophysics Data System (ADS)
Afonin, V. I.; Potapov, A. V.; Lazarchuk, V. P.; Murugov, V. M.; Senik, A. V.
1997-05-01
The streak tube study results (at visible and x-ray ranges) of dynamics of fast Z-pinch formed at explosion of metal wire in diode of high current generator are presented. Amplitude of current in the load reached ˜180 kA at increase time ˜50 ns. The results' analysis points to capability of controlling hot plasma points generation process in Z-pinch.
NASA Technical Reports Server (NTRS)
Willett, J. C.; LeVine, D. M.
2002-01-01
Direct current measurements are available near the attachment point from both natural cloud-to-ground lightning and rocket-triggered lightning, but little is known about the rise time and peak amplitude of return-stroke currents aloft. We present, as functions of height, current amplitudes, rise times, and effective propagation velocities that have been estimated with a novel remote-sensing technique from data on 24 subsequent return strokes in six different lightning flashes that were triggering at the NASA Kennedy Space Center, FL, during 1987. The unique feature of this data set is the stereo pairs of still photographs, from which three-dimensional channel geometries were determined previously. This has permitted us to calculate the fine structure of the electric-field-change (E) waveforms produced by these strokes, using the current waveforms measured at the channel base together with physically reasonable assumptions about the current distributions aloft. The computed waveforms have been compared with observed E waveforms from the same strokes, and our assumptions have been adjusted to maximize agreement. In spite of the non-uniqueness of solutions derived by this technique, several conclusions seem inescapable: 1) The effective propagation speed of the current up the channel is usually significantly (but not unreasonably) faster than the two-dimensional velocity measured by a streak camera for 14 of these strokes. 2) Given the deduced propagation speed, the peak amplitude of the current waveform often must decrease dramatically with height to prevent the electric field from being over-predicted. 3) The rise time of the current wave front must always increase rapidly with height in order to keep the fine structure of the calculated field consistent with the observations.
The influence of climate change and the timing of stratospheric warmings on Arctic ozone depletion
NASA Astrophysics Data System (ADS)
Austin, John; Butchart, Neal
1994-01-01
Satellite data are presented showing the timing of sudden warmings in the lower stratosphere during the winters 1979-1992. A three-dimensional dynamical-radiative-photochemical model is used to establish how Arctic ozone depletion will respond to a doubling of CO2 according to the timing of the warmings. In a series of idealized experiments the timing of the warmings is varied by specifying different geopotential wave amplitudes at the 316-mbar model lower boundary. Results from a "transient climate change experiment" show that the chosen wave amplitudes are appropriate for both the current and the doubled CO2 atmosphere. For doubled CO2 the experiments show that any significant risk of an Arctic ozone hole will be confined to those years with only a late stratospheric warming. In all other years the results suggest that springtime total ozone over the Arctic is more likely to increase by a small amount due to a combination of slower homogeneous chemistry and changes in transport. The predictions obtained from the idealized studies are then tested by prescribing at the model lower boundary the observed geopotential wave amplitudes from two specific years with late winter warmings. Doubling CO2 amounts produced no significant increase in ozone depletion with the 1989 wave amplitudes, but with 1990 wave amplitudes, an Arctic ozone hole occurred with minimum column of 187 Dobson Units. This contrasting response is attributed to the large midwinter pulse in the 1989 wave amplitudes compared to the less dramatic and shorter timescale fluctuations in the 1990 wave amplitudes. It is concluded that under doubled CO2 conditions an Arctic ozone hole is likely to occur in years with late stratospheric warmings following winters in which there were no significant pulses in the upper tropospheric planetary wave amplitudes.
Acoustic emission during quench training of superconducting accelerator magnets
NASA Astrophysics Data System (ADS)
Marchevsky, M.; Sabbi, G.; Bajas, H.; Gourlay, S.
2015-07-01
Acoustic emission (AE) sensing is a viable tool for superconducting magnet diagnostics. Using in-house developed cryogenic amplified piezoelectric sensors, we conducted AE studies during quench training of the US LARP's high-field quadrupole HQ02 and the LBNL's high-field dipole HD3. For both magnets, AE bursts were observed, with spike amplitude and frequency increasing toward the quench current during current up-ramps. In the HQ02, the AE onset upon current ramping is distinct and exhibits a clear memory of the previously-reached quench current (Kaiser effect). On the other hand, in the HD3 magnet the AE amplitude begins to increase well before the previously-reached quench current (felicity effect), suggesting an ongoing progressive mechanical motion in the coils. A clear difference in the AE signature exists between the untrained and trained mechanical states in HD3. Time intervals between the AE signals detected at the opposite ends of HD3 coils were processed using a combination of narrow-band pass filtering; threshold crossing and correlation algorithms, and the spatial distributions of AE sources and the mechanical energy release were calculated. Both distributions appear to be consistent with the quench location distribution. Energy statistics of the AE spikes exhibits a power-law scaling typical for the self-organized critical state.
Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H
2015-01-01
Electroconvulsive therapy (ECT) at conventional current amplitudes (800–900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112–174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST. PMID:25920013
Olson, Marnie L; Kargacin, Margaret E; Ward, Christopher A; Kargacin, Gary J
2007-06-01
The effects of the phytoestrogens phloretin and phloridzin on Ca(2+) handling, cell shortening, the action potential, and Ca(2+) and K(+) currents in freshly isolated cardiac myocytes from rat ventricle were examined. Phloretin increased the amplitude and area and decreased the rate of decline of electrically evoked Ca(2+) transients in the myocytes. These effects were accompanied by an increase in the Ca(2+) load of the sarcoplasmic reticulum, as determined by the area of caffeine-evoked Ca(2+) transients. An increase in the extent of shortening of the myocytes in response to electrically evoked action potentials was also observed in the presence of phloretin. To further examine possible mechanisms contributing to the observed changes in Ca(2+) handling and contractility, the effects of phloretin on the cardiac action potential and plasma membrane Ca(2+) and K(+) currents were examined. Phloretin markedly increased the action potential duration in the myocytes, and it inhibited the Ca(2+)-independent transient outward K(+) current (I(to)). The inwardly rectifying K(+) current, the sustained outward delayed rectifier K(+) current, and L-type Ca(2+) currents were not significantly different in the presence and absence of phloretin, nor was there any evidence that the Na(+)/Ca(2+) exchanger was affected. The effects of phloretin on Ca(2+) handling in the myocytes are consistent with its effects on I(to). Phloridzin did not significantly alter the amplitude or area of electrically evoked Ca(2+) transients in the myocytes, nor did it have detectable effects on the sarcoplasmic reticulum Ca(2+) load, cell shortening, or the action potential.
Devil's staircases and continued fractions in Josephson junctions
NASA Astrophysics Data System (ADS)
Shukrinov, Yu. M.; Medvedeva, S. Yu.; Botha, A. E.; Kolahchi, M. R.; Irie, A.
2013-12-01
Detailed numerical simulations of the IV characteristics of a Josephson junction under external electromagnetic radiation show the devil's staircase within different bias current intervals. We have found that the observed steps form very precisely continued fractions. Increase of the amplitude of the radiation shifts the devil's staircase to higher Shapiro steps. An algorithm for the appearance and detection of subharmonics with increasing radiation amplitude is proposed. We demonstrate that the subharmonic steps registered in the well-known experiments by Dayem and Wiegand [Phys. Rev. 155, 419 (1967), 10.1103/PhysRev.155.419] and Clarke [Phys. Rev. B 4, 2963 (1971), 10.1103/PhysRevB.4.2963] also form continued fractions.
Shirota, Yuichiro; Terney, Daniella; Antal, Andrea; Paulus, Walter
2017-01-01
Transcranial direct current stimulation (tDCS) has been reported to have bidirectional influence on the amplitude of motor-evoked potentials (MEPs) in resting participants in a polarity-specific manner: anodal tDCS increased and cathodal tDCS decreased them. More recently, the effects of tDCS have been shown to depend on a number of additional factors. We investigated whether a small variety of movements involving target and non-target muscles could differentially modify the efficacy of tDCS. MEPs were elicited from the right first dorsal interosseous muscle, defined as the target muscle, by single pulse transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). During M1 tDCS, which lasted for 10 min applying anodal, cathodal, or sham condition, the participants were instructed to squeeze a ball with their right hand (Task 1), to move their right index finger only in the medial (Task 2), in the lateral direction (Task 3), or in medial and lateral direction alternatively (Task 4). Anodal tDCS reduced MEP amplitudes measured in Task 1 and Task 2, but to a lesser extent in the latter. In Task 3, anodal tDCS led to greater MEP amplitudes than cathodal stimulation. Alternating movements resulted in no effect of tDCS on MEP amplitude (Task 4). The results are congruent with the current notion that the aftereffects of tDCS are highly variable relying on a number of factors including the type of movements executed during stimulation.
Transdiagnostic psychiatric symptoms related to visual evoked potential abnormalities.
Bedwell, Jeffrey S; Butler, Pamela D; Chan, Chi C; Trachik, Benjamin J
2015-12-15
Visual processing abnormalities have been reported across a range of psychotic and mood disorders, but are typically examined within a particular disorder. The current study used a novel transdiagnostic approach to examine diagnostic classes, clinician-rated current symptoms, and self-reported personality traits in relation to visual processing abnormalities. We examined transient visual-evoked potentials (VEPs) from 48 adults (56% female), representing a wide range of psychotic and mood disorders, as well as individuals with no history of psychiatric disorder. Stimuli were low contrast check arrays presented on green and red backgrounds. Pairwise comparisons between individuals with schizophrenia-spectrum disorders (SSD), chronic mood disorders (CMD), and nonpsychiatric controls (NC) revealed no overall differences for either P1 or N1 amplitude. However, there was a significant interaction with the color background in which the NC group showed a significant increase in P1 amplitude to the red, vs. green, background, while the SSD group showed no change. This was related to an increase in social anhedonia and general negative symptoms. Stepwise regressions across the entire sample revealed that individuals with greater apathy and/or eccentric behavior had a reduced P1 amplitude. These relationships provide clues for uncovering the underlying causal pathology for these transdiagnostic symptoms. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Influence of humidity on the characteristics of positive corona discharge in air
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Pengfei, E-mail: xpftsh@126.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; Chen, Shuiming, E-mail: chensm@tsinghua.edu.cn
Detailed positive corona discharge characteristics, such as the corona onset voltage, pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under different air humidity with a single artificial defect electrode. The experimental results indicate that the pulse amplitude decreases with the increase of air humidity; meanwhile, the repetition frequency increases as the air humidity increases. This phenomenon is different from that of negative corona discharge. Therefore, to have an insight into the mechanism of humidity influence on positive corona discharge, a positive corona discharge model based on the continuity equations is utilized. The simulationsmore » present a dynamic development of positive corona discharge and, meanwhile, reveal the humidity influence on positive corona discharge.« less
Aromolaran, A S; Large, W A
1999-01-01
The facilitatory effects of external Ca2+, Sr2+ and Ba2+ (Cao2+, Sro2+ and Bao2+) on the noradrenaline-evoked non-selective cation current (Icat) were compared in rabbit portal vein smooth muscle cells using patch pipette techniques. All divalent cations tested potentiated the amplitude of Icat and the potency sequence was Cao2+ > Sro2+ > Bao2+. Cao2+ and Sro2+ increased the amplitude of Icat by about eight times whereas Bao2+ produced only a threefold facilitation. The current-voltage relationship of Icat was not changed by Cao2+, Sro2+ or Bao2+. From noise analysis the single channel conductance (γ) was approximately 10 pS in divalent cation-free solution but was about 20 pS with Cao2+, Sro2+ and Bao2+. From noise and voltage-jump experiments it was apparent that at least three kinetically resolvable channel states are associated with Icat in divalent cation-free solution. Cao2+ and Sro2+ produced marked changes in the characteristics of the power spectrum and relaxations of Icat in response to voltage steps, consistent with a shift in the equilibrium between the channel states, whereas Bao2+ produced minimal effects. The data show that Cao2+, Sro2+ and Bao2+ increase the amplitude of Icat, which results in part from an increase in the single channel conductance. In addition the results suggest that Cao2+ and Sro2+ alter the kinetic behaviour of the single channels whereas Bao2+ has little effect on the equilibrium between the channel states. PMID:10545143
Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes.
Kim, Sungshin; Callier, Thierri; Tabot, Gregg A; Tenore, Francesco V; Bensmaia, Sliman J
2015-01-01
Meaningful and repeatable tactile sensations can be evoked by electrically stimulating primary somatosensory cortex. Intracortical microstimulation (ICMS) may thus be a viable approach to restore the sense of touch in individuals who have lost it, for example tetraplegic patients. One of the potential limitations of this approach, however, is that high levels of current can damage the neuronal tissue if the resulting current densities are too high. The limited range of safe ICMS amplitudes thus limits the dynamic range of ICMS-evoked sensations. One way to get around this limitation would be to distribute the ICMS over multiple electrodes in the hopes of intensifying the resulting percept without increasing the current density experienced by the neuronal tissue. Here, we test whether stimulating through multiple electrodes is a viable solution to increase the dynamic range of ICMS-elicited sensations without increasing the peak current density. To this end, we compare the ability of non-human primates to detect ICMS delivered through one vs. multiple electrodes. We also compare their ability to discriminate pulse trains differing in amplitude when these are delivered through one or more electrodes. We find that increasing the number of electrodes through which ICMS is delivered only has a marginal effect on detectability or discriminability despite the fact that 2-4 times more current is delivered overall. Furthermore, the impact of multielectrode stimulation (or lack thereof) is found whether pulses are delivered synchronously or asynchronously, whether the leading phase of the pulses is cathodic or anodic, and regardless of the spatial configuration of the electrode groups.
Handwriting training in Parkinson’s disease: A trade-off between size, speed and fluency
Broeder, Sanne; Pereira, Marcelo P.; Swinnen, Stephan P.; Vandenberghe, Wim; Nieuwboer, Alice; Heremans, Elke
2017-01-01
Background In previous work, we found that intensive amplitude training successfully improved micrographia in Parkinson’s disease (PD). Handwriting abnormalities in PD also express themselves in stroke duration and writing fluency. It is currently unknown whether training changes these dysgraphic features. Objective To determine the differential effects of amplitude training on various hallmarks of handwriting abnormalities in PD. Methods We randomized 38 right-handed subjects in early to mid-stage of PD into an experimental group (n = 18), receiving training focused at improving writing size during 30 minutes/day, five days/week for six weeks, and a placebo group (n = 20), receiving stretch and relaxation exercises at equal intensity. Writing skills were assessed using a touch-sensitive tablet pre- and post-training, and after a six-week retention period. Tests encompassed a transfer task, evaluating trained and untrained sequences, and an automatization task, comparing single- and dual-task handwriting. Outcome parameters were stroke duration (s), writing velocity (cm/s) and normalized jerk (i.e. fluency). Results In contrast to the reported positive effects of training on writing size, the current results showed increases in stroke duration and normalized jerk after amplitude training, which were absent in the placebo group. These increases remained after the six-week retention period. In contrast, velocity remained unchanged throughout the study. Conclusion While intensive amplitude training is beneficial to improve writing size in PD, it comes at a cost as fluency and stroke duration deteriorated after training. The findings imply that PD patients can redistribute movement priorities after training within a compromised motor system. PMID:29272301
Handwriting training in Parkinson's disease: A trade-off between size, speed and fluency.
Nackaerts, Evelien; Broeder, Sanne; Pereira, Marcelo P; Swinnen, Stephan P; Vandenberghe, Wim; Nieuwboer, Alice; Heremans, Elke
2017-01-01
In previous work, we found that intensive amplitude training successfully improved micrographia in Parkinson's disease (PD). Handwriting abnormalities in PD also express themselves in stroke duration and writing fluency. It is currently unknown whether training changes these dysgraphic features. To determine the differential effects of amplitude training on various hallmarks of handwriting abnormalities in PD. We randomized 38 right-handed subjects in early to mid-stage of PD into an experimental group (n = 18), receiving training focused at improving writing size during 30 minutes/day, five days/week for six weeks, and a placebo group (n = 20), receiving stretch and relaxation exercises at equal intensity. Writing skills were assessed using a touch-sensitive tablet pre- and post-training, and after a six-week retention period. Tests encompassed a transfer task, evaluating trained and untrained sequences, and an automatization task, comparing single- and dual-task handwriting. Outcome parameters were stroke duration (s), writing velocity (cm/s) and normalized jerk (i.e. fluency). In contrast to the reported positive effects of training on writing size, the current results showed increases in stroke duration and normalized jerk after amplitude training, which were absent in the placebo group. These increases remained after the six-week retention period. In contrast, velocity remained unchanged throughout the study. While intensive amplitude training is beneficial to improve writing size in PD, it comes at a cost as fluency and stroke duration deteriorated after training. The findings imply that PD patients can redistribute movement priorities after training within a compromised motor system.
Na+ current in presynaptic terminals of the crayfish opener cannot initiate action potentials.
Lin, Jen-Wei
2016-01-01
Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings did detect Na(+) current (INa) in most terminals. The INa exhibited a high threshold and fast activation rate. Local perfusion of Na(+)-free saline showed that terminal INa contributed to AP waveform by slightly accelerating the rising phase and increasing the peak amplitude. These findings suggest that terminal INa functions to "touch up" but not to generate APs. Copyright © 2016 the American Physiological Society.
Space-and-time current spectroscopy of nanostructured selenium in the chrysotile asbestos matrix
NASA Astrophysics Data System (ADS)
Bryushinin, M. A.; Kulikov, V. V.; Kumzerov, Yu. A.; Mokrushina, E. V.; Petrov, A. A.; Sokolov, I. A.
2014-08-01
The non-steady-state photoelectromotive force effect was experimentally studied in a semiconductor nanowire array, i.e., in a composite representing selenium in a chrysotile asbestos matrix. The sample was exposed to an oscillating interference pattern, and the material response was measured as an alternating electric current. The experiments were performed for two geometries in which the excited photocurrent was parallel or perpendicular to nanowires. The dependences of the signal amplitude on the phase modulation frequency, spatial frequency, light polarization, and temperature were obtained. The photoelectric parameters of the material were determined for the light wavelength λ = 633 nm. The effect was theoretically analyzed for the semiconductor model with shallow traps, which allowed the explanation of the observed increase in the signal amplitude in the presence of additional phase modulation.
Prado-Gutierrez, Pavel; Castro-Fariñas, Anisleidy; Morgado-Rodriguez, Lisbet; Velarde-Reyes, Ernesto; Martínez, Agustín D.; Martínez-Montes, Eduardo
2015-01-01
Generation of the auditory steady state responses (ASSR) is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials. PMID:26557360
Functional and structural effects of amyloid-β aggregate on Xenopus laevis oocytes.
Parodi, Jorge; Ochoa-de la Paz, Lenin; Miledi, Ricardo; Martínez-Torres, Ataúlfo
2012-10-01
Xenopus laevis oocytes exposed to amyloid-β aggregate generated oscillatory electric activity (blips) that was recorded by two-microelectrode voltage-clamp. The cells exhibited a series of "spontaneous" blips ranging in amplitude from 3.8 ± 0.9 nA at the beginning of the recordings to 6.8 ± 1.7 nA after 15 min of exposure to 1 μM aggregate. These blips were similar in amplitude to those induced by the channel-forming antimicrobial agents amphotericin B (7.8 ± 1.2 nA) and gramicidin (6.3 ± 1.1 nA). The amyloid aggregate-induced currents were abolished when extracellular Ca(2+) was removed from the bathing solution, suggesting a central role for this cation in generating the spontaneous electric activity. The amyloid aggregate also affected the Ca(2+)-dependent Cl(-) currents of oocytes, as shown by increased amplitude of the transient-outward chloride current (T(out)) and the serum-activated, oscillatory Cl(-) currents. Electron microcopy revealed that amyloid aggregate induced the dissociation of the follicular cells that surround the oocyte, thus leading to a failure in the electro-chemical communication between these cells. This was also evidenced by the suppression of the oscillatory Ca(2+)-dependent ATP-currents, which require proper coupling between oocytes and the follicular cell layer. These observations, made using the X. laevis oocytes as a versatile experimental model, may help to understand the effects of amyloid aggregate on cellular communication.
Liu, Wei; Zhang, Zhao-qin; Zhao, Xiao-min; Gao, Yun-sheng
2006-05-01
To investigate the effect of Uncaria rhynchophylla total alkaloids (RTA) pretreatment on the voltage-gated sodium currents of the rat hippocampal neurons after acute hypoxia. Primary cultured hippocampal neurons were divided into RTA pre-treated and non-pretreated groups. Patch clamp whole-cell recording was used to compare the voltage-gated sodium current amplitude and threshold with those before hypoxia. After acute hypoxia, sodium current amplitude was significantly decreased and its threshold was upside. RTA pretreatment could inhibit the reduction of sodium current amplitude. RTA pretreatment alleviates the acute hypoxia-induced change of sodium currents, which may be one of the mechanisms for protective effect of RTA on cells.
The effect of papaine on the time course of the end-plate current.
Humar, M; Kordas, M; Melik, Z
1980-07-01
Papaine is known to detach cholinesterases from the synaptic cleft. It could be expected that this would result in an increase of the amplitude and half-time of the end-plate current. Thus, the effect of papaine on the end-plate current. Thus, the effect of papaine on the end-plate current should be similar to the effect of anticholinesterase methanesulfonylfluoride. The end-plate current was recorded in frog skeletal muscle at various levels of membrane potential, before and after papaine was added to the bath. The effect of papaine was an increase of the half-time of the end-plate current, similarly as after treatment of the muscle by methanesulfonylfluoride. It seems that both papaine and methanesulfonylfluoride have a similar mechanism of action. In either experimental condition hydrolysis of transmitter is decreased or abolished, which results in an increase of the half-time of the end-plate current.
Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons.
Suyama, Shigetomo; Ralevski, Alexandra; Liu, Zhong-Wu; Dietrich, Marcelo O; Yada, Toshihiko; Simonds, Stephanie E; Cowley, Michael A; Gao, Xiao-Bing; Diano, Sabrina; Horvath, Tamas L
2017-08-01
POMC neurons integrate metabolic signals from the periphery. Here, we show in mice that food deprivation induces a linear current-voltage relationship of AMPAR-mediated excitatory postsynaptic currents (EPSCs) in POMC neurons. Inhibition of EPSCs by IEM-1460, an antagonist of calcium-permeable (Cp) AMPARs, diminished EPSC amplitude in the fed but not in the fasted state, suggesting entry of GluR2 subunits into the AMPA receptor complex during food deprivation. Accordingly, removal of extracellular calcium from ACSF decreased the amplitude of mEPSCs in the fed but not the fasted state. Ten days of high-fat diet exposure, which was accompanied by elevated leptin levels and increased POMC neuronal activity, resulted in increased expression of Cp-AMPARs on POMC neurons. Altogether, our results show that entry of calcium via Cp-AMPARs is inherent to activation of POMC neurons, which may underlie a vulnerability of these neurons to calcium overload while activated in a sustained manner during over-nutrition.
Human sex differences in emotional processing of own-race and other-race faces.
Ran, Guangming; Chen, Xu; Pan, Yangu
2014-06-18
There is evidence that women and men show differences in the perception of affective facial expressions. However, none of the previous studies directly investigated sex differences in emotional processing of own-race and other-race faces. The current study addressed this issue using high time resolution event-related potential techniques. In total, data from 25 participants (13 women and 12 men) were analyzed. It was found that women showed increased N170 amplitudes to negative White faces compared with negative Chinese faces over the right hemisphere electrodes. This result suggests that women show enhanced sensitivity to other-race faces showing negative emotions (fear or disgust), which may contribute toward evolution. However, the current data showed that men had increased N170 amplitudes to happy Chinese versus happy White faces over the left hemisphere electrodes, indicating that men show enhanced sensitivity to own-race faces showing positive emotions (happiness). In this respect, men might use past pleasant emotional experiences to boost recognition of own-race faces.
Dynamic Response during PEM Fuel Cell Loading-up
Pei, Pucheng; Yuan, Xing; Gou, Jun; Li, Pengcheng
2009-01-01
A study on the effects of controlling and operating parameters for a Proton Exchange Membrane (PEM) fuel cell on the dynamic phenomena during the loading-up process is presented. The effect of the four parameters of load-up amplitudes and rates, operating pressures and current levels on gas supply or even starvation in the flow field is analyzed based accordingly on the transient characteristics of current output and voltage. Experiments are carried out in a single fuel cell with an active area of 285 cm2. The results show that increasing the loading-up amplitude can inevitably increase the possibility of gas starvation in channels when a constant flow rate has been set for the cathode; With a higher operating pressure, the dynamic performance will be improved and gas starvations can be relieved. The transient gas supply in the flow channel during two loading-up mode has also been discussed. The experimental results will be helpful for optimizing the control and operation strategies for PEM fuel cells in vehicles.
Influence of Internal Waves on Transport by a Gravity Current
NASA Astrophysics Data System (ADS)
Koseff, Jeffrey; Hogg, Charlie; Ouillon, Raphael; Ouellette, Nicholas; Meiburg, Eckart
2017-11-01
Gravity currents moving along the continental slope can be influenced by internal waves shoaling on the slope resulting in mixing between the gravity current and the ambient fluid. Whilst some observations of the potential influence of internal waves on gravity currents have been made, the process has not been studied systematically. We present laboratory experiments, and some initial numerical simulations, in which a gravity current descends down a sloped boundary through a pycnocline at the same time as an internal wave at the pycnocline shoals on the slope. Measurements of the downslope mass flux of the gravity current fluid in cases with different amplitudes of the incident internal wave will be discussed. For the parameter regime considered, the mass flux in the head of the gravity current was found to reduce with increasingly larger incident amplitude waves. This reduction was effectively caused by a ``decapitation'' process whereby the breaking internal wave captures and moves fluid from the head of the gravity current back up the slope. The significance of the impact of the internal waves on gravity current transport, strongly suggests that the local internal wave climate may need to be considered when calculating gravity current transport. The Bob and Norma Street Environmental Fluid Mechanics Laboratory.
Mibefradil (Ro 40-5967) inhibits several Ca2+ and K+ currents in human fusion-competent myoblasts
Liu, Jian-Hui; Bijlenga, Philippe; Occhiodoro, Teresa; Fischer-Lougheed, Jacqueline; Bader, Charles R; Bernheim, Laurent
1999-01-01
The effect of mibefradil (Ro 40-5967), an inhibitor of T-type Ca2+ current (ICa(T)), on myoblast fusion and on several voltage-gated currents expressed by fusion-competent myoblasts was examined.At a concentration of 5 μM, mibefradil decreases myoblast fusion by 57%. At this concentration, the peak amplitudes of ICa(T) and L-type Ca2+ current (ICa(L)) measured in fusion-competent myoblasts are reduced by 95 and 80%, respectively. The IC50 of mibefradil for ICa(T) and ICa(L) are 0.7 and 2 μM, respectively.At low concentrations, mibefradil increased the amplitude of ICa(L) with respect to control.Mibefradil blocked three voltage-gated K+ currents expressed by human fusion-competent myoblasts: a delayed rectifier K+ current, an ether-à-go-go K+ current, and an inward rectifier K+ current, with a respective IC50 of 0.3, 0.7 and 5.6 μM.It is concluded that mibefradil can interfere with myoblast fusion, a mechanism fundamental to muscle growth and repair, and that the interpretation of the effect of mibefradil in a given system should take into account the action of this drug on ionic currents other than Ca2+ currents. PMID:10051142
Malysz, John; Afeli, Serge A. Y.; Provence, Aaron
2013-01-01
Mechanisms underlying ethanol (EtOH)-induced detrusor smooth muscle (DSM) relaxation and increased urinary bladder capacity remain unknown. We investigated whether the large conductance Ca2+-activated K+ (BK) channels or L-type voltage-dependent Ca2+ channels (VDCCs), major regulators of DSM excitability and contractility, are targets for EtOH by patch-clamp electrophysiology (conventional and perforated whole cell and excised patch single channel) and isometric tension recordings using guinea pig DSM cells and isolated tissue strips, respectively. EtOH at 0.3% vol/vol (∼50 mM) enhanced whole cell BK currents at +30 mV and above, determined by the selective BK channel blocker paxilline. In excised patches recorded at +40 mV and ∼300 nM intracellular Ca2+ concentration ([Ca2+]), EtOH (0.1–0.3%) affected single BK channels (mean conductance ∼210 pS and blocked by paxilline) by increasing the open channel probability, number of open channel events, and open dwell-time constants. The amplitude of single BK channel currents and unitary conductance were not altered by EtOH. Conversely, at ∼10 μM but not ∼2 μM intracellular [Ca2+], EtOH (0.3%) decreased the single BK channel activity. EtOH (0.3%) affected transient BK currents (TBKCs) by either increasing frequency or decreasing amplitude, depending on the basal level of TBKC frequency. In isolated DSM strips, EtOH (0.1–1%) reduced the amplitude and muscle force of spontaneous phasic contractions. The EtOH-induced DSM relaxation, except at 1%, was attenuated by paxilline. EtOH (1%) inhibited L-type VDCC currents in DSM cells. In summary, we reveal the involvement of BK channels and L-type VDCCs in mediating EtOH-induced urinary bladder relaxation accommodating alcohol-induced diuresis. PMID:24153429
NASA Astrophysics Data System (ADS)
Hammer, Patrick R.
It is well established that natural flyers flap their wings to sustain flight due to poor performance of steady wing aerodynamics at low Reynolds number. Natural flyers also benefit from the propulsive force generated by flapping. Unsteady airfoils allow for simplified study of flapping wing aerodynamics. Limited previous work has suggested that both the Reynolds number and motion trajectory asymmetry play a non-negligible role in the resulting forces and wake structure of an oscillating airfoil. In this work, computations are performed to on this topic for a NACA 0012 airfoil purely pitching about its quarter-chord point. Two-dimensional computations are undertaken using the high-order, extensively validated FDL3DI Navier-Strokes solver developed at Wright-Patterson Air Force Base. The Reynolds number range of this study is 2,000-22,000, reduced frequencies as high as 16 are considered, and the pitching amplitude varies from 2° to 10°. In order to simulate the incompressible limit with the current compressible solver, freestream Mach numbers as low as 0.005 are used. The wake structure is accurately resolved using an overset grid approach. The results show that the streamwise force depends on Reynolds number such that the drag-to-thrust crossover reduced frequency decreases with increasing Reynolds number at a given amplitude. As the amplitude increases, the crossover reduced frequency decreases at a given Reynolds number. The crossover frequency data show good collapse for all pitching amplitudes considered when expressed as the Strouhal number based on trailing edge-amplitude for different Reynolds numbers. Appropriate scaling causes the thrust data to become nearly independent of Reynolds number and amplitude. An increase in propulsive efficiency is observed as the Reynolds number increases while less dependence is seen in the peak-to-peak lift and drag amplitudes. Reynolds number dependence is also seen for the wake structure. The crossover reduced frequency to produce a switch in the wake vortex configuration from von Karman (drag) to reverse von Karman (thrust) patterns decreases as the Reynolds number increases. As the pitching amplitude increases, more complex structures form in the wake, particularly at the higher Reynolds numbers considered. Although both the transverse and streamwise spacing depend on amplitude, the vortex array aspect ratio is nearly amplitude independent for each Reynolds number. Motion trajectory asymmetry produces a non-zero average lift and a decrease in average drag. Decomposition of the lift demonstrates that the majority of the average lift is a result of the component from average vortex (circulatory) lift. The average lift is positive at low reduced frequency, but as the reduced frequency increases at a given motion asymmetry, an increasing amount of negative lift occurs over a greater portion of the oscillation cycle, and eventually causes a switch in the sign of the lift. The maximum value, minimum value, and peak-to-peak amplitude of the lift and drag increase with increasing reduced frequency and asymmetry. The wake structure becomes complex with an asymmetric motion trajectory. A faster pitch-up produces a single positive vortex and one or more negative vortices, the number of which depends on the reduced frequency and asymmetry. When the airfoil motion trajectory is asymmetric, the vortex trajectories and properties in the wake exhibit asymmetric behavior.
Phase dependent modulation of tremor amplitude in essential tremor through thalamic stimulation
Cagnan, Hayriye; Brittain, John-Stuart; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Joint, Carole; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu
2013-01-01
High frequency deep brain stimulation of the thalamus can help ameliorate severe essential tremor. Here we explore how the efficacy, efficiency and selectivity of thalamic deep brain stimulation might be improved in this condition. We started from the hypothesis that the effects of electrical stimulation on essential tremor may be phase dependent, and that, in particular, there are tremor phases at which stimuli preferentially lead to a reduction in the amplitude of tremor. The latter could be exploited to improve deep brain stimulation, particularly if tremor suppression could be reinforced by cumulative effects. Accordingly, we stimulated 10 patients with essential tremor and thalamic electrodes, while recording tremor amplitude and phase. Stimulation near the postural tremor frequency entrained tremor. Tremor amplitude was also modulated depending on the phase at which stimulation pulses were delivered in the tremor cycle. Stimuli in one half of the tremor cycle reduced median tremor amplitude by ∼10%, while those in the opposite half of the tremor cycle increased tremor amplitude by a similar amount. At optimal phase alignment tremor suppression reached 27%. Moreover, tremor amplitude showed a non-linear increase in the degree of suppression with successive stimuli; tremor suppression was increased threefold if a stimulus was preceded by four stimuli with a similar phase relationship with respect to the tremor, suggesting cumulative, possibly plastic, effects. The present results pave the way for a stimulation system that tracks tremor phase to control when deep brain stimulation pulses are delivered to treat essential tremor. This would allow treatment effects to be maximized by focussing stimulation on the optimal phase for suppression and by ensuring that this is repeated over many cycles so as to harness cumulative effects. Such a system might potentially achieve tremor control with far less power demand and greater specificity than current high frequency stimulation approaches, and may lower the risk for tolerance and rebound. PMID:24038075
NASA Astrophysics Data System (ADS)
Avtaeva, Svetlana
2014-04-01
Time-dependent characteristics of the dielectric barrier discharge in Xe-Cl2 mixture at chlorine concentration of 0.5% and kinetic processes governing the generation of XeCl∗ molecules are studied using the 1D fluid model. It is shown that at low voltage amplitude (5 kV) a one-peak mode of the discharge is observed and at high voltage amplitude (7 kV) a two-peak mode of the discharge appears. The radiation power of the XeCl∗ band increases with amplitude of the supply voltage. It is demonstrated that the harpoon reaction Xe∗ + Cl2 → XeCl∗ + Cl provides the greatest contribution into generation of XeCl∗ exciplex molecules during short current pulses and the ion-ion recombination Xe+ 2 + Cl- → XeCl* + Xe provides the greatest contribution during afterglow. Quenching of XeCl∗ molecules is a result of the radiative decay XeCl∗ → Xe + Cl + hv (308 nm). During current spike the great contribution into quenching of XeCl∗ provides also the dissociative ionization e + XeCl∗ → Xe+ + Cl + 2e.
NASA Astrophysics Data System (ADS)
Wentlent, Luke; Alghoul, Thaer M.; Greene, Christopher M.; Borgesen, Peter
2018-02-01
Although apparently simpler than in thermal cycling, the behavior of SnAgCu (SAC) solder joints in cyclic bending or vibration is not currently well understood. The rate of damage has been shown to scale with the inelastic work per cycle, and excursions to higher amplitudes lead to an apparent softening, some of which remains so that damage accumulation is faster in subsequent cycling at lower amplitudes. This frequently leads to a dramatic breakdown of current damage accumulation rules. An empirical damage accumulation rule has been proposed to account for this, but any applicability to the extrapolation of accelerated test results to life under realistic long-term service conditions remains to be validated. This will require a better understanding of the underlying mechanisms. The present work provides experimental evidence to support recent suggestions that the observed behavior is a result of cycling-induced dislocation structures providing for increased diffusion creep. It is argued that this means that the measured work is an indicator of the instantaneous dislocation density, rather than necessarily reflecting the actual work involved in the creation of the damage.
Optical arbitrary waveform generation based on multi-wavelength semiconductor fiber ring laser
NASA Astrophysics Data System (ADS)
Li, Peili; Ma, Xiaolu; Shi, Weihua; Xu, Enming
2017-09-01
A new scheme of generating optical arbitrary waveforms based on multi-wavelength semiconductor fiber ring laser (SFRL) is proposed. In this novel scheme, a wide and flat optical frequency comb (OFC) is provided directly by multi-wavelength SFRL, whose central frequency and comb spacing are tunable. OFC generation, de-multiplexing, amplitude and phase modulation, and multiplexing are implementing in an intensity and phase tunable comb filter, as induces the merits of high spectral coherence, satisfactory waveform control and low system loss. By using the mode couple theory and the transfer matrix method, the theoretical model of the scheme is established. The impacts of amplitude control, phase control, number of spectral line, and injection current of semiconductor optical amplifier (SOA) on the waveform similarity are studied using the theoretical model. The results show that, amplitude control and phase control error should be smaller than 1% and 0.64% respectively to achieve high similarity. The similarity of the waveform is improved with the increase of the number of spectral line. When the injection current of SOA is in a certain range, the optical arbitrary waveform reaches a high similarity.
Analysis of the negative inotropic effect of acetylcholine on frog atrial fibres.
Nargeot, J; Garnier, D; Rougier, O
1981-03-01
Voltage-clamp experiments have been performed on frog atrial preparations in order to study the mechanism of the inotropic effect of acetylcholine (ACh) at various concentrations. The amplitude of the slow inward current (Is) is reduced even at low ACh concentrations; such low concentrations have little or no effect on potassium permeability. Dose-effect relationships for Is inhibition (Is/Is max) by ACh show a half amplitude dose (K0.5 around 8 X 10(-8) M ACh. The reduction of Is is attributed largely to a decrease of the maximal conductance of the slow channel (gs). Steady-state activation and inactivation parameters are not affected by ACh. Experiments in a Na-free solution (Na replaced by Li ions) or in a Ca-free solution (with EGTA) indicate that the "slow sodium current" is more sensitive to ACh than the "slow Ca current", although these two currents both seem to flow through the slow channel. The decrease of the phasic component of contraction observed in the presence of ACh is very well correlated with the decrease of Is (K0.5 = 8 X 10(-8) M ACh), while the increase of the tonic tension may be related to the outward potassium current induced by high concentrations of ACh. The significant difference between the half amplitude dose (K0.5) observed in the dose effect curves with ACh for Is inhibition (K0.5 = 8 X 10(-8) M) and for ACh-induced extra-current (K0.5 - 10(-6) M) may indicate the presence of two muscarinic receptors.
Varga, Andrew W; Yuan, Li-Lian; Anderson, Anne E; Schrader, Laura A; Wu, Gang-Yi; Gatchel, Jennifer R; Johnston, Daniel; Sweatt, J David
2004-04-07
Calcium-calmodulin-dependent kinase II (CaMKII) has a long history of involvement in synaptic plasticity, yet little focus has been given to potassium channels as CaMKII targets despite their importance in repolarizing EPSPs and action potentials and regulating neuronal membrane excitability. We now show that Kv4.2 acts as a substrate for CaMKII in vitro and have identified CaMKII phosphorylation sites as Ser438 and Ser459. To test whether CaMKII phosphorylation of Kv4.2 affects channel biophysics, we expressed wild-type or mutant Kv4.2 and the K(+) channel interacting protein, KChIP3, with or without a constitutively active form of CaMKII in Xenopus oocytes and measured the voltage dependence of activation and inactivation in each of these conditions. CaMKII phosphorylation had no effect on channel biophysical properties. However, we found that levels of Kv4.2 protein are increased with CaMKII phosphorylation in transfected COS cells, an effect attributable to direct channel phosphorylation based on site-directed mutagenesis studies. We also obtained corroborating physiological data showing increased surface A-type channel expression as revealed by increases in peak K(+) current amplitudes with CaMKII phosphorylation. Furthermore, endogenous A-currents in hippocampal pyramidal neurons were increased in amplitude after introduction of constitutively active CaMKII, which results in a decrease in neuronal excitability in response to current injections. Thus CaMKII can directly modulate neuronal excitability by increasing cell-surface expression of A-type K(+) channels.
Evidence of Ubiquitous Large-Amplitude Alfven waves in the Global Field-Aligned Current System
NASA Astrophysics Data System (ADS)
Pakhotin, I.; Mann, I.; Lysak, R. L.; Knudsen, D. J.; Burchill, J. K.; Gjerloev, J. W.; Rae, J.; Forsyth, C.; Murphy, K. R.; Miles, D.; Ozeke, L.; Balasis, G.
2017-12-01
Large-amplitude non-stationarities have been observed during an analysis of a quiescent field-aligned current system crossing using the multi-satellite Swarm constellation. Using simultaneous electric and magnetic field measurements it has been determined that these non-stationarities, reaching tens to hundreds of nanoteslas, are Alfvenic in nature. Evidence suggests that these large-amplitude Alfven waves are a ubiquitous, fundamentally inherent feature of and exist in a continuum with larger-scale field-aligned currents, and both can be explained using the same physical paradigm of reflected Alfven waves.
Long-term change of the Pacific North Equatorial Current bifurcation in SODA
NASA Astrophysics Data System (ADS)
Chen, Zhaohui; Wu, Lixin
2012-06-01
The long-term change of the North Equatorial Current (NEC) bifurcation in the Pacific Ocean is assessed based on the recently developed Simple Ocean Data Assimilation (SODA, version 2.2.4). It is found that the NEC bifurcation latitude (NBL) has shifted southward over the past 60 years, although it displayed a slight northward migration from 1970 to 1992. This southward shift of the bifurcation latitude is associated with changes in the wind stress curl over the tropical Pacific Ocean between 10°N and 20°N, leading to the strengthening of the Kuroshio at its origin. The conclusion is further supported by simulations of Intergovernmental Panel on Climate Change models. It is demonstrated that the long-term change of the seasonal south-north migration of the bifurcation is modulated by the southward shift of the mean position. Over the past 6 decades, the phase speed of first-mode baroclinic Rossby waves (CR) at the latitude of the bifurcation increases from 13 cm s-1 in 1950 to 18 cm s-1 in 2005, and the corresponding seasonal amplitude increases (decreases) before (after) the mid-1980s. Using a linear vorticity model, it is found that the long-term modulation of the NBL seasonal migration amplitude is associated with the increase of CR in responses to the southward shift of the mean NBL. It is expected that the seasonal amplitude will decrease moderately in the following decades if the ocean continues warming.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Mi-Hyeong; Park, Won Sun; Jo, Su-Hyun, E-mail: suhyunjo@kangwon.ac.kr
2012-07-01
Polychlorinated biphenyls (PCBs) have been known as serious persistent organic pollutants (POPs), causing developmental delays and motor dysfunction. We have investigated the effects of two PCB congeners, 3,3′,4,4′-tetrachlorobiphenyl (PCB 77) and 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) on ECG, action potential, and the rapidly activating delayed rectifier K{sup +} current (I{sub Kr}) of guinea pigs' hearts, and hERG K{sup +} current expressed in Xenopus oocytes. PCB 126 shortened the corrected QT interval (QTc) of ECG and decreased the action potential duration at 90% (APD{sub 90}), and 50% of repolarization (APD{sub 50}) (P < 0.05) without changing the action potential duration at 20% (APD{submore » 20}). PCB 77 decreased APD{sub 20} (P < 0.05) without affecting QTc, APD{sub 90}, and APD{sub 50}. The PCB 126 increased the I{sub Kr} in guinea-pig ventricular myocytes held at 36 °C and hERG K{sup +} current amplitude at the end of the voltage steps in voltage-dependent mode (P < 0.05); however, PCB 77 did not change the hERG K{sup +} current amplitude. The PCB 77 increased the diastolic Ca{sup 2+} and decreased Ca{sup 2+} transient amplitude (P < 0.05), however PCB 126 did not change. The results suggest that PCB 126 shortened the QTc and decreased the APD{sub 90} possibly by increasing I{sub Kr}, while PCB 77 decreased the APD{sub 20} possibly by other modulation related with intracellular Ca{sup 2+}. The present data indicate that the environmental toxicants, PCBs, can acutely affect cardiac electrophysiology including ECG, action potential, intracellular Ca{sup 2+}, and channel activity, resulting in toxic effects on the cardiac function in view of the possible accumulation of the PCBs in human body. -- Highlights: ► PCBs are known as serious environmental pollutants and developmental disruptors. ► PCB 126 shortened QT interval of ECG and action potential duration. ► PCB 126 increased human ether-a-go-go-related K{sup +} current and I{sub Kr}. ► PCB 77 decreased action potential duration and increased intracellular Ca{sup 2+} content. ► PCBs acutely change cardiac electrophysiology and rhythmicity.« less
Determination of nonlinear resistance voltage-current relationships by measuring harmonics
NASA Technical Reports Server (NTRS)
Stafford, J. M.
1971-01-01
Test configuration measures harmonic signal amplitudes generated in nonlinear resistance. Vacuum-type voltmeter measures low frequency sinusoidal input signal amplitude and wave-analyzer measures amplitude of harmonic signals generated in junction. Input signal harmonics amplitude must not exceed that of harmonics generated in nonlinear resistance.
Probe Measurements of Parameters of Streamers of Nanosecond Frequency Crown Discharge
NASA Astrophysics Data System (ADS)
Ponizovskiy, A. Z.; Gosteev, S. G.
2017-12-01
Investigations of the parameters of single streamers of nanosecond frequency corona discharge, creating a voluminous low-temperature plasma in extended coaxial electrode systems, are performed. Measurements of the parameters of streamers were made by an isolated probe situated on the outer grounded electrode. Streamers were generated under the action of voltage pulses with a front of 50-300 ns, duration of 100-600 ns, and amplitude up to 100 kV at the frequency of 50-1000 Hz. The pulse voltage, the total current of the corona, current per probe, and glow in the discharge gap were recorded in the experiments. It was established that, at these parameters of pulse voltage, streamers propagate at an average strength of the electric field of 4-10 kV/cm. Increasing the pulse amplitude leads to an increase in the number of streamers hitting the probe, an increase in the average charge of the head of a streamer, and, as a consequence, an increase in the total streamer current and the energy introduced into the gas. In the intervals up to 3 cm, streamer breakdown at an average field strength of 5-10 kV/cm is possible. In longer intervals, during the buildup of voltage after generation of the main pulse, RF breakdown is observed at E av ≈ 4 kV/cm.
NASA Technical Reports Server (NTRS)
Willett, J. C.; LeVine, D. M.; Idone, V. P.
2006-01-01
Three-dimensional reconstructions of six rocket-triggered lightning channels are derived from stereo photographs. These reconstructed channels are used to infer the behavior of the current in return strokes above the ground from current waveforms measured at the channel base and electric-field-change waveforms measured at a range of 5.2 kilometers for 24 return strokes in these channels. Streak photographs of 14 of the same strokes are analyzed to determine the rise times, propagation speeds, and amplitudes of relative light intensity for comparison with the electrical inferences. Results include the following: 1) The fine structure of the field-change waveforms that were radiated by these subsequent return strokes can be explained, in large part, by channel geometry. 2) The average 10 - 90% rise time of the stroke current increased by about a factor of seven in our sample, from an observed 0.31 plus or minus 0.17 microseconds at the surface to an inferred 2.2 plus or minus 0.5 microcseconds at 1 kilometer path length above the surface. 3) The three-dimensional propagation speed of the current front averaged 1.80 plus or minus 0.24 X 10(exp 8) meters per second over channel lengths typically greater than 1 kilometer. 4) Assuming that the measured current was entirely due to the return stroke forced an unreasonably large and abrupt reduction in inferred current amplitude over the first few tens of meters above the surface, especially in cases when the leader was bright relative to its stroke. Therefore, a significant fraction of the current at the surface was probably due to the leader, at least in such cases. 5) Peak return-stroke currents decreased by approximately 37 plus or minus 12% from 100 meters to 1 kilometer of path length above the surface. Because of uncertainty about how to partition the measured current between leader and return stroke, we are unable to infer the variation of current amplitude near the ground.
Lu, Yen-Yu; Chen, Yao-Chang; Kao, Yu-Hsun; Chen, Shih-Ann; Chen, Yi-Jen
2013-06-01
Atrial fibrillation (AF) is the most common sustained arrhythmia. Cardiac fibrosis with enhanced extracellular collagen plays a critical role in the pathophysiology of AF through structural and electrical remodeling. Pulmonary veins (PVs) are important foci for AF genesis. The purpose of this study was to evaluate whether collagen can directly modulate PV arrhythmogenesis. Action potentials and ionic currents were investigated in isolated male New Zealand rabbit PV cardiomyocytes with and without collagen incubation (10μg/ml, 5-7h) using the whole-cell patch-clamp technique. Compared to control PV cardiomyocytes (n=25), collagen-treated PV cardiomyocytes (n=22) had a faster beating rate (3.2±04 vs. 1.9±0.2Hz, p<0.005) and a larger amplitude of delayed afterdepolarization (16±2 vs. 10±1mV, p<0.01). Moreover, collagen-treated PV cardiomyocytes showed a larger transient outward potassium current, small-conductance Ca(2+)-activated K(+) current, inward rectifier potassium current, pacemaker current, and late sodium current than control PV cardiomyocytes, but amplitudes of the sodium current, sustained outward potassium current, and L-type calcium current were similar. Collagen increased the p38 MAPK phosphorylation in PV cardiomyocytes as compared to control. The change of the spontaneous activity and action potential morphology were ameliorated by SB203580 (the p38 MAPK catalytic activity inhibitor), indicating that collagen can directly increase PV cardiomyocyte arrhythmogenesis through p38 MAPK activation, which may contribute to the pathogenesis of AF. Copyright © 2013 Elsevier Ltd. All rights reserved.
Vosskuhl, Johannes; Huster, René J; Herrmann, Christoph S
2015-01-01
Working memory (WM) and short-term memory (STM) supposedly rely on the phase-amplitude coupling (PAC) of neural oscillations in the theta and gamma frequency ranges. The ratio between the individually dominant gamma and theta frequencies is believed to determine an individual's memory capacity. The aim of this study was to establish a causal relationship between the gamma/theta ratio and WM/STM capacity by means of transcranial alternating current stimulation (tACS). To achieve this, tACS was delivered at a frequency below the individual theta frequency. Thereby the individual ratio of gamma to theta frequencies was changed, resulting in an increase of STM capacity. Healthy human participants (N = 33) were allocated to two groups, one receiving verum tACS, the other underwent a sham control protocol. The electroencephalogram (EEG) was measured before stimulation and analyzed with regard to the properties of PAC between theta and gamma frequencies to determine individual stimulation frequencies. After stimulation, EEG was recorded again in order to find after-effects of tACS in the oscillatory features of the EEG. Measures of STM and WM were obtained before, during and after stimulation. Frequency spectra and behavioral data were compared between groups and different measurement phases. The tACS- but not the sham stimulated group showed an increase in STM capacity during stimulation. WM was not affected in either groups. An increase in task-related theta amplitude after stimulation was observed only for the tACS group. These augmented theta amplitudes indicated that the manipulation of individual theta frequencies was successful and caused the increase in STM capacity.
System and Method for Tensioning a Robotically Actuated Tendon
NASA Technical Reports Server (NTRS)
Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor)
2013-01-01
A tendon tensioning system includes a tendon having a proximal end and a distal end, an actuator, and a motor controller. The actuator may include a drive screw and a motor, and may be coupled with the proximal end of the tendon and configured to apply a tension through the tendon in response to an electrical current. The motor controller may be electrically coupled with the actuator, and configured to provide an electrical current having a first amplitude to the actuator until a stall tension is achieved through the tendon; provide a pulse current to the actuator following the achievement of the stall tension, where the amplitude of the pulse current is greater than the first amplitude, and return the motor to a steady state holding current following the conclusion of the pulse current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nutter, Thomas J., E-mail: tnutter@dental.ufl.edu; Cooper, Brian Y., E-mail: bcooper@dental.ufl.edu
Many veterans of the 1991 Gulf War (GW) returned from that conflict with a widespread chronic pain affecting deep tissues. Recently, we have shown that a 60 day exposure to the insecticides permethrin, chlorpyrifos, and pyridostigmine bromide (NTPB) had little influence on nociceptor action potential forming Na{sub v}1.8, but increased K{sub v}7 mediated inhibitory currents 8 weeks after treatment. Using the same exposure regimen, we used whole cell patch methods to examine whether the influences of NTPB could be observed on Na{sub v}1.9 expressed in muscle and vascular nociceptors. During a 60 day exposure to NTPB, rats exhibited lowered musclemore » pain thresholds and increased rest periods, but these measures subsequently returned to normal levels. Eight and 12 weeks after treatments ceased, DRG neurons were excised from the sensory ganglia. Whole cell patch studies revealed little change in voltage dependent activation and deactivation of Na{sub v}1.9, but significant increases in the amplitude of Na{sub v}1.9 were observed 8 weeks after exposure. Cellular studies, at the 8 week delay, revealed that NTPB also significantly prolonged action potential duration and afterhyperpolarization (22 °C). Acute application of permethrin (10 μM) also increased the amplitude of Na{sub v}1.9 in skin, muscle and vascular nociceptors. In conclusion, chronic exposure to Gulf War agents produced long term changes in the amplitude of Na{sub v}1.9 expressed in muscle and vascular nociceptors. The reported increases in K{sub v}7 amplitude may have been an adaptive response to increased Na{sub v}1.9, and effectively suppressed behavioral pain measures in the post treatment period. Factors that alter the balance between Na{sub v}1.9 and K{sub v}7 could release spontaneous discharge and produce chronic deep tissue pain. - Highlights: • Rats were treated 60 days with permethrin, chlorpyrifos and pyridostigmine bromide. • 8 weeks after treatments, Nav1.9 activation and deactivation were unchanged. • The amplitude and conductance of Nav1.9 were increased 8 weeks following exposure. • Nociceptors exhibit increased action potential duration and afterhyperpolarization. • Acute permethrin altered activation physiology and increased the amplitude of Nav1.9.« less
Electroporation-based technologies for medicine: principles, applications, and challenges.
Yarmush, Martin L; Golberg, Alexander; Serša, Gregor; Kotnik, Tadej; Miklavčič, Damijan
2014-07-11
When high-amplitude, short-duration pulsed electric fields are applied to cells and tissues, the permeability of the cell membranes and tissue is increased. This increase in permeability is currently explained by the temporary appearance of aqueous pores within the cell membrane, a phenomenon termed electroporation. During the past four decades, advances in fundamental and experimental electroporation research have allowed for the translation of electroporation-based technologies to the clinic. In this review, we describe the theory and current applications of electroporation in medicine and then discuss current challenges in electroporation research and barriers to a more extensive spread of these clinical applications.
Kaneko, A; Saito, T
1983-04-01
Transretinal current pulses flowing from the receptor side to the vitreous side of the retina cause transient release of transmitter from the photoreceptor terminals, and in off-center bipolar cells they evoke transient depolarizations with a brief (less than 1 ms) synaptic delay. Since it is known that the presence of Na+ in the external medium is not essential for this type of transmitter release, we used this procedure to examine the role of [Na+]o in the generation of light-evoked responses (hyperpolarizing to spot illumination in the receptive field center and depolarizing to an annulus in the surround) of this type of bipolar cell. When the cell membrane was steadily depolarized by current injection through the recording microelectrode, the depolarizing response evoked by the transretinal current pulses decreased in amplitude and reversed its polarity at above +45 mV. Conversely, the response amplitude increased when the cell was steadily hyperpolarized. The reversal potential seems to be lowered in low [Na+]o (28 mM). Removal of Na+ from the superfusate hyperpolarized the cell and both the light-evoked and current-evoked responses disappeared. From these observations, it is hypothesized that the hyperpolarizing center response of the off-center bipolar cells is a result of removal of sustained depolarization produced by sodium permeability increase.
Figueiredo, Carolina Calsolari; de Andrade, Adriana Neves; Marangoni-Castan, Andréa Tortosa; Gil, Daniela; Suriano, Italo Capraro
2015-01-01
ABSTRACT Objective To investigate the long-term efficacy of acoustically controlled auditory training in adults after tarumatic brain injury. Methods A total of six audioogically normal individuals aged between 20 and 37 years were studied. They suffered severe traumatic brain injury with diffuse axional lesion and underwent an acoustically controlled auditory training program approximately one year before. The results obtained in the behavioral and electrophysiological evaluation of auditory processing immediately after acoustically controlled auditory training were compared to reassessment findings, one year later. Results Quantitative analysis of auditory brainsteim response showed increased absolute latency of all waves and interpeak intervals, bilaterraly, when comparing both evaluations. Moreover, increased amplitude of all waves, and the wave V amplitude was statistically significant for the right ear, and wave III for the left ear. As to P3, decreased latency and increased amplitude were found for both ears in reassessment. The previous and current behavioral assessment showed similar results, except for the staggered spondaic words in the left ear and the amount of errors on the dichotic consonant-vowel test. Conclusion The acoustically controlled auditory training was effective in the long run, since better latency and amplitude results were observed in the electrophysiological evaluation, in addition to stability of behavioral measures after one-year training. PMID:26676270
NASA Astrophysics Data System (ADS)
Hickey, Michelle; Phillips, Justin P.; Kyriacou, Panayiotis
2015-03-01
The aim of the current work is to investigate the possibility of augmenting pulse oximetry algorithms to enable the estimation of venous parameters in peripheral tissues. In order to further understand the contribution of venous blood to the photoplethysmographic (PPG) signal, recordings were made from six healthy volunteer subjects during an exercise in which the right hand was placed in various positions above and below heart level. The left hand was kept at heart level as a control while the right hand was moved. A custom-made two-channel dual wavelength PPG instrumentation system was used to obtain the red and infrared plethysmographic signals from both the right and left index fingers simultaneously using identical sensors. Laser Doppler flowmetry signals were also recorded from an adjacent fingertip on the right hand. Analysis of all acquired PPG signals indicated changes in both ac and dc amplitude of the right hand when the position was changed, while those obtained from the left (control) hand remained relatively constant. Most clearly, in the change from heart level to 50cm below heart level there is a substantial decrease in both dc and ac amplitudes. This decrease in dc amplitude most likely corresponds to increased venous pooling, and hence increased absorption of light. It is speculated that the decrease in ac PPG amplitude is due to reduced arterial emptying during diastole due to increased downstream resistance due to venous pooling.
Current-driven domain wall motion based memory devices: Application to a ratchet ferromagnetic strip
NASA Astrophysics Data System (ADS)
Sánchez-Tejerina, Luis; Martínez, Eduardo; Raposo, Víctor; Alejos, Óscar
2018-04-01
Ratchet memories, where perpendicular magnetocristalline anisotropy is tailored so as to precisely control the magnetic transitions, has been recently proven to be a feasible device to store and manipulate data bits. For such devices, it has been shown that the current-driven regime of domain walls can improve their performances with respect to the field-driven one. However, the relaxing time required by the traveling domain walls constitutes a certain drawback if the former regime is considered, since it results in longer device latencies. In order to speed up the bit shifting procedure, it is demonstrated here that the application of a current of inverse polarity during the DW relaxing time may reduce such latencies. The reverse current must be sufficiently high as to drive the DW to the equilibrium position faster than the anisotropy slope itself, but with an amplitude sufficiently low as to avoid DW backward shifting. Alternatively, it is possible to use such a reverse current to increase the proper range of operation for a given relaxing time, i.e., the pair of values of the current amplitude and pulse time that ensures single DW jumps for a certain latency time.
Liu, Dong-Mei; Adams, David J
2001-01-01
The relative permeability of the native P2X receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements of ATP-evoked currents in parasympathetic neurones dissociated from rat submandibular ganglia using the dialysed whole-cell patch clamp technique. The P2X receptor-channel exhibited weak selectivity among the alkali metals with a selectivity sequence of Na+ > Li+ > Cs+ > Rb+ > K+, and permeability ratios relative to Cs+ (PX/PCs) ranging from 1.11 to 0.86. The selectivity for the divalent alkaline earth cations was also weak with the sequence Ca2+ > Sr2+ > Ba2+ > Mn2+ > Mg2+. ATP-evoked currents were strongly inhibited when the extracellular divalent cation concentration was increased. The calculated permeability ratios of different ammonium cations are higher than those of the alkali metal cations. The permeability sequence obtained for the saturated organic cations is inversely correlated with the size of the cation. The unsaturated organic cations have a higher permeability than that predicted by molecular size. Acidification to pH 6.2 increased the ATP-induced current amplitude twofold, whereas alkalization to 8.2 and 9.2 markedly reduced current amplitude. Cell dialysis with either anti-P2X2 and/or anti-P2X4 but not anti-P2X1 antibodies attenuated the ATP-evoked current amplitude. Taken together, these data are consistent with homomeric and/or heteromeric P2X2 and P2X4 receptor subtypes expressed in rat submandibular neurones. The permeability ratios for the series of monovalent organic cations, with the exception of unsaturated cations, were approximately related to the ionic size. The relative permeabilities of the monovalent inoganic and organic cations tested are similar to those reported previously for cloned rat P2X2 receptors expressed in mammalian cells. PMID:11454961
Near-inertial motions over a mid-Ocean Ridge; Effects of topography and hydrothermal plumes
NASA Astrophysics Data System (ADS)
Thomson, Richard E.; Roth, Sharon E.; Dymond, Jack
1990-05-01
We investigate the spatial structure of near-inertial motions in the vicinity of the Endeavour segment of Juan de Fuca Ridge (approximately 48°N, 129°W) in the northeast Pacific Ocean. On the basis of time series current and water property data collected from September 1984 to September 1987, near-inertial motions are ubiquitous features of the 2200-m water column, with root-mean-square (rms) current speeds comparable to those of the dominant M2 tidal currents. Within the lower 1000 m of the water column where most of the observations were obtained, near-inertial oscillations have rms current speeds of O(1 cm/s) and vertical isotherm displacements of O(10 m). The fluctuations are confined to the frequency band 0.966-1.079 f(f is the local Coriolis parameter) and have characteristic event durations of 1 week. Although the spectra of subsurface motions are dominated by the "blue-shifted" superinertial band, significant spectral peaks are found also in the subinertial and inertial frequency bands. Marked alteration of the near-inertial current amplitudes occurs over two well-defined depth zones within the study region. Within the 200-m zone immediately above the 2100-m ridge crest, current amplitudes are amplified by a factor of 1.2-1.7 because of bottom reflection and/or scattering of the downward propagating energy. Evidence that the amplification may be linked to bottom reflection rather than to scattering is provided by flattening and cross-slope rotation of the near-inertial current ellipses with increased proximity to the top of the ridge. Reflection would occur at grazing angles of less than 1° and would be associated with surface-generated waves originating at distances of over 100 km from the observational site. In contrast to the enhanced amplitudes immediately above the top of the ridge, near-inertial currents within the 1600- to 1800-m depth range undergo pronounced attenuation and frequency alteration. Amplitude attenuation is especially pronounced for motions in the superinertial band and may arise through critical-layer absorption of downward propagating waves as they encounter increased vertical shear in the background flow. The increased shear is most likely associated with buoyancy-induced flow formed by the extensive hydrothermal plume emanating from vent sites in the axial valley along the ridge crest, but it could also be related to bottom-trapped oscillations over the steep ridge topography. Near-inertial motions are estimated to have vertical coherence scales of the order of 10-100 m, while horizontal coherence scales exceed the 50-km separation between the mooring locations. Minimum vertical and horizontal coherences are found for the depth zone 1600-1800 m, while maximum correlation occurs for near-bottom motions immediately above the crest of the ridge. Weak near-inertial motions are observed within the 100-m-deep axial valley.
Kirk, D L; Yates, G K
1998-01-01
Iontophoresis of 4-aminopyridine into scala media of the guinea pig cochlea caused elevation of the thresholds of the compound action potential of the auditory nerve, loss of amplitude of the extracellular cochlear microphonic response (CM), increase in the endocochlear potential (EP) and reduction in the amplitude of electrically evoked oto-acoustic emissions (EEOAEs). These changes were reversible over 10-20 min. The reciprocity of the changes in the CM and the EP was consistent with an interruption of both DC and AC currents through outer hair cells (OHCs), probably by blockade of mechano-electrical transduction (MET) channels in OHCs. Reductions in EEOAEs were consistent with the extrinsically applied generating current entering the OHC via the MET channels. Implications for the activation of OHC electromotility in vivo are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, M.
This paper describes El Nino-Southern Oscillation (ENSO) interannual variability simulated in the second Handley Centre coupled model under control and greenhouse warming scenarios. The model produces a very reasonable simulation of ENSO in the control experiment--reproducing the amplitude, spectral characteristics, and phase locking to the annual cycle that are observed in nature. The mechanism for the model ENSO is shown to be a mixed SST-ocean dynamics mode that can be interpreted in terms of the ocean recharge paradigm of Jin. In experiments with increased levels of greenhouse gases, no statistically significant changes in ENSO are seen until these levels approachmore » four times preindustrial values. In these experiments, the model ENSO has an approximately 20% larger amplitude, a frequency that is approximately double that of the current ENSO (implying more frequent El Ninos and La Ninas), and phase locks to the annual cycle at a different time of year. It is shown that the increase in the vertical gradient of temperature in the thermocline region, associated with the model's response to increased greenhouse gases, is responsible for the increase in the amplitude of ENSO, while the increase in meridional temperature gradients on either side of the equator, again associated with the models response to increasing greenhouse gases, is responsible for the increased frequency of ENSO events.« less
Premkumar, Preethi; Onwumere, Juliana; Albert, Jacobo; Kessel, Dominique; Kumari, Veena; Kuipers, Elizabeth; Carretié, Luis
2015-01-01
Abstract Objectives: Schizotypy relates to rejection sensitivity (anxiety reflecting an expectancy of social exclusion) and neuroticism (excessive evaluation of negative emotions). Positive schizotypy (e.g., perceptual aberrations and odd beliefs) and negative schizotypy (e.g., social and physical anhedonia) could relate to altered attention to rejection because of neuroticism. Methods: Forty-one healthy individuals were assessed on positive and negative schizotypy and neuroticism, and event-related potentials during rejecting, accepting and neutral scenes. Participants were categorised into high, moderate and low neuroticism groups. Using temporo-spatial principal components analyses, P200 (peak latency =290 ms) and P300 amplitudes (peak latency = 390 ms) were measured, reflecting mobilisation of attention and early attention, respectively. Results: Scalp-level and cortical source analysis revealed elevated fronto-parietal N300/P300 amplitude and P200-related dorsal anterior cingulate current density during rejection than acceptance/neutral scenes. Positive schizotypy related inversely to parietal P200 amplitude during rejection. Negative schizotypy related positively to P200 middle occipital current density. Negative schizotypy related positively to parietal P300, where the association was stronger in high and moderate, than low, neuroticism groups. Conclusions: Positive and negative schizotypy relate divergently to attention to rejection. Positive schizotypy attenuates, but negative schizotypy increases rejection-related mobilisation of attention. Negative schizotypy increases early attention to rejection partly due to elevated neuroticism. PMID:26452584
Horvath, Jared Cooney; Forte, Jason D; Carter, Olivia
2015-01-01
Transcranial direct current stimulation (tDCS) is a form of neuromodulation that is increasingly being utilized to examine and modify a number of cognitive and behavioral measures. The theoretical mechanisms by which tDCS generates these changes are predicated upon a rather large neurophysiological literature. However, a robust systematic review of this neurophysiological data has not yet been undertaken. tDCS data in healthy adults (18-50) from every neurophysiological outcome measure reported by at least two different research groups in the literature was collected. When possible, data was pooled and quantitatively analyzed to assess significance. When pooling was not possible, data was qualitatively compared to assess reliability. Of the 30 neurophysiological outcome measures reported by at least two different research groups, tDCS was found to have a reliable effect on only one: MEP amplitude. Interestingly, the magnitude of this effect has been significantly decreasing over the last 14 years. Our systematic review does not support the idea that tDCS has a reliable neurophysiological effect beyond MEP amplitude modulation - though important limitations of this review (and conclusion) are discussed. This work raises questions concerning the mechanistic foundations and general efficacy of this device - the implications of which extend to the steadily increasing tDCS psychological literature. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cruz, Maureen T; Herman, Melissa A; Cote, Dawn M; Ryabinin, Andrey E; Roberto, Marisa
2013-01-01
The neural circuitry that processes natural rewards converges with that engaged by addictive drugs. Because of this common neurocircuitry, drugs of abuse have been able to engage the hedonic mechanisms normally associated with the processing of natural rewards. Ghrelin is an orexigenic peptide that stimulates food intake by activating GHS-R1A receptors in the hypothalamus. However, ghrelin also activates GHS-R1A receptors on extrahypothalamic targets that mediate alcohol reward. The central nucleus of the amygdala (CeA) has a critical role in regulating ethanol consumption and the response to ethanol withdrawal. We previously demonstrated that rat CeA GABAergic transmission is enhanced by acute and chronic ethanol treatment. Here, we used quantitative RT-PCR (qRT-PCR) to detect Ghsr mRNA in the CeA and performed electrophysiological recordings to measure ghrelin effects on GABA transmission in this brain region. Furthermore, we examined whether acute or chronic ethanol treatment would alter these electrophysiological effects. Our qRT-PCR studies show the presence of Ghsr mRNA in the CeA. In naive animals, superfusion of ghrelin increased the amplitude of evoked inhibitory postsynaptic potentials (IPSPs) and the frequency of miniature inhibitory postsynaptic currents (mIPSCs). Coapplication of ethanol further increased the ghrelin-induced enhancement of IPSP amplitude, but to a lesser extent than ethanol alone. When applied alone, ethanol significantly increased IPSP amplitude, but this effect was attenuated by the application of ghrelin. In neurons from chronic ethanol-treated (CET) animals, the magnitude of ghrelin-induced increases in IPSP amplitude was not significantly different from that in naive animals, but the ethanol-induced increase in amplitude was abolished. Superfusion of the GHS-R1A antagonists 𝒟-Lys3-GHRP-6 and JMV 3002 decreased evoked IPSP and mIPSC frequency, revealing tonic ghrelin activity in the CeA. 𝒟-Lys3-GHRP-6 and JMV 3002 also blocked ghrelin-induced increases in GABAergic responses. Furthermore, 𝒟-Lys3-GHRP-6 did not affect ethanol-induced increases in IPSP amplitude. These studies implicate a potential role for the ghrelin system in regulating GABAergic transmission and a complex interaction with ethanol at CeA GABAergic synapses. PMID:22968812
Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P.; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2016-01-01
Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia. PMID:26763954
Ding, Zhaofeng; Li, Jinrong; Spiegel, Daniel P; Chen, Zidong; Chan, Lily; Luo, Guangwei; Yuan, Junpeng; Deng, Daming; Yu, Minbin; Thompson, Benjamin
2016-01-14
Amblyopia is a neurodevelopmental disorder of vision that occurs when the visual cortex receives decorrelated inputs from the two eyes during an early critical period of development. Amblyopic eyes are subject to suppression from the fellow eye, generate weaker visual evoked potentials (VEPs) than fellow eyes and have multiple visual deficits including impairments in visual acuity and contrast sensitivity. Primate models and human psychophysics indicate that stronger suppression is associated with greater deficits in amblyopic eye contrast sensitivity and visual acuity. We tested whether transcranial direct current stimulation (tDCS) of the visual cortex would modulate VEP amplitude and contrast sensitivity in adults with amblyopia. tDCS can transiently alter cortical excitability and may influence suppressive neural interactions. Twenty-one patients with amblyopia and twenty-seven controls completed separate sessions of anodal (a-), cathodal (c-) and sham (s-) visual cortex tDCS. A-tDCS transiently and significantly increased VEP amplitudes for amblyopic, fellow and control eyes and contrast sensitivity for amblyopic and control eyes. C-tDCS decreased VEP amplitude and contrast sensitivity and s-tDCS had no effect. These results suggest that tDCS can modulate visual cortex responses to information from adult amblyopic eyes and provide a foundation for future clinical studies of tDCS in adults with amblyopia.
Impey, Danielle; de la Salle, Sara; Baddeley, Ashley; Knott, Verner
2017-05-01
Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a weak constant current to alter cortical excitability and activity temporarily. tDCS-induced increases in neuronal excitability and performance improvements have been observed following anodal stimulation of brain regions associated with visual and motor functions, but relatively little research has been conducted with respect to auditory processing. Recently, pilot study results indicate that anodal tDCS can increase auditory deviance detection, whereas cathodal tDCS decreases auditory processing, as measured by a brain-based event-related potential (ERP), mismatch negativity (MMN). As evidence has shown that tDCS lasting effects may be dependent on N-methyl-D-aspartate (NMDA) receptor activity, the current study investigated the use of dextromethorphan (DMO), an NMDA antagonist, to assess possible modulation of tDCS's effects on both MMN and working memory performance. The study, conducted in 12 healthy volunteers, involved four laboratory test sessions within a randomised, placebo and sham-controlled crossover design that compared pre- and post-anodal tDCS over the auditory cortex (2 mA for 20 minutes to excite cortical activity temporarily and locally) and sham stimulation (i.e. device is turned off) during both DMO (50 mL) and placebo administration. Anodal tDCS increased MMN amplitudes with placebo administration. Significant increases were not seen with sham stimulation or with anodal stimulation during DMO administration. With sham stimulation (i.e. no stimulation), DMO decreased MMN amplitudes. Findings from this study contribute to the understanding of underlying neurobiological mechanisms mediating tDCS sensory and memory improvements.
Yasuda, Kouichi; Robinson, Dean M; Selvaratnam, Subramaniam R; Walsh, Carmen W; McMorland, Angus J C; Funk, Gregory D
2001-01-01
The effects of substance P (SP), acting at NK1 receptors, on the excitability and inspiratory activity of hypoglossal (XII) motoneurons (MNs) were investigated using rhythmically active medullary-slice preparations from neonatal mice (postnatal day 0–3). Local application of the NK1 agonist [SAR9,Met (O2)11]-SP (SPNK1) produced a dose-dependent, spantide- (a non-specific NK receptor antagonist) and GR82334-(an NK1 antagonist) sensitive increase in inspiratory burst amplitude recorded from XII nerves. Under current clamp, SPNK1 significantly depolarized XII MNs, potentiated repetitive firing responses to injected currents and produced a leftward shift in the firing frequency-current relationships without affecting slope. Under voltage clamp, SPNK1 evoked an inward current and increased input resistance, but had no effect on inspiratory synaptic currents. SPNK1 currents persisted in the presence of TTX, were GR82334 sensitive, were reduced with hyperpolarization and reversed near the expected EK. Effects of the α1-noradrenergic receptor agonist phenylephrine (PE) on repetitive firing behaviour were virtually identical to those of SPNK1. Moreover, SPNK1 currents were completely occluded by PE, suggesting that common intracellular pathways mediate the actions of NK1 and α1-noradrenergic receptors. In spite of the similar actions of SPNK1 and PE on XII MN responses to somally injected current, α1-noradrenergic receptor activation potentiated inspiratory synaptic currents and was more than twice as effective in potentiating XII nerve inspiratory burst amplitude. GR82334 reduced XII nerve inspiratory burst amplitude and generated a small outward current in XII MNs. These observations, together with the first immunohistochemical evidence in the newborn for SP immunopositive terminals in the vicinity of SPNK1-sensitive inspiratory XII MNs, support the endogenous modulation of XII MN excitability by SP. In contrast to phrenic MNs (Ptak et al. 2000), blocking NMDA receptors with AP5 had no effect on the modulation of XII nerve activity by SPNK1. In conclusion, SPNK1 modulates XII motoneuron responses to inspiratory drive primarily through inhibition of a resting, postsynaptic K+ leak conductance. The results establish the functional significance of SP in controlling upper airway tone during early postnatal life and indicate differential modulation of motoneurons controlling airway and pump muscles by SP. PMID:11454963
Finite amplitude transverse oscillations of a magnetic rope
NASA Astrophysics Data System (ADS)
Kolotkov, Dmitrii Y.; Nisticò, Giuseppe; Rowlands, George; Nakariakov, Valery M.
2018-07-01
The effects of finite amplitudes on the transverse oscillations of a quiescent prominence represented by a magnetic rope are investigated in terms of the model proposed by Kolotkov et al. (2016). We consider a weakly nonlinear case governed by a quadratic nonlinearity, and also analyse the fully nonlinear equations of motion. We treat the prominence as a massive line current located above the photosphere and interacting with the magnetised dipped environment via the Lorentz force. In this concept the magnetic dip is produced by two external current sources located at the photosphere. Finite amplitude horizontal and vertical oscillations are found to be strongly coupled between each other. The coupling is more efficient for larger amplitudes and smaller attack angles between the direction of the driver and the horizontal axis. Spatial structure of oscillations is represented by Lissajous-like curves with the limit cycle of a hourglass shape, appearing in the resonant case, when the frequency of the vertical mode is twice the horizontal mode frequency. A metastable equilibrium of the prominence is revealed, which is stable for small amplitude displacements, and becomes horizontally unstable, when the amplitude exceeds a threshold value. The maximum oscillation amplitudes are also analytically derived and analysed. Typical oscillation periods are determined by the oscillation amplitude, prominence current, its mass and position above the photosphere, and the parameters of the magnetic dip. The main new effects of the finite amplitude are the coupling of the horizontally and vertically polarised transverse oscillations (i.e. the lack of a simple, elliptically polarised regime) and the presence of metastable equilibria of prominences.
Moderately nonlinear diffuse-charge dynamics under an ac voltage.
Stout, Robert F; Khair, Aditya S
2015-09-01
The response of a symmetric binary electrolyte between two parallel, blocking electrodes to a moderate amplitude ac voltage is quantified. The diffuse charge dynamics are modeled via the Poisson-Nernst-Planck equations for a dilute solution of point-like ions. The solution to these equations is expressed as a Fourier series with a voltage perturbation expansion for arbitrary Debye layer thickness and ac frequency. Here, the perturbation expansion in voltage proceeds in powers of V_{o}/(k_{B}T/e), where V_{o} is the amplitude of the driving voltage and k_{B}T/e is the thermal voltage with k_{B} as Boltzmann's constant, T as the temperature, and e as the fundamental charge. We show that the response of the electrolyte remains essentially linear in voltage amplitude at frequencies greater than the RC frequency of Debye layer charging, D/λ_{D}L, where D is the ion diffusivity, λ_{D} is the Debye layer thickness, and L is half the cell width. In contrast, nonlinear response is predicted at frequencies below the RC frequency. We find that the ion densities exhibit symmetric deviations from the (uniform) equilibrium density at even orders of the voltage amplitude. This leads to the voltage dependence of the current in the external circuit arising from the odd orders of voltage. For instance, the first nonlinear contribution to the current is O(V_{o}^{3}) which contains the expected third harmonic but also a component oscillating at the applied frequency. We use this to compute a generalized impedance for moderate voltages, the first nonlinear contribution to which is quadratic in V_{o}. This contribution predicts a decrease in the imaginary part of the impedance at low frequency, which is due to the increase in Debye layer capacitance with increasing V_{o}. In contrast, the real part of the impedance increases at low frequency, due to adsorption of neutral salt from the bulk to the Debye layer.
DiGruccio, Michael R.; Joksimovic, Srdjan; Joksovic, Pavle M.; Lunardi, Nadia; Salajegheh, Reza; Jevtovic-Todorovic, Vesna; Beenhakker, Mark P.; Goodkin, Howard P.
2015-01-01
Prevailing literature supports the idea that common general anesthetics (GAs) cause long-term cognitive changes and neurodegeneration in the developing mammalian brain, especially in the thalamus. However, the possible role of GAs in modifying ion channels that control neuronal excitability has not been taken into consideration. Here we show that rats exposed to GAs at postnatal day 7 display a lasting reduction in inhibitory synaptic transmission, an increase in excitatory synaptic transmission, and concomitant increase in the amplitude of T-type calcium currents (T-currents) in neurons of the nucleus reticularis thalami (nRT). Collectively, this plasticity of ionic currents leads to increased action potential firing in vitro and increased strength of pharmacologically induced spike and wave discharges in vivo. Selective blockade of T-currents reversed neuronal hyperexcitability in vitro and in vivo. We conclude that drugs that regulate thalamic excitability may improve the safety of GAs used during early brain development. PMID:25632125
Nutter, Thomas J; Cooper, Brian Y
2014-06-15
Many veterans of the 1991 Gulf War (GW) returned from that conflict with a widespread chronic pain affecting deep tissues. Recently, we have shown that a 60day exposure to the insecticides permethrin, chlorpyrifos, and pyridostigmine bromide (NTPB) had little influence on nociceptor action potential forming Nav1.8, but increased Kv7 mediated inhibitory currents 8weeks after treatment. Using the same exposure regimen, we used whole cell patch methods to examine whether the influences of NTPB could be observed on Nav1.9 expressed in muscle and vascular nociceptors. During a 60day exposure to NTPB, rats exhibited lowered muscle pain thresholds and increased rest periods, but these measures subsequently returned to normal levels. Eight and 12weeks after treatments ceased, DRG neurons were excised from the sensory ganglia. Whole cell patch studies revealed little change in voltage dependent activation and deactivation of Nav1.9, but significant increases in the amplitude of Nav1.9 were observed 8weeks after exposure. Cellular studies, at the 8week delay, revealed that NTPB also significantly prolonged action potential duration and afterhyperpolarization (22°C). Acute application of permethrin (10μM) also increased the amplitude of Nav1.9 in skin, muscle and vascular nociceptors. In conclusion, chronic exposure to Gulf War agents produced long term changes in the amplitude of Nav1.9 expressed in muscle and vascular nociceptors. The reported increases in Kv7 amplitude may have been an adaptive response to increased Nav1.9, and effectively suppressed behavioral pain measures in the post treatment period. Factors that alter the balance between Nav1.9 and Kv7 could release spontaneous discharge and produce chronic deep tissue pain. Copyright © 2014 Elsevier Inc. All rights reserved.
Numerical simulation of tides in Ontario Lacus
NASA Astrophysics Data System (ADS)
Vincent, David; Karatekin, Ozgür
2015-04-01
Hydrocarbons liquid filled lakes has been recently detected on Titan's surface. Most of these lakes are located in the northern latitudes but there is a substantial lake in the southern latitudes: Ontario Lacus. This lake gets our attention because of possible shoreline changes suggested by Cassini flybys over Ontario Lacus between September 2005 (T7) et January 2010 (T65). The shoreline changes could be due to evaporation-precipitation processes but could also be a consequence of tides. Previous studies showed that the maximal tidal amplitudes of Ontario Lacus would be about 0.2m (for an uniform bathymetry of 20m). In this study we simulate tidal amplitude and currents with SLIM (Second-generation Louvain-la-Neuve Ice-ocean Model, http://sites.uclouvain.be/slim/ ) which resolves 2D shallow water equation on an unstructured mesh. Unstructured mesh prevents problems like mesh discontinuities at poles and allows higher accuracy at some place like coast or straits without drastically increasing computing costs. The tide generating force modeled in this work is the gradient of tidal potential due to titan's obliquity and titan's orbital eccentricity around Saturn (other contribution such as sun tide generating force are unheeded). The uncertain input parameters such as the wind direction and amplitude, bottom friction and thermo-physical properties of hydrocarbons liquids are varied within their expected ranges. SAR data analysis can result in different bathymetry according to the method. We proceed simulations for different bathymetries: tidal amplitudes doesn't change but this is not the case for tidal currents. Using a recent bathymetry deduced from most recent RADAR/SAR observations and a finer mesh, the peak-to peak tidal amplitudes are calculated to be up to 0.6 m. which is more than a factor two larger than the previous results. The maximal offshore tidal currents magnitude is about 0.06 m/s.
NASA Astrophysics Data System (ADS)
Tarasenko, V. F.; Baksht, E. Kh.; Beloplotov, D. V.; Burachenko, A. G.; Lomaev, M. I.
2016-04-01
The amplitude-temporal characteristics of a supershort avalanche electron beam (SAEB) with an amplitude of up to 100 A, as well as of the breakdown voltage and discharge current, are studied experimentally with a picosecond time resolution. The waveforms of discharge and SAEB currents are synchronized with those of the voltage pulses. It is shown that the amplitude-temporal characteristics of the SAEB depend on the gap length and the designs of the gas diode and cathode. The mechanism for the generation of runaway electron beams in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.
Alunni-Menichini, Kristelle; Guimond, Synthia; Bermudez, Patrick; Nolden, Sophie; Lefebvre, Christine; Jolicoeur, Pierre
2014-12-10
The maintenance of information in auditory short-term memory (ASTM) is accompanied by a sustained anterior negativity (SAN) in the event-related potential measured during the retention interval of simple auditory memory tasks. Previous work on ASTM showed that the amplitude of the SAN increased in negativity as the number of maintained items increases. The aim of the current study was to measure the SAN and observe its behavior beyond the point of saturation of auditory short-term memory. We used atonal pure tones in sequences of 2, 4, 6, or 8t. Our results showed that the amplitude of SAN increased in negativity from 2 to 4 items and then levelled off from 4 to 8 items. Behavioral results suggested that the average span in the task was slightly below 3, which was consistent with the observed plateau in the electrophysiological results. Furthermore, the amplitude of the SAN predicted individual differences in auditory memory capacity. The results support the hypothesis that the SAN is an electrophysiological index of brain activity specifically related to the maintenance of auditory information in ASTM. Copyright © 2014 Elsevier B.V. All rights reserved.
Characteristics of single Ca(2+) channel kinetics in feline hypertrophied ventricular myocytes.
Yang, Xiangjun; Hui, Jie; Jiang, Tingbo; Song, Jianping; Liu, Zhihua; Jiang, Wenping
2002-04-01
To explore the mechanism underlying the prolongation of action potential and delayed inactivation of the L-type Ca(2+) (I(Ca, L)) current in a feline model of left ventricular system hypertension and concomitant hypertrophy. Single Ca(2+) channel properties in myocytes isolated from normal and pressure overloaded cat left ventricles were studied, using patch-clamp techniques. Left ventricular pressure overload was induced by partial ligation of the ascending aorta for 4 - 6 weeks. The amplitude of single Ca(2+) channel current evoked by depolarizing pulses from -40 mV to 0 mV was 1.02 +/- 0.03 pA in normal cells and 1.05 +/- 0.03 pA in hypertrophied cells, and there was no difference in single channel current-voltage relationships between the groups since slope conductance was 26.2 +/- 1.0 pS in normal and hypertrophied cells, respectively. Peak amplitudes of the ensemble-averaged single Ca(2+) channel currents were not different between the two groups of cells. However, the amplitude of this averaged current at the end of the clamp pulse was significantly larger in hypertrophied cells than in normal cells. Open-time histograms revealed that open-time distribution was fitted by a single exponential function in channels of normal cells and by a two exponential function in channels of hypertrophied cells. The number of long-lasting openings was increased in channels of hypertrophied cells, and therefore the calculated mean open time of the channel was significantly longer compared to normal controls. Kinetic changes in the Ca(2+) channel may underlie both hypertrophy-associated delayed inactivation of the Ca(2+) current and, in part, the pressure overload-induced action potential lengthening in this cat model of ventricular left systolic hypertension and hypertrophy.
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.; ...
2017-04-03
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
Bone as an ion exchange system: evidence for a link between mechanotransduction and metabolic needs.
Rubinacci, A; Covini, M; Bisogni, C; Villa, I; Galli, M; Palumbo, C; Ferretti, M; Muglia, M A; Marotti, G
2002-04-01
To detect whether the mutual interaction occurring between the osteocytes-bone lining cells system (OBLCS) and the bone extracellular fluid (BECF) is affected by load through a modification of the BECF-extracellular fluid (ECF; systemic extracellular fluid) gradient, mice metatarsal bones immersed in ECF were subjected ex vivo to a 2-min cyclic axial load of different amplitudes and frequencies. The electric (ionic) currents at the bone surface were measured by a vibrating probe after having exposed BECF to ECF through a transcortical hole. The application of different loads and different frequencies increased the ionic current in a dose-dependent manner. The postload current density subsequently decayed following an exponential pattern. Postload increment's amplitude and decay were dependent on bone viability. Dummy and static loads did not induce current density modifications. Because BECF is perturbed by loading, it is conceivable that OBLCS tends to restore BECF preload conditions by controlling ion fluxes at the bone-plasma interface to fulfill metabolic needs. Because the electric current reflects the integrated activity of OBLCS, its evaluation in transgenic mice engineered to possess genetic lesions in channels or matrix constituents could be helpful in the characterization of the mechanical and metabolic functions of bone.
Current-induced modulation of backward spin-waves in metallic microstructures
NASA Astrophysics Data System (ADS)
Sato, Nana; Lee, Seo-Won; Lee, Kyung-Jin; Sekiguchi, Koji
2017-03-01
We performed a propagating spin-wave spectroscopy for backward spin-waves in ferromagnetic metallic microstructures in the presence of electric-current. Even with the smaller current injection of 5× {{10}10} A m-2 into ferromagnetic microwires, the backward spin-waves exhibit a gigantic 200 MHz frequency shift and a 15% amplitude change, showing 60 times larger modulation compared to previous reports. Systematic experiments by measuring dependences on a film thickness of mirowire, on the wave-vector of spin-wave, and on the magnitude of bias field, we revealed that for the backward spin-waves a distribution of internal magnetic field generated by electric-current efficiently modulates the frequency and amplitude of spin-waves. The gigantic frequency and amplitude changes were reproduced by a micromagnetics simulation, predicting that the current-injection of 5× {{10}11} A m-2 allows 3 GHz frequency shift. The effective coupling between electric-current and backward spin-waves has a potential to build up a logic control method which encodes signals into the phase and amplitude of spin-waves. The metallic magnonics cooperating with electronics could suggest highly integrated magnonic circuits both in Boolean and non-Boolean principles.
Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.
Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo
2016-11-14
We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.
External noise-induced transitions in a current-biased Josephson junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qiongwei; Xue, Changfeng, E-mail: cfxue@163.com; Tang, Jiashi
We investigate noise-induced transitions in a current-biased and weakly damped Josephson junction in the presence of multiplicative noise. By using the stochastic averaging procedure, the averaged amplitude equation describing dynamic evolution near a constant phase difference is derived. Numerical results show that a stochastic Hopf bifurcation between an absorbing and an oscillatory state occurs. This means the external controllable noise triggers a transition into the non-zero junction voltage state. With the increase of noise intensity, the stationary probability distribution peak shifts and is characterised by increased width and reduced height. And the different transition rates are shown for large andmore » small bias currents.« less
López, Rosa; Sánchez, David
2003-03-21
We investigate the nonequilibrium transport properties of a quantum dot when spin flip processes compete with the formation of a Kondo resonance in the presence of ferromagnetic leads. Based upon the Anderson Hamiltonian in the strongly interacting limit, we predict a splitting of the differential conductance when the spin flip scattering amplitude is of the order of the Kondo temperature. We discuss how the relative orientation of the lead magnetizations strongly influences the electronic current and the shot noise in a nontrivial way. Furthermore, we find that the zero-bias tunneling magnetoresistance becomes negative with increasing spin flip scattering amplitude.
Damage Model of Reinforced Concrete Members under Cyclic Loading
NASA Astrophysics Data System (ADS)
Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai
2018-06-01
Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.
Cardiac regulation in the socially monogamous prairie vole
Grippo, Angela J.; Lamb, Damon G.; Carter, C. Sue; Porges, Stephen W.
2007-01-01
Social experiences, both positive and negative, may influence cardiovascular regulation. Prairie voles (Microtus ochrogaster) are socially monogamous rodents that form social bonds similar to those seen in primates, and this species may provide a useful model for investigating neural and social regulation of cardiac function. Cardiac regulation has not been studied previously in the prairie vole. Radiotelemetry transmitters were implanted into adult female prairie voles under anesthesia, and electrocardiographic parameters were recorded. Autonomic blockade was performed using atenolol (8 mg/kg ip) and atropine methyl nitrate (4 mg/kg ip). Several variables were evaluated, including heart rate (HR), HR variability and the amplitude of respiratory sinus arrhythmia. Sympathetic blockade significantly reduced HR. Parasympathetic blockade significantly increased HR, and reduced HR variability and the amplitude of respiratory sinus arrhythmia. Combined autonomic blockade significantly increased HR, and reduced HR variability and respiratory sinus arrhythmia amplitude. The data indicate that autonomic function in prairie voles shares similarities with primates, with a predominant vagal influence on cardiac regulation. The current results provide a foundation for studying neural and social regulation of cardiac function during different behavioral states in this socially monogamous rodent model. PMID:17107695
Vibration Penalty Estimates for Indoor Annoyance Caused by Sonic Boom
NASA Technical Reports Server (NTRS)
Rathsam, Jonathan; Klos, Jacob
2016-01-01
Commercial supersonic flight is currently forbidden over land because sonic booms have historically caused unacceptable annoyance levels in overflown communities. NASA is providing data and expertise to noise regulators as they consider relaxing the ban for future quiet supersonic aircraft. One key objective is a predictive model for indoor annoyance based on factors such as noise and indoor vibration levels. The current study quantified the increment in indoor sonic boom annoyance when sonic booms can be felt directly through structural vibrations in addition to being heard. A shaker mounted below each chair in the sonic boom simulator emulated vibrations transmitting through the structure to that chair. The vibration amplitudes were determined from numeric models of a large range of residential structures excited by the same sonic boom waveforms used in the experiment. The analysis yielded vibration penalties, which are the increments in sound level needed to increase annoyance as much as the vibration does. For sonic booms at acoustic levels from 75 to 84 dB Perceived Level, vibration signals with lower amplitudes (+1 sigma) yielded penalties from 0 to 5 dB, and vibration signals with higher amplitudes (+3 sigma) yielded penalties from 6 to 10 dB.
NASA Astrophysics Data System (ADS)
Bendana, S.; Self, S.; Dufek, J.
2012-12-01
The infamous, May 18th, 1980 eruption of Mt St Helens in the state of Washington produced several episodes of pyroclastic density currents (PDCs) including the initial lateral blast, which traveled nearly 30 km, and later PDCs, which filled in the area up to 8 km north of the volcano. The focus of this research is on the later PDCs, which differed from the lateral blast in that they have a higher particle concentration and filled in the topography up to 40 m. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The dilute PDCs deposited thin, cross-stratified and stratified pyroclastic deposits, known as the proximal bedded deposits, which differ greatly in depositional characteristics from the thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow. We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs. The collected data will be used to validate numerical models that attempt to quantify the hazards of decoupled, dilute PDCs.
Nootropic dipeptide noopept enhances inhibitory synaptic transmission in the hippocampus.
Povarov, I S; Kondratenko, R V; Derevyagin, V I; Ostrovskaya, R U; Skrebitskii, V G
2015-01-01
Application of nootropic agent Noopept on hippocampal slices from Wistar rats enhanced the inhibitory component of total current induced by stimulation of Shaffer collaterals in CA1 pyramidal neurons, but did not affect the excitatory component. A direct correlation between the increase in the amplitude of inhibitory current and agent concentration was found. The substance did not affect the release of inhibitory transmitters from terminals in the pyramidal neurons, which indicated changes in GABAergic interneurons.
Space Weather Impact on Pipeline in La Plata City, Argentine
NASA Astrophysics Data System (ADS)
Gianibelli, J. C.; Dovico, R. O.; Peirtti, R. O.; Pretel, R. O.; Garcia, R. E.; Quaglino, N. M.
2007-05-01
In the Sun-Earth connection, some of the most important characteristic events involved are the Coronal Mass Ejections (CME) and the high speed particle streams events coming from the Coronal Holes at the Sun. These interplanetary events produce effects on space and ground-based technology. In the present work, the geomagnetic storm recorded at Las Acacias Digital Magnetic Observatory (LAS, Lat.:-35º.0; Long.: 302º.3) produced by a particle stream from a solar coronal hole and their relationship with the induction effects caused on a pipeline in the shore of La Plata city, Argentine. The result shows an increase of the induced current correlated with the registered geomagnetic storm. Also, the magnetically calm days are analized. It is concluded that the amplitude of induced current intensity verifies a logarithmic relation with the amplitude of total magnetic intensity recorded in Las Acacias Observatory.
Leading-twist parton distribution amplitudes of S-wave heavy-quarkonia
Ding, Minghui; Gao, Fei; Chang, Lei; ...
2015-12-08
Here, the leading-twist parton distribution amplitudes (PDAs) of ground-state 1S 0 and 3S 1 cc¯- and bb¯quarkonia are calculated using a symmetry-preserving continuum treatment of the meson bound-state problem which unifies the properties of these heavy-quark systems with those of light-quark bound-states, including QCD's Goldstone modes. Analysing the evolution of 1S 0 and 3S 1 PDAs with current-quark mass, m^ q, increasing away from the chiral limit, it is found that in all cases there is a value of m^ q for which the PDA matches the asymptotic form appropriate to QCD's conformal limit and hence is insensitive to changesmore » in renormalisation scale, ζ. This mass lies just above that associated with the s-quark. At current-quark masses associated with heavy-quarkonia, on the other hand, the PDAs are piecewise convex–concave–convex.« less
The effect of Limber and flat-sky approximations on galaxy weak lensing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemos, Pablo; Challinor, Anthony; Efstathiou, George, E-mail: pl411@cam.ac.uk, E-mail: a.d.challinor@ast.cam.ac.uk, E-mail: gpe@ast.cam.ac.uk
We review the effect of the commonly-used Limber and flat-sky approximations on the calculation of shear power spectra and correlation functions for galaxy weak lensing. These approximations are accurate at small scales, but it has been claimed recently that their impact on low multipoles could lead to an increase in the amplitude of the mass fluctuations inferred from surveys such as CFHTLenS, reducing the tension between galaxy weak lensing and the amplitude determined by Planck from observations of the cosmic microwave background. Here, we explore the impact of these approximations on cosmological parameters derived from weak lensing surveys, using themore » CFHTLenS data as a test case. We conclude that the use of small-angle approximations for cosmological parameter estimation is negligible for current data, and does not contribute to the tension between current weak lensing surveys and Planck.« less
Evaluation of Motor Neuron Excitability by CMAP Scanning with Electric Modulated Current
Araújo, Tiago; Candeias, Rui; Nunes, Neuza; Gamboa, Hugo
2015-01-01
Introduction. Compound Muscle Action Potential (CMAP) scan is a noninvasive promissory technique for neurodegenerative pathologies diagnosis. In this work new CMAP scan protocols were implemented to study the influence of electrical pulse waveform on peripheral nerve excitability. Methods. A total of 13 healthy subjects were tested. Stimulation was performed with an increasing intensities range from 4 to 30 mA. The procedure was repeated 4 times per subject, using a different single pulse stimulation waveform: monophasic square and triangular and quadratic and biphasic square. Results. Different waveforms elicit different intensity-response amplitude curves. The square pulse needs less current to generate the same response amplitude regarding the other waves and this effect is gradually decreasing for the triangular, quadratic, and biphasic pulse, respectively. Conclusion. The stimulation waveform has a direct influence on the stimulus-response slope and consequently on the motoneurons excitability. This can be a new prognostic parameter for neurodegenerative disorders. PMID:26413499
The electrical properties of auditory hair cells in the frog amphibian papilla.
Smotherman, M S; Narins, P M
1999-07-01
The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.
Keogh, Justin W L; Morrison, Steve; Barrett, Rod
2010-01-01
The current study investigated the effect of 2 different types of unilateral resistance training on the postural tremor output of 19 neurologically healthy men age 70-80 yr. The strength- (n = 7) and coordination-training (n = 7) groups trained twice a week for 6 wk, performing dumbbell biceps curls, wrist flexions, and wrist extensions, while the control group (n = 5) maintained their normal activities. Changes in index-finger tremor (RMS amplitude, peak, and proportional power) and upper limb muscle coactivation were assessed during 4 postural conditions that were performed separately with the trained and untrained limbs. The 2 training groups experienced significantly greater reductions in mean RMS tremor amplitude, peak, and proportional tremor power 8-12 Hz and upper limb muscle coactivation, as well as greater increases in strength, than the control group. These results further demonstrate the benefits of resistance training for improving function in older adults.
Modulation bandwidth of spin torque oscillators under current modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quinsat, M.; CEA, INAC-SPINTEC, F-38054 Grenoble; CNRS, SPINTEC, F-38054 Grenoble
2014-10-13
For practical applications of spin torque nano-oscillators (STNO), one of the most critical characteristics is the speed at which an STNO responds to variations of external control parameters, such as current or/and field. Theory predicts that this speed is limited by the amplitude relaxation rate Γ{sub p} that determines the timescale over which the amplitude fluctuations are damped out. In this study, this limit is verified experimentally by analyzing the amplitude and frequency noise spectra of the output voltage signal when modulating an STNO by a microwave current. In particular, it is shown that due to the non-isochronous nature ofmore » the STNO the amplitude relaxation rate Γ{sub p} determines not only the bandwidth of an amplitude modulation, but also the bandwidth of a frequency modulation. The presented experimental technique will be important for the optimisation of the STNO characteristics for applications in telecommunications or/and data storage and is applicable even in the case when the STNO output signal is only several times higher than noise.« less
Kasuga, Shoko; Kurata, Makiko; Liu, Meigen; Ushiba, Junichi
2015-05-01
Human's sophisticated motor learning system paradoxically interferes with motor performance when visual information is mirror-reversed (MR), because normal movement error correction further aggravates the error. This error-increasing mechanism makes performing even a simple reaching task difficult, but is overcome by alterations in the error correction rule during the trials. To isolate factors that trigger learners to change the error correction rule, we manipulated the gain of visual angular errors when participants made arm-reaching movements with mirror-reversed visual feedback, and compared the rule alteration timing between groups with normal or reduced gain. Trial-by-trial changes in the visual angular error was tracked to explain the timing of the change in the error correction rule. Under both gain conditions, visual angular errors increased under the MR transformation, and suddenly decreased after 3-5 trials with increase. The increase became degressive at different amplitude between the two groups, nearly proportional to the visual gain. The findings suggest that the alteration of the error-correction rule is not dependent on the amplitude of visual angular errors, and possibly determined by the number of trials over which the errors increased or statistical property of the environment. The current results encourage future intensive studies focusing on the exact rule-change mechanism. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Experimental and analytical investigation on metal damage suffered from simulated lightning currents
NASA Astrophysics Data System (ADS)
Yakun, LIU; Zhengcai, FU; Quanzhen, LIU; Baoquan, LIU; Anirban, GUHA
2017-12-01
The damage of two typical metal materials, Al alloy 3003 and steel alloy Q235B, subjected to four representative lightning current components are investigated by laboratory and analytical studies to provide fundamental data for lightning protection. The four lightning components simulating the natural lightning consist of the first return stroke, the continuing current of interval stroke, the long continuing current, and the subsequent stroke, with amplitudes 200 kA, 8 kA, 400 A, and 100 kA, respectively. The damage depth and area suffered from different lightning components are measured by the ultrasonic scanning system. And the temperature rise is measured by the thermal imaging camera. The results show that, for both Al 3003 and steel Q235B, the first return stroke component results in the largest damage area with damage depth 0.02 mm uttermost. The long continuing current component leads to the deepest damage depth of 3.3 mm for Al 3003 and much higher temperature rise than other components. The correlation analysis between damage results and lightning parameters indicates that the damage depth has a positive correlation with charge transfer. The damage area is mainly determined by the current amplitude and the temperature rise increases linearly with the charge transfer larger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Den Hartog, D.J.; Almagri, A.F.; Cekic, M.
1996-09-01
A three- to five-fold enhancement of the energy confinement time in a reversed-field pinch (RFP) has been achieved in the Madison Symmetric Torus (MST) by reducing the amplitude of tearing mode fluctuations responsible for anomalous transport in the core of the RFP. By applying a transient poloidal inductive electric field to flatten the current density profile, the fluctuation amplitude {tilde b}/B decreases from 1.5% to 0.8%, the electron temperature T{sub e0} increases from 250 eV to 370 eV, the ohmic input power decreases from 4.5 MW to approximately 1.5 MW, the poloidal beta {beta}{sub 0} increases from 6% to 9%,more » and the energy confinement time {tau}{sub E} increases from 1 ms to {approximately}5 ms in I{sub {phi}} = 340 kA plasmas with density {tilde n} = 1 {times} 10{sup 19} m{sup -3}. Current profile control methods are being developed for the RFP in a program to eliminate transport associated with these current-gradient-driven fluctuations. In addition to controlling the amplitude of the tearing modes, we are vigorously pursuing an understanding of the physics of these fluctuations. In particular, plasma flow, both equilibrium and fluctuating, plays a critical role in a diversity of physical phenomena in MST. The key results: 1) Edge probe measurements show that the MHD dynamo is active in low collisionality plasmas, while at high collisionality a new mechanism, the `electron diamagnetic dynamo,` is observed. 2) Core spectroscopic measurements show that the toroidal velocity fluctuations of the plasma are coherent with the large-scale magnetic tearing modes; the scalar product of these two fluctuating quantities is similar to that expected for the MHD dynamo electromotive force. 3) Toroidal plasma flow in MST exhibits large radial shear and can be actively controlled, including unlocking locked discharges, by modifying E{sub r} with a robust biased probe. 24 refs.« less
Current profile modification experiments in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Cecconello, M.; Malmberg, J.-A.; Spizzo, G.; Chapman, B. E.; Gravestjin, R. M.; Franz, P.; Piovesan, P.; Martin, P.; Drake, J. R.
2004-01-01
Pulsed poloidal current drive (PPCD) experiments have been conducted in the resistive shell EXTRAP T2R reversed-field pinch experiment. During the current profile modification phase, the fluctuation level of the m = 1 internally resonant tearing modes decreases, and the velocity of these modes increases. The m = 0 modes are not affected during PPCD, although termination occurs with a burst in the m = 0 amplitude. The PPCD phase is characterized by an increase in the central electron temperature (up to 380 eV) and in the soft x-ray signal. Spectroscopic observations confirm an increase in the central electron temperature. During PPCD, the plasma poloidal beta increases to 14%, and the estimated energy confinement time doubles, reaching 380 µs. The reduction in the fluctuation level and the corresponding increase in the energy confinement time are qualitatively consistent with a reduction in parallel transport along stochastic magnetic field lines.
Liu, Mingfan; Zhou, Li; Wang, Xiumei; Jiang, Ying; Liu, Qiaosheng
2017-07-01
The study aimed to examine whether remitted depressed (RMD) individuals show a dysfunction of valence-dependent manipulation and its neurophysiological correlates. Event-related potentials were conducted on 25 individuals with remitted depression and 27 controls during a working memory manipulation task. The sorting costs and the P3b and slow wave (SW) amplitudes were analyzed. Compared to the control subjects, the RMD individuals revealed higher sorting costs, particularly when they were shown negative targets. The control individuals exhibited reduced P3b and SW amplitudes in response to the backward negative pictures, whereas the RMD participants exhibited increased central-parietal and lateral P3b and SW amplitudes in the backward condition. Both groups exhibited overall decreased P3b and SW amplitudes in response to the backward positive pictures. RMD individuals are associated with a deficient manipulation for negative material and an unimpaired manipulation for positive material. This study extends current knowledge that deficits in cognitive control persist after the remission of depressive symptoms. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
LeBlanc, M. A. R.; Cameron, Daniel S. M.; LeBlanc, David; Meng, Jinglei
1996-01-01
Hysteresis losses, Wac, in the core of a monolithic coaxial cable carrying an alternating current of fixed amplitude Iac are predicted to trace a valley as a steady bias current Ibias is superimposed on Iac, when (a) the critical current density jc diminishes with increasing magnetic field H, and/or (b) a Meissner current IM or a surface barrier current ISB opposing flux entry play a role. The predicted Ibias,min where the valley minimum occurs and the value of Wac at the minima are displayed for various IM≥0 and ISB≥0 when jc=α (Bean) and jc=α/H (Kim approximation).
Weber, Martin; Motin, Leonid; Gaul, Simon; Beker, Friederike; Fink, Rainer H A; Adams, David J
2004-01-01
The effects of intravenous (i.v.) anaesthetics on nicotinic acetylcholine receptor (nAChR)-induced transients in intracellular free Ca2+ concentration ([Ca2+]i) and membrane currents were investigated in neonatal rat intracardiac neurons. In fura-2-loaded neurons, nAChR activation evoked a transient increase in [Ca2+]I, which was inhibited reversibly and selectively by clinically relevant concentrations of thiopental. The half-maximal concentration for thiopental inhibition of nAChR-induced [Ca2+]i transients was 28 μM, close to the estimated clinical EC50 (clinically relevant (half-maximal) effective concentration) of thiopental. In fura-2-loaded neurons, voltage clamped at −60 mV to eliminate any contribution of voltage-gated Ca2+ channels, thiopental (25 μM) simultaneously inhibited nAChR-induced increases in [Ca2+]i and peak current amplitudes. Thiopental inhibited nAChR-induced peak current amplitudes in dialysed whole-cell recordings by ∼ 40% at −120, −80 and −40 mV holding potential, indicating that the inhibition is voltage independent. The barbiturate, pentobarbital and the dissociative anaesthetic, ketamine, used at clinical EC50 were also shown to inhibit nAChR-induced increases in [Ca2+]i by ∼40%. Thiopental (25 μM) did not inhibit caffeine-, muscarine- or ATP-evoked increases in [Ca2+]i, indicating that inhibition of Ca2+ release from internal stores via either ryanodine receptor or inositol-1,4,5-trisphosphate receptor channels is unlikely. Depolarization-activated Ca2+ channel currents were unaffected in the presence of thiopental (25 μM), pentobarbital (50 μM) and ketamine (10 μM). In conclusion, i.v. anaesthetics inhibit nAChR-induced currents and [Ca2+]i transients in intracardiac neurons by binding to nAChRs and thereby may contribute to changes in heart rate and cardiac output under clinical conditions. PMID:15644873
High-current discharge channel contraction in high density gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.
Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of {approx}10{sup 10} A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 {mu}s. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where themore » channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.« less
Impact of bootstrap current and Landau-fluid closure on ELM crashes and transport
NASA Astrophysics Data System (ADS)
Chen, J. G.; Xu, X. Q.; Ma, C. H.; Lei, Y. A.
2018-05-01
Results presented here are from 6-field Landau-Fluid simulations using shifted circular cross-section tokamak equilibria on BOUT++ framework. Linear benchmark results imply that the collisional and collisionless Landau resonance closures make a little difference on linear growth rate spectra which are quite close to the results with the flux limited Spitzer-Härm parallel flux. Both linear and nonlinear simulations show that the plasma current profile plays dual roles on the peeling-ballooning modes that it can drive the low-n peeling modes and stabilize the high-n ballooning modes. For fixed total pressure and current, as the pedestal current decreases due to the bootstrap current which becomes smaller when the density (collisionality) increases, the operational point is shifted downwards vertically in the Jped - α diagram, resulting in threshold changes of different modes. The bootstrap current can slightly increase radial turbulence spreading range and enhance the energy and particle transports by increasing the perturbed amplitude and broadening cross-phase frequency distribution.
Winters, Bradley D.; Jin, Shan-Xue; Ledford, Kenneth R.
2017-01-01
The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo. SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. PMID:28213442
NASA Astrophysics Data System (ADS)
Liu, Mingyue; Xiao, Longfei; Yang, Jianmin; Tian, Xinliang
2017-05-01
The vortex-induced motions (VIMs) of semi-submersibles have emerged as an important issue in offshore engineering, as they pose a threat to safe and reliable operations and severely affect the fatigue lives of risers and mooring systems. The VIM response depends on the shape of the submerged structure and thus is significantly influenced by the design parameters related to the columns and pontoons. Numerical simulations by the detached Eddy simulation method are validated by experimental data and then used for parametric analysis of the VIM performance of various semi-submersibles with different column rounded ratios (Rc/L ) and pontoon rounded ratios (Rp/Lp ). The results show that the transverse amplitudes of a semi-submersible with circular columns at a 0° current heading are twice as large as those at a 45° current heading. However, the semi-submersible with rounded square columns shows more significant transverse motions at a 45° current heading than at a 0° current heading. Furthermore, at the 45° current heading, the transverse amplitudes of the semi-submersibles show a rapid increase as the column radius increases in the range of Rc/L <0.1 . The peak values remain roughly the same for 0.1 ≤Rc/L ≤0.2 and then decrease as the column radius increases (Rc/L ≥0.3 ). In addition, the effect of the pontoon shape on the transverse response is negligible for semi-submersibles with sharp square columns, while for semi-submersibles with rounded square columns or circular columns, the sharp rectangular pontoons greatly mitigate the VIM response.
Havens, Jeffrey; Castellani, Michela; Kleinschroth, Thomas; Ludwig, Bernd; Durham, Bill; Millett, Francis
2011-01-01
Domain rotation of the Rieske iron-sulfur protein (ISP) between the cytochrome (cyt) b and cyt c1 redox centers plays a key role in the mechanism of the cyt bc1 complex. Electron transfer within the cyt bc1 complex of P. denitrificans was studied using a ruthenium dimer to rapidly photo-oxidize cyt c1 within 1 μs and initiate the reaction. In the absence of any added quinol or inhibitor of the bc1 complex at pH 8.0, electron transfer from reduced ISP to cyt c1 was biphasic with rate constants of k1f = 6300 ± 3000 s−1 and k1s = 640 ± 300 s−1 and amplitudes of 10 ± 3% and 16 ± 4 % of the total amount of cyt c1 photooxidized. Upon addition of any of the Pm type inhibitors MOA-stilbene, myxothiazol, or azoxystrobin to cyt bc1 in the absence of quinol, the total amplitude increased 2-fold, consistent with a decrease in redox potential of the ISP. In addition, the relative amplitude of the fast phase increased significantly, consistent with a change in the dynamics of the ISP domain rotation. In contrast, addition of the Pf type inhibitors JG-144 and famoxadone decreased the rate constant k1f by 5 to 10-fold, and increased the amplitude over 2-fold. Addition of quinol substrate in the absence of inhibitors led to a two-fold increase in the amplitude of the k1f phase. The effect of QH2 on the kinetics of electron transfer from reduced ISP to cyt c1 was thus similar to that of the Pm inhibitors and very different from that of the Pf inhibitors. The current results indicate that the species occupying the Qo site has a significant conformational influence on the dynamics of the ISP domain rotation. PMID:22026826
Measurement of impulse current using polarimetric fiber optic sensor
NASA Astrophysics Data System (ADS)
Ginter, Mariusz
2017-08-01
In the paper the polarimetric current sensing solution used for measurements of high amplitude currents and short durations is presented. This type of sensor does not introduce additional resistance and inductance into the circuit, which is a desirable phenomenon in this type of measurement. The magneto element is a fiber optic coil made of spun fiber optic. The fiber in which the core is twisted around its axis is characterized by a small effect of interfering magnitudes, ie mechanical vibrations and pressure changes on the polarimeter. The presented polarimetric current sensor is completely fiber optic. Experimental results of a proposed sensor construction solution operating at 1550 nm and methods of elimination of influence values on the fiber optic current sensor were presented. The sensor was used to measure the impulse current. The generated current pulses are characterized by a duration of 23μs and amplitudes ranging from 1 to 3.5 kA. The currents in the discharge circuit are shown. The measurement uncertainty of the amplitude of the electric current in the range of measured impulses was determined and estimated to be no more than 2%.
Ambrus, Géza Gergely; Chaieb, Leila; Stilling, Roman; Rothkegel, Holger; Antal, Andrea; Paulus, Walter
2016-03-11
The measurement of the motor evoked potential (MEP) amplitudes using single pulse transcranial magnetic stimulation (TMS) is a common method to observe changes in motor cortical excitability. The level of cortical excitability has been shown to change during motor learning. Conversely, motor learning can be improved by using anodal transcranial direct current stimulation (tDCS). In the present study, we aimed to monitor cortical excitability changes during an implicit motor learning paradigm, a version of the serial reaction time task (SRTT). Responses from the first dorsal interosseous (FDI) and forearm flexor (FLEX) muscles were recorded before, during and after the performance of the SRTT. Online measurements were combined with anodal, cathodal or sham tDCS for the duration of the SRTT. Negative correlations between the amplitude of online FDI MEPs and SRTT reaction times (RTs) were observed across the learning blocks in the cathodal condition (higher average MEP amplitudes associated with lower RTs) but no significant differences in the anodal and sham conditions. tDCS did not have an impact on SRTT performance, as would be predicted based on previous studies. The offline before-after SRTT MEP amplitudes showed an increase after anodal and a tendency to decrease after cathodal stimulation, but these changes were not significant. The combination of different interventions during tDCS might result in reduced efficacy of the stimulation that in future studies need further attention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
High-frequency large-amplitude oscillations of a non-isothermal N/S boundary
NASA Astrophysics Data System (ADS)
Bezuglyj, A. I.; Shklovskij, V. A.
2016-10-01
Within the framework of a phenomenological approach based on the heat balance equation and the current dependence of the critical temperature of the superconductor, the effect of high-frequency current of large amplitude and arbitrary waveform on the non-isothermal balance of an oscillating N/S interface in a long superconductor was studied. Self-consistent average temperature field of the rapidly oscillating non-isothermal N/S boundary (heat kink) was introduced, which allowed us to go beyond the well-known concept of mean-square heating and consider the effect of the current waveform. With regard to experiments on the effects of high-power microwave radiation on the current-voltage (IV) characteristics of superconducting films, their classification was performed and the families of IV curves of inhomogeneous superconductors carrying a current containing a high-frequency component of large amplitude. Several IV curves exhibited a hysteresis of thermal nature.
Li, Ke-Yong
2013-01-01
The effect of hypercapnia on outwardly rectifying currents was examined in locus coeruleus (LC) neurons in slices from neonatal rats [postnatal day 3 (P3)–P15]. Two outwardly rectifying currents [4-aminopyridine (4-AP)-sensitive transient current and tetraethyl ammonium (TEA)-sensitive sustained current] were found in LC neurons. 4-AP induced a membrane depolarization of 3.6 ± 0.6 mV (n = 4), while TEA induced a smaller membrane depolarization of 1.2 ± 0.3 mV (n = 4). Hypercapnic acidosis (HA) inhibited both currents. The maximal amplitude of the TEA-sensitive current was reduced by 52.1 ± 4.5% (n = 5) in 15% CO2 [extracellular pH (pHo) 7.00, intracellular pH (pHi) 6.96]. The maximal amplitude of the 4-AP-sensitive current was reduced by 34.5 ± 3.0% (n = 6) in 15% CO2 (pHo 7.00, pHi 6.96), by 29.4 ± 6.8% (n = 6) in 10% CO2 (pHo 7.15, pHi 7.14), and increased by 29.0 ± 6.4% (n = 6) in 2.5% CO2 (pHo 7.75, pHi 7.35). 4-AP completely blocked hypercapnia-induced increased firing rate, but TEA did not affect it. When LC neurons were exposed to HA with either pHo or pHi constant, the 4-AP-sensitive current was inhibited. The data show that the 4-AP-sensitive current (likely an A current) is inhibited by decreases in either pHo or pHi. The change of the A current by various levels of CO2 is correlated with the change in firing rate induced by CO2, implicating the 4-AP-sensitive current in chemosensitive signaling in LC neurons. PMID:23948777
Secular changes of the M2 tide in the Gulf of Maine
NASA Technical Reports Server (NTRS)
Ray, Richard D.
2005-01-01
Analyses of long time series of hourly tide-gauge data at four stations in the Gulf of Maine reveal that the amplitude of the M2 tide underwent a nearly linear secular increase throughout most of the twentieth century. In the early 1980s, however, the amplitude of M2 abruptly dropped. Sea level changes alone appear inadequate to explain either the long-term trend or the recent trend discontinuity. Tidal models that account for Holocene sea level rise do predict an amplification of M2, but much smaller than the currently observed trends. Nor do recent annual mean sea levels correlate with the recent trend discontinuity. Some unknown fraction of the open Atlantic may be similarly affected, since the M2 discontinuity, but not the long-term secular increase in the tide, is evident also at Halifax.
Ronquillo, Cecinio C; Zaugg, Brian; Stagg, Brian; Kirk, Kevin R; Gupta, Isha; Barlow, William R; Pettey, Jeff H; Olson, Randall J
2014-12-01
To determine the optimal longitudinal power settings for Infiniti OZil Intelligent Phaco (IP) at varying torsional amplitude settings; and to test the hypothesis that increasing longitudinal power is more important at lower torsional amplitudes to achieve efficient phacoemulsification. Laboratory investigation. setting: John A. Moran Eye Center, University of Utah, Salt Lake City, Utah. procedure: Individual porcine nuclei were fixed in formalin, then cut into 2.0 mm cubes. Lens cube phacoemulsification was done using OZil IP at 60%, 80%, and 100% torsional amplitude with 0%, 10%, 20%, 30%, 50%, 75%, or 100% longitudinal power. All experiments were done using a 20 gauge 0.9 mm bent reverse bevel phaco tip at constant vacuum (550 mm Hg), aspiration rate (40 mL/min), and bottle height (50 cm). main outcome measure: Complete lens particle phacoemulsification (efficiency). Linear regression analysis showed a significant increase in efficiency with increasing longitudinal power at 60% torsional amplitude (R(2) = 0.7269, P = .01) and 80% torsional amplitude (R(2) = 0.6995, P = .02) but not at 100% amplitude (R(2) = 0.3053, P = .2). Baseline comparison of 60% or 80% vs 100% torsional amplitude without longitudinal power showed increased efficiency at 100% (P = .0004). Increasing longitudinal power to 20% abolished the efficiency difference between 80% vs 100% amplitudes. In contrast, 75% longitudinal power abolished the efficiency difference between 60% vs 100% torsional amplitudes. Results suggest that longitudinal power becomes more critical at increasing phacoemulsification efficiencies at torsional amplitudes less than 100%. Increasing longitudinal power does not further increase efficiency at maximal torsional amplitudes. Copyright © 2014 Elsevier Inc. All rights reserved.
The interaction between hexamethonium and tubocurarine on the rat neuromuscular junction.
Rang, H. P.; Rylett, R. J.
1984-01-01
The ability of hexamethonium (C6) to reverse the neuromuscular blocking action of tubocurarine (Tc) has been reinvestigated at the voltage clamped endplate of the omohyoid muscle of rat. The possibility that a weak anticholinesterase action of C6 could contribute to the paradoxical potentiation of the peak amplitude of the endplate response has been examined. C6 (50-200 microM) caused an increase in the amplitude of nerve-evoked endplate currents (e.p.cs) recorded in the presence of 0.6 microM Tc. The effect decreased with hyperpolarization of the muscle fibre. Irreversible inhibition of acetylcholinesterase resulted in a loss of the anti-curare effect of C6. C6 did not cause an increase in e.p.c. amplitude when acetylcholine (ACh) receptors were blocked irreversibly by alpha-bungaratoxin. When transmission was blocked by increased Mg2+ concentration, C6 (50-400 microM) reduced the amplitude of e.p.cs without appreciably affecting their time course. C6 caused a decrease in the amplitude of miniature endplate currents (m.e.p.cs) the effect being slightly increased when the fibre was hyperpolarized. An e-fold increase in the effectiveness of C6 occurred with approximately 58 mV hyperpolarization. High concentrations (greater than 400 microM) affected the time course of m.e.p.cs in a manner suggestive of open channel block, but this was not evident at 200 microM, the concentration that was most effective in reversing Tc block. When tested against responses to short ionophoretic pulses of agonists, C6 was less effective against ACh (EC50ca. 300 microM) than against carbachol (CCh) (EC50 100 microM). When cholinesterase was irreversibly inhibited, C6 blocked responses to both agonists equally (EC50ca. 100 microM). The effectiveness of C6 in blocking the action of CCh was reduced 10 fold in the presence of 0.6 microM Tc, implying that the two antagonists compete for the same binding site. C6 (50-200 microM) in the presence of Tc (0.6 microM) increased the response to ionophoretically applied ACh but not that to CCh. C6 was equipotent in blocking m.e.p.cs and responses to ionophoretically applied ACh whereas Tc was more potent against the exogenously applied agonist. C6 was a weak inhibitor of acetylcholinesterase activity in rat muscle homogenates (EC50 1.5 mM). The results are discussed in terms of the kinetic hypothesis advanced by Ginsborg & Stephenson (1974) to account for the Tc reversal phenomenon.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6141831
Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.
2015-01-01
Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.
The effect of incipient presbyopia on the correspondence between accommodation and vergence.
Baker, Fiona J; Gilmartin, Bernard
2002-06-01
To investigate the accommodation-convergence relationship during the incipient phase of presbyopia. The study aimed to differentiate between the current theories of presbyopia and to explore the mechanisms by which the oculomotor system compensates for the change in the accommodation-convergence relationship contingent on a declining amplitude of accommodation. Using a Canon R-1 open-view autorefractor and a haploscope device, measurements were made of the stimulus and response accommodative convergence/accommodation ratios and the convergence accommodation/convergence ratio of 28 subjects aged 35-45 years at the commencement of the study. Amplitude of accommodation was assessed using a push-down technique. The measurements were repeated at 4-monthly intervals over a 2-year period. The results showed that with the decline in the amplitude of accommodation there is an increase in the accommodative convergence response per unit of accommodative response and a decrease in the convergence accommodation response per unit of convergence. The results of this study fail to support the Hess-Gullstrand theory of presbyopia in that the ciliary muscle effort required to produce a unit change in accommodation increases, rather than stays constant, with age. Data show that the near vision response is limited to the maximum vergence response that can be tolerated and, despite being within the amplitude of accommodation, a stimulus may still appear blurred because the vergence component determines the proportion of available accommodation utilised during near vision.
Aging changes and gender differences in response to median nerve stimulation measured with MEG.
Stephen, Julia M; Ranken, Doug; Best, Elaine; Adair, John; Knoefel, Janice; Kovacevic, Sanja; Padilla, Denise; Hart, Blaine; Aine, Cheryl J
2006-01-01
The current study uses magnetoencephalography (MEG) to characterize age-related changes and gender differences in the amplitudes and timing of cortical sources evoked by median nerve stimulation. Thirty-four healthy subjects from two age groups: 20-29 and >64 years of age were examined. After measuring the MEG responses, we modeled the data using a spatio-temporal multi-dipole modeling approach to determine the source locations and their associated timecourses. We found early, large amplitude responses in the elderly in primary somatosensory (approximately 20 ms) and pre-central sulcus timecourses (approximately 22 ms) and lower amplitude responses in the elderly later in primary somatosensory (approximately 32 ms) and contralateral secondary somatosensory timecourses (approximately 90 ms). In addition, females had larger peak amplitude responses than males in the contralateral secondary somatosensory timecourse (approximately 28 and 51 ms). These results show that the median nerve stimulation paradigm provides considerable sensitivity to age- and gender-related differences. The results are consistent with the theory that increased amplitudes identified in the elderly may be associated with decreased inhibition. The results emphasize that an examination of two discrete age groups, collapsed across gender, cannot provide a complete understanding of the fundamental changes that occur in the brain across the lifetime.
Henry, Molly J; Obleser, Jonas
2013-01-01
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals.
Henry, Molly J.; Obleser, Jonas
2013-01-01
Natural auditory stimuli are characterized by slow fluctuations in amplitude and frequency. However, the degree to which the neural responses to slow amplitude modulation (AM) and frequency modulation (FM) are capable of conveying independent time-varying information, particularly with respect to speech communication, is unclear. In the current electroencephalography (EEG) study, participants listened to amplitude- and frequency-modulated narrow-band noises with a 3-Hz modulation rate, and the resulting neural responses were compared. Spectral analyses revealed similar spectral amplitude peaks for AM and FM at the stimulation frequency (3 Hz), but amplitude at the second harmonic frequency (6 Hz) was much higher for FM than for AM. Moreover, the phase delay of neural responses with respect to the full-band stimulus envelope was shorter for FM than for AM. Finally, the critical analysis involved classification of single trials as being in response to either AM or FM based on either phase or amplitude information. Time-varying phase, but not amplitude, was sufficient to accurately classify AM and FM stimuli based on single-trial neural responses. Taken together, the current results support the dissociable nature of cortical signatures of slow AM and FM. These cortical signatures potentially provide an efficient means to dissect simultaneously communicated slow temporal and spectral information in acoustic communication signals. PMID:24205309
Dephasing effects on ac-driven triple quantum dot systems
NASA Astrophysics Data System (ADS)
Maldonado, I.; Villavicencio, J.; Contreras-Pulido, L. D.; Cota, E.; Maytorena, J. A.
2018-05-01
We analyze the effect of environmental dephasing on the electrical current in an ac-driven triple quantum dot system in a symmetric Λ configuration. The current is explored by solving the time evolution equation of the density matrix as a function of the frequency and amplitude of the driving field. Two characteristic spectra are observed depending on the field amplitude. At the resonance condition, when the frequency matches the interdot energy difference, one spectrum shows a distinctive Fano-type peak, while the other, occurring at larger values of the field amplitude, exhibits a strong current suppression due to dynamic localization. In the former case we observe that the current maximum is reduced due to dephasing, while in the latter it is shown that dephasing partially alleviates the localization. In both cases, away from resonance, we observe current oscillations which are dephasing-enhanced for a wide range of frequencies. These effects are also discussed using Floquet theory, and analytical expressions for the electrical current are obtained within the rotating wave approximation.
Electrically-driven pure amplitude and frequency modulation in a quantum cascade laser.
Shehzad, Atif; Brochard, Pierre; Matthey, Renaud; Blaser, Stéphane; Gresch, Tobias; Maulini, Richard; Muller, Antoine; Südmeyer, Thomas; Schilt, Stéphane
2018-04-30
We present pure amplitude modulation (AM) and frequency modulation (FM) achieved electrically in a quantum cascade laser (QCL) equipped with an integrated resistive heater (IH). The QCL output power scales linearly with the current applied to the active region (AR), but decreases with the IH current, while the emission frequency decreases with both currents. Hence, a simultaneous modulation applied to the current of the AR and IH sections with a proper relative amplitude and phase can suppress the AM, resulting in a pure FM, or vice-versa. The adequate modulation parameters depend on the applied modulation frequency. Therefore, they were first determined from the individual measurements of the AM and FM transfer functions obtained for a modulation applied to the current of the AR or IH section, respectively. By optimizing the parameters of the two modulations, we demonstrate a reduction of the spurious AM or FM by almost two orders of magnitude at characteristic frequencies of 1 and 10 kHz compared to the use of the AR current only.
NASA Astrophysics Data System (ADS)
Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Burachenko, Alexandr G.; Rybka, Dmitry V.; Kostyrya, Igor'D.; Lomaev, Mikhail I.; Baksht, Evgeni Kh.; Yan, Ping
2013-05-01
The breakdown of different air gaps at high overvoltages in an inhomogeneous electric field was investigated with a time resolution of up to 100 ps. Dynamic displacement current was used for diagnostics of ionization processes between the ionization wave front and a plane anode. It is demonstrated that during the generation of a supershort avalanche electron beam (SAEB) with amplitudes of ˜10 A and more, conductivity in the air gaps at the breakdown stage is ensured by the ionization wave, whose front propagates from the electrode of small curvature radius, and by the dynamic displacement current between the ionization wave front and the plane electrode. The amplitude of the dynamic displacement current measured by a current shunt is 100 times greater than the SAEB. It is shown that with small gaps and with a large cathode diameter, the amplitude of the dynamic displacement current during a subnanosecond rise time of applied pulse voltage can be higher than 4 kA.
Acoustic and Perceptual Effects of Left–Right Laryngeal Asymmetries Based on Computational Modeling
Samlan, Robin A.; Story, Brad H.; Lotto, Andrew J.; Bunton, Kate
2015-01-01
Purpose Computational modeling was used to examine the consequences of 5 different laryngeal asymmetries on acoustic and perceptual measures of vocal function. Method A kinematic vocal fold model was used to impose 5 laryngeal asymmetries: adduction, edge bulging, nodal point ratio, amplitude of vibration, and starting phase. Thirty /a/ and /I/ vowels were generated for each asymmetry and analyzed acoustically using cepstral peak prominence (CPP), harmonics-to-noise ratio (HNR), and 3 measures of spectral slope (H1*-H2*, B0-B1, and B0-B2). Twenty listeners rated voice quality for a subset of the productions. Results Increasingly asymmetric adduction, bulging, and nodal point ratio explained significant variance in perceptual rating (R2 = .05, p < .001). The same factors resulted in generally decreasing CPP, HNR, and B0-B2 and in increasing B0-B1. Of the acoustic measures, only CPP explained significant variance in perceived quality (R2 = .14, p < .001). Increasingly asymmetric amplitude of vibration or starting phase minimally altered vocal function or voice quality. Conclusion Asymmetries of adduction, bulging, and nodal point ratio drove acoustic measures and perception in the current study, whereas asymmetric amplitude of vibration and starting phase demonstrated minimal influence on the acoustic signal or voice quality. PMID:24845730
Mechanism of interlayer exchange in magnetic multilayers
NASA Astrophysics Data System (ADS)
Slonczewski, J. C.
1993-09-01
The spin-current method is used to calculate the oscillatory exchange energy that couples two semi-infinite ferromagnets with exchange-split parabolic bands which are joined by a nonmagnetic metallic spacer. A closed asymptotic formula extends the previous RKKY-type formula to the case in which the ferromagnets and spacer have different Fermi vectors. The predicted amplitude of oscillatory coupling increases steeply with Fermi vector or electron density in the spacer, as do the experimental trends reported by Parkin. Numerical computations relevant to iron support this closed formula and show that the amplitude of the biquadratic ( J2 cos 2θ) and higher-order corrections to the conventional - J1 cos θ form of energy is less than 2%.
Detector for flow abnormalities in gaseous diffusion plant compressors
Smith, Stephen F.; Castleberry, Kim N.
1998-01-01
A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value.
Detector for flow abnormalities in gaseous diffusion plant compressors
Smith, S.F.; Castleberry, K.N.
1998-06-16
A detector detects a flow abnormality in a plant compressor which outputs a motor current signal. The detector includes a demodulator/lowpass filter demodulating and filtering the motor current signal producing a demodulated signal, and first, second, third and fourth bandpass filters connected to the demodulator/lowpass filter, and filtering the demodulated signal in accordance with first, second, third and fourth bandpass frequencies generating first, second, third and fourth filtered signals having first, second, third and fourth amplitudes. The detector also includes first, second, third and fourth amplitude detectors connected to the first, second, third and fourth bandpass filters respectively, and detecting the first, second, third and fourth amplitudes, and first and second adders connected to the first and fourth amplitude detectors and the second and third amplitude detectors respectively, and adding the first and fourth amplitudes and the second and third amplitudes respectively generating first and second added signals. Finally, the detector includes a comparator, connected to the first and second adders, and comparing the first and second added signals and detecting the abnormal condition in the plant compressor when the second added signal exceeds the first added signal by a predetermined value. 6 figs.
NASA Astrophysics Data System (ADS)
Zhu, Xiao-Hua; Nakamura, Hirohiko; Dong, Menghong; Nishina, Ayako; Yamashiro, Toru
2017-03-01
From 2003 to 2011, current surveys, using an acoustic Doppler current profiler (ADCP) mounted on the Ferry Naminoue, were conducted across the Tokara Strait (TkS). Resulting velocity sections (1234) were used to estimate major tidal current constituents in the TkS. The semidiurnal M2 tidal current (maximum amplitude 27 cm s-1) was dominant among all the tidal constituents, and the diurnal K1 tidal current (maximum amplitude 21 cm s-1) was the largest among all the diurnal tidal constituents. Over the section, the ratios, relative to M2, of averaged amplitudes of M2, S2, N2, K2, K1, O1, P1, and Q1 tidal currents were 1.00:0.44:0.21:0.12:0.56:0.33:0.14:0.10. Tidal currents estimated from the ship-mounted ADCP data were in good agreement with those from the mooring ADCP data. Their root-mean-square difference for the M2 tidal current amplitude was 2.0 cm s-1. After removing the tidal currents, the annual-mean of the net volume transport (NVT) through the TkS ± its standard derivation was 23.03 ± 3.31 Sv (Sv = 106 m3 s-1). The maximum (minimum) monthly mean NVT occurred in July (November) with 24.60 (21.47) Sv. NVT values from the ship-mounted ADCP were in good agreement with previous geostrophic volume transports calculated from conductivity temperature depth data, but the former showed much finer temporal structure than those from the geostrophic calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheeley, N. R. Jr.; Wang, Y.-M.
The quiet nature of sunspot cycle 24 was disrupted during the second half of 2014 when the Sun’s large-scale field underwent a sudden rejuvenation: the solar mean field reached its highest value since 1991, the interplanetary field strength doubled, and galactic cosmic rays showed their strongest 27-day modulation since neutron-monitor observations began in 1957; in the outer corona, the large increase of field strength was reflected by unprecedentedly large numbers of coronal loops collapsing inward along the heliospheric current sheet. Here, we show that this rejuvenation was not caused by a significant increase in the level of solar activity asmore » measured by the smoothed sunspot number and CME rate, but instead was caused by the systematic emergence of flux in active regions whose longitudinal distribution greatly increased the Sun’s dipole moment. A similar post-maximum increase in the dipole moment occurred during each of the previous three sunspot cycles, and marked the start of the declining phase of each cycle. We note that the north–south component of this peak dipole moment provides an early indicator of the amplitude of the next cycle, and conclude that the amplitude of cycle 25 may be comparable to that of cycle 24, and well above the amplitudes obtained during the Maunder Minimum.« less
Speed but not amplitude of visual feedback exacerbates force variability in older adults.
Kim, Changki; Yacoubi, Basma; Christou, Evangelos A
2018-06-23
Magnification of visual feedback (VF) impairs force control in older adults. In this study, we aimed to determine whether the age-associated increase in force variability with magnification of visual feedback is a consequence of increased amplitude or speed of visual feedback. Seventeen young and 18 older adults performed a constant isometric force task with the index finger at 5% of MVC. We manipulated the vertical (force gain) and horizontal (time gain) aspect of the visual feedback so participants performed the task with the following VF conditions: (1) high amplitude-fast speed; (2) low amplitude-slow speed; (3) high amplitude-slow speed. Changing the visual feedback from low amplitude-slow speed to high amplitude-fast speed increased force variability in older adults but decreased it in young adults (P < 0.01). Changing the visual feedback from low amplitude-slow speed to high amplitude-slow speed did not alter force variability in older adults (P > 0.2), but decreased it in young adults (P < 0.01). Changing the visual feedback from high amplitude-slow speed to high amplitude-fast speed increased force variability in older adults (P < 0.01) but did not alter force variability in young adults (P > 0.2). In summary, increased force variability in older adults with magnification of visual feedback was evident only when the speed of visual feedback increased. Thus, we conclude that in older adults deficits in the rate of processing visual information and not deficits in the processing of more visual information impair force control.
Dynamic control of spin states in interacting magnetic elements
Jain, Shikha; Novosad, Valentyn
2014-10-07
A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.
Schneider, M F; Dubois, J M
1986-01-01
The effects of benzocaine (0.5-1 mM) on normal Na currents, and on Na current and gating charge movement (Q) of batrachotoxin (BTX)-modified Na channels were analyzed in voltage-clamped frog node of Ranvier. Without BTX treatment the decay of Na current during pulses to between -40 and 0 mV could be decomposed into two exponential components both in the absence and in the presence of benzocaine. Benzocaine did not significantly alter the inactivation time constant of either component, but reduced both their amplitudes. The amplitude of the slow inactivating component was more decreased by benzocaine than the amplitude of the fast one, leading to an apparently faster decline of the overall Na current. After removal of Na inactivation and charge movement immobilization by BTX, benzocaine decreased the amplitude of INa with no change in time course. INa, QON, and QOFF were all reduced by the same factor. The results suggest that the rate of reaction of benzocaine with its receptor is slow compared to the rates of channel activation and inactivation. The differential effects of benzocaine on the two components of Na current inactivation in normal channels can be explained assuming two types of channel with different rates of inactivation and different affinities for the drug. PMID:2428413
Changes in inhibitory CA1 network in dual pathology model of epilepsy.
Ouardouz, Mohamed; Carmant, Lionel
2012-01-01
The combination of two precipitating factors appears to be more and more recognized in patients with temporal lobe epilepsy. Using a two-hit rat model, with a neonatal freeze lesion mimicking a focal cortical malformation combined with hyperthermia-induced seizures mimicking febrile seizures, we have previously reported an increase of inhibition in CA1 pyramidal cells at P20. Here, we investigated the changes affecting excitatory and inhibitory drive onto CA1 interneurons to better define the changes in CA1 inhibitory networks and their paradoxical role in epileptogenesis, using electrophysiological recordings in CA1 hippocampus from rat pups (16-20 d old). We investigated interneurons in CA1 hippocampal area located in stratum oriens (Or) and at the border of strata lacunosum and moleculare (L-M). Our results revealed an increase of the excitatory drive to both types of interneurons with no change in the inhibitory drive. The mechanisms underlying the increase of excitatory synaptic currents (EPSCs) in both types of interneurons are different. In Or interneurons, the amplitude of spontaneous and miniature EPSCs increased, while their frequency was not affected suggesting changes at the post-synaptic level. In L-M interneurons, the frequency of spontaneous EPSCs increases, but the amplitude is not affected. Analyses of miniature EPSCs showed no changes in both their frequency and amplitude. We concluded that L-M interneurons increase in excitatory drive is due to a change in Shaffer collateral axon excitability. The changes described here in CA1 inhibitory network may actually contribute to the epileptogenicity observed in this dual pathology model by increasing pyramidal cell synchronization.
Van Helden, D F
1991-06-01
1. Recordings of membrane current were made in the smooth muscle of short segments of mesenteric vein before or during stimulation with noradrenaline (NA). 2. Small veins (diameter less than 150 microns) when cut into short segments (of length less than 250 microns) had the passive electrical characteristics of short cables both before and during activation with NA. 3. Spontaneous transient depolarizations (STDs) or the underlying inward currents (STICs) were recorded in these preparations. STDs were of myogenic origin as they were not blocked by tetrodotoxin or antagonists to the alpha-adrenoreceptor and persisted after either denervation or disruption of the endothelium. 4. STDs had time courses similar to the underlying currents and were generally slow compared to the membrane time constant of the short segments. 5. STDs and the underlying currents showed large variability in frequency and amplitude both within and between short segments. Currents were typically less than 0.3 nA, were characteristic in shape, had half-durations normally in the range 0.1-0.7 s and reversed at about -25 mV. 6. STDs persisted, but at markedly reduced frequencies, after exposure (3-10 min) to a solution in which cobalt ions had been used to substitute for Ca2+. STDs were also substantially suppressed by exposure to low-chloride solution. 7. Caffeine induced excitatory and inhibitory conductances. An initial component of the caffeine-induced responses showed similar voltage dependence to STDs and was also suppressed by exposure to low-chloride solution. 8. NA, through activation of alpha-adrenoreceptors, caused a sustained depolarization or inward current (under voltage clamp) with considerable membrane potential or current noise often in the form of agonist-induced spontaneous transient depolarizations (ASTDs) or currents (ASTICs). There were marked increases in amplitude and frequency of ASTDs with increase in NA concentrations. 9. ASTDs appeared to be generated within the smooth muscle as they were activated in preparations which had been denervated or in which the endothelium had been disrupted. 10. Except for the pathway of activation, ASTDs were indistinguishable from STDs having half-durations in the same range (0.1-2 s with the majority less than 0.7 s). The underlying currents again showed large variation in amplitude (typically less than 0.3 nA; maximum recorded 0.9 nA). They reversed at about -25 mV, could still be elicited in cobalt solution (but at reduced intensity for long exposures to this low-Ca2+ solution) and were reduced by long term exposure to low-chloride solution.(ABSTRACT TRUNCATED AT 400 WORDS)
Lee, Ji-Hyun; Yang, Seungman; Park, Jonghyun; Kim, Hee Chan; Kim, Eun-Hee; Jang, Young-Eun; Kim, Jin-Tae; Kim, Hee-Soo
2018-06-19
Respiratory variations in photoplethysmography amplitude enable volume status assessment. However, the contact force between the measurement site and sensor can affect photoplethysmography waveforms. We aimed to evaluate contact force effects on respiratory variations in photoplethysmography waveforms in children under general anesthesia. Children aged 3-5 years were enrolled. After anesthetic induction, mechanical ventilation commenced at a tidal volume of 10 mL/kg. Photoplethysmographic signals were obtained in the supine position from the index finger using a force sensor-integrated clip-type photoplethysmography sensor that increased the contact force from 0-1.4 N for 20 respiratory cycles at each force. The AC amplitude (pulsatile component), DC amplitude (nonpulsatile component), AC/DC ratio, and respiratory variations in photoplethysmography amplitude were calculated. Data from 34 children were analyzed. Seven contact forces at 0.2-N increments were evaluated for each patient. The normalized AC amplitude increased maximally at a contact force of 0.4-0.6 N and decreased with increasing contact force. However, the normalized DC amplitude increased with a contact force exceeding 0.4 N. ΔPOP decreased slightly and increased from the point when the AC amplitude started to decrease as contact force increased. In a 0.2-1.2 N contact force range, significant changes in the normalized AC amplitude, normalized DC amplitude, AC/DC ratio, and respiratory variations in photoplethysmography amplitude were observed. Respiratory variations in photoplethysmography amplitude changed according to variable contact forces; therefore, these measurements may not reflect respiration-induced stroke volume variations. Clinicians should consider contact force bias when interpreting morphological data from photoplethysmography signals. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dudarev, E. F.; Markov, A. B.; Bakach, G. P.; Maletkina, T. Yu.; Belov, N. N.; Tabachenko, A. N.; Skosirskii, A. B.; Habibullin, M. V.; Yakovlev, E. V.
2017-12-01
The results of an experimental and theoretical study of shock-wave processes and spall fracture in an ultrafine-grained and coarse-grained (α + β) Ti-Al-V-Mo alloy under the action of a nanosecond relativistic high-current electron beam are reported. Mathematical modeling is performed to show that when an electron beam with a power density of 1.65 × 1010 W/cm2 impacts this alloy, a shock wave with a compression amplitude of 13 GPa appears and its reflection gives rise to a tensile wave. Its amplitude increases with decreasing target thickness. The calculated increase in the thickness of the spalled layer at the rear surface of the target corresponds to the experimental data. It is established experimentally that plastic deformation precedes the spall fracture sequentially at three structural-scale levels. At the beginning pores are formed and merge, then microcracks are formed at different angles to the back surface of the target between the pores, and then a macrocrack is formed. As a result, the macrocrack surface is not smooth but exhibits pits of ductile fracture.
Conducting processes in simulated chronic inflammatory demyelinating polyneuropathy at 20°C-42°C.
Stephanova, D I; Daskalova, M; Mladenov, M
2015-03-01
Decreased conducting processes leading usually to conduction block and increased weakness of limbs during cold (cold paresis) or warmth (heat paresis) have been reported in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). To explore the mechanisms of these symptoms, the effects of temperature (from 20°C to 42°C) on nodal action potentials and their current kinetics in previously simulated case of 70% CIDP are investigated, using our temperature dependent multi-layered model of the myelinated human motor nerve fiber. The results show that potential amplitudes have a bifid form at 20°C. As in the normal case, for the CIDP case, the nodal action potentials are determined mainly by the nodal sodium currents (I Na ) for the temperature range of 20-39°C, as the contribution of nodal fast and slow potassium currents (I Kf and I Ks ) to the total ionic current (Ii) is negligible. Also, the contribution of I Kf and I Ks to the membrane repolarization is enhanced at temperatures higher than 39°C. However, in the temperature range of 20-42°C, all potential parameters in the CIDP case, except for the conduction block during hyperthermia (≥ 40°C) which is again at 45°C, worsen: (i) conduction velocities and potential amplitudes are decreased; (ii) afterpotentials and threshold stimulus currents for the potential generation are increased; (iii) the current kinetics of action potentials is slowed and (iv) the conduction block during hypothermia (≤ 25°C) is at temperatures lower than 20°C. These potential parameters are more altered during hyperthermia and are most altered during hypothermia. The present results suggest that the conducting processes in patients with CIDP are in higher risk during hypothermia than hyperthermia.
Pan, Z H; Segal, M M; Lipton, S A
1996-12-24
Nitric oxide (NO.) does not react significantly with thiol groups under physiological conditions, whereas a variety of endogenous NO donor molecules facilitate rapid transfer to thiol of nitrosonium ion (NO+, with one less electron than NO.). Here, nitrosonium donors are shown to decrease the efficacy of evoked neurotransmission while increasing the frequency of spontaneous miniature excitatory postsynaptic currents (mEPSCs). In contrast, pure NO donors have little effect (displaying at most only a slight increase) on the amplitude of evoked EPSCs and frequency of spontaneous mEPSCs in our preparations. These findings may help explain heretofore paradoxical observations that the NO moiety can either increase, decrease, or have no net effect on synaptic activity in various preparations.
1983-11-01
spectrum of the linear stability theory has multiple roots with zero real parts. Then the general forms of the amplitude equations may be found for given...76 Dynamical Generation of Eastern Boundary Currents George eronis. .......................... 77 ..Amplitude Equations Edward...Associated Countercurrent. Benoit Cushman-Roisin ....... .................... ... 103 Turbulently Generated Eastern Boundary Currents Roger L. Hughes
A system shift in tidal choking due to the construction of Yangshan Harbour, Shanghai, China
NASA Astrophysics Data System (ADS)
Guo, Wenyun; Wang, Xiao Hua; Ding, Pingxing; Ge, Jianzhong; Song, Dehai
2018-06-01
Tidal choking is a geometric feature caused by a narrowed channel. Construction of the Yangshan Harbour, Shanghai, China obstructed three key channels and intensively changed the local geometry and topography. In this study nine numerical experiments based on the Finite-Volume Community Ocean Model are conducted to study the project's influence on tidal characteristics. Results show that stronger tidal choking happened at the East Entrance after project, mainly due to the jet induced water-level drop forced by Bernoulli law and the longer and narrower geometry. The stronger tidal choking forces a faster flow and larger tidal energy flux at the choked channel while reducing the tidal amplitude in the Inner Harbour Area (IHA). The scouring on this channel reduces the choking effect but further enlarges tidal energy flux. Moreover, damming the channels decrease the tidal amplitude at the lee side of tidal propagating direction while increasing the amplitude on the stoss side. The dams also decrease the tidal current on both sides, and meanwhile develop two patches with stronger current aside the dam. The project induced changes in tidal characteristics are complex in space, and perturbations in bathymetry increase this complexity. Yangshan Harbour's construction induces little changes in the total tidal energy density in the IHA, but induces obvious changes in the spatial distribution of tidal energy. Although this study is site-specific, the findings may be applicable to tidal dynamics in land reclamation close to open seas, such as the dramatic reclamation of islands in the South China Sea.
Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth.
Tuft, Bradley W; Li, Shufeng; Xu, Linjing; Clarke, Joseph C; White, Scott P; Guymon, Bradley A; Perez, Krystian X; Hansen, Marlan R; Guymon, C Allan
2013-01-01
Cochlear implants (CIs) provide auditory perception to individuals with severe hearing impairment. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by electrical current spread in the inner ear. Directing nerve cell processes towards target electrodes may reduce the problematic current spread and improve stimulatory specificity. In this work, photopolymerization was used to fabricate micro- and nano-patterned methacrylate polymers to probe the extent of spiral ganglion neuron (SGN) neurite and Schwann cell (SGSC) contact guidance based on variations in substrate topographical cues. Micropatterned substrates are formed in a rapid, single-step reaction by selectively blocking light with photomasks which have parallel line-space gratings with periodicities of 10-100 μm. Channel amplitudes of 250 nm-10 μm are generated by modulating UV exposure time, light intensity, and photoinitiator concentration. Gradual transitions are observed between ridges and grooves using scanning electron and atomic force microscopy. The transitions stand in contrast to vertical features generated via etching lithographic techniques. Alignment of neural elements increases significantly with increasing feature amplitude and constant periodicity, as well as with decreasing periodicity and constant amplitude. SGN neurite alignment strongly correlates (r = 0.93) with maximum feature slope. Multiple neuronal and glial types orient to the patterns with varying degrees of alignment. This work presents a method to fabricate gradually-sloping micropatterns for cellular contact guidance studies and demonstrates spatial control of inner ear neural elements in response to micro- and nano-scale surface topography. Copyright © 2012 Elsevier Ltd. All rights reserved.
Current and efficiency optimization under oscillating forces in entropic barriers
NASA Astrophysics Data System (ADS)
Nutku, Ferhat; Aydıner, Ekrem
2016-09-01
The transport of externally overdriven particles confined in entropic barriers is investigated under various types of oscillating and temporal forces. Temperature, load, and amplitude dependence of the particle current and energy conversion efficiency are investigated in three dimensions. For oscillating forces, the optimized temperature-load, amplitude-temperature, and amplitude-load intervals are determined when fixing the amplitude, load, and temperature, respectively. By using three-dimensional plots rather than two-dimensional ones, it is clearly shown that oscillating forces provide more efficiency compared with a temporal one in specified optimized parameter regions. Furthermore, the dependency of efficiency to the angle between the unbiased driving force and a constant force is investigated and an asymmetric angular dependence is found for all types of forces. Finally, it is shown that oscillating forces with a high amplitude and under a moderate load lead to higher efficiencies than a temporal force at both low and high temperatures for the entire range of contact angle. Project supported by the Istanbul University, Turkey (Grant No. 55383).
Ryerson, Nicole C; Neal, Lauren B; Gable, Philip A
2017-04-01
Past research has found that exposure to alcohol cues causes a narrowing of attentional scope and enhances the neural responses associated with approach motivation. The current research sought to determine if a manipulated broadened (global) attentional scope would reduce approach-motivated neural reactivity to alcohol pictures. In the current study, participants (n = 82) were exposed to alcohol and neutral pictures following either a global or local attentional scope manipulation. Early motivated attentional processing was assessed using the N1 event-related potential (ERP), a neurophysiological marker of rapid motivated attention. A global attentional scope reduced N1 amplitudes to alcohol pictures as compared to a local attentional scope. Self-reported binge drinking related to larger N1 amplitudes to alcohol pictures, but not to neutral pictures. Individuals with greater binge drinking experience demonstrated increased rapid motivated attentional processing to alcohol pictures. These results suggest that enhancing a global (vs. local) attentional scope attenuates rapid motivated attentional processing of alcohol pictures in comparison to neutral pictures. Graphical abstract ᅟ.
Christoffersen, Gert R. J.; Laugesen, Jakob L.; Møller, Per; Bredie, Wender L. P.; Schachtman, Todd R.; Liljendahl, Christina; Viemose, Ida
2017-01-01
Human recognition of foods and beverages are often based on visual cues associated with flavors. The dynamics of neurophysiological plasticity related to acquisition of such long-term associations has only recently become the target of investigation. In the present work, the effects of appetitive and aversive visuo-gustatory conditioning were studied with high density EEG-recordings focusing on late components in the visual evoked potentials (VEPs), specifically the N2-P3 waves. Unfamiliar images were paired with either a pleasant or an unpleasant juice and VEPs evoked by the images were compared before and 1 day after the pairings. In electrodes located over posterior visual cortex areas, the following changes were observed after conditioning: the amplitude from the N2-peak to the P3-peak increased and the N2 peak delay was reduced. The percentage increase of N2-to-P3 amplitudes was asymmetrically distributed over the posterior hemispheres despite the fact that the images were bilaterally symmetrical across the two visual hemifields. The percentage increases of N2-to-P3 amplitudes in each experimental subject correlated with the subject’s evaluation of positive or negative hedonic valences of the two juices. The results from 118 scalp electrodes gave surface maps of theta power distributions showing increased power over posterior visual areas after the pairings. Source current distributions calculated from swLORETA revealed that visual evoked currents rose as a result of conditioning in five cortical regions—from primary visual areas and into the inferior temporal gyrus (ITG). These learning-induced changes were seen after both appetitive and aversive training while a sham trained control group showed no changes. It is concluded that long-term visuo-gustatory conditioning potentiated the N2-P3 complex, and it is suggested that the changes are regulated by the perceived hedonic valence of the US. PMID:28983243
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter
2017-04-01
Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling
2017-01-01
Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered. PMID:28334851
Changes in ENSO amplitude under climate warming and cooling
NASA Astrophysics Data System (ADS)
Wang, Yingying; Luo, Yiyong; Lu, Jian; Liu, Fukai
2018-05-01
The response of ENSO amplitude to climate warming and cooling is investigated using the Community Earth System Model (CESM), in which the warming and cooling scenarios are designed by adding heat fluxes of equal amplitude but opposite sign onto the ocean surface, respectively. Results show that the warming induces an increase of the ENSO amplitude but the cooling gives rise to a decrease of the ENSO amplitude, and these changes are robust in statistics. A mixed layer heat budget analysis finds that the increasing (decreasing) SST tendency under climate warming (cooling) is mainly due to an enhancement (weakening) of dynamical feedback processes over the equatorial Pacific, including zonal advective (ZA) feedback, meridional advective (MA) feedback, thermocline (TH) feedback, and Ekman (EK) feedback. As the climate warms, a wind anomaly of the same magnitude across the equatorial Pacific can induce a stronger zonal current change in the east (i.e., a stronger ZA feedback), which in turn produces a greater weakening of upwelling (i.e., a stronger EK feedback) and thus a larger thermocline change (i.e., a stronger TH feedback). In response to the climate warming, in addition, the MA feedback is also strengthened due to an enhancement of the meridional SST gradient around the equator resulting from a weakening of the subtropical cells (STCs). It should be noted that the weakened STCs itself has a negative contribution to the change of the MA feedback which, however, appears to be secondary. And vice versa for the cooling case. Bjerknes linear stability (BJ) index is also evaluated for the linear stability of ENSO, with remarkably larger (smaller) BJ index found for the warming (cooling) case.
NASA Astrophysics Data System (ADS)
Wang, C.; Zhu, Z.; Gu, H.; Liu, C.; Liu, Z.; Jiao, Z.
2017-12-01
The ghost effects of the sea surface can generate notch in marine towed-streamer data, which results in narrow bandwidth of seismic data. Currently, deghosting is widely utilized to increase the bandwidth of the seismic data or the images. However, most of the conventional deghosting algorithms havenot considered the error of streamer depth causing a biased ghost-delay time (τ) with respect to primary reflection and amplitude difference coefficient (r) between ghost and primary reflection varies with offset due to rugged seabed and target depth variation. We proposed a ghost filtering operator considering the protentional biases within the ghost-delay time (τ) and the amplitude difference coefficient (r). The up-going wavefield (u), ghost-delay time (τ) and amplitude difference coefficient (r) can be obtained by utilizing alternating minimization approach for minimizing the difference between actual wavefield and theoretical wavefield in frequency-slowness domain. The main idea is to alternatively updating u, τ and r in each iteration: we update u by least-squares when we keep τ and r constant; and we then keep u constant and optimize over τ and r with a closed-form solution which is closely related to matched filtering. The convergence of the proposed algorithm is guaranteed since we have closed-form solutions for each stage. The experiments on synthetic record confirmed the reliability of the proposed algorithm. We also demonstrate our proposed method in marine VDS shot acquisition. After migration stack processing, our ghosting method significantly increases the bandwidth of the average amplitude, amplitude energy of the medium and high frequency spectrum, improving resolution of medium and deep reflection and providing higher signal-to-noise ratio with clear break point. This research is funded by China Important National Science & Technology Specific Projects (2016ZX05026001-001).
Ceballos-Villegas, Maria E.; Saldaña Mena, Juan J.; Gutierrez Lozano, Ana L.; Sepúlveda-Cañamar, Francisco J.; Huidobro, Nayeli; Manjarrez, Elias; Lomeli, Joel
2017-01-01
The Hoffmann reflex (H-wave) is produced by alpha-motoneuron activation in the spinal cord. A feature of this electromyography response is that it exhibits fluctuations in amplitude even during repetitive stimulation with the same intensity of current. We herein explore the hypothesis that physical training induces plastic changes in the motor system. Such changes are evaluated with the fractal dimension (FD) analysis of the H-wave amplitude-fluctuations (H-wave FD) and the cross-covariance (CCV) between the bilateral H-wave amplitudes. The aim of this study was to compare the H-wave FD as well as the CCV before and after track training in sedentary individuals and athletes. The training modality in all subjects consisted of running three times per week (for 13 weeks) in a concrete road of 5 km. Given the different physical condition of sedentary vs. athletes, the running time between sedentary and athletes was different. After training, the FD was significantly increased in sedentary individuals but significantly reduced in athletes, although there were no changes in spinal excitability in either group of subjects. Moreover, the CCV between bilateral H-waves exhibited a significant increase in athletes but not in sedentary individuals. These differential changes in the FD and CCV indicate that the plastic changes in the complexity of the H-wave amplitude fluctuations as well as the synaptic inputs to the Ia-motoneuron systems of both legs were correlated to the previous fitness history of the subjects. Furthermore, these findings demonstrate that the FD and CCV can be employed as indexes to study plastic changes in the human motor system. PMID:29163107
The effect of spectral filters on VEP and alpha-wave responses.
Willeford, Kevin T; Fimreite, Vanessa; Ciuffreda, Kenneth J
2016-01-01
Spectral filters are used to treat light sensitivity in individuals with traumatic brain injury (TBI); however, the effect of these filters on normal visual function has not been elucidated. Thus, the current study aimed to determine the effect of spectral filters on objectively-measured visual-evoked potential (VEP) and alpha-wave responses in the visually-normal population. The full-field (15°H×17°V), pattern-reversal VEP (20' check size, mean luminance 52cd/m(2)) was administered to 20 visually-normal individuals. They were tested with four Intuitive-Colorimeter-derived, broad-band, spectral filters (i.e., gray/neutral density, blue, yellow, and red), which produced similar luminance values for the test stimulus. The VEP N75 and P100 latencies, and VEP amplitude, were recorded. Power spectrum analysis was used to derive the respective powers at each frequency, and peak frequency, for the selected 9-11Hz components of the alpha band. Both N75 and P100 latencies increased with the addition of each filter when compared to baseline. Additionally, each filter numerically reduced intra-session amplitude variability relative to baseline. There were no significant effects on either the mean VEP amplitude or alpha wave parameters. The Intuitive Colorimeter filters significantly increased both N75 and P100 latencies, an effect which is primarily attributable (∼75%) to luminance, and in some cases, specific spectral effects (e.g., blue and red). VEP amplitude and alpha power were not significantly affected. These findings provide an important reference to which either amplitude or power changes in light-sensitive, younger clinical groups can be compared. Copyright © 2015 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.
The effect of spectral filters on VEP and alpha-wave responses
Willeford, Kevin T.; Fimreite, Vanessa; Ciuffreda, Kenneth J.
2015-01-01
Purpose Spectral filters are used to treat light sensitivity in individuals with traumatic brain injury (TBI); however, the effect of these filters on normal visual function has not been elucidated. Thus, the current study aimed to determine the effect of spectral filters on objectively-measured visual-evoked potential (VEP) and alpha-wave responses in the visually-normal population. Methods The full-field (15°H × 17°V), pattern-reversal VEP (20′ check size, mean luminance 52 cd/m2) was administered to 20 visually-normal individuals. They were tested with four Intuitive-Colorimeter-derived, broad-band, spectral filters (i.e., gray/neutral density, blue, yellow, and red), which produced similar luminance values for the test stimulus. The VEP N75 and P100 latencies, and VEP amplitude, were recorded. Power spectrum analysis was used to derive the respective powers at each frequency, and peak frequency, for the selected 9–11 Hz components of the alpha band. Results Both N75 and P100 latencies increased with the addition of each filter when compared to baseline. Additionally, each filter numerically reduced intra-session amplitude variability relative to baseline. There were no significant effects on either the mean VEP amplitude or alpha wave parameters. Conclusions The Intuitive Colorimeter filters significantly increased both N75 and P100 latencies, an effect which is primarily attributable (∼75%) to luminance, and in some cases, specific spectral effects (e.g., blue and red). VEP amplitude and alpha power were not significantly affected. These findings provide an important reference to which either amplitude or power changes in light-sensitive, younger clinical groups can be compared. PMID:26293969
Ceballos-Villegas, Maria E; Saldaña Mena, Juan J; Gutierrez Lozano, Ana L; Sepúlveda-Cañamar, Francisco J; Huidobro, Nayeli; Manjarrez, Elias; Lomeli, Joel
2017-01-01
The Hoffmann reflex (H-wave) is produced by alpha-motoneuron activation in the spinal cord. A feature of this electromyography response is that it exhibits fluctuations in amplitude even during repetitive stimulation with the same intensity of current. We herein explore the hypothesis that physical training induces plastic changes in the motor system. Such changes are evaluated with the fractal dimension (FD) analysis of the H-wave amplitude-fluctuations (H-wave FD) and the cross-covariance (CCV) between the bilateral H-wave amplitudes. The aim of this study was to compare the H-wave FD as well as the CCV before and after track training in sedentary individuals and athletes. The training modality in all subjects consisted of running three times per week (for 13 weeks) in a concrete road of 5 km. Given the different physical condition of sedentary vs. athletes, the running time between sedentary and athletes was different. After training, the FD was significantly increased in sedentary individuals but significantly reduced in athletes, although there were no changes in spinal excitability in either group of subjects. Moreover, the CCV between bilateral H-waves exhibited a significant increase in athletes but not in sedentary individuals. These differential changes in the FD and CCV indicate that the plastic changes in the complexity of the H-wave amplitude fluctuations as well as the synaptic inputs to the Ia-motoneuron systems of both legs were correlated to the previous fitness history of the subjects. Furthermore, these findings demonstrate that the FD and CCV can be employed as indexes to study plastic changes in the human motor system.
Neurofeedback training of EEG alpha rhythm enhances episodic and working memory.
Hsueh, Jen-Jui; Chen, Tzu-Shan; Chen, Jia-Jin; Shaw, Fu-Zen
2016-07-01
Neurofeedback training (NFT) of the alpha rhythm has been used for several decades but is still controversial in regards to its trainability and effects on working memory. Alpha rhythm of the frontoparietal region are associated with either the intelligence or memory of healthy subjects and are also related to pathological states. In this study, alpha NFT effects on memory performances were explored. Fifty healthy participants were recruited and randomly assigned into a group receiving a 8-12-Hz amplitude (Alpha) or a group receiving a random 4-Hz amplitude from the range of 7 to 20 Hz (Ctrl). Three NFT sessions per week were conducted for 4 weeks. Working memory was assessed by both a backward digit span task and an operation span task, and episodic memory was assessed using a word pair task. Four questionnaires were used to assess anxiety, depression, insomnia, and cognitive function. The Ctrl group had no change in alpha amplitude and duration. In contrast, the Alpha group showed a progressive significant increase in the alpha amplitude and total alpha duration of the frontoparietal region. Accuracies of both working and episodic memories were significantly improved in a large proportion of participants of the Alpha group, particularly for those with remarkable alpha-amplitude increases. Scores of four questionnaires fell in a normal range before and after NFT. The current study provided supporting evidence for alpha trainability within a small session number compared with that of therapy. The findings suggested the enhancement of working and episodic memory through alpha NFT. Hum Brain Mapp 37:2662-2675, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Li, Peng-Yun; Zeng, Xiao-Rong; Yang, Yan; Cai, Fang; Li, Miao-Ling; Liu, Zhi-Fei; Pei, Jie; Zhou, Wen
2008-02-25
The aim of the present study was to investigate the effects of inositol 1,4,5-trisphosphate (IP(3))-generating agonist UTP on spontaneous transient outward currents (STOCs), and explore the role of intracellular Ca(2+) release in the current response mediated by IP(3) in porcine coronary artery smooth muscle cells (CASMCs). The coronary artery was excised from the fresh porcine heart and cut into small segments (2 mm × 5 mm) and then transferred to enzymatic dissociation solution for incubation. Single CASMCs were obtained by two-step enzyme digestion at 37 °C. STOCs were recorded and characterized using the perforated whole-cell patch-clamp configuration in freshly isolated porcine CASMCs. The currents were amplified and filtered by patch-clamp amplifier (Axopatch 200B), and then the digitized data were recorded by pClamp 9.0 software and further analyzed by MiniAnalysis 6.0 program. The results were as follows: (1) UTP led to conspicuous increases in STOC amplitude by (57.54±5.34)% and in frequency by (77.46±8.42)% (P<0.01, n=38). (2) The specific blocker of phospholipase C (PLC) - U73122 (5 μmol/L) remarkably reduced STOC amplitude by (31.04±7.46)% and frequency by (41.65±16.59)%, respectively (P<0.05, n=10). In the presence of U73122, UTP failed to reactivate STOCs (n=7). (3) Verapamil (20 μmol/L) and CdCl2 (200 μmol/L), two blockers of L-type voltage-dependent Ca(2+) channels, had little effects on STOCs initiated by UTP (n=8). (4) 1 μmol/L bisindolylmaleimide I (BisI), a potent blocker of protein kinase C (PKC), significantly increased STOC amplitude by (65.44±24.66)% and frequency by (61.35±21.47)% (P<0.01, n=12); UTP (40 μmol/L), applied in the presence of 1 μmol/L BisI, could further increase STOC activity (P<0.05, P<0.01, n=12). Subsequent application of ryanodine (50 μmol/L) abolished STOC activity. (5) In the presence of UTP (40 μmol/L), inhibition of IP(3) receptors (IP(3)Rs) by 2-aminoethoxydiphenyl borate (2-APB, 40 μmol/L) reduced STOC amplitude by (24.08±3.97)% (P<0.05, n=8), but had little effect on STOC frequency (n=8). While application of 2-APB (80 μmol/L) significantly reduced STOC amplitude by (31.43±6.34)% and frequency by (40.59±19.01)%, respectively (P<0.05, P<0.01, n=6). Subsequent application of ryanodine (50 μmol/L) completely blocked STOC activity. Pretreatment of cells with 2-APB (40 μmol/L) or ryanodine (50 μmol/L), UTP (40 μmol/L) failed to reactivate STOCs. The results suggest that UTP activates STOCs mainly via PLC and IP(3)-dependent mechanisms. Complex Ca(2+)-mobilization pathways are involved in UTP-mediated STOC activation in porcine CASMCs.
Winters, Bradley D; Jin, Shan-Xue; Ledford, Kenneth R; Golding, Nace L
2017-03-22
The principal neurons of the medial superior olive (MSO) encode cues for horizontal sound localization through comparisons of the relative timing of EPSPs. To understand how the timing and amplitude of EPSPs are maintained during propagation in the dendrites, we made dendritic and somatic whole-cell recordings from MSO principal neurons in brain slices from Mongolian gerbils. In somatic recordings, EPSP amplitudes were largely uniform following minimal stimulation of excitatory synapses at visualized locations along the dendrites. Similar results were obtained when excitatory synaptic transmission was eliminated in a low calcium solution and then restored at specific dendritic sites by pairing input stimulation and focal application of a higher calcium solution. We performed dual dendritic and somatic whole-cell recordings to measure spontaneous EPSPs using a dual-channel template-matching algorithm to separate out those events initiated at or distal to the dendritic recording location. Local dendritic spontaneous EPSP amplitudes increased sharply in the dendrite with distance from the soma (length constant, 53.6 μm), but their attenuation during propagation resulted in a uniform amplitude of ∼0.2 mV at the soma. The amplitude gradient of dendritic EPSPs was also apparent in responses to injections of identical simulated excitatory synaptic currents in the dendrites. Compartmental models support the view that these results extensively reflect the influence of dendritic cable properties. With relatively few excitatory axons innervating MSO neurons, the normalization of dendritic EPSPs at the soma would increase the importance of input timing versus location during the processing of interaural time difference cues in vivo SIGNIFICANCE STATEMENT The neurons of the medial superior olive analyze cues for sound localization by detecting the coincidence of binaural excitatory synaptic inputs distributed along the dendrites. Previous studies have shown that dendritic voltages undergo severe attenuation as they propagate to the soma, potentially reducing the influence of distal inputs. However, using dendritic and somatic patch recordings, we found that dendritic EPSP amplitude increased with distance from the soma, compensating for dendritic attenuation and normalizing EPSP amplitude at the soma. Much of this normalization reflected the influence of dendritic morphology. As different combinations of presynaptic axons may be active during consecutive cycles of sound stimuli, somatic EPSP normalization renders spike initiation more sensitive to synapse timing than dendritic location. Copyright © 2017 the authors 0270-6474/17/373138-12$15.00/0.
Influence of internal current and pacing current on pacemaker longevity.
Schuchert, A; Kuck, K H
1994-01-01
The effects of lower pulse amplitude on battery current and pacemaker longevity were studied comparing the new, small-sized VVI pacemaker, Minix 8341, with the former model, Pasys 8329. Battery current was telemetrically measured at 0.8, 1.6, 2.5, and 5.0 V pulse amplitude and 0.05, 0.25, 0.5, and 1.0 msec pulse duration. Internal current was assumed to be equal to the battery current at 0.8 V and 0.05 msec. Pacing current was calculated subtracting internal current from battery current. The Minix pacemaker had a significantly lower battery current because of a lower internal current (Minix: 4.1 +/- 0.1 microA; Pasys: 16.1 +/- 0.1 microA); pacing current of both units was similar. At 0.5 msec pulse duration, the programming from 5.0-2.5 V pulse amplitude resulted in a greater relative reduction of battery current in the newer pacemaker (51% vs 25%). Projected longevity of each pacemaker was 7.9 years at 5.0 V and 0.5 msec. The programming from 5.0-2.5 V extended the projected longevity by 2.3 years (Pasys) and by 7.1 years (Minix). The longevity was negligibly longer after programming to 1.6 V. extension of pacemaker longevity can be achieved with the programming to 2.5 V or less if the connected pacemakers need a low internal current for their circuitry.
Micro-shimmy of towed structures in experimentally uncharted unstable parameter domain
NASA Astrophysics Data System (ADS)
Takács, Dénes; Stépán, Gábor
2012-11-01
In this paper, the lateral instability of towed structures (trailers, caravans and articulated buses) is investigated with special attention to the small amplitude lateral vibration that leads to a higher energy consumption in certain parameter domains. A low degree-of-freedom mechanical model of a shimmying towed tyre is used that describes the dynamics of the tyre-ground contact patch by the time delayed differential equation. Stability charts are calculated and the theoretically predicted linear unstable islands of small amplitude shimmy motions are validated by laboratory experiments. A tyre is towed by a relatively long caster, and its temperature and the input current of the conveyor belt are measured in order to show the increased value of the rolling resistance.
NASA Astrophysics Data System (ADS)
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (˜3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
Wilson, Nicholas; Mauch, Daniel; Meyers, Vincent; Feathers, Shannon; Dickens, James; Neuber, Andreas
2017-08-01
The electrical and optical characteristics of a high-power UV light emitting diode (LED) (365 nm wavelength) were evaluated under pulsed operating conditions at current amplitudes several orders of magnitude beyond the LED's manufacturer specifications. Geared towards triggering of photoconductive semiconductor switches (PCSSs) for pulsed power applications, measurements were made over varying pulse widths (25 ns-100 μs), current (0 A-250 A), and repetition rates (single shot-5 MHz). The LED forward voltage was observed to increase linearly with increasing current (∼3.5 V-53 V) and decrease with increasing pulse widths. The peak optical power observed was >30 W, and a maximum system efficiency of 23% was achieved. The evaluated LED and auxiliary hardware were successfully used as the optical trigger source for a 4H-SiC PCSS. The lowest measured on-resistance of SiC was approximately 67 kΩ.
Radial dependence of HF wave field strength in the BPD column. [Beam Plasma Discharge
NASA Technical Reports Server (NTRS)
Jost, R. J.; Anderson, H. R.; Bernstein, W.; Kellogg, P. J.
1982-01-01
The results of a recent set of RF frequency measurements of the beam plasma discharge (BPD) performed in order to determine a quantitative value for the field strength in the plasma frequency region of the spectrum are presented. The parallel and perpendicular components of the plasma wave electric fields inside the BPD column have comparable field strengths, on the order of 10 volts/m. The radial dependence of the field strength is very strong, decreasing by as much as 40 dB within one meter from the beam center, with the illumination or discharge column approximately one meter in diameter. The field strength inside the column increases as a function of distance along the beam at least for several meters from the gun aperture. The frequency and amplitude of the plasma wave increases with beam current. A particularly rapid increase in these parameters occurs as the beam current approaches the critical current.
Phytoplankton as Particles - A New Approach to Modeling Algal Blooms
2013-07-01
68 Figure 69. Amplitudes of lunar semi-diurnal and diurnal harmonics of observed and computed...particle behavior when the trajectory takes a particle outside the model domain. The rules associated with the present particle-tracking algorithms are... land - ward, although occasional reversals occurred. Amplitude of the current fluctuations was ≈ 20 cm s-1. Model residual currents for one year were
Noble, M.A.; Xu, J. P.
2003-01-01
Two sets of moorings were deployed along a cross-shelf transect in central Santa Monica bay for four months in the winter of 1998-1999. Both sites had an array of instruments attached to tripods set on the seafloor to monitor currents over the entire water column, surface waves, near-bed temperature, water clarity and suspended sediment. A companion mooring had temperature sensors spaced approximately 10 m apart to measure temperature profiles between the surface and the seafloor. One array was deployed in 70 m of water at a site adjacent to the shelf break, just northwest of a major ocean outfall. The other was deployed on the mid shelf in 35 m of water approximately 6 km from the shelf break site. The subtidal currents in the region flowed parallel to the isobaths with fluctuating time scales around 10 days, a typical coastal-ocean pattern. However, during the falling phase of the barotropic spring tide, sets of large-amplitude, sheared cross-shore current pulses with a duration of 2-5 h were observed at the shelf break site. Currents in these pulses flowed exclusively offshore in a thin layer near the bed with amplitudes reaching 30-40 cm/s. Simultaneously, currents with amplitudes around 15-20 cm/s flowed exclusively onshore in the thicker layer between the offshore flow layer and the sea surface. The net offshore transport was about half the onshore transport. Near-surface isotherms were depressed 30-40 m. These pulses were likely internal bores generated by tidal currents. Bed stresses associated with these events exceeded 3 dynes/cm2. These amplitudes are large enough to resuspend and transport not only fine-grained material, but also medium to coarse sands from the shelf toward the slope. Consequently, the seafloor over the shelf break was swept clear of fine sediments. The data suggest that the internal bores dissipate and are reduced in amplitude as they propagate across this relatively narrow shelf. There is evidence that they reach the 35 m site, but other coastal ocean processes obscure their distinctive characteristics.
Permeation and gating properties of the L-type calcium channel in mouse pancreatic beta cells
1993-01-01
Ba2+ currents through L-type Ca2+ channels were recorded from cell- attached patches on mouse pancreatic beta cells. In 10 mM Ba2+, single- channel currents were recorded at -70 mV, the beta cell resting membrane potential. This suggests that Ca2+ influx at negative membrane potentials may contribute to the resting intracellular Ca2+ concentration and thus to basal insulin release. Increasing external Ba2+ increased the single-channel current amplitude and shifted the current-voltage relation to more positive potentials. This voltage shift could be modeled by assuming that divalent cations both screen and bind to surface charges located at the channel mouth. The single- channel conductance was related to the bulk Ba2+ concentration by a Langmuir isotherm with a dissociation constant (Kd(gamma)) of 5.5 mM and a maximum single-channel conductance (gamma max) of 22 pS. A closer fit to the data was obtained when the barium concentration at the membrane surface was used (Kd(gamma) = 200 mM and gamma max = 47 pS), which suggests that saturation of the concentration-conductance curve may be due to saturation of the surface Ba2+ concentration. Increasing external Ba2+ also shifted the voltage dependence of ensemble currents to positive potentials, consistent with Ba2+ screening and binding to membrane surface charge associated with gating. Ensemble currents recorded with 10 mM Ca2+ activated at more positive potentials than in 10 mM Ba2+, suggesting that external Ca2+ binds more tightly to membrane surface charge associated with gating. The perforated-patch technique was used to record whole-cell currents flowing through L-type Ca2+ channels. Inward currents in 10 mM Ba2+ had a similar voltage dependence to those recorded at a physiological Ca2+ concentration (2.6 mM). BAY-K 8644 (1 microM) increased the amplitude of the ensemble and whole-cell currents but did not alter their voltage dependence. Our results suggest that the high divalent cation solutions usually used to record single L-type Ca2+ channel activity produce a positive shift in the voltage dependence of activation (approximately 32 mV in 100 mM Ba2+). PMID:7687645
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Ren, S. L.; Zhang, Yao; Gaspe, C. K.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.
2014-03-01
Aharonov-Bohm oscillations in the low-temperature magnetoresistance of mesoscopic interferometric rings are investigated for their dependence on bias current and temperature, and to explore origins of the observed amplitude modulation in magnetic field. Single-ring interferometers of radius 650 nm and lithographic arm width 300 nm were fabricated on a high-mobility high-density InGaAs/InAlAs heterostructure. The rings show interference oscillations over a wide range of magnetic fields, with amplitudes subject to modulation with applied magnetic field. The quantum phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by comparative study of the amplitude. The variation of the amplitude with bias current and temperature shows the existence of a critical excitation energy consistent with the Thouless energy for quantum phase smearing. Autocorrelation and Fourier analysis are used to determine the quasi-period of the amplitude modulation, which is found to be consistent with an origin in the magnetic flux threading the finite width of the interferometer arms, changing the mesoscopic realization of the system. Supported by DOE DE-FG02-08ER46532 (VT) and NSF DMR-0520550 (UoO).
Zhang, Yanyan; Zhang, Yongzhen
2018-01-01
Arc discharges of a pure carbon strip induced by dynamic contact force were studied on a pin-on-disk tribometer. It was found that arc discharges were produced periodically in accordance with the period of the dynamic contact force. The arcing rate of the pure carbon strip increased with an increase of frequency f and amplitude B, which led to a decrease of current-carrying quality. These influences at high velocities became much more significant. A critical point of the arcing rate at around 2% was detected. Lower than 2%, the pure carbon strip was able to maintain its excellent current-carrying capability; higher than this point, the current-carrying quality deteriorated abruptly. SEM and XPS analysis show that the element Cu detected on the worn surface at lower arcing rates was metal Cu. CuO was found at higher arcing rates. This indicated that the wear mechanism transferred from mechanical wear to arc erosion with the increase of the arcing rate. PMID:29762496
Zhang, Yanyan; Zhang, Yongzhen; Song, Chenfei
2018-05-15
Arc discharges of a pure carbon strip induced by dynamic contact force were studied on a pin-on-disk tribometer. It was found that arc discharges were produced periodically in accordance with the period of the dynamic contact force. The arcing rate of the pure carbon strip increased with an increase of frequency f and amplitude B , which led to a decrease of current-carrying quality. These influences at high velocities became much more significant. A critical point of the arcing rate at around 2% was detected. Lower than 2%, the pure carbon strip was able to maintain its excellent current-carrying capability; higher than this point, the current-carrying quality deteriorated abruptly. SEM and XPS analysis show that the element Cu detected on the worn surface at lower arcing rates was metal Cu. CuO was found at higher arcing rates. This indicated that the wear mechanism transferred from mechanical wear to arc erosion with the increase of the arcing rate.
Pfeiffer, Keram; French, Andrew S.
2015-01-01
Naturalistic signals were created from vibrations made by locusts walking on a Sansevieria plant. Both naturalistic and Gaussian noise signals were used to mechanically stimulate VS-3 slit-sense mechanoreceptor neurons of the spider, Cupiennius salei, with stimulus amplitudes adjusted to give similar firing rates for either stimulus. Intracellular microelectrodes recorded action potentials, receptor potential, and receptor current, using current clamp and voltage clamp. Frequency response analysis showed that naturalistic stimulation contained relatively more power at low frequencies, and caused increased neuronal sensitivity to higher frequencies. In contrast, varying the amplitude of Gaussian stimulation did not change neuronal dynamics. Naturalistic stimulation contained less entropy than Gaussian, but signal entropy was higher than stimulus in the resultant receptor current, indicating addition of uncorrelated noise during transduction. The presence of added noise was supported by measuring linear information capacity in the receptor current. Total entropy and information capacity in action potentials produced by either stimulus were much lower than in earlier stages, and limited to the maximum entropy of binary signals. We conclude that the dynamics of action potential encoding in VS-3 neurons are sensitive to the form of stimulation, but entropy and information capacity of action potentials are limited by firing rate. PMID:26578975
Effect of substrate thinning on the electronic transport characteristics of AlGaN/GaN HEMTs
NASA Astrophysics Data System (ADS)
Zhu, Hui; Meng, Xiao; Zheng, Xiang; Yang, Ying; Feng, Shiwei; Zhang, Yamin; Guo, Chunsheng
2018-07-01
We studied how substrate thinning affected the electronic transport characteristics of AlGaN/GaN HEMTs. By thinning their sapphire substrate from 460 μm to 80 μm, we varied the residual stress in these HEMTs. The thinned sample showed decreased drain-source current and occurrence of kink effect. Furthermore, shown by current transient measurements and time constant analysis, the detrapping behaviors of trap states shifted toward a larger time constant, and the detrapping behavior under the gate and in the gate-drain access region showed increased amplitude. By using pulsed current-voltage measurements, the thinned sample showed a positive shift of the threshold voltage, a decrease in peak transconductance, and an aggravation in current collapse, as compared with the thick one. The degradation of electrical behavior were associated with the structural degradation, as confirmed by the increase of pit density on the thinned sample surface.
NASA Astrophysics Data System (ADS)
Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe
2017-06-01
After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.
NASA Astrophysics Data System (ADS)
Zhang, W.; Wang, S.; Ma, Z. W.
2017-06-01
The influences of helical driven currents on nonlinear resistive tearing mode evolution and saturation are studied by using a three-dimensional toroidal resistive magnetohydrodynamic code (CLT). We carried out three types of helical driven currents: stationary, time-dependent amplitude, and thickness. It is found that the helical driven current is much more efficient than the Gaussian driven current used in our previous study [S. Wang et al., Phys. Plasmas 23(5), 052503 (2016)]. The stationary helical driven current cannot persistently control tearing mode instabilities. For the time-dependent helical driven current with f c d = 0.01 and δ c d < 0.04 , the island size can be reduced to its saturated level that is about one third of the initial island size. However, if the total driven current increases to about 7% of the total plasma current, tearing mode instabilities will rebound again due to the excitation of the triple tearing mode. For the helical driven current with time dependent strength and thickness, the reduction speed of the radial perturbation component of the magnetic field increases with an increase in the driven current and then saturates at a quite low level. The tearing mode is always controlled even for a large driven current.
Calcium-sensitive and insensitive transient outward current in rabbit ventricular myocytes.
Hiraoka, M; Kawano, S
1989-01-01
1. A suction pipette whole-cell voltage-clamp technique was used to record membrane currents and potentials of isolated ventricular myocytes from rabbit hearts. 2. Transient outward current (Ito) was activated by voltage steps positive to -20 mV, increasing in amplitude with further depolarization to reach a maximum around +70 mV. The current attained its peak within 10 ms and then it inactivated for 100-200 ms. 3. A large portion of Ito still remained after the calcium current (ICa) was blocked when depolarizing pulses were applied at a frequency of 0.1 Hz or less. Therefore, this current component is referred to as calcium-insensitive Ito or It. 4. It showed voltage- and time-dependent inactivation similar to that observed in Purkinje fibres and other cardiac preparations. 5. The reversal potential of It depended on external K+ concentration, [K+]o, with a slope of 32 mV per 10-fold change in the presence of a normal [Na+]o (143 mM), while the slope was 48 mV per 10-fold change in low [Na+]o (1.0 mM). 6. It was completely inhibited by 2-4 mM-4-aminopyridine. Ito in the presence of ICa was also partially blocked by 4-aminopyridine and the remainder was abolished by 5 mM-caffeine. 7. The calcium-insensitive and caffeine-sensitive Ito differed in their decay rates as well as in their recovery time courses. The former was predominantly available at a slow pulsing rate, while the latter increased its amplitude with high-frequency depolarization. 8. The caffeine-sensitive Ito was inhibited by a blockade of ICa, by replacing Ca2+ with Sr2+, by external application of ryanodine and by internal application of EGTA. This indicates that the current is calcium-sensitive and is dependent on increased myoplasmic Ca2+ through Ca2+ influx via the sarcolemma and Ca2+ release from the sarcoplasmic reticulum. The current is therefore designated as IK, Ca. 9. The physiological functions of IK, Ca and It are indicated by their contribution to ventricular repolarization at fast and slow heart rates, respectively. PMID:2552080
Investigations of the pathogenesis of acquired pendular nystagmus
NASA Technical Reports Server (NTRS)
Averbuch-Heller, L.; Zivotofsky, A. Z.; Das, V. E.; DiScenna, A. O.; Leigh, R. J.
1995-01-01
We investigated the pathogenesis of acquired pendular nystagmus (APN) in six patients, three of whom had multiple sclerosis. First, we tested the hypothesis that the oscillations of APN are due to a delay in visual feedback secondary, for example, to demyelination of the optic nerves. We manipulated the latency to onset of visually guided eye movements using an electronic technique that induces sinusoidal oscillations in normal subjects. This manipulation did not change the characteristics of the APN, but did superimpose lower-frequency oscillations similar to those induced in normal subjects. These results are consistent with current models for smooth (non-saccadic) eye movements, which predict that prolongation of visual feedback could not account for the high-frequency oscillations that often characterize APN. Secondly, we attempted to determine whether an increase in the gain of the visually-enhanced vestibulo-ocular reflex (VOR), produced by viewing a near target, was accompanied by a commensurate increase in the amplitude of APN. Increases in horizontal or vertical VOR gain during near viewing occurred in four patients, but only two of them showed a parallel increase in APN amplitude. On the other hand, APN amplitude decreased during viewing of the near target in the two patients who showed no change in VOR gain. Taken together, these data suggest that neither delayed visual feedback nor a disorder of central vestibular mechanisms is primarily responsible for APN. More likely, these ocular oscillations are produced by abnormalities of internal feedback circuits, such as the reciprocal connections between brainstem nuclei and cerebellum.
Sapira, J D
1995-09-01
Egophony is a change in timbre (Ee to A) but not pitch or volume. It is due to a decrease in the amplitude and an increase in the frequency [corrected] of the second formant, produced by solid (including compressed lung) interposed between the resonator and the stethoscope head. This explains certain difficulties in learning this valuable but currently neglected sign as well as in understanding certain physiologic false-positive occurrences.
Bergman, C; Bergman, J
1985-01-01
The kinetics and voltage dependence of asparagine (Asn)-induced depolarization in endoderm cells from Xenopus laevis embryos were analysed using current-clamp techniques. The depolarization is assumed to reflect the activation of an amino acid membrane carrier; it is accompanied by a slight increase in membrane resistance and cannot be explained by only the electrogenic character of the Asn carrier. It is proposed that the Asn depolarization arises, at least in part, from the decrease of the permeability ratio PK/PNa indirectly associated with the Na-coupled amino acid uptake. At room temperature (20-23 degrees C) the Asn response develops according to a single exponential function whose time constant is correlated with the final level of depolarization. Both amplitude and rise time of the depolarization are sensitive to variations of membrane potential and changes in Asn or Na external concentrations. Lowering the temperature decreases the amplitude of the Asn depolarization and increases its rise time with a Q10 factor of two; the kinetics remain of the Michaelis-Menten type, with a marked decrease in delta Emax and no change in Km. When the holding potential is altered by depolarizing and hyperpolarizing currents, the Asn response varies according to a bell-shaped characteristic presenting an optimum near the normal resting level. Membrane depolarizations induced by Na/K-pump inhibitors or high external K concentrations reduce the size of the Asn response; repolarizing the cell by current injection does not reverse the inhibitory effect of external K ions. Hyperpolarizing the membrane with a K-free Ringer solution increases the amplitude of the Asn response. In all these cases a decrease in delta Emax accounts for the apparent voltage sensitivity of the carrier mechanism. When induced by alterations of [K]o, an additional change in Km is observed, suggesting a K/Na-competitive inhibition of the Asn carrier. The results are discussed in terms of the amino acid carrier and passive membrane properties. It is suggested that the outward K-electrochemical gradient contributes an additional source of energy to the Na-dependent Asn uptake. PMID:4057089
Mellor, J R; Randall, A D
1997-01-01
1. Miniature IPSCs recorded from cultured murine cerebellar granule cells increased in half-width and amplitude following application of the benzodiazepine (BDZ) Flunitrazepam (Flu, 1 microM). The increase in the half-width was much greater than that in the amplitude. 2. Five-millisecond applications of 1 mM GABA to nucleated outside-out patches elicited rapidly rising biexponentially decaying responses that resembled IPSCs. Flu had no effect on the amplitude of such responses, but consistently slowed their deactivation by approximately 50%. This effect was reversed by Flu washout or application of the BDZ antagonist Ro15-1788. The partial inverse agonist. Ro15-4513 speeded deactivation and depressed peak current amplitude by 23 +/- 12%. 3. The EC50 for GABA was between 45 and 50 microM. At submaximally effective agonist concentrations, Flu increased response amplitude and slowed response deactivation. Both effects were present in all cells taken from young cultures (4-7 days in vitro) but the latter was absent in 55% of the neurones obtained from older cultures (14-27 days in vitro). 4. With 120 ms applications of 20 microM GABA, responses activated monoexponentially (time constant, 39.8 +/- 2.8 ms) and deactivated biexponentially (time constants, 40.4 +/- 2.1 and 251 +/- 15 ms). Application of Flu slowed both activation and deactivation. The latter effect arose from an increased contribution of the slower component of decay. 5. Desensitization of responses to 1 mM GABA was biexponential, with time constants of 47 +/- 11 and 479 +/- 49 ms. Flu speeded desensitization by decreasing both fast and slow time constants. GABAA receptor desensitization consistently slowed subsequent deactivation. No significant relationship between the level of desensitization and the amount of slowing of deactivation produced by Flu was found. 6. Responses to paired 5 ms applications of 1 mM GABA indicated that the slowing of deactivation and the speeding of desensitization produced by Flu combine to generate a marked frequency dependence in the actions of this BDZ. Thus when compared with control responses, GABA-induced charge transfer was only enhanced by Flu during the first of two successive agonist applications. PMID:9306278
Effects of dithiothreitol on end-plate currents.
Terrar, D A
1978-01-01
1. End-plate currents have been studied in frog cutaneus pectoris nerve-muscle preparations mounted in continuously flowing solution, using the voltage clamp technique. 2. Exposure of the muscle to 1 mM-dithiothreitol reduced the amplitude of end-plate currents by a factor of 2.7 (mean; range 1.6-3.4; twelve fibres). 3. 1 mM-dithiothreitol also caused a 2.7-fold (2.3-3.1) increase in the rate of decay, and a 1.4-fold (1.3-1.6) decrease in the time to peak of end-plate currents. During the onset of action of dithiothreitol, there was little or no indication of departure of end-plate current decay from a simple exponential. 4. Dithiothreitol actions on amplitude and decay of end-plate currents developed with similar time courses and both effects were slower in onset at pH 7.2 than at pH 8.5. 5. The actions of dithiothreitol were reversed by exposure of the muscle to 1 mM-5,5'-dithio-bis-(2-nitrobenzoic acid). 6. Following dithiothreitol treatment, the rates of decay of end-plate currents continued to depend on membrane potential; there was little or no change in the slope of the relation between in (rate of decay) and membrane potential, consistent with little or no change in the dipole moment of a gating molecule for ion channels. 7. Dithiothreitol changed the relation between peak end-plate current and membrane potential, so that peak conductance increased at more negative membrane potentials; this finding could be accounted for in terms of the closure of ion-channel gates becoming faster though remaining voltage-sensitive after exposure to dithiothreitol. 8. It is concluded that dithiothreitol causes changes in the kinetics of gating of ion channels associated with receptors and that these changes accompany changes in the binding of ACh to receptors. PMID:25960
NASA Astrophysics Data System (ADS)
van der Molen, Johan
2015-04-01
Tidal power generation through submerged turbine-type devices is in an advanced stage of testing, and large-scale applications are being planned in areas with high tidal current speeds. The potential impact of such large-scale applications on the hydrography can be investigated using hydrodynamical models. In addition, aspects of the potential impact on the marine ecosystem can be studied using biogeochemical models. In this study, the coupled hydrodynamics-biogeochemistry model GETM-ERSEM is used in a shelf-wide application to investigate the potential impact of large-scale tidal power generation in the Pentland Firth. A scenario representing the currently licensed power extraction suggested i) an average reduction in M2 tidal current velocities of several cm/s within the Pentland Firth, ii) changes in the residual circulation of several mm/s in the vicinity of the Pentland Firth, iii) an increase in M2 tidal amplitude of up to 1 cm to the west of the Pentland Firth, and iv) a reduction of several mm in M2 tidal amplitude along the east coast of the UK. A second scenario representing 10 times the currently licensed power extraction resulted in changes that were approximately 10 times as large. Simulations including the biogeochemistry model for these scenarios are currently in preparation, and first results will be presented at the the conference, aiming at impacts on primary production and benthic production.
Effect of phase advance on the brushless dc motor torque speed respond
NASA Astrophysics Data System (ADS)
Mohd, M. S.; Karsiti, M. N.; Mohd, M. S.
2015-12-01
Brushless direct current (BLDC) motor is widely used in small and medium sized electric vehicles as it exhibit highest specific power and thermal efficiency as compared to the induction motor. Permanent magnets BLDC rotor create a constant magnetic flux, which limit the motor top speed. As the back electromotive force (EMF) voltage increases proportionally with motor rotational speed and it approaches the amplitude of the input voltage, the phase current amplitude will reach zero. By advancing the phase current, it is possible to extend the maximum speed of the BLDC motor beyond the rated top speed. This will allow smaller BLDC motor to be used in small electric vehicles (EV) and in larger applications will allow the use of BLDC motor without the use of multispeed transmission unit for high speed operation. However, increasing the speed of BLDC will affect the torque speed response. The torque output will decrease as speed increases. Adjusting the phase angle will affect the speed of the motor as each coil is energized earlier than the corresponding rise in the back emf of the coil. This paper discusses the phase advance strategy of Brushless DC motor by phase angle manipulation approaches using external hall sensors. Tests have been performed at different phase advance angles in advance and retard positions for different voltage levels applied. The objective is to create the external hall sensor system to commutate the BLDC motor, to establish the phase advance of the BLDC by varying the phase angle through external hall sensor manipulation, observe the respond of the motor while applying the phase advance by hall sensor adjustment.
Progress of recent experimental research on the J-TEXT tokamak
NASA Astrophysics Data System (ADS)
Zhuang, G.; Gentle, K. W.; Chen, Z. Y.; Chen, Z. P.; Yang, Z. J.; Zheng, Wei; Hu, Q. M.; Chen, J.; Rao, B.; Zhong, W. L.; Zhao, K. J.; Gao, L.; Cheng, Z. F.; Zhang, X. Q.; Wang, L.; Jiang, Z. H.; Xu, T.; Zhang, M.; Wang, Z. J.; Ding, Y. H.; Yu, K. X.; Hu, X. W.; Pan, Y.; Huang, H.; the J-TEXT Team
2017-10-01
The progress of experimental research over the last two years on the J-TEXT tokamak is reviewed and reported in this paper, including: investigations of resonant magnetic perturbations (RMPs) on the J-TEXT operation region show that moderate amplitude of applied RMPs either increases the density limit from less than 0.7n G to 0.85n G (n G is the Greenwald density, {{n}\\text{G}}={{I}\\text{p}}/π {{a}2} ) or lowers edge safety factor q a from 2.15 to nearly 2.0; observations of influence of RMPs with a large m/n = 3/1 dominant component (where m and n are the toroidal and poloidal mode numbers respectively) on electron density indicate electron density first increases (decreases) inside (around/outside) of the 3/1 rational surface, and it is increased globally later together with enhanced edge recycling; investigations of the effect of RMPs on the behavior of runaway electrons/current show that application of RMPs with m/n = 2/1 dominant component during disruptions can reduce runaway production. Furthermore, its application before the disruption can reduce both the amplitude and the length of runaway current; experimental results in the high-density disruption plasmas confirm that local current shrinkage during a multifaceted asymmetric radiation from the edge can directly terminate the discharge; measurements by a multi-channel Doppler reflectometer show that the quasi-coherent modes in the electron diamagnetic direction occur in the J-TEXT ohmic confinement regime in a large plasma region (r/a ~ 0.3-0.8) with frequency of 30-140 kHz.
Giniatullin, R A; Talantova, M; Vyskocil, F
1997-08-01
1. The desensitization induced by bath-applied carbachol or acetylcholine (ACh) and potentiated by proadifen (SKF 525A) was studied in the frog sartorius with intact synaptic acetylcholinesterase (AChE). 2. The reduction in the density and number of postsynaptic receptors produced by desensitization lowered the amplitude of the endplate currents (EPCs) and shortened the EPC decay when the quantal content (m) of the EPC was about 170 and when multiple release of quanta at single active zones was highly probably. The shortening of high-quantal-content EPCs persisted for at least 15 min after the wash-out of agonists, at a time when the amplitude had recovered fully. 3. The decay times of the low-quantal-content EPCs recorded from preparations pretreated with 5 mM Mg2+ (m approximately 70) and single-quantum miniature endplate currents (MEPCs) were not affected by carbachol, ACh or proadifen. 4. The desensitization of ACh receptors potentiated by proadifen, prevented completely the 6- to 8-fold prolongation of EPC which was induced by neostigmine inhibition of synaptic AChE. 5. It is assumed that high-quantal-content EPCs increase the incidence of multiple quanta release at single active zones and the probability of repetitive binding of ACh molecules which leads to EPC prolongation. The shortening which persists after complete recovery of the amplitude during wash-out of the exogenous agonist is probably due to 'trapping' of ACh molecules onto rapidly desensitized receptors and the reduced density of functional AChRs during the quantum action.
Sound level-dependent growth of N1m amplitude with low and high-frequency tones.
Soeta, Yoshiharu; Nakagawa, Seiji
2009-04-22
The aim of this study was to determine whether the amplitude and/or latency of the N1m deflection of auditory-evoked magnetic fields are influenced by the level and frequency of sound. The results indicated that the amplitude of the N1m increased with sound level. The growth in amplitude with increasing sound level was almost constant with low frequencies (250-1000 Hz); however, this growth decreased with high frequencies (>2000 Hz). The behavior of the amplitude may reflect a difference in the increase in the activation of the peripheral and/or central auditory systems.
Fukatsu, Y; Miyake, Y; Sugita, S; Saito, A; Watanabe, S
1990-11-01
To analyze the Electrically evoked response (EER) in relation to the central visual pathway, the authors studied the properties of wave patterns and peak latencies of EER in 35 anesthetized adult cats. The cat EER showed two early positive waves on outward current (cornea cathode) stimulus and three or four early positive waves on inward current (cornea anode) stimulus. These waves were recorded within 50 ms after stimulus onset, and were the most consistent components in cat EER. The stimulus threshold for EER showed a less individual variation than amplitude. The difference of stimulus threshold between outward and inward current stimulus was also essentially negligible. The stimulus threshold was higher in early components than in late components. The peak latency of EER became shorter and the amplitude became higher, as the stimulus intensity was increased. However, this tendency was reversed and some wavelets started to appear when the stimulus was extremely strong. The recording using short stimulus duration and bipolar electrodes enabled us to reduce the electrical artifact of EER. These results obtained from cats were compared with those of humans and rabbits.
Bartos, Daniel C; Morotti, Stefano; Ginsburg, Kenneth S; Grandi, Eleonora; Bers, Donald M
2017-04-01
[Ca 2+ ] i enhanced rabbit ventricular slowly activating delayed rectifier K + current (I Ks ) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol. Rabbit ventricular rapidly activating delayed rectifier K + current (I Kr ) amplitude and voltage dependence were unaffected by high [Ca 2+ ] i . When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca 2+ transient or when [Ca 2+ ] i was buffered to 500 nm. The slowly activating delayed rectifier K + current (I Ks ) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca 2+ ([Ca 2+ ] i ) and β-adrenergic receptor (β-AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca 2+ ] i dependence of I Ks in steady-state conditions and with dynamically changing membrane potential and [Ca 2+ ] i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole-cell patch clamp. With intracellular pipette solutions that controlled free [Ca 2+ ] i , we found that raising [Ca 2+ ] i from 100 to 600 nm produced similar increases in I Ks as did β-AR activation, and the effects appeared additive. Both β-AR activation and high [Ca 2+ ] i increased maximally activated tail I Ks , negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well-established mathematical model of the rabbit myocyte. In both AP-clamp experiments and simulations, I Ks recorded during a normal physiological Ca 2+ transient was similar to I Ks measured with [Ca 2+ ] i clamped at 500-600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca 2+ ] i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca 2+ ] i , in the submembrane or junctional cleft space, is not required to maximize [Ca 2+ ] i -dependent I Ks activation during normal Ca 2+ transients. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Bartos, Daniel C.; Morotti, Stefano; Ginsburg, Kenneth S.; Grandi, Eleonora
2017-01-01
Key points [Ca2+]i enhanced rabbit ventricular slowly activating delayed rectifier K+ current (I Ks) by negatively shifting the voltage dependence of activation and slowing deactivation, similar to perfusion of isoproterenol.Rabbit ventricular rapidly activating delayed rectifier K+ current (I Kr) amplitude and voltage dependence were unaffected by high [Ca2+]i.When measuring or simulating I Ks during an action potential, I Ks was not different during a physiological Ca2+ transient or when [Ca2+]i was buffered to 500 nm. Abstract The slowly activating delayed rectifier K+ current (I Ks) contributes to repolarization of the cardiac action potential (AP). Intracellular Ca2+ ([Ca2+]i) and β‐adrenergic receptor (β‐AR) stimulation modulate I Ks amplitude and kinetics, but details of these important I Ks regulators and their interaction are limited. We assessed the [Ca2+]i dependence of I Ks in steady‐state conditions and with dynamically changing membrane potential and [Ca2+]i during an AP. I Ks was recorded from freshly isolated rabbit ventricular myocytes using whole‐cell patch clamp. With intracellular pipette solutions that controlled free [Ca2+]i, we found that raising [Ca2+]i from 100 to 600 nm produced similar increases in I Ks as did β‐AR activation, and the effects appeared additive. Both β‐AR activation and high [Ca2+]i increased maximally activated tail I Ks, negatively shifted the voltage dependence of activation, and slowed deactivation kinetics. These data informed changes in our well‐established mathematical model of the rabbit myocyte. In both AP‐clamp experiments and simulations, I Ks recorded during a normal physiological Ca2+ transient was similar to I Ks measured with [Ca2+]i clamped at 500–600 nm. Thus, our study provides novel quantitative data as to how physiological [Ca2+]i regulates I Ks amplitude and kinetics during the normal rabbit AP. Our results suggest that micromolar [Ca2+]i, in the submembrane or junctional cleft space, is not required to maximize [Ca2+]i‐dependent I Ks activation during normal Ca2+ transients. PMID:28008618
Campbell, Susan L.; Hablitz, John J.; Olsen, Michelle L.
2014-01-01
Cortical dysplasia is associated with intractable epilepsy and developmental delay in young children. Recent work with the rat freeze-induced focal cortical dysplasia (FCD) model has demonstrated that hyperexcitability in the dysplastic cortex is due in part to higher levels of extracellular glutamate. Astrocyte glutamate transporters play a pivotal role in cortical maintaining extracellular glutamate concentrations. Here we examined the function of astrocytic glutamate transporters in a FCD model in rats. Neocortical freeze lesions were made in postnatal day (PN) 1 rat pups and whole cell electrophysiological recordings and biochemical studies were performed at PN 21–28. Synaptically evoked glutamate transporter currents in astrocytes showed a near 10-fold reduction in amplitude compared to sham operated controls. Astrocyte glutamate transporter currents from lesioned animals were also significantly reduced when challenged exogenously applied glutamate. Reduced astrocytic glutamate transport clearance contributed to increased NMDA receptor-mediated current decay kinetics in lesioned animals. The electrophysiological profile of astrocytes in the lesion group was also markedly changed compared to sham operated animals. Control astrocytes demonstrate large-amplitude linear leak currents in response to voltage-steps whereas astrocytes in lesioned animals demonstrated significantly smaller voltage-activated inward and outward currents. Significant decreases in astrocyte resting membrane potential and increases in input resistance were observed in lesioned animals. However, Western blotting, immunohistochemistry and quantitative PCR demonstrated no differences in the expression of the astrocytic glutamate transporter GLT-1 in lesioned animals relative to controls. These data suggest that, in the absence of changes in protein or mRNA expression levels, functional changes in astrocytic glutamate transporters contribute to neuronal hyperexcitability in the FCD model. PMID:25565960
Tejani, Viral D; Abbas, Paul J; Brown, Carolyn J
This study investigates the relationship between electrophysiological and psychophysical measures of amplitude modulation (AM) detection. Prior studies have reported both measures of AM detection recorded separately from cochlear implant (CI) users and acutely deafened animals, but no study has made both measures in the same CI users. Animal studies suggest a progressive loss of high-frequency encoding as one ascends the auditory pathway from the auditory nerve to the cortex. Because the CI speech processor uses the envelope of an ongoing acoustic signal to modulate pulse trains that are subsequently delivered to the intracochlear electrodes, it is of interest to explore auditory nerve responses to modulated stimuli. In addition, psychophysical AM detection abilities have been correlated with speech perception outcomes. Thus, the goal was to explore how the auditory nerve responds to AM stimuli and to relate those physiologic measures to perception. Eight patients using Cochlear Ltd. Implants participated in this study. Electrically evoked compound action potentials (ECAPs) were recorded using a 4000 pps pulse train that was sinusoidally amplitude modulated at 125, 250, 500, and 1000 Hz rates. Responses were measured for each pulse over at least one modulation cycle for an apical, medial, and basal electrode. Psychophysical modulation detection thresholds (MDTs) were also measured via a three-alternative forced choice, two-down, one-up adaptive procedure using the same modulation frequencies and electrodes. ECAPs were recorded from individual pulses in the AM pulse train. ECAP amplitudes varied sinusoidally, reflecting the sinusoidal variation in the stimulus. A modulated response amplitude (MRA) metric was calculated as the difference in the maximal and minimum ECAP amplitudes over the modulation cycles. MRA increased as modulation frequency increased, with no apparent cutoff (up to 1000 Hz). In contrast, MDTs increased as the modulation frequency increased. This trend is inconsistent with the physiologic measures. For a fixed modulation frequency, correlations were observed between MDTs and MRAs; this trend was evident at all frequencies except 1000 Hz (although only statistically significant for 250 and 500 Hz AM rates), possibly an indication of central limitations in processing of high modulation frequencies. Finally, peripheral responses were larger and psychophysical thresholds were lower in the apical electrodes relative to basal and medial electrodes, which may reflect better cochlear health and neural survival evidenced by lower preoperative low-frequency audiometric thresholds and steeper growth of neural responses in ECAP amplitude growth functions for apical electrodes. Robust ECAPs were recorded for all modulation frequencies tested. ECAP amplitudes varied sinusoidally, reflecting the periodicity of the modulated stimuli. MRAs increased as the modulation frequency increased, a trend we attribute to neural adaptation. For low modulation frequencies, there are multiple current steps between the peak and valley of the modulation cycle, which means successive stimuli are more similar to one another and neural responses are more likely to adapt. Higher MRAs were correlated with lower psychophysical thresholds at low modulation frequencies but not at 1000 Hz, implying a central limitation to processing of modulated stimuli.
Nobukawa, Teruyoshi; Nomura, Takanori
2016-09-05
A holographic data storage system using digital holography is proposed to record and retrieve multilevel complex amplitude data pages. Digital holographic techniques are capable of modulating and detecting complex amplitude distribution using current electronic devices. These techniques allow the development of a simple, compact, and stable holographic storage system that mainly consists of a single phase-only spatial light modulator and an image sensor. As a proof-of-principle experiment, complex amplitude data pages with binary amplitude and four-level phase are recorded and retrieved. Experimental results show the feasibility of the proposed holographic data storage system.
Trantham-Davidson, Heather; Kassab, Amanda S.; Glen, William B.; Olive, M. Foster; Chandler, L. Judson
2014-01-01
Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity. PMID:24872560
Gass, Justin T; Trantham-Davidson, Heather; Kassab, Amanda S; Glen, William B; Olive, M Foster; Chandler, L Judson
2014-05-28
Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity. Copyright © 2014 the authors 0270-6474/14/347562-13$15.00/0.
Kirk, D L; Yates, G K
1998-09-01
Electrically evoked oto-acoustic emissions (EEOAEs) are sounds present in the ear canal when ac current is passed into the cochlea. EEOAEs are attributed to the activation of fast electromotile responses in outer hair cells (OHCs). An interesting property of EEOAEs is the phenomenon of "acoustic enhancement," where the emission amplitude is increased by moderate-level sound [D. C. Mountain and A. E. Hubbard, Hear. Res. 42, 195-202 (1989)]. In this report a form of enhancement is described which occurs with displacements of the basilar membrane toward scala vestibuli, during amplitude modulation of the EEOAE waveform by low-frequency tones. This "SV-bias enhancement" possibly consists of two components: (i) a low-level component induced by sound at levels which produce nonlinear growth of the cochlear microphonic and which may be equivalent to the "acoustic enhancement" described previously, and (ii) a high-level component which occurs at sound levels well above those which cause saturation of the cochlear microphonic. The low-level component could be explained by either an increased access of the extrinsically applied current to a membrane-based source of OHC motility, perhaps coupled with a reduction in negative feedback, or an increase in electromotile output during scala vestibuli displacements, but the origin of the high-level component is obscure.
Changes in the seasonality of Arctic sea ice and temperature
NASA Astrophysics Data System (ADS)
Bintanja, R.
2012-04-01
Observations show that the Arctic sea ice cover is currently declining as a result of climate warming. According to climate models, this retreat will continue and possibly accelerate in the near-future. However, the magnitude of this decline is not the same throughout the year. With temperatures near or above the freezing point, summertime Arctic sea ice will quickly diminish. However, at temperatures well below freezing, the sea ice cover during winter will exhibit a much weaker decline. In the future, the sea ice seasonal cycle will be no ice in summer, and thin one-year ice in winter. Hence, the seasonal cycle in sea ice cover will increase with ongoing climate warming. This in itself leads to an increased summer-winter contrast in surface air temperature, because changes in sea ice have a dominant influence on Arctic temperature and its seasonality. Currently, the annual amplitude in air temperature is decreasing, however, because winters warm faster than summer. With ongoing summer sea ice reductions there will come a time when the annual temperature amplitude will increase again because of the large seasonal changes in sea ice. This suggests that changes in the seasonal cycle in Arctic sea ice and temperature are closely, and intricately, connected. Future changes in Arctic seasonality (will) have an profound effect on flora, fauna, humans and economic activities.
Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B
2013-10-30
Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.
Frieden, M; Sollini, M; Bény, J-L
1999-01-01
Substance P and bradykinin, endothelium-dependent vasodilators of pig coronary artery, trigger in endothelial cells a rise in cytosolic Ca2+ concentration ([Ca2+]i) and membrane hyperpolarization. The aim of the present study was to determine the type of Ca2+-dependent K+ (KCa) currents underlying the endothelial cell hyperpolarization. The substance P-induced increase in [Ca2+]i was 30 % smaller than that induced by bradykinin, although the two peptides triggered a membrane hyperpolarization of the same amplitude. The two agonists evoked a large outward K+ current of the same conductance at maximal stimulation. Agonists applied together produced the same maximal current amplitude as either one applied alone. Iberiotoxin (50 nM) reduced by about 40 % the K+ current activated by bradykinin without modifying the substance P response. Conversely, apamin (1 μm) inhibited the substance P-induced K+ current by about 65 %, without affecting the bradykinin response. Similar results were obtained on peptide-induced membrane hyperpolarization. Bradykinin-induced, but not substance P-induced, endothelium-dependent relaxation resistant to NG-nitro-L-arginine and indomethacin was partly inhibited by 3 μm 17-octadecynoic acid (17-ODYA), an inhibitor of cytochrome P450 epoxygenase. Similarly, the bradykinin-induced K+ current was reduced by 17-ODYA. Our results show that responses to substance P and bradykinin result in a hyperpolarization due to activation of different KCa currents. A current consistent with the activation of large conductance (BKCa) channels was activated only by bradykinin, whereas a current consistent with the activation of small conductance (SKCa) channels was stimulated only by substance P. The observation that a similar electrical response is produced by different pools of channels implies distinct intracellular pathways leading to KCa current activation. PMID:10457055
[The P300 based brain-computer interface: effect of stimulus position in a stimulus train].
Ganin, I P; Shishkin, S L; Kochetova, A G; Kaplan, A Ia
2012-01-01
The P300 brain-computer interface (BCI) is currently the most efficient BCI. This interface is based on detection of the P300 wave of the brain potentials evoked when a symbol related to the intended input is highlighted. To increase operation speed of the P300 BCI, reduction of the number of stimuli repetitions is needed. This reduction leads to increase of the relative contribution to the input symbol detection from the reaction to the first target stimulus. It is known that the event-related potentials (ERP) to the first stimulus presentations can be different from the ERP to stimuli presented latter. In particular, the amplitude of responses to the first stimulus presentations is often increased, which is beneficial for their recognition by the BCI. However, this effect was not studied within the BCI framework. The current study examined the ERP obtained from healthy participants (n = 14) in the standard P300 BCI paradigm using 10 trials, as well as in the modified P300 BCI with stimuli presented on moving objects in triple-trial (n = 6) and single-trial (n = 6) stimulation modes. Increased ERP amplitude was observed in response to the first target stimuli in both conditions, as well as in the single-trial mode comparing to triple-trial. We discuss the prospects of using the specific features of the ERP to first stimuli and the single-trial ERP for optimizing the high-speed modes in the P300 BCIs.
A Conducting State with Properties of a Slow Inactivated State in a Shaker K+ Channel Mutant
Olcese, Riccardo; Sigg, Daniel; Latorre, Ramon; Bezanilla, Francisco; Stefani, Enrico
2001-01-01
In Shaker K+ channel, the amino terminus deletion Δ6-46 removes fast inactivation (N-type) unmasking a slow inactivation process. In Shaker Δ6-46 (Sh-IR) background, two additional mutations (T449V-I470C) remove slow inactivation, producing a noninactivating channel. However, despite the fact that Sh-IR-T449V-I470C mutant channels remain conductive, prolonged depolarizations (1 min, 0 mV) produce a shift of the QV curve by about −30 mV, suggesting that the channels still undergo the conformational changes typical of slow inactivation. For depolarizations longer than 50 ms, the tail currents measured during repolarization to −90 mV display a slow component that increases in amplitude as the duration of the depolarizing pulse increases. We found that the slow development of the QV shift had a counterpart in the amplitude of the slow component of the ionic tail current that is not present in Sh-IR. During long depolarizations, the time course of both the increase in the slow component of the tail current and the change in voltage dependence of the charge movement could be well fitted by exponential functions with identical time constant of 459 ms. Single channel recordings revealed that after prolonged depolarizations, the channels remain conductive for long periods after membrane repolarization. Nonstationary autocovariance analysis performed on macroscopic current in the T449V-I470C mutant confirmed that a novel open state appears with increasing prepulse depolarization time. These observations suggest that in the mutant studied, a new open state becomes progressively populated during long depolarizations (>50 ms). An appealing interpretation of these results is that the new open state of the mutant channel corresponds to a slow inactivated state of Sh-IR that became conductive. PMID:11158167
Force analysis of magnetic bearings with power-saving controls
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.
1992-01-01
Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods.
Salinity Variations of the Intermediate Oyashio Waters and Their Relation with the Lunar Nodal Cycle
NASA Astrophysics Data System (ADS)
Rogachev, K. A.; Shlyk, N. V.
2018-01-01
New oceanographic observations in the period 1990-2015 revealed significant salinity variations in the Oyashio Current. In the last 26 years, the salinity of the upper layer decreased by 0.2 PSU. The most rapid changes in salinity and temperature have been observed in the last five years. The time series of salinity measurements is characterized by the high-amplitude fluctuations synchronized with the lunar nodal cycle (18.6 years); i.e., high salinity is observed in the period of strong tidal currents. Modulation of diurnal tidal currents with the K1 and O1 periods in the lunar nodal cycle is significant [8, 9]. The amplitude was maximal in 1988 and 2006 and minimal in 1997 and 2015. The characteristics of tidal currents in the Oyashio Current and Sea of Okhotsk are considered based on available data of drifting buoys over the Kruzenshtern and Kashevarov banks. The amplitude of salinity variations synchronized with the lunar cycle is approximately 0.1 PSU; therefore, it has made a significant contribution to the salinity decrease in recent years.
Bogle, Jamie M; Zapala, David A; Criter, Robin; Burkard, Robert
2013-02-01
The cervical vestibular evoked myogenic potential (cVEMP) is a reflexive change in sternocleidomastoid (SCM) muscle contraction activity thought to be mediated by a saccular vestibulo-collic reflex. CVEMP amplitude varies with the state of the afferent (vestibular) limb of the vestibulo-collic reflex pathway, as well as with the level of SCM muscle contraction. It follows that in order for cVEMP amplitude to reflect the status of the afferent portion of the reflex pathway, muscle contraction level must be controlled. Historically, this has been accomplished by volitionally controlling muscle contraction level either with the aid of a biofeedback method, or by an a posteriori method that normalizes cVEMP amplitude by the level of muscle contraction. A posteriori normalization methods make the implicit assumption that mathematical normalization precisely removes the influence of the efferent limb of the vestibulo-collic pathway. With the cVEMP, however, we are violating basic assumptions of signal averaging: specifically, the background noise and the response are not independent. The influence of this signal-averaging violation on our ability to normalize cVEMP amplitude using a posteriori methods is not well understood. The aims of this investigation were to describe the effect of muscle contraction, as measured by a prestimulus electromyogenic estimate, on cVEMP amplitude and interaural amplitude asymmetry ratio, and to evaluate the benefit of using a commonly advocated a posteriori normalization method on cVEMP amplitude and asymmetry ratio variability. Prospective, repeated-measures design using a convenience sample. Ten healthy adult participants between 25 and 61 yr of age. cVEMP responses to 500 Hz tone bursts (120 dB pSPL) for three conditions describing maximum, moderate, and minimal muscle contraction. Mean (standard deviation) cVEMP amplitude and asymmetry ratios were calculated for each muscle-contraction condition. Repeated measures analysis of variance and t-tests compared the variability in cVEMP amplitude between sides and conditions. Linear regression analyses compared asymmetry ratios. Polynomial regression analyses described the corrected and uncorrected cVEMP amplitude growth functions. While cVEMP amplitude increased with increased muscle contraction, the relationship was not linear or even proportionate. In the majority of cases, once muscle contraction reached a certain "threshold" level, cVEMP amplitude increased rapidly and then saturated. Normalizing cVEMP amplitudes did not remove the relationship between cVEMP amplitude and muscle contraction level. As muscle contraction increased, the normalized amplitude increased, and then decreased, corresponding with the observed amplitude saturation. Abnormal asymmetry ratios (based on values reported in the literature) were noted for four instances of uncorrected amplitude asymmetry at less than maximum muscle contraction levels. Amplitude normalization did not substantially change the number of observed asymmetry ratios. Because cVEMP amplitude did not typically grow proportionally with muscle contraction level, amplitude normalization did not lead to stable cVEMP amplitudes or asymmetry ratios across varying muscle contraction levels. Until we better understand the relationships between muscle contraction level, surface electromyography (EMG) estimates of muscle contraction level, and cVEMP amplitude, the application of normalization methods to correct cVEMP amplitude appears unjustified. American Academy of Audiology.
MHD and Reconnection Activity During Local Helicity Injection
NASA Astrophysics Data System (ADS)
Barr, J. L.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Reusch, J. A.; Richner, N. J.
2016-10-01
Scaling local helicity injection (LHI) to larger devices requires a validated, predictive model of its current drive mechanism. NIMROD simulations predict the injected helical current streams persist in the edge and periodically reconnect to form axisymmetric current rings that travel into the bulk plasma to grow Ip and poloidal flux. In simulation, these events result in discrete bursts of Alfvénic-frequency MHD activity and jumps in Ip of order ΔIp Iinj , in qualitative agreement with large n = 1 activity found in experiment. Fast imaging prior to tokamak formation supports the instability of, and apparent reconnection between, adjacent helical streams. The bursts exhibit toroidal amplitude asymmetries consistent with a kink structure singly line-tied to the injectors. Internal measurements localize this activity to the injector radial location. Pairwise correlations of poloidal Mirnov coil amplitude and phase match expectations of an edge-localized current stream carrying Iinj. Prior to tokamak formation, reconnection from both adjacent helical windings and co-injected current streams are shown to strongly heat impurity ions. After tokamak formation, strong anomalous ion heating in the plasma edge is attributed to continuous reconnection between colinear streams. The n = 1 bursts occur less frequently as Ip rises, likely caused by increased stream stability as Bv rises and qedge drops. This evidence supports the general NIMROD model of LHI, confirms the persistence and role of the edge current streams, and motivates experiments at higher Iinj and BT. Supported by US DOE Grants DE-FG02-96ER54375, DE-SC0006928.
Changes in Cortical Plasticity in Relation to a History of Concussion during Adolescence
Meehan, Sean K.; Mirdamadi, Jasmine L.; Martini, Douglas N.; Broglio, Steven P.
2017-01-01
Adolescence and early adulthood is a critical period for neurophysiological development potentially characterized by an increased susceptibility to the long-term effects of traumatic brain injury. The current study investigated differences in motor cortical physiology and neuroplastic potential across a cohort of young adults with adolescent concussion history and those without. Transcranial magnetic stimulation (TMS) was used to assess motor evoked potential (MEP) amplitude, short-interval cortical inhibition (SICI) and intracortical facilitation (ICF) before and after intermittent theta burst stimulation (iTBS). Pre-iTBS, MEP amplitude, but not SICI or ICF, was greater in the concussion history group. Post-iTBS, the expected increase in MEP amplitude and ICF was tempered in the concussion history group. Change in SICI was variable within the concussion history group. Post hoc assessment revealed that SICI was significantly lower in individuals whose concussion was not diagnosed at the time of injury compared to both those without a concussion history or whose concussion was medically diagnosed. Concussive impacts during adolescence appear to result in a persistent reduction of the ability to modulate facilitatory motor networks. Failure to report/identify concussive impacts close to injury during adolescence also appears to produce persistent change in inhibitory networks. These findings highlight the potential long-term impact of adolescent concussion upon motor cortical physiology. PMID:28144218
Intense cavitation at extreme static pressure.
Pishchalnikov, Yuri A; Gutierrez, Joel; Dunbar, Wylene W; Philpott, Richard W
2016-02-01
Cavitation is usually performed at hydrostatic pressures at or near 0.1 MPa. Higher static pressure produces more intense cavitation, but requires an apparatus that can build high amplitude acoustic waves with rarefactions exceeding the cavitation threshold. The absence of such an apparatus has prevented the achievement of intense acoustic cavitation, hindering research and the development of new applications. Here we describe a new high-pressure spherical resonator system, as well as experimental and modeling results in water and liquid metal (gallium), for cavitation at hydrostatic pressures between 10 and 150 MPa. Our computational data, using HYADES plasma hydrodynamics code, show the formation of dense plasma that, under these conditions, reaches peak pressures of about three to four orders of magnitude greater than the hydrostatic pressure in the bulk liquid and temperatures in the range of 100,000 K. Passive cavitation detection (PCD) data validate both a linear increase in shock wave amplitude and the production of highly intense concentrations of mechanical energy in the collapsing bubbles. High-speed camera observations show the formation of bubble clusters from single bubbles. The increased shock wave amplitude produced by bubble clusters, measured using PCD and fiber optic probe hydrophone, was consistent with current understanding that bubble clusters enable amplification of energy produced. Copyright © 2015 Elsevier B.V. All rights reserved.
Can working memory predict target-to-target interval effects in the P300?
Steiner, Genevieve Z; Barry, Robert J; Gonsalvez, Craig J
2013-09-01
It has been suggested that the P300 component of the ERP is an electrophysiological index of memory-updating processes associated with task-relevant stimuli. Component magnitude varies with the time separating target stimuli (target-to-target interval: TTI), with longer TTIs eliciting larger P300 amplitudes. According to the template-update perspective, TTI effects observable in the P300 reflect the updating of stimulus-templates in working memory (WM). The current study explored whether young adults' memory-task ability could predict TTI effects in P300. EEG activity was recorded from 50 university students (aged 18-25 years) while they completed an auditory equiprobable Go/NoGo task with manipulations of TTIs. Participants also completed a CogState® battery and were sorted according to their WM score. ERPs were analysed using a temporal PCA. Two P300 components, P3b and the Slow Wave, were found to linearly increase in amplitude to longer TTIs. This TTI effect differed between groups only for the P3b component: The high WM group showed a steeper increase in P3b amplitude with TTI than the low WM group. These results suggest that TTI effects in P300 are directly related to WM processes. © 2013.
Annual and semiannual variations of the geomagnetic field at equatorial locations
Campbell, W.H.
1981-01-01
For a year of quiet solar-activity level, geomagnetic records from American hemisphere observatories located between about 0?? and 30?? north geomagnetic latitude were used to compare the annual and semiannual variations of the geomagnetic field associated with three separate contributions: (a) the quiet-day midnight level, MDT; (b) the solar-quiet daily variation, Sq; (c) the quiet-time lunar semidiurnal tidal variation, L(12). Four Fourier spectral constituents (24, 12, 8, 6 h periods) of Sq were individually treated. All three orthogonal elements (H, D and Z) were included in the study. The MDT changes show a dominant semiannual variation having a range of about 7 gammas in H and a dominant annual variation in Z having a range of over 8 gammas. These changes seem to be a seasonal response to the nightside distortions by magnetospheric currents. There is a slow decrease in MDT amplitudes with increasing latitude. The Sq changes follow the patterns expected from an equatorial ionospheric dynamo electrojet current system. The dominant seasonal variations occur in H having a range of over 21 gammas for the 24 h period and over 12 gammas for the 12 h period spectral components. The higher-order components are relatively smaller in size. The Sq(H) amplitudes decrease rapidly with increasing latitude. Magnetospheric contributions to the equatorial Sq must be less than a few per cent of the observed magnitude. The L(12) variation shows the ionospheric electrojet features by the dominance of H and the rapid decrease in amplitude with latitude away from the equator. However, the seasonal variation range of over 7 gammas has a maximum in early February and minimum in late June that is not presently explainable by the known ionospheric conductivity and tidal behavior. ?? 1981.
Soliton solution for the spin current in a ferromagnetic nanowire.
Li, Zai-Dong; Li, Qiu-Yan; Li, Lu; Liu, W M
2007-08-01
We investigate the interaction of a periodic solution and a one-soliton solution for the spin-polarized current in a uniaxial ferromagnetic nanowire. The amplitude and wave number of the periodic solution for the spin current give different contributions to the width, velocity, and amplitude of the soliton. Moreover, we found that the soliton can be trapped only in space with proper conditions. Finally, we analyze the modulation instability and discuss dark solitary wave propagation for a spin current on the background of a periodic solution. In some special cases, the solution can be expressed as the linear combination of the periodic and soliton solutions.
Generation of subnanosecond electron beams in air at atmospheric pressure
NASA Astrophysics Data System (ADS)
Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.
2009-11-01
Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.
NASA Technical Reports Server (NTRS)
Eppink, Jenna L.; Wlezien, Richard W.; King, Rudolph A.; Choudhari, Meelan
2015-01-01
A low-speed experiment was performed on a swept at plate model with an imposed pressure gradient to determine the effect of a backward-facing step on transition in a stationary-cross flow dominated flow. Detailed hot-wire boundary-layer measurements were performed for three backward-facing step heights of approximately 36, 45, and 49% of the boundary-layer thickness at the step. These step heights correspond to a subcritical, nearly-critical, and critical case. Three leading-edge roughness configurations were tested to determine the effect of stationary-cross flow amplitude on transition. The step caused a local increase in amplitude of the stationary cross flow for the two larger step height cases, but farther downstream the amplitude decreased and remained below the baseline amplitude. The smallest step caused a slight local decrease in amplitude of the primary stationary cross flow mode, but the amplitude collapsed back to the baseline case far downstream of the step. The effect of the step on the amplitude of the primary cross flow mode increased with step height, however, the stationary cross flow amplitudes remained low and thus, stationary cross flow was not solely responsible for transition. Unsteady disturbances were present downstream of the step for all three step heights, and the amplitudes increased with increasing step height. The only exception is that the lower frequency (traveling crossflow-like) disturbance was not present in the lowest step height case. Positive and negative spikes in instantaneous velocity began to occur for the two larger step height cases and then grew in number and amplitude downstream of reattachment, eventually leading to transition. The number and amplitude of spikes varied depending on the step height and cross flow amplitude. Despite the low amplitude of the disturbances in the intermediate step height case, breakdown began to occur intermittently and the flow underwent a long transition region.
NASA Astrophysics Data System (ADS)
Ichino, Shinya; Mawaki, Takezo; Teramoto, Akinobu; Kuroda, Rihito; Park, Hyeonwoo; Wakashima, Shunichi; Goto, Tetsuya; Suwa, Tomoyuki; Sugawa, Shigetoshi
2018-04-01
Random telegraph noise (RTN), which occurs in in-pixel source follower (SF) transistors, has become one of the most critical problems in high-sensitivity CMOS image sensors (CIS) because it is a limiting factor of dark random noise. In this paper, the behaviors of RTN toward changes in SF drain current conditions were analyzed using a low-noise array test circuit measurement system with a floor noise of 35 µV rms. In addition to statistical analysis by measuring a large number of transistors (18048 transistors), we also analyzed the behaviors of RTN parameters such as amplitude and time constants in the individual transistors. It is demonstrated that the appearance probability of RTN becomes small under a small drain current condition, although large-amplitude RTN tends to appear in a very small number of cells.
Laboratory modelling of resonant wave-current interaction in the vicinity wind farm masts
NASA Astrophysics Data System (ADS)
Gunnoo, Hans; Abcha, Nizar; Garcia-Hermosa, Maria-Isabel; Ezersky, Alexander
2015-04-01
In the nearest future, by 2020, about 4% of electricity in Europe will be supplied by sea stations operating from renewable sources: ocean thermal energy, wave and tidal energy, wind farms. By now the wind stations located in the coastal zone, provide the most part of electricity in different European countries. Meanwhile, effects of wind farms on the environment are not sufficiently studied. We report results of laboratory simulations aimed at investigation of hydrodynamic fields arising in the vicinity of wind farm masts under the action of currents and surface waves. The main attention is paid to modeling the resonance effects when the amplitude of velocity pulsations in the vicinity of the masts under the joint action of currents and harmonic waves demonstrate significant growth. This resonance can lead to an increase in Reynolds stress on the bottom, intensification of sediment transport and sound generation. The experiments are performed in the 17 meters hydrodynamical channel of laboratory Morphodynamique Continentale et Côtière UMR CNRS 6143. Mast are modeled by vertical cylinder placed in a steady flow. Behind the cylinder turbulent Karman vortex street occurs. Results are obtained in interval of Reynolds numbers Re=103 - 104(Re=Ud/v, where U is the velocity of the flow, d is diameter of the cylinder, ν is cinematic viscosity). Harmonic surface waves of small amplitude propagating upstream are excited by computer controlled wave maker. In the absence of surface waves, turbulent Karman street with averaged frequency f is observed. It is revealed experimentally that harmonic surface waves with a frequencies closed to 2f can synchronize vortex shedding and increase the amplitude of velocity fluctuations in the wake of the cylinder. Map of regimes is found on the parameter plane amplitude of the surface wave - wave frequency. In order to distinguish the synchronization regimes, we defined phase of oscillations using the Hilbert transform technique. We investigate effect of hydrodynamic turbulence on synchronization of hydrodynamic wake by surface waves. To change the level of turbulence we used honeycombs. Measuring the velocity upstream the cylinder, we found that under our experimental conditions honeycombs can reduce the level of hydrodynamic turbulence in two times. It is found that intensity of turbulence determines the amplitude threshold of synchronization in the wake behind cylinder. The physical mechanisms of synchronization, its impact to the Reynolds stress and the possibility of such a resonance in the vicinity of masts located in the coastal zone are discussed. This work was supported by the OFELIA (Offshore Foundations Environmental Impact Assessments) project in the frame of the European cross-border cooperation programme INTERREG IV A France (Channel) - England, co-funded by the ERDF.
Ikeda, Atsushi; Nakagawa, Hiroshi; Lambert, Hendrik; Shah, Dipen C; Fonck, Edouard; Yulzari, Aude; Sharma, Tushar; Pitha, Jan V; Lazzara, Ralph; Jackman, Warren M
2014-12-01
Electrode-tissue contact force (CF) is believed to be a major factor in radiofrequency lesion size. The purpose of this study was to determine, in the beating canine heart, the relationship between CF and radiofrequency lesion size and the accuracy of predicting CF and lesion size by measuring electrogram amplitude, impedance, and electrode temperature. Eight dogs were studied closed chest. Using a 7F catheter with a 3.5 mm irrigated electrode and CF sensor (TactiCath, St. Jude Medical), radiofrequency applications were delivered to 3 separate sites in the right ventricle (30 W, 60 seconds, 17 mL/min irrigation) and 3 sites in the left ventricle (40 W, 60 seconds, 30 mL/min irrigation) at (1) low CF (median 8 g); (2) moderate CF (median 21 g); and (3) high CF (median 60 g). Dogs were euthanized and lesion size was measured. At constant radiofrequency and time, lesion size increased significantly with increasing CF (P<0.01). The incidence of a steam pop increased with both increasing CF and higher power. Peak electrode temperature correlated poorly with lesion size. The decrease in impedance during the radiofrequency application correlated well with lesion size for lesions in the left ventricle but less well for lesions in the right ventricle. There was a poor relationship between CF and the amplitude of the bipolar or unipolar ventricular electrogram, unipolar injury current, and impedance. Radiofrequencylesion size and the incidence of steam pop increase strikingly with increasing CF. Electrogram parameters and initial impedance are poor predictors of CF for radiofrequency ablation. © 2014 American Heart Association, Inc.
NASA Technical Reports Server (NTRS)
Powell, Michael R.; Hall, W. A.
1993-01-01
It would be of operational significance if one possessed a device that would indicate the presence of gas phase formation in the body during hypobaric decompression. Automated analysis of Doppler gas bubble signals has been attempted for 2 decades but with generally unfavorable results, except with surgically implanted transducers. Recently, efforts have intensified with the introduction of low-cost computer programs. Current NASA work is directed towards the development of a computer-assisted method specifically targeted to EVA, and we are most interested in Spencer Grade 4. We note that Spencer Doppler Grades 1 to 3 have increased in the FFT sonogram and spectrogram in the amplitude domain, and the frequency domain is sometimes increased over that created by the normal blood flow envelope. The amplitude perturbations are of very short duration, in both systole and diastole and at random temporal positions. Grade 4 is characteristic in the amplitude domain but with modest increases in the FFT sonogram and spectral frequency power from 2K to 4K over all of the cardiac cycle. Heart valve motion appears to characteristic display signals: (1) the demodulated Doppler signal amplitude is considerably above the Doppler-shifted blow flow signal (even Grade 4); and (2) demodulated Doppler frequency shifts are considerably greater (often several kHz) than the upper edge of the blood flow envelope. Knowledge of these facts will aid in the construction of a real-time, computer-assisted discriminator to eliminate cardiac motion artifacts. There could also exist perturbations in the following: (1) modifications of the pattern of blood flow in accordance with Poiseuille's Law, (2) flow changes with a change in the Reynolds number, (3) an increase in the pulsatility index, and/or (4) diminished diastolic flow or 'runoff.' Doppler ultrasound devices have been constructed with a three-transducer array and a pulsed frequency generator.
Effects of acidic pH on voltage-gated ion channels in rat trigeminal mesencephalic nucleus neurons.
Han, Jin-Eon; Cho, Jin-Hwa; Choi, In-Sun; Kim, Do-Yeon; Jang, Il-Sung
2017-03-01
The effects of acidic pH on several voltage-dependent ion channels, such as voltage-dependent K + and Ca 2+ channels, and hyperpolarization-gated and cyclic nucleotide-activated cation (HCN) channels, were examined using a whole-cell patch clamp technique on mechanically isolated rat mesencephalic trigeminal nucleus neurons. The application of a pH 6.5 solution had no effect on the peak amplitude of voltage-dependent K + currents. A pH 6.0 solution slightly, but significantly inhibited the peak amplitude of voltage-dependent K + currents. The pH 6.0 also shifted both the current-voltage and conductance-voltage relationships to the depolarization range. The application of a pH 6.5 solution scarcely affected the peak amplitude of membrane currents mediated by HCN channels, which were profoundly inhibited by the general HCN channel blocker Cs + (1 mM). However, the pH 6.0 solution slightly, but significantly inhibited the peak amplitude of HCN-mediated currents. Although the pH 6.0 solution showed complex modulation of the current-voltage and conductance-voltage relationships, the midpoint voltages for the activation of HCN channels were not changed by acidic pH. On the other hand, voltage-dependent Ca 2+ channels were significantly inhibited by an acidic pH. The application of an acidic pH solution significantly shifted the current-voltage and conductance-voltage relationships to the depolarization range. The modulation of several voltage-dependent ion channels by an acidic pH might affect the excitability of mesencephalic trigeminal nucleus neurons, and thus physiological functions mediated by the mesencephalic trigeminal nucleus could be affected in acidic pH conditions.
Automatic gain control in the echolocation system of dolphins
NASA Astrophysics Data System (ADS)
Au, Whitlow W. L.; Benoit-Bird, Kelly J.
2003-06-01
In bats and technological sonars, the gain of the receiver is progressively increased with time after the transmission of a signal to compensate for acoustic propagation loss. The current understanding of dolphin echolocation indicates that automatic gain control is not a part of their sonar system. In order to test this understanding, we have performed field measurements of free-ranging echolocating dolphins. Here we show that dolphins do possess an automatic gain control mechanism, but that it is implemented in the transmission phase rather than the receiving phase of a sonar cycle. We find that the amplitude of the dolphins' echolocation signals are highly range dependent; this amplitude increases with increasing target range, R, in a 20log(R) fashion to compensate for propagation loss. If the echolocation target is a fish school with many sound scatterers, the echoes from the school will remain nearly constant with range as the dolphin closes in on it. This characteristic has the same effect as time-varying gain in bats and technological sonar when considered from a sonar system perspective.
Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel.
Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De
2017-07-25
This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m². In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described.
Morgan, Tan; Whitehorn, Penelope; Lye, Gillian C; Vallejo-Marín, Mario
Bumblebees demonstrate an extensive capacity for learning complex motor skills to maximise exploitation of floral rewards. This ability is well studied in nectar collection but its role in pollen foraging is less well understood. Floral sonication is used by bees to extract pollen from some plant species with anthers which must be vibrated (buzzed) to release pollen. Pollen removal is determined by sonication characteristics including frequency and amplitude, and thus the ability to optimise sonication should allow bees to maximise the pollen collection. We investigated the ability of the buff-tailed bumblebee ( Bombus terrestris ) to modify the frequency and amplitude of their buzzes with increasing experience manipulating flowers of the buzz-pollinated plant Solanum rostratum . We analysed flight and feeding vibrations generated by naïve workers across feeding bouts. Feeding buzzes were of a higher frequency and a lower amplitude than flight buzzes. Both flight and feeding buzzes had reduced amplitudes with increasing number of foraging trips. However, the frequency of their feeding buzzes was reduced significantly more than their flight buzzes as bumblebee workers gained experience manipulating flowers. These results suggest that bumblebees are able to modify the characteristics of their buzzes with experience manipulating buzz-pollinated flowers. We discuss our findings in the context of bumblebee learning, and the current understanding of the optimal sonication characteristics for releasing pollen in buzz-pollinated species. Our results present a tantalising insight into the potential role of learning in floral sonication, paving the way for future research in this area.
Electrically evoked compound action potentials recorded from the sheep spinal cord.
Parker, John L; Karantonis, Dean M; Single, Peter S; Obradovic, Milan; Laird, James; Gorman, Robert B; Ladd, Leigh A; Cousins, Michael J
2013-01-01
The study aims to characterize the electrical response of dorsal column axons to depolarizing stimuli to help understand the mechanisms of spinal cord stimulation (SCS) for the relief of chronic pain. We recorded electrically evoked compound action potentials (ECAPs) during SCS in 10 anesthetized sheep using stimulating and recording electrodes on the same epidural SCS leads. A novel stimulating and recording system allowed artifact contamination of the ECAP to be minimized. The ECAP in the sheep spinal cord demonstrates a triphasic morphology, with P1, N1, and P2 peaks. The amplitude of the ECAP varies along the length of the spinal cord, with minimum amplitudes recorded from electrodes positioned over each intervertebral disc, and maximum amplitudes recorded in the midvertebral positions. This anatomically correlated depression of ECAP also correlates with the areas of the spinal cord with the highest thresholds for stimulation; thus regions of weakest response invariably had least sensitivity to stimulation by as much as a factor of two. The choice of stimulating electrode location can therefore have a profound effect on the power consumption for an implanted stimulator for SCS. There may be optimal positions for stimulation in the sheep, and this observation may translate to humans. Almost no change in conduction velocity (∼100 ms) was observed with increasing currents from threshold to twice threshold, despite increased Aβ fiber recruitment. Amplitude of sheep Aβ fiber potentials during SCS exhibit dependence on electrode location, highlighting potential optimization of Aβ recruitment and power consumption in SCS devices. © 2013 International Neuromodulation Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalinin, Yu. A.; Starodubov, A. V.; Fokin, A. S., E-mail: alexander1989fokin@mail.ru
The influence of the magnitude and configuration of the magnetic field on the parameters of electron bunches formed in a multivelocity electron beam is analyzed. It is shown that the use of a cathode unshielded from the magnetic field and a nonuniform magnetic field increasing along the drift space enables the formation of compact electron bunches. The ratio between the current density in such bunches and the beam current density at the entrance to the drift space reaches 10{sup 6}, which results in a substantial broadening of the output microwave spectrum due to an increase in the amplitudes of themore » higher harmonics of the fundamental frequency.« less
Dispersion and viscous attenuation of capillary waves with finite amplitude
NASA Astrophysics Data System (ADS)
Denner, Fabian; Paré, Gounséti; Zaleski, Stéphane
2017-04-01
We present a comprehensive study of the dispersion of capillary waves with finite amplitude, based on direct numerical simulations. The presented results show an increase of viscous attenuation and, consequently, a smaller frequency of capillary waves with increasing initial wave amplitude. Interestingly, however, the critical wavenumber as well as the wavenumber at which the maximum frequency is observed remain the same for a given two-phase system, irrespective of the wave amplitude. By devising an empirical correlation that describes the effect of the wave amplitude on the viscous attenuation, the dispersion of capillary waves with finite initial amplitude is shown to be, in very good approximation, self-similar throughout the entire underdamped regime and independent of the fluid properties. The results also shown that analytical solutions for capillary waves with infinitesimal amplitude are applicable with reasonable accuracy for capillary waves with moderate amplitude.
Synchrony of two uncoupled neurons under half wave sine current stimulation
NASA Astrophysics Data System (ADS)
Peng, Yueping; Wang, Jue; Jian, Zhong
2009-04-01
Two uncoupled Hindmarsh-Rose neurons under different initial discharge patterns are stimulated by the half wave sine current; and the synchronization mechanism of the two neurons is discussed by analyzing their membrane potentials and their interspike interval (ISI) distribution. Under the half wave sine current stimulation, the two uncoupled neurons under different initial conditions, whose parameter r (the parameter r is related to the membrane penetration of calcium ion, and reflects the changing speed of the slow adaptation current) is different or the same, can realize discharge synchronization (phase synchronization) or the full synchronization (state synchronization). The synchronization characteristics are mainly related to the frequency and the amplitude of the half wave sine current, and are little related to the parameter r and the initial state of the two neurons. This investigation shows the mechanism of the current's amplitude and its frequency affecting the synchronization process of neurons, and the neurons' discharge patterns and synchronization process can be adjusted and controlled by the current's amplitude and its frequency. This result is of far reaching importance to study synchronization and encode of many neurons or neural network, and provides the theoretic basis for studying the mechanism of some nervous diseases such as epilepsy and Alzheimer's disease by the slow wave of EEG.
NASA Astrophysics Data System (ADS)
Saeed, R.; Shah, Asif; Noaman-Ul-Haq, Muhammad
2010-10-01
The nonlinear propagation of ion-acoustic solitons in relativistic electron-positron-ion plasma comprising of Boltzmannian electrons, positrons, and relativistic thermal ions has been examined. The Korteweg-de Vries equation has been derived by reductive perturbation technique. The effect of various plasma parameters on amplitude and structure of solitary wave is investigated. The pert graphical view of the results has been presented for illustration. It is observed that increase in the relativistic streaming factor causes the soliton amplitude to thrive and its width shrinks. The soliton amplitude and width decline as the ion to electron temperature ratio is increased. The increase in positron concentration results in reduction of soliton amplitude. The soliton amplitude enhances as the electron to positron temperature ratio is increased. Our results may have relevance in the understanding of astrophysical plasmas.
Garcia, Alfredo J.; Dashevskiy, Tatiana; Khuu, Maggie A.; Ramirez, Jan-Marino
2017-01-01
The preBötzinger complex (preBötC) is a medullary brainstem network crucially involved in the generation of different inspiratory rhythms. In the isolated brainstem slice, the preBötC reconfigures to produce different rhythms that we refer to as “fictive eupnea” under baseline conditions (i.e., carbogen), and “fictive gasping” in hypoxia. We recently demonstrated that fictive eupnea is irregular following exposure to chronic intermittent hypoxia (CIH). However, it is unknown how CIH impacts fictive gasping. To address this, brain slices containing the preBötC were prepared from control and CIH exposed mice. Electrophysiological recordings of rhythmogenesis were obtained during the perihypoxic interval. We examined how CIH affects various dynamic aspects of the rhythm characterized by: (1) the irregularity score (IrS), to assess burst-to-variability; (2) the fluctuation value (χ), to quantify the gain of oscillations throughout the time series; and (3) Sample Entropy (sENT), to characterize the pattern/structure of oscillations in the time series. In baseline conditions, CIH increased IrS of amplitude (0.21 ± 0.2) and χ of amplitude (0.34 ± 0.02) but did not affect sENT of amplitude. This indicated that CIH increased burst-to-burst irregularity and the gain of amplitude fluctuations but did not affect the overall pattern/structure of amplitude oscillations. During the transition to hypoxia, 33% of control rhythms whereas 64% of CIH-exposed rhythms showed no doubling of period, suggesting that the probability for stable rhythmogenesis during the transition to hypoxia was greater following CIH. While 29% of control rhythms maintained rhythmicity throughout hypoxia, all slices from CIH exposed mice exhibited rhythms throughout the hypoxic interval. During hypoxia, differences in χ for amplitude were no longer observed between groups. To test the contribution of the persistent sodium current, we examined how riluzole influenced rhythmogenesis following CIH. In networks exposed to CIH, riluzole reduced the IrS of amplitude (-24 ± 14%) yet increased IrS of period (+49 ± 17%). Our data indicate that CIH affects the preBötC, in a manner dependent on the state of the oxygenation. Along with known changes that CIH has on peripheral sensory organs, the effects of CIH on the preBötC may have important implications for sleep apnea, a condition characterized by rapid transitions between normoxia and hypoxia. PMID:28936176
Long-term academic stress increases the late component of error processing: an ERP study.
Wu, Jianhui; Yuan, Yiran; Duan, Hongxia; Qin, Shaozheng; Buchanan, Tony W; Zhang, Kan; Zhang, Liang
2014-05-01
Exposure to long-term stress has a variety of consequences on the brain and cognition. Few studies have examined the influence of long-term stress on event related potential (ERP) indices of error processing. The current study investigated how long-term academic stress modulates the error related negativity (Ne or ERN) and the error positivity (Pe) components of error processing. Forty-one male participants undergoing preparation for a major academic examination and 20 non-exam participants completed a Go-NoGo task while ERP measures were collected. The exam group reported higher perceived stress levels and showed increased Pe amplitude compared with the non-exam group. Participants' rating of the importance of the exam was positively associated with the amplitude of Pe, but these effects were not found for the Ne/ERN. These results suggest that long-term academic stress leads to greater motivational assessment of and higher emotional response to errors. Copyright © 2014 Elsevier B.V. All rights reserved.
Ma, Xue-Ling; Zhang, Feng; Wang, Yu-Xiang; He, Cong-Cong; Tian, Kun; Wang, Hong-Gang; An, Di; Heng, Bin; Liu, Yan-Qiang
2016-07-25
In the present study, we established an in vitro model of hypoxic-ischemia via exposing primary neurons of newborn rats to oxygen-glucose deprivation (OGD) and observing the effects of genistein, a soybean isoflavone, on hypoxic-ischemic neuron viability, apoptosis, voltage-activated potassium (Kv) and sodium (Nav) currents, and glutamate receptor subunits. The results indicated that OGD exposure reduced the viability and increased the apoptosis of brain neurons. Meanwhile, OGD exposure caused changes in the current-voltage curves and current amplitude values of voltage-activated potassium and sodium currents; OGD exposure also decreased GluR2 expression and increased NR2 expression. However, genistein at least partially reversed the effects caused by OGD. The results suggest that hypoxic-ischemia-caused neuronal apoptosis/death is related to an increase in K(+) efflux, a decrease in Na(+) influx, a down-regulation of GluR2, and an up-regulation of NR2. Genistein may exert some neuroprotective effects via the modulation of Kv and Nav currents and the glutamate signal pathway, mediated by GluR2 and NR2. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Flux-flow critical-state susceptibility of superconductors
NASA Astrophysics Data System (ADS)
Chen, D.-X.; Pardo, E.; Sanchez, A.
2005-06-01
The field-amplitude Hm and circular frequency ω dependent ac susceptibility, χ =χ'-jχ″, of a hard superconducting cylinder with flux-flow type current-voltage characteristic is calculated. A remarkable feature of the resultant χ(Hm,ω ) is that both the maximum χ″, χm″, and dlgHm(χm″)/dlgω increase with increasing ω. This behavior is observed in actual Bi-2223/Ag tapes and YBa2Cu3O7-δ-coated conductors. Our result provides a useful tool to study the intergranular critical state in high-temperature superconductors.
Subretinal electrical stimulation preserves inner retinal function in RCS rat retina.
Ciavatta, Vincent T; Mocko, Julie A; Kim, Moon K; Pardue, Machelle T
2013-01-01
Previously, studies showed that subretinal electrical stimulation (SES) from a microphotodiode array (MPA) preserves electroretinography (ERG) b-wave amplitude and regional retinal structure in the Royal College of Surgeons (RCS) rat and simultaneously upregulates Fgf2 expression. This preservation appears to be associated with the increased current produced when the MPA is exposed to ERG test flashes, as weekly ERG testing produces greater neuroprotection than biweekly or no testing. Using an infrared source to stimulate the MPA while avoiding potential confounding effects from exposing the RCS retina to high luminance white light, this study examined whether neuroprotective effects from SES increased with subretinal current in a dose-dependent manner. RCS rats (n=49) underwent subretinal implantation surgery at P21 with MPA devices in one randomly selected eye, and the other eye served as the control. Naïve RCS rats (n=25) were also studied. To increase SES current levels, implanted eyes were exposed to 15 min per session of flashing infrared light (IR) of defined intensity, frequency, and duty cycle. Rats were divided into four SES groups that received ERG testing only (MPA only), about 450 µA/cm2 once per week (Low 1X), about 450 µA/cm2 three times per week (Low 3X), and about 1350 µA/cm2 once per week (High 1X). One eye of the control animals was randomly chosen for IR exposure. All animals were followed for 4 weeks with weekly binocular ERGs. A subset of the eyes was used to measure retina Fgf2 expression with real-time reverse-transcription PCR. Eyes receiving SES showed significant preservation of b-wave amplitude, a- and b-wave implicit times, oscillatory potential amplitudes, and post-receptoral parameters (Vmax and log σ) compared to untreated eyes. All SES-treated eyes had similar preservation, regardless of increased SES from IR light exposure. SES-treated eyes tended to have greater retinal Fgf2 expression than untreated eyes, but Fgf2 expression did not increase with IR light. The larger post-receptoral responses (Vmax), greater post-receptoral sensitivity (logσ), and larger oscillatory potentials suggest SES-treated eyes maintained better inner retinal function than the opposite, untreated eyes. This suggests that in addition to preserving photoreceptors in RCS rats, SES may also promote more robust signal transmission through the retinal network compared to the control eyes. These studies suggest that the protective effects of SES on RCS retinal function cannot be improved with additional subretinal current induction from the MPA, or the charge injection provided by ERG Ganzfeld flashes was not adequately mimicked by the flashing IR light used in this study.
Radiative Effects of the Diurnal Cycle of Clouds and their Response to Climate Change
NASA Astrophysics Data System (ADS)
Yin, J.; Porporato, A. M.
2017-12-01
Clouds effectively control the Earth's energy budget by reflecting solar radiation and restricting the terrestrial one. While these dynamics have been regarded as one of vexing problem in understanding the climate system and have thus attracted much attention in the literature, less research has been devoted to the diurnal cycle of clouds (DCC). Here we first quantify the mean, amplitude, and phase of the cloud cycles in current climate models and compare them with satellite observations and reanalysis data. We show that the mean values appear to be reliable but the amplitude and phase of the DCC are less consistent. These inconsistencies are interpreted using a minimalist radiative balance model to demonstrate their impacts on surface temperature. The DCC radiative impacts are then analyzed in terms of phase shift and amplitude modulation of DCC and their so-called cloud radiative effects are estimated directly from climate model outputs. This allows us to show that DCC variations may account for up to 10-20% of the total cloud radiative impacts, calling for increased attention to the temporal evolution of the DCC in climate models.
Dynamic characteristics of 4H-SiC drift step recovery diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, P. A., E-mail: Pavel.Ivanov@mail.ioffe.ru; Kon’kov, O. I.; Samsonova, T. P.
The dynamic characteristics of 4H-SiC p{sup +}–p–n{sub 0}–n{sup +} diodes are experimentally studied in the pulsed modes characteristic of the operation of drift step recovery diodes (DSRD-mode). The effect of the subnanosecond termination of the reverse current maintained by electron-hole plasma preliminarily pumped by a forward current pulse is analyzed in detail. The influence exerted on the DSRD effect by the amplitude of reverse-voltage pulses, the amplitude and duration of forward-current pulses, and the time delay between the forward and reverse pulses is demonstrated and accounted for.
The singular behavior of one-loop massive QCD amplitudes with one external soft gluon
NASA Astrophysics Data System (ADS)
Bierenbaum, Isabella; Czakon, Michał; Mitov, Alexander
2012-03-01
We calculate the one-loop correction to the soft-gluon current with massive fermions. This current is process independent and controls the singular behavior of one-loop massive QCD amplitudes in the limit when one external gluon becomes soft. The result derived in this work is the last missing process-independent ingredient needed for numerical evaluation of observables with massive fermions at hadron colliders at the next-to-next-to-leading order.
Inherent characteristics of sawtooth cycles can explain different glacial periodicities
NASA Astrophysics Data System (ADS)
Omta, Anne Willem; Kooi, Bob W.; van Voorn, George A. K.; Rickaby, Rosalind E. M.; Follows, Michael J.
2016-01-01
At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from 40 to 100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two variables, one of which exhibits sawtooth oscillations, resembling the glacial-interglacial cycles, whereas the other variable exhibits spikes at the rapid transitions. When applying a sinusoidal forcing with a fixed period, there emerges a rich variety of cycles with different periodicities, each being a multiple of the forcing period. Furthermore, the dominant periodicity of the system can change, while the forcing periodicity remains fixed, due to either random variations or different frequency components of the orbital forcing. Two key relationships stand out as predictions to be tested against observations: (1) the amplitude and the periodicity of the cycles are approximately linearly proportional to each other, a relationship that is also found in the δ ^{18}O temperature proxy. (2) The magnitude of the spikes increases with increasing periodicity and amplitude of the sawtooth. This prediction could be used to identify one or more currently hidden spiking variables driving the glacial-interglacial transitions. Essentially, the quest would be for any proxy record, concurrent with a dynamical model prediction, that exhibits deglacial spikes which increase at times when the amplitude/periodicity of the glacial cycles increases. In the specific context of our calcifier-alkalinity mechanism, the records of interest would be calcifier productivity and calcite accumulation. We believe that such a falsifiable hypothesis should provide a strong motivation for the collection of further records.
Spectral characteristics of geomagnetic field variations at low and equatorial latitudes
Campbell, W.H.
1977-01-01
Geomagnetic field spectra from eight standard observations at geomagnetic latitudes below 30?? were studied to determine the field characteristics unique to the equatorial region. Emphasis was placed upon those variations having periods between 5 min and 4 hr for a selection of magnetically quiet, average, and active days in 1965. The power spectral density at the equator was about ten times that the near 30?? latitude. The initial manifestation of the equatorial electrojet as evidenced by the east-west alignment of the horizontal field or the change in vertical amplitudes occurred below about 20?? latitude. Induced current effects upon the vertical component from which the Earth conductivity might be inferred could best be obtained at times and latitudes unaffected by the electrojet current. Values of about 1.6 ?? 103 mhos/m for an effective skin depth of 500-600 km were determined. The spectral amplitudes increased linearly with geomagnetic activity index, Ap. The spectral slope had a similar behavior at all latitudes. The slope changed systematically with Ap-index and showed a diurnal variation, centered on local noon, that changed form with geomagnetic activity.
A precise determination of α using B0 →ρ+ρ- and B+ →K∗0ρ+
NASA Astrophysics Data System (ADS)
Beneke, M.; Gronau, M.; Rohrer, J.; Spranger, M.
2006-06-01
The effect of the penguin amplitude on extracting α from CP asymmetries in B0 →ρ+ρ- decays is studied using information on the SU(3)-related penguin amplitude in B+ →K∗0ρ+. Conservative bounds on non-factorizable SU(3) breaking, small amplitudes, and the strong phase difference between tree and penguin amplitudes, are shown to reduce the error in α in comparison with the one obtained using isospin symmetry in B → ρρ. Current measurements imply α = [ 90 ± 7 (exp)-5+2 (th) ] °.
NASA Astrophysics Data System (ADS)
Passeri, Davina L.; Hagen, Scott C.; Medeiros, Stephen C.; Bilskie, Matthew V.
2015-12-01
This study evaluates the geophysical influence of the combined effects of historic sea level rise (SLR) and morphology on tidal hydrodynamics in the Grand Bay estuary, located in the Mississippi Sound. Since 1848, the landscape of the Mississippi Sound has been significantly altered as a result of natural and anthropogenic factors including the migration of the offshore Mississippi-Alabama (MSAL) barrier islands and the construction of navigational channels. As a result, the Grand Bay estuary has undergone extensive erosion resulting in the submergence of its protective barrier island, Grand Batture. A large-domain hydrodynamic model was used to simulate present (circa 2005) and past conditions (circa 1848, 1917, and 1960) with unique sea levels, bathymetry, topography and shorelines representative of each time period. Additionally, a hypothetical scenario was performed in which Grand Batture Island exists under 2005 conditions in order to observe the influence of the island on tidal hydrodynamics within the Grand Bay estuary. Changes in tidal amplitudes from the historic conditions varied. Within the Sound, tidal amplitudes were unaltered due to the open exposed shoreline; however, in semi-enclosed embayments outside of the Sound, tidal amplitudes increased. In addition, harmonic constituent phases were slower historically. The position of the MSAL barrier island inlets influenced tidal currents within the Sound; the westward migration of Petit Bois Island allowed stronger tidal velocities to be centered on the Grand Batture Island. Maximum tidal velocities within the Grand Bay estuary were 5 cm/s faster historically, and reversed from being flood dominant in 1848 to ebb dominant in 2005. If the Grand Batture Island was reconstructed under 2005 conditions, tidal amplitudes and phases would not be altered, indicating that the offshore MSAL barrier islands and SLR have a greater influence on these tidal parameters within the estuary. However, maximum tidal velocities would increase by as much as 5 cm/s (63%) and currents would become more ebb dominant. Results of this study illustrate the hydrodynamic response of the system to SLR and the changing landscape, and provide insight into potential future changes under SLR and barrier island evolution.
Ethridge, Lauren E; White, Stormi P; Mosconi, Matthew W; Wang, Jun; Pedapati, Ernest V; Erickson, Craig A; Byerly, Matthew J; Sweeney, John A
2017-01-01
Studies in the fmr1 KO mouse demonstrate hyper-excitability and increased high-frequency neuronal activity in sensory cortex. These abnormalities may contribute to prominent and distressing sensory hypersensitivities in patients with fragile X syndrome (FXS). The current study investigated functional properties of auditory cortex using a sensory entrainment task in FXS. EEG recordings were obtained from 17 adolescents and adults with FXS and 17 age- and sex-matched healthy controls. Participants heard an auditory chirp stimulus generated using a 1000-Hz tone that was amplitude modulated by a sinusoid linearly increasing in frequency from 0-100 Hz over 2 s. Single trial time-frequency analyses revealed decreased gamma band phase-locking to the chirp stimulus in FXS, which was strongly coupled with broadband increases in gamma power. Abnormalities in gamma phase-locking and power were also associated with theta-gamma amplitude-amplitude coupling during the pre-stimulus period and with parent reports of heightened sensory sensitivities and social communication deficits. This represents the first demonstration of neural entrainment alterations in FXS patients and suggests that fast-spiking interneurons regulating synchronous high-frequency neural activity have reduced functionality. This reduced ability to synchronize high-frequency neural activity was related to the total power of background gamma band activity. These observations extend findings from fmr1 KO models of FXS, characterize a core pathophysiological aspect of FXS, and may provide a translational biomarker strategy for evaluating promising therapeutics.
Coherence resonance in low-density jets
NASA Astrophysics Data System (ADS)
Zhu, Yuanhang; Gupta, Vikrant; Li, Larry K. B.
2017-11-01
Coherence resonance is a phenomenon in which the response of a stable nonlinear system to noise exhibits a peak in coherence at an intermediate noise amplitude. We report the first experimental evidence of coherence resonance in a purely hydrodynamic system, a low-density jet whose variants can be found in many natural and engineering systems. This evidence comprises four parts: (i) the jet's response amplitude increases as the Reynolds number approaches the instability boundary under a constant noise amplitude; (ii) as the noise amplitude increases, the amplitude distribution of the jet response first becomes unimodal, then bimodal, and finally unimodal again; (iii) a distinct peak emerges in the coherence factor at an intermediate noise amplitude; and (iv) for a subcritical Hopf bifurcation, the decay rate of the autocorrelation function exhibits a maximum at an intermediate noise amplitude, but for a supercritical Hopf bifurcation, the decay rate decreases monotonically with increasing noise amplitude. It is clear that coherence resonance can provide valuable information about a system's nonlinearity even in the unconditionally stable regime, opening up new possibilities for its use in system identification and flow control. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815).
Ion Heating During Local Helicity Injection Plasma Startup in the Pegasus ST
NASA Astrophysics Data System (ADS)
Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Reusch, J. A.
2015-11-01
Plasmas in the Pegasus ST are initiated either through standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of impurity ion heating has been observed, with the passively measured impurity Ti as high as 800 eV compared to Ti ~ 60 eV and Te ~ 175 eV during standard inductive current drive discharges. In addition, non-thermal ion velocity distributions are observed and appear to be strongest near the helicity injectors. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n =1 MHD mode. An approximate temporal scaling of the heating with the amplitude of higher frequency magnetic fluctuations has also been observed, with large amounts of power spectral density present at several impurity ion cyclotron frequencies. Recent experiments have focused on investigating the impurity ion heating scaling with the ion charge to mass ratio as well as the reconnecting field strength. The ion charge to mass ratio was modified by observing different impurity charge states in similar LHI plasmas while the reconnecting field strength was modified by changing the amount of injected edge current. Work supported by US DOE grant DE-FG02-96ER54375.
Tian, Kun; He, Cong-Cong; Xu, Hui-Nan; Wang, Yu-Xiang; Wang, Hong-Gang; An, Di; Heng, Bin; Pang, Wei; Jiang, Yu-Gang; Liu, Yan-Qiang
2017-05-01
In the present study, cultured rat primary neurons were exposed to a medium containing N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a specific cell membrane-permeant Zn 2+ chelator, to establish a model of free Zn 2+ deficiency in neurons. The effects of TPEN-mediated free Zn 2+ ion reduction on neuronal viability and on the performance of voltage-gated sodium channels (VGSCs) and potassium channels (Kvs) were assessed. Free Zn 2+ deficiency 1) markedly reduced the neuronal survival rate, 2) reduced the peak amplitude of I Na , 3) shifted the I Na activation curve towards depolarization, 4) modulated the sensitivity of sodium channel voltage-dependent inactivation to a depolarization voltage, and 5) increased the time course of recovery from sodium channel inactivation. In addition, free Zn 2+ deficiency by TPEN notably enhanced the peak amplitude of transient outward K + currents (I A ) and delayed rectifier K + currents (I K ), as well as caused hyperpolarization and depolarization directional shifts in their steady-state activation curves, respectively. Zn 2+ supplementation reversed the effects induced by TPEN. Our results indicate that free Zn 2+ deficiency causes neuronal damage and alters the dynamic characteristics of VGSC and Kv currents. Thus, neuronal injury caused by free Zn 2+ deficiency may correlate with its modulation of the electrophysiological properties of VGSCs and Kvs. Copyright © 2017 Elsevier GmbH. All rights reserved.
Xiang, Kun; Tietz, Elizabeth I
2007-09-01
Withdrawal from 1-week oral administration of the benzodiazepine, flurazepam (FZP) is associated with increased alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor (AMPAR) miniature excitatory postsynaptic currents (mEPSCs) but reduction of N-methyl-D-aspartic acid (NMDA) receptor (NMDAR)-evoked (e)EPSCs in hippocampal CA1 neurons. A positive correlation was observed between increased AMPAR-mediated mEPSC amplitude and anxiety-like behavior in 1-day FZP-withdrawn rats. These effects were disrupted by systemic AMPAR antagonist administration (GYKI-52466, 0.5 mg/kg, intraperitoneal) at withdrawal onset, strengthening the hypothesis that CA1 neuron AMPAR-mediated hyperexcitability is a central component of a functional anatomic circuit associated with the expression of withdrawal anxiety. Abolition of AMPAR current upregulation in 2-day FZP withdrawn rats by GYKI-52466 injection also reversed the reduction in NMDAR-mediated eEPSC amplitude in CA1 neurons from the same rats, suggesting that downregulation of NMDAR function may serve a protective, negative-feedback role to prevent AMPAR-mediated neuronal overexcitation. NMDAR antagonist administration (MK-801, 0.25 mg/kg intraperitoneally) had no effect on modifying increased glutamatergic strength or on withdrawal anxiety, whereas injection of an L-type voltage-gated calcium channel antagonist, nimodipine (10 mg/kg, intraperitoneally) averted AMPAR current enhancement and anxiety-like behavior, suggesting that these manifestations may be initiated by a voltage-gated calcium channel-dependent signal transduction pathway. An evidence-based model of likely cellular mechanisms in the hippocampus contributing to benzodiazepine withdrawal anxiety was proposed implicating regulation of multiple CA1 neuron ion channels.
Active lamp pulse driver circuit. [optical pumping of laser media
NASA Technical Reports Server (NTRS)
Logan, K. E. (Inventor)
1983-01-01
A flashlamp drive circuit is described which uses an unsaturated transistor as a current mode switch to periodically subject a partially ionized gaseous laser excitation flashlamp to a stable, rectangular pulse of current from an incomplete discharge of an energy storage capacitor. A monostable multivibrator sets the pulse interval, initiating the pulse in response to a flash command by providing a reference voltage to a non-inverting terminal of a base drive amplifier; a tap on an emitter resistor provides a feedback signal sensitive to the current amplitude to an inverting terminal of amplifier, thereby controlling the pulse amplitude. The circuit drives the flashlamp to provide a squarewave current flashlamp discharge.
Kamarajan, Chella; Pandey, Ashwini K; Chorlian, David B; Manz, Niklas; Stimus, Arthur T; Bauer, Lance O; Hesselbrock, Victor M; Schuckit, Marc A; Kuperman, Samuel; Kramer, John; Porjesz, Bernice
2015-11-01
Individuals at high risk to develop alcoholism often manifest neurocognitive deficits as well as increased impulsivity. The goal of the present study is to elucidate reward processing deficits, externalizing disorders, and impulsivity as elicited by electrophysiological, clinical and behavioral measures in subjects at high risk for alcoholism from families densely affected by alcoholism in the context of brain maturation across age groups and gender. Event-related potentials (ERPs) and current source density (CSD) during a monetary gambling task (MGT) were measured in 12-25 year old offspring (N=1864) of families in the Collaborative Study on the Genetics of Alcoholism (COGA) Prospective study; the high risk (HR, N=1569) subjects were from families densely affected with alcoholism and the low risk (LR, N=295) subjects were from community families. Externalizing disorders and impulsivity scores were also compared between LR and HR groups. HR offspring from older (16-25 years) male and younger (12-15 years) female subgroups showed lower P3 amplitude than LR subjects. The amplitude decrement was most prominent in HR males during the loss condition. Overall, P3 amplitude increase at anterior sites and decrease at posterior areas were seen in older compared to younger subjects, suggesting frontalization during brain maturation. The HR subgroups also exhibited hypofrontality manifested as weaker CSD activity during both loss and gain conditions at frontal regions. Further, the HR subjects had higher impulsivity scores and increased prevalence of externalizing disorders. P3 amplitudes during the gain condition were negatively correlated with impulsivity scores. Older male and younger female HR offspring, compared to their LR counterparts, manifested reward processing deficits as indexed by lower P3 amplitude and weaker CSD activity, along with higher prevalence of externalizing disorders and higher impulsivity scores. Reward related P3 is a valuable measure reflecting neurocognitive dysfunction in subjects at risk for alcoholism, as well as to characterize reward processing and brain maturation across gender and age group. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Yamauchi, M.
1994-01-01
A two-dimensional numerical simulation of finite-amplitude magnetohydrodynamic (MHD) magnetosonic waves is performed under a finite-velocity background convection condition. Isothermal cases are considered for simplicity. External dissipation is introduced by assuming that the field-aligned currents are generated in proportion to the accumulated charges. The simulation results are as follows: Paired field-aligned currents are found from the simulated waves. The flow directions of these field-aligned currents depend on the angle between the background convection and the wave normal, and hence two pairs of field-aligned currents are found from a bowed wave if we look at the overall structure. The majority of these field-aligned currents are closed within each pair rather than between two wings. These features are not observed under slow background convection. The result could be applied to the cusp current system and the substorm current system.
Buffet induced structural/flight-control system interaction of the X-29A aircraft
NASA Technical Reports Server (NTRS)
Voracek, David F.; Clarke, Robert
1991-01-01
High angle-of-attack flight regime research is currently being conducted for modern fighter aircraft at the NASA Ames Research Center's Dryden Flight Research Facility. This flight regime provides enhanced maneuverability to fighter pilots in combat situations. Flight research data are being acquired to compare and validate advanced computational fluid dynamic solutions and wind-tunnel models. High angle-of-attack flight creates unique aerodynamic phenomena including wing rock and buffet on the airframe. These phenomena increase the level of excitation of the structural modes, especially on the vertical and horizontal stabilizers. With high gain digital flight-control systems, this structural response may result in an aeroservoelastic interaction. A structural interaction on the X-29A aircraft was observed during high angle-of-attack flight testing. The roll and yaw rate gyros sensed the aircraft's structural modes at 11, 13, and 16 Hz. The rate gyro output signals were then amplified through the flight-control laws and sent as commands to the flaperons and rudder. The flight data indicated that as the angle of attack increased, the amplitude of the buffet on the vertical stabilizer increased, which resulted in more excitation to the structural modes. The flight-control system sensors and command signals showed this increase in modal power at the structural frequencies up to a 30 degree angle-of-attack. Beyond a 30 degree angle-of-attack, the vertical stabilizer response, the feedback sensor amplitude, and control surface command signal amplitude remained relatively constant. Data are presented that show the increased modal power in the aircraft structural accelerometers, the feedback sensors, and the command signals as a function of angle of attack. This structural interaction is traced from the aerodynamic buffet to the flight-control surfaces.
Ultrafast probing of magnetic field growth inside a laser-driven solenoid
NASA Astrophysics Data System (ADS)
Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.
2017-03-01
We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.
Ultrafast probing of magnetic field growth inside a laser-driven solenoid.
Goyon, C; Pollock, B B; Turnbull, D P; Hazi, A; Divol, L; Farmer, W A; Haberberger, D; Javedani, J; Johnson, A J; Kemp, A; Levy, M C; Grant Logan, B; Mariscal, D A; Landen, O L; Patankar, S; Ross, J S; Rubenchik, A M; Swadling, G F; Williams, G J; Fujioka, S; Law, K F F; Moody, J D
2017-03-01
We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.
Huang, Mei-Han; Shen, Ai-Yu; Wang, Trey-Shy; Wu, Hui-Ming; Kang, Ya-Fei; Chen, Chia-Tai; Hsu, Tai-I; Chen, Bing-Shuo; Wu, Sheng-Nan
2011-02-04
Methadone (Mtd) is a widely used opioid drug associated with the side effect of hyperprolactinemia. The mechanism of how Mtd induces prolactin secretion remains unclear. The effects of Mtd and its two main metabolites (EDDP: (±)-2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium percholarate and EMDP: 2-ethyl-5-methyl-3,3-dipnehyl-1-pyrroline) on ion currents were investigated in GH₃ pituitary tumor cells. Hyperpolarization-elicited K+ currents in GH₃ cells bathed in a high-K(+), Ca(2+)-free solution were studied to evaluate the effects of Mtd and other related compounds on the ether-à-go-go-related-gene (erg) K(+) current (I(K(erg))). Mtd suppressed the amplitude of I(K(erg)) in a concentration-dependent manner with an IC(50) value of 10.4 μM. With the aid of a minimal binding scheme, the inhibitory action of Mtd on I(K(erg)) was estimated with a dissociation constant of 8.2 μM. Mtd tended to increase the rate of I(K(erg)) deactivation in a voltage-dependent fashion. EDDP (10 μM) had no effect on I(K(erg)), while EMDP (10μM) slightly suppressed it. In GH₃ cells incubated with naloxone (30 μM), the Mtd-induced inhibition of I(K(erg)) remained unaltered. Under cell-attached voltage-clamp recordings, Mtd increased the frequency of spontaneous action currents with no change in current amplitude. Similarly, Mtd can suppress I(K(erg)) in differentiated NG108-15 cells; dynorphin A(1-13) did not reverse Mtd-induced inhibition of I(K(erg)). This study shows that Mtd has a depressant effect on I(K(erg)), and suggests its ability to affect membrane excitability and prolactin secretion. The cyclization of Mtd, in which EDDP and EMDP are formed, tends to be critical in removal of the Mtd binding to erg K+ channel. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Amplitude-independent flaw length determination using differential eddy current
NASA Astrophysics Data System (ADS)
Shell, E.
2013-01-01
Military engine component manufacturers typically specify the eddy current (EC) inspection requirements as a crack length or depth with the assumption that the cracks in both the test specimens and inspected component are of a similar fixed aspect ratio. However, differential EC response amplitude is dependent on the area of the crack face, not the length or depth. Additionally, due to complex stresses, in-service cracks do not always grow in the assumed manner. It would be advantageous to use more of the information contained in the EC data to better determine the full profile of cracks independent of the fixed aspect ratio amplitude response curve. A specimen with narrow width notches is used to mimic cracks of varying aspect ratios in a controllable manner. The specimen notches have aspect ratios that vary from 1:1 to 10:1. Analysis routines have been developed using the shape of the EC response signals that can determine the length of a surface flaw of common orientations without use of the amplitude of the signal or any supporting traditional probability of detection basis. Combined with the relationship between signal amplitude and area, the depth of the flaw can also be calculated.
Gehring, J M; Cho, J-G; Wheatley, J R; Amis, T C
2014-03-01
We examined thermocouple and pressure cannulae responses to oral and nasal airflow using a polyester model of a human face, with patent nasal and oral orifices instrumented with a dual thermocouple (F-ONT2A, Grass) or a dual cannula (0588, Braebon) pressure transducer (± 10 cm H2O, Celesco) system. Tidal airflow was generated using a dual compartment facemask with pneumotachographs (Fleisch 2) connected to the model orifices. During nasal breathing: thermocouple amplitude = 0.38 Ln [pneumotachograph amplitude] + 1.31 and pressure cannula amplitude = 0.93 [pneumotachograph amplitude](2.15); during oral breathing: thermocouple amplitude = 0.44 Ln [pneumotachograph amplitude] + 1.07 and pressure cannula amplitude = 0.33 [pneumotachograph amplitude](1.72); (all range ∼ 0.1-∼ 4.0 L s(-1); r(2) > 0.7). For pneumotachograph amplitudes <1 L s(-1) (linear model) change in thermocouple amplitude/unit change in pneumotachograph amplitude was similar for nasal and oral airflow, whereas nasal pressure cannula amplitude/unit change in pneumotachograph amplitude was almost four times that for oral. Increasing oral orifice area from 0.33 cm(2) to 2.15 cm(2) increased oral thermocouple amplitude/unit change in pneumotachograph amplitude by ∼ 58% but decreased pressure cannula amplitude/unit change in pneumotachograph amplitude by 49%. For pneumotachograph amplitudes up to 1 L s(-1), alterations in inspiratory/expiratory ratios or total respiratory time did not affect the sensitivity of either nasal or oral pressure cannulae or the nasal thermocouple, but the oral thermocouple sensitivity was influenced by respiratory cycle time. Different nasal and oral responses influence the ability of these systems to quantitatively assess nasal and oral airflow and oro-nasal airflow partitioning.
Excitatory synapse in the rat hippocampus in tissue culture and effects of aniracetam.
Ozawa, S; Iino, M; Abe, M
1991-10-01
Excitatory synaptic connections between rat hippocampal neurons were established in tissue culture. The electrophysiological and pharmacological properties of these synapses were studied with the use of the tight-seal whole-cell recording technique. The excitatory postsynaptic current (EPSC) in a dissociated CA1 neuron evoked by stimulation of an explant from the CA3/CA4 region of the hippocampus had two distinct components in Mg(2+)-free medium. The fast component was abolished by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (2 microM), whereas the slow component was abolished by the N-methyl-D-aspartate (NMDA) receptor antagonist D-2-amino-5-phosphonovalerate (D-APV) (50 microM). In solution containing 1 mM Mg2+, the peak amplitude of the fast component was almost linearly related to the membrane potential. In contrast, the conductance change underlying the slow component of the EPSC was voltage-dependent with a region of negative-slope conductance in the range of -80 to -20 mV. A nootropic drug, aniracetam, increased both the amplitude and duration of the fast component of the EPSC in a concentration-dependent manner in the range of 0.1-5 mM, whereas it had no potentiating effect on the slow component. Aniracetam (0.1-5 mM) similarly increased current responses of the postsynaptic neuron to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). Current responses to quisqualate and glutamate in the presence of D-APV were also potentiated by aniracetam. However, neither NMDA- nor kainate-induced current was potentiated by 1 mM aniracetam.
NASA Astrophysics Data System (ADS)
Alexandrov, A. L.; Schweigert, I. V.; Zakrevskiy, Dm. E.; Bokhan, P. A.; Gugin, P.; Lavrukhin, M.
2017-10-01
A subnanosecond breakdown in high-voltage pulse discharge may be a key tool for superfast commutation of high power devices. The breakdown in high-voltage open discharge at mid-high pressure in helium was studied in experiment and in kinetic simulations. The kinetic model of electron avalanche development was constructed, based on PIC-MCC simulations, including dynamics of electrons, ions and fast helium atoms, produced by ions scattering. Special attention was paid to electron emission processes from cathode, such as: photoemission by Doppler-shifted resonant photons, produced in excitation processes involving fast atoms; electron emission by ions and fast atoms bombardment of cathode; the secondary electron emission (SEE) by hot electrons from bulk plasma. The simulations show that the fast atoms accumulation is the main reason of emission growth at the early stage of breakdown, but at the final stage, when the voltage on plasma gap diminishes, namely the SEE is responsible for subnanosecond rate of current growth. It was shown that the characteristic time of the current growth can be controlled by the SEE yield. The influence of SEE yield for three types of cathode material (titanium, SiC, and CuAlMg-alloy) was tested. By changing the pulse voltage amplitude and gas pressure, the area of existence of subnanosecond breakdown is identified. It is shown that in discharge with SiC and CuAlMg-alloy cathodes (which have enhanced SEE) the current can increase with a subnanosecond characteristic time value as small as τs = 0.4 ns, for the pulse voltage amplitude of 5÷12 kV. An increase of gas pressure from 15 Torr to 30 Torr essentially decreases the time of of current front growth, whereas the pulse voltage variation weakly affects the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, S.S.; Sekar Iyengar, A.N.
1997-09-01
Anomalous width{endash}amplitude variations were observed in large amplitude rarefactive solitary waves which show increasing width with increasing amplitude, contrasting the usual reciprocal relation between the square of the width and the amplitude, beyond a certain value of the plasma parameters [S. S. Ghosh, K. K. Ghosh, and A. N. Sekar Iyengar, Phys. Plasmas, {bold 3}, 3939 (1996)]. For the limiting maximum amplitude, the {open_quotes}increasing width{close_quotes} solitary wave tends to a double layer-like solution. The overall variation was found to depend crucially on the specific parameter space. From a detailed investigation of the above behavior, a plausible physical explanation has beenmore » presented for such increases in the width. It is found that the ions{close_quote} initial kinetic energies and the cold electron concentration within the perturbed region play a significant role in determining the observed width{endash}amplitude variation. This contradicts the investigation of Sayal, Yadav, and Sharma [Phys. Scr. {bold 47}, 576 (1993)]. {copyright} {ital 1997 American Institute of Physics.}« less
Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri.
Czosnyka, Zofia; Kim, Dong-Joo; Balédent, Olivier; Schmidt, Eric A; Smielewski, Peter; Czosnyka, Marek
2018-01-01
The phase-contrast MRI technique permits the non-invasive assessment of CSF movements in cerebrospinal fluid cavities of the central nervous system. Of particular interest is pulsatile cerebrospinal fluid (CSF) flow through the aqueduct cerebri. It is allegedly increased in hydrocephalus, having potential diagnostic value, although not all scientific reports contain unequivocally positive conclusions. For the mathematical simulation of CSF flow, we used a computational model of cerebrospinal blood/fluid circulation designed by a former student as his PhD project. With this model, cerebral blood flow and CSF may be simulated in various vessels using a system of non-linear differential equations as time-varying signals. The amplitude of CSF flow seems to be positively related to the amplitude of pulse waveforms of intracranial pressure (ICP) in situations where mean ICP increases, such as during simulated infusion tests and following step increases of resistance to CSF outflow. An additional positive association between the pulse amplitude of ICP and CSF flow can be seen during simulated increases in the amplitude of arterial pulses (without changes in mean arterial pressure, MAP). The opposite effect can be observed during step increases in the resistance of the aqueduct cerebri and with decreasing elasticity of the system, where the CSF flow amplitude and the ICP pulse amplitude are related inversely. Vasodilatation caused by both gradual decreases in MAP and by increases in PaCO2 provokes an elevation in the observed amplitude of pulsatile CSF flow. Preliminary results indicate that the pulsations of CSF flow may carry information about both CSF-circulatory and cerebral vasogenic components. In most cases, the pulsations of CSF flow are positively related to the pulse amplitudes of both arterial pressure and ICP and to a degree of cerebrovascular dilatation.
Covey, Thomas J; Shucard, Janet L; Violanti, John M; Lee, Jeff; Shucard, David W
2013-03-01
Exposure to psychologically stressful and traumatic experiences and the requirement of heightened attention to environmental stimuli are common in police work. Police officers are at increased risk for stress-related disorders such as Post-Traumatic Stress Disorder (PTSD). Traumatic experiences can result in changes to brain structure and function associated with attention and cognitive control processes (such as response inhibition). Despite the significance that these cognitive functions may have on job performance in police officers, few studies have examined the effects of exposure to traumatic events on top-down cognitive control functions in police. In the present study, a dense electrode array system was used to examined the N2 and P3 components of the event-related potential (ERP) during a Go/NoGo continuous performance task (Go/NoGo CPT) in trauma-exposed police officers who did not meet criteria for a current diagnosis of PTSD and in non-trauma exposed civilian controls. Amplitude and latency were obtained to Go, NoGo, and non-target trials. The major between-group findings were for P3 amplitude. There were no group effects for N2. Both groups had an enhanced fronto-central P3 amplitude to NoGo compared to Go trials. However, police had greater P3 amplitude compared to controls for all trial types (Go, NoGo, non-target). PTSD symptom scores in police officers were positively correlated with fronto-central NoGo P3 amplitude, but not with posterior NoGo amplitude. This study provides evidence of heightened attention and/or arousal in police officers as indicated by the generally greater P3 amplitude in police compared to controls during a task requiring sustained attention and inhibitory control. Greater PTSD symptom severity in trauma-exposed individuals may affect frontal cognitive control systems related to response inhibition. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sun, Feiran; Sun, Zhenguo; Chen, Qiang
2016-02-01
In order to improve the ultrasonic wave amplitude excited by electromagnetic acoustic transducers (EMATs), many researchers have proposed models. But they always ignored displacement current or the effect of the permittivity of the air or the metal sample during modeling, due to its low permittivity. However, more durable dielectric materials are replacing or coating with metals in many applications which have a much higher permittivity than air or metal sample so that the effect of permittivity cannot be ignored. Based on an analytical model, the effect of the permittivity of coating layer on the eddy current generated in an aluminum sample by EMAT has been studied. The analytical analysis indicates that the eddy current density excited by the spiral coil of EMAT slowly increases in the beginning and then decreases rapidly while the permittivity increases, and it has much relation to the thickness of the coating layer and the exciting frequency, which is verified by the simulation result.
Effect of toroidal field ripple on plasma rotation in JET
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vries, P.; Salmi, A.; Parail, V.
Dedicated experiments on TF ripple effects on the performance of tokamak plasmas have been carried out at JET. The TF ripple was found to have a profound effect on the plasma rotation. The central Mach number, M, defined as the ratio of the rotation velocity and the thermal velocity, was found to drop as a function of TF ripple amplitude ( ) from an average value of M = 0.40 0.55 for operations at the standard JET ripple of = 0.08% to M = 0.25 0.40 for = 0.5% and M = 0.1 0.3 for = 1%. TF ripple effectsmore » should be considered when estimating the plasma rotation in ITER. With standard co-current injection of neutral beam injection (NBI), plasmas were found to rotate in the co-current direction. However, for higher TF ripple amplitudes ( ~ 1%) an area of counter rotation developed at the edge of the plasma, while the core kept its co-rotation. The edge counter rotation was found to depend, besides on the TF ripple amplitude, on the edge temperature. The observed reduction of toroidal plasma rotation with increasing TF ripple could partly be explained by TF ripple induced losses of energetic ions, injected by NBI. However, the calculated torque due to these losses was insufficient to explain the observed counter rotation and its scaling with edge parameters. It is suggested that additional TF ripple induced losses of thermal ions contribute to this effect.« less
Ion acoustic wave assisted laser beat wave terahertz generation in a plasma channel
NASA Astrophysics Data System (ADS)
Tyagi, Yachna; Tripathi, Deepak; Walia, Keshav; Garg, Deepak
2018-04-01
Resonant excitation of terahertz (THz) radiation by non-linear mixing of two lasers in the presence of an electrostatic wave is investigated. The electrostatic wave assists in k matching and contributes to non-linear coupling. In this plasma channel, the electron plasma frequency becomes minimum on the axis. The beat frequency ponderomotive force imparts an oscillating velocity to the electrons. In the presence of an ion-acoustic wave, density perturbation due to the ion-acoustic wave couples with the oscillating velocity of the electrons and give rise to non-linear current that gives rise to an ion-acoustic wave frequency assisted THz radiation field. The normalized field amplitude of ion acoustic wave assisted THz varies inversely for ω/ωp . The field amplitude of ion acoustic wave assisted THz decreases as ω/ωp increases.
Quantum repeaters using continuous-variable teleportation
NASA Astrophysics Data System (ADS)
Dias, Josephine; Ralph, T. C.
2017-02-01
Quantum optical states are fragile and can become corrupted when passed through a lossy communication channel. Unlike for classical signals, optical amplifiers cannot be used to recover quantum signals. Quantum repeaters have been proposed as a way of reducing errors and hence increasing the range of quantum communications. Current protocols target specific discrete encodings, for example quantum bits encoded on the polarization of single photons. We introduce a more general approach that can reduce the effect of loss on any quantum optical encoding, including those based on continuous variables such as the field amplitudes. We show that in principle the protocol incurs a resource cost that scales polynomially with distance. We analyze the simplest implementation and find that while its range is limited it can still achieve useful improvements in the distance over which quantum entanglement of field amplitudes can be distributed.
NASA Astrophysics Data System (ADS)
Shihab, Mohammed
2018-06-01
The discharge dynamics in geometrically asymmetric capacitively coupled plasmas are investigated via a lumped model circuit. A realistic reactor configuration is assumed. A single and two separate RF voltage sources are considered. One of the driven frequencies (the higher frequency) has been adjusted to excite a plasma series resonance, while the second frequency (the lower frequency) is in the range of the ion plasma frequency. Increasing the plasma pressure in the low pressure regime (≤ 100mTorr) is found to diminish the amplitude of the self-excited harmonics of the discharge current, however, the net result is enhancing the plasma heating. The modulation of the ion density with the lower driving frequency affect the plasma heating considerably. The net effect depends on the amplitude and the phase of the ion modulation.
Zhang, Wenhua; Wang, Cheng; Zou, Runmei; Liu, Liping; Wu, Lijia; Luo, Xuemei; Li, Fang; Liao, Donglei; Cai, Hong
2016-06-28
To explore the change of the amplitude of P wave, T wave and ST segment of 12 lead electrocardiogram (ECG) in children with breath holding spell. A total of 29 children (24 males and 5 females) with breath holding spell in Second Xiangya Hospital, Central South University were enrolled for this study from October, 2009 to September, 2015. Their ages ranged from 3 months to 6 years, with an average of 1.82±1.27 years old. The control group consisted of 30 age-matched and gender-matched healthy children. All subjects were underwent electrocardiography by the SR-1000A comprehensive automatic electrocardiograph analyzer, and the changes of the ECG parameters were compared between the two groups. Compared with the control group, the amplitude of P-wave of V5 lead was decreased [(44.10±23.98) vs (58.30±21.19) μV, P<0.05], the amplitude of T-wave of V6 lead was increased [(423.80±122.6) vs (350.00±105.73) μV, P<0.05], the amplitude of ST segment of II lead was increased [(84.80±39.97) vs (57.30±38.77) μV, P<0.05], the amplitude of ST segment of aVR lead was increased [(-77.60±37.41) vs (-51.00±33.46) μV, P<0.05], the amplitude of ST segment of aVL lead was increased [(35.20±28.24) vs (17.70±33.90) μV, P<0.05], the amplitude of ST segment of V5 lead was increased [(111.00±59.36) vs (69.00±36.33) μV, P<0.05], the amplitude of ST segment of V6 lead was increased [(79.30±45.51) vs (51.30±33.19) μV, P<0.05]. The children with breath holding spell have autonomic nerve dysfunction. The amplitude of ST segment changes is sensitive.
Stenkamp, K; Palva, J M; Uusisaari, M; Schuchmann, S; Schmitz, D; Heinemann, U; Kaila, K
2001-05-01
The decrease in brain CO(2) partial pressure (pCO(2)) that takes place both during voluntary and during pathological hyperventilation is known to induce gross alterations in cortical functions that lead to subjective sensations and altered states of consciousness. The mechanisms that mediate the effects of the decrease in pCO(2) at the neuronal network level are largely unexplored. In the present work, the modulation of gamma oscillations by hypocapnia was studied in rat hippocampal slices. Field potential oscillations were induced by the cholinergic agonist carbachol under an N-methyl-D-aspartate (NMDA)-receptor blockade and were recorded in the dendritic layer of the CA3 region with parallel measurements of changes in interstitial and intraneuronal pH (pH(o) and pH(i), respectively). Hypocapnia from 5 to 1% CO(2) led to a stable monophasic increase of 0.5 and 0.2 units in pH(o) and pH(i), respectively. The mean oscillation frequency increased slightly but significantly from 32 to 34 Hz and the mean gamma-band amplitude (20 to 80 Hz) decreased by 20%. Hypocapnia induced a dramatic enhancement of the temporal stability of the oscillations, as was indicated by a two-fold increase in the exponential decay time constant fitted to the autocorrelogram. A rise in pH(i) evoked by the weak base trimethylamine (TriMA) was associated with a slight increase in oscillation frequency (37 to 39 Hz) and a decrease in amplitude (30%). Temporal stability, on the other hand, was decreased by TriMA, which suggests that its enhancement in 1% CO(2) was related to the rise in pH(o). In 1% CO(2), the decay-time constant of the evoked monosynaptic pyramidal inhibitory postsynaptic current (IPSC) was unaltered but its amplitude was enhanced. This increase in IPSC amplitude seems to significantly contribute to the enhancement of temporal stability because the enhancement was almost fully reversed by a low concentration of bicuculline. These results suggest that changes in brain pCO(2) can have a strong influence on the temporal modulation of gamma rhythms.
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice.
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L; Biermann, Klaus; Grahn, Holger T
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs/Al_{0.45}Ga_{0.55}As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice
NASA Astrophysics Data System (ADS)
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu
2014-01-01
Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.
Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu
2014-01-01
Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215
NASA Astrophysics Data System (ADS)
Forsyth, C.; Rae, I. J.; Mann, I. R.; Pakhotin, I. P.
2017-03-01
Field-aligned currents (FACs) are a fundamental component of coupled solar wind-magnetosphere-ionosphere. By assuming that FACs can be approximated by stationary infinite current sheets that do not change on the spacecraft crossing time, single-spacecraft magnetic field measurements can be used to estimate the currents flowing in space. By combining data from multiple spacecraft on similar orbits, these stationarity assumptions can be tested. In this technical report, we present a new technique that combines cross correlation and linear fitting of multiple spacecraft measurements to determine the reliability of the FAC estimates. We show that this technique can identify those intervals in which the currents estimated from single-spacecraft techniques are both well correlated and have similar amplitudes, thus meeting the spatial and temporal stationarity requirements. Using data from European Space Agency's Swarm mission from 2014 to 2015, we show that larger-scale currents (>450 km) are well correlated and have a one-to-one fit up to 50% of the time, whereas small-scale (<50 km) currents show similar amplitudes only 1% of the time despite there being a good correlation 18% of the time. It is thus imperative to examine both the correlation and amplitude of the calculated FACs in order to assess both the validity of the underlying assumptions and hence ultimately the reliability of such single-spacecraft FAC estimates.
FAST satellite observations of large-amplitude solitary structures
NASA Astrophysics Data System (ADS)
Ergun, R. E.; Carlson, C. W.; McFadden, J. P.; Mozer, F. S.; Delory, G. T.; Peria, W.; Chaston, C. C.; Temerin, M.; Roth, I.; Muschietti, L.; Elphic, R.; Strangeway, R.; Pfaff, R.; Cattell, C. A.; Klumpar, D.; Shelley, E.; Peterson, W.; Moebius, E.; Kistler, L.
We report observations of “fast solitary waves” that are ubiquitous in downward current regions of the mid-altitude auroral zone. The single-period structures have large amplitudes (up to 2.5 V/m), travel much faster than the ion acoustic speed, carry substantial potentials (up to ∼100 Volts), and are associated with strong modulations of energetic electron fluxes. The amplitude and speed of the structures distinguishes them from ion-acoustic solitary waves or weak double layers. The electromagnetic signature appears to be that of an positive charge (electron hole) traveling anti-earthward. We present evidence that the structures are in or near regions of magnetic-field-aligned electric fields and propose that these nonlinear structures play a key role in supporting parallel electric fields in the downward current region of the auroral zone.
Tests of oceanic stochastic parameterisation in a seasonal forecast system.
NASA Astrophysics Data System (ADS)
Cooper, Fenwick; Andrejczuk, Miroslaw; Juricke, Stephan; Zanna, Laure; Palmer, Tim
2015-04-01
Over seasonal time scales, our aim is to compare the relative impact of ocean initial condition and model uncertainty, upon the ocean forecast skill and reliability. Over seasonal timescales we compare four oceanic stochastic parameterisation schemes applied in a 1x1 degree ocean model (NEMO) with a fully coupled T159 atmosphere (ECMWF IFS). The relative impacts upon the ocean of the resulting eddy induced activity, wind forcing and typical initial condition perturbations are quantified. Following the historical success of stochastic parameterisation in the atmosphere, two of the parameterisations tested were multiplicitave in nature: A stochastic variation of the Gent-McWilliams scheme and a stochastic diffusion scheme. We also consider a surface flux parameterisation (similar to that introduced by Williams, 2012), and stochastic perturbation of the equation of state (similar to that introduced by Brankart, 2013). The amplitude of the stochastic term in the Williams (2012) scheme was set to the physically reasonable amplitude considered in that paper. The amplitude of the stochastic term in each of the other schemes was increased to the limits of model stability. As expected, variability was increased. Up to 1 month after initialisation, ensemble spread induced by stochastic parameterisation is greater than that induced by the atmosphere, whilst being smaller than the initial condition perturbations currently used at ECMWF. After 1 month, the wind forcing becomes the dominant source of model ocean variability, even at depth.
NASA Astrophysics Data System (ADS)
Capman, N.; Engebretson, M.; Posch, J. L.; Cattell, C. A.; Tian, S.; Wygant, J. R.; Kletzing, C.; Lessard, M.; Anderson, B. J.; Russell, C. T.; Reeves, G. D.; Fuselier, S. A.
2016-12-01
A 0.5-1.0 Hz electromagnetic ion cyclotron (EMIC) wave event was observed on December 14, 2015 from 13:26 to 13:28 UT at the four MMS satellites (L= 9.5, MLT= 13.0, MLAT= -24.4, peak amplitude 7 nT), and both Van Allen probes (RBSP-A: L= 5.7, MLT= 12.8, MLAT= 19.5, peak amplitude 5 nT; RBSP-B: L= 4.3, MLT= 14.2, MLAT= 11.3, peak amplitude 1 nT). On the ground, it was observed by search coil magnetometers at Halley Bay and South Pole, Antarctica, and Sondrestromfjord, Greenland, and by fluxgate magnetometers of the MACCS array at Pangnirtung and Cape Dorset in Arctic Canada. This event was preceded by a small increase of the solar wind pressure of 3 nPa from 13:10 to 13:20 UT. The proton distributions at Van Allen probe A confirm that the compression increased the pitch angle anisotropy in 10 keV ring current protons. The wave forms were very similar at the four MMS spacecraft indicating that the coherence-scale of the wave packets is larger than the inter-spacecraft separations of 20 km at the time. Inter-comparison of the wave signals at the four MMS spacecraft are used to assess the characteristics of the waves and estimate their spatial scales transverse and parallel to the background magnetic field.
High Frequency Amplitude Detector for GMI Magnetic Sensors
Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul
2014-01-01
A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003
He, Shuijin; Bausch, Suzanne B.
2013-01-01
Chronic N-methyl-D-aspartate receptor (NMDAR) blockade with high affinity competitive and uncompetitive antagonists can lead to seizure exacerbation, presumably due to an imbalance in glutamatergic and GABAergic transmission. Acute administration of the moderate affinity NMDAR antagonist memantine in vivo has been associated with pro- and anticonvulsive properties. Chronic treatment with memantine can exacerbate seizures. Therefore, we hypothesized that chronic memantine treatment would increase glutamatergic and decrease GABAergic transmission, similar to high affinity competitive and uncompetitive antagonists. To test this hypothesis, organotypic hippocampal slice culture were treated for 17–21 days with memantine and then subjected to electrophysiological recordings. Whole-cell recordings from dentate granule cells revealed that chronic memantine treatment slightly, but significantly increased sEPSC frequency, mEPSC amplitude and mEPSC charge transfer, consistent with minimally increased glutamatergic transmission. Chronic memantine treatment also increased both sIPSC and mIPSC frequency and amplitude, suggestive of increased GABAergic transmission. Results suggest that a simple imbalance between glutamatergic and GABAergic neurotransmission may not underlie memantine’s ictogenic properties. That said, glutamatergic and GABAergic transmission were assayed independently of one another in the current study. More complex interactions between glutamatergic and GABAergic transmission may prevail under conditions of intact circuitry. PMID:24184417
Responses of squirrel monkeys to their experimentally modified mobbing calls
NASA Astrophysics Data System (ADS)
Fichtel, Claudia; Hammerschmidt, Kurt
2003-05-01
Previous acoustic analyses suggested emotion-correlated changes in the acoustic structure of squirrel monkey (Saimiri sciureus) vocalizations. Specifically, calls given in aversive contexts were characterized by an upward shift in frequencies, often accompanied by an increase in amplitude. In order to test whether changes in frequencies or amplitude are indeed relevant for conspecific listeners, playback experiments were conducted in which either frequencies or amplitude of mobbing calls were modified. Latency and first orienting response were measured in playback experiments with six adult squirrel monkeys. After broadcasting yaps with increased frequencies or amplitude, squirrel monkeys showed a longer orienting response towards the speaker than after the corresponding control stimuli. Furthermore, after broadcasting yaps with decreased frequencies or amplitude, squirrel monkeys showed a shorter orienting response towards the speaker than after the corresponding manipulated calls with higher frequencies or amplitude. These results suggest that changes in frequencies or amplitude were perceived by squirrel monkeys, indicating that the relationship between call structure and the underlying affective state of the caller agreed with the listener's assessment of the calls. However, a simultaneous increase in frequencies and amplitude did not lead to an enhanced response, compared to each single parameter. Thus, from the receiver's perspective, both call parameters may mutually replace each other.
Real-time combustion control and diagnostics sensor-pressure oscillation monitor
Chorpening, Benjamin T [Morgantown, WV; Thornton, Jimmy [Morgantown, WV; Huckaby, E David [Morgantown, WV; Richards, George A [Morgantown, WV
2009-07-14
An apparatus and method for monitoring and controlling the combustion process in a combustion system to determine the amplitude and/or frequencies of dynamic pressure oscillations during combustion. An electrode in communication with the combustion system senses hydrocarbon ions and/or electrons produced by the combustion process and calibration apparatus calibrates the relationship between the standard deviation of the current in the electrode and the amplitudes of the dynamic pressure oscillations by applying a substantially constant voltage between the electrode and ground resulting in a current in the electrode and by varying one or more of (1) the flow rate of the fuel, (2) the flow rate of the oxidant, (3) the equivalence ratio, (4) the acoustic tuning of the combustion system, and (5) the fuel distribution in the combustion chamber such that the amplitudes of the dynamic pressure oscillations in the combustion chamber are calculated as a function of the standard deviation of the electrode current. Thereafter, the supply of fuel and/or oxidant is varied to modify the dynamic pressure oscillations.
Effect of Alternating Current on the Cathodic Protection and Interface Structure of X80 Steel
Wang, Huiru; Du, Cuiwei; Liu, Zhiyong; Wang, Luntao; Ding, De
2017-01-01
This study employs potential-monitoring techniques, cyclic voltammetry tests, alternating current (AC) voltammetry methods, and surface characterization to investigate the AC corrosion of cathodically protected X80 pipeline steel. In a non-passive neutral solution at pH 7.2, a sufficiently negative potential completely protects steel at an AC current density of 100 A/m2. In an alkaline solution at pH 9.6, more serious AC corrosion occurs at more negative cathodic protection (CP) potential, whereas without CP the steel suffers negligible corrosion. In addition, the interface capacitance increases with AC amplitude. Based on these results, the AC corrosion mechanisms that function under various conditions are analyzed and described. PMID:28773211
Connor, E. A.; Parsons, R. L.
1984-01-01
Barium-induced alterations in fast excitatory postsynaptic currents (e.p.s.cs) have been studied in voltage-clamped bullfrog sympathetic ganglion B cells. In the presence of 2-8 mM barium, e.p.s.c. decay was prolonged and in many cells the e.p.s.c. decay phase deviated from a single exponential function. The decay phase in these cases was more accurately described as the sum of two exponential functions. The frequency of occurrence of a complex decay increased both with increasing barium concentration and with hyperpolarization. Miniature e.p.s.c. decay also was prolonged in barium-treated cells. E.p.s.c. amplitude was not markedly affected by barium (2-8 mM) in cells voltage-clamped to -50 mV whereas at -90 mV there was a progressive increase in peak size with increasing barium concentration. In control cells the e.p.s.c.-voltage relationship was linear between -20 and -100 mV; however, this relationship became progressively non-linear with membrane hyperpolarization in barium-treated cells. The e.p.s.c. reversal potential was shifted to a more negative value in the presence of barium. There was a voltage-dependent increase in charge movement during the e.p.s.c. in barium-treated cells which was not present in control cells. We conclude that the voltage-dependent alteration in e.p.s.c. decay time course, peak amplitude and charge movement in barium-treated cells is due to a direct postsynaptic action of barium on the kinetics of receptor-channel gating in postganglionic sympathetic neurones. PMID:6333261
Oemisch, Mariann; Watson, Marcus R.; Womelsdorf, Thilo; Schubö, Anna
2017-01-01
Previously learned reward values can have a pronounced impact, behaviorally and neurophysiologically, on the allocation of selective attention. All else constant, stimuli previously associated with a high value gain stronger attentional prioritization than stimuli previously associated with a low value. The N2pc, an ERP component indicative of attentional target selection, has been shown to reflect aspects of this prioritization, by changes of mean amplitudes closely corresponding to selective enhancement of high value target processing and suppression of high value distractor processing. What has remained unclear so far is whether the N2pc also reflects the flexible and repeated behavioral adjustments needed in a volatile task environment, in which the values of stimuli are reversed often and unannounced. Using a value-based reversal learning task, we found evidence that the N2pc amplitude flexibly and reversibly tracks value-based choices during the learning of reward associated stimulus colors. Specifically, successful learning of current value-contingencies was associated with reduced N2pc amplitudes, and this effect was more apparent for distractor processing, compared with target processing. In addition, following a value reversal the feedback related negativity(FRN), an ERP component that reflects feedback processing, was amplified and co-occurred with increased N2pc amplitudes in trials following low-value feedback. Importantly, participants that showed the greatest adjustment in N2pc amplitudes based on feedback were also the most efficient learners. These results allow further insight into how changes in attentional prioritization in an uncertain and volatile environment support flexible adjustments of behavior. PMID:29163113
Oemisch, Mariann; Watson, Marcus R; Womelsdorf, Thilo; Schubö, Anna
2017-01-01
Previously learned reward values can have a pronounced impact, behaviorally and neurophysiologically, on the allocation of selective attention. All else constant, stimuli previously associated with a high value gain stronger attentional prioritization than stimuli previously associated with a low value. The N2pc, an ERP component indicative of attentional target selection, has been shown to reflect aspects of this prioritization, by changes of mean amplitudes closely corresponding to selective enhancement of high value target processing and suppression of high value distractor processing. What has remained unclear so far is whether the N2pc also reflects the flexible and repeated behavioral adjustments needed in a volatile task environment, in which the values of stimuli are reversed often and unannounced. Using a value-based reversal learning task, we found evidence that the N2pc amplitude flexibly and reversibly tracks value-based choices during the learning of reward associated stimulus colors. Specifically, successful learning of current value-contingencies was associated with reduced N2pc amplitudes, and this effect was more apparent for distractor processing, compared with target processing. In addition, following a value reversal the feedback related negativity(FRN), an ERP component that reflects feedback processing, was amplified and co-occurred with increased N2pc amplitudes in trials following low-value feedback. Importantly, participants that showed the greatest adjustment in N2pc amplitudes based on feedback were also the most efficient learners. These results allow further insight into how changes in attentional prioritization in an uncertain and volatile environment support flexible adjustments of behavior.
Conflict monitoring and adaptation as reflected by N2 amplitude in obsessive-compulsive disorder.
Riesel, A; Klawohn, J; Kathmann, N; Endrass, T
2017-06-01
Feelings of doubt and perseverative behaviours are key symptoms of obsessive-compulsive disorder (OCD) and have been linked to hyperactive error and conflict signals in the brain. While enhanced neural correlates of error monitoring have been robustly shown, far less is known about conflict processing and adaptation in OCD. We examined event-related potentials during conflict processing in 70 patients with OCD and 70 matched healthy comparison participants, focusing on the stimulus-locked N2 elicited in a flanker task. Conflict adaptation was evaluated by analysing sequential adjustments in N2 and behaviour, i.e. current conflict effects as a function of preceding conflict. Patients with OCD showed enhanced N2 amplitudes compared with healthy controls. Further, patients showed stronger conflict adaptation effects on reaction times and N2 amplitude. Thus, the effect of previous compatibility was larger in patients than in healthy participants as indicated by greater N2 adjustments in change trials (i.e. iC, cI). As a result of stronger conflict adaptation in patients, N2 amplitudes were comparable between groups in incompatible trials following incompatible trials. Larger N2 amplitudes and greater conflict adaptation in OCD point to enhanced conflict monitoring leading to increased recruitment of cognitive control in patients. This was most pronounced in change trials and was associated with stronger conflict adjustment in N2 and behaviour. Thus, hyperactive conflict monitoring in OCD may be beneficial in situations that require a high amount of control to resolve conflict, but may also reflect an effortful process that is linked to distress and symptoms of OCD.
2011-01-01
Background In patients with idiopathic normal pressure hydrocephalus (iNPH) responding to shunt surgery, we have consistently found elevated intracranial pressure (ICP) wave amplitudes during diagnostic ICP monitoring prior to surgery. It remains unknown why ICP wave amplitudes are increased in these patients. Since iNPH is accompanied by a high incidence of vascular co-morbidity, a possible explanation is that there is reduced vascular compliance accompanied by elevated arterial blood pressure (ABP) wave amplitudes and even altered cardiac output (CO). To investigate this possibility, the present study was undertaken to continuously monitor CO to determine if it is correlated to ABP and ICP wave amplitudes and the outcome of shunting in iNPH patients. It was specifically addressed whether the increased ICP wave amplitudes seen in iNPH shunt responders were accompanied by elevated CO and/or ABP wave amplitude levels. Methods Prospective iNPH patients (29) were clinically graded using an NPH grading scale. Continuous overnight minimally-invasive monitoring of CO and ABP was done simultaneously with ICP monitoring; the CO, ABP, and ICP parameters were parsed into 6-second time windows. Patients were assessed for shunt surgery on clinical grade, Evan's index, and ICP wave amplitude. Follow-up clinical grading was performed 12 months after surgery. Results ICP wave amplitudes but not CO or ABP wave amplitude, showed good correlation with the response to shunt treatment. The patients with high ICP wave amplitude did not have accompanying high levels of CO or ABP wave amplitude. Correlation analysis between CO and ICP wave amplitudes in individual patients showed different profiles [significantly positive in 10 (35%) and significantly negative in 16 (55%) of 29 recordings]. This depended on whether there was also a correlation between ABP and ICP wave amplitudes and on the average level of ICP wave amplitude. Conclusions These results gave no evidence that the increased levels of ICP wave amplitudes seen in iNPH shunt responders prior to surgery were accompanied by elevated levels of ABP wave amplitudes or elevated CO. In the individual patients the correlation between CO and ICP wave amplitude was partly related to an association between ABP and ICP wave amplitudes which can be indicative of the state of cerebrovascular pressure regulation, and partly related to the ICP wave amplitude which can be indicative of the intracranial compliance. PMID:21349148
Measurements of monopolar and bipolar current spreads using forward-masking with a fixed probe.
Bingabr, Mohamed G; Espinoza-Varas, Blas; Sigdel, Saroj
2014-05-01
This research employed a forward-masking paradigm to estimate the current spread of monopolar (MP) and bipolar (BP) maskers, with current amplitudes adjusted to elicit the same loudness. Since the spatial separation between active and return electrodes is smaller in BP than in MP configurations, the BP current spread is more localized and presumably superior in terms of speech intelligibility. Because matching the loudness requires higher current in BP than in MP stimulation, previous forward-masking studies show that BP current spread is not consistently narrower across subjects or electrodes within a subject. The present forward-masking measures of current spread differ from those of previous studies by using the same BP probe electrode configuration for both MP and BP masker configurations, and adjusting the current levels of the MP and BP maskers so as to match them in loudness. With this method, the estimate of masker current spread would not be contaminated by differences in probe current spread. Forward masking was studied in four cochlear implant patients, two females and two males, with speech recognition scores higher than 50%; that is, their auditory-nerve survival status was more than adequate to carry out the experiments. The data showed that MP and BP masker configurations produce equivalent masking patterns (and current spreads) in three participants. A fourth participant displayed asymmetrical patterns with enhancement rather than masking in some cases, especially when the probe and masker were at the same location. This study showed equivalent masking patterns for MP and BP maskers when the BP masker current amplitude was increased to match the loudness of the MP masker, and the same BP probe configuration is used with both maskers. This finding could help to explain why cochlear implant users often fail to accrue higher speech intelligibility benefit from BP stimulation.
NASA Technical Reports Server (NTRS)
Burkard, R.; Jones, S.; Jones, T.
1994-01-01
Rate-dependent changes in the chick brain-stem auditory evoked response (BAER) using conventional averaging and a cross-correlation technique were investigated. Five 15- to 19-day-old white leghorn chicks were anesthetized with Chloropent. In each chick, the left ear was acoustically stimulated. Electrical pulses of 0.1-ms duration were shaped, attenuated, and passed through a current driver to an Etymotic ER-2 which was sealed in the ear canal. Electrical activity from stainless-steel electrodes was amplified, filtered (300-3000 Hz) and digitized at 20 kHz. Click levels included 70 and 90 dB peSPL. In each animal, conventional BAERs were obtained at rates ranging from 5 to 90 Hz. BAERs were also obtained using a cross-correlation technique involving pseudorandom pulse sequences called maximum length sequences (MLSs). The minimum time between pulses, called the minimum pulse interval (MPI), ranged from 0.5 to 6 ms. Two BAERs were obtained for each condition. Dependent variables included the latency and amplitude of the cochlear microphonic (CM), wave 2 and wave 3. BAERs were observed in all chicks, for all level by rate combinations for both conventional and MLS BAERs. There was no effect of click level or rate on the latency of the CM. The latency of waves 2 and 3 increased with decreasing click level and increasing rate. CM amplitude decreased with decreasing click level, but was not influenced by click rate for the 70 dB peSPL condition. For the 90 dB peSPL click, CM amplitude was uninfluenced by click rate for conventional averaging. For MLS BAERs, CM amplitude was similar to conventional averaging for longer MPIs.(ABSTRACT TRUNCATED AT 250 WORDS).
Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume
2015-10-01
Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).
Floriano, Rafael Stuani; Rocha, Thalita; Carregari, Victor Corasolla; Marangoni, Sergio; da Cruz-Höfling, Maria Alice; Hyslop, Stephen; Rodrigues-Simioni, Léa; Rowan, Edward G
2015-03-01
The presynaptic action of Bothriopsis bilineata smaragdina (forest viper) venom and Bbil-TX, an Asp49 PLA2 from this venom, was examined in detail in mouse phrenic nerve-muscle (PND) preparations in vitro and in a neuroblastoma cell line (SK-N-SH) in order to gain a better insight into the mechanism of action of the venom and associated Asp49 PLA2. In low Ca(2+) solution, venom (3μg/ml) caused a quadriphasic response in PND twitch height whilst at 10μg/ml the venom additionally induced an abrupt and marked initial contracture followed by neuromuscular facilitation, rhythmic oscillations of nerve-evoked twitches, alterations in baseline and progressive blockade. The venom slowed the relaxation phase of muscle twitches. In low Ca(2+), Bbil-TX [210nM (3μg/ml)] caused a progressive increase in PND twitch amplitude but no change in the decay time constant. Venom (10μg/ml) and Bbil-TX (210nM) caused minor changes in the compound action potential (CAP) amplitude recorded from sciatic nerve preparations, with no significant effect on rise time and latency; tetrodotoxin (3.1nM) blocked the CAP at the end of the experiments. In mouse triangularis sterni nerve-muscle (TSn-m) preparations, venom (10μg/ml) and Bbil-TX (210nM) significantly reduced the perineural waveform associated with the outward K(+) current while the amplitude of the inward Na(+) current was not significantly affected. Bbil-TX (210nM) caused a progressive increase in the quantal content of TSn-m preparations maintained in low Ca(2+) solution. Venom (3μg/ml) and toxin (210nM) increased the calcium fluorescence in SK-N-SH neuroblastoma cells loaded with Fluo3 AM and maintained in low or normal Ca(2+) solution. In normal Ca(2+), the increase in fluorescence amplitude was accompanied by irregular and frequent calcium transients. In TSn-m preparations loaded with Fluo4 AM, venom (10μg/ml) caused an immediate increase in intracellular Ca(2+) followed by oscillations in fluorescence and muscle contracture; Bbil-TX did not change the calcium fluorescence in TSn-m preparations. Immunohistochemical analysis of toxin-treated PND preparations revealed labeling of junctional ACh receptors but a loss of the presynaptic proteins synaptophysin and SNAP25. Together, these data confirm the presynaptic action of Bbil-TX and show that it involves modulation of K(+) channel activity and presynaptic protein expression. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enhanced Electroweak Penguin Amplitude in B{yields}VV Decays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beneke, M.; Rohrer, J.; Yang, D.
2006-04-14
We discuss a novel electromagnetic penguin contribution to the transverse helicity amplitudes in B decays to two vector mesons, which is enhanced by two powers of m{sub B}/{lambda} relative to the standard penguin amplitudes. This leads to unique polarization signatures in penguin-dominated decay modes such as B{yields}{rho}K* similar to polarization effects in the radiative decay B{yields}K*{gamma} and offers new opportunities to probe the magnitude and chirality of flavor-changing neutral current couplings to photons.
Enhanced modulation rates via field modulation in spin torque nano-oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purbawati, A.; Garcia-Sanchez, F.; Buda-Prejbeanu, L. D.
Spin Transfer Nano-Oscillators (STNOs) are promising candidates for telecommunications applications due to their frequency tuning capabilities via either a dc current or an applied field. This frequency tuning is of interest for Frequency Shift Keying concepts to be used in wireless communication schemes or in read head applications. For these technological applications, one important parameter is the characterization of the maximum achievable rate at which an STNO can respond to a modulating signal, such as current or field. Previous studies of in-plane magnetized STNOs on frequency modulation via an rf current revealed that the maximum achievable rate is limited bymore » the amplitude relaxation rate Γ{sub p}, which gives the time scale over which amplitude fluctuations are damped out. This might be a limitation for applications. Here, we demonstrate via numerical simulation that application of an additional rf field is an alternative way for modulation of the in-plane magnetized STNO configuration, which has the advantage that frequency modulation is not limited by the amplitude relaxation rate, so that higher modulation rates above GHz are achievable. This occurs when the modulating rf field is oriented along the easy axis (longitudinal rf field). Tilting the direction of the modulating rf field in-plane and perpendicularly with respect to the easy axis (transverse rf field), the modulation is again limited by the amplitude relaxation rate similar to the response observed in current modulation.« less
NASA Astrophysics Data System (ADS)
Schmitz, O.; Becoulet, M.; Cahyna, P.; Evans, T. E.; Feng, Y.; Frerichs, H.; Loarte, A.; Pitts, R. A.; Reiser, D.; Fenstermacher, M. E.; Harting, D.; Kirschner, A.; Kukushkin, A.; Lunt, T.; Saibene, G.; Reiter, D.; Samm, U.; Wiesen, S.
2016-06-01
Results from three-dimensional modeling of plasma edge transport and plasma-wall interactions during application of resonant magnetic perturbation (RMP) fields for control of edge-localized modes in the ITER standard 15 MA Q = 10 H-mode are presented. The full 3D plasma fluid and kinetic neutral transport code EMC3-EIRENE is used for the modeling. Four characteristic perturbed magnetic topologies are considered and discussed with reference to the axisymmetric case without RMP fields. Two perturbation field amplitudes at full and half of the ITER ELM control coil current capability using the vacuum approximation are compared to a case including a strongly screening plasma response. In addition, a vacuum field case at high q 95 = 4.2 featuring increased magnetic shear has been modeled. Formation of a three-dimensional plasma boundary is seen for all four perturbed magnetic topologies. The resonant field amplitudes and the effective radial magnetic field at the separatrix define the shape and extension of the 3D plasma boundary. Opening of the magnetic field lines from inside the separatrix establishes scrape-off layer-like channels of direct parallel particle and heat flux towards the divertor yielding a reduction of the main plasma thermal and particle confinement. This impact on confinement is most accentuated at full RMP current and is strongly reduced when screened RMP fields are considered, as well as for the reduced coil current cases. The divertor fluxes are redirected into a three-dimensional pattern of helical magnetic footprints on the divertor target tiles. At maximum perturbation strength, these fingers stretch out as far as 60 cm across the divertor targets, yielding heat flux spreading and the reduction of peak heat fluxes by 30%. However, at the same time substantial and highly localized heat fluxes reach divertor areas well outside of the axisymmetric heat flux decay profile. Reduced RMP amplitudes due to screening or reduced RMP coil current yield a reduction of the width of the divertor flux spreading to about 20-25 cm and cause increased peak heat fluxes back to values similar to those in the axisymmetric case. The dependencies of these features on the divertor recycling regime and the perpendicular transport assumptions, as well as toroidal averaged effects mimicking rotation of the RMP field, are discussed in the paper.
NASA Technical Reports Server (NTRS)
Brown, G. V.; Dirusso, E.; Provenza, A. J.
1995-01-01
A proof-of-feasibility demonstration showed that high temperature superconductor (HTS) coils can be used in a high-load, active magnetic bearing in liquid nitrogen. A homopolar radial bearing with commercially wound HTS (Bi 2223) bias and control coils produced over 200 lb (890 N) radial load capacity (measured non-rotating) and supported a shaft to 14000 rpm. The goal was to show that HTS coils can operate stably with ferromagnetic cores in a feedback controlled system at a current density similar to that in Cu in liquid nitrogen. Design compromises permitted use of circular coils with rectangular cross section. Conductor improvements will eventually permit coil shape optimization, higher current density and higher bearing load capacity. The bias coil, wound with non-twisted, multifilament HTS conductor, required negligible power to carry its direct current. The control coils were wound with monofilament HTS sheathed in Ag. These dissipated negligible power for direct current (i.e. for steady radial load components). When an alternating current (AC) was added, the AC component dissipated power which increased rapidly with frequency and quadratically with AC amplitude. In fact at frequencies above about 2 hz, the effective resistance of the control coil conductor actually exceeds that of the silver which is in electrical parallel with the oxide superconductor. This is at least qualitatively understandable in the context of a Bean-type model of flux and current penetration into a Type II superconductor. Fortunately the dynamic currents required for bearing stability are of small amplitude. These results show that while twisted multifilament conductor is not needed for stable levitation, twisted multifilaments will be required to reduce control power for sizable dynamic loads, such as those due to unbalance.
Quantum effects in amplitude death of coupled anharmonic self-oscillators
NASA Astrophysics Data System (ADS)
Amitai, Ehud; Koppenhöfer, Martin; Lörch, Niels; Bruder, Christoph
2018-05-01
Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching their oscillation. This phenomenon is termed "amplitude death." Well known and studied in classical self-oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto, Phys. Rev. E 96, 052210 (2017), 10.1103/PhysRevE.96.052210]. Quantitative differences between the classical and quantum descriptions were found. Here, we demonstrate that for quantum self-oscillators with anharmonicity in their energy spectrum, multiple resonances in the mean phonon number can be observed. This is a result of the discrete energy spectrum of these oscillators, and is not present in the corresponding classical model. Experiments can be realized with current technology and would demonstrate these genuine quantum effects in the amplitude death phenomenon.
Median and ulnar muscle and sensory evoked potentials.
Felsenthal, G
1978-08-01
The medical literature was reviewed to find suggested clinical applications of the study of the amplitude of evoked muscle action potentials (MAP) and sensory action potentials (SAP). In addition, the literature was reviewed to ascertain the normal amplitude and duration of the evoked MAP and SAP as well as the factors affecting the amplitude: age, sex, temperature, ischemia. The present study determined the normal amplitude and duration of the median and ulnar MAP and SAP in fifty normal subjects. The amplitude of evoked muscle or sensory action potentials depends on multiple factors. Increased skin resistance, capacitance, and impedance at the surface of the recording electrode diminishes the amplitude. Similarly, increased distance from the source of the action potential diminishes its amplitude. Increased interelectrode distance increases the amplitude of the bipolarly recorded sensory action potential until a certain interelectrode distance is exceeded and the diphasic response becomes tri- or tetraphasic. Artifact or poor technique may reduce the potential difference between the recording electrodes or obscure the late positive phase of the action potential and thus diminish the peak to peak amplitude measurement. Intraindividual comparison indicated a marked difference of amplitude in opposite hands. The range of the MAP of the abductor pollicis brevis in one hand was 40.0--100% of the response in the opposite hand. For the abductor digiti minimi, the MAP was 58.5--100% of the response of the opposite hand. The median and ulnar SAP was between 50--100% of the opposite SAP. Consequent to these findings the effect of hand dominance on the amplitude of median and ulnar evoked muscle and sensory action potentials was studied in 41 right handed volunteers. The amplitudes of the median muscle action potential (p less than 0.02) and the median and ulnar sensory action potentials (p less than 0.001) were significantly less in the dominant hand. There was no significant difference between the ulnar muscle action potentials or for the median and ulnar distal motor and sensory latencies in the right and left hands of this group of volunteers.
NASA Astrophysics Data System (ADS)
Hunt, G. J.; Cowley, S. W. H.; Provan, G.; Bunce, E. J.; Alexeev, I. I.; Belenkaya, E. S.; Kalegaev, V. V.; Dougherty, M. K.; Coates, A. J.
2015-09-01
We investigate the magnetic perturbations associated with field-aligned currents observed on 34 Cassini passes over the premidnight northern auroral region during 2008. These are found to be significantly modulated not only by the northern planetary-period oscillation (PPO) system, similar to the southern currents by the southern PPO system found previously, but also by the southern PPO system as well, thus providing the first clear evidence of PPO-related interhemispheric current flow. The principal field-aligned currents of the two PPO systems are found to be co-located in northern ionospheric colatitude, together with the currents of the PPO-independent (subcorotation) system, located between the vicinity of the open-closed field boundary and field lines mapping to ~9 Saturn radius (Rs) in the equatorial plane. All three systems are of comparable magnitude, ~3 MA in each PPO half-cycle. Smaller PPO-related field-aligned currents of opposite polarity also flow in the interior region, mapping between ~6 and ~9 Rs in the equatorial plane, carrying a current of ~ ±2 MA per half-cycle, which significantly reduce the oscillation amplitudes in the interior region. Within this interior region the amplitudes of the northern and southern oscillations are found to fall continuously with distance along the field lines from the corresponding hemisphere, thus showing the presence of cross-field currents, with the southern oscillations being dominant in the south, and modestly lower in amplitude than the northern oscillations in the north. As in previous studies, no oscillations related to the opposite hemisphere are found on open field lines in either hemisphere.
SALICYLATE INCREASES THE GAIN OF THE CENTRAL AUDITORY SYSTEM
Sun, W.; Lu, J.; Stolzberg, D.; Gray, L.; Deng, A.; Lobarinas, E.; Salvi, R. J.
2009-01-01
High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory cortex (AC) of conscious rats, but not the inferior colliculus (IC). When rats were anesthetized with isoflurane, which increases GABA-mediated inhibition, the salicylate-induced AC amplitude enhancement was abolished, whereas ketamine, which blocks N-methyl-d-aspartate receptors, further increased the salicylate-induced AC amplitude enhancement. Direct application of salicylate to the cochlea, however, reduced the response amplitude of the cochlea, IC and AC, suggesting the AC amplitude enhancement induced by systemic injection of salicylate does not originate from the cochlea. To identify a behavioral correlate of the salicylate-induced AC enhancement, the acoustic startle response was measured before and after salicylate treatment. Salicylate significantly increased the amplitude of the startle response. Collectively, these results suggest that high doses of salicylate increase the gain of the central auditory system, presumably by down-regulating GABA-mediated inhibition, leading to an exaggerated acoustic startle response. The enhanced startle response may be the behavioral correlate of hyperacusis that often accompanies tinnitus and hearing loss. Published by Elsevier Ltd on behalf of IBRO. PMID:19154777
Komaromy, Andras M; Brooks, Dennis E; Kallberg, Maria E; Dawson, William W; Sapp, Harold L; Sherwood, Mark B; Lambrou, George N; Percicot, Christine L
2003-05-01
The purpose of our study was to determine changes in amplitudes and implicit times of retinal and cortical pattern evoked potentials with increasing body weight in young, growing rhesus macaques (Macaca mulatta). Retinal and cortical pattern evoked potentials were recorded from 29 male rhesus macaques between 3 and 7 years of age. Thirteen animals were reexamined after 11 months. Computed tomography (CT) was performed on two animals to measure the distance between the location of the skin electrode and the surface of the striate cortex. Spearman correlation coefficients were calculated to describe the relationship between body weights and either root mean square (rms) amplitudes or implicit times. For 13 animals rms amplitudes and implicit times were compared with the Wilcoxon matched pairs signed rank test for recordings taken 11 months apart. Highly significant correlations between increases in body weights and decreases in cortical rms amplitudes were noted in 29 monkeys (p < 0.0005). No significant changes were found in the cortical rms amplitudes in thirteen monkeys over 11 months. Computed tomography showed a large increase of soft tissue thickness over the skull and striate cortex with increased body weight. The decreased amplitude in cortical evoked potentials with weight gain associated with aging can be explained by the increased distance between skin electrode and striate cortex due to soft tissue thickening (passive attenuation).
Growth and nonlinear response of driven water bells
NASA Astrophysics Data System (ADS)
Kolinski, John M.; Aharoni, Hillel; Fineberg, Jay; Sharon, Eran
2017-04-01
A water bell forms when a fluid jet impacts upon a target and separates into a two-dimensional sheet. Depending on the angle of separation from the target, the sheet can curve into a variety of different geometries. We show analytically that harmonic perturbations of water bells have linear wave solutions with geometry-dependent growth. We test the predictions of this model experimentally with a custom target system, and observe growth in agreement with the model below a critical forcing amplitude. Once the critical forcing amplitude is exceeded, a nonlinear transcritical bifurcation occurs; the response amplitude increases linearly with increasing forcing amplitude, albeit with a fundamentally different spatial form, and distinct nodes appear in the amplitude envelope.
Effect of current stimulus on in vivo cochlear mechanics
NASA Astrophysics Data System (ADS)
Parthasarathi, Anand A.; Grosh, Karl; Zheng, Jiefu; Nuttall, Alfred L.
2003-01-01
In this paper, the influence of direct current stimulation on the acoustic impulse response of the basilar membrane (BM) is studied. A positive current applied in the scala vestibuli relative to a ground electrode in the scala tympani is found to enhance gain and increase the best frequency at a given location on the BM. An opposite effect is found for a negative current. Also, the amplitude of low-frequency cochlear microphonic at high sound levels is found to change with the concurrent application of direct current stimulus. BM vibrations in response to pure tone acoustic excitation are found to possess harmonics whose levels relative to the fundamental increase with the application of positive current and decrease with the application of negative current. A model for outer hair cell activity that couples changes in length and stiffness to transmembrane potential is used to interpret the results of these experiments and others in the literature. The importance of the in vivo mechanical and electrical loading is emphasized. Simulation results show the somewhat paradoxical finding that for outer hair cells under tension, hyperpolarization causes shortening of the cell length due to the dominance of voltage dependent stiffness changes.
Features of electromagnetic processes in electric gas turbine installations
NASA Astrophysics Data System (ADS)
Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.
2017-12-01
Electric gas turbine aggregates are considered in terms of ensuring reliable operation of gas-dynamic bearings. A complex of unfavorable factors affecting this unit of the installation is described, including rotor unbalance, eccentricity, irregularity of armature field rotation, its amplitude variation during rotor rotation, etc. The studies have shown that it is possible to increase the efficiency of EGTA by increasing the number of armature winding phases (i.e. reducing electromagnetic torque ripples), amplifying the damping circuits on the rotor, as well as by introducing pulse-width modulation of currents in the phases and flexible feedbacks.
NASA Astrophysics Data System (ADS)
Cowley, S. W. H.; Provan, G.
2017-06-01
We study Cassini magnetic field observations at Saturn on a sequence of passes through the near-equatorial magnetotail during 2015, focusing on dual modulation of the plasma/current sheet associated with northern and southern planetary period oscillations (PPOs). Previous study of inner magnetosphere PPOs during this northern spring interval showed that the southern system amplitude was generally half that of the northern during the first part of the year to late August, after which the southern amplitude weakened to less than one-fifth that of the northern. We examine four sequential tail passes in the earlier interval, during which prominent PPO-related tail field modulations were observed, with relative (beat) phases of the two PPO systems being near in phase, antiphase, and two opposite near-quadrature conditions. We find that the radial field displayed opposite "sawtooth" asymmetry modulations under opposite near-quadrature conditions, related to previous findings under equinoctial conditions with near-equal northern and southern PPO amplitudes, while modulations were near symmetric for in-phase and antiphase conditions, but with larger radial field modulations for in-phase and larger colatitudinal field modulations for antiphase. A simple physical mathematical model of dual modulation is developed, which provides reasonable correspondence with these data using one set of current sheet parameters while varying only the relative PPO phases, thus demonstrating that dual modulation can be discerned and modeled even when the northern and southern amplitudes differ by a factor of 2. No such effects were consistently discerned during the later interval when the amplitude ratio was >5.
Beda, Alessandro; Güldner, Andreas; Simpson, David M; Carvalho, Nadja C; Franke, Susanne; Uhlig, Christopher; Koch, Thea; Pelosi, Paolo; de Abreu, Marcelo Gama
2012-03-01
The physiological importance of respiratory sinus arrhythmia (RSA) and cardioventilatory coupling (CVC) has not yet been fully elucidated, but these phenomena might contribute to improve ventilation/perfusion matching, with beneficial effects on gas exchange. Furthermore, decreased RSA amplitude has been suggested as an indicator of impaired autonomic control and poor clinical outcome, also during positive-pressure mechanical ventilation (MV). However, it is currently unknown how different modes of MV, including variable tidal volumes (V(T)), affect RSA and CVC during anesthesia. We compared the effects of pressure controlled (PCV) versus pressure assisted (PSV) ventilation, and of random variable versus constant V(T), on RSA and CVC in eight anesthetized pigs. At comparable depth of anesthesia, global hemodynamics, and ventilation, RSA amplitude increased from 20 ms in PCV to 50 ms in PSV (p < 0.05). CVC was detected (using proportional Shannon entropy of the interval between each inspiration onset and the previous R-peak in ECG) in two animals in PCV and seven animals in PSV. Variable V(T) did not significantly influence these phenomena. Furthermore, heart period and systolic arterial pressure oscillations were in phase during PCV but in counter-phase during PSV. At the same depth of anesthesia in pigs, PSV increases RSA amplitude and CVC compared to PCV. Our data suggest that the central respiratory drive, but not the baroreflex or the mechano-electric feedback in the heart, is the main mechanism behind the RSA increase. Hence, differences in RSA and CVC between mechanically ventilated patients might reflect the difference in ventilation mode rather than autonomic impairment. Also, since gas exchange did not increase from PCV to PSV, it is questionable whether RSA has any significance in improving ventilation/perfusion matching during MV.
Further studies of stall flutter and nonlinear divergence of two-dimensional wings
NASA Technical Reports Server (NTRS)
Dugundji, J.; Chopra, I.
1975-01-01
An experimental investigation is made of the purely torsional stall flutter of a two-dimensional wing pivoted about the midchord, and also of the bending-torsion stall flutter of a two-dimensional wing pivoted about the quarterchord. For the purely torsional flutter case, large amplitude limit cycles ranging from + or - 11 to + or - 160 degrees were observed. Nondimensional harmonic coefficients were extracted from the free transient vibration tests for amplitudes up to 80 degrees. Reasonable nondimensional correlation was obtained for several wing configurations. For the bending-torsion flutter case, large amplitude coupled limit cycles were observed with torsional amplitudes as large as + or - 40 degrees. The torsion amplitudes first increased, then decreased with increasing velocity. Additionally, a small amplitude, predominantly torsional flutter was observed when the static equilibrium angle was near the stall angle.
Winnard, A; Debuse, D; Wilkinson, M; Samson, L; Weber, T; Caplan, Nick
2017-08-01
Lumbar multifidus (LM) and transversus abdominis (TrA) show altered motor control, and LM is atrophied, in people with low-back pain (LBP). The Functional Re-adaptive Exercise Device (FRED) involves cyclical lower-limb movement against minimal resistance in an upright posture. It has been shown to recruit LM and TrA automatically, and may have potential as an intervention for non-specific LBP. However, no studies have yet investigated the effects of changes in FRED movement amplitude on the activity of these muscles. This study aimed to assess the effects of different FRED movement amplitudes on LM and TrA muscle thickness and movement variability, to inform an evidence-based exercise prescription. Lumbar multifidus and TrA thickness of eight healthy male volunteers were examined using ultrasound imaging during FRED exercise, normalised to rest at four different movement amplitudes. Movement variability was also measured. Magnitude-based inferences were used to compare each amplitude. Exercise at all amplitudes recruited LM and TrA more than rest, with thickness increases of approximately 5 and 1 mm, respectively. Larger amplitudes also caused increased TrA thickness, LM and TrA muscle thickness variability and movement variability. The data suggests that all amplitudes are useful for recruiting LM and TrA. A progressive training protocol should start in the smallest amplitude, increasing the setting once participants can maintain a consistent movement speed, to continue to challenge the motor control system.
Zolpidem modulation of phasic and tonic GABA currents in the rat dorsal motor nucleus of the vagus
Gao, Hong; Smith, Bret N.
2010-01-01
Zolpidem is a widely prescribed sleep aid with relative selectivity for GABAA receptors containing α1–3 subunits. We examined the effects of zolpidem on the inhibitory currents mediated by GABAA receptors using whole-cell patch-clamp recordings from DMV neurons in transverse brainstem slices from rat. Zolpidem prolonged the decay time of mIPSCs and of muscimol-evoked whole-cell GABAergic currents, and it occasionally enhanced the amplitude of mIPSCs. The effects were blocked by flumazenil, a benzodiazepine antagonist. Zolpidem also hyperpolarized the resting membrane potential, with a concomitant decrease in input resistance and action potential firing activity in a subset of cells. Zolpidem did not clearly alter the GABAA receptor-mediated tonic current (Itonic) under baseline conditions, but after elevating extracellular GABA concentration with nipecotic acid, a non-selective GABA transporter blocker, zolpidem consistently and significantly increased the tonic GABA current. This increase was suppressed by flumazenil and gabazine. These results suggest that α1–3 subunits are expressed in synaptic GABAA receptors on DMV neurons. The baseline tonic GABA current is likely not mediated by these same low affinity, zolpidem-sensitive GABAA receptors. However, when the extracellular GABA concentration is increased, zolpidem-sensitive extrasynaptic GABAA receptors containing α1–3 subunits contribute to the Itonic. PMID:20226798
The membrane properties and firing characteristics of rat jaw-elevator motoneurones.
Moore, J; Appenteng, K
1990-01-01
1. We have determined the membrane and firing properties of fifty-six jaw-elevator motoneurones in rats that were anaesthetized with pentobarbitone, paralysed and artificially ventilated. 2. Forty-two neurones were identified as masseter motoneurones and fourteen as masseter synergist motoneurones. The membrane potentials for the sample ranged from -60 to -86 (mean = -68; S.D. = 7.3; n = 56), and spike amplitudes from 50 to 95 mV. The duration of the after-hyperpolarization following antidromic spikes in masseter motoneurones ranged from 15 to 50 ms (mean = 30; S.D. = 12.8) and their amplitudes from 1.0 to 4.5 mV (mean = 2.7; S.D. = 2.2; n = 42). 3. The mean input resistance for the total sample was 2.3 M omega (S.D. = 0.9; n = 56), membrane time constant 3.9 ms (S.D. = 0.9; n = 48) and rheobase 4.2 nA (S.D. = 2.6; n = 56). The distribution of these parameters was independent of membrane potential. We found no significant interrelationships between the membrane properties and one interpretation of this is that our sample may be drawn from a homogenous population of motoneurones. We also suggest that elevator motoneurones may have a lower Rm (specific membrane resistivity) value than cat hindlimb motoneurones because they have a similar range of input resistance values but only half the total surface area. 4. Forty-six out of forty-nine neurones fired repetitively to a depolarizing current pulse at a mean threshold of 1.6 x rheobase. Current-frequency plots were constructed for thirteen neurones and all but one showed a primary and secondary range in the firing of the first interspike interval. The mean slope in the primary range was 31 impulses s-1 nA-1 and 77 impulses s-1 nA-1 for the secondary range. The mean minimal firing frequency for steady firing was 26 impulses s-1 and, in response to an increase of stimulation, the rate increased monotonically with a slope of 11 impulses s-1 nA-1. 5. The dynamic sensitivity of twelve neurones was assessed from their response to ramp waveforms of current of constant amplitude but varying frequencies (0.2-2 Hz). Firing initially increased along a steep slope up to a frequency of between 40 and 60 impulses s-1 and then increased along a much shallower slope. Both the threshold for eliciting firing and the firing at the transition point of the two slopes remained constant with changes in ramp frequency.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2388148
Gudino, Natalia; Heilman, Jeremiah A; Riffe, Matthew J; Heid, Oliver; Vester, Markus; Griswold, Mark A
2013-07-01
A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability, and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D amplifier output stage and a voltage mode class-D preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the current mode class-D stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner. Copyright © 2012 Wiley Periodicals, Inc.
Movement amplitude and tempo change in piano performance
NASA Astrophysics Data System (ADS)
Palmer, Caroline
2004-05-01
Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.
Logarithmic circuit with wide dynamic range
NASA Technical Reports Server (NTRS)
Wiley, P. H.; Manus, E. A. (Inventor)
1978-01-01
A circuit deriving an output voltage that is proportional to the logarithm of a dc input voltage susceptible to wide variations in amplitude includes a constant current source which forward biases a diode so that the diode operates in the exponential portion of its voltage versus current characteristic, above its saturation current. The constant current source includes first and second, cascaded feedback, dc operational amplifiers connected in negative feedback circuit. An input terminal of the first amplifier is responsive to the input voltage. A circuit shunting the first amplifier output terminal includes a resistor in series with the diode. The voltage across the resistor is sensed at the input of the second dc operational feedback amplifier. The current flowing through the resistor is proportional to the input voltage over the wide range of variations in amplitude of the input voltage.
Uncertainty increases neural indices of attention in obsessive-compulsive disorder.
Dieterich, Raoul; Endrass, Tanja; Kathmann, Norbert
2017-11-01
Patients with obsessive-compulsive disorder (OCD) experience abnormally high levels of uncertainty, and unpredictability is evaluated negatively and not well tolerated. The current study examined neural correlates of attentional processing in response to experimentally induced uncertainty in OCD. Twenty-four OCD patients and 24 healthy controls performed a task where neutral and negative pictures were preceded by a cue, either being predictive (certain condition) or nonpredictive (uncertain condition) of subsequent picture valence. We examined prepicture anticipatory attention through α (∼8-12 Hz) suppression, and attentional allocation during picture presentation with the P1, N1, P2, N2, and late positive potential (LPP) of the event-related potential. Additionally, we tested how clinical measures related to these attentional markers. Subjectively, patients overestimated the frequency of negative pictures after nonpredictive cues. Patients, but not controls, showed upper α(10-12 Hz) suppression after nonpredictive and predictive negative cues relative to predictive neutral cues. Only patients showed increased P2 and decreased N2 amplitudes for pictures after nonpredictive cues, and, whereas both groups showed increased LPP amplitudes for pictures after nonpredictive cues, this modulation was more pronounced in OCD during the early LPP (<1,000 ms). In patients, P2 and LPP amplitudes for negative pictures were associated positively with anxiety and negatively with depression. These results suggest that OCD patients process anticipation of inevitable and potential threat similarly and highlight the substantial motivational impact of uncertain events to OCD patients. Finally, the correlation with anxiety implies that anxiety represents the source of hypervigilance during uncertainty resolution. © 2017 Wiley Periodicals, Inc.
Türken, Tuğba; Erge, Hande S
2017-09-01
In this study, it is aimed to determine effect of ultrasonication on some chemical and microbiological properties of sour cherry juice by response surface methodology, since ultrasound is known as an alternative method for thermal food processing. Sour cherry juice was sonicated at varying amplitude levels (50, 75, 100%); moderate temperatures (20, 30, 40 ℃); and treatment times of 2, 6, 10 min at a constant frequency of 20 kHz. Different ultrasonication amplitudes, temperatures, and times had no significant effect on pH,°Bx, and titratable acidity. A significant increase in total monomeric anthocyanins was observed as the amplitude level and temperature increased (p < 0.01). An increase in the total phenolics was also obtained as the temperature increased (p < 0.05). The effect of amplitude level on antioxidant capacity of sour cherry juice was also found significant (p < 0.05). Color parameters (L*, a*, b*, C, h) generally increased by increasing temperature, amplitude level, and treatment time. It was determined that Escherichia coli O157:H7 significantly affected by temperature and treatment time (p < 0.05).
Acute effects of gentamicin on the ionic currents of semicircular canal hair cells in the frog.
Martini, Marta; Canella, Rita; Prigioni, Ivo; Russo, Giancarlo; Tavazzani, Elisa; Fesce, Riccardo; Rossi, Maria Lisa
2011-12-01
The effects of acute gentamicin application on hair cells isolated from the frog semicircular canals have been tested by using the patch-clamp technique in the whole-cell configuration. Extracellular gentamicin (1 mM) mostly affected the Ca(2+) macrocurrent, I(Ca), and the Ca-dependent K(+) current, I(KCa). The drug, applied to the hair cell basolateral membrane through a fast perfusion system, produced a rapid and relevant decrease (∼34%) of I(Ca) amplitude, without apparently affecting its activation-deactivation kinetics. The I(KCa) component of the delayed I(KD) was similarly affected: peak and steady-state mean amplitudes were significantly reduced, by about 47 and 54%, respectively, whereas the time constant of the mono-exponential current rising phase did not change. The Ca(2+) independent fraction of I(KD), I(KV), and the fast IA current were unaffected. Transduction channels (permeable to and blocked by gentamicin) are not available in the isolated hair cell, so the effect of intracellular gentamicin was tested by applying the drug through the patch pipette (1 mM in the pipette): again, it significantly reduced both I(Ca) and I(KD) amplitude, without affecting currents kinetics. IA properties were also unaffected. The drug did not affect the onset and removal of I(KD) inactivation, although the changes were scaled to the reduced I(KD) amplitude. From these observations, it is expected that hair cells exposed to gentamicin 'in vivo' become unresponsive to physiological stimulation (block of the transduction channels) and transmitter release at the cytoneural junction be drastically depressed due to reduced Ca(2+) inflow. In particular, functional impairment ensues much earlier than biochemical events that lead to hair cell apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Ward Identity and Scattering Amplitudes for Nonlinear Sigma Models
NASA Astrophysics Data System (ADS)
Low, Ian; Yin, Zhewei
2018-02-01
We present a Ward identity for nonlinear sigma models using generalized nonlinear shift symmetries, without introducing current algebra or coset space. The Ward identity constrains correlation functions of the sigma model such that the Adler's zero is guaranteed for S -matrix elements, and gives rise to a subleading single soft theorem that is valid at the quantum level and to all orders in the Goldstone decay constant. For tree amplitudes, the Ward identity leads to a novel Berends-Giele recursion relation as well as an explicit form of the subleading single soft factor. Furthermore, interactions of the cubic biadjoint scalar theory associated with the single soft limit, which was previously discovered using the Cachazo-He-Yuan representation of tree amplitudes, can be seen to emerge from matrix elements of conserved currents corresponding to the generalized shift symmetry.
NASA Astrophysics Data System (ADS)
Taylor, Tomasz R.
2017-05-01
This a pedagogical introduction to scattering amplitudes in gauge theories. It proceeds from Dirac equation and Weyl fermions to the two pivot points of current developments: the recursion relations of Britto, Cachazo, Feng and Witten, and the unitarity cut method pioneered by Bern, Dixon, Dunbar and Kosower. In ten lectures, it covers the basic elements of on-shell methods.
Discharge of monkey nucleus reticularis tegmenti pontis neurons changes during saccade adaptation.
Takeichi, N; Kaneko, C R S; Fuchs, A F
2005-09-01
Saccade accuracy is maintained by adaptive mechanisms that continually modify saccade amplitude to reduce dysmetria. Previous studies suggest that adaptation occurs upstream of the caudal fastigial nucleus (CFN), the output of the oculomotor cerebellar vermis but downstream from the superior colliculus (SC). The nucleus reticularis tegmenti pontis (NRTP) is a major source of afferents to both the oculomotor vermis and the CFN and in turn receives direct input from the SC. Here we examine the activity of NRTP neurons in four rhesus monkeys during behaviorally induced changes in saccade amplitude to assess whether their discharge might reveal adaptation mechanisms that mediate changes in saccade amplitude. During amplitude decrease adaptation (average, 22%), the gradual reduction of saccade amplitude was accompanied by an increase in the number of spikes in the burst of 19/34 neurons (56%) and no change for 15 neurons (44%). For the neurons that increased their discharge, the additional spikes were added at the beginning of the saccadic burst and adaptation also delayed the peak-firing rate in some neurons. Moreover, after amplitude reduction, the movement fields changed shape in all 15 open field neurons tested. Our data show that saccadic amplitude reduction affects the number of spikes in the burst of more than half of NRTP neurons tested, primarily by increasing burst duration not frequency. Therefore adaptive changes in saccade amplitude are reflected already at a major input to the oculomotor cerebellum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Jiao; Wang Yanhui; Wang Dezhen
2013-04-15
The pulsed discharge for producing iodine atoms from the alkyl and perfluoroalky iodides (CH{sub 3}I, CF{sub 3}I, etc.) is the most efficient method for achieving the pulse operating mode of a chemical oxygen-iodine laser. In this paper, a one-dimensional fluid model is developed to study the characteristics of pulsed discharge in CF{sub 3}I-He mixture. By solving continuity equation, momentum equation, Poisson equation, Boltzmann equation, and an electric circuit equation, the temporal evolution of discharge current density and various discharge products, especially the atomic iodine, are investigated. The dependence of iodine atom density on discharge parameters is also studied. The resultsmore » show that iodine atom density increases with the pulsed width and pulsed voltage amplitude. The mixture ratio of CF{sub 3}I and helium plays a more significant role in iodine atom production. For a constant voltage amplitude, there exists an optimal mixture ratio under which the maximum iodine atom concentration is achieved. The bigger the applied voltage amplitude is, the higher partial pressure of CF{sub 3}I is needed to obtain the maximum iodine atom concentration.« less
Passmore, Steven R; Bruno, Paul A
2012-09-07
The Jendrassik maneuver (JM) is a remote facilitation muscular contraction shown to affect amplitude and temporal components of the human stretch reflex. Conflicting theoretical models exist regarding the neurological mechanism related to its ability to reinforce reflex parameters. One mechanism involves the gamma motoneurons of the fusimotor system, which are subject to both physical and mental activity. A second mechanism describes reduced alpha motoneuron presynaptic inhibition, which is not subject to mental activity. In the current study, we determined if mental activity could be used to create a reflex facilitation comparable to a remote muscle contraction. Using a within-participants design, we investigated the relative effect of the JM and a successfully employed mental task (Stroop task) on the amplitude and temporal components of the patellar tendon reflex. We found that the addition of mental activity had no influence on the patellar tendon reflex parameters measured, while the JM provided facilitation (increased reflex amplitude, decreased total reflex time). The findings from this study support the view that the mechanism for the JM is a reduction in presynaptic inhibition of alpha motoneurons as it is influenced by physical and not mental activity.
An analysis of the processing requirements of a complex perceptual-motor task
NASA Technical Reports Server (NTRS)
Kramer, A. F.; Wickens, C. D.; Donchin, E.
1983-01-01
Current concerns in the assessment of mental workload are discussed, and the event-related brain potential (ERP) is introduced as a promising mental-workload index. Subjects participated in a series of studies in which they were required to perform a target acquisition task while also covertly counting either auditory or visual probes. The effects of several task-difficulty manipulations on the P300 component of the ERP elicited by the counted stimulus probes were investigated. With sufficiently practiced subjects the amplitude of the P300 was found to decrease with increases in task difficulty. The second experiment also provided evidence that the P300 is selectively sensitive to task-relevant attributes. A third experiment demonstrated a convergence in the amplitude of the P300s elicited in the simple and difficult versions of the tracking task. The amplitude of the P300 was also found to covary with the measures of tracking performance. The results of the series of three experiments illustrate the sensitivity of the P300 to the processing requirements of a complex target acquisition task. The findings are discussed in terms of the multidimensional nature of processing resources.
Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music.
Lamminmäki, Satu; Parkkonen, Lauri; Hari, Riitta
2014-01-01
Auditory steady-state responses that can be elicited by various periodic sounds inform about subcortical and early cortical auditory processing. Steady-state responses to amplitude-modulated pure tones have been used to scrutinize binaural interaction by frequency-tagging the two ears' inputs at different frequencies. Unlike pure tones, speech and music are physically very complex, as they include many frequency components, pauses, and large temporal variations. To examine the utility of magnetoencephalographic (MEG) steady-state fields (SSFs) in the study of early cortical processing of complex natural sounds, the authors tested the extent to which amplitude-modulated speech and music can elicit reliable SSFs. MEG responses were recorded to 90-s-long binaural tones, speech, and music, amplitude-modulated at 41.1 Hz at four different depths (25, 50, 75, and 100%). The subjects were 11 healthy, normal-hearing adults. MEG signals were averaged in phase with the modulation frequency, and the sources of the resulting SSFs were modeled by current dipoles. After the MEG recording, intelligibility of the speech, musical quality of the music stimuli, naturalness of music and speech stimuli, and the perceived deterioration caused by the modulation were evaluated on visual analog scales. The perceived quality of the stimuli decreased as a function of increasing modulation depth, more strongly for music than speech; yet, all subjects considered the speech intelligible even at the 100% modulation. SSFs were the strongest to tones and the weakest to speech stimuli; the amplitudes increased with increasing modulation depth for all stimuli. SSFs to tones were reliably detectable at all modulation depths (in all subjects in the right hemisphere, in 9 subjects in the left hemisphere) and to music stimuli at 50 to 100% depths, whereas speech usually elicited clear SSFs only at 100% depth.The hemispheric balance of SSFs was toward the right hemisphere for tones and speech, whereas SSFs to music showed no lateralization. In addition, the right lateralization of SSFs to the speech stimuli decreased with decreasing modulation depth. The results showed that SSFs can be reliably measured to amplitude-modulated natural sounds, with slightly different hemispheric lateralization for different carrier sounds. With speech stimuli, modulation at 100% depth is required, whereas for music the 75% or even 50% modulation depths provide a reasonable compromise between the signal-to-noise ratio of SSFs and sound quality or perceptual requirements. SSF recordings thus seem feasible for assessing the early cortical processing of natural sounds.
Opposite effects of cannabis and cocaine on performance monitoring.
Spronk, Desirée B; Verkes, Robbert J; Cools, Roshan; Franke, Barbara; Van Wel, Janelle H P; Ramaekers, Johannes G; De Bruijn, Ellen R A
2016-07-01
Drug use is often associated with risky and unsafe behavior. However, the acute effects of cocaine and cannabis on performance monitoring processes have not been systematically investigated. The aim of the current study was to investigate how administration of these drugs alters performance monitoring processes, as reflected in the error-related negativity (ERN), the error positivity (Pe) and post-error slowing. A double-blind placebo-controlled randomized three-way crossover design was used. Sixty-one subjects completed a Flanker task while EEG measures were obtained. Subjects showed diminished ERN and Pe amplitudes after cannabis administration and increased ERN and Pe amplitudes after administration of cocaine. Neither drug affected post-error slowing. These results demonstrate diametrically opposing effects on the early and late phases of performance monitoring of the two most commonly used illicit drugs of abuse. Conversely, the behavioral adaptation phase of performance monitoring remained unaltered by the drugs. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Schmitter, E. D.
2013-04-01
Remote sensing of the ionosphere bottom using long wave radio signal propagation is a still going strong and inexpensive method for continuous monitoring purposes. We present a propagation model describing the time development of solar flare effects. Based on monitored amplitude and phase data from VLF/LF transmitters gained at a mid-latitude site during the currently increasing solar cycle no. 24 a parameterized electron density profile is calculated as a function of time and fed into propagation calculations using the LWPC (Long Wave Propagation Capability). The model allows to include lower ionosphere recombination and attachment coefficients, as well as to identify the relevant forcing X-ray wavelength band, and is intended to be a small step forward to a better understanding of the solar-lower ionosphere interaction mechanisms within a consistent framework.
The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse
Becker, Lars; Schnee, Michael E; Niwa, Mamiko; Sun, Willy; Maxeiner, Stephan; Talaei, Sara; Kachar, Bechara; Rutherford, Mark A
2018-01-01
The ribbon is the structural hallmark of cochlear inner hair cell (IHC) afferent synapses, yet its role in information transfer to spiral ganglion neurons (SGNs) remains unclear. We investigated the ribbon’s contribution to IHC synapse formation and function using KO mice lacking RIBEYE. Despite loss of the entire ribbon structure, synapses retained their spatiotemporal development and KO mice had a mild hearing deficit. IHCs of KO had fewer synaptic vesicles and reduced exocytosis in response to brief depolarization; a high stimulus level rescued exocytosis in KO. SGNs exhibited a lack of sustained excitatory postsynaptic currents (EPSCs). We observed larger postsynaptic glutamate receptor plaques, potentially compensating for the reduced EPSC rate in KO. Surprisingly, large-amplitude EPSCs were maintained in KO, while a small population of low-amplitude slower EPSCs was increased in number. The ribbon facilitates signal transduction at physiological stimulus levels by retaining a larger residency pool of synaptic vesicles. PMID:29328021
Prebreakdown phenomena and formation process of the glow discharge in low-pressure Ar gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosokawa, Tatsuzo; Goto, Kazuhiro; Ohuchi, Mikio
2001-06-01
The prebreakdown phenomena and the formation process of the glow discharge in a low-pressure Ar gas were investigated under a uniform field gap. Prebreakdown phenomena were observed for 0.5Torrcm{le}pd{le}2Torrcm (where p is pressure, d the gap distance) in Ar gas under conditions of a slowly increasing voltage. It was observed that the prebreakdown phenomena formed pulse discharges up to the transition to the glow discharge. The amplitudes of the photon and current pulses due to the pulse discharge increased with time, and then decreased as soon as the transition to a steady glow discharge occurred. When the overvoltage or externalmore » series resistance was increased, the pulse amplitudes increased with the applied voltage and decreased with the resistance. The characteristics of the prebreakdown phenomena were changed by the shape of the electrodes. The formation mechanism of the glow discharge can be qualitatively explained by that of the streamer in a high-pressure discharge. The transient glow discharge was observed, and its duration increased with an increase in resistance. The instability of the glow discharge was controlled by three factors, namely, Kaufmann{close_quote}s criterion, the Child{endash}Langmuir law, and the density balance between the production and removal rates of electrons. {copyright} 2001 American Institute of Physics.« less
The effect of aging on the (mis)perception of intentionality - an ERP study.
Pasion, R; Fernandes, C; Gonçalves, A R; Ferreira-Santos, F; Páscoa, R; Barbosa, F; Marques-Teixeira, J
2018-01-23
Despite the accumulated knowledge on moral decision-making in the early stages of development, empirical evidence is still limited in the old-aged adults. The current study contributes to unveil the neural correlates of judgments of moral transgressions as a function of aging, by examining the temporal dynamics of neural activation elicited by intentional and accidental harmful actions in three groups of healthy participants: young adults (18-35), adults (40-55), and older adults (60-75). Older adults were slower and less accurate in rating intentionality, compared to the younger groups. In ERP analysis, the older group showed increased P2 amplitude, which was predicted by poorer performance on neuropsychological tests. Reduced amplitudes were found on critical ERP components to moral cognition (N2 and LPP), namely while processing intentional harmful scenarios. Older adults seem to allocate more attentional resources (P2) to the task, probably to compensate the age-related decline in executive functioning, while younger groups show a pronounced negativity while detecting harm (N2) and increased neural activation to encode the intentions behind the acts (LPP).
Magnetic-Field-Response Measurement-Acquisition System
NASA Technical Reports Server (NTRS)
Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.
2006-01-01
A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a response inflection. The "transmit-receive-compare" of sequential harmonics is repeated until the inflection is identified. The harmonic producing the amplitude inflection is the sensor resonant frequency. Resonant frequency and response amplitude are stored and then correlated to calibration data.
Amplitude loss of sonic waveform due to source coupling to the medium
NASA Astrophysics Data System (ADS)
Lee, Myung W.; Waite, William F.
2007-03-01
In contrast to hydrate-free sediments, sonic waveforms acquired in gas hydrate-bearing sediments indicate strong amplitude attenuation associated with a sonic velocity increase. The amplitude attenuation increase has been used to quantify pore-space hydrate content by attributing observed attenuation to the hydrate-bearing sediment's intrinsic attenuation. A second attenuation mechanism must be considered, however. Theoretically, energy radiation from sources inside fluid-filled boreholes strongly depends on the elastic parameters of materials surrounding the borehole. It is therefore plausible to interpret amplitude loss in terms of source coupling to the surrounding medium as well as to intrinsic attenuation. Analyses of sonic waveforms from the Mallik 5L-38 well, Northwest Territories, Canada, indicate a significant component of sonic waveform amplitude loss is due to source coupling. Accordingly, all sonic waveform amplitude analyses should include the effect of source coupling to accurately characterize a formation's intrinsic attenuation.
Amplitude loss of sonic waveform due to source coupling to the medium
Lee, Myung W.; Waite, William F.
2007-01-01
In contrast to hydrate-free sediments, sonic waveforms acquired in gas hydrate-bearing sediments indicate strong amplitude attenuation associated with a sonic velocity increase. The amplitude attenuation increase has been used to quantify pore-space hydrate content by attributing observed attenuation to the hydrate-bearing sediment's intrinsic attenuation. A second attenuation mechanism must be considered, however. Theoretically, energy radiation from sources inside fluid-filled boreholes strongly depends on the elastic parameters of materials surrounding the borehole. It is therefore plausible to interpret amplitude loss in terms of source coupling to the surrounding medium as well as to intrinsic attenuation. Analyses of sonic waveforms from the Mallik 5L-38 well, Northwest Territories, Canada, indicate a significant component of sonic waveform amplitude loss is due to source coupling. Accordingly, all sonic waveform amplitude analyses should include the effect of source coupling to accurately characterize a formation's intrinsic attenuation.
Simulation of Chirping Avalanche in Neighborhood of TAE gap
NASA Astrophysics Data System (ADS)
Berk, Herb; Breizman, Boris; Wang, Ge; Zheng, Linjin
2016-10-01
A new kinetic code, CHIRP, focuses on the nonlinear response of resonant energetic particles (EPs) that destabilize Alfven waves which then can produce hole and clump phase space chirping structures, while the background plasma currents are assumed to respond linearly to the generated fields. EP currents are due to the motion arising from the perturbed field that is time averaged over an equilibrium orbit. A moderate EP source produces TAE chirping structures that have a limited range of chirping that do not reach the continuum. When the source is sufficiently strong, an EPM is excited in the lower continuum and it chirps rapidly downward as its amplitude rapidly grows in time. This response resembles the experimental observation of an avalanche, which occurs after a series of successive chirping events with a modest frequency shift, and then suddenly a rapid large amplitude and rapid frequency burst to low frequency with the loss of EPs. From these simulation observations we propose that in the experiment the EP population is slowly increasing to the point where the EPM is eventually excited. Supported by SCIDAC Center for Nonlinear Simulation of Energetic Particles Burning Plasmas (CSEP).
Maturation of the P3 and concurrent oscillatory processes during adolescence.
Mathes, Birgit; Khalaidovski, Ksenia; Wienke, Annika S; Schmiedt-Fehr, Christina; Basar-Eroglu, Canan
2016-07-01
During adolescence event-related modulations of the neural response may increase. For slow event-related components, such as the P3, this developmental change may be masked due to increased amplitude levels of ongoing delta and theta oscillations in adolescents. In a cross-sectional study design, EEG was measured in 51 participants between 13 and 24years. A visual oddball paradigm was used to elicit the P3. Our analysis focused on fronto-parietal activations within the P3 time-window and the concurrent time-frequency characteristics in the delta (∼0.5-4Hz) and theta (∼4-7Hz) band. The parietal P3 amplitude was similar across the investigated age range, while the amplitude at frontal regions increased with age. The pre-stimulus amplitudes of delta and theta oscillations declined with age, while post-stimulus amplitude enhancement and inter-trial phase coherence increased. These changes affected fronto-parietal electrode sites. The parietal P3 maximum seemed comparable for adolescents and young adults. Detailed analysis revealed that within the P3 time-window brain maturation during adolescence may lead to reduced spontaneous slow-wave oscillations, increased amplitude modulation and time precision of event-related oscillations, and altered P3 scalp topography. Time-frequency analyses may help to distinguish selective neurodevelopmental changes within the P3 time window. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Nonlinearity of bituminous mixtures
NASA Astrophysics Data System (ADS)
Mangiafico, S.; Babadopulos, L. F. A. L.; Sauzéat, C.; Di Benedetto, H.
2018-02-01
This paper presents an experimental characterization of the strain dependency of the complex modulus of bituminous mixtures for strain amplitude levels lower than about 110 μm/m. A series of strain amplitude sweep tests are performed at different temperatures (8, 10, 12 and 14°C) and frequencies (0.3, 1, 3 and 10 Hz), during which complex modulus is monitored. For each combination of temperature and frequency, four maximum strain amplitudes are targeted (50, 75, 100 and 110 μm/m). For each of them, two series of 50 loading cycles are applied, respectively at decreasing and increasing strain amplitudes. Before each decreasing strain sweep and after each increasing strain sweep, 5 cycles are performed at constant maximum targeted strain amplitude. Experimental results show that the behavior of the studied material is strain dependent. The norm of the complex modulus decreases and phase angle increases with strain amplitude. Results are presented in Black and Cole-Cole plots, where characteristic directions of nonlinearity can be identified. Both the effects of nonlinearity in terms of the complex modulus variation and of the direction of nonlinearity in Black space seem to validate the time-temperature superposition principle with the same shift factors as for linear viscoelasticity. The comparison between results obtained during increasing and decreasing strain sweeps suggests the existence of another phenomenon occurring during cyclic loading, which appears to systematically induce a decrease of the norm of the complex modulus and an increase of the phase angle, regardless of the type of the strain sweep (increasing or decreasing).
Scaling of motor cortical excitability during unimanual force generation.
Perez, Monica A; Cohen, Leonardo G
2009-10-01
During performance of a unimanual force generation task primary motor cortices (M1s) experience clear functional changes. Here, we evaluated the way in which M1s interact during parametric increases in right wrist flexion force in healthy volunteers. We measured the amplitude and the slope of motor evoked potentials (MEP) recruitment curves to transcranial magnetic stimulation (TMS) in the left and right flexor carpi radialis (FCR) muscles at rest and during 10%, 30% and 70% of maximal wrist flexion force. At rest, no differences were observed in the amplitude and slope of MEP recruitment curves in the left and right FCR muscles. With increasing right wrist flexion force, MEP amplitudes increased in both FCR muscles, with larger amplitudes in the right FCR. We found a significant correlation between the left and right MEP amplitudes across conditions. The slope of right and left FCR MEP recruitment curve was significantly steeper at 70% of force compared to rest and 10% of force. A significant correlation between the slope of left and right FCR MEP amplitudes was found at 70% of force only. Our results indicate a differential scaling of excitability in the corticospinal system controlling right and left FCR muscles at increasing levels of unimanual force generation. Specifically, these data highlights that at strong levels of unimanual force the increases in motor cortical excitability with increasing TMS stimulus intensities follow a similar pattern in both M1s, while at low levels of force they do not.
NASA Astrophysics Data System (ADS)
Li, Xuechen; Liu, Rui; Jia, Pengying; Wu, Kaiyue; Ren, Chenhua; Yin, Zengqian
2018-01-01
A one-dimensional fluid model in atmospheric pressure argon is employed to investigate the influence of the driving frequency on dielectric barrier discharge modes excited by a triangle voltage. Results indicate that a stepped discharge mode is obtained with a low driving frequency of 35 kHz. The current amplitude increases, while its plateau duration decreases with increasing the frequency. The stepped discharge transits into a multi-pulsed mode when the frequency is increased to 80 kHz. With its further increment, the pulse number decreases, and a double-pulsed discharge is realized at 90 kHz, which finally transits to a single-pulsed discharge. Through analyzing spatial distributions of electron density, ion density, and electric field, it can be concluded that the discharge regime transits from a Townsend-like discharge to a glow discharge with increasing the frequency. The regime transition is further verified by analyzing voltage-current curves. These simulated results are consistent with the experimental phenomena.
NASA Astrophysics Data System (ADS)
Ahmed, Zaghloul
2017-10-01
Objective. Lower urinary tract (LUT) dysfunction is a monumental problem affecting quality of life following neurotrauma, such as spinal cord injury (SCI). Proper function of the bladder and its associated structures depends on coordinated activity of the neuronal circuitry in the spinal cord and brain. Disconnection between the spinal and brain centers controlling the LUT causes fundamental changes in the mechanisms involved in the micturition and storage reflexes. We investigated the effects of cathodal trans-spinal direct current stimulation (c-tsDCS) of the lumbosacral spine on bladder and external urinary sphincter (EUS) functions. Approach. We used cystometry and electromyography (EMG), in mice with and without SCI. Main results. c-tsDCS caused initiation of the micturition reflex in urethane-anesthetized normal mice with depressed micturition reflexes. This effect was associated with normalized EUS-EMG activity. Moreover, in urethane-anesthetized normal mice with expressed micturition reflexes, c-tsDCS increased the firing frequency, amplitude, and duration of EUS-EMG activity. These effects were associated with increased maximum intravesical pressure (P max) and intercontraction interval (ICI). In conscious normal animals, c-tsDCS caused significant increases in P max, ICI, threshold pressure (P thres), baseline pressure (P base), and number and amplitude of non-voiding contractions (NVCnumb and P im, respectively). In conscious mice with severe contusive SCI and overactive bladder, c-tsDCS increased P max, ICI, and P thres, but decreased P base, NVCnumb, and P im. c-tsDCS reduced the detrusor-overactivity/cystometry ratio, which is a measure of bladder overactivity associated with renal deterioration. Significance. These results indicate that c-tsDCS induces robust modulation of the lumbosacral spinal-cord circuitry that controls the LUT.
Ma, Yao-Ying; Henley, Sandy M.; Toll, Jeff; Jentsch, James D.; Evans, Christopher J.; Levine, Michael S.; Cepeda, Carlos
2013-01-01
To examine the mechanisms of drug relapse, we first established a model for cocaine IVSA (intravenous self-administration) in mice, and subsequently examined electrophysiological alterations of MSNs (medium-sized spiny neurons) in the NAc (nucleus accumbens) before and after acute application of cocaine in slices. Three groups were included: master mice trained by AL (active lever) pressings followed by IV (intravenous) cocaine delivery, yoked mice that received passive IV cocaine administration initiated by paired master mice, and saline controls. MSNs recorded in the NAc shell in master mice exhibited higher membrane input resistances but lower frequencies and smaller amplitudes of sEPSCs (spontaneous excitatory postsynaptic currents) compared with neurons recorded from saline control mice, whereas cells in the NAc core had higher sEPSCs frequencies and larger amplitudes. Furthermore, sEPSCs in MSNs of the shell compartment displayed longer decay times, suggesting that both pre- and postsynaptic mechanisms were involved. After acute re-exposure to a low-dose of cocaine in vitro, an AP (action potential)-dependent, persistent increase in sEPSC frequency was observed in both NAc shell and core MSNs from master, but not yoked or saline control mice. Furthermore, re-exposure to cocaine induced membrane hyperpolarization, but concomitantly increased excitability of MSNs from master mice, as evidenced by increased membrane input resistance, decreased depolarizing current to generate APs, and a more negative Thr (threshold) for firing. These data demonstrate functional differences in NAc MSNs after chronic contingent versus non-contingent IV cocaine administration in mice, as well as synaptic adaptations of MSNs before and after acute re-exposure to cocaine. Reversing these functional alterations in NAc could represent a rational target for the treatment of some reward-related behaviors, including drug addiction. PMID:24000958
Diagnosis of Normal and Abnormal Color Vision with Cone-Specific VEPs.
Rabin, Jeff C; Kryder, Andrew C; Lam, Dan
2016-05-01
Normal color vision depends on normal long wavelength (L), middle wavelength (M), and short wavelength sensitive (S) cones. Hereditary "red-green" color vision deficiency (CVD) is due to a shift in peak sensitivity or lack of L or M cones. Hereditary S cone CVD is rare but can be acquired as an early sign of disease. Current tests detect CVD but few diagnose type or severity, critical for linking performance to real-world demands. The anomaloscope and newer subjective tests quantify CVD but are not applicable to infants or cognitively impaired patients. Our purpose was to develop an objective test of CVD with sensitivity and specificity comparable to current tests. A calibrated visual-evoked potential (VEP) display and Food and Drug Administration-approved system was used to record L, M, and S cone-specific pattern-onset VEPs from 18 color vision normals (CVNs) and 13 hereditary CVDs. VEP amplitudes and latencies were compared between groups to establish VEP sensitivity and specificity. Cone VEPs show 100% sensitivity for diagnosis of CVD and 94% specificity for confirming CVN. L cone (protan) CVDs showed a significant increase in L cone latency (53.1 msec, P < 0.003) and decreased amplitude (10.8 uV, P < 0.0000005) but normal M and S cone VEPs ( P > 0.31). M cone (deutan) CVDs showed a significant increase in M cone latency (31.0 msec, P < 0.000004) and decreased amplitude (8.4 uV, P < 0.006) but normal L and S cone VEPs ( P > 0.29). Cone-specific VEPs offer a rapid, objective test to diagnose hereditary CVD and show potential for detecting acquired CVD in various diseases. This paper describes the efficacy of cone-specific color VEPs for quantification of normal and abnormal color vision. The rapid, objective nature of this approach makes it suitable for detecting color sensitivity loss in infants and the cognitively impaired.
Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos
2018-01-01
Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP’s amplitude and NFR’s area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR’s area. High-frequency rTMS increased MEP’s amplitude and NFR’s area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes. PMID:29596524
Albuquerque, Plínio Luna; Campêlo, Mayara; Mendonça, Thyciane; Fontes, Luís Augusto Mendes; Brito, Rodrigo de Mattos; Monte-Silva, Katia
2018-01-01
Repetitive transcranial magnetic stimulation (rTMS) over motor cortex and trans-spinal direct current stimulation (tsDCS) modulate corticospinal circuits in healthy and injured subjects. However, their associated effects with physical exercise is still not defined. This study aimed to investigate the effect of three different settings of rTMS and tsDCS combined with treadmill exercise on spinal cord and cortical excitability of healthy subjects. We performed a triple blind, randomized, sham-controlled crossover study with 12 healthy volunteers who underwent single sessions of rTMS (1Hz, 20Hz and Sham) and tsDCS (anodal, cathodal and Sham) associated with 20 minutes of treadmill walking. Cortical excitability was assessed by motor evoked potential (MEP) and spinal cord excitability by the Hoffmann reflex (Hr), nociceptive flexion reflex (NFR) and homosynaptic depression (HD). All measures were assessed before, immediately, 30 and 60 minutes after the experimental procedures. Our results demonstrated that anodal tsDCS/treadmill exercise reduced MEP's amplitude and NFR's area compared to sham condition, conversely, cathodal tsDCS/treadmill exercise increased NFR's area. High-frequency rTMS increased MEP's amplitude and NFR's area compared to sham condition. Anodal tsDCS/treadmill exercise and 20Hz rTMS/treadmill exercise reduced Hr amplitude up to 30 minutes after stimulation offset and no changes were observed in HD measures. We demonstrated that tsDCS and rTMS combined with treadmill exercise modulated cortical and spinal cord excitability through different mechanisms. tsDCS modulated spinal reflexes in a polarity-dependent way acting at local spinal circuits while rTMS probably promoted changes in the presynaptic inhibition of spinal motoneurons. In addition, the association of two neuromodulatory techniques induced long-lasting changes.
Fiene, Marina; Rufener, Katharina S; Kuehne, Maria; Matzke, Mike; Heinze, Hans-Jochen; Zaehle, Tino
2018-03-01
Fatigue is one of the most common and debilitating symptoms affecting patients with multiple sclerosis (MS). Sustained cognitive effort induces cognitive fatigue, operationalized as subjective exhaustion and fatigue-related objective alertness decrements with time-on-task. During prolonged cognitive testing, MS patients show increased simple reaction times (RT) accompanied by lower amplitudes and prolonged latencies of the P300 event-related potential. Previous studies suggested a major role of structural and functional abnormalities in the frontal cortex including a frontal hypo-activation in fatigue pathogenesis. In the present study we investigated the neuromodulatory effect of transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) on objective measures of fatigue-related decrements in cognitive performance in MS patients. P300 during an auditory oddball task and simple reaction times in an alertness test were recorded at baseline, during and after stimulation. Compared to sham, anodal tDCS caused an increase in P300 amplitude that persisted after the end of stimulation and eliminated the fatigue-related increase in RT over the course of a testing session. Our findings demonstrate that anodal tDCS over the left DLPFC can counteract performance decrements associated with fatigue thereby leading to an improvement in the patient's ability to cope with sustained cognitive demands. This provides causal evidence for the functional relevance of the left DLPFC in fatigue pathophysiology. The results indicate that tDCS-induced modulations of frontal activity can be an effective therapeutic option for the treatment of fatigue-related declines in cognitive performance in MS patients.
Development and evaluation of gas-pressurized elastic sleeves for extravehicular activity.
Tanaka, Kunihiko; Tohnan, Momoka; Abe, Chikara; Iwata, Chihiro; Yamagata, Kenji; Tanaka, Masao; Tanaka, Nobuyuki; Morita, Hironobu
2010-07-01
In space, mobility of the current extravehicular activity space suit is limited due to the pressure differential between the inside and outside of the suit. We have previously demonstrated that an elastic glove increased mobility when compared with a non-elastic glove such as that found in the current suit. Extending this work, we hypothesized that an elastic sleeve would also have more mobility compared to a non-elastic sleeve, but a partially elastic sleeve, consisting of elastic joints sewn to non-elastic parts in low mobility areas, might generate similar mobility to a wholly elastic sleeve. The right arms of 10 volunteers were studied with wholly elastic, partially elastic, and non-elastic sleeves in a chamber pressure of -220 mmHg. Range of motion (ROM) of the wrist and electromyography (EMG) of the flexor carpi radialis muscle and the biceps brachii muscle during wrist and elbow flexion were measured. ROM of the wrist was similar among all the sleeves. However, EMG amplitudes during wrist flexion with both elastic sleeves were significantly smaller than that with the non-elastic sleeve. EMG amplitudes during 90 degrees of elbow flexion were also significantly smaller in both elastic sleeves. However, no significant difference in EMG amplitudes was observed between the two elastic sleeves (0.53 +/- 0.06, 0.56 +/- 0.07, 1.14 +/- 0.10 V for wholly elastic, partially elastic, and non-elastic sleeves, respectively). The mobility of elastic sleeves is better than that of a non-elastic sleeve. Elasticity over the joints is important; however the elasticity of the other parts does not appear to affect mobility.
NASA Astrophysics Data System (ADS)
Wang, Y. H.; Jan, S.; Wang, D. P.
2003-05-01
Tidal and mean flows in the Taiwan Strait are obtained from analysis of 2.5 years (1999-2001) of shipboard ADCP data using a spatial least-squares technique. The average tidal current amplitude is 0.46 ms -1, the maximum amplitude is 0.80 ms -1 at the northeast and southeast entrances and the minimum amplitude is 0.20 ms -1 in the middle of the Strait. The tidal current ellipses derived from the shipboard ADCP data compare well with the predictions of a high-resolution regional tidal model. For the mean currents, the average velocity is about 0.40 ms -1. The mean transport through the Strait is northward (into the East China Sea) at 1.8 Sv. The transport is related to the along Strait wind by a simple regression, transport (Sv)=2.42+0.12×wind (ms -1). Using this empirical formula, the maximum seasonal transport is in summer, about 2.7 Sv, the minimum transport is in winter, at 0.9 Sv, and the mean transport is 1.8 Sv. For comparison, this result indicates that the seasonal amplitude is almost identical to the classical estimate by Wyrtki (Physical oceanography of the southeast Asian waters, scientific results of marine investigations of the South China Sea and Gulf of Thailand, 1959-1961. Naga Report 2, Scripps Institute of Oceanography, 195 pp.) based on the mass balance in the South China Sea, while the mean is close to the recent estimate by Isobe [Continental Shelf Research 19 (1999) 195] based on the mass balance in the East China Sea.
Rubart, M; Lopshire, J C; Fineberg, N S; Zipes, D P
2000-06-01
We previously demonstrated in dogs that a transient rate increase superimposed on bradycardia causes prolongation of ventricular refractoriness that persists for hours after resumption of bradycardia. In this study, we examined changes in membrane currents that are associated with this phenomenon. The whole cell, patch clamp technique was used to record transmembrane voltages and currents, respectively, in single mid-myocardial left ventricular myocytes from dogs with 1 week of complete AV block; dogs either underwent 1 hour of left ventricular pacing at 120 beats/min or did not undergo pacing. Pacing significantly heightened mean phase 1 and peak plateau amplitudes by approximately 6 and approximately 3 mV, respectively (P < 0.02), and prolonged action potential duration at 90% repolarization from 235+/-8 msec to 278+/-8 msec (1 Hz; P = 0.02). Rapid pacing-induced changes in transmembrane ionic currents included (1) a more pronounced cumulative inactivation of the 4-aminopyridine-sensitive transient outward K+ current, Ito, over the range of physiologic frequencies, resulting from a approximately 30% decrease in the population of quickly reactivating channels; (2) increases in peak density of L-type Ca2+ currents, I(Ca.L), by 15% to 35 % between +10 and +60 mV; and (3) increases in peak density of the Ca2+-activated chloride current, I(Cl.Ca), by 30% to 120% between +30 and +50 mV. Frequency-dependent reduction in Ito combined with enhanced I(Ca.L) causes an increase in net inward current that may be responsible for the observed changes in ventricular repolarization. This augmentation of net cation influx is partially antagonized by an increase in outward I(Ca.Cl).
Value of Laryngeal Electromyography in Spasmodic Dysphonia Diagnosis and Therapy.
Yang, Qingwen; Xu, Wen; Li, Yun; Cheng, Liyu
2015-07-01
To investigate the role of laryngeal electromyography (LEMG) in the diagnosis and treatment of spasmodic dysphonia (SD). The clinical manifestations, characteristics of motor unit potentials (MUPs), recruitment potentials, and laryngeal nerve evoked potentials (EPs) in LEMG, as well as the changes after botulinum toxin (BTX) treatment, were analyzed in 39 patients with adductor SD. The main clinical manifestations were a strained voice and phonation interruptions; in addition, the patients displayed hyper-adducted vocal folds during phonation. LEMG revealed significantly increased amplitudes of the thyroarytenoid muscle MUPs. The recruitment potentials were in a dense bunch, discharging full interference patterns with significantly increased amplitudes; the mean and maximum amplitude of recruitment potentials were 3090 μV and 5000 μV, respectively. The amplitude of EPs of thyroarytenoid muscle increased significantly; the mean and maximum amplitudes were 10.3 mV and 26.3 mV, respectively. After BTX was injected, the LEMG revealed denervation changes, and the EPs weakened or disappeared in the injected muscle. SD could be diagnosed, and the therapeutic efficacy of SD treatments could be evaluated based on clinical characteristics combined with LEMG characteristics. The increased amplitudes of the recruitment potentials and EPs of the thyroarytenoid muscle were the characteristic indexes. After BTX was injected, denervated potential characteristics appeared in the muscles. © The Author(s) 2015.
Ghamari-Langroudi, M; Glavinovíc, M I
1998-01-01
Spontaneous miniature excitatory postsynaptic currents (mEPSCs) in rat hippocampal pyramidal neurones in slices (CA1 region) were recorded at 35-37 degrees C using the whole-cell patch-clamp technique before and after addition of aniracetam (1 mM) to determine how a partial blockade of desensitization alters the relationship between the amplitude (A) and kinetics of mEPSCs, and to evaluate the factors that determine their variability. The rise time (taur) and the time constant of decay of mEPSCs (taud) are essentially amplitude independent in control conditions, but become clearly amplitude dependent in the presence of aniracetam. The slopes of the best fitting lines to taud:A and taur:A data pairs were (+/- SD; ms/pA; n = 5): (1) (control) 0.07 +/- 0.02 and 0.008 +/- 0.003; (2) (aniracetam) 0.40 +/- 0.19 and 0.22 +/- 0.22. The amplitude-dependent prolongation of taud is explained by the concentration dependence of two related processes, the buffering of glutamate molecules by AMPA receptor channels, and the occupancy of the double-bound activatable states. A slower deactivation makes an amplitude-independent contribution. Desensitization reduces the amplitude dependence of taud by minimizing repeated openings of alpha-amino-3-hydroxy-methyl-isoxazole (AMPA) receptor channels. A greater amplitude dependence of taur probably involves both pre- and postsynaptic factors. The variability of A and taud values did not change significantly, but the factors underlying the variability of taud values were much affected. The greater amplitude dependence and the greater scatter about the best fitting lines to taud:A data pairs are approximately balanced by the greater mean values. The greater scatter of taud about the best fitting lines probably occurs because the saturation of AMPA receptors is not the same at different synapses with different numbers of AMPA receptors.
Tang, Bo; Luo, Dong; Yang, Jie; Xu, Xiao-Yan; Zhu, Bing-Lin; Wang, Xue-Feng; Yan, Zhen; Chen, Guo-Jun
2015-01-01
Layer I neurons in the prefrontal cortex (PFC) exhibit extensive synaptic connections with deep layer neurons, implying their important role in the neural circuit. Study demonstrates that activation of nicotinic acetylcholine receptors (nAChRs) increases excitatory neurotransmission in this layer. Here we found that nicotine selectively increased the amplitude of AMPA receptor (AMPAR)-mediated current and AMPA/NMDA ratio, while without effect on NMDA receptor-mediated current. The augmentation of AMPAR current by nicotine was inhibited by a selective α7-nAChR antagonist methyllycaconitine (MLA) and intracellular calcium chelator BAPTA. In addition, nicotinic effect on mEPSC or paired-pulse ratio was also prevented by MLA. Moreover, an enhanced inward rectification of AMPAR current by nicotine suggested a functional role of calcium permeable and GluA1 containing AMPAR. Consistently, nicotine enhancement of AMPAR current was inhibited by a selective calcium-permeable AMPAR inhibitor IEM-1460. Finally, the intracellular inclusion of synthetic peptide designed to block GluA1 subunit of AMPAR at CAMKII, PKC or PKA phosphorylation site, as well as corresponding kinase inhibitor, blocked nicotinic augmentation of AMPA/NMDA ratio. These results have revealed that nicotine increases AMPAR current by modulating the phosphorylation state of GluA1 which is dependent on α7-nAChR and intracellular calcium. PMID:26370265
Transient analysis for alternating over-current characteristics of HTSC power transmission cable
NASA Astrophysics Data System (ADS)
Lim, S. H.; Hwang, S. D.
2006-10-01
In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.
Tidal currents and anticyclonic motions on two North Pacific seamounts
Genin, A.; Noble, M.; Lonsdale, P.F.
1989-01-01
Near-bottom currents were measured for several days at three sites on the summits of Fieberling Guyot (32??26???N, 127??46???W) and Horizon Guyot (19??15???N, 160??00???W). Three moorings comprised of two current meters were deployed on each summit; two moorings were deployed on opposite sides of the rim of the summit and one mooring was deployed near the center of the summit. The observed currents were strong, with maximum speeds of 48 and 24 cm s-1 on Fieberling and Horizon, respectively. The currents at specific frequencies were enhanced relative to those in the surrounding ocean. Diurnal currents were the dominant component of the current field on Fieberling Guyot. They accounted for 39-68% of the energy and had amplitudes around 12 cm s-1. We suspect that these diurnal currents were waves trapped over the seamount. Semidiurnal internal tidal currents were the strongest currents over Horizon Guyot, with amplitudes around 4 cm s-1. The flow patterns determined in this study seemed to affect the biological and geological characteristics of the seamounts. ?? 1990.
Harmonic reduction of Direct Torque Control of six-phase induction motor.
Taheri, A
2016-07-01
In this paper, a new switching method in Direct Torque Control (DTC) of a six-phase induction machine for reduction of current harmonics is introduced. Selecting a suitable vector in each sampling period is an ordinal method in the ST-DTC drive of a six-phase induction machine. The six-phase induction machine has 64 voltage vectors and divided further into four groups. In the proposed DTC method, the suitable voltage vectors are selected from two vector groups. By a suitable selection of two vectors in each sampling period, the harmonic amplitude is decreased more, in and various comparison to that of the ST-DTC drive. The harmonics loss is greater reduced, while the electromechanical energy is decreased with switching loss showing a little increase. Spectrum analysis of the phase current in the standard and new switching table DTC of the six-phase induction machine and determination for the amplitude of each harmonics is proposed in this paper. The proposed method has a less sampling time in comparison to the ordinary method. The Harmonic analyses of the current in the low and high speed shows the performance of the presented method. The simplicity of the proposed method and its implementation without any extra hardware is other advantages of the proposed method. The simulation and experimental results show the preference of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Intrinsic Flow and Momentum Transport during Improved Confinement in MST
NASA Astrophysics Data System (ADS)
Craig, D.; Tan, E.; Schott, B.; Anderson, J. K.; Boguski, J.; Nornberg, M. D.; Xing, Z. A.
2017-10-01
Progress in absolute wavelength calibration of the Charge Exchange Recombination Spectroscopy (CHERS) system on MST has enabled new observations and analysis of intrinsic flow and momentum transport. Localized toroidal and poloidal flow measurements with systematic accuracy of +/- 3 km/s have been obtained during improved confinement Pulsed Parallel Current Drive (PPCD) plasmas at high plasma current (400-500 kA). The magnetic activity prior to and during the transition to improved confinement tends to increase the flow and sets the initial condition for the momentum profile evolution during improved confinement where intrinsic flow drive appears to weaken. Inboard flows change in time during PPCD, consistent with changes in the core-resonant m =1, n =6 tearing mode phase velocity. Outboard flows near the magnetic axis are time-independent, resulting in the development of a strongly sheared toroidal flow in the core and asymmetry in the poloidal flow profile. The deceleration of the n =6 mode during the period of improved confinement correlates well with the n =6 mode amplitude and is roughly consistent with the expected torque from eddy currents in the conducting shell. The level of Dα emission and secondary mode amplitudes (n =7-10) do not correlate with the mode deceleration suggesting that the momentum loss from charge exchange with neutrals and diffusion due to residual magnetic stochasticity are not significant in PPCD. This work has been supported by the U.S.D.O.E.
Large-wave simulation of spilling breaking and undertow current over constant slope beach
NASA Astrophysics Data System (ADS)
Dimas, Athanassios; Kolokythas, Gerasimos; Dimakopoulos, Aggelos
2011-11-01
The three-dimensional, free-surface flow, developing by the propagation of nonlinear breaking waves over a constant slope bed, is numerically simulated. The main objective is to investigate the effect of spilling breaking on the characteristics of the induced undertow current by performing large-wave simulations (LWS) based on the numerical solution of the Navier-Stokes equations subject to the fully nonlinear free-surface boundary conditions and the appropriate bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. In the present study, the case of incoming waves with wavelength to inflow depth ratio λ/ d ~ 6.6 and wave steepness H/ λ ~0.025, over bed of slope tan β = 1/35, is investigated. The LWS predicts satisfactorily breaking parameters - height and depth - and wave dissipation in the surf zone, in comparison to experimental data. In the corresponding LES, breaking height and depth are smaller and wave dissipation in the surf zone is weaker. For the undertow current, it is found that it is induced by the breaking process at the free surface, while its strength is controlled by the bed shear stress. Finally, the amplitude of the bed shear stress increases substantially in the breaking zone, becoming up to six times larger than the respective amplitude at the outer region.
Brokaw, C J; Luck, D J
1985-01-01
Flash photomicrography at frequencies up to 300 Hz and computer-assisted image analysis have been used to obtain parameters describing the flagellar bending patterns of mutants of Chlamydomonas reinhardtii. All strains contained the uni1 mutation, to facilitate photography. The radial spoke head deficient mutant pf17, and the central pair deficient mutant, pf15, in combination with suppressor mutations that restore motility without restoring the ultrastructural or biochemical deficiencies, both generate forward mode bending patterns with increased shear amplitude and decreased asymmetry relative to the "wild-type" uni1 flagella described previously. In the reverse beating mode, the suppressed pf17 mutants generate reverse bending patterns with large shear amplitudes. Reverse beating of the suppressed pf15 mutants is rare. There is a reciprocal relationship between increased shear amplitude and decreased beat frequency, so that the velocity of sliding between flagellar microtubules is not increased by an increase in shear amplitude. The suppressor mutations alone cause decreased frequency and sliding velocity in both forward and reverse mode beating, with little change in shear amplitude or symmetry.
Characterization of Electrocardiogram Changes Throughout a Marathon
Callaway, Clifton; Salcido, David; McEntire, Serina; Roth, Ronald; Hostler, David
2014-01-01
Purpose There are few data examining cardiovascular physiology throughout a marathon. This study was devised to characterize electrocardiographic activity continuously throughout a marathon. Methods Cardiac activity was recorded from 19 subjects wearing a Holter monitor during a marathon. The 19 subjects (14 men and 5 women) were aged 39 ± 16 years (mean ± SD) and completed a marathon in 4:32:16 ± 1:23:35. Heart rate (HR), heart rate variability (HRV), T-wave amplitude, T-wave amplitude variability, and T-wave alternans (TWA) were evaluated continuously throughout the marathon. Results Averaged across all subjects, HRV, T-wave amplitude variability, and TWA increased throughout the marathon. Increased variability in T-wave amplitude occurred in 86% of subjects, characterized by complex oscillatory patterns and TWA. Three minutes after the marathon, HR was elevated and HRV was suppressed relative to the pre-marathon state. Conclusion HRV and T-wave amplitude variability, especially in the form of TWA, increase throughout a marathon. Increasing TWA as a marathon progresses likely represents a physiologic process as no arrhythmias or cardiac events were observed. PMID:24832192
Nonlinear Right-Hand Polarized Wave in Plasma in the Electron Cyclotron Resonance Region
NASA Astrophysics Data System (ADS)
Krasovitskiy, V. B.; Turikov, V. A.
2018-05-01
The propagation of a nonlinear right-hand polarized wave along an external magnetic field in subcritical plasma in the electron cyclotron resonance region is studied using numerical simulations. It is shown that a small-amplitude plasma wave excited in low-density plasma is unstable against modulation instability with a modulation period equal to the wavelength of the excited wave. The modulation amplitude in this case increases with decreasing detuning from the resonance frequency. The simulations have shown that, for large-amplitude waves of the laser frequency range propagating in plasma in a superstrong magnetic field, the maximum amplitude of the excited longitudinal electric field increases with the increasing external magnetic field and can reach 30% of the initial amplitude of the electric field in the laser wave. In this case, the energy of plasma electrons begins to substantially increase already at magnetic fields significantly lower than the resonance value. The laser energy transferred to plasma electrons in a strong external magnetic field is found to increase severalfold compared to that in isotropic plasma. It is shown that this mechanism of laser radiation absorption depends only slightly on the electron temperature.
Measurement of AC Losses in a Racetrack Superconducting Coil Made from YBCO Coated Conductor
NASA Astrophysics Data System (ADS)
Seiler, Eugen; Abrahamsen, Asger B.; Kováč, Ján; Wichmann, Mike; Træholt, Chresten
We present the results of transport measurements of AC losses in a racetrack shaped superconducting coil made from coated conductor tape. The outer dimensions of the coil are approximately 24 cm × 12 cm and it has 57 turns. The coil is impregnated with epoxy resin and fiberglass tape is used to insulate the individual turns and to improve the mechanical properties of the epoxy when exposed to thermal cycling. The coil is manufactured as a part of the field winding of a small synchronous generator; therefore stainless steel frames are installed on the inner and outer side of the winding to reinforce it. The AC loss is measured versus the transport current Ia with the coil immersed in liquid nitrogen. Measurements at frequencies 21 Hz, 36 Hz and 72 Hz are compared. The AC losses follow Ia2 dependence at low current amplitudes and Ia3 at high amplitudes. After cutting the inner steel frame the low amplitude losses are decreased, their frequency dependence is reduced but their dependence on the current remains unchanged.
Mode Transitions in Magnetically Shielded Hall Effect Thrusters
NASA Technical Reports Server (NTRS)
Sekerak, Michael J.; Longmier, Benjamin W.; Gallimore, Alec D.; Huang, Wensheng; Kamhawi, Hani; Hofer, Richard R.; Jorns, Benjamin A.; Polk, James E.
2014-01-01
A mode transition study is conducted in magnetically shielded thrusters where the magnetic field magnitude is varied to induce mode transitions. Three different oscillatory modes are identified with the 20-kW NASA-300MS-2 and the 6-kW H6MS: Mode 1) global mode similar to unshielded thrusters at low magnetic fields, Mode 2) cathode oscillations at nominal magnetic fields, and Mode 3) combined spoke, cathode and breathing mode oscillations at high magnetic fields. Mode 1 exhibits large amplitude, low frequency (1-10 kHz), breathing mode type oscillations where discharge current mean value and oscillation amplitude peak. The mean discharge current is minimized while thrust-to-power and anode efficiency are maximized in Mode 2, where higher frequency (50-90 kHz), low amplitude, cathode oscillations dominate. Thrust is maximized in Mode 3 and decreases by 5-6% with decreasing magnetic field strength. The presence or absence of spokes and strong cathode oscillations do not affect each other or discharge current. Similar to unshielded thrusters, mode transitions and plasma oscillations affect magnetically shielded thruster performance and should be characterized during system development.
A study on locating the sonic source of sinusoidal magneto-acoustic signals using a vector method.
Zhang, Shunqi; Zhou, Xiaoqing; Ma, Ren; Yin, Tao; Liu, Zhipeng
2015-01-01
Methods based on the magnetic-acoustic effect are of great significance in studying the electrical imaging properties of biological tissues and currents. The continuous wave method, which is commonly used, can only detect the current amplitude without the sound source position. Although the pulse mode adopted in magneto-acoustic imaging can locate the sonic source, the low measuring accuracy and low SNR has limited its application. In this study, a vector method was used to solve and analyze the magnetic-acoustic signal based on the continuous sine wave mode. This study includes theory modeling of the vector method, simulations to the line model, and experiments with wire samples to analyze magneto-acoustic (MA) signal characteristics. The results showed that the amplitude and phase of the MA signal contained the location information of the sonic source. The amplitude and phase obeyed the vector theory in the complex plane. This study sets a foundation for a new technique to locate sonic sources for biomedical imaging of tissue conductivity. It also aids in studying biological current detecting and reconstruction based on the magneto-acoustic effect.
Suppressing magnetic island growth by resonant magnetic perturbation
NASA Astrophysics Data System (ADS)
Yu, Q.; Günter, S.; Lackner, K.
2018-05-01
The effect of externally applied resonant magnetic perturbations (RMPs) on the growth of magnetic islands is investigated based on two-fluid equations. It is found that if the local bi-normal electron fluid velocity at the resonant surface is sufficiently large, static RMPs of the same helicity and of moderate amplitude can suppress the growth of magnetic islands in high-temperature plasmas. These islands will otherwise grow, driven by an unfavorable plasma current density profile and bootstrap current perturbation. These results indicate that the error field can stabilize island growth, if the error field amplitude is not too large and the local bi-normal electron fluid velocity is not too low. They also indicate that applied rotating RMPs with an appropriate frequency can be utilized to suppress island growth in high-temperature plasmas, even for a low bi-normal electron fluid velocity. A significant change in the local equilibrium plasma current density gradient by small amplitude RMPs is found for realistic plasma parameters, which are important for the island stability and are expected to be more important for fusion reactors with low plasma resistivity.
Oscillating field current drive experiments in the Madison Symmetric Torus
NASA Astrophysics Data System (ADS)
Blair, Arthur P., Jr.
Oscillating Field Current Drive (OFCD) is an inductive current drive method for toroidal pinches. To test OFCD, two 280 Hz 2 MVA oscillators were installed in the toroidal and poloidal magnetic field circuits of the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP.) Partial sustainment experiments were conducted where the two voltage oscillations were superimposed on the standard MST power supplies. Supplementary current drive of about 10% has been demonstrated, comparable to theoretical predictions. However, maximum current drive does not coincide with maximum helicity injection rate - possibly due to an observed dependence of core and edge tearing modes on the relative phase of the oscillators. A dependence of wall interactions on phase was also observed, the largest interaction coinciding with negative current drive. Experiments were conducted at 280 and 530 Hz. 530 Hz proved to be too high and yielded little or no net current drive. Experiments at 280 Hz proved more fruitful. A 1D relaxed state model was used to predict the effects of voltage amplitudes, frequencies, and waveforms on performance and to optimize the design of OFCD hardware. Predicted current drive was comparable to experimental values, though the aforementioned phase dependence was not. Comparisons were also made with a more comprehensive 3D model which proved to be a more accurate predictor of current drive. Both 1D and 3D models predicted the feasability of full sustainment via OFCD. Experiments were also conducted with only the toroidal field oscillator applied. An entrainment of the natural sawtooth frequency to our applied oscillation was observed as well as a slow modulation of the edge tearing mode amplitudes. A large modulation (20 to 80 eV) of the ion temperature was also observed that can be partially accounted for by collisional heating via magnetic pumping. Work is in progress to increase the power of the existing OFCD hardware.
Royhman, Dmitry; Patel, Megha; Runa, Maria J; Wimmer, Markus A; Jacobs, Joshua J; Hallab, Nadim J; Mathew, Mathew T
2016-09-01
Recently, there has been increasing concern in the orthopedic community over the use of hip implant modular devices due to an increasing number of reports of early failure, failure that has been attributed to fretting-corrosion at modular interfaces. Much is still unknown about the electrochemical and mechanical degradation mechanisms associated with the use of such devices. Accordingly, the purpose of our study was to develop a methodology for testing the fretting-corrosion behavior of modular junctions. A fretting-corrosion apparatus was used to simulate the fretting-corrosion conditions of a CoCrMo hip implant head on a Ti6Al4V hip implant stem. The device features two perpendicularly-loaded CoCrMo pins that articulated against a Ti6Al4V rod. A sinusoidal fretting motion was applied to the rod at various displacement amplitudes (25, 50, 100, 150 and 200μm) at a constant load of 200N. Bovine calf serum at two different pH levels (3.0 and 7.6) was used to simulate the fluid environment around the joint. Experiments were conducted in two modes of electrochemical control - free-potential and potentiostatic. Electrochemical impedance spectroscopy tests were done before and after the fretting motion to assess changes in corrosion kinetics. In free potential mode, differences were seen in change in potential as a function of displacement amplitude. In general, VDrop (the drop in potential at the onset of fretting), VFretting, (the average potential during fretting), ΔVFretting (the change in potential from the onset of fretting to its termination) and VRecovery (the change in potential from the termination of fretting until stabilization) appeared linear at both pH levels, but showed drastic deviation from linearity at 100μm displacement amplitude. Subsequent EDS analysis revealed a large number of Ti deposits on the CoCrMo pin surfaces. Potentiostatic tests at both pH levels generally showed increasing current with increasing displacement amplitude. Electrochemical impedance spectroscopy measurements from free potential and potentiostatic tests indicated increased levels of resistance of the system after induction of the fretting motion. In free potential tests, the largest increase in impedance was found for the 100μm group. We conclude that the 100µm group exhibits deviations from linearity for several parameters, and this was most likely due to adhesive wear between Ti6Al4V and CoCrMo surfaces. Overall, the degradation of the system was dominated by wear at all pH levels, and displacement amplitudes. Copyright © 2016. Published by Elsevier Ltd.
Differences in transient outward currents of feline endocardial and epicardial myocytes.
Furukawa, T; Myerburg, R J; Furukawa, N; Bassett, A L; Kimura, S
1990-11-01
Whole-cell voltage-clamp experiments were performed on enzymatically dissociated single ventricular myocytes harvested from feline endocardial and epicardial surfaces. The studies were designed to test the hypothesis that the differences in the amplitude of transient outward current (Ito) contribute to the difference in action potential configuration between endocardial and epicardial myocytes. In the control state, action potentials recorded from epicardial cells demonstrated a prominent notch between phases 1 and 2, and membrane current recordings displayed a prominent Ito, whereas in endocardial cells the notch in action potentials and Ito were small. External application of 4-aminopyridine (2 mM) reduced the amplitudes of notch and Ito in epicardial cells but not in endocardial cells. After application of 4-aminopyridine (2 mM) and caffeine (5 mM), the notch and Ito were abolished completely in both endocardial and epicardial cells. The first component of Ito (Ito1) was present in all epicardial cells studied (n = 20); it was absent in 12 of the 20 endocardial cells, and a small Ito1 was present in the remaining eight endocardial cells. The mean amplitude of Ito1 was significantly greater in epicardial than in endocardial cells. At a test voltage of +80 mV, the amplitude of Ito1 was 102.0 +/- 47.7 pA/pF in epicardial cells and 3.3 +/- 3.3 pA/pF in endocardial cells (p less than 0.01). The second component of Ito (Ito2) was present in all endocardial (n = 30) and epicardial (n = 30) cells studied. The amplitude of Ito2 was significantly greater in epicardial than in endocardial cells.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Cheng, Ming-Hung; Hsieh, Chih-Min; Hwang, Robert R.; Hsu, John R.-C.
2018-04-01
Numerical simulations are performed to investigate the effects of the initial amplitude and pycnocline thickness on the evolutions of convex mode-2 internal solitary waves propagating on the flat bottom. A finite volume method based on a Cartesian grid system is adopted to solve the Navier-Stokes equations using the improved delayed detached eddy simulation turbulent closure model. Mode-2 internal solitary waves (ISWs) are found to become stable at t = 15 s after lifting a vertical sluice gate by a gravity collapse mechanism. Numerical results from three cases of pycnocline thickness reveal the following: (1) the occurrence of a smooth mode-2 ISW when the wave amplitude is small; (2) the PacMan phenomenon for large amplitude waves; and (3) pseudo vortex shedding in the case of very large amplitudes. In general, basic wave properties (wave amplitude, wave speed, vorticity, and wave energy) increase as the wave amplitude increases for a specific value of the pycnocline thickness. Moreover, the pycnocline thickness chiefly determines the core size of a convex mode-2 ISW, while the step depth (that generates an initial wave amplitude) and offset in pycnocline govern the waveform type during its propagation on the flat bottom.
Is amplitude loss of sonic waveforms due to intrinsic attenuation or source coupling to the medium?
Lee, Myung W.
2006-01-01
Sonic waveforms acquired in gas-hydrate-bearing sediments indicate strong amplitude loss associated with an increase in sonic velocity. Because the gas hydrate increases sonic velocities, the amplitude loss has been interpreted as due to intrinsic attenuation caused by the gas hydrate in the pore space, which apparently contradicts conventional wave propagation theory. For a sonic source in a fluid-filled borehole, the signal amplitude transmitted into the formation depends on the physical properties of the formation, including any pore contents, in the immediate vicinity of the source. A signal in acoustically fast material, such as gas-hydrate-bearing sediments, has a smaller amplitude than a signal in acoustically slower material. Therefore, it is reasonable to interpret the amplitude loss in the gas-hydrate-bearing sediments in terms of source coupling to the surrounding medium as well as intrinsic attenuation. An analysis of sonic waveforms measured at the Mallik 5L-38 well, Northwest Territories, Canada, indicates that a significant part of the sonic waveform's amplitude loss is due to a source-coupling effect. All amplitude analyses of sonic waveforms should include the effect of source coupling in order to accurately characterize the formation's intrinsic attenuation.
In vivo electroretinographic studies of the role of GABA C receptors in retinal signal processing
Wang, Jing; Mojumder, Deb Kumar; Yan, Jun; ...
2015-07-08
The retina expresses all three classes of receptors for the inhibitory neurotransmitter GABA (GABAR). Our study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brown Norway rats.more » The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. Furthermore, the negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists differed in their effects on nSTR and PhNR; antagonists with GABA(B) agonist properties enhanced light-driven responses whereas 2-AEMP did not.« less
2-Aminoethyl Methylphosphonate, a Potent and Rapidly Acting Antagonist of GABA A-ρ1 Receptors
Xie, A.; Yan, J.; Yue, L.; ...
2011-08-02
All three classes of receptors for the inhibitory neurotransmitter GABA (GABAR) are expressed in the retina. This study investigated roles of GABAR, especially GABA(C)R (GABA(A)-rho), in retinal signaling in vivo by studying effects on the mouse electroretinogram (ERG) of genetic deletion of GABA(C)R versus pharmacological blockade using receptor antagonists. Brief full-field flash ERGs were recorded from anesthetized GABA(C)R(-/-) mice, and WT C57BL/6 (B6) mice, before and after intravitreal injection of GABA(C)R antagonists, TPMPA, 3-APMPA, or the more recently developed 2-AEMP; GABA(A)R antagonist, SR95531; GABA(B)R antagonist, CGP, and agonist, baclofen. Intravitreal injections of TPMPA and SR95531 were also made in Brownmore » Norway rats. The effect of 2-AEMP on GABA-induced current was tested directly in isolated rat rod bipolar cells, and 2-AEMP was found to preferentially block GABA(C)R in those cells. Maximum amplitudes of dark (DA) and light-adapted (LA) ERG b-waves were reduced in GABA(C)R(-/-) mice, compared to B6 mice, by 30-60%; a-waves were unaltered and oscillatory potential amplitudes were increased. In B6 mice, after injection of TPMPA (also in rats), 3-APMPA or 2-AEMP, ERGs became similar to ERGs of GABA(C)R(-/-) mice. Blockade of GABA(A)Rs and GABA(B)Rs, or agonism of GABA(B)Rs did not alter B6 DA b-wave amplitude. The negative scotopic threshold response (nSTR) was slightly less sensitive in GABA(C)R(-/-) than in B6 mice, and unaltered by 2-AEMP. However, amplitudes of nSTR and photopic negative response (PhNR), both of which originate from inner retina, were enhanced by TPMPA and 3-APMPA, each of which has GABA(B) agonist properties, and further increased by baclofen. The finding that genetic deletion of GABA(C)R, the GABA(C)R antagonist 2-AEMP, and other antagonists all reduced ERG b-wave amplitude, supports a role for CABA(C)R in determining the maximum response amplitude of bipolar cells contributing to the b-wave. GABA(C)R antagonists differed in their effects on nSTR and PhNR; antagonists with GABA(B) agonist properties enhanced light-driven responses whereas 2-AEMP did not.« less
Kullmann, Marcel; Tatagiba, Marcos; Liebsch, Marina; Feigl, Guenther C
2016-11-01
The predictive value of changes in intraoperatively acquired motor-evoked potentials (MEPs) of the lower cranial nerves (LCN) IX-X (glossopharyngeal-vagus nerve) and CN XII (hypoglossal nerve) on operative outcomes was investigated. MEPs of CN IX-X and CN XII were recorded intraoperatively in 63 patients undergoing surgery of the posterior cranial fossa. We correlated the changes of the MEPs with postoperative nerve function. For CN IX-X, we found a correlation between the amplitude of the MEP ratio and uvula deviation (P = 0.028) and the amplitude duration of the MEP and gag reflex function (P = 0.027). Patients with an MEP ratio of the glossopharyngeal-vagus amplitude ≤1.47 μV had a 3.4 times increased risk of developing a uvula deviation. Patients with a final MEP duration of the CN IX-X ≤11.6 milliseconds had a 3.6 times increased risk for their gag reflex to become extinct. Our study greatly contributes to the current knowledge of intraoperative MEPs as a predictor for postoperative cranial nerve function. We were able to extent previous findings on MEP values of the facial nerve on postoperative nerve function to 3 additional cranial nerves. Finding reliable predictors for postoperative nerve function is of great importance to the overall quality of life for a patient undergoing surgery of the posterior cranial fossa. Copyright © 2016 Elsevier Inc. All rights reserved.
Discharge of Monkey Nucleus Reticularis Tegmenti Pontis Neurons Changes During Saccade Adaptation
Takeichi, N.; Kaneko, C.R.S.; Fuchs, A. F.
2006-01-01
Saccade accuracy is maintained by adaptive mechanisms that continually modify saccade amplitude to reduce dysmetria. Previous studies suggest that adaptation occurs upstream of the caudal fastigial nucleus (CFN), the output of the oculomotor cerebellar vermis but downstream from the superior colliculus (SC). The nucleus reticularis tegmenti pontis (NRTP) is a major source of afferents to both the oculomotor vermis and the CFN and in turn receives direct input from the SC. Here we examine the activity of NRTP neurons in four rhesus monkeys during behaviorally induced changes in saccade amplitude to assess whether their discharge might reveal adaptation mechanisms that mediate changes in saccade amplitude. During amplitude decrease adaptation (average, 22%), the gradual reduction of saccade amplitude was accompanied by an increase in the number of spikes in the burst of 19/34 neurons (56%) and no change for 15 neurons (44%). For the neurons that increased their discharge, the additional spikes were added at the beginning of the saccadic burst and adaptation also delayed the peak-firing rate in some neurons. Moreover, after amplitude reduction, the movement fields changed shape in all 15 open field neurons tested. Our data show that saccadic amplitude reduction affects the number of spikes in the burst of more than half of NRTP neurons tested, primarily by increasing burst duration not frequency. Therefore adaptive changes in saccade amplitude are reflected already at a major input to the oculomotor cerebellum. PMID:15917328
NASA Astrophysics Data System (ADS)
Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Shames, A.; Markovich, V.; Mogilyansky, D.; Jung, G.
2017-03-01
Robust random telegraph conductivity fluctuations have been observed in La0.86Ca0.14MnO3 manganite single crystals. At room temperatures, the spectra of conductivity fluctuations are featureless and follow a 1 /f shape in the entire experimental frequency and bias range. Upon lowering the temperature, clear Lorentzian bias-dependent excess noise appears on the 1 /f background and eventually dominates the spectral behavior. In the time domain, fully developed Lorentzian noise appears as pronounced two-level random telegraph noise with a thermally activated switching rate, which does not depend on bias current and applied magnetic field. The telegraph noise is very robust and persists in the exceptionally wide temperature range of more than 50 K. The amplitude of the telegraph noise decreases exponentially with increasing bias current in exactly the same manner as the sample resistance increases with the current, pointing out the dynamic current redistribution between percolation paths dominated by phase-separated clusters with different conductivity as a possible origin of two-level conductivity fluctuations.
Bats adjust their pulse emission rates with swarm size in the field.
Lin, Yuan; Abaid, Nicole; Müller, Rolf
2016-12-01
Flying in swarms, e.g., when exiting a cave, could pose a problem to bats that use an active biosonar system because the animals could risk jamming each other's biosonar signals. Studies from current literature have found different results with regard to whether bats reduce or increase emission rate in the presence of jamming ultrasound. In the present work, the number of Eastern bent-wing bats (Miniopterus fuliginosus) that were flying inside a cave during emergence was estimated along with the number of signal pulses recorded. Over the range of average bat numbers present in the recording (0 to 14 bats), the average number of detected pulses per bat increased with the average number of bats. The result was interpreted as an indication that the Eastern bent-wing bats increased their emission rate and/or pulse amplitude with swarm size on average. This finding could be explained by the hypothesis that the bats might not suffer from substantial jamming probabilities under the observed density regimes, so jamming might not have been a limiting factor for their emissions. When jamming did occur, the bats could avoid it through changing the pulse amplitude and other pulse properties such as duration or frequency, which has been suggested by other studies. More importantly, the increased biosonar activities may have addressed a collision-avoidance challenge that was posed by the increased swarm size.
Untergehrer, Gisela; Jordan, Denis; Eyl, Sebastian; Schneider, Gerhard
2013-02-01
Although electroencephalographic parameters and auditory evoked potentials (AEP) reflect the hypnotic component of anesthesia, there is currently no specific and mechanism-based monitoring tool for anesthesia-induced blockade of nociceptive inputs. The aim of this study was to assess visceral pain-evoked potentials (VPEP) and contact heat-evoked potentials (CHEP) as electroencephalographic indicators of drug-induced changes of visceral and somatosensory pain. Additionally, AEP and electroencephalographic permutation entropy were used to evaluate sedative components of the applied drugs. In a study enrolling 60 volunteers, VPEP, CHEP (amplitude N2-P1), and AEP (latency Nb, amplitude Pa-Nb) were recorded without drug application and at two subanesthetic concentration levels of propofol, sevoflurane, remifentanil, or (s)-ketamine. Drug-induced changes of evoked potentials were analyzed. VPEP were generated by electric stimuli using bipolar electrodes positioned in the distal esophagus. For CHEP, heat pulses were given to the medial aspect of the right forearm using a CHEP stimulator. In addition to AEP, electroencephalographic permutation entropy was used to indicate level of sedation. With increasing concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine, VPEP and CHEP N2-P1 amplitudes decreased. AEP and electroencephalographic permutation entropy showed neither clinically relevant nor statistically significant suppression of cortical activity during drug application. Decreasing VPEP and CHEP amplitudes under subanesthetic concentrations of propofol, sevoflurane, remifentanil, and (s)-ketamine indicate suppressive drug effects. These effects seem to be specific for analgesia.
Toward an implantable functional electrical stimulation device to correct strabismus
Velez, Federico G.; Isobe, Jun; Zealear, David; Judy, Jack W.; Edgerton, V. Reggie; Patnode, Stephanie; Lee, Hyowon; Hahn, Brian T.
2010-01-01
PURPOSE To investigate the feasibility of electrically stimulating the lateral rectus muscle to recover its physiologic abduction ability in cases of complete sixth cranial (abducens) nerve palsy. METHODS In the feline lateral rectus muscle model, the effects of a charge-balanced, biphasic, current-controlled stimulus on the movement of the eye were investigated while stimulation frequency, amplitude, and pulse duration was varied. Eye deflection was measured with a force transducer. Denervated conditions were simulated by injection of botulinum toxin A. RESULTS Three chemically denervated and 4 control lateral rectus muscles were analyzed. In control lateral rectus muscles, the minimum fusion frequency was approximately 170 Hz, and the maximum evoked abduction was 27°. The minimum fusion frequency was unchanged after 4 weeks of chemical denervation. Stimulation of chemically denervated lateral rectus muscle resulted in 17° of abduction. For both innervated and chemically denervated lateral rectus muscle, frequencies greater than 175 Hz yielded very little increase in abduction. Modulating amplitude produced noticeable movement throughout the tested range (0.2 to 9 mA). CONCLUSIONS Results from the feline lateral rectus muscle showed that electrical stimulation is a feasible approach to evoke a contraction from a denervated lateral rectus muscle. The degree of denervation of the feline lateral rectus muscle was indeterminate. Varying the stimulation amplitude allowed greater eye movement. It is very likely that both frequency and amplitude must be modulated for finer control of static eye position. PMID:19375369
Bruggemann, Jason M; Stockill, Helen V; Lenroot, Rhoshel K; Laurens, Kristin R
2013-09-01
Identification of markers of abnormal brain function in children at-risk of schizophrenia may inform early intervention and prevention programs. Individuals with schizophrenia are characterised by attenuation of MMN amplitude, which indexes automatic auditory sensory processing. The current aim was to examine whether children who may be at increased risk of schizophrenia due to their presenting multiple putative antecedents of schizophrenia (ASz) are similarly characterised by MMN amplitude reductions, relative to typically developing (TD) children. EEG was recorded from 22 ASz and 24 TD children aged 9 to 12 years (matched on age, sex, and IQ) during a passive auditory oddball task (15% duration deviant). ASz children were those presenting: (1) speech and/or motor development lags/problems; (2) social, emotional, or behavioural problems in the clinical range; and (3) psychotic-like experiences. TD children presented no antecedents, and had no family history of a schizophrenia spectrum disorder. MMN amplitude, but not latency, was significantly greater at frontal sites in the ASz group than in the TD group. Although the MMN exhibited by the children at risk of schizophrenia was unlike that of their typically developing peers, it also differed from the reduced MMN amplitude observed in adults with schizophrenia. This may reflect developmental and disease effects in a pre-prodromal phase of psychosis onset. Longitudinal follow-up is necessary to establish the developmental trajectory of MMN in at-risk children. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
CNV amplitude as a neural correlate for stuttering frequency: A case report of acquired stuttering.
Vanhoutte, Sarah; Van Borsel, John; Cosyns, Marjan; Batens, Katja; van Mierlo, Pieter; Hemelsoet, Dimitri; Van Roost, Dirk; Corthals, Paul; De Letter, Miet; Santens, Patrick
2014-11-01
A neural hallmark of developmental stuttering is abnormal articulatory programming. One of the neurophysiological substrates of articulatory preparation is the contingent negative variation (CNV). Unfortunately, CNV tasks are rarely performed in persons who stutter and mainly focus on the effect of task variation rather than on interindividual variation in stutter related variables. However, variations in motor programming seem to be related to variation in stuttering frequency. The current study presents a case report of acquired stuttering following stroke and stroke related surgery in the left superior temporal gyrus. A speech related CNV task was administered at four points in time with differences in stuttering severity and frequency. Unexpectedly, CNV amplitudes at electrode sites approximating bilateral motor and left inferior frontal gyrus appeared to be inversely proportional to stuttering frequency. The higher the stuttering frequency, the lower the activity for articulatory preparation. Thus, the amount of disturbance in motor programming seems to determine stuttering frequency. At right frontal electrodes, a relative increase in CNV amplitude was seen at the test session with most severe stuttering. Right frontal overactivation is cautiously suggested to be a compensation strategy. In conclusion, late CNV amplitude elicited by a relatively simple speech task seems to be able to provide an objective, neural correlate of stuttering frequency. The present case report supports the hypothesis that motor preparation has an important role in stuttering. Copyright © 2014 Elsevier Ltd. All rights reserved.
A modeling study on the influence of blood flow regulation on skin temperature pulsations
NASA Astrophysics Data System (ADS)
Tang, Yanliang; Mizeva, Irina; He, Ying
2017-04-01
Nowadays together with known optic techniques of microcirculation blood flow monitoring, skin temperature measurements are developed as well. In this paper, a simple one-dimensional bioheat transfer model was developed to analyse the heat wave transport in biological tissue, where an arteriole vessel with pulsatile blood is located. The simulated results show that the skin temperature oscillation amplitudes attenuate with the increase of blood flow oscillation frequency which gives the same tendency as that in the experiments. The parameter analyses further show that the amplitude of oscillation is also influenced by oscillation amplitude of blood and effective thermal conductivity. When oscillation amplitude of blood flow and effective thermal conductivity increase, the amplitude of skin temperature oscillation increases nonlinearly. Variation of effective thermal convective influence to the time delay of the thermal wave on the skin surface and distort it. Combination of two measurement techniques: one for estimation blood flow oscillations in the microvessels and other to the skin temperature measurement can produce additional information about the skin properties.
Di Traglia, F; Cauchie, L; Casagli, N; Saccorotti, G
2014-01-01
We present the integration of seismic and Ground-Based Interferometric Synthetic Aperture Radar system (GBInSAR) displacement data at Stromboli Volcano. Ground deformation in the area of summit vents is positively correlated with both seismic tremor amplitude and cumulative amplitudes of very long period (VLP) signals associated with Strombolian explosions. Changes in VLP amplitudes precede by a few days the variations in ground deformation and seismic tremor. We propose a model where the arrival of fresh, gas-rich magma from depth enhances gas slug formation, promoting convection and gas transfer throughout the conduit system. At the shallowest portion of the conduit, an increase in volatile content causes a density decrease, expansion of the magmatic column and augmented degassing activity, which respectively induce inflation of the conduit, and increased tremor amplitudes. The temporal delay between increase of VLP and tremor amplitudes/conduit inflation can be interpreted in terms of the different timescales characterizing bulk gas transfer versus slug formation and ascent. PMID:25821278
Di Traglia, F; Cauchie, L; Casagli, N; Saccorotti, G
2014-04-28
We present the integration of seismic and Ground-Based Interferometric Synthetic Aperture Radar system (GBInSAR) displacement data at Stromboli Volcano. Ground deformation in the area of summit vents is positively correlated with both seismic tremor amplitude and cumulative amplitudes of very long period (VLP) signals associated with Strombolian explosions. Changes in VLP amplitudes precede by a few days the variations in ground deformation and seismic tremor. We propose a model where the arrival of fresh, gas-rich magma from depth enhances gas slug formation, promoting convection and gas transfer throughout the conduit system. At the shallowest portion of the conduit, an increase in volatile content causes a density decrease, expansion of the magmatic column and augmented degassing activity, which respectively induce inflation of the conduit, and increased tremor amplitudes. The temporal delay between increase of VLP and tremor amplitudes/conduit inflation can be interpreted in terms of the different timescales characterizing bulk gas transfer versus slug formation and ascent.
Precision envelope detector and linear rectifier circuitry
Davis, Thomas J.
1980-01-01
Disclosed is a method and apparatus for the precise linear rectification and envelope detection of oscillatory signals. The signal is applied to a voltage-to-current converter which supplies current to a constant current sink. The connection between the converter and the sink is also applied through a diode and an output load resistor to a ground connection. The connection is also connected to ground through a second diode of opposite polarity from the diode in series with the load resistor. Very small amplitude voltage signals applied to the converter will cause a small change in the output current of the converter, and the difference between the output current and the constant current sink will be applied either directly to ground through the single diode, or across the output load resistor, dependent upon the polarity. Disclosed also is a full-wave rectifier utilizing constant current sinks and voltage-to-current converters. Additionally, disclosed is a combination of the voltage-to-current converters with differential integrated circuit preamplifiers to boost the initial signal amplitude, and with low pass filtering applied so as to obtain a video or signal envelope output.
López-Gil, Norberto; Fernández-Sánchez, Vicente; Thibos, Larry N.; Montés-Micó, Robert
2010-01-01
Purpose We studied the accuracy and precision of 32 objective wavefront methods for finding the amplitude of accommodation obtained in 180 eyes. Methods Ocular accommodation was stimulated with 0.5 D steps in target vergence spanning the full range of accommodation for each subject. Subjective monocular amplitude of accommodation was measured using two clinical methods, using negative lenses and with a custom Badal optometer. Results Both subjective methods gave similar results. Results obtained from the Badal optometer where used to test the accuracy of the objective methods. All objective methods showed lower amplitude of accommodation that the subjective ones by an amount that varied from 0.2 to 1.1 D depending on the method. The precision in this prediction also varied between subjects, with an average standard error of the mean of 0.1 D that decreased with age. Conclusions Depth of field increases subjective of amplitude of accommodation overestimating the objective amplitude obtained with all the metrics used. The change in the negative direction of spherical aberration during accommodation increases the amplitude of accommodation by an amount that varies with age.
Lin, Min; Zhu, Cai-Xing; Liu, Yan; Gao, Jin-Liao; Xu, Bin; Fu, Yi-Cheng; Lan, Yun-Feng; Li, Yang; Zhang, Jian-Cheng
2012-02-01
This article reports the investigation of the effect of carvedilol (Car) on T-type calcium current (I(Ca,T)) of noninfarcted ventricular myocytes in rabbit models of healed myocardial infarction (HMI). Rabbits with left anterior descending artery ligation were prepared and allowed to recover for 8 weeks, as HMI group. Animals undergoing an identical surgical procedure without coronary ligation were served as the sham-operated group (sham group). Whole cell voltage-clamp techniques were used to measure and compare currents in cells from the different groups. Noting that I(Ca,T) density in HMI cells increased markedly to -2.36 +/- 0.12 pA/pF (at -30 mV) compared with cells of sham, where little I(Ca,T) (-0.35 +/- 0.02 pA/pF) was observed. Meanwhile, further analysis revealed a significant hyperpolarizing shift of steady-state activation curve of I(Ca,T) in HMI cells, where the time constants of deactivation were prolonged and the time of recovery from inactivation was shortened. Finally, the amplitude of I(Ca,T) was increased. Carvedilol (1 micromol x L(-1)) was found to decrease the amplitude of I(Ca,T) to -1.38 +/- 0.07 pA/pF through inhibiting process of I(Ca,T) activation. Furthermore, carvedilol delayed recovery from inactivation of I(Ca,T) and shortened the time constants of deactivation in HMI cells. This study suggested that the application of carvedilol in HMI cells contributes to the dynamic changes in I(Ca,T) and may account for reduction of incidence of arrhythmia after myocardial infarction.
Blom, Sigrid Marie; Rottländer, Mario; Kehler, Jan; Bundgaard, Christoffer; Schmitt, Nicole; Jensen, Henrik Sindal
2014-01-01
The voltage-gated potassium channels of the KV7 family (KV7.1-5) play important roles in controlling neuronal excitability and are therefore attractive targets for treatment of CNS disorders linked to hyperexcitability. One of the main challenges in developing KV7 channel active drugs has been to identify compounds capable of discriminating between the neuronally expressed subtypes (KV7.2-5), aiding the identification of the subunit composition of KV7 currents in various tissues, and possessing better therapeutic potential for particular indications. By taking advantage of the structure-activity relationship of acrylamide KV7 channel openers and the effects of these compounds on mutant KV7 channels, we have designed and synthesized a novel KV7 channel modulator with a unique profile. The compound, named SMB-1, is an inhibitor of KV7.2 and an activator of KV7.4. SMB-1 inhibits KV7.2 by reducing the current amplitude and increasing the time constant for the slow component of the activation kinetics. The activation of KV7.4 is seen as an increase in the current amplitude and a slowing of the deactivation kinetics. Experiments studying mutant channels with a compromised binding site for the KV7.2-5 opener retigabine indicate that SMB-1 binds within the same pocket as retigabine for both inhibition of KV7.2 and activation of KV7.4. SMB-1 may serve as a valuable tool for KV7 channel research and may be used as a template for further design of better subtype selective KV7 channel modulators. A compound with this profile could hold novel therapeutic potential such as the treatment of both positive and cognitive symptoms in schizophrenia.
4-aminopyridine, a Kv channel antagonist, prevents apoptosis of rat cerebellar granule neurons.
Hu, Chang-Long; Liu, Zheng; Zeng, Xi-Min; Liu, Zi-Qiang; Chen, Xian-Hua; Zhang, Zhi-Hong; Mei, Yan-Ai
2006-09-01
Compelling evidence indicates that excessive potassium (K+) efflux and intracellular K+ depletion are the key early steps in apoptosis. Previously, we reported that apoptosis of cerebellar granule neurons induced by incubation in low-K+ (5 mM) and serum-free medium was associated with an increase in A-type transient inactivation of K+ channel current (IA) amplitude and modulation of channels' gating properties. Here, we showed that a classic K+ channel blocker, 4-aminopyradine (4-AP), significantly inhibited IA amplitude in a concentration-dependent manner (reduction of current by 10 microM and 10 mM 4-AP was 11.4+/-1.3% and 72.2+/-3.3%, respectively). Moreover, 4-AP modified the steady-state activation and inactivation kinetics of IA channels, such that the activation and inactivation curves were shifted to the right about 20 mV and 17 mV, respectively. Fluorescence staining showed that 4-AP dramatically increased the viability of cells undergoing apoptosis in a dose-dependent manner. That is, while 5 mM 4-AP was present, cell viability was 84.9+/-5.2%. Consistent with the cell viability analysis, internucleosomal DNA fragmentation by gel electrophoresis analysis showed that 5 mM 4-AP also protected against neuronal apoptosis. Furthermore, 4-AP significantly inhibited cytochrome c release and caspase-3 activity induced by low-K+/serum-free incubation. Finally, current-clamp analysis indicated that 5 mM 4-AP did not significantly depolarize the membrane potential. These results suggest that 4-AP has robust neuroprotective effects on apoptotic granule cells. The neuroprotective effect of 4-AP is likely not due to membrane depolarization, but rather that 4-AP may modulate the gating properties of IA channels in an anti-apoptotic manner.
Puram, Sidharth V; Chow, Harold; Wu, Che-Wei; Heaton, James T; Kamani, Dipti; Gorti, Gautham; Chiang, Feng Yu; Dionigi, Gianlorenzo; Barczynski, Marcin; Schneider, Rick; Dralle, Henning; Lorenz, Kerstin; Randolph, Gregory W
2016-12-01
Injury to the recurrent laryngeal nerve (RLN) is a dreaded complication of endocrine surgery. Intraoperative neural monitoring (IONM) has been increasingly utilized to assess the functional status of the RLN. Although the posterior cricoarytenoid muscle (PCA) is innervated by the RLN as the abductor of the larynx, PCA electromyography (EMG) is infrequently recorded during IONM and PCA activity after RLN compressive injury remains poorly characterized. Single-subject prospective animal study. We employed a canine model to identify postcricoid EMG correlates of postoperative vocal cord paralysis (VCP). Postcricoid electrode recordings were obtained before and after compressive RLN injury associated with VCP. Normative postcricoid recordings revealed mean amplitude of 1288 microvolt (μV) and latency of 8.2 millisecond (ms) with maximum (1 milliamp [mA]) vagal stimulation, and mean amplitude of 1807 μV and latency of 3.5 ms with maximum (1 mA) RLN stimulation. Following injury that was associated with VCP, there was 62.1% decrement in postcricoid EMG amplitude with maximum vagal stimulation and 80% decrement with maximum RLN stimulation. Threshold stimulation of the vagus increased by 23%, and there was a corresponding 42% decrease in amplitude. For RLN stimulation, latency increased by 17.3% following injury, whereas threshold stimulation increased by 61% with 35.5% decrement in EMG amplitude. Thus, if RLN amplitude decreases by ≥ 80%, with absolute amplitude of ≤ 300 μV or less and latency increase of ≥ 10%, RLN injury is likely associated with VCP. Our results predict postoperative VCP based on postcricoid electromyographic IONM and may guide surgical decision making. NA Laryngoscope, 126:2744-2751, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Low-Frequency Amplitudes Observed in a Set of the Strongest Recorded Ground Motions (Invited)
NASA Astrophysics Data System (ADS)
Anderson, J. G.; Koketsu, K.; Miyake, H.
2010-12-01
Anderson (2010) compiled a set of “exceptional” ground motion characterized by peak acceleration that exceeds 500 gal on at least one component or peak velocity that exceeds 50 cm/s on at least one component. With the addition of more recent data, there are now over 280 openly available records that meet these criteria. These data are examined to find to the empirical upper bound of observed pseudo-acceleration (PSA) response spectra and smoothed Fourier amplitude spectra. Statistics of amplitudes of PSA and of low-pass filtered acceleration and velocity have also been determined. Amplitudes recorded at the Kawaguchi-cho station (40 km) at 5-6 second period from the 1964 Niigata earthquake (Mw=8.3) are within ~20% of the current empirical limit of ground motions observed from all earthquakes in the data set including those from the near field. An even more impressive example is that amplitudes recorded at the SCT station (~300 km from the fault) with period of about 2 seconds, during the 1985 Michoacan, Mexico, earthquake (Mw=8.0), are about the same as the current empirical limit of ground motions observed from near field records. These examples support the idea that the hazard caused by long-period ground motions, amplified by basins and site conditions, is not sufficiently appreciated. Reference: Anderson, J. G. (2010), Bull. Seism. Soc. Am. 100, 1-36.
Lafon, Belen; Henin, Simon; Huang, Yu; Friedman, Daniel; Melloni, Lucia; Thesen, Thomas; Doyle, Werner; Buzsáki, György; Devinsky, Orrin; Parra, Lucas C; Liu, Anli
2018-02-28
It has come to our attention that we did not specify whether the stimulation magnitudes we report in this Article are peak amplitudes or peak-to-peak. All references to intensity given in mA in the manuscript refer to peak-to-peak amplitudes, except in Fig. 2, where the model is calibrated to 1 mA peak amplitude, as stated. In the original version of the paper we incorrectly calibrated the computational models to 1 mA peak-to-peak, rather than 1 mA peak amplitude. This means that we divided by a value twice as large as we should have. The correct estimated fields are therefore twice as large as shown in the original Fig. 2 and Supplementary Figure 11. The corrected figures are now properly calibrated to 1 mA peak amplitude. Furthermore, the sentence in the first paragraph of the Results section 'Intensity ranged from 0.5 to 2.5 mA (current density 0.125-0.625 mA mA/cm 2 ), which is stronger than in previous reports', should have read 'Intensity ranged from 0.5 to 2.5 mA peak to peak (peak current density 0.0625-0.3125 mA/cm 2 ), which is stronger than in previous reports.' These errors do not affect any of the Article's conclusions.
Supershort avalanche electron beam in SF6 and krypton
NASA Astrophysics Data System (ADS)
Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao
2016-03-01
Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.
Pasikova, N V; Mednikova, Iu S; Averina, I V
2010-03-01
In the sensorimotor cortical slices of guinea pigs, the rate of neurons' spike activity increased at 27-29 and 34-36 degrees C. The change of the firing rate was accompanied by a drop in the spike amplitude at the temperature below 27 and above 34 degrees C. Usually after cooling to 24 degrees C the spike amplitude fully restored when the temperature increased to 32-34 degrees C. The fall of spike amplitude at t >35 degrees C could not be stopped by temperatyre decrease. The data obtained indicate the important role of the neuron membrane K+ permeability.
A pre-heating method based on sinusoidal alternating current for lithium-ion battery
NASA Astrophysics Data System (ADS)
Fan, Wentao; Sun, Fengchun; Guo, Shanshan
2018-04-01
In this paper, a method of low temperature pre-heating of sinusoidal alternating current (SAC) is proposed. Generally, the lower the frequency of the AC current, the higher the heat generation rate. Yet at low frequency, there is a risk of lithium-ion deposition during the half cycle of charging. This study develops a temperature-adaptive, deposition-free AC pre-heating method. a equivalent electric circuit(EEC) model is established to predict the heat generation rate and temperature status, whose parameters are calibrated from the EIS impedance measurements. The effects of current frequency and amplitude on the heating effect are investigated respectively. A multistep temperature-adaptive amplitude strategy is proposed and the cell can be heated from -20°C to 5°C within 509s at 100Hz frequency with this method.
Determination of Tsunami Warning Criteria for Current Velocity
NASA Astrophysics Data System (ADS)
Chen, R.; Wang, D.
2015-12-01
Present Tsunami warning issuance largely depends on an event's predicted wave height and inundation depth. Specifically, a warning is issued if the on-shore wave height is greater than 1m. This project examines whether any consideration should be given to current velocity. We apply the idea of force balance to determine theoretical minimum velocity thresholds for injuring people and damaging properties as a function of wave height. Results show that even at a water depth of less than 1m, a current velocity of 2 m/s is enough to pose a threat to humans and cause potential damage to cars and houses. Next, we employ a 1-dimensional shallow water model to simulate Tsunamis with various amplitudes and an assumed wavelength of 250km. This allows for the profiling of current velocity and wave height behavior as the Tsunamis reach shore. We compare this data against our theoretical thresholds to see if any real world scenarios would be dangerous to people and properties. We conclude that for such Tsunamis, the present warning criteria are effective at protecting people against larger events with amplitude greater than ~0.3m. However, for events with amplitude less than ~0.2m, it is possible to have waves less than 1m with current velocity high enough to endanger humans. Thus, the inclusion of current velocity data would help the present Tsunami warning criteria become more robust and efficient, especially for smaller Tsunami events.
So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung
2017-01-01
Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.
Reliability of Tin Silver Copper and mixed solders under variable loading conditions
NASA Astrophysics Data System (ADS)
Jaradat, Younis
Industry use of lead free solder joints necessitates accurate modeling in predicting life in service. Yet, current extrapolations of accelerated test results do not actuate realistic conditions. This research focuses on joint properties of Pb-mixed and Pb-free solder alloys in order to explain material behavior subject to certain test conditions, i.e., varying cycling amplitudes. Additionally, this research will begin with extensive studies on backward compatible solder joints from the material's behavior to its reliability under displacement and load controlled fatigue tests. We address the evolution of the joint's microstructure ergo its properties and performance (mixed solder joints). The present work reports results of reflowing 30 mil SAC305 balls onto Cu, and ENIG coated BGA pads with different amounts of SnPb paste, aging and/or cycling the joints and inspecting the microstructure by cross polarizer microscopy and SEM. We found that the addition of small amounts of Pb had significant effects on solidification during cool-down from reflow, and consequently the initial microstructure. In terms of the varying cycling amplitude study, we note how realistic service conditions are almost never well approximated by cycling with fixed amplitudes. Recent results have demonstrated the consistent breakdown of common damage accumulation rules. In isothermal cycling tests the remaining life, after a step-down in amplitude, was invariably shorter than predicted by such a rule, while a step-up tended to have the opposite effect. The present work offers a mechanistic explanation for this and the basis for a practical approach to the assessment of life under service conditions. Realistic BGA joints were cycled individually in a micromechanical tester, monitoring the solder stiffness and the inelastic energy deposition. Cycling was seen to first cause rapid hardening, followed by leveling off in a 'cyclic saturation' stage and eventually the initiation and growth of a crack until failure. A temporary increase in amplitude during cycling caused a lasting reduction in hardness, and thus enhanced inelastic energy deposition and damage evolution, after the fact. This factor dominates during repeated increases and decreases, eventually shortening the remaining life dramatically
Current Pulses Momentarily Enhance Thermoelectric Cooling
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui
2004-01-01
The rates of cooling afforded by thermoelectric (Peltier) devices can be increased for short times by applying pulses of electric current greater than the currents that yield maximum steady-state cooling. It has been proposed to utilize such momentary enhancements of cooling in applications in which diode lasers and other semiconductor devices are required to operate for times of the order of milliseconds at temperatures too low to be easily obtainable in the steady state. In a typical contemplated application, a semiconductor device would be in contact with the final (coldest) somewhat taller stage of a multistage thermoelectric cooler. Steady current would be applied to the stages to produce steady cooling. Pulsed current would then be applied, enhancing the cooling of the top stage momentarily. The principles of operation are straightforward: In a thermoelectric device, the cooling occurs only at a junction at one end of the thermoelectric legs, at a rate proportional to the applied current. However, Joule heating occurs throughout the device at a rate proportional to the current squared. Hence, in the steady state, the steady temperature difference that the device can sustain increases with current only to the point beyond which the Joule heating dominates. If a pulse of current greater than the optimum current (the current for maximum steady cooling) is applied, then the junction becomes momentarily cooled below its lowest steady temperature until thermal conduction brings the resulting pulse of Joule heat to the junction and thereby heats the junction above its lowest steady temperature. A theoretical and experimental study of such transient thermoelectric cooling followed by transient Joule heating in response to current pulses has been performed. The figure presents results from one of the experiments. The study established the essential parameters that characterize the pulse cooling effect, including the minimum temperature achieved, the maximum temperature overshoot, the time to reach minimum temperature, the time while cooled, and the time between pulses. It was found that at large pulse amplitude, the amount of pulse supercooling is about a fourth of the maximum steady-state temperature difference. For the particular thermoelectric device used in one set of the experiments, the practical optimum pulse amplitude was found to be about 3 times the optimum steady-state current. In a further experiment, a pulse cooler was integrated into a small commercial thermoelectric threestage cooler and found to provide several degrees of additional cooling for a time long enough to operate a semiconductor laser in a gas sensor.
Scrape-off-layer currents during MHD activity and disruptions in HBT-EP
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Desanto, S.; Battey, A.; Bialek, J.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.
2017-10-01
We report scrape-off layer (SOL) current measurements during MHD mode activity and disruptions in the HBT-EP tokamak. Currents are measured via Rogowski coils mounted on tiles in the low-field-side SOL, toroidal jumpers between otherwise-isolated vessel sections, and segmented plasma current Rogowski coils. These currents strongly depend on the plasma's major radius, mode amplitude, and mode phase. Plasma current asymmetries and SOL currents during disruptions reach 4% of the plasma current. Asymmetric toroidal currents between vessel sections rotate at tens of kHz through most of the current quench, then symmetrize once Ip reaches 30% of its pre-disruptive value. Toroidal jumper currents oscillate between co- and counter-Ip, with co-Ip being dominant on average during disruptions. Increases in local plasma current correlate with counter-Ip current in the nearest toroidal jumper. Measurements are interpreted in the context of two models that produce contrary predictions for the toroidal vessel current polarity during disruptions. Plasma current asymmetries are consistent with both models, and scale with plasma displacement toward the wall. Progress of ongoing SOL current diagnostic upgrades is also presented. Supported by U.S. DOE Grant DE-FG02-86ER53222.
NASA Astrophysics Data System (ADS)
Ochoukov, R.; Bobkov, V.; Faugel, H.; Fünfgelder, H.; Noterdaeme, J.-M.
2015-11-01
A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k//) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (ktor). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k// as strap phasing is moved away from the dipole configuration. This result is the opposite of the ktor trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k//, as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.
Ochoukov, R; Bobkov, V; Faugel, H; Fünfgelder, H; Noterdaeme, J-M
2015-11-01
A new B-dot probe-based diagnostic has been installed on an ASDEX Upgrade tokamak to characterize ion cyclotron range-of frequency (ICRF) wave generation and interaction with magnetized plasma. The diagnostic consists of a field-aligned array of B-dot probes, oriented to measure fast and slow ICRF wave fields and their field-aligned wavenumber (k(//)) spectrum on the low field side of ASDEX Upgrade. A thorough description of the diagnostic and the supporting electronics is provided. In order to compare the measured dominant wavenumber of the local ICRF fields with the expected spectrum of the launched ICRF waves, in-air near-field measurements were performed on the newly installed 3-strap ICRF antenna to reconstruct the dominant launched toroidal wavenumbers (k(tor)). Measurements during a strap current phasing scan in tokamak discharges reveal an upshift in k(//) as strap phasing is moved away from the dipole configuration. This result is the opposite of the k(tor) trend expected from in-air near-field measurements; however, the near-field based reconstruction routine does not account for the effect of induced radiofrequency (RF) currents in the passive antenna structures. The measured exponential increase in the local ICRF wave field amplitude is in agreement with the upshifted k(//), as strap phasing moves away from the dipole configuration. An examination of discharges heated with two ICRF antennas simultaneously reveals the existence of beat waves at 1 kHz, as expected from the difference of the two antennas' operating frequencies. Beats are observed on both the fast and the slow wave probes suggesting that the two waves are coupled outside the active antennas. Although the new diagnostic shows consistent trends between the amplitude and the phase measurements in response to changes applied by the ICRF antennas, the disagreement with the in-air near-field measurements remains. An electromagnetic model is currently under development to address this issue.
Anderson, Heather A.; Hentz, Gloria; Glasser, Adrian; Stuebing, Karla K.; Manny, Ruth E.
2009-01-01
Purpose Guidelines for predicting accommodative amplitude by age are often based on subjective push-up test data that overestimate the accommodative response. Studies in which objective measurements were used have defined expected amplitudes for adults, but expected amplitudes for children remain unknown. In this study, objective methods were used to measure accommodative amplitude in a wide age range of individuals, to define the relationship of amplitude and age from age 3. Methods Accommodative responses were measured in 140 subjects aged 3 to 40 years. Measurements were taken with the Grand Seiko autorefractor (RyuSyo Industrial Co., Ltd., Kagawa, Japan) as the subjects viewed a high-contrast target at 33 cm through minus lenses of increasing power until the responses showed no further increase in accommodation. Results The maximum accommodative amplitude of each subject was plotted by age, and a curvilinear function fit to the data: y = 7.33 − 0.0035(age − 3)2 (P < 0.001). Tangent analysis of the fit indicated that the accommodative amplitude remained relatively stable until age 20. Data from this study were then pooled with objective amplitudes from previous studies of adults up to age 70. A sigmoidal function was fit to the data: y = 7.083/(1 + e[0.2031(age-36.2)−0.6109]) (P < 0.001). The sigmoidal function indicated relatively stable amplitudes below age 20 years, a rapid linear decline between 20 and 50 years, and a taper to 0 beyond 50 years. Conclusions These data indicate that accommodative amplitude decreases in a curvilinear manner from 3 to 40 years. When combined with data from previous studies, a sigmoidal function describes the overall trend throughout life with the biggest decrease occurring between 20 and 50 years. PMID:18326693
Gudino, N.; Heilman, J.A; Riffe, M. J.; Heid, O.; Vester, M.; Griswold, M.A.
2016-01-01
A complete high-efficiency transmit amplifier unit designed to be implemented in on-coil transmit arrays is presented. High power capability, low power dissipation, scalability and cost minimization were some of the requirements imposed to the design. The system is composed of a current mode class-D (CMCD) amplifier output stage and a voltage mode class-D (VMCD) preamplification stage. The amplitude information of the radio frequency pulse was added through a customized step-down DC-DC converter with current amplitude feedback that connects to the CMCD stage. Benchtop measurements and imaging experiments were carried out to analyze system performance. Direct control of B1 was possible and its load sensitivity was reduced to less than 10% variation from unloaded to full loaded condition. When using the amplifiers in an array configuration, isolation above 20 dB was achieved between neighboring coils by the amplifier decoupling method. High output current operation of the transmitter was proved on the benchtop through output power measurements and in a 1.5 T scanner through flip angle quantification. Finally, single and multiple channel excitations with the new hardware were demonstrated by receiving signal with the body coil of the scanner. PMID:22890962
Shan, Dehong; Xie, Yongling; Ren, Guogang; Yang, Zhuo
2013-02-01
Nanomaterials and relevant products are now being widely used in the world, and their safety becomes a great concern for the general public. Tungsten carbide nanoparticles (nano-WC) are widely used in metallurgy, aeronautics and astronautics, however our knowledge regarding the influence of nano-WC on neurons is still lacking. The aim of this study was to investigate the impact of nano-WC on tetrodotoxin (TTX)-sensitive voltage-activated sodium current (I(Na)) of hippocampal CA1 pyramidal neurons. Results showed that acute exposure of nano-WC attenuated the peak amplitudes of I(Na) in a concentration-dependent manner. The minimal effective concentration was 10(-5)g/ml. The exposure of nano-WC significantly decreased current amplitudes of the current-voltage curves of I(Na) from -50 to+50 mV, shifted the steady-state activation and inactivation curves of I(Na) negatively and delayed the recovery of I(Na) from inactivation state. After exposure to nano-WC, the peak amplitudes, overshoots and the V-thresholds of action potentials (APs) were markedly reduced. These results suggested that exposure of nano-WC could influence some characteristics of APs evoked from the hippocampal CA1 neurons by modifying the kinetics of voltage-gated sodium channels (VGSCs). Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekizawa, Shin-ichi, E-mail: ssekizawa@ucdavis.ed; Joad, Jesse P.; Pinkerton, Kent E.
Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3more » or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS and bronchiolitis in infants and asthma in older children.« less
Sekizawa, Shin-Ichi; Joad, Jesse P; Pinkerton, Kent E; Bonham, Ann C
2010-01-15
Exposing children to secondhand tobacco smoke (SHS) is associated with increased risk for asthma, bronchiolitis and SIDS. The role for changes in the developing CNS contributing to these problems has not been fully explored. We used rhesus macaques to test the hypothesis that SHS exposure during development triggers neuroplastic changes in the nucleus tractus solitarius (NTS), where lung sensory information related to changes in airway and lung function is first integrated. Pregnant monkeys were exposed to filtered air (FA) or SHS for 6 h/day, 5 days/week starting at 50-day gestational age. Mother/infant pairs continued the exposures postnatally to age 3 or 13 months, which may be equivalent to approximately 1 or 4 years of human age, respectively. Whole-cell recordings were made of second-order NTS neurons in transverse brainstem slices. To target the consequences of SHS exposure based on neuronal subgroups, we classified NTS neurons into two phenotypes, rapid-onset spiking (RS) and delayed-onset spiking (DS), and then evaluated intrinsic and synaptic excitabilities in FA-exposed animals. RS neurons showed greater cell excitability especially at age of 3 months while DS neurons received greater amplitudes of excitatory postsynaptic currents (EPSCs). Developmental neuroplasticity such as increases in intrinsic and synaptic excitabilities were detected especially in DS neurons. In 3 month olds, SHS exposure effects were limited to excitatory changes in RS neurons, specifically increases in evoked EPSC amplitudes and increased spiking responses accompanied by shortened action potential width. By 13 months, the continued SHS exposure inhibited DS neuronal activity; decreases in evoked EPSC amplitudes and blunted spiking responses accompanied by prolonged action potential width. The influence of SHS exposure on age-related and phenotype specific changes may be associated with age-specific respiratory problems, for which SHS exposure can increase the risk, such as SIDS and bronchiolitis in infants and asthma in older children.
Herzmann, Grit
2016-07-01
The N250 and N250r (r for repetition, signaling a difference measure of priming) has been proposed to reflect the activation of perceptual memory representations for individual faces. Increased N250r and N250 amplitudes have been associated with higher levels of familiarity and expertise, respectively. In contrast to these observations, the N250 amplitude has been found to be larger for other-race than own-race faces in recognition memory tasks. This study investigated if these findings were due to increased identity-specific processing demands for other-race relative to own-race faces and whether or not similar results would be obtained for the N250 in a repetition priming paradigm. Only Caucasian participants were available for testing and completed two tasks with Caucasian, African-American, and Chinese faces. In a repetition priming task, participants decided whether or not sequentially presented faces were of the same identity (individuation task) or same race (categorization task). Increased N250 amplitudes were found for African-American and Chinese faces relative to Caucasian faces, replicating previous results in recognition memory tasks. Contrary to the expectation that increased N250 amplitudes for other-race face would be confined to the individuation task, both tasks showed similar results. This could be due to the fact that face identity information needed to be maintained across the sequential presentation of prime and target in both tasks. Increased N250 amplitudes for other-race faces are taken to represent increased neural demands on the identity-specific processing of other-race faces, which are typically processed less holistically and less on the level of the individual. Copyright © 2016 Elsevier B.V. All rights reserved.
Evaluating transient performance of servo mechanisms by analysing stator current of PMSM
NASA Astrophysics Data System (ADS)
Zhang, Qing; Tan, Luyao; Xu, Guanghua
2018-02-01
Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.
The Role of Serotonin in Ventricular Repolarization in Pregnant Mice
Park, Hyelim; Mun, Dasom; Lee, Seung-Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui-Nam; Lee, Moon-Hyoung
2018-01-01
Purpose The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. Materials and Methods We measured current amplitudes and the expression levels of voltage-gated K+ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a−/−-NP). Results During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a−/−-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Conclusion Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. PMID:29436197
The Role of Serotonin in Ventricular Repolarization in Pregnant Mice.
Cui, Shanyu; Park, Hyewon; Park, Hyelim; Mun, Dasom; Lee, Seung Hyun; Kim, Hyoeun; Yun, Nuri; Kim, Hail; Kim, Michael; Pak, Hui Nam; Lee, Moon Hyoung; Joung, Boyoung
2018-03-01
The mechanisms underlying repolarization abnormalities during pregnancy are not fully understood. Although maternal serotonin (5-hydroxytryptamine, 5-HT) production is an important determinant for normal fetal development in mice, its role in mothers remains unclear. We evaluated the role of serotonin in ventricular repolarization in mice hearts via 5Htr3 receptor (Htr3a) and investigated the mechanism of QT-prolongation during pregnancy. We measured current amplitudes and the expression levels of voltage-gated K⁺ (Kv) channels in freshly-isolated left ventricular myocytes from wild-type non-pregnant (WT-NP), late-pregnant (WT-LP), and non-pregnant Htr3a homozygous knockout mice (Htr3a(-/-)-NP). During pregnancy, serotonin and tryptophan hydroxylase 1, a rate-limiting enzyme for the synthesis of serotonin, were markedly increased in hearts and serum. Serotonin increased Kv current densities concomitant with the shortening of the QT interval in WT-NP mice, but not in WT-LP and Htr3a(-/-)-NP mice. Ondansetron, an Htr3 antagonist, decreased Kv currents in WT-LP mice, but not in WT-NP mice. Kv4.3 directly interacted with Htr3a, and this binding was facilitated by serotonin. Serotonin increased the trafficking of Kv4.3 channels to the cellular membrane in WT-NP. Serotonin increases repolarizing currents by augmenting Kv currents. Elevated serotonin levels during pregnancy counterbalance pregnancy-related QT prolongation by facilitating Htr3-mediated Kv currents. © Copyright: Yonsei University College of Medicine 2018
Effects of 10 Hz and 20 Hz Transcranial Alternating Current Stimulation on Automatic Motor Control.
Cappon, Davide; D'Ostilio, Kevin; Garraux, Gaëtan; Rothwell, John; Bisiacchi, Patrizia
2016-01-01
In a masked prime choice reaction task, presentation of a compatible prime increases the reaction time to the following imperative stimulus if the interval between mask and prime is around 80-250 ms. This is thought to be due to automatic suppression of the motor plan evoked by the prime, which delays reaction to the imperative stimulus. Oscillatory activity in motor networks around the beta frequency range of 20 Hz is important in suppression of movement. Transcranial alternating current at 20 Hz may be able to drive oscillations in the beta range. To investigate whether transcranial alternating current stimulation (tACS) at 20 Hz would increase automatic inhibition in a masked prime task. As a control we used 10 Hz tACS. Stimulation was delivered at alpha (10 Hz) and beta (20 Hz) frequency over the supplementary motor area and the primary motor cortex (simultaneous tACS of SMA-M1), which are part of the BG-cortical motor loop, during the execution of the subliminal masked prime left/right choice reaction task. We measured the effects on reaction times. Corticospinal excitability was assessed by measuring the amplitude of motor evoked potentials (MEPs) evoked in the first dorsal interosseous muscle by transcranial magnetic stimulation (TMS) over M1. The 10 and 20-Hz tACS over SMA-M1 had different effects on automatic inhibition. The 20 Hz tACS increased the duration of automatic inhibition whereas it was decreased by 10 Hz tACS. Neurophysiologically, 20 Hz tACS reduced the amplitude of MEPs evoked from M1, whereas there was no change after 10 Hz tACS. Automatic mechanisms of motor inhibition can be modulated by tACS over motor areas of cortex. tACS may be a useful additional tool to investigate the causal links between endogenous brain oscillations and specific cognitive processes. Copyright © 2016 Elsevier Inc. All rights reserved.
Saarikivi, Katri; Putkinen, Vesa; Tervaniemi, Mari; Huotilainen, Minna
2016-07-01
Previous research has demonstrated that musicians show superior neural sound discrimination when compared to non-musicians, and that these changes emerge with accumulation of training. Our aim was to investigate whether individual differences in executive functions predict training-related changes in neural sound discrimination. We measured event-related potentials induced by sound changes coupled with tests for executive functions in musically trained and non-trained children aged 9-11 years and 13-15 years. High performance in a set-shifting task, indexing cognitive flexibility, was linked to enhanced maturation of neural sound discrimination in both musically trained and non-trained children. Specifically, well-performing musically trained children already showed large mismatch negativity (MMN) responses at a young age as well as at an older age, indicating accurate sound discrimination. In contrast, the musically trained low-performing children still showed an increase in MMN amplitude with age, suggesting that they were behind their high-performing peers in the development of sound discrimination. In the non-trained group, in turn, only the high-performing children showed evidence of an age-related increase in MMN amplitude, and the low-performing children showed a small MMN with no age-related change. These latter results suggest an advantage in MMN development also for high-performing non-trained individuals. For the P3a amplitude, there was an age-related increase only in the children who performed well in the set-shifting task, irrespective of music training, indicating enhanced attention-related processes in these children. Thus, the current study provides the first evidence that, in children, cognitive flexibility may influence age-related and training-related plasticity of neural sound discrimination. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Noise in any frequency range can enhance information transmission in a sensory neuron
NASA Astrophysics Data System (ADS)
Levin, Jacob E.
1997-05-01
The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.
Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons
Djakovic, Stevan N.; Marquez-Lona, Esther M.; Jakawich, Sonya K.; Wright, Rebecca; Chu, Carissa; Sutton, Michael A.; Patrick, Gentry N.
2012-01-01
It has become increasingly evident that protein degradation via the ubiquitin proteasome system plays a fundamental role in the development, maintenance and remodeling of synaptic connections in the central nervous system. We and others have recently described the activity-dependent regulation of proteasome activity (Djakovic et al., 2009) and recruitment of proteasomes into spine compartments (Bingol and Schuman, 2006) involving the phosphorylation of the 19S ATPase subunit, Rpt6, by the plasticity kinase Ca2+/calmodulin-dependent protein kinases II alpha CaMKIIα) (Bingol et al., 2010). Here, we investigated the role of Rpt6 phosphorylation on proteasome function and synaptic strength. Utilizing a phospho-specific antibody we verified that Rpt6 is phosphorylated at Serine 120 (S120) by CaMKIIα. In addition, we found that Rpt6 is phosphorylated by CaMKIIα in an activity-dependent manner. In addition, we showed that a serine 120 to aspartic acid phospho-mimetic mutant of Rpt6 (S120D) increases its resistance to detergent extraction in rat hippocampal dendrites, indicating phosphorylated Rpt6 may promote the tethering of proteasomes to scaffolds and cytoskeletal components. Interestingly, expression of Rpt6 S120D decreased miniature excitatory postsynaptic current (mEPSC) amplitude, while expression of a phospho-dead mutant (S120A) increased mEPSC amplitude. Surprisingly, homeostatic scaling of mEPSC amplitude produced by chronic application of bicuculline or tetrodotoxin is both mimicked and occluded by altered Rpt6 phosphorylation. Together these data suggest that CaMKII-dependent phosphorylation of Rpt6 at S120 may be an important regulatory mechanism for proteasome-dependent control of synaptic remodeling in slow homeostatic plasticity. PMID:22496558
Han, Liang; Ding, Yongjie; Wei, Liqiu; Yu, Daren
2014-06-01
This paper provides a method to measure the amplitude of low frequency oscillation under the on-track working condition, and realizes the sampling by means of adding the circuit design of sampling, low pass filtering by 3 dB at 48.2 kHz, detection and integrating in the filtering unit. The experimental results prove that the measuring device of merely 0.8 g can quantitatively reflect the amplitude of low frequency oscillation in Hall thruster and the maximum deviation of experiment data and theory data is 10% FS.
Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin
2016-01-01
T-type Ca2+ channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca2+ currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca2+ channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca2+ currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a ‘reserve pool’ of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. PMID:26944020
Poulet, Claire; Künzel, Stephan; Büttner, Edgar; Lindner, Diana; Westermann, Dirk; Ravens, Ursula
2016-02-01
The contribution of human atrial fibroblasts to cardiac physiology and pathophysiology is poorly understood. Fibroblasts may contribute to arrhythmogenesis through fibrosis, or by directly altering electrical activity in cardiomyocytes. The objective of our study was to uncover phenotypic differences between cells from patients in sinus rhythm (SR) and chronic atrial fibrillation (AF), with special emphasis on electrophysiological properties. We isolated fibroblasts from human right atrial tissue for patch-clamp experiments, proliferation, migration, and differentiation assays, and gene expression profiling. In culture, proliferation and migration of AF fibroblasts were strongly impaired but differentiation into myofibroblasts was increased. This was associated with a higher number of AF fibroblasts expressing functional Nav1.5 channels. Strikingly Na(+) currents were considerably larger in AF cells. Blocking Na(+) channels in culture with tetrodotoxin did not affect proliferation, migration, or differentiation in neither SR nor AF cells. While freshly isolated fibroblasts showed mostly weak rectifier currents, fibroblasts in culture developed outward rectifier K(+) currents of similar amplitude between the SR and AF groups. Adding the K(+) channel blockers tetraethylammonium and 4-aminopyridin in culture reduced current amplitude and inhibited proliferation in the SR group only. Analysis of gene expression revealed significant differences between SR and AF in genes encoding for ion channels, collagen, growth factors, connexins, and cadherins. In conclusion, this study shows that under AF conditions atrial fibroblasts undergo phenotypic changes that are revealed in culture. Future experiments should be performed in situ to understand the nature of those changes and whether they affect cardiac electrical activity. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Sommer, Martin; Norden, Christoph; Schmack, Lars; Rothkegel, Holger; Lang, Nicolas; Paulus, Walter
2013-05-01
Directional sensitivity is relevant for the excitability threshold of the human primary motor cortex, but its importance for externally induced plasticity is unknown. To study the influence of current direction on two paradigms inducing neuroplasticity by repetitive transcranial magnetic stimulation (rTMS). We studied short-lasting after-effects induced in the human primary motor cortex of 8 healthy subjects, using 5 Hz rTMS applied in six blocks of 200 pulses each, at 90% active motor threshold. We controlled for intensity, frequency, waveform and spinal effects. Only biphasic pulses with the effective component delivered in an anterioposterior direction (henceforth posteriorly directed) in the brain yielded an increase of motor-evoked potential (MEP) amplitudes outlasting rTMS. MEP latencies and F-wave amplitudes remained unchanged. Biphasic pulses directed posteroanterior (i.e. anteriorly) were ineffective, as were monophasic pulses from either direction. A 1 Hz study in a group of 12 healthy subjects confirmed facilitation after posteriorly directed biphasic pulses only. The anisotropy of the human primary motor cortex is relevant for induction of plasticity by subtreshold rTMS, with a current flow opposite to that providing lowest excitability thresholds. This is consistent with the idea of TMS primarily targeting cortical columns of the phylogenetically new M1 in the anterior bank of the central sulcus. For these, anteriorly directed currents are soma-depolarizing, therefore optimal for low thresholds, whereas posteriorly directed currents are soma-hyperpolarizing, likely dendrite-depolarizing and bested suited for induction of plasticity. Our findings should help focus and enhance rTMS effects in experimental and clinical settings. Copyright © 2013 Elsevier Inc. All rights reserved.
Bukanova, J V; Sharonova, I N; Skrebitsky, V G
2016-11-15
Amyloid-β peptide (Aβ) is considered a key protein in the pathogenesis of Alzheimer's disease because of its neurotoxicity, resulting in impaired synaptic function and memory. On the other hand, it was demonstrated that low (picomolar) concentrations of Aβ enhance synaptic plasticity and memory, suggesting that in the healthy brain, physiological Aβ concentrations are necessary for normal cognitive functions. In the present study, we found that Aβ (1-42) in concentrations of 10 pМ - 100nМ enhanced desensitization of the glycine-activated current in isolated CA3 pyramidal neurons and also reversibly suppressed its peak amplitude during short (600ms) co-application with agonist. The effect was most prominent at low glycine concentrations. When glycine receptors were activated by other receptor agonists - taurine and β-alanine, the changes of current kinetics and amplitudes induced by Aβ had a similar character. When Aβ (100 pM) was added to the bath solution, it caused, besides acceleration of desensitization, more pronounced reduction of peak current amplitude. This effect developed slowly, during a few minutes, and was more prominent at saturating concentrations of agonists. The results suggest that Aβ interacts with glycine receptors through three different mechanisms - by enhancing receptor desensitization, by rapid inhibition of the receptor, and also by means of a slowly developing inhibition of the amplitude of the current, possibly through intracellular mechanisms. The observed changes in the activity of glycine receptors induced by Aβ can lead to suppression of the tonic inhibition of hippocampal neurons mediated by extrasynaptic glycine receptors. Copyright © 2016 Elsevier B.V. All rights reserved.
Callamaras, N; Sun, X P; Ivorra, I; Parker, I
1998-09-01
1. The mechanisms underlying hemispheric asymmetry of the inositol 1, 4,5-trisphosphate (InsP3)-calcium signalling pathway in Xenopus oocytes were examined by fluorescence imaging of calcium signals and recording calcium-activated Cl- currents (ICl,Ca) evoked by intracellular calcium injections and photorelease of InsP3. 2. The maximal ICl,Ca evoked by strong photorelease of InsP3 was 8 times greater in the animal than the vegetal hemisphere, but the average threshold amounts of InsP3 required to evoke detectable currents were similar in each hemisphere. 3. Currents evoked by injections of calcium were about 2.5 times greater near the animal pole than near the vegetal pole, whereas fluorescence signals evoked by injections were similar in each hemisphere. 4. Calcium waves were evoked by photolysis flashes of similar strengths in both hemispheres of albino oocytes, but peak calcium levels evoked by supramaximal stimuli were 70 % greater in the animal hemisphere. 5. Elementary calcium release events (puffs) in the animal hemisphere had amplitudes about double that in the vegetal hemisphere, and more often involved coupled release from adjacent sites. Calcium release sites were more closely packed in the animal hemisphere, with a mean spacing of about 1.5 micro m compared with 2.25 micro m in the vegetal hemisphere. 6. The larger amplitude of currents mediated by InsP3 in the animal hemisphere, therefore, involves an increased flux of calcium at individual release units, a more dense packing of release units and a higher density of Cl- channels.
Callamaras, Nick; Sun, Xiao-Ping; Ivorra, Isabel; Parker, Ian
1998-01-01
The mechanisms underlying hemispheric asymmetry of the inositol 1,4,5-trisphosphate (InsP3)-calcium signalling pathway in Xenopus oocytes were examined by fluorescence imaging of calcium signals and recording calcium-activated Cl− currents (ICl,Ca) evoked by intracellular calcium injections and photorelease of InsP3. The maximal ICl,Ca evoked by strong photorelease of InsP3 was 8 times greater in the animal than the vegetal hemisphere, but the average threshold amounts of InsP3 required to evoke detectable currents were similar in each hemisphere. Currents evoked by injections of calcium were about 2.5 times greater near the animal pole than near the vegetal pole, whereas fluorescence signals evoked by injections were similar in each hemisphere. Calcium waves were evoked by photolysis flashes of similar strengths in both hemispheres of albino oocytes, but peak calcium levels evoked by supramaximal stimuli were 70% greater in the animal hemisphere. Elementary calcium release events (puffs) in the animal hemisphere had amplitudes about double that in the vegetal hemisphere, and more often involved coupled release from adjacent sites. Calcium release sites were more closely packed in the animal hemisphere, with a mean spacing of about 1.5 μm compared with 2.25 μm in the vegetal hemisphere. The larger amplitude of currents mediated by InsP3 in the animal hemisphere, therefore, involves an increased flux of calcium at individual release units, a more dense packing of release units and a higher density of Cl− channels. PMID:9706018
Park, Yul Young; Johnston, Daniel
2013-01-01
The properties of voltage-gated ion channels on the neuronal membrane shape electrical activity such as generation and backpropagation of action potentials, initiation of dendritic spikes, and integration of synaptic inputs. Subthreshold currents mediated by sodium channels are of interest because of their activation near rest, slow inactivation kinetics, and consequent effects on excitability. Modulation of these currents can also perturb physiological responses of a neuron that might underlie pathological states such as epilepsy. Using nucleated patches from the peri-somatic region of hippocampal CA1 neurons, we recorded a slowly inactivating component of the macroscopic Na+ current (which we have called INaS) that shared many biophysical properties with the persistent Na+ current, INaP, but showed distinctively faster inactivating kinetics. Ramp voltage commands with a velocity of 400 mV/s were found to elicit this component of Na+ current reliably. INaS also showed a more hyperpolarized I-V relationship and slower inactivation than those of the fast transient Na+ current (INaT) recorded in the same patches. The peak amplitude of INaS was proportional to the peak amplitude of INaT but was much smaller in amplitude. Hexanol, riluzole, and ranolazine, known Na+ channel blockers, were tested to compare their effects on both INaS and INaT. The peak conductance of INaS was preferentially blocked by hexanol and riluzole, but the shift of half-inactivation voltage (V1/2) was only observed in the presence of riluzole. Current-clamp measurements with hexanol suggested that INaS was involved in generation of an action potential and in upregulation of neuronal excitability. PMID:23236005
On the causes of trends in the seasonal amplitude of atmospheric CO2.
Piao, Shilong; Liu, Zhuo; Wang, Yilong; Ciais, Philippe; Yao, Yitong; Peng, Shushi; Chevallier, Frédéric; Friedlingstein, Pierre; Janssens, Ivan A; Peñuelas, Josep; Sitch, Stephen; Wang, Tao
2018-02-01
No consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO 2 in the northern latitudes. In this study, we used atmospheric CO 2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO 2 . We found significant (p < .05) increases in seasonal peak-to-trough CO 2 amplitude (AMP P -T ) at nine stations, and in trough-to-peak amplitude (AMP T -P ) at eight stations over the last three decades. Most of the stations that recorded increasing amplitudes are in Arctic and boreal regions (>50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi-model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO 2 concentration (eCO 2 ) and climate change are dominant drivers of the increase in AMP P -T and AMP T -P in the high latitudes. At the Barrow station, the observed increase of AMP P -T and AMP T -P over the last 33 years is explained by eCO 2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO 2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO 2 during carbon uptake period. Air-sea CO 2 fluxes (10% for AMP P -T and 11% for AMP T -P ) and the impacts of land-use change (marginally significant 3% for AMP P -T and 4% for AMP T -P ) also contributed to the CO 2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle. © 2017 John Wiley & Sons Ltd.
TRPA1 Contributes to Cold Hypersensitivity
Camino, Donato del; Murphy, Sarah; Heiry, Melissa; Barrett, Lee B.; Earley, Taryn J.; Cook, Colby A.; Petrus, Matt J.; Zhao, Michael; D'Amours, Marc; Deering, Nate; Brenner, Gary J.; Costigan, Michael; Hayward, Neil J.; Chong, Jayhong A.; Fanger, Christopher M.; Woolf, Clifford J.; Patapoutian, Ardem; Moran, Magdalene M.
2010-01-01
TRPA1 is a non-selective cation channel expressed by nociceptors. While it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even noxious cold only increases current amplitude slightly. These results suggest that TRPA1 is a key mediator of cold hypersensitivity in pathological conditions where reactive oxygen species and pro-inflammatory activators of the channel are present, but likely plays a comparatively minor role in acute cold sensation. Supporting this, cold hypersensitivity can be induced in wild-type but not Trpa1-/- mice by subcutaneous administration of a TRPA1 agonist. Furthermore, the selective TRPA1 antagonist HC-030031 reduces cold hypersensitivity in rodent models of inflammatory and neuropathic pain. PMID:21068322
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Xuechen; Niu Dongying; Yin Zengqian
2012-08-15
The characteristics of dielectric barrier discharge excited by a saw-tooth voltage are simulated in atmospheric pressure helium based on a one-dimensional fluid model. A stepped discharge is obtained per half voltage cycle with gas gap width less than 2 mm by the simulation, which is different to the pulsed discharge excited by a sinusoidal voltage. For the stepped discharge, the plateau duration increases with increasing the voltage amplitude and decreasing the gas gap. Therefore, uniform discharge with high temporal duty ratio can be realized with small gap through increasing the voltage amplitude. The maximal densities of both electron and ionmore » appear near the anode and the electric field is almost uniformly distributed along the gap, which indicates that the stepped discharge belongs to a Townsend mode. In contrast to the stepped discharge with small gas gap, a pulsed discharge can be obtained with large gas gap. Through analyzing the spatial density distributions of electron and ion and the electric field, the pulsed discharge is in a glow mode. The voltage-current (V-I) characteristics are analyzed for the above mentioned discharges under different gas gaps, from which the different discharge modes are verified.« less
Zhang, X-L; Albers, K M; Gold, M S
2015-01-22
The goals of the present study were to determine (1) the properties of the nicotinic acetylcholine receptor (nAChR) currents in rat cutaneous dorsal root ganglion (DRG) neurons; (2) the impact of nAChR activation on the excitability of cutaneous DRG neurons; and (3) the impact of inflammation on the density and distribution of nAChR currents among cutaneous DRG neurons. Whole-cell patch-clamp techniques were used to study retrogradely labeled DRG neurons from naïve and complete Freund's adjuvant inflamed rats. Nicotine-evoked currents were detectable in ∼70% of the cutaneous DRG neurons, where only one of two current types, fast or slow currents based on rates of activation and inactivation, was present in each neuron. The biophysical and pharmacological properties of the fast current were consistent with nAChRs containing an α7 subunit while those of the slow current were consistent with nAChRs containing α3/β4 subunits. The majority of small diameter neurons with fast current were IB4- while the majority of small diameter neurons with slow current were IB4+. Preincubation with nicotine (1 μM) produced a transient (1 min) depolarization and increase in the excitability of neurons with fast current and a decrease in the amplitude of capsaicin-evoked current in neurons with slow current. Inflammation increased the current density of both slow and fast currents in small diameter neurons and increased the percentage of neurons with the fast current. With the relatively selective distribution of nAChR currents in putative nociceptive cutaneous DRG neurons, our results suggest that the role of these receptors in inflammatory hyperalgesia is likely to be complex and dependent on the concentration and timing of acetylcholine release in the periphery. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
[Electrical response of inner membrane structures of corynebacteria during electrotransformation].
Tiurin, M V; Voroshilova, E B; Rostova, Iu G; Oparina, N Iu; Gusiatiner, M M
1998-01-01
The efficiency of the electrotransformation of intact cells of corynebacteria by a solitary impulse with a complex shape amounted to 10(6) transformants/microgram of plasmid pNV1 DNA at an electric field strength of 14.2 kW/cm; the voltage-current curve of the cell samples was nonlinear. Under these conditions, the structure of the electric current impulse passing intact cells or protoplasts included oscillations characterized by increasing amplitude and a duration of 170 microseconds, which were not detected in the structure of the electric current impulses at field strengths insufficient for obtaining transformants. These changes in the impulse shape suggest the involvement of internal closed membrane structures in the electrical response of cells to the exogenous electric impulse. Most probably, under conditions of electrical treatment optimal for transformation, electropores are formed in the intracellular membranes of corynebacteria.
Higher harmonics generation in relativistic electron beam with virtual cathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.
2014-09-15
The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in themore » spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.« less
PyPWA: A partial-wave/amplitude analysis software framework
NASA Astrophysics Data System (ADS)
Salgado, Carlos
2016-05-01
The PyPWA project aims to develop a software framework for Partial Wave and Amplitude Analysis of data; providing the user with software tools to identify resonances from multi-particle final states in photoproduction. Most of the code is written in Python. The software is divided into two main branches: one general-shell where amplitude's parameters (or any parametric model) are to be estimated from the data. This branch also includes software to produce simulated data-sets using the fitted amplitudes. A second branch contains a specific realization of the isobar model (with room to include Deck-type and other isobar model extensions) to perform PWA with an interface into the computer resources at Jefferson Lab. We are currently implementing parallelism and vectorization using the Intel's Xeon Phi family of coprocessors.
Gauge boson exchange in AdS d+1
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Freedman, Daniel Z.
1999-04-01
We study the amplitude for exchange of massless gauge bosons between pairs of massive scalar fields in anti-de Sitter space. In the AdS/CFT correspondence this amplitude describes the contribution of conserved flavor symmetry currents to 4-point functions of scalar operators in the boundary conformal theory. A concise, covariant, Y2K compatible derivation of the gauge boson propagator in AdS d + 1 is given. Techniques are developed to calculate the two bulk integrals over AdS space leading to explicit expressions or convenient, simple integral representations for the amplitude. The amplitude contains leading power and sub-leading logarithmic singularities in the gauge boson channel and leading logarithms in the crossed channel. The new methods of this paper are expected to have other applications in the study of the Maldacena conjecture.
Block of HERG human K(+) channel and IKr of guinea pig cardiomyocytes by chlorpromazine.
Lee, So-Young; Choi, Se-Young; Youm, Jae Boum; Ho, Won-Kyung; Earm, Yung E; Lee, Chin O; Jo, Su-Hyun
2004-05-01
Chlorpromazine, a commonly used antipsychotic drug, has been known to induce QT prolongation and torsades de pointes, which can cause sudden death. We studied the effects of chlorpromazine on the human ether-a-go-go-related gene (HERG) channel expressed in Xenopus oocytes and on delayed rectifier K current of guinea pig ventricular myocytes. Application of chlorpromazine showed a dose-dependent decrease in the amplitudes of steady-state currents and tail currents of HERG. The decrease became more pronounced at increasingly positive potential, suggesting that the blockade of HERG by chlorpromazine is voltage dependent. IC50 for chlorpromazine block of HERG current was progressively decreased according to depolarization: IC50 values at -30, 0, and +30 mV were 10.5, 8.8, and 4.9 microM, respectively. The block of HERG current during the voltage step increased with time starting from a level 89% of the control current. In guinea pig ventricular myocytes, bath application of 2 and 5 microM chlorpromazine at 36 degree C blocked rapidly activating delayed rectifier K current (IKr) by 31 and 83%, respectively. How-ever, the same concentrations of chlorpromazine failed to significantly block slowly activating delayed rectifier K current (IKs). Our findings suggest that the arrhythmogenic side effect of chlorpromazine is caused by blockade of HERG and rapid component of delayed rectifier K current rather than by blockade of the slow component.
Study of the catastrophic discharge phenomenon in a Hall thruster
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Su, Hongbo; Li, Peng; Wei, Liqiu; Li, Hong; Peng, Wuji; Xu, Yu; Sun, Hezhi; Yu, Daren
2017-10-01
In a 1350-W Hall-effect thruster, in which a technique for pushing down the magnetic field is implemented, a catastrophic discharge phenomenon is identified by varying the magnetic field strength while keeping all other operating parameters constant. According to experiments, before and after the discharge catastrophe, the plume changes from focusing state to a divergent state, and discharge parameters such as discharge current and thrust exhibit noticeable changes. The divergence half-angle of the plume increases from 22° to 46°. The oscillation amplitude and mean values of the discharge current significantly increase from 0.8 A to 4 A and from 4.6 A to 6.3 A, respectively, while the thrust increases from 89.3 mN to 91 mN. Analysis of the experimental results shows that as the maximum magnetic field of the thruster we developed is in the plume region, the acceleration occurs in the plume region and a large number of Xe2+ ions appear in the plume area, the catastrophic discharge phenomenon observed.
Schäffer, Beat; Schlittmeier, Sabine J; Pieren, Reto; Heutschi, Kurt; Brink, Mark; Graf, Ralf; Hellbrück, Jürgen
2016-05-01
Current literature suggests that wind turbine noise is more annoying than transportation noise. To date, however, it is not known which acoustic characteristics of wind turbines alone, i.e., without effect modifiers such as visibility, are associated with annoyance. The objective of this study was therefore to investigate and compare the short-term noise annoyance reactions to wind turbines and road traffic in controlled laboratory listening tests. A set of acoustic scenarios was created which, combined with the factorial design of the listening tests, allowed separating the individual associations of three acoustic characteristics with annoyance, namely, source type (wind turbine, road traffic), A-weighted sound pressure level, and amplitude modulation (without, periodic, random). Sixty participants rated their annoyance to the sounds. At the same A-weighted sound pressure level, wind turbine noise was found to be associated with higher annoyance than road traffic noise, particularly with amplitude modulation. The increased annoyance to amplitude modulation of wind turbines is not related to its periodicity, but seems to depend on the modulation frequency range. The study discloses a direct link of different acoustic characteristics to annoyance, yet the generalizability to long-term exposure in the field still needs to be verified.
Do Event-Related Evoked Potentials Reflect Apathy Tendency and Motivation?
Takayoshi, Hiroyuki; Onoda, Keiichi; Yamaguchi, Shuhei
2018-01-01
Apathy is a mental state of diminished motivation. Although the reward system as the foundation of the motivation in the human brain has been studied extensively with neuroimaging techniques, the electrophysiological correlates of motivation and apathy have not been fully explored. Thus, in 14 healthy volunteers, we examined whether event-related evoked potentials (ERP) obtained during a simple number discrimination task with/without rewards reflected apathy tendency and a reward-dependent tendency, which were assessed separately using the apathy scale and the temperament and character inventory (TCI). Participants were asked to judge the size of a number, and received feedback based on their performance in each trial. The P3 amplitudes related to the feedback stimuli increased only in the reward condition. Furthermore, the P2 amplitudes related to the negative feedback stimuli in the reward condition had a positive correlation with the reward-dependent tendency in TCI, whereas the P3 amplitudes related to the positive feedback stimuli had a negative correlation with the apathy score. Our result suggests that the P2 and P3 ERPs to reward-related feedback stimuli are modulated in a distinctive manner by the motivational reward dependence and apathy tendency, and thus the current paradigm may be useful for investigating the brain activity associated with motivation. PMID:29445331
[Unconscious Acoustical Stimuli Effects on Event-related Potentials in Humans].
Kopeikina, E A; Choroshich, V V; Aleksandrov, A Y; Ivanova, V Y
2015-01-01
Unconscious perception essentially affects human behavior. The main results in this area obtained in experiments with visual stimuli. However, the acoustical stimuli play not less important role in behavior. The main idea of this paper is the electroencephalographic investigation of unconscious acoustical stimulation effects on electro-physiological activity of the brain. For this purpose, the event-related potentials were acquired under unconscious stimulus priming paradigm. The one syllable, three letter length, Russian words and pseudo-words with single letter substitution were used as primes and targets. As a result, we find out that repetition and alternative priming similarly affects the event-related potential's component with 200 ms latency after target application in frontal parietal and temporal areas. Under alternative priming the direction of potential amplitude modification nearby 400 ms was altered for word and semi-word targets. Alternative priming reliably increase ERP's amplitude in 400 ms locality with pseudo-word targets and decrease it under word targets. Taking into account, that all participants were unable to distinguish the applied prime stimuli, we can assume that the event-related potential changes evoked by unconscious perception of acoustical stimuli. The ERP amplitude dynamics revealed in current investigation demonstrate the opportunity of subliminal acoustical stimuli to modulate the electrical activity evoked by verbal acoustical stimulation.
Magneto-acoustic imaging by continuous-wave excitation.
Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu
2017-04-01
The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10 -7 Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.
Electrocortical changes associated with minocycline treatment in fragile X syndrome.
Schneider, Andrea; Leigh, Mary Jacena; Adams, Patrick; Nanakul, Rawi; Chechi, Tasleem; Olichney, John; Hagerman, Randi; Hessl, David
2013-10-01
Minocycline normalizes synaptic connections and behavior in the knockout mouse model of fragile X syndrome (FXS). Human-targeted treatment trials with minocycline have shown benefits in behavioral measures and parent reports. Event-related potentials (ERPs) may provide a sensitive method of monitoring treatment response and changes in coordinated brain activity. Measurement of electrocortical changes due to minocycline was done in a double-blind, placebo-controlled crossover treatment trial in children with FXS. Children with FXS (Meanage 10.5 years) were randomized to minocycline or placebo treatment for 3 months then changed to the other treatment for 3 months. The minocycline dosage ranged from 25-100 mg daily, based on weight. Twelve individuals with FXS (eight male, four female) completed ERP studies using a passive auditory oddball paradigm. Current source density (CSD) and ERP analysis at baseline showed high-amplitude, long-latency components over temporal regions. After 3 months of treatment with minocycline, the temporal N1 and P2 amplitudes were significantly reduced compared with placebo. There was a significant amplitude increase of the central P2 component on minocycline. Electrocortical habituation to auditory stimuli improved with minocycline treatment. Our study demonstrated improvements of the ERP in children with FXS treated with minocycline, and the potential feasibility and sensitivity of ERPs as a cognitive biomarker in FXS treatment trials.
Tziridis, Konstantin; Ahlf, Sönke; Jeschke, Marcus; Happel, Max F. K.; Ohl, Frank W.; Schulze, Holger
2015-01-01
In this study, we describe differences between neural plasticity in auditory cortex (AC) of animals that developed subjective tinnitus (group T) after noise-induced hearing loss (NIHL) compared to those that did not [group non-tinnitus (NT)]. To this end, our analysis focuses on the input activity of cortical neurons based on the temporal and spectral analysis of local field potential (LFP) recordings and an in-depth analysis of auditory brainstem responses (ABR) in the same animals. In response to NIHL in NT animals we find a significant general reduction in overall cortical activity and spectral power as well as changes in all ABR wave amplitudes as a function of loudness. In contrast, T-animals show no significant change in overall cortical activity as assessed by root mean square analysis of LFP amplitudes, but a specific increase in LFP spectral power and in the amplitude of ABR wave V reflecting activity in the inferior colliculus (IC). Based on these results, we put forward a refined model of tinnitus prevention after NIHL that acts via a top-down global (i.e., frequency-unspecific) inhibition reducing overall neuronal activity in AC and IC, thereby counteracting NIHL-induced bottom-up frequency-specific neuroplasticity suggested in current models of tinnitus development. PMID:25713557
Zidan, Ahmed S; Aldawsari, Hibah
2015-01-01
Delivering drugs to intracerebral regions can be accomplished by improving the capacity of transport through blood-brain barrier. Using sertraline as model drug for brain targeting, the current study aimed at modifying its liposomal vesicles with mannopyranoside. Box-Behnken design was employed to statistically optimize the ultrasound parameters, namely ultrasound amplitude, time, and temperature, for maximum mannosylation capacity, sertraline entrapment, and surface charge while minimizing vesicular size. Moreover, in vitro blood-brain barrier transport model was established to assess the transendothelial capacity of the optimized mannosylated vesicles. Results showed a dependence of vesicular size, mannosylation capacity, and sertraline entrapment on cavitation and bubble implosion events that were related to ultrasound power amplitude, temperature. However, short ultrasound duration was required to achieve >90% mannosylation with nanosized vesicles (<200 nm) of narrow size distribution. Optimized ultrasound parameters of 65°C, 27%, and 59 seconds for ultrasound temperature, amplitude, and time were elucidated to produce 81.1%, 46.6 nm, and 77.6% sertraline entrapment, vesicular size, and mannosylation capacity, respectively. Moreover, the transendothelial ability was significantly increased by 2.5-fold by mannosylation through binding with glucose transporters. Hence, mannosylated liposomes processed by ultrasound could be a promising approach for manufacturing and scale-up of brain-targeting liposomes.
Saffar, Saber; Abdullah, Amir
2014-01-01
The acoustic impedances of matching layers, their internal loss and vibration amplitude are the most important and influential parameters in the performance of high power airborne ultrasonic transducers. In this paper, the optimum acoustic impedances of the transducer matching layers were determined by using a genetic algorithm, the powerful tool for optimizating domain. The analytical results showed that the vibration amplitude increases significantly for low acoustic impedance matching layers. This enhancement is maximum and approximately 200 times higher for the last matching layer where it has the same interface with the air than the vibration amplitude of the source, lead zirconate titanate-pizo electric while transferring the 1 kW is desirable. This large amplitude increases both mechanical failure and temperature of the matching layers due to the internal loss of the matching layers. It has analytically shown that the temperature in last matching layer with having the maximum vibration amplitude is high enough to melt or burn the matching layers. To verify suggested approach, the effect of the amplitude of vibration on the induced temperature has been investigated experimentally. The experimental results displayed good agreement with the theoretical predictions. Copyright © 2013 Elsevier B.V. All rights reserved.
Light Diffraction by Large Amplitude Ultrasonic Waves in Liquids
NASA Technical Reports Server (NTRS)
Adler, Laszlo; Cantrell, John H.; Yost, William T.
2016-01-01
Light diffraction from ultrasound, which can be used to investigate nonlinear acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically reported in the literature. Large amplitude waves result in waveform distortion due to the nonlinearity of the medium that generates harmonics and produces asymmetries in the light diffraction pattern. For standing waves with amplitudes above a threshold value, subharmonics are generated in addition to the harmonics and produce additional diffraction orders of the incident light. With increasing drive amplitude above the threshold a cascade of period-doubling subharmonics are generated, terminating in a region characterized by a random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy model is introduced, which is derived from traveling wave solutions of the nonlinear wave equation corresponding to the fundamental and second harmonic standing waves. The toy model reduces the nonlinear partial differential equation to a mathematically more tractable nonlinear ordinary differential equation. The model predicts the experimentally observed cascade of period-doubling subharmonics terminating in chaos that occurs with increasing drive amplitudes above the threshold value. The calculated threshold amplitude is consistent with the value estimated from the experimental data.
High Frequency Radar Observations of Tidal Current Variability in the Lower Chesapeake Bay
NASA Astrophysics Data System (ADS)
Updyke, T. G.; Dusek, G.; Atkinson, L. P.
2016-02-01
Analysis of eight years of high frequency radar surface current observations in the lower Chesapeake Bay is presented with a focus on the variability of the tidal component of the surface circulation which accounts for a majority of the variance of the surface flow (typically 70-80% for the middle of the radar footprint). Variations in amplitude and phase of the major tidal constituents are examined in the context of water level, wind and river discharge data. Comparisons are made with harmonic analysis results from long-term records of current data measured by three current profilers operated by NOAA as part of the Chesapeake Bay Physical Oceanographic Real-Time System (PORTS). Preliminary results indicate that there is significant spatial variability in the M2 amplitude over the HF radar grid as well as temporal variability when harmonic analysis is performed using bi-monthly time segments over the course of the record.
Method and apparatus for generating motor current spectra to enhance motor system fault detection
Linehan, Daniel J.; Bunch, Stanley L.; Lyster, Carl T.
1995-01-01
A method and circuitry for sampling periodic amplitude modulations in a nonstationary periodic carrier wave to determine frequencies in the amplitude modulations. The method and circuit are described in terms of an improved motor current signature analysis. The method insures that the sampled data set contains an exact whole number of carrier wave cycles by defining the rate at which samples of motor current data are collected. The circuitry insures that a sampled data set containing stationary carrier waves is recreated from the analog motor current signal containing nonstationary carrier waves by conditioning the actual sampling rate to adjust with the frequency variations in the carrier wave. After the sampled data is transformed to the frequency domain via the Discrete Fourier Transform, the frequency distribution in the discrete spectra of those components due to the carrier wave and its harmonics will be minimized so that signals of interest are more easily analyzed.
Predicting electromagnetic ion cyclotron wave amplitude from unstable ring current plasma conditions
Fu, Xiangrong; Cowee, Misa M.; Jordanova, Vania K.; ...
2016-11-01
Electromagnetic ion cyclotron (EMIC) waves in the Earth's inner magnetosphere are enhanced fluctuations driven unstable by ring current ion temperature anisotropy. EMIC waves can resonate with relativistic electrons and play an important role in precipitation of MeV radiation belt electrons. In this study, we investigate the excitation and saturation of EMIC instability in a homogeneous plasma using both linear theory and nonlinear hybrid simulations. We have explored a four-dimensional parameter space, carried out a large number of simulations, and derived a scaling formula that relates the saturation EMIC wave amplitude to initial plasma conditions. Finally, such scaling can be usedmore » in conjunction with ring current models like ring current-atmosphere interactions model with self-consistent magnetic field to provide global dynamic EMIC wave maps that will be more accurate inputs for radiation belt modeling than statistical models.« less
Does ammonia trigger hyperventilation in the elasmobranch, Squalus acanthias suckleyi?
De Boeck, Gudrun; Wood, Chris M
2015-01-15
We examined the ventilatory response of the spiny dogfish, to elevated internal or environmental ammonia. Sharks were injected via arterial catheters with ammonia solutions or their Na salt equivalents sufficient to increase plasma total ammonia concentration [TAmm]a by 3-5 fold from 145±21μM to 447±150μM using NH4HCO3 and a maximum of 766±100μM using (NH4)2SO4. (NH4)2SO4 caused a small increase in ventilation frequency (+14%) and a large increase in amplitude (+69%), while Na2SO4 did not. However, CO2 partial pressure (PaCO2) also increased and arterial pHa and plasma bicarbonate concentration ([HCO3(-)]a) decreased. NH4HCO3 caused a smaller increase in plasma ammonia resulting in a smaller but significant, short lived increases in ventilation frequency (+6%) and amplitude (36%), together with a rise in PaCO2 and [HCO3(-)]a. Injection with NaHCO3 which increased pHa and [HCO3(-)]a did not change ventilation. Plasma ammonia concentration correlated significantly with ventilation amplitude, while ventilation frequency showed a (negative) correlation with pHa. Exposure to high environmental ammonia (1500μM NH4HCO3) did not induce changes in ventilation until plasma [TAmm]a increased and ventilation amplitude (but not frequency) increased in parallel. We conclude that internal ammonia stimulates ventilation in spiny dogfish, especially amplitude or stroke volume, while environmental ammonia only stimulates ventilation after ammonia diffuses into the bloodstream. Copyright © 2014 Elsevier B.V. All rights reserved.
Transient cosmic ray increase associated with a geomagnetic storm
NASA Technical Reports Server (NTRS)
Kudo, S.; Wada, M.; Tanskanen, P.; Kodama, M.
1985-01-01
On the basis of worldwide network data of cosmic ray nucleonic components, the transient cosmic ray increase due to the depression of cosmic ray cutoff rigidity during a severe geomagnetic storm was investigated in terms of the longitudinal dependence. Multiple correlation analysis among isotropic and diurnal terms of cosmic ray intensity variations and Dst term of the geomagnetic field is applied to each of various station's data. It is shown that the amplitude of the transient cosmic ray increase associated with Dst depends on the local time of the station, and that its maximum phase is found in the evening sector. This fact is consistent with the theoretical estimation based on the azimuthally asymmetric ring current model for the magnetic DS field.
A new insight into the oscillation characteristics of endosonic files used in dentistry.
Lea, S C; Walmsley, A D; Lumley, P J; Landini, G
2004-05-21
The aim of this study was to assess the oscillation characteristics of unconstrained endosonic files using a scanning laser vibrometer (SLV). Factors investigated included file vibration frequency and node/antinode location as well as the variation in file displacement amplitude due to increasing generator power setting. A 30 kHz Mini Piezon generator (Electro-Medical Systems, Switzerland) was used in conjunction with a #15 and #35 K-file. Each file was fixed in position with the long axis of the file perpendicular to the SLV camera head. The laser from the SLV was scanned over the length of the oscillating file for generator power settings 1 to 5 (minimum to half power). Measurements were repeated ten times. The fundamental vibration frequency for both files was 27.50 kHz. Scans of each file showed the positions of nodes/anti-nodes along the file length. The #15 file demonstrated no significant variation in its mean maximum displacement amplitude with increasing generator power, except at power setting 5, where a decrease in displacement amplitude was observed. The #35 file showed a general increase in mean maximum displacement amplitude with increasing power setting, except at power setting 4 where a 65% decrease in displacement amplitude occurred. In conclusion, scanning laser vibrometry is an effective method for assessing endosonic file vibration characteristics. The SLV was able to demonstrate that (unloaded) file vibration displacement amplitude does not increase linearly with increasing generator power. Further work is being performed on a greater variety of files and generators. Vibration characteristics of files under various loads and varying degrees of constraint should also be investigated.
The Formation of Ganymede's Grooved Terrain: Importance of Strain Weakening
NASA Astrophysics Data System (ADS)
Bland, M. T.; McKinnon, W. B.; Showman, A. P.
2008-12-01
Nearly two-thirds of Ganymede's surface consists of relatively bright, young, tectonically deformed terrain dubbed grooved terrain. The grooved terrain consists of sets of parallel, undulatory ridges and troughs with peak to trough amplitudes of several hundred meters and periodic spacings that range from 3 to 10~km. The low slopes and periodic spacing of the grooves suggest that they formed via unstable extension of the ice lithosphere [e.g. Fink and Fletcher 1981, LPS XII; Pappalardo et al. 1998, Icarus 135]. Application of analytical models of unstable extension to Ganymede suggest that large amplitude grooves with appropriate wavelengths can form if the lithosphere is in pervasive brittle failure and if the lithospheric thermal gradient was relatively high (~45K km-1) [Dombard and McKinnon 2001, Icarus 154]; however, numerical models of unstable extension struggle to produce topographic amplitudes consistent with Ganymede's grooves (maximum amplitudes are a factor of five less than typical large amplitude grooves) [Bland and Showman 2007, Icarus 189]. The difficulties in producing large amplitude deformation may be overcome by the inclusion of strain weakening in models of groove formation. Strain weakening effects account for a material's tendency to strain more easily as viscous and/or plastic deformation accumulates, and as strain localizes in shear zones or along faults. When included in models of terrestrial extension, such effects can increase deformation amplitudes by up to several orders of magnitude [e.g. Fredericksen and Braun 2001, EPSL 188; Behn et al. 2002, EPSL 202]. Here we present the results of simulations of Ganymede's groove formation that include various strain weakening processes. Incorporation of a simple damage rheology, in which the yield strength of the ice lithosphere decreases as plastic strain accumulates, permits a factor of three increase in the amplitude of the simulated grooves, generating topography of 200~m or more. Such groove amplitudes are consistent with the lower-end of the range of observed groove amplitudes. More sophisticated strain weakening rheologies are likely to further increase deformation amplitudes. This work is supported by NASA PG&G.
Systolic [Ca2+]i regulates diastolic levels in rat ventricular myocytes
Sankaranarayanan, Rajiv; Kistamás, Kornél; Greensmith, David J.; Venetucci, Luigi A.
2017-01-01
Key points For the heart to function as a pump, intracellular calcium concentration ([Ca2+]i) must increase during systole to activate contraction and then fall, during diastole, to allow the myofilaments to relax and the heart to refill with blood.The present study investigates the control of diastolic [Ca2+]i in rat ventricular myocytes.We show that diastolic [Ca2+]i is increased by manoeuvres that decrease sarcoplasmic reticulum function. This is accompanied by a decrease of systolic [Ca2+]i such that the time‐averaged [Ca2+]i remains constant.We report that diastolic [Ca2+]i is controlled by the balance between Ca2+ entry and Ca2+ efflux during systole.The results of the present study identify a novel mechanism by which changes of the amplitude of the systolic Ca transient control diastolic [Ca2+]i. Abstract The intracellular Ca concentration ([Ca2+]i) must be sufficently low in diastole so that the ventricle is relaxed and can refill with blood. Interference with this will impair relaxation. The factors responsible for regulation of diastolic [Ca2+]i, in particular the relative roles of the sarcoplasmic reticulum (SR) and surface membrane, are unclear. We investigated the effects on diastolic [Ca2+]i that result from the changes of Ca cycling known to occur in heart failure. Experiments were performed using Fluo‐3 in voltage clamped rat ventricular myocytes. Increasing stimulation frequency increased diastolic [Ca2+]i. This increase of [Ca2+]i was larger when SR function was impaired either by making the ryanodine receptor leaky (with caffeine or ryanodine) or by decreasing sarco/endoplasmic reticulum Ca‐ATPase activity with thapsigargin. The increase of diastolic [Ca2+]i produced by interfering with the SR was accompanied by a decrease of the amplitude of the systolic Ca transient, such that there was no change of time‐averaged [Ca2+]i. Time‐averaged [Ca2+]i was increased by β‐adrenergic stimulation with isoprenaline and increased in a saturating manner with increased stimulation frequency; average [Ca2+]i was a linear function of Ca entry per unit time. Diastolic and time‐averaged [Ca2+]i were decreased by decreasing the L‐type Ca current (with 50 μm cadmium chloride). We conclude that diastolic [Ca2+]i is controlled by the balance between Ca entry and efflux during systole. Furthermore, manoeuvres that decrease the amplitude of the Ca transient (without decreasing Ca influx) will therefore increase diastolic [Ca2+]i. This identifies a novel mechanism by which changes of the amplitude of the systolic Ca transient control diastolic [Ca2+]i. PMID:28617952
Pulse pressure waveform in hydrocephalus: what it is and what it isn't.
Czosnyka, Marek; Czosnyka, Zofia; Keong, Nicole; Lavinio, Andreas; Smielewski, Piotr; Momjian, Shahan; Schmidt, Eric A; Petrella, Gianpaolo; Owler, Brian; Pickard, John D
2007-04-15
Apart from its mean value, the pulse waveform of intracranial pressure (ICP) is an essential element of pressure recording. The authors reviewed their experience with the measurement and interpretation of ICP pulse amplitude by referring to a database of recordings in hydrocephalic patients. The database contained computerized pressure recordings from 2100 infusion studies (either lumbar or intraventricular) or overnight ICP monitoring sessions in patients suffering from hydrocephalus of various types (both communicating and noncommunicating), origins, and stages of management (shunt or no shunt). Amplitude was calculated from ICP waveforms by using a spectral analysis methodology. The appearance of a pulse waveform amplitude is positive evidence of a technically correct recording of ICP and helps to distinguish between postural and vasogenic variations in ICP. Pulse amplitude is significantly correlated with the amplitude of cerebral blood flow velocity (R = 0.4, p = 0.012) as assessed using Doppler ultrasonography. Amplitude is positively correlated with a mean ICP (R = 0.21 in idiopathic normal-pressure hydrocephalus [NPH]; number of cases 131; p < 0.01) and resistance to cerebrospinal fluid outflow (R = 0.22) but does not seem to be correlated with cerebrospinal elasticity, dilation of ventricles, or severity of hydrocephalus (NPH score). Amplitude increases slightly with age (R = 0.39, p < 0.01; number of cases 46). A positive association between pulse amplitude and increased ICP during an infusion study is helpful in distinguishing between hydrocephalus and predominant brain atrophy. A large amplitude is associated with a good outcome after shunting (positive predictive power 0.9), whereas a low amplitude has no predictive power in outcome prognostication (0.5). Pulse amplitude is reduced by a properly functioning shunt. Proper recording, detection, and interpretation of ICP pulse waveforms provide clinically useful information about patients suffering from hydrocephalus.