Sample records for current analytical techniques

  1. Analytical Electrochemistry: Methodology and Applications of Dynamic Techniques.

    ERIC Educational Resources Information Center

    Heineman, William R.; Kissinger, Peter T.

    1980-01-01

    Reports developments involving the experimental aspects of finite and current analytical electrochemistry including electrode materials (97 cited references), hydrodynamic techniques (56), spectroelectrochemistry (62), stripping voltammetry (70), voltammetric techniques (27), polarographic techniques (59), and miscellany (12). (CS)

  2. Green analytical chemistry--theory and practice.

    PubMed

    Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek

    2010-08-01

    This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.

  3. Modeling of phonon scattering in n-type nanowire transistors using one-shot analytic continuation technique

    NASA Astrophysics Data System (ADS)

    Bescond, Marc; Li, Changsheng; Mera, Hector; Cavassilas, Nicolas; Lannoo, Michel

    2013-10-01

    We present a one-shot current-conserving approach to model the influence of electron-phonon scattering in nano-transistors using the non-equilibrium Green's function formalism. The approach is based on the lowest order approximation (LOA) to the current and its simplest analytic continuation (LOA+AC). By means of a scaling argument, we show how both LOA and LOA+AC can be easily obtained from the first iteration of the usual self-consistent Born approximation (SCBA) algorithm. Both LOA and LOA+AC are then applied to model n-type silicon nanowire field-effect-transistors and are compared to SCBA current characteristics. In this system, the LOA fails to describe electron-phonon scattering, mainly because of the interactions with acoustic phonons at the band edges. In contrast, the LOA+AC still well approximates the SCBA current characteristics, thus demonstrating the power of analytic continuation techniques. The limits of validity of LOA+AC are also discussed, and more sophisticated and general analytic continuation techniques are suggested for more demanding cases.

  4. Analyzing Matrices of Meta-Analytic Correlations: Current Practices and Recommendations

    ERIC Educational Resources Information Center

    Sheng, Zitong; Kong, Wenmo; Cortina, Jose M.; Hou, Shuofei

    2016-01-01

    Researchers have become increasingly interested in conducting analyses on meta-analytic correlation matrices. Methodologists have provided guidance and recommended practices for the application of this technique. The purpose of this article is to review current practices regarding analyzing meta-analytic correlation matrices, to identify the gaps…

  5. Dielectrophoretic label-free immunoassay for rare-analyte quantification in biological samples

    NASA Astrophysics Data System (ADS)

    Velmanickam, Logeeshan; Laudenbach, Darrin; Nawarathna, Dharmakeerthi

    2016-10-01

    The current gold standard for detecting or quantifying target analytes from blood samples is the ELISA (enzyme-linked immunosorbent assay). The detection limit of ELISA is about 250 pg/ml. However, to quantify analytes that are related to various stages of tumors including early detection requires detecting well below the current limit of the ELISA test. For example, Interleukin 6 (IL-6) levels of early oral cancer patients are <100 pg/ml and the prostate specific antigen level of the early stage of prostate cancer is about 1 ng/ml. Further, it has been reported that there are significantly less than 1 pg /mL of analytes in the early stage of tumors. Therefore, depending on the tumor type and the stage of the tumors, it is required to quantify various levels of analytes ranging from ng/ml to pg/ml. To accommodate these critical needs in the current diagnosis, there is a need for a technique that has a large dynamic range with an ability to detect extremely low levels of target analytes (

  6. Surface-Enhanced Raman Spectroscopy.

    ERIC Educational Resources Information Center

    Garrell, Robin L.

    1989-01-01

    Reviews the basis for the technique and its experimental requirements. Describes a few examples of the analytical problems to which surface-enhanced Raman spectroscopy (SERS) has been and can be applied. Provides a perspective on the current limitations and frontiers in developing SERS as an analytical technique. (MVL)

  7. Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods

    DOE PAGES

    Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.; ...

    2016-07-05

    Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less

  8. Standardization of chemical analytical techniques for pyrolysis bio-oil: history, challenges, and current status of methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrell, Jack R.; Olarte, Mariefel V.; Christensen, Earl D.

    Here, we discuss the standardization of analytical techniques for pyrolysis bio-oils, including the current status of methods, and our opinions on future directions. First, the history of past standardization efforts is summarized, and both successful and unsuccessful validation of analytical techniques highlighted. The majority of analytical standardization studies to-date has tested only physical characterization techniques. In this paper, we present results from an international round robin on the validation of chemical characterization techniques for bio-oils. Techniques tested included acid number, carbonyl titrations using two different methods (one at room temperature and one at 80 °C), 31P NMR for determination ofmore » hydroxyl groups, and a quantitative gas chromatography–mass spectrometry (GC-MS) method. Both carbonyl titration and acid number methods have yielded acceptable inter-laboratory variabilities. 31P NMR produced acceptable results for aliphatic and phenolic hydroxyl groups, but not for carboxylic hydroxyl groups. As shown in previous round robins, GC-MS results were more variable. Reliable chemical characterization of bio-oils will enable upgrading research and allow for detailed comparisons of bio-oils produced at different facilities. Reliable analytics are also needed to enable an emerging bioenergy industry, as processing facilities often have different analytical needs and capabilities than research facilities. We feel that correlations in reliable characterizations of bio-oils will help strike a balance between research and industry, and will ultimately help to -determine metrics for bio-oil quality. Lastly, the standardization of additional analytical methods is needed, particularly for upgraded bio-oils.« less

  9. Automated Predictive Big Data Analytics Using Ontology Based Semantics.

    PubMed

    Nural, Mustafa V; Cotterell, Michael E; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A

    2015-10-01

    Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology.

  10. Automated Predictive Big Data Analytics Using Ontology Based Semantics

    PubMed Central

    Nural, Mustafa V.; Cotterell, Michael E.; Peng, Hao; Xie, Rui; Ma, Ping; Miller, John A.

    2017-01-01

    Predictive analytics in the big data era is taking on an ever increasingly important role. Issues related to choice on modeling technique, estimation procedure (or algorithm) and efficient execution can present significant challenges. For example, selection of appropriate and optimal models for big data analytics often requires careful investigation and considerable expertise which might not always be readily available. In this paper, we propose to use semantic technology to assist data analysts and data scientists in selecting appropriate modeling techniques and building specific models as well as the rationale for the techniques and models selected. To formally describe the modeling techniques, models and results, we developed the Analytics Ontology that supports inferencing for semi-automated model selection. The SCALATION framework, which currently supports over thirty modeling techniques for predictive big data analytics is used as a testbed for evaluating the use of semantic technology. PMID:29657954

  11. Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages.

    PubMed

    Zhu, R; Zacharias, L; Wooding, K M; Peng, W; Mechref, Y

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection, while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins, while automated software tools started replacing manual processing to improve the reliability and throughput of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. © 2017 Elsevier Inc. All rights reserved.

  12. CHAPTER 7: Glycoprotein Enrichment Analytical Techniques: Advantages and Disadvantages

    PubMed Central

    Zhu, Rui; Zacharias, Lauren; Wooding, Kerry M.; Peng, Wenjing; Mechref, Yehia

    2017-01-01

    Protein glycosylation is one of the most important posttranslational modifications. Numerous biological functions are related to protein glycosylation. However, analytical challenges remain in the glycoprotein analysis. To overcome the challenges associated with glycoprotein analysis, many analytical techniques were developed in recent years. Enrichment methods were used to improve the sensitivity of detection while HPLC and mass spectrometry methods were developed to facilitate the separation of glycopeptides/proteins and enhance detection, respectively. Fragmentation techniques applied in modern mass spectrometers allow the structural interpretation of glycopeptides/proteins while automated software tools started replacing manual processing to improve the reliability and throughout of the analysis. In this chapter, the current methodologies of glycoprotein analysis were discussed. Multiple analytical techniques are compared, and advantages and disadvantages of each technique are highlighted. PMID:28109440

  13. Analytical techniques for steroid estrogens in water samples - A review.

    PubMed

    Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza

    2016-12-01

    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Uses of Multivariate Analytical Techniques in Online and Blended Business Education: An Assessment of Current Practice and Recommendations for Future Research

    ERIC Educational Resources Information Center

    Arbaugh, J. B.; Hwang, Alvin

    2013-01-01

    Seeking to assess the analytical rigor of empirical research in management education, this article reviews the use of multivariate statistical techniques in 85 studies of online and blended management education over the past decade and compares them with prescriptions offered by both the organization studies and educational research communities.…

  15. Analytical challenges for conducting rapid metabolism characterization for QIVIVE.

    PubMed

    Tolonen, Ari; Pelkonen, Olavi

    2015-06-05

    For quantitative in vitro-in vivo extrapolation (QIVIVE) of metabolism for the purposes of toxicokinetics prediction, a precise and robust analytical technique for identifying and measuring a chemical and its metabolites is an absolute prerequisite. Currently, high-resolution mass spectrometry (HR-MS) is a tool of choice for a majority of organic relatively lipophilic molecules, linked with a LC separation tool and simultaneous UV-detection. However, additional techniques such as gas chromatography, radiometric measurements and NMR, are required to cover the whole spectrum of chemical structures. To accumulate enough reliable and robust data for the validation of QIVIVE, there are some partially opposing needs: Detailed delineation of the in vitro test system to produce a reliable toxicokinetic measure for a studied chemical, and a throughput capacity of the in vitro set-up and the analytical tool as high as possible. We discuss current analytical challenges for the identification and quantification of chemicals and their metabolites, both stable and reactive, focusing especially on LC-MS techniques, but simultaneously attempting to pinpoint factors associated with sample preparation, testing conditions and strengths and weaknesses of a particular technique available for a particular task. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Analytics for Cyber Network Defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plantenga, Todd.; Kolda, Tamara Gibson

    2011-06-01

    This report provides a brief survey of analytics tools considered relevant to cyber network defense (CND). Ideas and tools come from elds such as statistics, data mining, and knowledge discovery. Some analytics are considered standard mathematical or statistical techniques, while others re ect current research directions. In all cases the report attempts to explain the relevance to CND with brief examples.

  17. A comparison of force sensing techniques for planetary manipulation

    NASA Technical Reports Server (NTRS)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koester, C J; Moulik, A

    This article discusses developments in environmental analytical chemistry that occurred in the years of 2003 and 2004. References were found by searching the ''Science Citation Index and Current Contents''. As in our review of two years ago (A1), techniques are highlighted that represent current trends and state-of-the-art technologies in the sampling, extraction, separation, and detection of trace concentrations, low-part-per-billion and less, of organic, inorganic, and organometallic contaminants in environmental samples. New analytes of interest are also reviewed, the detections of which are made possible by recently developed analytical instruments and methods.

  19. Multi-Intelligence Analytics for Next Generation Analysts (MIAGA)

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Waltz, Ed

    2016-05-01

    Current analysts are inundated with large volumes of data from which extraction, exploitation, and indexing are required. A future need for next-generation analysts is an appropriate balance between machine analytics from raw data and the ability of the user to interact with information through automation. Many quantitative intelligence tools and techniques have been developed which are examined towards matching analyst opportunities with recent technical trends such as big data, access to information, and visualization. The concepts and techniques summarized are derived from discussions with real analysts, documented trends of technical developments, and methods to engage future analysts with multiintelligence services. For example, qualitative techniques should be matched against physical, cognitive, and contextual quantitative analytics for intelligence reporting. Future trends include enabling knowledge search, collaborative situational sharing, and agile support for empirical decision-making and analytical reasoning.

  20. Analytical advances in pharmaceutical impurity profiling.

    PubMed

    Holm, René; Elder, David P

    2016-05-25

    Impurities will be present in all drug substances and drug products, i.e. nothing is 100% pure if one looks in enough depth. The current regulatory guidance on impurities accepts this, and for drug products with a dose of less than 2g/day identification of impurities is set at 0.1% levels and above (ICH Q3B(R2), 2006). For some impurities, this is a simple undertaking as generally available analytical techniques can address the prevailing analytical challenges; whereas, for others this may be much more challenging requiring more sophisticated analytical approaches. The present review provides an insight into current development of analytical techniques to investigate and quantify impurities in drug substances and drug products providing discussion of progress particular within the field of chromatography to ensure separation of and quantification of those related impurities. Further, a section is devoted to the identification of classical impurities, but in addition, inorganic (metal residues) and solid state impurities are also discussed. Risk control strategies for pharmaceutical impurities aligned with several of the ICH guidelines, are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. An analytical-numerical approach for parameter determination of a five-parameter single-diode model of photovoltaic cells and modules

    NASA Astrophysics Data System (ADS)

    Hejri, Mohammad; Mokhtari, Hossein; Azizian, Mohammad Reza; Söder, Lennart

    2016-04-01

    Parameter extraction of the five-parameter single-diode model of solar cells and modules from experimental data is a challenging problem. These parameters are evaluated from a set of nonlinear equations that cannot be solved analytically. On the other hand, a numerical solution of such equations needs a suitable initial guess to converge to a solution. This paper presents a new set of approximate analytical solutions for the parameters of a five-parameter single-diode model of photovoltaic (PV) cells and modules. The proposed solutions provide a good initial point which guarantees numerical analysis convergence. The proposed technique needs only a few data from the PV current-voltage characteristics, i.e. open circuit voltage Voc, short circuit current Isc and maximum power point current and voltage Im; Vm making it a fast and low cost parameter determination technique. The accuracy of the presented theoretical I-V curves is verified by experimental data.

  2. Sensor failure detection for jet engines using analytical redundance

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1984-01-01

    Analytical redundant sensor failure detection, isolation and accommodation techniques for gas turbine engines are surveyed. Both the theoretical technology base and demonstrated concepts are discussed. Also included is a discussion of current technology needs and ongoing Government sponsored programs to meet those needs.

  3. Advancing statistical analysis of ambulatory assessment data in the study of addictive behavior: A primer on three person-oriented techniques.

    PubMed

    Foster, Katherine T; Beltz, Adriene M

    2018-08-01

    Ambulatory assessment (AA) methodologies have the potential to increase understanding and treatment of addictive behavior in seemingly unprecedented ways, due in part, to their emphasis on intensive repeated assessments of an individual's addictive behavior in context. But, many analytic techniques traditionally applied to AA data - techniques that average across people and time - do not fully leverage this potential. In an effort to take advantage of the individualized, temporal nature of AA data on addictive behavior, the current paper considers three underutilized person-oriented analytic techniques: multilevel modeling, p-technique, and group iterative multiple model estimation. After reviewing prevailing analytic techniques, each person-oriented technique is presented, AA data specifications are mentioned, an example analysis using generated data is provided, and advantages and limitations are discussed; the paper closes with a brief comparison across techniques. Increasing use of person-oriented techniques will substantially enhance inferences that can be drawn from AA data on addictive behavior and has implications for the development of individualized interventions. Copyright © 2017. Published by Elsevier Ltd.

  4. Technique for determining the amount of hydrogen diffusing through a steel membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardash, N.V.; Batrakov, V.V.

    1995-07-01

    Hydrogen diffusion through steel membranes still attracts much attention from scientists, and during recent years new results have been reported. Hydrogen diffusion is usually studied in the cell designed by M.A. Devanathan, but there are also other techniques for determining hydrogen permeability, namely: from the change in the solution volume in a horizontal or gas microburette; from the hydrogen ionization current; from the penetration current; and from the buckling of the cathode. The authors developed an analytical method using autocatalytic titration for determining the amount of hydrogen passed through a steel membrane. The method is based on permanganatometry which ismore » widely used in analytical chemistry.« less

  5. Analytical approximation of a distorted reflector surface defined by a discrete set of points

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Zaman, Afroz A.

    1988-01-01

    Reflector antennas on Earth orbiting spacecrafts generally cannot be described analytically. The reflector surface is subjected to a large temperature fluctuation and gradients, and is thus warped from its true geometrical shape. Aside from distortion by thermal stresses, reflector surfaces are often purposely shaped to minimize phase aberrations and scanning losses. To analyze distorted reflector antennas defined by discrete surface points, a numerical technique must be applied to compute an interpolatory surface passing through a grid of discrete points. In this paper, the distorted reflector surface points are approximated by two analytical components: an undistorted surface component and a surface error component. The undistorted surface component is a best fit paraboloid polynomial for the given set of points and the surface error component is a Fourier series expansion of the deviation of the actual surface points, from the best fit paraboloid. By applying the numerical technique to approximate the surface normals of the distorted reflector surface, the induced surface current can be obtained using physical optics technique. These surface currents are integrated to find the far field radiation pattern.

  6. Overview: MURI Center on spectroscopic and time domain detection of trace explosives in condensed and vapor phases

    NASA Astrophysics Data System (ADS)

    Spicer, James B.; Dagdigian, Paul; Osiander, Robert; Miragliotta, Joseph A.; Zhang, Xi-Cheng; Kersting, Roland; Crosley, David R.; Hanson, Ronald K.; Jeffries, Jay

    2003-09-01

    The research center established by Army Research Office under the Multidisciplinary University Research Initiative program pursues a multidisciplinary approach to investigate and advance the use of complementary analytical techniques for sensing of explosives and/or explosive-related compounds as they occur in the environment. The techniques being investigated include Terahertz (THz) imaging and spectroscopy, Laser-Induced Breakdown Spectroscopy (LIBS), Cavity Ring Down Spectroscopy (CRDS) and Resonance Enhanced Multiphoton Ionization (REMPI). This suite of techniques encompasses a diversity of sensing approaches that can be applied to detection of explosives in condensed phases such as adsorbed species in soil or can be used for vapor phase detection above the source. Some techniques allow for remote detection while others have highly specific and sensitive analysis capabilities. This program is addressing a range of fundamental, technical issues associated with trace detection of explosive related compounds using these techniques. For example, while both LIBS and THz can be used to carry-out remote analysis of condensed phase analyte from a distance in excess several meters, the sensitivities of these techniques to surface adsorbed explosive-related compounds are not currently known. In current implementations, both CRDS and REMPI require sample collection techniques that have not been optimized for environmental applications. Early program elements will pursue the fundamental advances required for these techniques including signature identification for explosive-related compounds/interferents and trace analyte extraction. Later program tasks will explore simultaneous application of two or more techniques to assess the benefits of sensor fusion.

  7. Modeling of switching regulator power stages with and without zero-inductor-current dwell time

    NASA Technical Reports Server (NTRS)

    Lee, F. C. Y.; Yu, Y.

    1979-01-01

    State-space techniques are employed to derive accurate models for the three basic switching converter power stages: buck, boost, and buck/boost operating with and without zero-inductor-current dwell time. A generalized procedure is developed which treats the continuous-inductor-current mode without dwell time as a special case of the discontinuous-current mode when the dwell time vanishes. Abrupt changes of system behavior, including a reduction of the system order when the dwell time appears, are shown both analytically and experimentally. Merits resulting from the present modeling technique in comparison with existing modeling techniques are illustrated.

  8. A REVIEW OF APPLICATIONS OF LUMINESCENCE TO MONITORING OF CHEMICAL CONTAMINANTS IN THE ENVIRONMENT

    EPA Science Inventory

    The recent analytical literature on the application of luminescence techniques to the measurement of various classes of environmentally significant chemicals has been reviewed. Luminescent spectroscopy based methods are compared to other current techniques. Also, examples of rece...

  9. Modern Instrumental Methods in Forensic Toxicology*

    PubMed Central

    Smith, Michael L.; Vorce, Shawn P.; Holler, Justin M.; Shimomura, Eric; Magluilo, Joe; Jacobs, Aaron J.; Huestis, Marilyn A.

    2009-01-01

    This article reviews modern analytical instrumentation in forensic toxicology for identification and quantification of drugs and toxins in biological fluids and tissues. A brief description of the theory and inherent strengths and limitations of each methodology is included. The focus is on new technologies that address current analytical limitations. A goal of this review is to encourage innovations to improve our technological capabilities and to encourage use of these analytical techniques in forensic toxicology practice. PMID:17579968

  10. Electronegative plasma diagnostic by laser photo-detachment combined with negatively biased Langmuir probe

    NASA Astrophysics Data System (ADS)

    Oudini, N.; Sirse, N.; Taccogna, F.; Ellingboe, A. R.; Bendib, A.

    2018-05-01

    We propose a new technique for diagnosing negative ion properties using Langmuir probe assisted pulsed laser photo-detachment. While the classical technique uses a laser pulse to convert negative ions into electron-atom pairs and a positively biased Langmuir probe tracking the change of electron saturation current, the proposed method uses a negatively biased Langmuir probe to track the temporal evolution of positive ion current. The negative bias aims to avoid the parasitic electron current inherent to probe tip surface ablation. In this work, we show through analytical and numerical approaches that, by knowing electron temperature and performing photo-detachment at two different laser wavelengths, it is possible to deduce plasma electronegativity (ratio of negative ion to electron densities) α, and anisothermicity (ratio of electron to negative ion temperatures) γ-. We present an analytical model that links the change in the collected positive ion current to plasma electronegativity and anisothermicity. Particle-In-Cell simulation is used as a numerical experiment covering a wide range of α and γ- to test the new analysis technique. The new technique is sensitive to α in the range 0.5 < α < 10 and yields γ- for large α, where negative ion flux affects the probe sheath behavior, typically α > 1.

  11. Electrostatic Interactions between OmpG Nanopore and Analyte Protein Surface Can Distinguish between Glycosylated Isoforms.

    PubMed

    Fahie, Monifa A; Chen, Min

    2015-08-13

    The flexible loops decorating the entrance of OmpG nanopore move dynamically during ionic current recording. The gating caused by these flexible loops changes when a target protein is bound. The gating is characterized by parameters including frequency, duration, and open-pore current, and these features combine to reveal the identity of a specific analyte protein. Here, we show that OmpG nanopore equipped with a biotin ligand can distinguish glycosylated and deglycosylated isoforms of avidin by their differences in surface charge. Our studies demonstrate that the direct interaction between the nanopore and analyte surface, induced by the electrostatic attraction between the two molecules, is essential for protein isoform detection. Our technique is remarkably sensitive to the analyte surface, which may provide a useful tool for glycoprotein profiling.

  12. Positive lists of cosmetic ingredients: Analytical methodology for regulatory and safety controls - A review.

    PubMed

    Lores, Marta; Llompart, Maria; Alvarez-Rivera, Gerardo; Guerra, Eugenia; Vila, Marlene; Celeiro, Maria; Lamas, J Pablo; Garcia-Jares, Carmen

    2016-04-07

    Cosmetic products placed on the market and their ingredients, must be safe under reasonable conditions of use, in accordance to the current legislation. Therefore, regulated and allowed chemical substances must meet the regulatory criteria to be used as ingredients in cosmetics and personal care products, and adequate analytical methodology is needed to evaluate the degree of compliance. This article reviews the most recent methods (2005-2015) used for the extraction and the analytical determination of the ingredients included in the positive lists of the European Regulation of Cosmetic Products (EC 1223/2009): comprising colorants, preservatives and UV filters. It summarizes the analytical properties of the most relevant analytical methods along with the possibilities of fulfilment of the current regulatory issues. The cosmetic legislation is frequently being updated; consequently, the analytical methodology must be constantly revised and improved to meet safety requirements. The article highlights the most important advances in analytical methodology for cosmetics control, both in relation to the sample pretreatment and extraction and the different instrumental approaches developed to solve this challenge. Cosmetics are complex samples, and most of them require a sample pretreatment before analysis. In the last times, the research conducted covering this aspect, tended to the use of green extraction and microextraction techniques. Analytical methods were generally based on liquid chromatography with UV detection, and gas and liquid chromatographic techniques hyphenated with single or tandem mass spectrometry; but some interesting proposals based on electrophoresis have also been reported, together with some electroanalytical approaches. Regarding the number of ingredients considered for analytical control, single analyte methods have been proposed, although the most useful ones in the real life cosmetic analysis are the multianalyte approaches. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Recent Advances in Paper-Based Sensors

    PubMed Central

    Liana, Devi D.; Raguse, Burkhard; Gooding, J. Justin; Chow, Edith

    2012-01-01

    Paper-based sensors are a new alternative technology for fabricating simple, low-cost, portable and disposable analytical devices for many application areas including clinical diagnosis, food quality control and environmental monitoring. The unique properties of paper which allow passive liquid transport and compatibility with chemicals/biochemicals are the main advantages of using paper as a sensing platform. Depending on the main goal to be achieved in paper-based sensors, the fabrication methods and the analysis techniques can be tuned to fulfill the needs of the end-user. Current paper-based sensors are focused on microfluidic delivery of solution to the detection site whereas more advanced designs involve complex 3-D geometries based on the same microfluidic principles. Although paper-based sensors are very promising, they still suffer from certain limitations such as accuracy and sensitivity. However, it is anticipated that in the future, with advances in fabrication and analytical techniques, that there will be more new and innovative developments in paper-based sensors. These sensors could better meet the current objectives of a viable low-cost and portable device in addition to offering high sensitivity and selectivity, and multiple analyte discrimination. This paper is a review of recent advances in paper-based sensors and covers the following topics: existing fabrication techniques, analytical methods and application areas. Finally, the present challenges and future outlooks are discussed. PMID:23112667

  14. Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review.

    PubMed

    Pasin, Daniel; Cawley, Adam; Bidny, Sergei; Fu, Shanlin

    2017-10-01

    The proliferation of new psychoactive substances (NPS) in recent years has resulted in the development of numerous analytical methods for the detection and identification of known and unknown NPS derivatives. High-resolution mass spectrometry (HRMS) has been identified as the method of choice for broad screening of NPS in a wide range of analytical contexts because of its ability to measure accurate masses using data-independent acquisition (DIA) techniques. Additionally, it has shown promise for non-targeted screening strategies that have been developed in order to detect and identify novel analogues without the need for certified reference materials (CRMs) or comprehensive mass spectral libraries. This paper reviews the applications of HRMS for the analysis of NPS in forensic drug chemistry and analytical toxicology. It provides an overview of the sample preparation procedures in addition to data acquisition, instrumental analysis, and data processing techniques. Furthermore, it gives an overview of the current state of non-targeted screening strategies with discussion on future directions and perspectives of this technique. Graphical Abstract Missing the bullseye - a graphical respresentation of non-targeted screening. Image courtesy of Christian Alonzo.

  15. Advances in Instrumental Analysis of Brominated Flame Retardants: Current Status and Future Perspectives

    PubMed Central

    2014-01-01

    This review aims to highlight the recent advances and methodological improvements in instrumental techniques applied for the analysis of different brominated flame retardants (BFRs). The literature search strategy was based on the recent analytical reviews published on BFRs. The main selection criteria involved the successful development and application of analytical methods for determination of the target compounds in various environmental matrices. Different factors affecting chromatographic separation and mass spectrometric detection of brominated analytes were evaluated and discussed. Techniques using advanced instrumentation to achieve outstanding results in quantification of different BFRs and their metabolites/degradation products were highlighted. Finally, research gaps in the field of BFR analysis were identified and recommendations for future research were proposed. PMID:27433482

  16. FINANCIAL ANALYSIS OF CURRENT OPERATIONS OF COLLEGES AND UNIVERSITIES.

    ERIC Educational Resources Information Center

    SWANSON, JOHN E.; AND OTHERS

    TECHNIQUES FOR DEVELOPING FINANCIAL AND RELATED COST-EFFECTIVENESS DATA FOR PUBLIC AND PRIVATELY SUPPORTED AMERICAN COLLEGES AND UNIVERSITIES WERE STUDIED TO FORMULATE PRINCIPLES, PROCEDURES, AND STANDARDS FOR THE ACCUMULATION AND ANALYSES OF CURRENT OPERATING COSTS. AFTER SEPARATE ANALYSES OF INSTITUTIONAL PROCEDURES AND REPORTS, ANALYTIC UNITS…

  17. Approaching the Limit in Atomic Spectrochemical Analysis.

    ERIC Educational Resources Information Center

    Hieftje, Gary M.

    1982-01-01

    To assess the ability of current analytical methods to approach the single-atom detection level, theoretical and experimentally determined detection levels are presented for several chemical elements. A comparison of these methods shows that the most sensitive atomic spectrochemical technique currently available is based on emission from…

  18. Analytical methods for human biomonitoring of pesticides. A review.

    PubMed

    Yusa, Vicent; Millet, Maurice; Coscolla, Clara; Roca, Marta

    2015-09-03

    Biomonitoring of both currently-used and banned-persistent pesticides is a very useful tool for assessing human exposure to these chemicals. In this review, we present current approaches and recent advances in the analytical methods for determining the biomarkers of exposure to pesticides in the most commonly used specimens, such as blood, urine, and breast milk, and in emerging non-invasive matrices such as hair and meconium. We critically discuss the main applications for sample treatment, and the instrumental techniques currently used to determine the most relevant pesticide biomarkers. We finally look at the future trends in this field. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Proteomics Is Analytical Chemistry: Fitness-for-Purpose in the Application of Top-Down and Bottom-Up Analyses.

    PubMed

    Coorssen, Jens R; Yergey, Alfred L

    2015-12-03

    Molecular mechanisms underlying health and disease function at least in part based on the flexibility and fine-tuning afforded by protein isoforms and post-translational modifications. The ability to effectively and consistently resolve these protein species or proteoforms, as well as assess quantitative changes is therefore central to proteomic analyses. Here we discuss the pros and cons of currently available and developing analytical techniques from the perspective of the full spectrum of available tools and their current applications, emphasizing the concept of fitness-for-purpose in experimental design based on consideration of sample size and complexity; this necessarily also addresses analytical reproducibility and its variance. Data quality is considered the primary criterion, and we thus emphasize that the standards of Analytical Chemistry must apply throughout any proteomic analysis.

  20. Web-based Visual Analytics for Extreme Scale Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Evans, Katherine J; Harney, John F

    In this paper, we introduce a Web-based visual analytics framework for democratizing advanced visualization and analysis capabilities pertinent to large-scale earth system simulations. We address significant limitations of present climate data analysis tools such as tightly coupled dependencies, ineffi- cient data movements, complex user interfaces, and static visualizations. Our Web-based visual analytics framework removes critical barriers to the widespread accessibility and adoption of advanced scientific techniques. Using distributed connections to back-end diagnostics, we minimize data movements and leverage HPC platforms. We also mitigate system dependency issues by employing a RESTful interface. Our framework embraces the visual analytics paradigm via newmore » visual navigation techniques for hierarchical parameter spaces, multi-scale representations, and interactive spatio-temporal data mining methods that retain details. Although generalizable to other science domains, the current work focuses on improving exploratory analysis of large-scale Community Land Model (CLM) and Community Atmosphere Model (CAM) simulations.« less

  1. Theory and practical understanding of the migration behavior of proteins and peptides in CE and related techniques.

    PubMed

    Freitag, Ruth; Hilbrig, Frank

    2007-07-01

    CEC is defined as an analytical method, where the analytes are separated on a chromatographic column in the presence of an applied voltage. The separation of charged analytes in CEC is complex, since chromatographic interaction, electroosmosis and electrophoresis contribute to the experimentally observed behavior. The putative contribution of effects such as surface electrodiffusion has been suggested. A sound theoretical treatment incorporating all effects is currently not available. The question of whether the different effects contribute in an independent or an interdependent manner is still under discussion. In this contribution, the state-of-the-art in the theoretical description of the individual contributions as well as models for the retention behavior and in particular possible dimensionless 'retention factors' is discussed, together with the experimental database for the separation of charged analytes, in particular proteins and peptides, by CEC and related techniques.

  2. An Advanced Analytical Chemistry Experiment Using Gas Chromatography-Mass Spectrometry, MATLAB, and Chemometrics to Predict Biodiesel Blend Percent Composition

    ERIC Educational Resources Information Center

    Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.

    2011-01-01

    We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…

  3. Modern analytical methods for the detection of food fraud and adulteration by food category.

    PubMed

    Hong, Eunyoung; Lee, Sang Yoo; Jeong, Jae Yun; Park, Jung Min; Kim, Byung Hee; Kwon, Kisung; Chun, Hyang Sook

    2017-09-01

    This review provides current information on the analytical methods used to identify food adulteration in the six most adulterated food categories: animal origin and seafood, oils and fats, beverages, spices and sweet foods (e.g. honey), grain-based food, and others (organic food and dietary supplements). The analytical techniques (both conventional and emerging) used to identify adulteration in these six food categories involve sensory, physicochemical, DNA-based, chromatographic and spectroscopic methods, and have been combined with chemometrics, making these techniques more convenient and effective for the analysis of a broad variety of food products. Despite recent advances, the need remains for suitably sensitive and widely applicable methodologies that encompass all the various aspects of food adulteration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Rheoencephalographic and electroencephalographic measures of cognitive workload: analytical procedures.

    PubMed

    Montgomery, L D; Montgomery, R W; Guisado, R

    1995-05-01

    This investigation demonstrates the feasibility of mental workload assessment by rheoencephalographic (REG) and multichannel electroencephalographic (EEG) monitoring. During the performance of this research, unique testing, analytical and display procedures were developed for REG and EEG monitoring that extend the current state of the art and provide valuable tools for the study of cerebral circulatory and neural activity during cognition. REG records are analyzed to provide indices of the right and left hemisphere hemodynamic changes that take place during each test sequence. The EEG data are modeled using regression techniques and mathematically transformed to provide energy-density distributions of the scalp electrostatic field. These procedures permit concurrent REG/EEG cognitive testing not possible with current techniques. The introduction of a system for recording and analysis of cognitive REG/EEG test sequences facilitates the study of learning and memory disorders, dementia and other encephalopathies.

  5. Rheoencephalographic and electroencephalographic measures of cognitive workload: analytical procedures

    NASA Technical Reports Server (NTRS)

    Montgomery, L. D.; Montgomery, R. W.; Guisado, R.

    1995-01-01

    This investigation demonstrates the feasibility of mental workload assessment by rheoencephalographic (REG) and multichannel electroencephalographic (EEG) monitoring. During the performance of this research, unique testing, analytical and display procedures were developed for REG and EEG monitoring that extend the current state of the art and provide valuable tools for the study of cerebral circulatory and neural activity during cognition. REG records are analyzed to provide indices of the right and left hemisphere hemodynamic changes that take place during each test sequence. The EEG data are modeled using regression techniques and mathematically transformed to provide energy-density distributions of the scalp electrostatic field. These procedures permit concurrent REG/EEG cognitive testing not possible with current techniques. The introduction of a system for recording and analysis of cognitive REG/EEG test sequences facilitates the study of learning and memory disorders, dementia and other encephalopathies.

  6. Current Applications of Chromatographic Methods in the Study of Human Body Fluids for Diagnosing Disorders.

    PubMed

    Jóźwik, Jagoda; Kałużna-Czaplińska, Joanna

    2016-01-01

    Currently, analysis of various human body fluids is one of the most essential and promising approaches to enable the discovery of biomarkers or pathophysiological mechanisms for disorders and diseases. Analysis of these fluids is challenging due to their complex composition and unique characteristics. Development of new analytical methods in this field has made it possible to analyze body fluids with higher selectivity, sensitivity, and precision. The composition and concentration of analytes in body fluids are most often determined by chromatography-based techniques. There is no doubt that proper use of knowledge that comes from a better understanding of the role of body fluids requires the cooperation of scientists of diverse specializations, including analytical chemists, biologists, and physicians. This article summarizes current knowledge about the application of different chromatographic methods in analyses of a wide range of compounds in human body fluids in order to diagnose certain diseases and disorders.

  7. Current Status of Mycotoxin Analysis: A Critical Review.

    PubMed

    Shephard, Gordon S

    2016-07-01

    It is over 50 years since the discovery of aflatoxins focused the attention of food safety specialists on fungal toxins in the feed and food supply. Since then, analysis of this important group of natural contaminants has advanced in parallel with general developments in analytical science, and current MS methods are capable of simultaneously analyzing hundreds of compounds, including mycotoxins, pesticides, and drugs. This profusion of data may advance our understanding of human exposure, yet constitutes an interpretive challenge to toxicologists and food safety regulators. Despite these advances in analytical science, the basic problem of the extreme heterogeneity of mycotoxin contamination, although now well understood, cannot be circumvented. The real health challenges posed by mycotoxin exposure occur in the developing world, especially among small-scale and subsistence farmers. Addressing these problems requires innovative approaches in which analytical science must also play a role in providing suitable out-of-laboratory analytical techniques.

  8. Incorporating Biological Mass Spectrometry into Undergraduate Teaching Labs, Part 1: Identifying Proteins Based on Molecular Mass

    ERIC Educational Resources Information Center

    Arnquist, Isaac J.; Beussman, Douglas J.

    2007-01-01

    Biological mass spectrometry is an important analytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. Currently, few hands-on opportunities exist for undergraduate students to learn about this technique. With the 2002 Nobel Prize being awarded, in part, for the development of biological mass…

  9. Analytical Chemistry: A retrospective view on some current trends.

    PubMed

    Niessner, Reinhard

    2018-04-01

    In a retrospective view some current trends in Analytical Chemistry are outlined and connected to work published more than a hundred years ago in the same field. For example, gravimetric microanalysis after specific precipitation, once the sole basis for chemical analysis, has been transformed into a mass-sensitive transducer in combination with compound-specific receptors. Molecular spectroscopy, still practising the classical absorption/emission techniques for detecting elements or molecules experiences a change to Raman spectroscopy, is now allowing analysis of a multitude of additional features. Chemical sensors are now used to perform a vast number of analytical measurements. Especially paper-based devices (dipsticks, microfluidic pads) celebrate a revival as they can potentially revolutionize medicine in the developing world. Industry 4.0 will lead to a further increase of sensor applications. Preceding separation and enrichment of analytes from complicated matrices remains the backbone for a successful analysis, despite increasing attempts to avoid clean-up. Continuous separation techniques will become a key element for 24/7 production of goods with certified quality. Attempts to get instantaneous and specific chemical information by optical or electrical transduction will need highly selective receptors in large quantities. Further understanding of ligand - receptor complex structures is the key for successful generation of artificial bio-inspired receptors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. State of the art of environmentally friendly sample preparation approaches for determination of PBDEs and metabolites in environmental and biological samples: A critical review.

    PubMed

    Berton, Paula; Lana, Nerina B; Ríos, Juan M; García-Reyes, Juan F; Altamirano, Jorgelina C

    2016-01-28

    Green chemistry principles for developing methodologies have gained attention in analytical chemistry in recent decades. A growing number of analytical techniques have been proposed for determination of organic persistent pollutants in environmental and biological samples. In this light, the current review aims to present state-of-the-art sample preparation approaches based on green analytical principles proposed for the determination of polybrominated diphenyl ethers (PBDEs) and metabolites (OH-PBDEs and MeO-PBDEs) in environmental and biological samples. Approaches to lower the solvent consumption and accelerate the extraction, such as pressurized liquid extraction, microwave-assisted extraction, and ultrasound-assisted extraction, are discussed in this review. Special attention is paid to miniaturized sample preparation methodologies and strategies proposed to reduce organic solvent consumption. Additionally, extraction techniques based on alternative solvents (surfactants, supercritical fluids, or ionic liquids) are also commented in this work, even though these are scarcely used for determination of PBDEs. In addition to liquid-based extraction techniques, solid-based analytical techniques are also addressed. The development of greener, faster and simpler sample preparation approaches has increased in recent years (2003-2013). Among green extraction techniques, those based on the liquid phase predominate over those based on the solid phase (71% vs. 29%, respectively). For solid samples, solvent assisted extraction techniques are preferred for leaching of PBDEs, and liquid phase microextraction techniques are mostly used for liquid samples. Likewise, green characteristics of the instrumental analysis used after the extraction and clean-up steps are briefly discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The influence of surface waves on water circulation in a mid-Atlantic continental shelf region

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Talay, T. A.

    1974-01-01

    The importance of wave-induced currents in different weather conditions and water depths (18.3 m and 36.6 m) is assessed in a mid-Atlantic continental-shelf region. A review of general circulation conditions is conducted. Factors which perturb the general circulation are examined using analytic techniques and limited experimental data. Actual wind and wave statistics for the region are examined. Relative magnitudes of the various currents are compared on a frequency of annual occurrence basis. Results indicated that wave-induced currents are often the same order of magnitude as other currents in the region and become more important at higher wind and wave conditions. Wind-wave and ocean-swell characteristics are among those parameters which must be monitored for the analytical computation of continental-shelf circulation.

  12. On μe-scattering at NNLO in QED

    NASA Astrophysics Data System (ADS)

    Mastrolia, P.; Passera, M.; Primo, A.; Schubert, U.; Torres Bobadilla, W. J.

    2018-05-01

    We report on the current status of the analytic evaluation of the two-loop corrections to the μescattering in Quantum Electrodynamics, presenting state-of-the art techniques which have been developed to address this challenging task.

  13. Evaluation of Analysis Techniques for Fluted-Core Sandwich Cylinders

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Schultz, Marc R.

    2012-01-01

    Buckling-critical launch-vehicle structures require structural concepts that have high bending stiffness and low mass. Fluted-core, also known as truss-core, sandwich construction is one such concept. In an effort to identify an analysis method appropriate for the preliminary design of fluted-core cylinders, the current paper presents and compares results from several analysis techniques applied to a specific composite fluted-core test article. The analysis techniques are evaluated in terms of their ease of use and for their appropriateness at certain stages throughout a design analysis cycle (DAC). Current analysis techniques that provide accurate determination of the global buckling load are not readily applicable early in the DAC, such as during preliminary design, because they are too costly to run. An analytical approach that neglects transverse-shear deformation is easily applied during preliminary design, but the lack of transverse-shear deformation results in global buckling load predictions that are significantly higher than those from more detailed analysis methods. The current state of the art is either too complex to be applied for preliminary design, or is incapable of the accuracy required to determine global buckling loads for fluted-core cylinders. Therefore, it is necessary to develop an analytical method for calculating global buckling loads of fluted-core cylinders that includes transverse-shear deformations, and that can be easily incorporated in preliminary design.

  14. Hyphenated analytical techniques for materials characterisation

    NASA Astrophysics Data System (ADS)

    Armstrong, Gordon; Kailas, Lekshmi

    2017-09-01

    This topical review will provide a survey of the current state of the art in ‘hyphenated’ techniques for characterisation of bulk materials, surface, and interfaces, whereby two or more analytical methods investigating different properties are applied simultaneously to the same sample to better characterise the sample than can be achieved by conducting separate analyses in series using different instruments. It is intended for final year undergraduates and recent graduates, who may have some background knowledge of standard analytical techniques, but are not familiar with ‘hyphenated’ techniques or hybrid instrumentation. The review will begin by defining ‘complementary’, ‘hybrid’ and ‘hyphenated’ techniques, as there is not a broad consensus among analytical scientists as to what each term means. The motivating factors driving increased development of hyphenated analytical methods will also be discussed. This introduction will conclude with a brief discussion of gas chromatography-mass spectroscopy and energy dispersive x-ray analysis in electron microscopy as two examples, in the context that combining complementary techniques for chemical analysis were among the earliest examples of hyphenated characterisation methods. The emphasis of the main review will be on techniques which are sufficiently well-established that the instrumentation is commercially available, to examine physical properties including physical, mechanical, electrical and thermal, in addition to variations in composition, rather than methods solely to identify and quantify chemical species. Therefore, the proposed topical review will address three broad categories of techniques that the reader may expect to encounter in a well-equipped materials characterisation laboratory: microscopy based techniques, scanning probe-based techniques, and thermal analysis based techniques. Examples drawn from recent literature, and a concluding case study, will be used to explain the practical issues that arise in combining different techniques. We will consider how the complementary and varied information obtained by combining these techniques may be interpreted together to better understand the sample in greater detail than that was possible before, and also how combining different techniques can simplify sample preparation and ensure reliable comparisons are made between multiple analyses on the same samples—a topic of particular importance as nanoscale technologies become more prevalent in applied and industrial research and development (R&D). The review will conclude with a brief outline of the emerging state of the art in the research laboratory, and a suggested approach to using hyphenated techniques, whether in the teaching, quality control or R&D laboratory.

  15. Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements

    NASA Astrophysics Data System (ADS)

    Zellweger, C.; Steinbacher, M.; Buchmann, B.

    2012-10-01

    Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. The current data quality objectives of the World Meteorological Organization (WMO) for carbon monoxide (CO) in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came to market with promising properties for trace gas analytics. The current study compares three instruments that have recently become commercially available (since 2011) with the best currently available technique (Vacuum UV Fluorescence) and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques perform considerably better compared to previous techniques, although some issues, such as temperature influence and cross sensitivities, need further attention.

  16. Analytical procedures for water-soluble vitamins in foods and dietary supplements: a review.

    PubMed

    Blake, Christopher J

    2007-09-01

    Water-soluble vitamins include the B-group vitamins and vitamin C. In order to correctly monitor water-soluble vitamin content in fortified foods for compliance monitoring as well as to establish accurate data banks, an accurate and precise analytical method is a prerequisite. For many years microbiological assays have been used for analysis of B vitamins. However they are no longer considered to be the gold standard in vitamins analysis as many studies have shown up their deficiencies. This review describes the current status of analytical methods, including microbiological assays and spectrophotometric, biosensor and chromatographic techniques. In particular it describes the current status of the official methods and highlights some new developments in chromatographic procedures and detection methods. An overview is made of multivitamin extractions and analyses for foods and supplements.

  17. Microfluidic paper-based analytical devices for potential use in quantitative and direct detection of disease biomarkers in clinical analysis.

    PubMed

    Lim, Wei Yin; Goh, Boon Tong; Khor, Sook Mei

    2017-08-15

    Clinicians, working in the health-care diagnostic systems of developing countries, currently face the challenges of rising costs, increased number of patient visits, and limited resources. A significant trend is using low-cost substrates to develop microfluidic devices for diagnostic purposes. Various fabrication techniques, materials, and detection methods have been explored to develop these devices. Microfluidic paper-based analytical devices (μPADs) have gained attention for sensing multiplex analytes, confirming diagnostic test results, rapid sample analysis, and reducing the volume of samples and analytical reagents. μPADs, which can provide accurate and reliable direct measurement without sample pretreatment, can reduce patient medical burden and yield rapid test results, aiding physicians in choosing appropriate treatment. The objectives of this review are to provide an overview of the strategies used for developing paper-based sensors with enhanced analytical performances and to discuss the current challenges, limitations, advantages, disadvantages, and future prospects of paper-based microfluidic platforms in clinical diagnostics. μPADs, with validated and justified analytical performances, can potentially improve the quality of life by providing inexpensive, rapid, portable, biodegradable, and reliable diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Analytical methods for determination of mycotoxins: a review.

    PubMed

    Turner, Nicholas W; Subrahmanyam, Sreenath; Piletsky, Sergey A

    2009-01-26

    Mycotoxins are small (MW approximately 700), toxic chemical products formed as secondary metabolites by a few fungal species that readily colonise crops and contaminate them with toxins in the field or after harvest. Ochratoxins and Aflatoxins are mycotoxins of major significance and hence there has been significant research on broad range of analytical and detection techniques that could be useful and practical. Due to the variety of structures of these toxins, it is impossible to use one standard technique for analysis and/or detection. Practical requirements for high-sensitivity analysis and the need for a specialist laboratory setting create challenges for routine analysis. Several existing analytical techniques, which offer flexible and broad-based methods of analysis and in some cases detection, have been discussed in this manuscript. There are a number of methods used, of which many are lab-based, but to our knowledge there seems to be no single technique that stands out above the rest, although analytical liquid chromatography, commonly linked with mass spectroscopy is likely to be popular. This review manuscript discusses (a) sample pre-treatment methods such as liquid-liquid extraction (LLE), supercritical fluid extraction (SFE), solid phase extraction (SPE), (b) separation methods such as (TLC), high performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrophoresis (CE) and (c) others such as ELISA. Further currents trends, advantages and disadvantages and future prospects of these methods have been discussed.

  19. Method development and qualification of capillary zone electrophoresis for investigation of therapeutic monoclonal antibody quality.

    PubMed

    Suba, Dávid; Urbányi, Zoltán; Salgó, András

    2016-10-01

    Capillary electrophoresis techniques are widely used in the analytical biotechnology. Different electrophoretic techniques are very adequate tools to monitor size-and charge heterogenities of protein drugs. Method descriptions and development studies of capillary zone electrophoresis (CZE) have been described in literature. Most of them are performed based on the classical one-factor-at-time (OFAT) approach. In this study a very simple method development approach is described for capillary zone electrophoresis: a "two-phase-four-step" approach is introduced which allows a rapid, iterative method development process and can be a good platform for CZE method. In every step the current analytical target profile and an appropriate control strategy were established to monitor the current stage of development. A very good platform was established to investigate intact and digested protein samples. Commercially available monoclonal antibody was chosen as model protein for the method development study. The CZE method was qualificated after the development process and the results were presented. The analytical system stability was represented by the calculated RSD% value of area percentage and migration time of the selected peaks (<0.8% and <5%) during the intermediate precision investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Contribution of Electrochemistry to the Biomedical and Pharmaceutical Analytical Sciences.

    PubMed

    Kauffmann, Jean-Michel; Patris, Stephanie; Vandeput, Marie; Sarakbi, Ahmad; Sakira, Abdul Karim

    2016-01-01

    All analytical techniques have experienced major progress since the last ten years and electroanalysis is also involved in this trend. The unique characteristics of phenomena occurring at the electrode-solution interface along with the variety of electrochemical methods currently available allow for a broad spectrum of applications. Potentiometric, conductometric, voltammetric and amperometric methods are briefly reviewed with a critical view in terms of performance of the developed instrumentation with special emphasis on pharmaceutical and biomedical applications.

  1. Grabbing the Air Force by the Tail: Applying Strategic Cost Analytics to Understand and Manage Indirect Cost Behavior

    DTIC Science & Technology

    2015-09-17

    impact influenced by its internal and external supply chain activities. This starts with understanding how we currently apply advanced analytic techniques... minimalistic model provides for sufficient degrees of freedom to guard against overfitting. Second, to guard against the possibility of an over-trained model in... starting with 1*. 201* All Military compensation EEICs starting with 201*. Facility Sustainment 52* & 56* All facility maintenance, repair and minor

  2. A pipette-based calibration system for fast-scan cyclic voltammetry with fast response times.

    PubMed

    Ramsson, Eric S

    2016-01-01

    Fast-scan cyclic voltammetry (FSCV) is an electrochemical technique that utilizes the oxidation and/or reduction of an analyte of interest to infer rapid changes in concentrations. In order to calibrate the resulting oxidative or reductive current, known concentrations of an analyte must be introduced under controlled settings. Here, I describe a simple and cost-effective method, using a Petri dish and pipettes, for the calibration of carbon fiber microelectrodes (CFMs) using FSCV.

  3. Surface Plasmon Resonance: New Biointerface Designs and High-Throughput Affinity Screening

    NASA Astrophysics Data System (ADS)

    Linman, Matthew J.; Cheng, Quan Jason

    Surface plasmon resonance (SPR) is a surface optical technique that measures minute changes in refractive index at a metal-coated surface. It has become increasingly popular in the study of biological and chemical analytes because of its label-free measurement feature. In addition, SPR allows for both quantitative and qualitative assessment of binding interactions in real time, making it ideally suited for probing weak interactions that are often difficult to study with other methods. This chapter presents the biosensor development in the last 3 years or so utilizing SPR as the principal analytical technique, along with a concise background of the technique itself. While SPR has demonstrated many advantages, it is a nonselective method and so, building reproducible and functional interfaces is vital to sensing applications. This chapter, therefore, focuses mainly on unique surface chemistries and assay approaches to examine biological interactions with SPR. In addition, SPR imaging for high-throughput screening based on microarrays and novel hyphenated techniques involving the coupling of SPR to other analytical methods is discussed. The chapter concludes with a commentary on the current state of SPR biosensing technology and the general direction of future biosensor research.

  4. Various extraction and analytical techniques for isolation and identification of secondary metabolites from Nigella sativa seeds.

    PubMed

    Liu, X; Abd El-Aty, A M; Shim, J-H

    2011-10-01

    Nigella sativa L. (black cumin), commonly known as black seed, is a member of the Ranunculaceae family. This seed is used as a natural remedy in many Middle Eastern and Far Eastern countries. Extracts prepared from N. sativa have, for centuries, been used for medical purposes. Thus far, the organic compounds in N. sativa, including alkaloids, steroids, carbohydrates, flavonoids, fatty acids, etc. have been fairly well characterized. Herein, we summarize some new extraction techniques, including microwave assisted extraction (MAE) and supercritical extraction techniques (SFE), in addition to the classical method of hydrodistillation (HD), which have been employed for isolation and various analytical techniques used for the identification of secondary metabolites in black seed. We believe that some compounds contained in N. sativa remain to be identified, and that high-throughput screening could help to identify new compounds. A study addressing environmentally-friendly techniques that have minimal or no environmental effects is currently underway in our laboratory.

  5. An investigation of the feasibility of improving oculometer data analysis through application of advanced statistical techniques

    NASA Technical Reports Server (NTRS)

    Rana, D. S.

    1980-01-01

    The data reduction capabilities of the current data reduction programs were assessed and a search for a more comprehensive system with higher data analytic capabilities was made. Results of the investigation are presented.

  6. Modeling of switching regulator power stages with and without zero-inductor-current dwell time

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Yu, Y.; Triner, J. E.

    1976-01-01

    State space techniques are employed to derive accurate models for buck, boost, and buck/boost converter power stages operating with and without zero-inductor-current dwell time. A generalized procedure is developed which treats the continuous-inductor-current mode without the dwell time as a special case of the discontinuous-current mode, when the dwell time vanishes. An abrupt change of system behavior including a reduction of the system order when the dwell time appears is shown both analytically and experimentally.

  7. Rapid detection of terbufos in stomach contents using desorption electrospray ionization mass spectrometry.

    PubMed

    Wilson, Christina R; Mulligan, Christopher C; Strueh, Kurt D; Stevenson, Gregory W; Hooser, Stephen B

    2014-05-01

    Desorption electrospray ionization mass spectrometry (DESI-MS) is an emerging analytical technique that permits the rapid and direct analysis of biological or environmental samples under ambient conditions. Highlighting the versatility of this technique, DESI-MS has been used for the rapid detection of illicit drugs, chemical warfare agents, agricultural chemicals, and pharmaceuticals from a variety of sample matrices. In diagnostic veterinary toxicology, analyzing samples using traditional analytical instrumentation typically includes extensive sample extraction procedures, which can be time consuming and labor intensive. Therefore, efforts to expedite sample analyses are a constant goal for diagnostic toxicology laboratories. In the current report, DESI-MS was used to directly analyze stomach contents from a dog exposed to the organophosphate insecticide terbufos. The total DESI-MS analysis time required to confirm the presence of terbufos and diagnose organophosphate poisoning in this case was approximately 5 min. This highlights the potential of this analytical technique in the field of veterinary toxicology for the rapid diagnosis and detection of toxicants in biological samples. © 2014 The Author(s).

  8. An Overview of the Analysis of Trace Organics in Water.

    ERIC Educational Resources Information Center

    Trussell, Albert R.; Umphres, Mark D.

    1978-01-01

    Summarized are current analytical techniques used to classify, isolate, resolve, identify, and quantify organic compounds present in drinking water. A variety of methods are described, then drawbacks and advantages are listed, and research needs and future trends are noted. (CS)

  9. HANDBOOK: CONTINUOUS EMISSION MONITORING SYSTEMS FOR NON-CRITERIA POLLUTANTS

    EPA Science Inventory

    This Handbook provides a description of the methods used to continuously monitor non-criteria pollutants emitted from stationary sources. The Handbook contains a review of current regulatory programs, the state-of-the-art sampling system design, analytical techniques, and the use...

  10. Analytical Glycobiology at High Sensitivity: Current Approaches and Directions

    PubMed Central

    Novotny, Milos V.; Alley, William R.; Mann, Benjamin F.

    2013-01-01

    This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The needs for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography. PMID:22945852

  11. Stakeholder perspectives on decision-analytic modeling frameworks to assess genetic services policy.

    PubMed

    Guzauskas, Gregory F; Garrison, Louis P; Stock, Jacquie; Au, Sylvia; Doyle, Debra Lochner; Veenstra, David L

    2013-01-01

    Genetic services policymakers and insurers often make coverage decisions in the absence of complete evidence of clinical utility and under budget constraints. We evaluated genetic services stakeholder opinions on the potential usefulness of decision-analytic modeling to inform coverage decisions, and asked them to identify genetic tests for decision-analytic modeling studies. We presented an overview of decision-analytic modeling to members of the Western States Genetic Services Collaborative Reimbursement Work Group and state Medicaid representatives and conducted directed content analysis and an anonymous survey to gauge their attitudes toward decision-analytic modeling. Participants also identified and prioritized genetic services for prospective decision-analytic evaluation. Participants expressed dissatisfaction with current processes for evaluating insurance coverage of genetic services. Some participants expressed uncertainty about their comprehension of decision-analytic modeling techniques. All stakeholders reported openness to using decision-analytic modeling for genetic services assessments. Participants were most interested in application of decision-analytic concepts to multiple-disorder testing platforms, such as next-generation sequencing and chromosomal microarray. Decision-analytic modeling approaches may provide a useful decision tool to genetic services stakeholders and Medicaid decision-makers.

  12. Ion transfer through solvent polymeric membranes driven by an exponential current flux.

    PubMed

    Molina, A; Torralba, E; González, J; Serna, C; Ortuño, J A

    2011-03-21

    General analytical equations which govern ion transfer through liquid membranes with one and two polarized interfaces driven by an exponential current flux are derived. Expressions for the transient and stationary E-t, dt/dE-E and dI/dE-E curves are obtained, and the evolution from transient to steady behaviour has been analyzed in depth. We have also shown mathematically that the voltammetric and stationary chronopotentiometric I(N)-E curves are identical (with E being the applied potential for voltammetric techniques and the measured potential for chronopotentiometric techniques), and hence, their derivatives provide identical information.

  13. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives.

    PubMed

    Covaci, Adrian; Voorspoels, Stefan; Abdallah, Mohamed Abou-Elwafa; Geens, Tinne; Harrad, Stuart; Law, Robin J

    2009-01-16

    The present article reviews the available literature on the analytical and environmental aspects of tetrabromobisphenol-A (TBBP-A), a currently intensively used brominated flame retardant (BFR). Analytical methods, including sample preparation, chromatographic separation, detection techniques, and quality control are discussed. An important recent development in the analysis of TBBP-A is the growing tendency for liquid chromatographic techniques. At the detection stage, mass-spectrometry is a well-established and reliable technology in the identification and quantification of TBBP-A. Although interlaboratory exercises for BFRs have grown in popularity in the last 10 years, only a few participating laboratories report concentrations for TBBP-A. Environmental levels of TBBP-A in abiotic and biotic matrices are low, probably due to the major use of TBBP-A as reactive FR. As a consequence, the expected human exposure is low. This is in agreement with the EU risk assessment that concluded that there is no risk for humans concerning TBBP-A exposure. Much less analytical and environmental information exists for the various groups of TBBP-A derivatives which are largely used as additive flame retardants.

  14. Combination of Cyclodextrin and Ionic Liquid in Analytical Chemistry: Current and Future Perspectives.

    PubMed

    Hui, Boon Yih; Raoov, Muggundha; Zain, Nur Nadhirah Mohamad; Mohamad, Sharifah; Osman, Hasnah

    2017-09-03

    The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.

  15. A NEW NON-AMBIGUOUS ANALYTICAL TECHNIQUE FOR THE IDENTIFICATION OF AEROSOL OXYGENATED COMPOUNDS

    EPA Science Inventory

    The most important organic products identified in the particle phase from field samples and from smog chamber experiments are polar oxygenated compounds containing one, two, three or more oxygenated functional groups (e.g. hydroxyl, carboxylic acid, ketone). Current procedures ...

  16. Use of Biological and Non-biological Surrogates for Evaluating Cryptosporidium Removal by Filtration

    EPA Science Inventory

    Water treatment plants are currently facing increasing challenges in monitoring Cryptosporidium in source and treated water because of complex analytical techniques and associated health risks. Surrogates may be easier to analyze than Cryptosporidium, but they must also be reliab...

  17. Active Control of Inlet Noise on the JT15D Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Smith, Jerome P.; Hutcheson, Florence V.; Burdisso, Ricardo A.; Fuller, Chris R.

    1999-01-01

    This report presents the key results obtained by the Vibration and Acoustics Laboratories at Virginia Tech over the year from November 1997 to December 1998 on the Active Noise Control of Turbofan Engines research project funded by NASA Langley Research Center. The concept of implementing active noise control techniques with fuselage-mounted error sensors is investigated both analytically and experimentally. The analytical part of the project involves the continued development of an advanced modeling technique to provide prediction and design guidelines for application of active noise control techniques to large, realistic high bypass engines of the type on which active control methods are expected to be applied. Results from the advanced analytical model are presented that show the effectiveness of the control strategies, and the analytical results presented for fuselage error sensors show good agreement with the experimentally observed results and provide additional insight into the control phenomena. Additional analytical results are presented for active noise control used in conjunction with a wavenumber sensing technique. The experimental work is carried out on a running JT15D turbofan jet engine in a test stand at Virginia Tech. The control strategy used in these tests was the feedforward Filtered-X LMS algorithm. The control inputs were supplied by single and multiple circumferential arrays of acoustic sources equipped with neodymium iron cobalt magnets mounted upstream of the fan. The reference signal was obtained from an inlet mounted eddy current probe. The error signals were obtained from a number of pressure transducers flush-mounted in a simulated fuselage section mounted in the engine test cell. The active control methods are investigated when implemented with the control sources embedded within the acoustically absorptive material on a passively-lined inlet. The experimental results show that the combination of active control techniques with fuselage-mounted error sensors and passive control techniques is an effective means of reducing radiated noise from turbofan engines. Strategic selection of the location of the error transducers is shown to be effective for reducing the radiation towards particular directions in the farfield. An analytical model is used to predict the behavior of the control system and to guide the experimental design configurations, and the analytical results presented show good agreement with the experimentally observed results.

  18. Fifty years of solid-phase extraction in water analysis--historical development and overview.

    PubMed

    Liska, I

    2000-07-14

    The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.

  19. Considerations for standardizing predictive molecular pathology for cancer prognosis.

    PubMed

    Fiorentino, Michelangelo; Scarpelli, Marina; Lopez-Beltran, Antonio; Cheng, Liang; Montironi, Rodolfo

    2017-01-01

    Molecular tests that were once ancillary to the core business of cyto-histopathology are becoming the most relevant workload in pathology departments after histopathology/cytopathology and before autopsies. This has resulted from innovations in molecular biology techniques, which have developed at an incredibly fast pace. Areas covered: Most of the current widely used techniques in molecular pathology such as FISH, direct sequencing, pyrosequencing, and allele-specific PCR will be replaced by massive parallel sequencing that will not be considered next generation, but rather, will be considered to be current generation sequencing. The pre-analytical steps of molecular techniques such as DNA extraction or sample preparation will be largely automated. Moreover, all the molecular pathology instruments will be part of an integrated workflow that traces the sample from extraction to the analytical steps until the results are reported; these steps will be guided by expert laboratory information systems. In situ hybridization and immunohistochemistry for quantification will be largely digitalized as much as histology will be mostly digitalized rather than viewed using microscopy. Expert commentary: This review summarizes the technical and regulatory issues concerning the standardization of molecular tests in pathology. A vision of the future perspectives of technological changes is also provided.

  20. [Theoretical and methodological uses of research in Social and Human Sciences in Health].

    PubMed

    Deslandes, Suely Ferreira; Iriart, Jorge Alberto Bernstein

    2012-12-01

    The current article aims to map and critically reflect on the current theoretical and methodological uses of research in the subfield of social and human sciences in health. A convenience sample was used to select three Brazilian public health journals. Based on a reading of 1,128 abstracts published from 2009 to 2010, 266 articles were selected that presented the empirical base of research stemming from social and human sciences in health. The sample was classified thematically as "theoretical/ methodological reference", "study type/ methodological design", "analytical categories", "data production techniques", and "analytical procedures". We analyze the sample's emic categories, drawing on the authors' literal statements. All the classifications and respective variables were tabulated in Excel. Most of the articles were self-described as qualitative and used more than one data production technique. There was a wide variety of theoretical references, in contrast with the almost total predominance of a single type of data analysis (content analysis). In several cases, important gaps were identified in expounding the study methodology and instrumental use of the qualitative research techniques and methods. However, the review did highlight some new objects of study and innovations in theoretical and methodological approaches.

  1. A LITERATURE REVIEW OF WIPE SAMPLING METHODS ...

    EPA Pesticide Factsheets

    Wipe sampling is an important technique for the estimation of contaminant deposition in buildings, homes, or outdoor surfaces as a source of possible human exposure. Numerousmethods of wipe sampling exist, and each method has its own specification for the type of wipe, wetting solvent, and determinative step to be used, depending upon the contaminant of concern. The objective of this report is to concisely summarize the findings of a literature review that was conducted to identify the state-of-the-art wipe sampling techniques for a target list of compounds. This report describes the methods used to perform the literature review; a brief review of wipe sampling techniques in general; an analysis of physical and chemical properties of each target analyte; an analysis of wipe sampling techniques for the target analyte list; and asummary of the wipe sampling techniques for the target analyte list, including existing data gaps. In general, no overwhelming consensus can be drawn from the current literature on how to collect a wipe sample for the chemical warfare agents, organophosphate pesticides, and other toxic industrial chemicals of interest to this study. Different methods, media, and wetting solvents have been recommended and used by various groups and different studies. For many of the compounds of interest, no specific wipe sampling methodology has been established for their collection. Before a wipe sampling method (or methods) can be established for the co

  2. Assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry

    USGS Publications Warehouse

    Taylor, Howard E.; Garbarino, John R.

    1988-01-01

    A thorough assessment of the analytical capabilities of inductively coupled plasma-mass spectrometry was conducted for selected analytes of importance in water quality applications and hydrologic research. A multielement calibration curve technique was designed to produce accurate and precise results in analysis times of approximately one minute. The suite of elements included Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, Pb, Se, Sr, V, and Zn. The effects of sample matrix composition on the accuracy of the determinations showed that matrix elements (such as Na, Ca, Mg, and K) that may be present in natural water samples at concentration levels greater than 50 mg/L resulted in as much as a 10% suppression in ion current for analyte elements. Operational detection limits are presented.

  3. Harmonics suppression of vacuum chamber eddy current induced fields with application to the Superconducting Super Collider (SSC) Low Energy Booster (LEB) Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlueter, R.D.; Halbach, K.

    1991-12-04

    This memo presents the formulation of an expression for eddy currents induced in a thin-walled conductor due to a time-dependent electromagnet field excitation. Then follows an analytical development for prediction of vacuum chamber eddy current induced field harmonics in iron-core electromagnets. A passive technique for harmonics suppression is presented with specific application to the design of the Superconducting Super Collider (SSC) Low Energy B (LEB) Magnets.

  4. Current and future technology in radial and axial gas turbines

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.

    1983-01-01

    Design approaches and flow analysis techniques currently employed by aircraft engine manufacturers are assessed. Studies were performed to define the characteristics of aircraft and engines for civil missions of the 1990's and beyond. These studies, coupled with experience in recent years, identified the critical technologies needed to meet long range goals in fuel economy and other operating costs. Study results, recent and current research and development programs, and an estimate of future design and analytic capabilities are discussed.

  5. Elliptic-cylindrical analytical flux-rope model for ICMEs

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Hidalgo, M. A. U.; Vourlidas, A.

    2016-12-01

    We present an analytical flux-rope model for realistic magnetic structures embedded in Interplanetary Coronal Mass Ejections. The framework of this model was established by Nieves-Chinchilla et al. (2016) with the circular-cylindrical analytical flux rope model and under the concept developed by Hidalgo et al. (2002). Elliptic-cylindrical geometry establishes the first-grade of complexity of a series of models. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in the non-euclidean geometry. The Maxwell equations are solved using tensor calculus consistently with the geometry chosen, invariance along the axial component, and with the only assumption of no radial current density. The model is generalized in terms of the radial dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for the individual cases of different pairs of indexes for the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. The reconstruction technique has been adapted to the model and compared with in situ ICME set of events with different in situ signatures. The successful result is limited to some cases with clear in-situ signatures of distortion. However, the model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures. Other effects such as axial curvature, expansion and/or interaction could be incorporated in the future to fully understand the magnetic structure. Finally, the mathematical formulation of this model opens the door to the next model: toroidal flux rope analytical model.

  6. Analytical techniques for identification and study of organic matter in returned lunar samples

    NASA Technical Reports Server (NTRS)

    Burlingame, A. L.

    1974-01-01

    The results of geochemical research are reviewed. Emphasis is placed on the contribution of mass spectrometric data to the solution of specific structural problems. Information on the mass spectrometric behavior of compounds of geochemical interest is reviewed and currently available techniques of particular importance to geochemistry, such as gas chromatograph-mass spectrometer coupling, modern sample introduction methods, and computer application in high resolution mass spectrometry, receive particular attention.

  7. Gas chromatography in space

    NASA Technical Reports Server (NTRS)

    Akapo, S. O.; Dimandja, J. M.; Kojiro, D. R.; Valentin, J. R.; Carle, G. C.

    1999-01-01

    Gas chromatography has proven to be a very useful analytical technique for in situ analysis of extraterrestrial environments as demonstrated by its successful operation on spacecraft missions to Mars and Venus. The technique is also one of the six scientific instruments aboard the Huygens probe to explore Titan's atmosphere and surface. A review of gas chromatography in previous space missions and some recent developments in the current environment of fiscal constraints and payload size limitations are presented.

  8. Accurate analytical modeling of junctionless DG-MOSFET by green's function approach

    NASA Astrophysics Data System (ADS)

    Nandi, Ashutosh; Pandey, Nilesh

    2017-11-01

    An accurate analytical model of Junctionless double gate MOSFET (JL-DG-MOSFET) in the subthreshold regime of operation is developed in this work using green's function approach. The approach considers 2-D mixed boundary conditions and multi-zone techniques to provide an exact analytical solution to 2-D Poisson's equation. The Fourier coefficients are calculated correctly to derive the potential equations that are further used to model the channel current and subthreshold slope of the device. The threshold voltage roll-off is computed from parallel shifts of Ids-Vgs curves between the long channel and short-channel devices. It is observed that the green's function approach of solving 2-D Poisson's equation in both oxide and silicon region can accurately predict channel potential, subthreshold current (Isub), threshold voltage (Vt) roll-off and subthreshold slope (SS) of both long & short channel devices designed with different doping concentrations and higher as well as lower tsi/tox ratio. All the analytical model results are verified through comparisons with TCAD Sentaurus simulation results. It is observed that the model matches quite well with TCAD device simulations.

  9. Enhancement in the sensitivity of microfluidic enzyme-linked immunosorbent assays through analyte preconcentration.

    PubMed

    Yanagisawa, Naoki; Dutta, Debashis

    2012-08-21

    In this Article, we describe a microfluidic enzyme-linked immunosorbent assay (ELISA) method whose sensitivity can be substantially enhanced through preconcentration of the target analyte around a semipermeable membrane. The reported preconcentration has been accomplished in our current work via electrokinetic means allowing a significant increase in the amount of captured analyte relative to nonspecific binding in the trapping/detection zone. Upon introduction of an enzyme substrate into this region, the rate of generation of the ELISA reaction product (resorufin) was observed to increase by over a factor of 200 for the sample and 2 for the corresponding blank compared to similar assays without analyte trapping. Interestingly, in spite of nonuniformities in the amount of captured analyte along the surface of our analysis channel, the measured fluorescence signal in the preconcentration zone increased linearly with time over an enzyme reaction period of 30 min and at a rate that was proportional to the analyte concentration in the bulk sample. In our current study, the reported technique has been shown to reduce the smallest detectable concentration of the tumor marker CA 19-9 and Blue Tongue Viral antibody by over 2 orders of magnitude compared to immunoassays without analyte preconcentration. When compared to microwell based ELISAs, the reported microfluidic approach not only yielded a similar improvement in the smallest detectable analyte concentration but also reduced the sample consumption in the assay by a factor of 20 (5 μL versus 100 μL).

  10. NASA reliability preferred practices for design and test

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Given here is a manual that was produced to communicate within the aerospace community design practices that have contributed to NASA mission success. The information represents the best technical advice that NASA has to offer on reliability design and test practices. Topics covered include reliability practices, including design criteria, test procedures, and analytical techniques that have been applied to previous space flight programs; and reliability guidelines, including techniques currently applied to space flight projects, where sufficient information exists to certify that the technique will contribute to mission success.

  11. [Latest development in mass spectrometry for clinical application].

    PubMed

    Takino, Masahiko

    2013-09-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) has seen enormous growth in special clinical chemistry laboratories. It significantly increases the analytic potential in clinical chemistry, especially in the field of low molecular weight biomarker analysis. This review summarizes the state of the art in mass spectrometry and related techniques for clinical application with a main focus on recent developments in LC-MS. Current trends in ionization techniques, automated online sample preparation techniques coupled with LC-MS, and ion mobility spectrometry are discussed. Emerging mass spectrometric approaches complementary to LC-MS are discussed as well.

  12. Trends in Process Analytical Technology: Present State in Bioprocessing.

    PubMed

    Jenzsch, Marco; Bell, Christian; Buziol, Stefan; Kepert, Felix; Wegele, Harald; Hakemeyer, Christian

    2017-08-04

    Process analytical technology (PAT), the regulatory initiative for incorporating quality in pharmaceutical manufacturing, is an area of intense research and interest. If PAT is effectively applied to bioprocesses, this can increase process understanding and control, and mitigate the risk from substandard drug products to both manufacturer and patient. To optimize the benefits of PAT, the entire PAT framework must be considered and each elements of PAT must be carefully selected, including sensor and analytical technology, data analysis techniques, control strategies and algorithms, and process optimization routines. This chapter discusses the current state of PAT in the biopharmaceutical industry, including several case studies demonstrating the degree of maturity of various PAT tools. Graphical Abstract Hierarchy of QbD components.

  13. Assessment of analytical techniques for predicting solid propellant exhaust plumes

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.

    1977-01-01

    The calculation of solid propellant exhaust plume flow fields is addressed. Two major areas covered are: (1) the applicability of empirical data currently available to define particle drag coefficients, heat transfer coefficients, mean particle size and particle size distributions, and (2) thermochemical modeling of the gaseous phase of the flow field. Comparisons of experimentally measured and analytically predicted data are made. The experimental data were obtained for subscale solid propellant motors with aluminum loadings of 2, 10 and 15%. Analytical predictions were made using a fully coupled two-phase numerical solution. Data comparisons will be presented for radial distributions at plume axial stations of 5, 12, 16 and 20 diameters.

  14. Heat transfer with hockey-stick steam generator. [LMFBR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, E; Gabler, M J

    1977-11-01

    The hockey-stick modular design concept is a good answer to future needs for reliable, economic LMFBR steam generators. The concept was successfully demonstrated in the 30 Mwt MSG test unit; scaled up versions are currently in fabrication for CRBRP usage, and further scaling has been accomplished for PLBR applications. Design and performance characteristics are presented for the three generations of hockey-stick steam generators. The key features of the design are presented based on extensive analytical effort backed up by extensive ancillary test data. The bases for and actual performance evaluations are presented with emphasis on the CRBRP design. The designmore » effort on these units has resulted in the development of analytical techniques that are directly applicable to steam generators for any LMFBR application. In conclusion, the hockey-stick steam generator concept has been proven to perform both thermally and hydraulically as predicted. The heat transfer characteristics are well defined, and proven analytical techniques are available as are personnel experienced in their use.« less

  15. Review of methods used for identification of biothreat agents in environmental protection and human health aspects.

    PubMed

    Mirski, Tomasz; Bartoszcze, Michał; Bielawska-Drózd, Agata; Cieślik, Piotr; Michalski, Aleksander J; Niemcewicz, Marcin; Kocik, Janusz; Chomiczewski, Krzysztof

    2014-01-01

    Modern threats of bioterrorism force the need to develop methods for rapid and accurate identification of dangerous biological agents. Currently, there are many types of methods used in this field of studies that are based on immunological or genetic techniques, or constitute a combination of both methods (immuno-genetic). There are also methods that have been developed on the basis of physical and chemical properties of the analytes. Each group of these analytical assays can be further divided into conventional methods (e.g. simple antigen-antibody reactions, classical PCR, real-time PCR), and modern technologies (e.g. microarray technology, aptamers, phosphors, etc.). Nanodiagnostics constitute another group of methods that utilize the objects at a nanoscale (below 100 nm). There are also integrated and automated diagnostic systems, which combine different methods and allow simultaneous sampling, extraction of genetic material and detection and identification of the analyte using genetic, as well as immunological techniques.

  16. Application And Implication Of Nanomaterials In The Environment: An Overview Of Current Research At The Environmental Protection Agency (Romania)

    EPA Science Inventory

    The purpose of this presentation is to teach a course on analytical techniques, quality assurance, environmental research protocols, and basic soil environmental chemistry at the Environmental Health Center and Babes Bolyai University in Cluj, Romania. FOR FURTHER INFORMATI...

  17. Considerations in the development of the utility of stable isotopes in science, medicine, and agriculture, and environmental studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matwiyoff, N.A.

    1976-01-01

    The prospects for the broad scale development of the utility of stable isotopes in science, medicine, agriculture, and environmental studies are considered with emphasis on the current status of isotope production, synthesis of isotopically labelled compounds, and analytical techniques.

  18. The Construction of Pro-Science and Technology Discourse in Chinese Language Textbooks

    ERIC Educational Resources Information Center

    Liu, Yongbing

    2005-01-01

    This paper examines the pro-science and technology discourse constructed in Chinese language textbooks currently used for primary school students nationwide in China. By applying analytical techniques of critical discourse analysis (CDA), the paper critically investigates how the discourse is constructed and what ideological forces are manifested…

  19. Biosensors for hepatitis B virus detection.

    PubMed

    Yao, Chun-Yan; Fu, Wei-Ling

    2014-09-21

    A biosensor is an analytical device used for the detection of analytes, which combines a biological component with a physicochemical detector. Recently, an increasing number of biosensors have been used in clinical research, for example, the blood glucose biosensor. This review focuses on the current state of biosensor research with respect to efficient, specific and rapid detection of hepatitis B virus (HBV). The biosensors developed based on different techniques, including optical methods (e.g., surface plasmon resonance), acoustic wave technologies (e.g., quartz crystal microbalance), electrochemistry (amperometry, voltammetry and impedance) and novel nanotechnology, are also discussed.

  20. "Cork taint" responsible compounds. Determination of haloanisoles and halophenols in cork matrix: A review.

    PubMed

    Tarasov, Andrii; Rauhut, Doris; Jung, Rainer

    2017-12-01

    Analytical methods of haloanisoles and halophenols quantification in cork matrix are summarized in the current review. Sample-preparation and sample-treatment techniques have been compared and discussed from the perspective of their efficiency, time- and extractant-optimization, easiness of performance. Primary interest of these analyses usually addresses to 2,4,6-trichloroanisole (TCA), which is a major wine contaminant among haloanisoles. Two concepts of TCA determination are described in the review: releasable TCA and total TCA analyses. Chromatographic, bioanalytical and sensorial methods were compared according to their application in the cork industry and in scientific investigations. Finally, it was shown that modern analytical techniques are able to provide required sensitivity, selectivity and repeatability for haloanisoles and halophenols determination. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterization and measurement of natural gas trace constituents. Volume 1. Arsenic. Final report, June 1989-October 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, S.S.; Attari, A.

    1995-01-01

    The discovery of arsenic compounds, as alkylarsines, in natural gas prompted this research program to develop reliable measurement techniques needed to assess the efficiency of removal processes for these environmentally sensitive substances. These techniques include sampling, speciation, quantitation and on-line instrumental methods for monitoring the total arsenic concentration. The current program has yielded many products, including calibration standards, arsenic-specific sorbents, sensitive analytical methods and instrumentation. Four laboratory analytical methods have been developed and successfully employed for arsenic determination in natural gas. These methods use GC-AED and GC-MS instruments to speciate alkylarsines, and peroxydisulfate extraction with FIAS, special carbon sorbent withmore » XRF and an IGT developed sorbent with GFAA for total arsenic measurement.« less

  2. Parameter estimation in astronomy through application of the likelihood ratio. [satellite data analysis techniques

    NASA Technical Reports Server (NTRS)

    Cash, W.

    1979-01-01

    Many problems in the experimental estimation of parameters for models can be solved through use of the likelihood ratio test. Applications of the likelihood ratio, with particular attention to photon counting experiments, are discussed. The procedures presented solve a greater range of problems than those currently in use, yet are no more difficult to apply. The procedures are proved analytically, and examples from current problems in astronomy are discussed.

  3. Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis.

    PubMed

    Boonen, Kurt; Landuyt, Bart; Baggerman, Geert; Husson, Steven J; Huybrechts, Jurgen; Schoofs, Liliane

    2008-02-01

    MS is currently one of the most important analytical techniques in biological and medical research. ESI and MALDI launched the field of MS into biology. The performance of mass spectrometers increased tremendously over the past decades. Other technological advances increased the analytical power of biological MS even more. First, the advent of the genome projects allowed an automated analysis of mass spectrometric data. Second, improved separation techniques, like nanoscale HPLC, are essential for MS analysis of biomolecules. The recent progress in bioinformatics is the third factor that accelerated the biochemical analysis of macromolecules. The first part of this review will introduce the basics of these techniques. The field that integrates all these techniques to identify endogenous peptides is called peptidomics and will be discussed in the last section. This integrated approach aims at identifying all the present peptides in a cell, organ or organism (the peptidome). Today, peptidomics is used by several fields of research. Special emphasis will be given to the identification of neuropeptides, a class of short proteins that fulfil several important intercellular signalling functions in every animal. MS imaging techniques and biomarker discovery will also be discussed briefly.

  4. Determination of a Limited Scope Network's Lightning Detection Efficiency

    NASA Technical Reports Server (NTRS)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  5. Evaluation of ion collection area in Faraday probes.

    PubMed

    Brown, Daniel L; Gallimore, Alec D

    2010-06-01

    A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.

  6. Advances in functional brain imaging technology and developmental neuro-psychology: their applications in the Jungian analytic domain.

    PubMed

    Petchkovsky, Leon

    2017-06-01

    Analytical psychology shares with many other psychotherapies the important task of repairing the consequences of developmental trauma. The majority of analytic patients come from compromised early developmental backgrounds: they may have experienced neglect, abuse, or failures of empathic resonance from their carers. Functional brain imagery techniques including Quantitative Electroencephalogram (QEEG), and functional Magnetic Resonance Imagery (fMRI), allow us to track mental processes in ways beyond verbal reportage and introspection. This independent perspective is useful for developing new psychodynamic hypotheses, testing current ones, providing diagnostic markers, and monitoring treatment progress. Jung, with the Word Association Test, grasped these principles 100 years ago. Brain imaging techniques have contributed to powerful recent advances in our understanding of neurodevelopmental processes in the first three years of life. If adequate nurturance is compromised, a range of difficulties may emerge. This has important implications for how we understand and treat our psychotherapy clients. The paper provides an overview of functional brain imaging and advances in developmental neuropsychology, and looks at applications of some of these findings (including neurofeedback) in the Jungian psychotherapy domain. © 2017, The Society of Analytical Psychology.

  7. Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets.

    PubMed

    Dave, Vivek S; Shahin, Hend I; Youngren-Ortiz, Susanne R; Chougule, Mahavir B; Haware, Rahul V

    2017-10-30

    The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The edge of chaos: A nonlinear view of psychoanalytic technique.

    PubMed

    Galatzer-Levy, Robert M

    2016-04-01

    The field of nonlinear dynamics (or chaos theory) provides ways to expand concepts of psychoanalytic process that have implications for the technique of psychoanalysis. This paper describes how concepts of "the edge of chaos," emergence, attractors, and coupled oscillators can help shape analytic technique resulting in an approach to doing analysis which is at the same time freer and more firmly based in an enlarged understanding of the ways in which psychoanalysis works than some current recommendation about technique. Illustrations from a lengthy analysis of an analysand with obsessive-compulsive disorder show this approach in action. Copyright © 2016 Institute of Psychoanalysis.

  9. Simulation of a model nanopore sensor: Ion competition underlies device behavior.

    PubMed

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-28

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  10. Simulation of a model nanopore sensor: Ion competition underlies device behavior

    NASA Astrophysics Data System (ADS)

    Mádai, Eszter; Valiskó, Mónika; Dallos, András; Boda, Dezső

    2017-12-01

    We study a model nanopore sensor with which a very low concentration of analyte molecules can be detected on the basis of the selective binding of the analyte molecules to the binding sites on the pore wall. The bound analyte ions partially replace the current-carrier cations in a thermodynamic competition. This competition depends both on the properties of the nanopore and the concentrations of the competing ions (through their chemical potentials). The output signal given by the device is the current reduction caused by the presence of the analyte ions. The concentration of the analyte ions can be determined through calibration curves. We model the binding site with the square-well potential and the electrolyte as charged hard spheres in an implicit background solvent. We study the system with a hybrid method in which we compute the ion flux with the Nernst-Planck (NP) equation coupled with the Local Equilibrium Monte Carlo (LEMC) simulation technique. The resulting NP+LEMC method is able to handle both strong ionic correlations inside the pore (including finite size of ions) and bulk concentrations as low as micromolar. We analyze the effect of bulk ion concentrations, pore parameters, binding site parameters, electrolyte properties, and voltage on the behavior of the device.

  11. Quantifying short-lived events in multistate ionic current measurements.

    PubMed

    Balijepalli, Arvind; Ettedgui, Jessica; Cornio, Andrew T; Robertson, Joseph W F; Cheung, Kin P; Kasianowicz, John J; Vaz, Canute

    2014-02-25

    We developed a generalized technique to characterize polymer-nanopore interactions via single channel ionic current measurements. Physical interactions between analytes, such as DNA, proteins, or synthetic polymers, and a nanopore cause multiple discrete states in the current. We modeled the transitions of the current to individual states with an equivalent electrical circuit, which allowed us to describe the system response. This enabled the estimation of short-lived states that are presently not characterized by existing analysis techniques. Our approach considerably improves the range and resolution of single-molecule characterization with nanopores. For example, we characterized the residence times of synthetic polymers that are three times shorter than those estimated with existing algorithms. Because the molecule's residence time follows an exponential distribution, we recover nearly 20-fold more events per unit time that can be used for analysis. Furthermore, the measurement range was extended from 11 monomers to as few as 8. Finally, we applied this technique to recover a known sequence of single-stranded DNA from previously published ion channel recordings, identifying discrete current states with subpicoampere resolution.

  12. Solution of magnetic field and eddy current problem induced by rotating magnetic poles (abstract)

    NASA Astrophysics Data System (ADS)

    Liu, Z. J.; Low, T. S.

    1996-04-01

    The magnetic field and eddy current problems induced by rotating permanent magnet poles occur in electromagnetic dampers, magnetic couplings, and many other devices. Whereas numerical techniques, for example, finite element methods can be exploited to study various features of these problems, such as heat generation and drag torque development, etc., the analytical solution is always of interest to the designers since it helps them to gain the insight into the interdependence of the parameters involved and provides an efficient tool for designing. Some of the previous work showed that the solution of the eddy current problem due to the linearly moving magnet poles can give satisfactory approximation for the eddy current problem due to rotating fields. However, in many practical cases, especially when the number of magnet poles is small, there is significant effect of flux focusing due to the geometry. The above approximation can therefore lead to marked errors in the theoretical predictions of the device performance. Bernot et al. recently described an analytical solution in a polar coordinate system where the radial field is excited by a time-varying source. A discussion of an analytical solution of the magnetic field and eddy current problems induced by moving magnet poles in radial field machines will be given in this article. The theoretical predictions obtained from this method is compared with the results obtained from finite element calculations. The validity of the method is also checked by the comparison of the theoretical predictions and the measurements from a test machine. It is shown that the introduced solution leads to a significant improvement in the air gap field prediction as compared with the results obtained from the analytical solution that models the eddy current problems induced by linearly moving magnet poles.

  13. Detailed Chemical Characterization of Unresolved Complex Mixtures (UCM) inAtmospheric Organics: Insights into Emission Sources, Atmospheric Processing andSecondary Organic Aerosol Formation

    EPA Science Inventory

    Recent studies suggest that semivolatile organic compounds (SVOCs) are important precursors to secondary organic aerosol (SOA) in urban atmospheres. However, knowledge of the chemical composition of SVOCs is limited by current analytical techniques, which are typically unable to...

  14. e-Research and Learning Theory: What Do Sequence and Process Mining Methods Contribute?

    ERIC Educational Resources Information Center

    Reimann, Peter; Markauskaite, Lina; Bannert, Maria

    2014-01-01

    This paper discusses the fundamental question of how data-intensive e-research methods could contribute to the development of learning theories. Using methodological developments in research on self-regulated learning as an example, it argues that current applications of data-driven analytical techniques, such as educational data mining and its…

  15. Control of Atmospheric Emissions in the Wood Pulping Industry, Volume 3.

    ERIC Educational Resources Information Center

    Hendrickson, E. R.; And Others

    Volume 3 contains chapters 9 through 13 of the final report on the control of atmospheric emissions in the wood pulping industry. These chapters deal with the following topics: sampling and analytical techniques; on-going research related to reduction of emissions; research and development recommendations; current industry investment and operating…

  16. Strategies for Distinguishing Abiotic Chemistry from Martian Biochemistry in Samples Returned from Mars

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Callahan, M. P.; Elsila, J. E.; Stern, J. C.; Dworkin, J. P.

    2012-01-01

    A key goal in the search for evidence of extinct or extant life on Mars will be the identification of chemical biosignatures including complex organic molecules common to all life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, and nucleobases, which serve as the structural basis of information storage in DNA and RNA. However, many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1]. Therefore, an important challenge in the search for evidence of life on Mars will be distinguishing between abiotic chemistry of either meteoritic or martian origin from any chemical biosignatures from an extinct or extant martian biota. Although current robotic missions to Mars, including the 2011 Mars Science Laboratory (MSL) and the planned 2018 ExoMars rovers, will have the analytical capability needed to identify these key classes of organic molecules if present [2,3], return of a diverse suite of martian samples to Earth would allow for much more intensive laboratory studies using a broad array of extraction protocols and state-of-theart analytical techniques for bulk and spatially resolved characterization, molecular detection, and isotopic and enantiomeric compositions that may be required for unambiguous confirmation of martian life. Here we will describe current state-of-the-art laboratory analytical techniques that have been used to characterize the abundance and distribution of amino acids and nucleobases in meteorites, Apollo samples, and comet- exposed materials returned by the Stardust mission with an emphasis on their molecular characteristics that can be used to distinguish abiotic chemistry from biochemistry as we know it. The study of organic compounds in carbonaceous meteorites is highly relevant to Mars sample return analysis, since exogenous organic matter should have accumulated in the martian regolith over the last several billion years and the analytical techniques previously developed for the study of extraterrestrial materials can be applied to martian samples.

  17. Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS)

    NASA Astrophysics Data System (ADS)

    Faulds, Karen; Graham, Duncan; McKenzie, Fiona; MacRae, Douglas; Ricketts, Alastair; Dougan, Jennifer

    2009-02-01

    Surface enhanced resonance Raman scattering (SERRS) is an analytical technique with several advantages over competitive techniques in terms of improved sensitivity and multiplexing. We have made great progress in the development of SERRS as a quantitative analytical method, in particular for the detection of DNA. SERRS is an extremely sensitive and selective technique which when applied to the detection of labelled DNA sequences allows detection limits to be obtained which rival, and in most cases, are better than fluorescence. Here the conditions are explored which will enable the successful detection of DNA using SERRS. The enhancing surface which is used is crucial and in this case suspensions of nanoparticles were used as they allow quantitative behaviour to be achieved and allow analogous systems to current fluorescence based systems to be made. The aggregation conditions required to obtain SERRS of DNA are crucial and herein we describe the use of spermine as an aggregating agent. The nature of the label which is used, be it fluorescent, positively or negatively charged also effects the SERRS response and these conditions are again explored here. We have clearly demonstrated the ability to identify the components of a mixture of 5 analytes in solution by using two different excitation wavelengths and also of a 6-plex using data analysis techniques. These conditions will allow the use of SERRS for the detection of target DNA in a meaningful diagnostic assay.

  18. Transcutaneous analyte measuring method (TAMM): a reflective, noninvasive, near-infrared blood chemistry analyzer

    NASA Astrophysics Data System (ADS)

    Schlager, Kenneth J.; Ruchti, Timothy L.

    1995-04-01

    TAMM for Transcutaneous Analyte Measuring Method is a near infrared spectroscopic technique for the noninvasive measurement of human blood chemistry. A near infrared indium gallium arsenide (InGaAs) photodiode array spectrometer has been developed and tested on over 1,000 patients as a part of an SBIR program sponsored by the Naval Medical Research and Development Command. Nine (9) blood analytes have been measured and evaluated during pre-clinical testing: sodium, chloride, calcium, potassium, bicarbonate, BUN, glucose, hematocrit and hemoglobin. A reflective rather than a transmissive invasive approach to measurement has been taken to avoid variations resulting from skin color and sensor positioning. The current status of the instrumentation, neural network pattern recognition algorithms and test results will be discussed.

  19. Towards an Airframe Noise Prediction Methodology: Survey of Current Approaches

    NASA Technical Reports Server (NTRS)

    Farassat, Fereidoun; Casper, Jay H.

    2006-01-01

    In this paper, we present a critical survey of the current airframe noise (AFN) prediction methodologies. Four methodologies are recognized. These are the fully analytic method, CFD combined with the acoustic analogy, the semi-empirical method and fully numerical method. It is argued that for the immediate need of the aircraft industry, the semi-empirical method based on recent high quality acoustic database is the best available method. The method based on CFD and the Ffowcs William- Hawkings (FW-H) equation with penetrable data surface (FW-Hpds ) has advanced considerably and much experience has been gained in its use. However, more research is needed in the near future particularly in the area of turbulence simulation. The fully numerical method will take longer to reach maturity. Based on the current trends, it is predicted that this method will eventually develop into the method of choice. Both the turbulence simulation and propagation methods need to develop more for this method to become useful. Nonetheless, the authors propose that the method based on a combination of numerical and analytical techniques, e.g., CFD combined with FW-H equation, should also be worked on. In this effort, the current symbolic algebra software will allow more analytical approaches to be incorporated into AFN prediction methods.

  20. Determination of mycotoxins in foods: current state of analytical methods and limitations.

    PubMed

    Köppen, Robert; Koch, Matthias; Siegel, David; Merkel, Stefan; Maul, Ronald; Nehls, Irene

    2010-05-01

    Mycotoxins are natural contaminants produced by a range of fungal species. Their common occurrence in food and feed poses a threat to the health of humans and animals. This threat is caused either by the direct contamination of agricultural commodities or by a "carry-over" of mycotoxins and their metabolites into animal tissues, milk, and eggs after feeding of contaminated hay or corn. As a consequence of their diverse chemical structures and varying physical properties, mycotoxins exhibit a wide range of biological effects. Individual mycotoxins can be genotoxic, mutagenic, carcinogenic, teratogenic, and oestrogenic. To protect consumer health and to reduce economic losses, surveillance and control of mycotoxins in food and feed has become a major objective for producers, regulatory authorities and researchers worldwide. However, the variety of chemical structures makes it impossible to use one single technique for mycotoxin analysis. Hence, a vast number of analytical methods has been developed and validated. The heterogeneity of food matrices combined with the demand for a fast, simultaneous and accurate determination of multiple mycotoxins creates enormous challenges for routine analysis. The most crucial issues will be discussed in this review. These are (1) the collection of representative samples, (2) the performance of classical and emerging analytical methods based on chromatographic or immunochemical techniques, (3) the validation of official methods for enforcement, and (4) the limitations and future prospects of the current methods.

  1. Integrated study plan for space bioprocessing (phase 1)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current economic evaluation and analytical techniques are applied to decision problems faced by the space bioprocessing program. NASA decision makers are enabled to choose candidate substances, after ranking them according to their potential economic benefit. The determination of appropriate evaluation techniques necessary to obtain measures of potential economic benefits which result from the pursuit of various space bioprocessing endeavors are focused upon. The treatment of each disease is impacted by a successful outcome of space bioprocessing and specify data and other input needs for each candidate substance.

  2. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    NASA Astrophysics Data System (ADS)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  3. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Feng; Liu, Yijin; Yu, Xiqian

    Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancementmore » of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allows for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools, and are also discussed towards the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole technique may lead to biased and inaccurate conclusions. We then discuss the current progress of experimental design for synchrotron experiments and methods to mitigate beam effects. Finally, a perspective is provided to elaborate how synchrotron techniques can impact the development of next-generation battery chemistries.« less

  4. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries

    DOE PAGES

    Lin, Feng; Liu, Yijin; Yu, Xiqian; ...

    2017-08-30

    Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancementmore » of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allows for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools, and are also discussed towards the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole technique may lead to biased and inaccurate conclusions. We then discuss the current progress of experimental design for synchrotron experiments and methods to mitigate beam effects. Finally, a perspective is provided to elaborate how synchrotron techniques can impact the development of next-generation battery chemistries.« less

  5. Nanomanipulation-Coupled Matrix-Assisted Laser Desorption/ Ionization-Direct Organelle Mass Spectrometry: A Technique for the Detailed Analysis of Single Organelles

    NASA Astrophysics Data System (ADS)

    Phelps, Mandy S.; Sturtevant, Drew; Chapman, Kent D.; Verbeck, Guido F.

    2016-02-01

    We describe a novel technique combining precise organelle microextraction with deposition and matrix-assisted laser desorption/ionization (MALDI) for a rapid, minimally invasive mass spectrometry (MS) analysis of single organelles from living cells. A dual-positioner nanomanipulator workstation was utilized for both extraction of organelle content and precise co-deposition of analyte and matrix solution for MALDI-direct organelle mass spectrometry (DOMS) analysis. Here, the triacylglycerol (TAG) profiles of single lipid droplets from 3T3-L1 adipocytes were acquired and results validated with nanoelectrospray ionization (NSI) MS. The results demonstrate the utility of the MALDI-DOMS technique as it enabled longer mass analysis time, higher ionization efficiency, MS imaging of the co-deposited spot, and subsequent MS/MS capabilities of localized lipid content in comparison to NSI-DOMS. This method provides selective organellar resolution, which complements current biochemical analyses and prompts for subsequent subcellular studies to be performed where limited samples and analyte volume are of concern.

  6. MALDI mass spectrometry imaging, from its origins up to today: the state of the art.

    PubMed

    Francese, Simona; Dani, Francesca R; Traldi, Pietro; Mastrobuoni, Guido; Pieraccini, Giuseppe; Moneti, Gloriano

    2009-02-01

    Mass Spectrometry (MS) has a number of features namely sensitivity, high dynamic range, high resolution, and versatility which make it a very powerful analytical tool for a wide spectrum of applications spanning all the life science fields. Among all the MS techniques, MALDI Imaging mass spectrometry (MALDI MSI) is currently one of the most exciting both for its rapid technological improvements, and for its great potential in high impact bioscience fields. Here, MALDI MSI general principles are described along with technical and instrumental details as well as application examples. Imaging MS instruments and imaging mass spectrometric techniques other than MALDI, are presented along with examples of their use. As well as reporting MSI successes in several bioscience fields, an attempt is made to take stock of what has been achieved so far with this technology and to discuss the analytical and technological advances required for MSI to be applied as a routine technique in clinical diagnostics, clinical monitoring and in drug discovery.

  7. Theoretical Treatment of Ion Transfers in Two Polarizable Interface Systems When the Analyte Has Access to Both Interfaces.

    PubMed

    Olmos, José Manuel; Molina, Ángela; Laborda, Eduardo; Millán-Barrios, Enrique; Ortuño, Joaquín Ángel

    2018-02-06

    A new theory is presented to tackle the study of transfer processes of hydrophilic ions in two polarizable interface systems when the analyte is initially present in both aqueous phases. The treatment is applied to macrointerfaces (linear diffusion) and microholes (highly convergent diffusion), obtaining analytical equations for the current response in any voltammetric technique. The novel equations predict two signals in the current-potential curves that are symmetric when the compositions of the aqueous phases are identical while asymmetries appear otherwise. The theoretical results show good agreement with the experimental behavior of the "double transfer voltammograms" reported by Dryfe et al. in cyclic voltammetry (CV) ( Anal. Chem. 2014 , 86 , 435 - 442 ) as well as with cyclic square wave voltammetry (cSWV) experiments performed in the current work. The theoretical treatment is also extended to the situation where the target ion is lipophilic and initially present in the organic phase. The theory predicts an opposite effect of the lipophilicity of the ion on the shape of the voltammograms, which is validated experimentally via both CV and cSWV. For the above two cases, simple and manageable expressions and diagnosis criteria are derived for the qualitative and quantitative study of ion lipophilicity. The ion-transfer potentials can be easily quantified from the separation between the two signals making use of explicit analytical equations.

  8. Novel strategies for sample preparation in forensic toxicology.

    PubMed

    Samanidou, Victoria; Kovatsi, Leda; Fragou, Domniki; Rentifis, Konstantinos

    2011-09-01

    This paper provides a review of novel strategies for sample preparation in forensic toxicology. The review initially outlines the principle of each technique, followed by sections addressing each class of abused drugs separately. The novel strategies currently reviewed focus on the preparation of various biological samples for the subsequent determination of opiates, benzodiazepines, amphetamines, cocaine, hallucinogens, tricyclic antidepressants, antipsychotics and cannabinoids. According to our experience, these analytes are the most frequently responsible for intoxications in Greece. The applications of techniques such as disposable pipette extraction, microextraction by packed sorbent, matrix solid-phase dispersion, solid-phase microextraction, polymer monolith microextraction, stir bar sorptive extraction and others, which are rapidly gaining acceptance in the field of toxicology, are currently reviewed.

  9. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research.

    PubMed

    Ercius, Peter; Alaidi, Osama; Rames, Matthew J; Ren, Gang

    2015-10-14

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research

    PubMed Central

    Alaidi, Osama; Rames, Matthew J.

    2016-01-01

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is a technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. This review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. PMID:26087941

  11. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines

    PubMed Central

    Zhang, Lei; Dou, Xiao-Wen; Zhang, Cheng; Logrieco, Antonio F.; Yang, Mei-Hua

    2018-01-01

    The presence of mycotoxins in herbal medicines is an established problem throughout the entire world. The sensitive and accurate analysis of mycotoxin in complicated matrices (e.g., herbs) typically involves challenging sample pretreatment procedures and an efficient detection instrument. However, although numerous reviews have been published regarding the occurrence of mycotoxins in herbal medicines, few of them provided a detailed summary of related analytical methods for mycotoxin determination. This review focuses on analytical techniques including sampling, extraction, cleanup, and detection for mycotoxin determination in herbal medicines established within the past ten years. Dedicated sections of this article address the significant developments in sample preparation, and highlight the importance of this procedure in the analytical technology. This review also summarizes conventional chromatographic techniques for mycotoxin qualification or quantitation, as well as recent studies regarding the development and application of screening assays such as enzyme-linked immunosorbent assays, lateral flow immunoassays, aptamer-based lateral flow assays, and cytometric bead arrays. The present work provides a good insight regarding the advanced research that has been done and closes with an indication of future demand for the emerging technologies. PMID:29393905

  12. Immobilization of Fab' fragments onto substrate surfaces: A survey of methods and applications.

    PubMed

    Crivianu-Gaita, Victor; Thompson, Michael

    2015-08-15

    Antibody immobilization onto surfaces has widespread applications in many different fields. It is desirable to bind antibodies such that their fragment-antigen-binding (Fab) units are oriented away from the surface in order to maximize analyte binding. The immobilization of only Fab' fragments yields benefits over the more traditional whole antibody immobilization technique. Bound Fab' fragments display higher surface densities, yielding a higher binding capacity for the analyte. The nucleophilic sulfide of the Fab' fragments allows for specific orientations to be achieved. For biosensors, this indicates a higher sensitivity and lower detection limit for a target analyte. The last thirty years have shown tremendous progress in the immobilization of Fab' fragments onto gold, Si-based, polysaccharide-based, plastic-based, magnetic, and inorganic surfaces. This review will show the current scope of Fab' immobilization techniques available and illustrate methods employed to minimize non-specific adsorption of undesirables. Furthermore, a variety of examples will be given to show the versatility of immobilized Fab' fragments in different applications and future directions of the field will be addressed, especially regarding biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Development of a particle-trap preconcentration-soft ionization mass spectrometric technique for the quantification of mercury halides in air.

    PubMed

    Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A

    2015-01-01

    Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.

  14. A comparison of several techniques for imputing tree level data

    Treesearch

    David Gartner

    2002-01-01

    As Forest Inventory and Analysis (FIA) changes from periodic surveys to the multipanel annual survey, new analytical methods become available. The current official statistic is the moving average. One alternative is an updated moving average. Several methods of updating plot per acre volume have been discussed previously. However, these methods may not be appropriate...

  15. A New Look at Multiple Goal Pursuit: The Promise of a Person-Centered Approach

    ERIC Educational Resources Information Center

    Wormington, Stephanie Virgine; Linnenbrink-Garcia, Lisa

    2017-01-01

    The current study reviewed and synthesized studies employing a person-centered approach to studying achievement goals. Towards this end, a common labeling scheme was developed for goal profiles. Ten profile types were identified across studies and compared via meta-analytic techniques in terms of academic motivation, social/emotional well-being,…

  16. Conceptualizing an Inclusive Economic Approach to GLBT Labor Issues: Current Research and Future Directions

    ERIC Educational Resources Information Center

    van Loo, Jasper B.; Rocco, Tonette S.

    2008-01-01

    We discuss how economic theory has analyzed the effects of being GLBT (Gay, Lesbian, Bisexual or Transgender). We find that economics has focused on finding earnings differentials between GLBT and heterosexuals. The issue is, however, whether the standard analytical techniques available in economics, can be applied to sexual minorities. A number…

  17. The Effect of Physical Activity on Children with ADHD: A Quantitative Review of the Literature

    ERIC Educational Resources Information Center

    Cornelius, Colleen; Fedewa, Alicia L.; Ahn, Soyeon

    2017-01-01

    Research on the effects of physical activity on children with attention deficit hyperactivity disorder is promising, yet no attempt has been made to integrate current findings using meta-analytic techniques. Using a meta-regression, the present study examined the effectives of physical activity for children with attention deficit hyperactivity…

  18. Language Assessment and the Inseparability of Lexis and Grammar: Focus on the Construct of Speaking

    ERIC Educational Resources Information Center

    Römer, Ute

    2017-01-01

    This paper aims to connect recent corpus research on phraseology with current language testing practice. It discusses how corpora and corpus-analytic techniques can illuminate central aspects of speech and help in conceptualizing the notion of lexicogrammar in second language speaking assessment. The description of speech and some of its core…

  19. The role of analytical chemistry in Niger Delta petroleum exploration: a review.

    PubMed

    Akinlua, Akinsehinwa

    2012-06-12

    Petroleum and organic matter from which the petroleum is derived are composed of organic compounds with some trace elements. These compounds give an insight into the origin, thermal maturity and paleoenvironmental history of petroleum, which are essential elements in petroleum exploration. The main tool to acquire the geochemical data is analytical techniques. Due to progress in the development of new analytical techniques, many hitherto petroleum exploration problems have been resolved. Analytical chemistry has played a significant role in the development of petroleum resources of Niger Delta. Various analytical techniques that have aided the success of petroleum exploration in the Niger Delta are discussed. The analytical techniques that have helped to understand the petroleum system of the basin are also described. Recent and emerging analytical methodologies including green analytical methods as applicable to petroleum exploration particularly Niger Delta petroleum province are discussed in this paper. Analytical chemistry is an invaluable tool in finding the Niger Delta oils. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Improving the trust in results of numerical simulations and scientific data analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappello, Franck; Constantinescu, Emil; Hovland, Paul

    This white paper investigates several key aspects of the trust that a user can give to the results of numerical simulations and scientific data analytics. In this document, the notion of trust is related to the integrity of numerical simulations and data analytics applications. This white paper complements the DOE ASCR report on Cybersecurity for Scientific Computing Integrity by (1) exploring the sources of trust loss; (2) reviewing the definitions of trust in several areas; (3) providing numerous cases of result alteration, some of them leading to catastrophic failures; (4) examining the current notion of trust in numerical simulation andmore » scientific data analytics; (5) providing a gap analysis; and (6) suggesting two important research directions and their respective research topics. To simplify the presentation without loss of generality, we consider that trust in results can be lost (or the results’ integrity impaired) because of any form of corruption happening during the execution of the numerical simulation or the data analytics application. In general, the sources of such corruption are threefold: errors, bugs, and attacks. Current applications are already using techniques to deal with different types of corruption. However, not all potential corruptions are covered by these techniques. We firmly believe that the current level of trust that a user has in the results is at least partially founded on ignorance of this issue or the hope that no undetected corruptions will occur during the execution. This white paper explores the notion of trust and suggests recommendations for developing a more scientifically grounded notion of trust in numerical simulation and scientific data analytics. We first formulate the problem and show that it goes beyond previous questions regarding the quality of results such as V&V, uncertainly quantification, and data assimilation. We then explore the complexity of this difficult problem, and we sketch complementary general approaches to address it. This paper does not focus on the trust that the execution will actually complete. The product of simulation or of data analytic executions is the final element of a potentially long chain of transformations, where each stage has the potential to introduce harmful corruptions. These corruptions may produce results that deviate from the user-expected accuracy without notifying the user of this deviation. There are many potential sources of corruption before and during the execution; consequently, in this white paper we do not focus on the protection of the end result after the execution.« less

  1. Analytical techniques: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques.

  2. Analytical method for measuring cosmogenic 35S in natural waters

    DOE PAGES

    Uriostegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; ...

    2015-05-18

    Here, cosmogenic sulfur-35 in water as dissolved sulfate ( 35SO 4) has successfully been used as an intrinsic hydrologic tracer in low-SO 4, high-elevation basins. Its application in environmental waters containing high SO 4 concentrations has been limited because only small amounts of SO 4 can be analyzed using current liquid scintillation counting (LSC) techniques. We present a new analytical method for analyzing large amounts of BaSO 4 for 35S. We quantify efficiency gains when suspending BaSO 4 precipitate in Inta-Gel Plus cocktail, purify BaSO 4 precipitate to remove dissolved organic matter, mitigate interference of radium-226 and its daughter productsmore » by selection of high purity barium chloride, and optimize LSC counting parameters for 35S determination in larger masses of BaSO 4. Using this improved procedure, we achieved counting efficiencies that are comparable to published LSC techniques despite a 10-fold increase in the SO 4 sample load. 35SO 4 was successfully measured in high SO 4 surface waters and groundwaters containing low ratios of 35S activity to SO 4 mass demonstrating that this new analytical method expands the analytical range of 35SO 4 and broadens the utility of 35SO 4 as an intrinsic tracer in hydrologic settings.« less

  3. Review on microfluidic paper-based analytical devices towards commercialisation.

    PubMed

    Akyazi, Tugce; Basabe-Desmonts, Lourdes; Benito-Lopez, Fernando

    2018-02-25

    Paper-based analytical devices introduce an innovative platform technology for fluid handling and analysis, with wide range of applications, promoting low cost, ease of fabrication/operation and equipment independence. This review gives a general overview on the fabrication techniques reported to date, revealing and discussing their weak points as well as the newest approaches in order to overtake current mass production limitations and therefore commercialisation. Moreover, this review aims especially to highlight novel technologies appearing in literature for the effective handling and controlling of fluids. The lack of flow control is the main problem of paper-based analytical devices, which generates obstacles for marketing and slows down the transition of paper devices from the laboratory into the consumers' hands. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. An update on pharmaceutical film coating for drug delivery.

    PubMed

    Felton, Linda A; Porter, Stuart C

    2013-04-01

    Pharmaceutical coating processes have generally been transformed from what was essentially an art form in the mid-twentieth century to a much more technology-driven process. This review article provides a basic overview of current film coating processes, including a discussion on polymer selection, coating formulation additives and processing equipment. Substrate considerations for pharmaceutical coating processes are also presented. While polymeric coating operations are commonplace in the pharmaceutical industry, film coating processes are still not fully understood, which presents serious challenges with current regulatory requirements. Novel analytical technologies and various modeling techniques that are being used to better understand film coating processes are discussed. This review article also examines the challenges of implementing process analytical technologies in coating operations, active pharmaceutical ingredients in polymer film coatings, the use of high-solids coating systems and continuous coating and other novel coating application methods.

  5. Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review.

    PubMed

    Tankiewicz, Maciej; Fenik, Jolanta; Biziuk, Marek

    2011-10-30

    The intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to monitor pesticide residues in the environment with the aid of all accessible analytical methods. The analysis of samples for the presence of pesticides is problematic, because of the laborious and time-consuming operations involved in preparing samples for analysis, which themselves may be a source of additional contaminations and errors. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solventless and solvent-minimized techniques are coming into use. This paper discusses the most commonly used over the last 15 years sample preparation techniques for monitoring organophosphorus and organonitrogen pesticides residue in water samples. Furthermore, a significant trend in sample preparation, in accordance with the principles of 'Green Chemistry' is the simplification, miniaturization and automation of analytical techniques. In view of this aspect, several novel techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. The paper describes extraction techniques requiring the use of solvents - liquid-liquid extraction (LLE) and its modifications, membrane extraction techniques, hollow fibre-protected two-phase solvent microextraction, liquid phase microextraction based on the solidification of a floating organic drop (LPME-SFO), solid-phase extraction (SPE) and single-drop microextraction (SDME) - as well as solvent-free techniques - solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The advantages and drawbacks of these techniques are also discussed, and some solutions to their limitations are proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Recent Developments in the Speciation and Determination of Mercury Using Various Analytical Techniques

    PubMed Central

    Suvarapu, Lakshmi Narayana; Baek, Sung-Ok

    2015-01-01

    This paper reviews the speciation and determination of mercury by various analytical techniques such as atomic absorption spectrometry, voltammetry, inductively coupled plasma techniques, spectrophotometry, spectrofluorometry, high performance liquid chromatography, and gas chromatography. Approximately 126 research papers on the speciation and determination of mercury by various analytical techniques published in international journals since 2013 are reviewed. PMID:26236539

  7. Evaluation of three new laser spectrometer techniques for in-situ carbon monoxide measurements

    NASA Astrophysics Data System (ADS)

    Zellweger, C.; Steinbacher, M.; Buchmann, B.

    2012-07-01

    Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. However, the current data quality objectives of the World Meteorological Organization (WMO) for carbon monoxide (CO) in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came on the market with promising properties for trace gas analytics. The current study compares three instruments that are recently commercially available (since 2011) with the up to now best available technique (vacuum UV fluorescence) and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques provide a considerably better performance compared to previous techniques, although some issues such as temperature influence and cross sensitivities need further attention.

  8. A Comparison of the Glass Meta-Analytic Technique with the Hunter-Schmidt Meta-Analytic Technique on Three Studies from the Education Literature.

    ERIC Educational Resources Information Center

    Hough, Susan L.; Hall, Bruce W.

    The meta-analytic techniques of G. V. Glass (1976) and J. E. Hunter and F. L. Schmidt (1977) were compared through their application to three meta-analytic studies from education literature. The following hypotheses were explored: (1) the overall mean effect size would be larger in a Hunter-Schmidt meta-analysis (HSMA) than in a Glass…

  9. The Role of Teamwork in the Analysis of Big Data: A Study of Visual Analytics and Box Office Prediction.

    PubMed

    Buchanan, Verica; Lu, Yafeng; McNeese, Nathan; Steptoe, Michael; Maciejewski, Ross; Cooke, Nancy

    2017-03-01

    Historically, domains such as business intelligence would require a single analyst to engage with data, develop a model, answer operational questions, and predict future behaviors. However, as the problems and domains become more complex, organizations are employing teams of analysts to explore and model data to generate knowledge. Furthermore, given the rapid increase in data collection, organizations are struggling to develop practices for intelligence analysis in the era of big data. Currently, a variety of machine learning and data mining techniques are available to model data and to generate insights and predictions, and developments in the field of visual analytics have focused on how to effectively link data mining algorithms with interactive visuals to enable analysts to explore, understand, and interact with data and data models. Although studies have explored the role of single analysts in the visual analytics pipeline, little work has explored the role of teamwork and visual analytics in the analysis of big data. In this article, we present an experiment integrating statistical models, visual analytics techniques, and user experiments to study the role of teamwork in predictive analytics. We frame our experiment around the analysis of social media data for box office prediction problems and compare the prediction performance of teams, groups, and individuals. Our results indicate that a team's performance is mediated by the team's characteristics such as openness of individual members to others' positions and the type of planning that goes into the team's analysis. These findings have important implications for how organizations should create teams in order to make effective use of information from their analytic models.

  10. An overview on current fluid-inclusion research and applications

    USGS Publications Warehouse

    Chi, G.; Chou, I.-Ming; Lu, H.-Z.

    2003-01-01

    This paper provides an overview of some of the more important developments in fluid-inclusion research and applications in recent years, including fluid-inclusion petrography, PVTX studies, and analytical techniques. In fluid-inclusion petrography, the introduction of the concept of 'fluid-inclusion assemblage' has been a major advance. In PVTX studies, the use of synthetic fluid inclusions and hydrothermal diamond-anvil cells has greatly contributed to the characterization of the phase behaviour of geologically relevant fluid systems. Various analytical methods are being developed and refined rapidly, with the Laser-Raman and LA-ICP-MS techniques being particularly useful for volatile and solute analyses, respectively. Ore deposit research has been and will continue to be the main field of application of fluid inclusions. However, fluid inclusions have been increasingly applied to other fields of earth science, especially in petroleum geology and the study of magmatic and earth interior processes.

  11. An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Huang, Zhenyu; Zhou, Ning

    With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallelmore » state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.« less

  12. A modal parameter extraction procedure applicable to linear time-invariant dynamic systems

    NASA Technical Reports Server (NTRS)

    Kurdila, A. J.; Craig, R. R., Jr.

    1985-01-01

    Modal analysis has emerged as a valuable tool in many phases of the engineering design process. Complex vibration and acoustic problems in new designs can often be remedied through use of the method. Moreover, the technique has been used to enhance the conceptual understanding of structures by serving to verify analytical models. A new modal parameter estimation procedure is presented. The technique is applicable to linear, time-invariant systems and accommodates multiple input excitations. In order to provide a background for the derivation of the method, some modal parameter extraction procedures currently in use are described. Key features implemented in the new technique are elaborated upon.

  13. Supercritical fluid chromatography: a promising alternative to current bioanalytical techniques.

    PubMed

    Dispas, Amandine; Jambo, Hugues; André, Sébastien; Tyteca, Eva; Hubert, Philippe

    2018-01-01

    During the last years, chemistry was involved in the worldwide effort toward environmental problems leading to the birth of green chemistry. In this context, green analytical tools were developed as modern Supercritical Fluid Chromatography in the field of separative techniques. This chromatographic technique knew resurgence a few years ago, thanks to its high efficiency, fastness and robustness of new generation equipment. These advantages and its easy hyphenation to MS fulfill the requirements of bioanalysis regarding separation capacity and high throughput. In the present paper, the technical aspects focused on bioanalysis specifications will be detailed followed by a critical review of bioanalytical supercritical fluid chromatography methods published in the literature.

  14. Analytical techniques and instrumentation: A compilation. [analytical instrumentation, materials performance, and systems analysis

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical information is presented covering the areas of: (1) analytical instrumentation useful in the analysis of physical phenomena; (2) analytical techniques used to determine the performance of materials; and (3) systems and component analyses for design and quality control.

  15. [Sample preparation and bioanalysis in mass spectrometry].

    PubMed

    Bourgogne, Emmanuel; Wagner, Michel

    2015-01-01

    The quantitative analysis of compounds of clinical interest of low molecular weight (<1000 Da) in biological fluids is currently in most cases performed by liquid chromatography-mass spectrometry (LC-MS). Analysis of these compounds in biological fluids (plasma, urine, saliva, hair...) is a difficult task requiring a sample preparation. Sample preparation is a crucial part of chemical/biological analysis and in a sense is considered the bottleneck of the whole analytical process. The main objectives of sample preparation are the removal of potential interferences, analyte preconcentration, and converting (if needed) the analyte into a more suitable form for detection or separation. Without chromatographic separation, endogenous compounds, co-eluted products may affect a quantitative method in mass spectrometry performance. This work focuses on three distinct parts. First, quantitative bioanalysis will be defined, different matrices and sample preparation techniques currently used in bioanalysis by mass spectrometry of/for small molecules of clinical interest in biological fluids. In a second step the goals of sample preparation will be described. Finally, in a third step, sample preparation strategies will be made either directly ("dilute and shoot") or after precipitation.

  16. The Shock and Vibration Bulletin. Part 2. Invited Papers, Structural Dynamics

    DTIC Science & Technology

    1974-08-01

    VIKING LANDER DYNAMICS 41 Mr. Joseph C. Pohlen, Martin Marietta Aerospace, Denver, Colorado Structural Dynamics PERFORMANCE OF STATISTICAL ENERGY ANALYSIS 47...aerospace structures. Analytical prediction of these environments is beyond the current scope of classical modal techniques. Statistical energy analysis methods...have been developed that circumvent the difficulties of high-frequency nodal analysis. These statistical energy analysis methods are evaluated

  17. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms

    PubMed Central

    Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem

    2017-01-01

    Introduction There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility. PMID:28103450

  18. Paper-based analytical devices for clinical diagnosis: recent advances in the fabrication techniques and sensing mechanisms.

    PubMed

    Sher, Mazhar; Zhuang, Rachel; Demirci, Utkan; Asghar, Waseem

    2017-04-01

    There is a significant interest in developing inexpensive portable biosensing platforms for various applications including disease diagnostics, environmental monitoring, food safety, and water testing at the point-of-care (POC) settings. Current diagnostic assays available in the developed world require sophisticated laboratory infrastructure and expensive reagents. Hence, they are not suitable for resource-constrained settings with limited financial resources, basic health infrastructure, and few trained technicians. Cellulose and flexible transparency paper-based analytical devices have demonstrated enormous potential for developing robust, inexpensive and portable devices for disease diagnostics. These devices offer promising solutions to disease management in resource-constrained settings where the vast majority of the population cannot afford expensive and highly sophisticated treatment options. Areas covered: In this review, the authors describe currently developed cellulose and flexible transparency paper-based microfluidic devices, device fabrication techniques, and sensing technologies that are integrated with these devices. The authors also discuss the limitations and challenges associated with these devices and their potential in clinical settings. Expert commentary: In recent years, cellulose and flexible transparency paper-based microfluidic devices have demonstrated the potential to become future healthcare options despite a few limitations such as low sensitivity and reproducibility.

  19. Inositol phosphates in the environment.

    PubMed Central

    Turner, Benjamin L; Papházy, Michael J; Haygarth, Philip M; McKelvie, Ian D

    2002-01-01

    The inositol phosphates are a group of organic phosphorus compounds found widely in the natural environment, but that represent the greatest gap in our understanding of the global phosphorus cycle. They exist as inositols in various states of phosphorylation (bound to between one and six phosphate groups) and isomeric forms (e.g. myo, D-chiro, scyllo, neo), although myo-inositol hexakisphosphate is by far the most prevalent form in nature. In terrestrial environments, inositol phosphates are principally derived from plants and accumulate in soils to become the dominant class of organic phosphorus compounds. Inositol phosphates are also present in large amounts in aquatic environments, where they may contribute to eutrophication. Despite the prevalence of inositol phosphates in the environment, their cycling, mobility and bioavailability are poorly understood. This is largely related to analytical difficulties associated with the extraction, separation and detection of inositol phosphates in environmental samples. This review summarizes the current knowledge of inositol phosphates in the environment and the analytical techniques currently available for their detection in environmental samples. Recent advances in technology, such as the development of suitable chromatographic and capillary electrophoresis separation techniques, should help to elucidate some of the more pertinent questions regarding inositol phosphates in the natural environment. PMID:12028785

  20. Quantitative proteomics in the field of microbiology.

    PubMed

    Otto, Andreas; Becher, Dörte; Schmidt, Frank

    2014-03-01

    Quantitative proteomics has become an indispensable analytical tool for microbial research. Modern microbial proteomics covers a wide range of topics in basic and applied research from in vitro characterization of single organisms to unravel the physiological implications of stress/starvation to description of the proteome content of a cell at a given time. With the techniques available, ranging from classical gel-based procedures to modern MS-based quantitative techniques, including metabolic and chemical labeling, as well as label-free techniques, quantitative proteomics is today highly successful in sophisticated settings of high complexity such as host-pathogen interactions, mixed microbial communities, and microbial metaproteomics. In this review, we will focus on the vast range of techniques practically applied in current research with an introduction of the workflows used for quantitative comparisons, a description of the advantages/disadvantages of the various methods, reference to hallmark publications and presentation of applications in current microbial research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Deriving Earth Science Data Analytics Tools/Techniques Requirements

    NASA Astrophysics Data System (ADS)

    Kempler, S. J.

    2015-12-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists. Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics tools/techniques requirements that would support specific ESDA type goals. Representative existing data analytics tools/techniques relevant to ESDA will also be addressed.

  2. Design/Analysis of the JWST ISIM Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Johnston, John; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz; Rodini,Benjamin; Young, Daniel

    1990-01-01

    A major design and analysis challenge for the JWST ISIM structure is thermal survivability of metal/composite bonded joints below the cryogenic temperature of 30K (-405 F). Current bonded joint concepts include internal invar plug fittings, external saddle titanium/invar fittings and composite gusset/clip joints all bonded to M55J/954-6 and T300/954-6 hybrid composite tubes (75mm square). Analytical experience and design work done on metal/composite bonded joints at temperatures below that of liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are sparse in the literature. Increasing this challenge is the difficulty in testing for these required tools and properties at cryogenic temperatures. To gain confidence in analyzing and designing the ISIM joints, a comprehensive joint development test program has been planned and is currently running. The test program is designed to produce required analytical tools and develop a composite failure criterion for bonded joint strengths at cryogenic temperatures. Finite element analysis is used to design simple test coupons that simulate anticipated stress states in the flight joints; subsequently the test results are used to correlate the analysis technique for the final design of the bonded joints. In this work, we present an overview of the analysis and test methodology, current results, and working joint designs based on developed techniques and properties.

  3. Comparison of Measured Leakage Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Ladbury, R.; Marshall, P. W.; Reed, R. A.; Howe, C.; Weller, B.; Mendenhall, M.; Waczynski, A.; Jordan, T. M.; Fodness, B.

    2006-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distribution were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [I]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Car10 code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. The nuclear elastic component (also calculated using the MCNPX) has a negligible effect on the shape of the damage distribution. The Coulombic contribution was calculated using MRED [3,4], a Geant4 [4,5] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  4. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection.

    PubMed

    Chylewska, Agnieszka; Ogryzek, M; Makowski, Mariusz

    2017-10-23

    New analytical and molecular methods for microorganisms are being developed on various features of identification i.e. selectivity, specificity, sensitivity, rapidity and discrimination of the viable cell. The presented review was established following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis. This contribution also focuses on the development of analytical and biological methods in the analysis of microorganisms, with special attention paid to bio-samples containing microbes (blood, urine, lymph, wastewater). First, the paper discusses microbes characterization, their structure, surface, properties, size and then it describes pivotal points in the bacteria, viruses and fungi separation procedure obtained by researchers in the last 30 years. According to the above, detection techniques can be classified into three categories, which were, in our opinion, examined and modified most intensively during this period: electrophoretic, nucleic-acid-based, and immunological methods. The review covers also the progress, limitations and challenges of these approaches and emphasizes the advantages of new separative techniques in selective fractionating of microorganisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Characterization of Cyclodextrin/Volatile Inclusion Complexes: A Review.

    PubMed

    Kfoury, Miriana; Landy, David; Fourmentin, Sophie

    2018-05-17

    Cyclodextrins (CDs) are a family of cyclic oligosaccharides that constitute one of the most widely used molecular hosts in supramolecular chemistry. Encapsulation in the hydrophobic cavity of CDs positively affects the physical and chemical characteristics of the guests upon the formation of inclusion complexes. Such a property is interestingly employed to retain volatile guests and reduce their volatility. Within this scope, the starting crucial point for a suitable and careful characterization of an inclusion complex is to assess the value of the formation constant (K f ), also called stability or binding constant. This task requires the application of the appropriate analytical method and technique. Thus, the aim of the present paper is to give a general overview of the main analytical tools used for the determination of K f values for CD/volatile inclusion complexes. This review emphasizes on the advantages, inconvenients and limits of each applied method. A special attention is also dedicated to the improvement of the current methods and to the development of new techniques. Further, the applicability of each technique is illustrated by a summary of data obtained from the literature.

  6. User-Centered Evaluation of Visual Analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholtz, Jean C.

    Visual analytics systems are becoming very popular. More domains now use interactive visualizations to analyze the ever-increasing amount and heterogeneity of data. More novel visualizations are being developed for more tasks and users. We need to ensure that these systems can be evaluated to determine that they are both useful and usable. A user-centered evaluation for visual analytics needs to be developed for these systems. While many of the typical human-computer interaction (HCI) evaluation methodologies can be applied as is, others will need modification. Additionally, new functionality in visual analytics systems needs new evaluation methodologies. There is a difference betweenmore » usability evaluations and user-centered evaluations. Usability looks at the efficiency, effectiveness, and user satisfaction of users carrying out tasks with software applications. User-centered evaluation looks more specifically at the utility provided to the users by the software. This is reflected in the evaluations done and in the metrics used. In the visual analytics domain this is very challenging as users are most likely experts in a particular domain, the tasks they do are often not well defined, the software they use needs to support large amounts of different kinds of data, and often the tasks last for months. These difficulties are discussed more in the section on User-centered Evaluation. Our goal is to provide a discussion of user-centered evaluation practices for visual analytics, including existing practices that can be carried out and new methodologies and metrics that need to be developed and agreed upon by the visual analytics community. The material provided here should be of use for both researchers and practitioners in the field of visual analytics. Researchers and practitioners in HCI and interested in visual analytics will find this information useful as well as a discussion on changes that need to be made to current HCI practices to make them more suitable to visual analytics. A history of analysis and analysis techniques and problems is provided as well as an introduction to user-centered evaluation and various evaluation techniques for readers from different disciplines. The understanding of these techniques is imperative if we wish to support analysis in the visual analytics software we develop. Currently the evaluations that are conducted and published for visual analytics software are very informal and consist mainly of comments from users or potential users. Our goal is to help researchers in visual analytics to conduct more formal user-centered evaluations. While these are time-consuming and expensive to carryout, the outcomes of these studies will have a defining impact on the field of visual analytics and help point the direction for future features and visualizations to incorporate. While many researchers view work in user-centered evaluation as a less-than-exciting area to work, the opposite is true. First of all, the goal is user-centered evaluation is to help visual analytics software developers, researchers, and designers improve their solutions and discover creative ways to better accommodate their users. Working with the users is extremely rewarding as well. While we use the term “users” in almost all situations there are a wide variety of users that all need to be accommodated. Moreover, the domains that use visual analytics are varied and expanding. Just understanding the complexities of a number of these domains is exciting. Researchers are trying out different visualizations and interactions as well. And of course, the size and variety of data are expanding rapidly. User-centered evaluation in this context is rapidly changing. There are no standard processes and metrics and thus those of us working on user-centered evaluation must be creative in our work with both the users and with the researchers and developers.« less

  7. The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa.

    PubMed

    Manickum, Thavrin; John, Wilson

    2015-07-01

    The availability of national test centers to offer a routine service for analysis and quantitation of some selected steroid hormones [natural estrogens (17-β-estradiol, E2; estrone, E1; estriol, E3), synthetic estrogen (17-α-ethinylestradiol, EE2), androgen (testosterone), and progestogen (progesterone)] in wastewater matrix was investigated; corresponding internationally used chemical- and immuno-analytical test methods were reviewed. The enzyme-linked immunosorbent assay (ELISA) (immuno-analytical technique) was also assessed for its suitability as a routine test method to quantitate the levels of these hormones at a sewage/wastewater treatment plant (WTP) (Darvill, Pietermaritzburg, South Africa), over a 2-year period. The method performance and other relevant characteristics of the immuno-analytical ELISA method were compared to the conventional chemical-analytical methodology, like gas/liquid chromatography-mass spectrometry (GC/LC-MS), and GC-LC/tandem mass spectrometry (MSMS), for quantitation of the steroid hormones in wastewater and environmental waters. The national immuno-analytical ELISA technique was found to be sensitive (LOQ 5 ng/L, LOD 0.2-5 ng/L), accurate (mean recovery 96%), precise (RSD 7-10%), and cost-effective for screening and quantitation of these steroid hormones in wastewater and environmental water matrix. A survey of the most current international literature indicates a fairly equal use of the LC-MS/MS, GC-MS/MS (chemical-analytical), and ELISA (immuno-analytical) test methods for screening and quantitation of the target steroid hormones in both water and wastewater matrix. Internationally, the observed sensitivity, based on LOQ (ng/L), for the steroid estrogens E1, E2, EE2, is, in decreasing order: LC-MSMS (0.08-9.54) > GC-MS (1) > ELISA (5) (chemical-analytical > immuno-analytical). At the national level, the routine, unoptimized chemical-analytical LC-MSMS method was found to lack the required sensitivity for meeting environmental requirements for steroid hormone quantitation. Further optimization of the sensitivity of the chemical-analytical LC-tandem mass spectrometry methods, especially for wastewater screening, in South Africa is required. Risk assessment studies showed that it was not practical to propose standards or allowable limits for the steroid estrogens E1, E2, EE2, and E3; the use of predicted-no-effect concentration values of the steroid estrogens appears to be appropriate for use in their risk assessment in relation to aquatic organisms. For raw water sources, drinking water, raw and treated wastewater, the use of bioassays, with trigger values, is a useful screening tool option to decide whether further examination of specific endocrine activity may be warranted, or whether concentrations of such activity are of low priority, with respect to health concerns in the human population. The achievement of improved quantitation limits for immuno-analytical methods, like ELISA, used for compound quantitation, and standardization of the method for measuring E2 equivalents (EEQs) used for biological activity (endocrine: e.g., estrogenic) are some areas for future EDC research.

  8. Finding Waldo: Learning about Users from their Interactions.

    PubMed

    Brown, Eli T; Ottley, Alvitta; Zhao, Helen; Quan Lin; Souvenir, Richard; Endert, Alex; Chang, Remco

    2014-12-01

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user's interactions with a system reflect a large amount of the user's reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user's task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, we conduct an experiment in which participants perform a visual search task, and apply well-known machine learning algorithms to three encodings of the users' interaction data. We achieve, depending on algorithm and encoding, between 62% and 83% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user's personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time: in one case 95% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed-initiative visual analytics systems.

  9. Trends in analytical techniques applied to particulate matter characterization: A critical review of fundaments and applications.

    PubMed

    Galvão, Elson Silva; Santos, Jane Meri; Lima, Ana Teresa; Reis, Neyval Costa; Orlando, Marcos Tadeu D'Azeredo; Stuetz, Richard Michael

    2018-05-01

    Epidemiological studies have shown the association of airborne particulate matter (PM) size and chemical composition with health problems affecting the cardiorespiratory and central nervous systems. PM also act as cloud condensation nuclei (CNN) or ice nuclei (IN), taking part in the clouds formation process, and therefore can impact the climate. There are several works using different analytical techniques in PM chemical and physical characterization to supply information to source apportionment models that help environmental agencies to assess damages accountability. Despite the numerous analytical techniques described in the literature available for PM characterization, laboratories are normally limited to the in-house available techniques, which raises the question if a given technique is suitable for the purpose of a specific experimental work. The aim of this work consists of summarizing the main available technologies for PM characterization, serving as a guide for readers to find the most appropriate technique(s) for their investigation. Elemental analysis techniques like atomic spectrometry based and X-ray based techniques, organic and carbonaceous techniques and surface analysis techniques are discussed, illustrating their main features as well as their advantages and drawbacks. We also discuss the trends in analytical techniques used over the last two decades. The choice among all techniques is a function of a number of parameters such as: the relevant particles physical properties, sampling and measuring time, access to available facilities and the costs associated to equipment acquisition, among other considerations. An analytical guide map is presented as a guideline for choosing the most appropriated technique for a given analytical information required. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Speciated arsenic in air: measurement methodology and risk assessment considerations.

    PubMed

    Lewis, Ari S; Reid, Kim R; Pollock, Margaret C; Campleman, Sharan L

    2012-01-01

    Accurate measurement of arsenic (As) in air is critical to providing a more robust understanding of arsenic exposures and associated human health risks. Although there is extensive information available on total arsenic in air, less is known on the relative contribution of each arsenic species. To address this data gap, the authors conducted an in-depth review of available information on speciated arsenic in air. The evaluation included the type of species measured and the relative abundance, as well as an analysis of the limitations of current analytical methods. Despite inherent differences in the procedures, most techniques effectively separated arsenic species in the air samples. Common analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) and/or hydride generation (HG)- or quartz furnace (GF)-atomic absorption spectrometry (AAS) were used for arsenic measurement in the extracts, and provided some of the most sensitive detection limits. The current analysis demonstrated that, despite limited comparability among studies due to differences in seasonal factors, study duration, sample collection methods, and analytical methods, research conducted to date is adequate to show that arsenic in air is mainly in the inorganic form. Reported average concentrations of As(III) and As(V) ranged up to 7.4 and 10.4 ng/m3, respectively, with As(V) being more prevalent than As(III) in most studies. Concentrations of the organic methylated arsenic compounds are negligible (in the pg/m3 range). However because of the variability in study methods and measurement methodology, the authors were unable to determine the variation in arsenic composition as a function of source or particulate matter (PM) fraction. In this work, the authors include the implications of arsenic speciation in air on potential exposure and risks. The authors conclude that it is important to synchronize sample collection, preparation, and analytical techniques in order to generate data more useful for arsenic inhalation risk assessment, and a more robust documentation of quality assurance/quality control (QA/QC) protocols is necessary to ensure accuracy, precision, representativeness, and comparability.

  11. BIG DATA ANALYTICS AND PRECISION ANIMAL AGRICULTURE SYMPOSIUM: Data to decisions.

    PubMed

    White, B J; Amrine, D E; Larson, R L

    2018-04-14

    Big data are frequently used in many facets of business and agronomy to enhance knowledge needed to improve operational decisions. Livestock operations collect data of sufficient quantity to perform predictive analytics. Predictive analytics can be defined as a methodology and suite of data evaluation techniques to generate a prediction for specific target outcomes. The objective of this manuscript is to describe the process of using big data and the predictive analytic framework to create tools to drive decisions in livestock production, health, and welfare. The predictive analytic process involves selecting a target variable, managing the data, partitioning the data, then creating algorithms, refining algorithms, and finally comparing accuracy of the created classifiers. The partitioning of the datasets allows model building and refining to occur prior to testing the predictive accuracy of the model with naive data to evaluate overall accuracy. Many different classification algorithms are available for predictive use and testing multiple algorithms can lead to optimal results. Application of a systematic process for predictive analytics using data that is currently collected or that could be collected on livestock operations will facilitate precision animal management through enhanced livestock operational decisions.

  12. A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis

    PubMed Central

    2017-01-01

    Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described. PMID:28542338

  13. A technique for setting analytical thresholds in massively parallel sequencing-based forensic DNA analysis.

    PubMed

    Young, Brian; King, Jonathan L; Budowle, Bruce; Armogida, Luigi

    2017-01-01

    Amplicon (targeted) sequencing by massively parallel sequencing (PCR-MPS) is a potential method for use in forensic DNA analyses. In this application, PCR-MPS may supplement or replace other instrumental analysis methods such as capillary electrophoresis and Sanger sequencing for STR and mitochondrial DNA typing, respectively. PCR-MPS also may enable the expansion of forensic DNA analysis methods to include new marker systems such as single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) that currently are assayable using various instrumental analysis methods including microarray and quantitative PCR. Acceptance of PCR-MPS as a forensic method will depend in part upon developing protocols and criteria that define the limitations of a method, including a defensible analytical threshold or method detection limit. This paper describes an approach to establish objective analytical thresholds suitable for multiplexed PCR-MPS methods. A definition is proposed for PCR-MPS method background noise, and an analytical threshold based on background noise is described.

  14. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores.

    PubMed

    Cecchini, Michael P; Wiener, Aeneas; Turek, Vladimir A; Chon, Hyangh; Lee, Sangyeop; Ivanov, Aleksandar P; McComb, David W; Choo, Jaebum; Albrecht, Tim; Maier, Stefan A; Edel, Joshua B

    2013-10-09

    Nanopore sensors embedded within thin dielectric membranes have been gaining significant interest due to their single molecule sensitivity and compatibility of detecting a large range of analytes, from DNA and proteins, to small molecules and particles. Building on this concept we utilize a metallic Au solid-state membrane to translocate and rapidly detect single Au nanoparticles (NPs) functionalized with 589 dye molecules using surface-enhanced resonance Raman spectroscopy (SERRS). We show that, due to the plasmonic coupling between the Au metallic nanopore surface and the NP, signal intensities are enhanced when probing analyte molecules bound to the NP surface. Although not single molecule, this nanopore sensing scheme benefits from the ability of SERRS to provide rich vibrational information on the analyte, improving on current nanopore-based electrical and optical detection techniques. We show that the full vibrational spectrum of the analyte can be detected with ultrahigh spectral sensitivity and a rapid temporal resolution of 880 μs.

  15. SnapShot: Visualization to Propel Ice Hockey Analytics.

    PubMed

    Pileggi, H; Stolper, C D; Boyle, J M; Stasko, J T

    2012-12-01

    Sports analysts live in a world of dynamic games flattened into tables of numbers, divorced from the rinks, pitches, and courts where they were generated. Currently, these professional analysts use R, Stata, SAS, and other statistical software packages for uncovering insights from game data. Quantitative sports consultants seek a competitive advantage both for their clients and for themselves as analytics becomes increasingly valued by teams, clubs, and squads. In order for the information visualization community to support the members of this blossoming industry, it must recognize where and how visualization can enhance the existing analytical workflow. In this paper, we identify three primary stages of today's sports analyst's routine where visualization can be beneficially integrated: 1) exploring a dataspace; 2) sharing hypotheses with internal colleagues; and 3) communicating findings to stakeholders.Working closely with professional ice hockey analysts, we designed and built SnapShot, a system to integrate visualization into the hockey intelligence gathering process. SnapShot employs a variety of information visualization techniques to display shot data, yet given the importance of a specific hockey statistic, shot length, we introduce a technique, the radial heat map. Through a user study, we received encouraging feedback from several professional analysts, both independent consultants and professional team personnel.

  16. Comparison of commercial analytical techniques for measuring chlorine dioxide in urban desalinated drinking water.

    PubMed

    Ammar, T A; Abid, K Y; El-Bindary, A A; El-Sonbati, A Z

    2015-12-01

    Most drinking water industries are closely examining options to maintain a certain level of disinfectant residual through the entire distribution system. Chlorine dioxide is one of the promising disinfectants that is usually used as a secondary disinfectant, whereas the selection of the proper monitoring analytical technique to ensure disinfection and regulatory compliance has been debated within the industry. This research endeavored to objectively compare the performance of commercially available analytical techniques used for chlorine dioxide measurements (namely, chronoamperometry, DPD (N,N-diethyl-p-phenylenediamine), Lissamine Green B (LGB WET) and amperometric titration), to determine the superior technique. The commonly available commercial analytical techniques were evaluated over a wide range of chlorine dioxide concentrations. In reference to pre-defined criteria, the superior analytical technique was determined. To discern the effectiveness of such superior technique, various factors, such as sample temperature, high ionic strength, and other interferences that might influence the performance were examined. Among the four techniques, chronoamperometry technique indicates a significant level of accuracy and precision. Furthermore, the various influencing factors studied did not diminish the technique's performance where it was fairly adequate in all matrices. This study is a step towards proper disinfection monitoring and it confidently assists engineers with chlorine dioxide disinfection system planning and management.

  17. The contribution of Raman spectroscopy to the analytical quality control of cytotoxic drugs in a hospital environment: eliminating the exposure risks for staff members and their work environment.

    PubMed

    Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Troude, Pénélope; Baillet-Guffroy, Arlette

    2014-08-15

    The purpose of the study was to perform a comparative analysis of the technical performance, respective costs and environmental effect of two invasive analytical methods (HPLC and UV/visible-FTIR) as compared to a new non-invasive analytical technique (Raman spectroscopy). Three pharmacotherapeutic models were used to compare the analytical performances of the three analytical techniques. Statistical inter-method correlation analysis was performed using non-parametric correlation rank tests. The study's economic component combined calculations relative to the depreciation of the equipment and the estimated cost of an AQC unit of work. In any case, analytical validation parameters of the three techniques were satisfactory, and strong correlations between the two spectroscopic techniques vs. HPLC were found. In addition, Raman spectroscopy was found to be superior as compared to the other techniques for numerous key criteria including a complete safety for operators and their occupational environment, a non-invasive procedure, no need for consumables, and a low operating cost. Finally, Raman spectroscopy appears superior for technical, economic and environmental objectives, as compared with the other invasive analytical methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Human Factors in Streaming Data Analysis: Challenges and Opportunities for Information Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dasgupta, Aritra; Arendt, Dustin L.; Franklin, Lyndsey

    State-of-the-art visual analytics models and frameworks mostly assume a static snapshot of the data, while in many cases it is a stream with constant updates and changes. Exploration of streaming data poses unique challenges as machine-level computations and abstractions need to be synchronized with the visual representation of the data and the temporally evolving human insights. In the visual analytics literature, we lack a thorough characterization of streaming data and analysis of the challenges associated with task abstraction, visualization design, and adaptation of the role of human-in-the-loop for exploration of data streams. We aim to fill this gap by conductingmore » a survey of the state-of-the-art in visual analytics of streaming data for systematically describing the contributions and shortcomings of current techniques and analyzing the research gaps that need to be addressed in the future. Our contributions are: i) problem characterization for identifying challenges that are unique to streaming data analysis tasks, ii) a survey and analysis of the state-of-the-art in streaming data visualization research with a focus on the visualization design space for dynamic data and the role of the human-in-the-loop, and iii) reflections on the design-trade-offs for streaming visual analytics techniques and their practical applicability in real-world application scenarios.« less

  19. 3-MCPD in food other than soy sauce or hydrolysed vegetable protein (HVP).

    PubMed

    Baer, Ines; de la Calle, Beatriz; Taylor, Philip

    2010-01-01

    This review gives an overview of current knowledge about 3-monochloropropane-1,2-diol (3-MCPD) formation and detection. Although 3-MCPD is often mentioned with regard to soy sauce and acid-hydrolysed vegetable protein (HVP), and much research has been done in that area, the emphasis here is placed on other foods. This contaminant can be found in a great variety of foodstuffs and is difficult to avoid in our daily nutrition. Despite its low concentration in most foods, its carcinogenic properties are of general concern. Its formation is a multivariate problem influenced by factors such as heat, moisture and sugar/lipid content, depending on the type of food and respective processing employed. Understanding the formation of this contaminant in food is fundamental to not only preventing or reducing it, but also developing efficient analytical methods of detecting it. Considering the differences between 3-MCPD-containing foods, and the need to test for the contaminant at different levels of food processing, one would expect a variety of analytical approaches. In this review, an attempt is made to provide an up-to-date list of available analytical methods and to highlight the differences among these techniques. Finally, the emergence of 3-MCPD esters and analytical techniques for them are also discussed here, although they are not the main focus of this review.

  20. An iterative analytical technique for the design of interplanetary direct transfer trajectories including perturbations

    NASA Astrophysics Data System (ADS)

    Parvathi, S. P.; Ramanan, R. V.

    2018-06-01

    An iterative analytical trajectory design technique that includes perturbations in the departure phase of the interplanetary orbiter missions is proposed. The perturbations such as non-spherical gravity of Earth and the third body perturbations due to Sun and Moon are included in the analytical design process. In the design process, first the design is obtained using the iterative patched conic technique without including the perturbations and then modified to include the perturbations. The modification is based on, (i) backward analytical propagation of the state vector obtained from the iterative patched conic technique at the sphere of influence by including the perturbations, and (ii) quantification of deviations in the orbital elements at periapsis of the departure hyperbolic orbit. The orbital elements at the sphere of influence are changed to nullify the deviations at the periapsis. The analytical backward propagation is carried out using the linear approximation technique. The new analytical design technique, named as biased iterative patched conic technique, does not depend upon numerical integration and all computations are carried out using closed form expressions. The improved design is very close to the numerical design. The design analysis using the proposed technique provides a realistic insight into the mission aspects. Also, the proposed design is an excellent initial guess for numerical refinement and helps arrive at the four distinct design options for a given opportunity.

  1. ENVIRONMENTAL ANALYTICAL CHEMISTRY OF ...

    EPA Pesticide Factsheets

    Within the scope of a number of emerging contaminant issues in environmental analysis, one area that has received a great deal of public interest has been the assessment of the role of pharmaceuticals and personal care products (PPCPs) as stressors and agents of change in ecosystems as well as their role in unplanned human exposure. The relationship between personal actions and the occurrence of PPCPs in the environment is clear-cut and comprehensible to the public. In this overview, we attempt to examine the separations aspect of the analytical approach to the vast array of potential analytes among this class of compounds. We also highlight the relationship between these compounds and endocrine disrupting compounds (EDCs) and between PPCPs and EDCs and the more traditional environmental analytes such as the persistent organic pollutants (POPs). Although the spectrum of chemical behavior extends from hydrophobic to hydrophilic, the current focus has shifted to moderately and highly polar analytes. Thus, emphasis on HPLC and LC/MS has grown and MS/MS has become a detection technique of choice with either electrospray ionization or atmospheric pressure chemical ionization. This contrasts markedly with the bench mark approach of capillary GC, GC/MS and electron ionization in traditional environmental analysis. The expansion of the analyte list has fostered new vigor in the development of environmental analytical chemistry, modernized the range of tools appli

  2. Comparative investigation of diagnosis media for induction machine mechanical unbalance fault.

    PubMed

    Salah, Mohamed; Bacha, Khmais; Chaari, Abdelkader

    2013-11-01

    For an induction machine, we suggest a theoretical development of the mechanical unbalance effect on the analytical expressions of radial vibration and stator current. Related spectra are described and characteristic defect frequencies are determined. Moreover, the stray flux expressions are developed for both axial and radial sensor coil positions and a substitute diagnosis technique is proposed. In addition, the load torque effect on the detection efficiency of these diagnosis media is discussed and a comparative investigation is performed. The decisive factor of comparison is the fault sensitivity. Experimental results show that spectral analysis of the axial stray flux can be an alternative solution to cover effectiveness limitation of the traditional stator current technique and to substitute the classical vibration practice. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  3. High speed operation of permanent magnet machines

    NASA Astrophysics Data System (ADS)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been investigated. A 6kW, 36slot/30pole prototype SPM machine has been designed and built. Experimental measurements have been used to verify the analytical and FEA results. These test results have demonstrated that wide constant-power speed range can be achieved. Other important machine features such as the near-sinusoidal back-emf, high efficiency, and low cogging torque have also been demonstrated.

  4. New approaches to wipe sampling methods for antineoplastic and other hazardous drugs in healthcare settings.

    PubMed

    Connor, Thomas H; Smith, Jerome P

    2016-09-01

    At the present time, the method of choice to determine surface contamination of the workplace with antineoplastic and other hazardous drugs is surface wipe sampling and subsequent sample analysis with a variety of analytical techniques. The purpose of this article is to review current methodology for determining the level of surface contamination with hazardous drugs in healthcare settings and to discuss recent advances in this area. In addition it will provide some guidance for conducting surface wipe sampling and sample analysis for these drugs in healthcare settings. Published studies on the use of wipe sampling to measure hazardous drugs on surfaces in healthcare settings drugs were reviewed. These studies include the use of well-documented chromatographic techniques for sample analysis in addition to newly evolving technology that provides rapid analysis of specific antineoplastic. Methodology for the analysis of surface wipe samples for hazardous drugs are reviewed, including the purposes, technical factors, sampling strategy, materials required, and limitations. The use of lateral flow immunoassay (LFIA) and fluorescence covalent microbead immunosorbent assay (FCMIA) for surface wipe sample evaluation is also discussed. Current recommendations are that all healthc a re settings where antineoplastic and other hazardous drugs are handled include surface wipe sampling as part of a comprehensive hazardous drug-safe handling program. Surface wipe sampling may be used as a method to characterize potential occupational dermal exposure risk and to evaluate the effectiveness of implemented controls and the overall safety program. New technology, although currently limited in scope, may make wipe sampling for hazardous drugs more routine, less costly, and provide a shorter response time than classical analytical techniques now in use.

  5. A model for heliospheric flux-ropes

    NASA Astrophysics Data System (ADS)

    Nieves-Chinchilla, T.; Linton, M.; Vourlidas, A.; Hidalgo, M. A. U.

    2017-12-01

    This work is presents an analytical flux-rope model, which explores different levels of complexity starting from a circular-cylindrical geometry. The framework of this series of models was established by Nieves-Chinchilla et al. 2016 with the circular-cylindrical analytical flux rope model. The model attempts to describe the magnetic flux rope topology with distorted cross-section as a possible consequence of the interaction with the solar wind. In this model, the flux rope is completely described in a non-orthogonal geometry. The Maxwell equations are solved using tensor calculus consistent with the geometry chosen, invariance along the axial direction, and with the assumption of no radial current density. The model is generalized in terms of the radial and azimuthal dependence of the poloidal current density component and axial current density component. The misalignment between current density and magnetic field is studied in detail for several example profiles of the axial and poloidal current density components. This theoretical analysis provides a map of the force distribution inside of the flux-rope. For reconstruction of the heliospheric flux-ropes, the circular-cylindrical reconstruction technique has been adapted to the new geometry and applied to in situ ICMEs with a flux-rope entrained and tested with cases with clear in situ signatures of distortion. The model adds a piece in the puzzle of the physical-analytical representation of these magnetic structures that should be evaluated with the ultimate goal of reconciling in-situ reconstructions with imaging 3D remote sensing CME reconstructions. Other effects such as axial curvature and/or expansion could be incorporated in the future to fully understand the magnetic structure.

  6. Isolation and analysis of ginseng: advances and challenges

    PubMed Central

    Wang, Chong-Zhi

    2011-01-01

    Ginseng occupies a prominent position in the list of best-selling natural products in the world. Because of its complex constituents, multidisciplinary techniques are needed to validate the analytical methods that support ginseng’s use worldwide. In the past decade, rapid development of technology has advanced many aspects of ginseng research. The aim of this review is to illustrate the recent advances in the isolation and analysis of ginseng, and to highlight their new applications and challenges. Emphasis is placed on recent trends and emerging techniques. The current article reviews the literature between January 2000 and September 2010. PMID:21258738

  7. Status of the Neutron Imaging and Diffraction Instrument IMAT

    NASA Astrophysics Data System (ADS)

    Kockelmann, Winfried; Burca, Genoveva; Kelleher, Joe F.; Kabra, Saurabh; Zhang, Shu-Yan; Rhodes, Nigel J.; Schooneveld, Erik M.; Sykora, Jeff; Pooley, Daniel E.; Nightingale, Jim B.; Aliotta, Francesco; Ponterio, Rosa C.; Salvato, Gabriele; Tresoldi, Dario; Vasi, Cirino; McPhate, Jason B.; Tremsin, Anton S.

    A cold neutron imaging and diffraction instrument, IMAT, is currently being constructed at the ISIS second target station. IMAT will capitalize on time-of-flight transmission and diffraction techniques available at a pulsed neutron source. Analytical techniques will include neutron radiography, neutron tomography, energy-selective neutron imaging, and spatially resolved diffraction scans for residual strain and texture determination. Commissioning of the instrument will start in 2015, with time-resolving imaging detectors and two diffraction detector prototype modules. IMAT will be operated as a user facility for material science applications and will be open for developments of time-of-flight imaging methods.

  8. Modeling and simulation of charged particle beam transport in the UTA 2 meter Time of Flight Positron Annihilation Induced Auger Spectrometer

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Lim, Lawrence; Kalaskar, Sushant; Shastry, Karthik; Satyal, Suman; Weiss, Alexander

    2010-10-01

    Time of Flight Positron Annihilation Induced Auger Electron Spectroscopy (TOF PAES) is a surface analytical technique with high surface selectivity. Almost 95% of the PAES signal originates from the sample's topmost layer due to the trapping of positrons just above the surface in an image-potential well before annihilation. This talk presents a description of the TOF technique as the results of modeling of the charged particle transport used in the design of the 2 meter TOF-PAES system currently under construction at UTA.

  9. Depth-resolved monitoring of analytes diffusion in ocular tissues

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.; Ghosn, Mohamad G.; Tuchin, Valery V.

    2007-02-01

    Optical coherence tomography (OCT) is a noninvasive imaging technique with high in-depth resolution. We employed OCT technique for monitoring and quantification of analyte and drug diffusion in cornea and sclera of rabbit eyes in vitro. Different analytes and drugs such as metronidazole, dexamethasone, ciprofloxacin, mannitol, and glucose solution were studied and whose permeability coefficients were calculated. Drug diffusion monitoring was performed as a function of time and as a function of depth. Obtained results suggest that OCT technique might be used for analyte diffusion studies in connective and epithelial tissues.

  10. Creating Synthetic Coronal Observational Data From MHD Models: The Forward Technique

    NASA Technical Reports Server (NTRS)

    Rachmeler, Laurel A.; Gibson, Sarah E.; Dove, James; Kucera, Therese Ann

    2010-01-01

    We present a generalized forward code for creating simulated corona) observables off the limb from numerical and analytical MHD models. This generalized forward model is capable of creating emission maps in various wavelengths for instruments such as SXT, EIT, EIS, and coronagraphs, as well as spectropolari metric images and line profiles. The inputs to our code can be analytic models (of which four come with the code) or 2.5D and 3D numerical datacubes. We present some examples of the observable data created with our code as well as its functional capabilities. This code is currently available for beta-testing (contact authors), with the ultimate goal of release as a SolarSoft package

  11. On-orbit cryogenic fluid transfer

    NASA Technical Reports Server (NTRS)

    Aydelott, J. C.; Gille, J. P.; Eberhardt, R. N.

    1984-01-01

    A number of future NASA and DOD missions have been identified that will require, or could benefit from resupply of cryogenic liquids in orbit. The most promising approach for accomplishing cryogenic fluid transfer in the weightlessness environment of space is to use the thermodynamic filling technique. This approach involves initially reducing the receiver tank temperature by using several charge hold vent cycles followed by filling the tank without venting. Martin Marietta Denver Aerospace, under contract to the NASA Lewis Research Center, is currently developing analytical models to describe the on orbit cryogenic fluid transfer process. A detailed design of a shuttle attached experimental facility, which will provide the data necessary to verify the analytical models, is also being performed.

  12. Uniform GTD solution for the diffraction by metallic tapes on panelled compact-range reflectors

    NASA Technical Reports Server (NTRS)

    Somers, G. A.; Pathak, P. H.

    1992-01-01

    Metallic tape is commonly used to cover the interpanel gaps which occur in paneled compact-range reflectors. It is therefore of interest to study the effect of the scattering by the tape on the field in the target zone of the range. An analytical solution is presented for the target zone fields scattered by 2D metallic tapes. It is formulated by the generalized scattering matrix technique in conjunction with the Wiener-Hopf procedure. An extension to treat 3D tapes can be accomplished using the 2D solution via the equivalent current concept. The analytical solution is compared with a reference moment method solution to confirm the accuracy of the former.

  13. Literature Review of the Extraction and Analysis of Trace Contaminants in Food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Audrey Martin; Alcaraz, Armando

    2010-06-15

    There exists a serious concern that chemical warfare agents (CWA) may be used in a terrorist attack against military or civilian populations. While many precautions have been taken on the military front (e.g. protective clothing, gas masks), such precautions are not suited for the widespread application to civilian populations. Thus, defense of the civilian population, and applicable to the military population, has focused on prevention and early detection. Early detection relies on accurate and sensitive analytical methods to detect and identify CWA in a variety of matrices. Once a CWA is detected, the analytical needs take on a forensic applicationmore » – are there any chemical signatures present in the sample that could indicate its source? These signatures could include byproducts of the reaction, unreacted starting materials, degradation products, or impurities. Therefore, it is important that the analytical method used can accurately identify such signatures, as well as the CWA itself. Contained herein is a review of the open literature describing the detection of CWA in various matrices and the detection of trace toxic chemicals in food. Several relevant reviews have been published in the literature,1-5 including a review of analytical separation techniques for CWA by Hooijschuur et al.1 The current review is not meant to reiterate the published manuscripts; is focused mainly on extraction procedures, as well as the detection of VX and its hydrolysis products, as it is closely related to Russian VX, which is not prevalent in the literature. It is divided by the detection technique used, as such; extraction techniques are included with each detection method.« less

  14. Can cloud point-based enrichment, preservation, and detection methods help to bridge gaps in aquatic nanometrology?

    PubMed

    Duester, Lars; Fabricius, Anne-Lena; Jakobtorweihen, Sven; Philippe, Allan; Weigl, Florian; Wimmer, Andreas; Schuster, Michael; Nazar, Muhammad Faizan

    2016-11-01

    Coacervate-based techniques are intensively used in environmental analytical chemistry to enrich and extract different kinds of analytes. Most methods focus on the total content or the speciation of inorganic and organic substances. Size fractionation is less commonly addressed. Within coacervate-based techniques, cloud point extraction (CPE) is characterized by a phase separation of non-ionic surfactants dispersed in an aqueous solution when the respective cloud point temperature is exceeded. In this context, the feature article raises the following question: May CPE in future studies serve as a key tool (i) to enrich and extract nanoparticles (NPs) from complex environmental matrices prior to analyses and (ii) to preserve the colloidal status of unstable environmental samples? With respect to engineered NPs, a significant gap between environmental concentrations and size- and element-specific analytical capabilities is still visible. CPE may support efforts to overcome this "concentration gap" via the analyte enrichment. In addition, most environmental colloidal systems are known to be unstable, dynamic, and sensitive to changes of the environmental conditions during sampling and sample preparation. This delivers a so far unsolved "sample preparation dilemma" in the analytical process. The authors are of the opinion that CPE-based methods have the potential to preserve the colloidal status of these instable samples. Focusing on NPs, this feature article aims to support the discussion on the creation of a convention called the "CPE extractable fraction" by connecting current knowledge on CPE mechanisms and on available applications, via the uncertainties visible and modeling approaches available, with potential future benefits from CPE protocols.

  15. Recent advances in immunosensor for narcotic drug detection

    PubMed Central

    Gandhi, Sonu; Suman, Pankaj; Kumar, Ashok; Sharma, Prince; Capalash, Neena; Suri, C. Raman

    2015-01-01

    Introduction: Immunosensor for illicit drugs have gained immense interest and have found several applications for drug abuse monitoring. This technology has offered a low cost detection of narcotics; thereby, providing a confirmatory platform to compliment the existing analytical methods. Methods: In this minireview, we define the basic concept of transducer for immunosensor development that utilizes antibodies and low molecular mass hapten (opiate) molecules. Results: This article emphasizes on recent advances in immunoanalytical techniques for monitoring of opiate drugs. Our results demonstrate that high quality antibodies can be used for immunosensor development against target analyte with greater sensitivity, specificity and precision than other available analytical methods. Conclusion: In this review we highlight the fundamentals of different transducer technologies and its applications for immunosensor development currently being developed in our laboratory using rapid screening via immunochromatographic kit, label free optical detection via enzyme, fluorescence, gold nanoparticles and carbon nanotubes based immunosensing for sensitive and specific monitoring of opiates. PMID:26929925

  16. Big data in medical informatics: improving education through visual analytics.

    PubMed

    Vaitsis, Christos; Nilsson, Gunnar; Zary, Nabil

    2014-01-01

    A continuous effort to improve healthcare education today is currently driven from the need to create competent health professionals able to meet healthcare demands. Limited research reporting how educational data manipulation can help in healthcare education improvement. The emerging research field of visual analytics has the advantage to combine big data analysis and manipulation techniques, information and knowledge representation, and human cognitive strength to perceive and recognise visual patterns. The aim of this study was therefore to explore novel ways of representing curriculum and educational data using visual analytics. Three approaches of visualization and representation of educational data were presented. Five competencies at undergraduate medical program level addressed in courses were identified to inaccurately correspond to higher education board competencies. Different visual representations seem to have a potential in impacting on the ability to perceive entities and connections in the curriculum data.

  17. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  18. Two dimensional distribution measurement of electric current generated in a polymer electrolyte fuel cell using 49 NMR surface coils.

    PubMed

    Ogawa, Kuniyasu; Sasaki, Tatsuyoshi; Yoneda, Shigeki; Tsujinaka, Kumiko; Asai, Ritsuko

    2018-05-17

    In order to increase the current density generated in a PEFC (polymer electrolyte fuel cell), a method for measuring the spatial distribution of both the current and the water content of the MEA (membrane electrode assembly) is necessary. Based on the frequency shifts of NMR (nuclear magnetic resonance) signals acquired from the water contained in the MEA using 49 NMR coils in a 7 × 7 arrangement inserted in the PEFC, a method for measuring the two-dimensional spatial distribution of electric current generated in a unit cell with a power generation area of 140 mm × 160 mm was devised. We also developed an inverse analysis method to determine the two-dimensional electric current distribution that can be applied to actual PEFC connections. Two analytical techniques, namely coarse graining of segments and stepwise search, were used to shorten the calculation time required for inverse analysis of the electric current map. Using this method and techniques, spatial distributions of electric current and water content in the MEA were obtained when the PEFC generated electric power at 100 A. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Simulation and statistics: Like rhythm and song

    NASA Astrophysics Data System (ADS)

    Othman, Abdul Rahman

    2013-04-01

    Simulation has been introduced to solve problems in the form of systems. By using this technique the following two problems can be overcome. First, a problem that has an analytical solution but the cost of running an experiment to solve is high in terms of money and lives. Second, a problem exists but has no analytical solution. In the field of statistical inference the second problem is often encountered. With the advent of high-speed computing devices, a statistician can now use resampling techniques such as the bootstrap and permutations to form pseudo sampling distribution that will lead to the solution of the problem that cannot be solved analytically. This paper discusses how a Monte Carlo simulation was and still being used to verify the analytical solution in inference. This paper also discusses the resampling techniques as simulation techniques. The misunderstandings about these two techniques are examined. The successful usages of both techniques are also explained.

  20. Analytical Techniques and Pharmacokinetics of Gastrodia elata Blume and Its Constituents.

    PubMed

    Wu, Jinyi; Wu, Bingchu; Tang, Chunlan; Zhao, Jinshun

    2017-07-08

    Gastrodia elata Blume ( G. elata ), commonly called Tianma in Chinese, is an important and notable traditional Chinese medicine (TCM), which has been used in China as an anticonvulsant, analgesic, sedative, anti-asthma, anti-immune drug since ancient times. The aim of this review is to provide an overview of the abundant efforts of scientists in developing analytical techniques and performing pharmacokinetic studies of G. elata and its constituents, including sample pretreatment methods, analytical techniques, absorption, distribution, metabolism, excretion (ADME) and influence factors to its pharmacokinetics. Based on the reported pharmacokinetic property data of G. elata and its constituents, it is hoped that more studies will focus on the development of rapid and sensitive analytical techniques, discovering new therapeutic uses and understanding the specific in vivo mechanisms of action of G. elata and its constituents from the pharmacokinetic viewpoint in the near future. The present review discusses analytical techniques and pharmacokinetics of G. elata and its constituents reported from 1985 onwards.

  1. Preliminary Evaluation of an Aviation Safety Thesaurus' Utility for Enhancing Automated Processing of Incident Reports

    NASA Technical Reports Server (NTRS)

    Barrientos, Francesca; Castle, Joseph; McIntosh, Dawn; Srivastava, Ashok

    2007-01-01

    This document presents a preliminary evaluation the utility of the FAA Safety Analytics Thesaurus (SAT) utility in enhancing automated document processing applications under development at NASA Ames Research Center (ARC). Current development efforts at ARC are described, including overviews of the statistical machine learning techniques that have been investigated. An analysis of opportunities for applying thesaurus knowledge to improving algorithm performance is then presented.

  2. Status of the Electroforming Shield Design (ESD) project

    NASA Technical Reports Server (NTRS)

    Fletcher, R. E.

    1977-01-01

    The utilization of a digital computer to augment electrodeposition/electroforming processes in which nonconducting shielding controls local cathodic current distribution is reported. The primary underlying philosophy of the physics of electrodeposition was presented. The technical approach taken to analytically simulate electrolytic tank variables was also included. A FORTRAN computer program has been developed and implemented. The program utilized finite element techniques and electrostatic theory to simulate electropotential fields and ionic transport.

  3. Potential Health Impact of Environmentally Released Micro- and Nanoplastics in the Human Food Production Chain: Experiences from Nanotoxicology.

    PubMed

    Bouwmeester, Hans; Hollman, Peter C H; Peters, Ruud J B

    2015-08-04

    High concentrations of plastic debris have been observed in the oceans. Much of the recent concern has focused on microplastics in the marine environment. Recent studies of the size distribution of the plastic debris suggested that continued fragmenting of microplastics into nanosized particles may occur. In this review we assess the current literature on the occurrence of environmentally released micro- and nanoplastics in the human food production chain and their potential health impact. The currently used analytical techniques introduce a great bias in the knowledge, since they are only able to detect plastic particles well above the nanorange. We discuss the potential use of the very sensitive analytical techniques that have been developed for the detection and quantification of engineered nanoparticles. We recognize three possible toxic effects of plastic particles: first due to the plastic particles themselves, second to the release of persistent organic pollutant adsorbed to the plastics, and third to the leaching of additives of the plastics. The limited data on microplastics in foods do not predict adverse effect of these pollutants or additives. Potential toxic effects of microplastic particles will be confined to the gut. The potential human toxicity of nanoplastics is poorly studied. Based on our experiences in nanotoxicology we prioritized future research questions.

  4. Current Technical Approaches for the Early Detection of Foodborne Pathogens: Challenges and Opportunities.

    PubMed

    Cho, Il-Hoon; Ku, Seockmo

    2017-09-30

    The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.

  5. Evaluation of analytical procedures for prediction of turbulent boundary layers on a porous wall

    NASA Technical Reports Server (NTRS)

    Towne, C. E.

    1974-01-01

    An analytical study has been made to determine how well current boundary layer prediction techniques work when there is mass transfer normal to the wall. The data that were considered in this investigation were for two-dimensional, incompressible, turbulent boundary layers with suction and blowing. Some of the bleed data were taken in an adverse pressure gradient. An integral prediction method was used three different porous wall skin friction relations, in addition to a solid-surface relation for the suction cases. A numerical prediction method was also used. Comparisons were made between theoretical and experimental skin friction coefficients, displacement and momentum thicknesses, and velocity profiles. The integral method with one of the porous wall skin friction laws gave very good agreement with data for most of the cases considered. The use of the solid-surface skin friction law caused the integral to overpredict the effectiveness of the bleed. The numerical techniques also worked well for most of the cases.

  6. The analytical calibration in (bio)imaging/mapping of the metallic elements in biological samples--definitions, nomenclature and strategies: state of the art.

    PubMed

    Jurowski, Kamil; Buszewski, Bogusław; Piekoszewski, Wojciech

    2015-01-01

    Nowadays, studies related to the distribution of metallic elements in biological samples are one of the most important issues. There are many articles dedicated to specific analytical atomic spectrometry techniques used for mapping/(bio)imaging the metallic elements in various kinds of biological samples. However, in such literature, there is a lack of articles dedicated to reviewing calibration strategies, and their problems, nomenclature, definitions, ways and methods used to obtain quantitative distribution maps. The aim of this article was to characterize the analytical calibration in the (bio)imaging/mapping of the metallic elements in biological samples including (1) nomenclature; (2) definitions, and (3) selected and sophisticated, examples of calibration strategies with analytical calibration procedures applied in the different analytical methods currently used to study an element's distribution in biological samples/materials such as LA ICP-MS, SIMS, EDS, XRF and others. The main emphasis was placed on the procedures and methodology of the analytical calibration strategy. Additionally, the aim of this work is to systematize the nomenclature for the calibration terms: analytical calibration, analytical calibration method, analytical calibration procedure and analytical calibration strategy. The authors also want to popularize the division of calibration methods that are different than those hitherto used. This article is the first work in literature that refers to and emphasizes many different and complex aspects of analytical calibration problems in studies related to (bio)imaging/mapping metallic elements in different kinds of biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Iontophoresis and Flame Photometry: A Hybrid Interdisciplinary Experiment

    ERIC Educational Resources Information Center

    Sharp, Duncan; Cottam, Linzi; Bradley, Sarah; Brannigan, Jeanie; Davis, James

    2010-01-01

    The combination of reverse iontophoresis and flame photometry provides an engaging analytical experiment that gives first-year undergraduate students a flavor of modern drug delivery and analyte extraction techniques while reinforcing core analytical concepts. The experiment provides a highly visual demonstration of the iontophoresis technique and…

  8. Modelling a suitable location for Urban Solid Waste Management using AHP method and GIS -A geospatial approach and MCDM Model

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Islam, A.; Hossain, A.; Mustaque, S.

    2016-12-01

    Multi-Criteria Decision Making(MCDM) is advanced analytical method to evaluate appropriate result or decision from multiple criterion environment. Present time in advanced research, MCDM technique is progressive analytical process to evaluate a logical decision from various conflict. In addition, Present day Geospatial approach (e.g. Remote sensing and GIS) also another advanced technical approach in a research to collect, process and analyze various spatial data at a time. GIS and Remote sensing together with the MCDM technique could be the best platform to solve a complex decision making process. These two latest process combined very effectively used in site selection for solid waste management in urban policy. The most popular MCDM technique is Weighted Linear Method (WLC) where Analytical Hierarchy Process (AHP) is another popular and consistent techniques used in worldwide as dependable decision making. Consequently, the main objective of this study is improving a AHP model as MCDM technique with Geographic Information System (GIS) to select a suitable landfill site for urban solid waste management. Here AHP technique used as a MCDM tool to select the best suitable landfill location for urban solid waste management. To protect the urban environment in a sustainable way municipal waste needs an appropriate landfill site considering environmental, geological, social and technical aspect of the region. A MCDM model generate from five class related which related to environmental, geological, social and technical using AHP method and input the result set in GIS for final model location for urban solid waste management. The final suitable location comes out that 12.2% of the area corresponds to 22.89 km2 considering the total study area. In this study, Keraniganj sub-district of Dhaka district in Bangladesh is consider as study area which is densely populated city currently undergoes an unmanaged waste management system especially the suitable landfill sites for waste dumping site.

  9. Design/analysis of the JWST ISIM bonded joints for survivability at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Bartoszyk, Andrew; Johnston, John; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz; Rodini, Benjamin; Young, Daniel

    2005-08-01

    A major design and analysis challenge for the JWST ISIM structure is thermal survivability of metal/composite adhesively bonded joints at the cryogenic temperature of 30K (-405°F). Current bonded joint concepts include internal invar plug fittings, external saddle titanium/invar fittings and composite gusset/clip joints all bonded to hybrid composite tubes (75mm square) made with M55J/954-6 and T300/954-6 prepregs. Analytical experience and design work done on metal/composite bonded joints at temperatures below that of liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are sparse in the literature. Increasing this challenge is the difficulty in testing for these required tools and properties at cryogenic temperatures. To gain confidence in analyzing and designing the ISIM joints, a comprehensive joint development test program has been planned and is currently running. The test program is designed to produce required analytical tools and develop a composite failure criterion for bonded joint strengths at cryogenic temperatures. Finite element analysis is used to design simple test coupons that simulate anticipated stress states in the flight joints; subsequently, the test results are used to correlate the analysis technique for the final design of the bonded joints. In this work, we present an overview of the analysis and test methodology, current results, and working joint designs based on developed techniques and properties.

  10. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard

    1991-01-01

    Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.

  11. A three-dimensional finite-element thermal/mechanical analytical technique for high-performance traveling wave tubes

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.

    1992-01-01

    Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.

  12. Finding Waldo: Learning about Users from their Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Eli T.; Ottley, Alvitta; Zhao, Helen

    Visual analytics is inherently a collaboration between human and computer. However, in current visual analytics systems, the computer has limited means of knowing about its users and their analysis processes. While existing research has shown that a user’s interactions with a system reflect a large amount of the user’s reasoning process, there has been limited advancement in developing automated, real-time techniques that mine interactions to learn about the user. In this paper, we demonstrate that we can accurately predict a user’s task performance and infer some user personality traits by using machine learning techniques to analyze interaction data. Specifically, wemore » conduct an experiment in which participants perform a visual search task and we apply well-known machine learning algorithms to three encodings of the users interaction data. We achieve, depending on algorithm and encoding, between 62% and 96% accuracy at predicting whether each user will be fast or slow at completing the task. Beyond predicting performance, we demonstrate that using the same techniques, we can infer aspects of the user’s personality factors, including locus of control, extraversion, and neuroticism. Further analyses show that strong results can be attained with limited observation time, in some cases, 82% of the final accuracy is gained after a quarter of the average task completion time. Overall, our findings show that interactions can provide information to the computer about its human collaborator, and establish a foundation for realizing mixed- initiative visual analytics systems.« less

  13. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control.

    PubMed

    Ojanperä, Ilkka; Kolmonen, Marjo; Pelander, Anna

    2012-05-01

    Clinical and forensic toxicology and doping control deal with hundreds or thousands of drugs that may cause poisoning or are abused, are illicit, or are prohibited in sports. Rapid and reliable screening for all these compounds of different chemical and pharmaceutical nature, preferably in a single analytical method, is a substantial effort for analytical toxicologists. Combined chromatography-mass spectrometry techniques with standardised reference libraries have been most commonly used for the purpose. In the last ten years, the focus has shifted from gas chromatography-mass spectrometry to liquid chromatography-mass spectrometry, because of progress in instrument technology and partly because of the polarity and low volatility of many new relevant substances. High-resolution mass spectrometry (HRMS), which enables accurate mass measurement at high resolving power, has recently evolved to the stage that is rapidly causing a shift from unit-resolution, quadrupole-dominated instrumentation. The main HRMS techniques today are time-of-flight mass spectrometry and Orbitrap Fourier-transform mass spectrometry. Both techniques enable a range of different drug-screening strategies that essentially rely on measuring a compound's or a fragment's mass with sufficiently high accuracy that its elemental composition can be determined directly. Accurate mass and isotopic pattern acts as a filter for confirming the identity of a compound or even identification of an unknown. High mass resolution is essential for improving confidence in accurate mass results in the analysis of complex biological samples. This review discusses recent applications of HRMS in analytical toxicology.

  14. Comparison of Measured Dark Current Distributions with Calculated Damage Energy Distributions in HgCdTe

    NASA Technical Reports Server (NTRS)

    Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.

    2007-01-01

    This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.

  15. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization.

    PubMed

    Sandra, Koen; Vandenheede, Isabel; Sandra, Pat

    2014-03-28

    Protein biopharmaceuticals such as monoclonal antibodies and therapeutic proteins are currently in widespread use for the treatment of various life-threatening diseases including cancer, autoimmune disorders, diabetes and anemia. The complexity of protein therapeutics is far exceeding that of small molecule drugs; hence, unraveling this complexity represents an analytical challenge. The current review provides the reader with state-of-the-art chromatographic and mass spectrometric tools available to dissect primary and higher order structures, post-translational modifications, purity and impurity profiles and pharmacokinetic properties of protein therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Constrained Burn Optimization for the International Space Station

    NASA Technical Reports Server (NTRS)

    Brown, Aaron J.; Jones, Brandon A.

    2017-01-01

    In long-term trajectory planning for the International Space Station (ISS), translational burns are currently targeted sequentially to meet the immediate trajectory constraints, rather than simultaneously to meet all constraints, do not employ gradient-based search techniques, and are not optimized for a minimum total deltav (v) solution. An analytic formulation of the constraint gradients is developed and used in an optimization solver to overcome these obstacles. Two trajectory examples are explored, highlighting the advantage of the proposed method over the current approach, as well as the potential v and propellant savings in the event of propellant shortages.

  17. Current techniques in acid-chloride corrosion control and monitoring at The Geysers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirtz, Paul; Buck, Cliff; Kunzman, Russell

    1991-01-01

    Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steammore » purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.« less

  18. Covalent Chemical 5'-Functionalization of RNA with Diazo Reagents.

    PubMed

    Gampe, Christian M; Hollis-Symynkywicz, Micah; Zécri, Frédéric

    2016-08-22

    Functionalization of RNA at the 5'-terminus is important for analytical and therapeutic purposes. Currently, these RNAs are synthesized de novo starting with a chemically functionalized 5'-nucleotide, which is incorporated into RNA using chemical synthesis or biochemical techniques. Methods for direct chemical modification of native RNA would provide an attractive alternative but are currently underexplored. Herein, we report that diazo compounds can be used to selectively alkylate the 5'-phosphate of ribo(oligo)nucleotides to give RNA labelled through a native phosphate ester bond. We applied this method to functionalize oligonucleotides with biotin and an orthosteric inhibitor of the eukaryotic initiation factor 4E (eIF4E), an enzyme involved in mRNA recognition. The modified RNA binds to eIF4E, demonstrating the utility of this labelling technique to modulate biological activity of RNA. This method complements existing techniques and may be used to chemically introduce a broad range of functional handles at the 5'-end of RNA. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of UWCC MOX fuel measurements to MCNP-REN calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhold, M.; Baker, M.; Jie, R.

    1998-12-31

    The development of neutron coincidence counting has greatly improved the accuracy and versatility of neutron-based techniques to assay fissile materials. Today, the shift register analyzer connected to either a passive or active neutron detector is widely used by both domestic and international safeguards organizations. The continued development of these techniques and detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model, as it is currently used, fails to accurately predict detector response in highly multiplying mediums such as mixed-oxide (MOX) lightmore » water reactor fuel assemblies. For this reason, efforts have been made to modify the currently used Monte Carlo codes and to develop new analytical methods so that this model is not required to predict detector response. The authors describe their efforts to modify a widely used Monte Carlo code for this purpose and also compare calculational results with experimental measurements.« less

  20. An intelligent content discovery technique for health portal content management.

    PubMed

    De Silva, Daswin; Burstein, Frada

    2014-04-23

    Continuous content management of health information portals is a feature vital for its sustainability and widespread acceptance. Knowledge and experience of a domain expert is essential for content management in the health domain. The rate of generation of online health resources is exponential and thereby manual examination for relevance to a specific topic and audience is a formidable challenge for domain experts. Intelligent content discovery for effective content management is a less researched topic. An existing expert-endorsed content repository can provide the necessary leverage to automatically identify relevant resources and evaluate qualitative metrics. This paper reports on the design research towards an intelligent technique for automated content discovery and ranking for health information portals. The proposed technique aims to improve efficiency of the current mostly manual process of portal content management by utilising an existing expert-endorsed content repository as a supporting base and a benchmark to evaluate the suitability of new content A model for content management was established based on a field study of potential users. The proposed technique is integral to this content management model and executes in several phases (ie, query construction, content search, text analytics and fuzzy multi-criteria ranking). The construction of multi-dimensional search queries with input from Wordnet, the use of multi-word and single-word terms as representative semantics for text analytics and the use of fuzzy multi-criteria ranking for subjective evaluation of quality metrics are original contributions reported in this paper. The feasibility of the proposed technique was examined with experiments conducted on an actual health information portal, the BCKOnline portal. Both intermediary and final results generated by the technique are presented in the paper and these help to establish benefits of the technique and its contribution towards effective content management. The prevalence of large numbers of online health resources is a key obstacle for domain experts involved in content management of health information portals and websites. The proposed technique has proven successful at search and identification of resources and the measurement of their relevance. It can be used to support the domain expert in content management and thereby ensure the health portal is up-to-date and current.

  1. Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA

    PubMed Central

    Gierhart, Brian C.; Howitt, David G.; Chen, Shiahn J.; Zhu, Zhineng; Kotecki, David E.; Smith, Rosemary L.; Collins, Scott D.

    2009-01-01

    A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device. PMID:19584949

  2. Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA.

    PubMed

    Gierhart, Brian C; Howitt, David G; Chen, Shiahn J; Zhu, Zhineng; Kotecki, David E; Smith, Rosemary L; Collins, Scott D

    2008-06-16

    A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device.

  3. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae) habitat and population densities

    PubMed Central

    Kwan, Paul; Welch, Mitchell

    2017-01-01

    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops. PMID:28875085

  4. Remote sensing and spatial statistical techniques for modelling Ommatissus lybicus (Hemiptera: Tropiduchidae) habitat and population densities.

    PubMed

    Al-Kindi, Khalifa M; Kwan, Paul; R Andrew, Nigel; Welch, Mitchell

    2017-01-01

    In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus . An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.

  5. The acoustics of ducted propellers

    NASA Astrophysics Data System (ADS)

    Ali, Sherif F.

    The return of the propeller to the long haul commercial service may be rapidly approaching in the form of advanced "prop fans". It is believed that the advanced turboprop will considerably reduce the operational cost. However, such aircraft will come into general use only if their noise levels meet the standards of community acceptability currently applied to existing aircraft. In this work a time-marching boundary-element technique is developed, and used to study the acoustics of ducted propeller. The numerical technique is developed in this work eliminated the inherent instability suffered by conventional approaches. The methodology is validated against other numerical and analytical results. The results show excellent agreement with the analytical solution and show no indication of unstable behavior. For the ducted propeller problem, the propeller is modeled by a rotating source-sink pairs, and the duct is modeled by rigid annular body of elliptical cross-section. Using the model and the developed technique, the effect of different parameters on the acoustic field is predicted and analyzed. This includes the effect of duct length, propeller axial location, and source Mach number. The results of this study show that installing a short duct around the propeller can reduce the noise that reaches an observer on a side line.

  6. Employing socially driven techniques for framing, contextualization, and collaboration in complex analytical threads

    NASA Astrophysics Data System (ADS)

    Wollocko, Arthur; Danczyk, Jennifer; Farry, Michael; Jenkins, Michael; Voshell, Martin

    2015-05-01

    The proliferation of sensor technologies continues to impact Intelligence Analysis (IA) work domains. Historical procurement focus on sensor platform development and acquisition has resulted in increasingly advanced collection systems; however, such systems often demonstrate classic data overload conditions by placing increased burdens on already overtaxed human operators and analysts. Support technologies and improved interfaces have begun to emerge to ease that burden, but these often focus on single modalities or sensor platforms rather than underlying operator and analyst support needs, resulting in systems that do not adequately leverage their natural human attentional competencies, unique skills, and training. One particular reason why emerging support tools often fail is due to the gap between military applications and their functions, and the functions and capabilities afforded by cutting edge technology employed daily by modern knowledge workers who are increasingly "digitally native." With the entry of Generation Y into these workplaces, "net generation" analysts, who are familiar with socially driven platforms that excel at giving users insight into large data sets while keeping cognitive burdens at a minimum, are creating opportunities for enhanced workflows. By using these ubiquitous platforms, net generation analysts have trained skills in discovering new information socially, tracking trends among affinity groups, and disseminating information. However, these functions are currently under-supported by existing tools. In this paper, we describe how socially driven techniques can be contextualized to frame complex analytical threads throughout the IA process. This paper focuses specifically on collaborative support technology development efforts for a team of operators and analysts. Our work focuses on under-supported functions in current working environments, and identifies opportunities to improve a team's ability to discover new information and disseminate insightful analytic findings. We describe our Cognitive Systems Engineering approach to developing a novel collaborative enterprise IA system that combines modern collaboration tools with familiar contemporary social technologies. Our current findings detail specific cognitive and collaborative work support functions that defined the design requirements for a prototype analyst collaborative support environment.

  7. Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2013-12-20

    Solid phase microextraction find increasing applications in the sample preparation step before chromatographic determination of analytes in samples with a complex composition. These techniques allow for integrating several operations, such as sample collection, extraction, analyte enrichment above the detection limit of a given measuring instrument and the isolation of analytes from sample matrix. In this work the information about novel methodological and instrumental solutions in relation to different variants of solid phase extraction techniques, solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE) and magnetic solid phase extraction (MSPE) is presented, including practical applications of these techniques and a critical discussion about their advantages and disadvantages. The proposed solutions fulfill the requirements resulting from the concept of sustainable development, and specifically from the implementation of green chemistry principles in analytical laboratories. Therefore, particular attention was paid to the description of possible uses of novel, selective stationary phases in extraction techniques, inter alia, polymeric ionic liquids, carbon nanotubes, and silica- and carbon-based sorbents. The methodological solutions, together with properly matched sampling devices for collecting analytes from samples with varying matrix composition, enable us to reduce the number of errors during the sample preparation prior to chromatographic analysis as well as to limit the negative impact of this analytical step on the natural environment and the health of laboratory employees. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Electron Tomography: A Three-Dimensional Analytic Tool for Hard and Soft Materials Research

    DOE PAGES

    Ercius, Peter; Alaidi, Osama; Rames, Matthew J.; ...

    2015-06-18

    Three-dimensional (3D) structural analysis is essential to understand the relationship between the structure and function of an object. Many analytical techniques, such as X-ray diffraction, neutron spectroscopy, and electron microscopy imaging, are used to provide structural information. Transmission electron microscopy (TEM), one of the most popular analytic tools, has been widely used for structural analysis in both physical and biological sciences for many decades, in which 3D objects are projected into two-dimensional (2D) images. In many cases, 2D-projection images are insufficient to understand the relationship between the 3D structure and the function of nanoscale objects. Electron tomography (ET) is amore » technique that retrieves 3D structural information from a tilt series of 2D projections, and is gradually becoming a mature technology with sub-nanometer resolution. Distinct methods to overcome sample-based limitations have been separately developed in both physical and biological science, although they share some basic concepts of ET. Here, this review discusses the common basis for 3D characterization, and specifies difficulties and solutions regarding both hard and soft materials research. It is hoped that novel solutions based on current state-of-the-art techniques for advanced applications in hybrid matter systems can be motivated. Electron tomography produces quantitative 3D reconstructions for biological and physical sciences from sets of 2D projections acquired at different tilting angles in a transmission electron microscope. Finally, state-of-the-art techniques capable of producing 3D representations such as Pt-Pd core-shell nanoparticles and IgG1 antibody molecules are reviewed.« less

  9. One-calibrant kinetic calibration for on-site water sampling with solid-phase microextraction.

    PubMed

    Ouyang, Gangfeng; Cui, Shufen; Qin, Zhipei; Pawliszyn, Janusz

    2009-07-15

    The existing solid-phase microextraction (SPME) kinetic calibration technique, using the desorption of the preloaded standards to calibrate the extraction of the analytes, requires that the physicochemical properties of the standard should be similar to those of the analyte, which limited the application of the technique. In this study, a new method, termed the one-calibrant kinetic calibration technique, which can use the desorption of a single standard to calibrate all extracted analytes, was proposed. The theoretical considerations were validated by passive water sampling in laboratory and rapid water sampling in the field. To mimic the variety of the environment, such as temperature, turbulence, and the concentration of the analytes, the flow-through system for the generation of standard aqueous polycyclic aromatic hydrocarbons (PAHs) solution was modified. The experimental results of the passive samplings in the flow-through system illustrated that the effect of the environmental variables was successfully compensated with the kinetic calibration technique, and all extracted analytes can be calibrated through the desorption of a single calibrant. On-site water sampling with rotated SPME fibers also illustrated the feasibility of the new technique for rapid on-site sampling of hydrophobic organic pollutants in water. This technique will accelerate the application of the kinetic calibration method and also will be useful for other microextraction techniques.

  10. Correlation study of theoretical and experimental results for spin tests of a 1/10 scale radio control model

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.

    1976-01-01

    A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.

  11. Microextraction by packed sorbent: an emerging, selective and high-throughput extraction technique in bioanalysis.

    PubMed

    Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed

    2014-06-01

    Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Recent Work in Hybrid Radiation Transport Methods with Applications to Commercial Nuclear Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulesza, Joel A.

    This talk will begin with an overview of hybrid radiation transport methods followed by a discussion of the author’s work to advance current capabilities. The talk will then describe applications for these methods in commercial nuclear power reactor analyses and techniques for experimental validation. When discussing these analytical and experimental activities, the importance of technical standards such as those created and maintained by ASTM International will be demonstrated.

  13. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment.

    PubMed

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies.

  14. Analytical electron microscopy in the study of biological systems.

    PubMed

    Johnson, D E

    1986-01-01

    The AEM is a powerful tool in biological research, capable of providing information simply not available by other means. The use of a field emission STEM for this application can lead to a significant improvement in spatial resolution in most cases now allowed by the quality of the specimen preparation but perhaps ultimately limited by the effects of radiation damage. Increased elemental sensitivity is at least possible in selected cases with electron energy-loss spectrometry, but fundamental aspects of ELS will probably confine its role to that of a limited complement to EDS. The considerable margin for improvement in sensitivity of the basic analytical technique means that the search for technological improvement will continue. Fortunately, however, current technology can also continue to answer important biological questions.

  15. Discourse for slide presentation: An overview of chemical detection systems

    NASA Technical Reports Server (NTRS)

    Peters, Randy Alan; Galen, Theodore J.; Pierson, Duane L.

    1990-01-01

    A brief overview of some of the analytical techniques currently used in monitoring and analyzing permanent gases and selected volatile organic compound in air are presented. Some of the analytical considerations in developing a specific method are discussed. Four broad groups of hardware are discussed: compound class specific personal monitors, gas chromatographic systems, infrared spectroscopic systems, and mass spectrometric residual gas analyzer systems. Three types of detectors are also discussed: catalytic sensor based systems, photoionization detectors, and wet or dry chemical reagent systems. Under gas chromatograph based systems five detector systems used in combination with a GC are covered: thermal conductivity detectors, photoionization detectors, Fourier transform infrared spectrophotometric systems, quadrapole mass spectrometric systems, and a relatively recent development, a surface acoustic wave vapor detector.

  16. Computational Fluid Dynamics Uncertainty Analysis Applied to Heat Transfer over a Flat Plate

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward; Ilie, Marcel; Schallhorn, Paul A.

    2013-01-01

    There have been few discussions on using Computational Fluid Dynamics (CFD) without experimental validation. Pairing experimental data, uncertainty analysis, and analytical predictions provides a comprehensive approach to verification and is the current state of the art. With pressed budgets, collecting experimental data is rare or non-existent. This paper investigates and proposes a method to perform CFD uncertainty analysis only from computational data. The method uses current CFD uncertainty techniques coupled with the Student-T distribution to predict the heat transfer coefficient over a at plate. The inputs to the CFD model are varied from a specified tolerance or bias error and the difference in the results are used to estimate the uncertainty. The variation in each input is ranked from least to greatest to determine the order of importance. The results are compared to heat transfer correlations and conclusions drawn about the feasibility of using CFD without experimental data. The results provide a tactic to analytically estimate the uncertainty in a CFD model when experimental data is unavailable

  17. Development of solution techniques for nonlinear structural analysis

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Andrews, J. S.

    1974-01-01

    Nonlinear structural solution methods in the current research literature are classified according to order of the solution scheme, and it is shown that the analytical tools for these methods are uniformly derivable by perturbation techniques. A new perturbation formulation is developed for treating an arbitrary nonlinear material, in terms of a finite-difference generated stress-strain expansion. Nonlinear geometric effects are included in an explicit manner by appropriate definition of an applicable strain tensor. A new finite-element pilot computer program PANES (Program for Analysis of Nonlinear Equilibrium and Stability) is presented for treatment of problems involving material and geometric nonlinearities, as well as certain forms on nonconservative loading.

  18. Visualizing Molecular Diffusion through Passive Permeability Barriers in Cells: Conventional and Novel Approaches

    PubMed Central

    Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari

    2013-01-01

    Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically-inducible diffusion trap (C-IDT) for probing permeable barriers. PMID:23731778

  19. Performance of finned thermal capacitors. Ph.D. Thesis - Texas Univ., Austin

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1974-01-01

    The performance of typical thermal capacitors, both in earth and orbital environments, was investigated. Techniques which were used to make predictions of thermal behavior in a one-g earth environment are outlined. Orbital performance parameters are qualitatively discussed, and those effects expected to be important under zero-g conditions are outlined. A summary of thermal capacitor applications are documentated, along with significant problem areas and current configurations. An experimental program was conducted to determine typical one-g performance, and the physical significance of these data is discussed in detail. Numerical techniques were employed to allow comparison between analytical and experimental data.

  20. Experimental and analytical determination of stability parameters for a balloon tethered in a wind

    NASA Technical Reports Server (NTRS)

    Redd, L. T.; Bennett, R. M.; Bland, S. R.

    1973-01-01

    Experimental and analytical techniques for determining stability parameters for a balloon tethered in a steady wind are described. These techniques are applied to a particular 7.64-meter-long balloon, and the results are presented. The stability parameters of interest appear as coefficients in linearized stability equations and are derived from the various forces and moments acting on the balloon. In several cases the results from the experimental and analytical techniques are compared and suggestions are given as to which techniques are the most practical means of determining values for the stability parameters.

  1. The NIST Quantitative Infrared Database

    PubMed Central

    Chu, P. M.; Guenther, F. R.; Rhoderick, G. C.; Lafferty, W. J.

    1999-01-01

    With the recent developments in Fourier transform infrared (FTIR) spectrometers it is becoming more feasible to place these instruments in field environments. As a result, there has been enormous increase in the use of FTIR techniques for a variety of qualitative and quantitative chemical measurements. These methods offer the possibility of fully automated real-time quantitation of many analytes; therefore FTIR has great potential as an analytical tool. Recently, the U.S. Environmental Protection Agency (U.S.EPA) has developed protocol methods for emissions monitoring using both extractive and open-path FTIR measurements. Depending upon the analyte, the experimental conditions and the analyte matrix, approximately 100 of the hazardous air pollutants (HAPs) listed in the 1990 U.S.EPA Clean Air Act amendment (CAAA) can be measured. The National Institute of Standards and Technology (NIST) has initiated a program to provide quality-assured infrared absorption coefficient data based on NIST prepared primary gas standards. Currently, absorption coefficient data has been acquired for approximately 20 of the HAPs. For each compound, the absorption coefficient spectrum was calculated using nine transmittance spectra at 0.12 cm−1 resolution and the Beer’s law relationship. The uncertainties in the absorption coefficient data were estimated from the linear regressions of the transmittance data and considerations of other error sources such as the nonlinear detector response. For absorption coefficient values greater than 1 × 10−4 μmol/mol)−1 m−1 the average relative expanded uncertainty is 2.2 %. This quantitative infrared database is currently an ongoing project at NIST. Additional spectra will be added to the database as they are acquired. Our current plans include continued data acquisition of the compounds listed in the CAAA, as well as the compounds that contribute to global warming and ozone depletion.

  2. The use of surface-enhanced Raman scattering for detecting molecular evidence of life in rocks, sediments, and sedimentary deposits.

    PubMed

    Bowden, Stephen A; Wilson, Rab; Cooper, Jonathan M; Parnell, John

    2010-01-01

    Raman spectroscopy is a versatile analytical technique capable of characterizing the composition of both inorganic and organic materials. Consequently, it is frequently suggested as a payload on many planetary landers. Only approximately 1 in every 10(6) photons are Raman scattered; therefore, the detection of trace quantities of an analyte dispersed in a sample matrix can be much harder to achieve. To overcome this, surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS) both provide greatly enhanced signals (enhancements between 10(5) and 10(9)) through the analyte's interaction with the locally generated surface plasmons, which occur at a "roughened" or nanostructured metallic surface (e.g., Cu, Au, and Ag). Both SERS and SERRS may therefore provide a viable technique for trace analysis of samples. In this paper, we describe the development of SERS assays for analyzing trace amounts of compounds present in the solvent extracts of sedimentary deposits. These assays were used to detect biological pigments present in an Arctic microoasis (a small locale of elevated biological productivity) and its detrital regolith, characterize the pigmentation of microbial mats around hydrothermal springs, and detect fossil organic matter in hydrothermal deposits. These field study examples demonstrate that SERS technology is sufficiently mature to be applied to many astrobiological analog studies on Earth. Many current and proposed imaging systems intended for remote deployment already posses the instrumental components needed for SERS. The addition of wet chemistry sample processing facilities to these instruments could yield field-deployable analytical instruments with a broadened analytical window for detecting organic compounds with a biological or geological origin.

  3. Analytical Chemistry: A Literary Approach.

    ERIC Educational Resources Information Center

    Lucy, Charles A.

    2000-01-01

    Provides an anthology of references to descriptions of analytical chemistry techniques from history, popular fiction, and film which can be used to capture student interest and frame discussions of chemical techniques. (WRM)

  4. Current and future methods for evaluating the allergenic potential of proteins: international workshop report 23-25 October 2007.

    PubMed

    Thomas, Karluss; Herouet-Guicheney, Corinne; Ladics, Gregory; McClain, Scott; MacIntosh, Susan; Privalle, Laura; Woolhiser, Mike

    2008-09-01

    The International Life Science Institute's Health and Environmental Sciences Institute's Protein Allergenicity Technical Committee hosted an international workshop October 23-25, 2007, in Nice, France, to review and discuss existing and emerging methods and techniques for improving the current weight-of-evidence approach for evaluating the potential allergenicity of novel proteins. The workshop included over 40 international experts from government, industry, and academia. Their expertise represented a range of disciplines including immunology, chemistry, molecular biology, bioinformatics, and toxicology. Among participants, there was consensus that (1) current bioinformatic approaches are highly conservative; (2) advances in bioinformatics using structural comparisons of proteins may be helpful as the availability of structural data increases; (3) proteomics may prove useful for monitoring the natural variability in a plant's proteome and assessing the impact of biotechnology transformations on endogenous levels of allergens, but only when analytical techniques have been standardized and additional data are available on the natural variation of protein expression in non-transgenic bred plants; (4) basophil response assays are promising techniques, but need additional evaluation around specificity, sensitivity, and reproducibility; (5) additional research is required to develop and validate an animal model for the purpose of predicting protein allergenicity.

  5. Langmuir probe analysis in electronegative plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bredin, Jerome, E-mail: jerome.bredin@lpp.polytechnique.fr; Chabert, Pascal; Aanesland, Ane

    2014-12-15

    This paper compares two methods to analyze Langmuir probe data obtained in electronegative plasmas. The techniques are developed to allow investigations in plasmas, where the electronegativity α{sub 0} = n{sub –}/n{sub e} (the ratio between the negative ion and electron densities) varies strongly. The first technique uses an analytical model to express the Langmuir probe current-voltage (I-V) characteristic and its second derivative as a function of the electron and ion densities (n{sub e}, n{sub +}, n{sub –}), temperatures (T{sub e}, T{sub +}, T{sub –}), and masses (m{sub e}, m{sub +}, m{sub –}). The analytical curves are fitted to the experimental data bymore » adjusting these variables and parameters. To reduce the number of fitted parameters, the ion masses are assumed constant within the source volume, and quasi-neutrality is assumed everywhere. In this theory, Maxwellian distributions are assumed for all charged species. We show that this data analysis can predict the various plasma parameters within 5–10%, including the ion temperatures when α{sub 0} > 100. However, the method is tedious, time consuming, and requires a precise measurement of the energy distribution function. A second technique is therefore developed for easier access to the electron and ion densities, but does not give access to the ion temperatures. Here, only the measured I-V characteristic is needed. The electron density, temperature, and ion saturation current for positive ions are determined by classical probe techniques. The electronegativity α{sub 0} and the ion densities are deduced via an iterative method since these variables are coupled via the modified Bohm velocity. For both techniques, a Child-Law sheath model for cylindrical probes has been developed and is presented to emphasize the importance of this model for small cylindrical Langmuir probes.« less

  6. An overview of the characterization of occupational exposure to nanoaerosols in workplaces

    NASA Astrophysics Data System (ADS)

    Castellano, Paola; Ferrante, Riccardo; Curini, Roberta; Canepari, Silvia

    2009-05-01

    Currently, there is a lack of standardized sampling and metric methods that can be applied to measure the level of exposure to nanosized aerosols. Therefore, any attempt to characterize exposure to nanoparticles (NP) in a workplace must involve a multifaceted approach characterized by different sampling and analytical techniques to measure all relevant characteristics of NP exposure. Furthermore, as NP aerosols are always complex mixtures of multiple origins, sampling and analytical methods need to be improved to selectively evaluate the apportionment from specific sources to the final nanomaterials. An open question at the world's level is how to relate specific toxic effects of NP with one or more among several different parameters (such as particle size, mass, composition, surface area, number concentration, aggregation or agglomeration state, water solubility and surface chemistry). As the evaluation of occupational exposure to NP in workplaces needs dimensional and chemical characterization, the main problem is the choice of the sampling and dimensional separation techniques. Therefore a convenient approach to allow a satisfactory risk assessment could be the contemporary use of different sampling and measuring techniques for particles with known toxicity in selected workplaces. Despite the lack of specific NP exposure limit values, exposure metrics, appropriate to nanoaerosols, are discussed in the Technical Report ISO/TR 27628:2007 with the aim to enable occupational hygienists to characterize and monitor nanoaerosols in workplaces. Moreover, NIOSH has developed the Document Approaches to Safe Nanotechnology (intended to be an information exchange with NIOSH) in order to address current and future research needs to understanding the potential risks that nanotechnology may have to workers.

  7. Quantitative diagnosis and prognosis framework for concrete degradation due to alkali-silica reaction

    NASA Astrophysics Data System (ADS)

    Mahadevan, Sankaran; Neal, Kyle; Nath, Paromita; Bao, Yanqing; Cai, Guowei; Orme, Peter; Adams, Douglas; Agarwal, Vivek

    2017-02-01

    This research is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in nuclear power plants that are subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements: monitoring, data analytics, uncertainty quantification, and prognosis. The current work focuses on degradation caused by ASR (alkali-silica reaction). Controlled concrete specimens with reactive aggregate are prepared to develop accelerated ASR degradation. Different monitoring techniques — infrared thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) — are studied for ASR diagnosis of the specimens. Both DIC and mechanical measurements record the specimen deformation caused by ASR gel expansion. Thermography is used to compare the thermal response of pristine and damaged concrete specimens and generate a 2-D map of the damage (i.e., ASR gel and cracked area), thus facilitating localization and quantification of damage. NIRAS and VAM are two separate vibration-based techniques that detect nonlinear changes in dynamic properties caused by the damage. The diagnosis results from multiple techniques are then fused using a Bayesian network, which also helps to quantify the uncertainty in the diagnosis. Prognosis of ASR degradation is then performed based on the current state of degradation obtained from diagnosis, by using a coupled thermo-hydro-mechanical-chemical (THMC) model for ASR degradation. This comprehensive approach of monitoring, data analytics, and uncertainty-quantified diagnosis and prognosis will facilitate the development of a quantitative, risk informed framework that will support continuous assessment and risk management of structural health and performance.

  8. Child-Langmuir flow with periodically varying anode voltage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rokhlenko, A.

    Using the Lagrangian technique, we study settled Child-Langmuir flows in a one dimensional planar diodes whose anode voltages periodically vary around given positive values. Our goal is to find analytically if the average currents in these systems can exceed the famous Child-Langmuir limit found for the stationary current a long time ago. The main result of our study is that in a periodic quasi-stationary regime the average current can be larger than the Child-Langmuir maximum even by 50% compared with its adiabatic average value. The cathode current in this case has the form of rectangular pulses which are formed bymore » a very special triangular voltage modulation. This regime, i.e., periodicity, shape of pulses, and their amplitude, needs to be carefully chosen for the best performance.« less

  9. The application of emulation techniques in the analysis of highly reliable, guidance and control computer systems

    NASA Technical Reports Server (NTRS)

    Migneault, Gerard E.

    1987-01-01

    Emulation techniques can be a solution to a difficulty that arises in the analysis of the reliability of guidance and control computer systems for future commercial aircraft. Described here is the difficulty, the lack of credibility of reliability estimates obtained by analytical modeling techniques. The difficulty is an unavoidable consequence of the following: (1) a reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Use of emulation techniques for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques is then discussed. Finally several examples of the application of emulation techniques are described.

  10. Analytical technologies for influenza virus-like particle candidate vaccines: challenges and emerging approaches

    PubMed Central

    2013-01-01

    Influenza virus-like particle vaccines are one of the most promising ways to respond to the threat of future influenza pandemics. VLPs are composed of viral antigens but lack nucleic acids making them non-infectious which limit the risk of recombination with wild-type strains. By taking advantage of the advancements in cell culture technologies, the process from strain identification to manufacturing has the potential to be completed rapidly and easily at large scales. After closely reviewing the current research done on influenza VLPs, it is evident that the development of quantification methods has been consistently overlooked. VLP quantification at all stages of the production process has been left to rely on current influenza quantification methods (i.e. Hemagglutination assay (HA), Single Radial Immunodiffusion assay (SRID), NA enzymatic activity assays, Western blot, Electron Microscopy). These are analytical methods developed decades ago for influenza virions and final bulk influenza vaccines. Although these methods are time-consuming and cumbersome they have been sufficient for the characterization of final purified material. Nevertheless, these analytical methods are impractical for in-line process monitoring because VLP concentration in crude samples generally falls out of the range of detection for these methods. This consequently impedes the development of robust influenza-VLP production and purification processes. Thus, development of functional process analytical techniques, applicable at every stage during production, that are compatible with different production platforms is in great need to assess, optimize and exploit the full potential of novel manufacturing platforms. PMID:23642219

  11. Analytical Applications of Monte Carlo Techniques.

    ERIC Educational Resources Information Center

    Guell, Oscar A.; Holcombe, James A.

    1990-01-01

    Described are analytical applications of the theory of random processes, in particular solutions obtained by using statistical procedures known as Monte Carlo techniques. Supercomputer simulations, sampling, integration, ensemble, annealing, and explicit simulation are discussed. (CW)

  12. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES.

    PubMed

    Escobar Galindo, Ramón; Gago, Raul; Duday, David; Palacio, Carlos

    2010-04-01

    An increasing amount of effort is currently being directed towards the development of new functionalized nanostructured materials (i.e., multilayers and nanocomposites). Using an appropriate combination of composition and microstructure, it is possible to optimize and tailor the final properties of the material to its final application. The analytical characterization of these new complex nanostructures requires high-resolution analytical techniques that are able to provide information about surface and depth composition at the nanometric level. In this work, we comparatively review the state of the art in four different depth-profiling characterization techniques: Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS) and glow discharge optical emission spectroscopy (GDOES). In addition, we predict future trends in these techniques regarding improvements in their depth resolutions. Subnanometric resolution can now be achieved in RBS using magnetic spectrometry systems. In SIMS, the use of rotating sample holders and oxygen flooding during analysis as well as the optimization of floating low-energy ion guns to lower the impact energy of the primary ions improves the depth resolution of the technique. Angle-resolved XPS provides a very powerful and nondestructive technique for obtaining depth profiling and chemical information within the range of a few monolayers. Finally, the application of mathematical tools (deconvolution algorithms and a depth-profiling model), pulsed sources and surface plasma cleaning procedures is expected to greatly improve GDOES depth resolution.

  13. Thermoelectrically cooled water trap

    DOEpatents

    Micheels, Ronald H [Concord, MA

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  14. Enabling Analytics on Sensitive Medical Data with Secure Multi-Party Computation.

    PubMed

    Veeningen, Meilof; Chatterjea, Supriyo; Horváth, Anna Zsófia; Spindler, Gerald; Boersma, Eric; van der Spek, Peter; van der Galiën, Onno; Gutteling, Job; Kraaij, Wessel; Veugen, Thijs

    2018-01-01

    While there is a clear need to apply data analytics in the healthcare sector, this is often difficult because it requires combining sensitive data from multiple data sources. In this paper, we show how the cryptographic technique of secure multi-party computation can enable such data analytics by performing analytics without the need to share the underlying data. We discuss the issue of compliance to European privacy legislation; report on three pilots bringing these techniques closer to practice; and discuss the main challenges ahead to make fully privacy-preserving data analytics in the medical sector commonplace.

  15. Aerodynamic and hydrodynamic model tests of the Enserch Garden Banks floating production facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, E.W.; Bauer, T.C.; Kelly, P.J.

    1995-12-01

    This paper presents the results of aerodynamic and hydrodynamic model tests of the Enserch Garden Banks, a semisubmersible Floating Production Facility (FPF) moored in 2,190-ft waters. During the wind tunnel tests, the steady component of wind and current forces/moments at various skew and heel axes were measured. The results were compared and calibrated against analytical calculations using techniques recommended by ABS and API. During the wave basin recommend test the mooring line tensions and vessel motions including the effects of dynamic wind and current were measured. An analytical calculation of the airgap, vessel motions, and mooring line loads were comparedmore » with wave basin model test results. This paper discusses the test objectives, test setups and agendas for wind and wave basin testing of a deepwater permanently moored floating production system. The experience from these tests and the comparison of measured tests results with analytical calculations will be of value to designers and operators contemplating the use of a semisubmersible based floating production system. The analysis procedures are aimed at estimating (1) vessel motions, (2) airgap, and (3) mooring line tensions with reasonable accuracy. Finally, this paper demonstrates how the model test results were interpolated and adapted in the design loop.« less

  16. Failure of Standard Training Sets in the Analysis of Fast-Scan Cyclic Voltammetry Data.

    PubMed

    Johnson, Justin A; Rodeberg, Nathan T; Wightman, R Mark

    2016-03-16

    The use of principal component regression, a multivariate calibration method, in the analysis of in vivo fast-scan cyclic voltammetry data allows for separation of overlapping signal contributions, permitting evaluation of the temporal dynamics of multiple neurotransmitters simultaneously. To accomplish this, the technique relies on information about current-concentration relationships across the scan-potential window gained from analysis of training sets. The ability of the constructed models to resolve analytes depends critically on the quality of these data. Recently, the use of standard training sets obtained under conditions other than those of the experimental data collection (e.g., with different electrodes, animals, or equipment) has been reported. This study evaluates the analyte resolution capabilities of models constructed using this approach from both a theoretical and experimental viewpoint. A detailed discussion of the theory of principal component regression is provided to inform this discussion. The findings demonstrate that the use of standard training sets leads to misassignment of the current-concentration relationships across the scan-potential window. This directly results in poor analyte resolution and, consequently, inaccurate quantitation, which may lead to erroneous conclusions being drawn from experimental data. Thus, it is strongly advocated that training sets be obtained under the experimental conditions to allow for accurate data analysis.

  17. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum.

    PubMed

    Ping, Jinglei; Blum, Jacquelyn E; Vishnubhotla, Ramya; Vrudhula, Amey; Naylor, Carl H; Gao, Zhaoli; Saven, Jeffery G; Johnson, Alan T Charlie

    2017-08-01

    Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (<5 s), very-low-power (femtowatt) detection of the pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (<20 s) response to pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Multi-residue analysis of pesticides, plant hormones, veterinary drugs and mycotoxins using HILIC chromatography - MS/MS in various food matrices.

    PubMed

    Danezis, G P; Anagnostopoulos, C J; Liapis, K; Koupparis, M A

    2016-10-26

    One of the recent trends in Analytical Chemistry is the development of economic, quick and easy hyphenated methods to be used in a field that includes analytes of different classes and physicochemical properties. In this work a multi-residue method was developed for the simultaneous determination of 28 xenobiotics (polar and hydrophilic) using hydrophilic interaction liquid chromatography technique (HILIC) coupled with triple quadrupole mass spectrometry (LC-MS/MS) technology. The scope of the method includes plant growth regulators (chlormequat, daminozide, diquat, maleic hydrazide, mepiquat, paraquat), pesticides (cyromazine, the metabolite of the fungicide propineb PTU (propylenethiourea), amitrole), various multiclass antibiotics (tetracyclines, sulfonamides quinolones, kasugamycin and mycotoxins (aflatoxin B1, B2, fumonisin B1 and ochratoxin A). Isolation of the analytes from the matrix was achieved with a fast and effective technique. The validation of the multi-residue method was performed at the levels: 10 μg/kg and 100 μg/kg in the following representative substrates: fruits-vegetables (apples, apricots, lettuce and onions), cereals and pulses (flour and chickpeas), animal products (milk and meat) and cereal based baby foods. The method was validated taking into consideration EU guidelines and showed acceptable linearity (r ≥ 0.99), accuracy with recoveries between 70 and 120% and precision with RSD ≤ 20% for the majority of the analytes studied. For the analytes that presented accuracy and precision values outside the acceptable limits the method still is able to serve as a semi-quantitative method. The matrix effect, the limits of detection and quantification were also estimated and compared with the current EU MRLs (Maximum Residue Levels) and FAO/WHO MLs (Maximum Levels) or CXLs (Codex Maximum Residue Limits). The combined and expanded uncertainty of the method for each analyte per substrate, was also estimated. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Design, construction and evaluation of a 12.2 GHz, 4.0 kW-CW high efficiency klystron amplifier. [for satellite-borne TV broadcast transmitters

    NASA Technical Reports Server (NTRS)

    Vishida, J. M.; Brodersen, L. K.

    1974-01-01

    An analytical and experimental program is described, for studying design techniques for optimizing the conversion efficiency of klystron amplifiers, and to utilize these techniques in the development and fabrication of an X-band 4 kW cw klystron, for use in satellite-borne television broadcast transmitters. The design is based on a technique for increasing the RF beam current by using the second harmonic space charge forces in the bunched beam. Experimental analysis was also made of a method to enhance circuit efficiency in the klystron cavities. The design incorporates a collector which is demountable from the tube to facilitate multistage depressed collector experiments employing an axisymmetric, electrostatic collector for linear beam microwave tubes.

  20. Accuracy of selected techniques for estimating ice-affected streamflow

    USGS Publications Warehouse

    Walker, John F.

    1991-01-01

    This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.

  1. Electrical field-induced extraction and separation techniques: promising trends in analytical chemistry--a review.

    PubMed

    Yamini, Yadollah; Seidi, Shahram; Rezazadeh, Maryam

    2014-03-03

    Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Qualitative evaluation of maternal milk and commercial infant formulas via LIBS.

    PubMed

    Abdel-Salam, Z; Al Sharnoubi, J; Harith, M A

    2013-10-15

    This study focuses on the use of laser-induced breakdown spectroscopy (LIBS) for the evaluation of the nutrients in maternal milk and some commercially available infant formulas. The results of such evaluation are vital for adequate and healthy feeding for babies during lactation period. Laser-induced breakdown spectroscopy offers special advantages in comparison to the other conventional analytical techniques. Specifically, LIBS is a straightforward technique that can be used in situ to provide qualitative analytical information in few minutes for the samples under investigation without preparation processes. The samples studied in the current work were maternal milk samples collected during the first 3 months of lactation (not colostrum milk) and samples from six different types of commercially available infant formulas. The samples' elemental composition has been compared with respect to the relative abundance of the elements of nutrition importance, namely Mg, Ca, Na, and Fe using their spectral emission lines in the relevant LIBS spectra. In addition, CN and C2 molecular emission bands in the same spectra have been studied as indicators of proteins content in the samples. The obtained analytical results demonstrate the higher elemental contents of the maternal milk compared with the commercial formulas samples. Similar results have been obtained as for the proteins content. It has been also shown that calcium and proteins have similar relative concentration trends in the studied samples. This work demonstrates the feasibility of adopting LIBS as a fast, safe, less costly technique evaluating qualitatively the nutrients content of both maternal and commercial milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields.

    PubMed

    Hahn, David W; Omenetto, Nicoló

    2012-04-01

    The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis. © 2012 Society for Applied Spectroscopy

  4. Simulation and Modeling of charge particles transport using SIMION for our Time of Flight Positron Annihilation Induce Auger Electron Spectroscopy systems

    NASA Astrophysics Data System (ADS)

    Joglekar, Prasad; Shastry, K.; Satyal, Suman; Weiss, Alexander

    2012-02-01

    Time of flight Positron Annihilation Induced Auger Electron Spectroscopy system, a highly surface selective analytical technique using time of flight of auger electron resulting from the annihilation of core electrons by trapped incident positron in image potential well. We simulated and modeled the trajectories of the charge particles in TOF-PAES using SIMION for the development of new high resolution system at U T Arlington and current TOFPAES system. This poster presents the SIMION simulations results, Time of flight calculations and larmor radius calculations for current system as well as new system.

  5. Tomographic reconstruction of layered tissue structures

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Azeez-Jan, Mohideen; Bartel, Sebastian

    2001-11-01

    In recent years the interest in the determination of optical properties of layered tissue structure has resurfaced. Applications include, for example, studies on layered skin tissue and underlying muscles, imaging of the brain underneath layers of skin, skull, and meninges, and imaging of the fetal head in utero beneath the layered structures of the maternal abdomen. In this work we approach the problem of layered structures in the framework of model-based iterative image reconstruction schemes. These schemes are currently developed to determine the optical properties inside tissue from measurement on the surface. If applied to layered structure these techniques yield substantial improvements over currently available semi-analytical approaches.

  6. Theory and application of high temperature superconducting eddy current probes for nondestructive evaluation

    NASA Astrophysics Data System (ADS)

    Claycomb, James Ronald

    1998-10-01

    Several High-T c Superconducting (HTS) eddy current probes have been developed for applications in electromagnetic nondestructive evaluation (NDE) of conducting materials. The probes utilize high-T c SUperconducting Quantum Interference Device (SQUID) magnetometers to detect the fields produced by the perturbation of induced eddy currents resulting from subsurface flaws. Localized HTS shields are incorporated to selectively screen out environmental electromagnetic interference and enable movement of the instrument in the Earth's magnetic field. High permeability magnetic shields are employed to focus flux into, and thereby increase the eddy current density in the metallic test samples. NDE test results are presented, in which machined flaws in aluminum alloy are detected by probes of different design. A novel current injection technique performing NDE of wires using SQUIDs is also discussed. The HTS and high permeability shields are designed based on analytical and numerical finite element method (FEM) calculations presented here. Superconducting and high permeability magnetic shields are modeled in uniform noise fields and in the presence of dipole fields characteristic of flaw signals. Several shield designs are characterized in terms of (1) their ability to screen out uniform background noise fields; (2) the resultant improvement in signal-to-noise ratio and (3) the extent to which dipole source fields are distorted. An analysis of eddy current induction is then presented for low frequency SQUID NDE. Analytical expressions are developed for the induced eddy currents and resulting magnetic fields produced by excitation sources above conducting plates of varying thickness. The expressions derived here are used to model the SQUID's response to material thinning. An analytical defect model is also developed, taking into account the attenuation of the defect field through the conducting material, as well as the current flow around the edges of the flaw. Time harmonic FEM calculations are then used to model the electromagnetic response of eight probe designs, consisting of an eddy current drive coil coupled to a SQUID surrounded by superconducting and/or high permeability magnetic shielding. Simulations are carried out with the eddy current probes located a finite distance above a conducting surface. Results are quantified in terms of shielding and focus factors for each probe design.

  7. Analytical methods in multivariate highway safety exposure data estimation

    DOT National Transportation Integrated Search

    1984-01-01

    Three general analytical techniques which may be of use in : extending, enhancing, and combining highway accident exposure data are : discussed. The techniques are log-linear modelling, iterative propor : tional fitting and the expectation maximizati...

  8. Self-Assembled Core-Satellite Gold Nanoparticle Networks for Ultrasensitive Detection of Chiral Molecules by Recognition Tunneling Current.

    PubMed

    Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong

    2016-05-24

    Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules.

  9. Techniques for Forecasting Air Passenger Traffic

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.

  10. Direct analyte-probed nanoextraction coupled to nanospray ionization-mass spectrometry of drug residues from latent fingerprints.

    PubMed

    Clemons, Kristina; Wiley, Rachel; Waverka, Kristin; Fox, James; Dziekonski, Eric; Verbeck, Guido F

    2013-07-01

    Here, we present a method of extracting drug residues from fingerprints via Direct Analyte-Probed Nanoextraction coupled to nanospray ionization-mass spectrometry (DAPNe-NSI-MS). This instrumental technique provides higher selectivity and lower detection limits over current methods, greatly reducing sample preparation, and does not compromise the integrity of latent fingerprints. This coupled to Raman microscopy is an advantageous supplement for location and identification of trace particles. DAPNe uses a nanomanipulator for extraction and differing microscopies for localization of chemicals of interest. A capillary tip with solvent of choice is placed in a nanopositioner. The surface to be analyzed is placed under a microscope, and a particle of interest is located. Using a pressure injector, the solvent is injected onto the surface where it dissolves the analyte, and then extracted back into the capillary tip. The solution is then directly analyzed via NSI-MS. Analyses of caffeine, cocaine, crystal methamphetamine, and ecstasy have been performed successfully. © 2013 American Academy of Forensic Sciences.

  11. A reference web architecture and patterns for real-time visual analytics on large streaming data

    NASA Astrophysics Data System (ADS)

    Kandogan, Eser; Soroker, Danny; Rohall, Steven; Bak, Peter; van Ham, Frank; Lu, Jie; Ship, Harold-Jeffrey; Wang, Chun-Fu; Lai, Jennifer

    2013-12-01

    Monitoring and analysis of streaming data, such as social media, sensors, and news feeds, has become increasingly important for business and government. The volume and velocity of incoming data are key challenges. To effectively support monitoring and analysis, statistical and visual analytics techniques need to be seamlessly integrated; analytic techniques for a variety of data types (e.g., text, numerical) and scope (e.g., incremental, rolling-window, global) must be properly accommodated; interaction, collaboration, and coordination among several visualizations must be supported in an efficient manner; and the system should support the use of different analytics techniques in a pluggable manner. Especially in web-based environments, these requirements pose restrictions on the basic visual analytics architecture for streaming data. In this paper we report on our experience of building a reference web architecture for real-time visual analytics of streaming data, identify and discuss architectural patterns that address these challenges, and report on applying the reference architecture for real-time Twitter monitoring and analysis.

  12. An analytical study of reduced-gravity liquid reorientation using a simplified marker and cell technique

    NASA Technical Reports Server (NTRS)

    Betts, W. S., Jr.

    1972-01-01

    A computer program called HOPI was developed to predict reorientation flow dynamics, wherein liquids move from one end of a closed, partially filled, rigid container to the other end under the influence of container acceleration. The program uses the simplified marker and cell numerical technique and, using explicit finite-differencing, solves the Navier-Stokes equations for an incompressible viscous fluid. The effects of turbulence are also simulated in the program. HOPI can consider curved as well as straight walled boundaries. Both free-surface and confined flows can be calculated. The program was used to simulate five liquid reorientation cases. Three of these cases simulated actual NASA LeRC drop tower test conditions while two cases simulated full-scale Centaur tank conditions. It was concluded that while HOPI can be used to analytically determine the fluid motion in a typical settling problem, there is a current need to optimize HOPI. This includes both reducing the computer usage time and also reducing the core storage required for a given size problem.

  13. Electron Beam Analysis of Micrometeoroids Captured in Aerogel as Stardust Analogues

    NASA Technical Reports Server (NTRS)

    Graham, G. A.; Sheffield-Parker, J.; Bradley, P.; Kearsley, A. T.; Dai, Z. R.; Mayo, S. C.; Teslich, N.; Snead, C.; Westphal, A. J.; Ishii, H.

    2005-01-01

    In January 2004, NASA s Stardust spacecraft passed through the tail of Comet 81P/Wild-2. The on-board dust flux monitor instrument indicated that numerous micro- and nano-meter sized cometary dust particles were captured by the dedicated silica aerogel capture cell. The collected cometary particles will be returned to Earth in January 2006. Current Stardust analogues are: (i) Light-gas-gun accelerated individual mineral grains and carbonaceous meteoritic material in aerogels at the Stardust encounter velocity ca.approximately 6 kilometers per second. (ii) Aerogels exposed in low-Earth orbit (LEO) containing preserved cosmic dust grains. Studies of these impacts offer insight into the potential state of the captured cometary dust by Stardust and the suitability of various analytical techniques. A number of papers have discussed the application of sophisticated synchrotron analytical techniques to analyze Stardust particles. Yet much of the understanding gained on the composition and mineralogy of interplanetary dust particles (IDPs) has come from electron microscopy studies. Here we discuss the application of scanning electron microscopy (SEM) for Stardust during the preliminary phase of post-return investigations.

  14. Electrochemical detection of a single cytomegalovirus at an ultramicroelectrode and its antibody anchoring

    PubMed Central

    Dick, Jeffrey E.; Hilterbrand, Adam T.; Boika, Aliaksei; Upton, Jason W.; Bard, Allen J.

    2015-01-01

    We report observations of stochastic collisions of murine cytomegalovirus (MCMV) on ultramicroelectrodes (UMEs), extending the observation of discrete collision events on UMEs to biologically relevant analytes. Adsorption of an antibody specific for a virion surface glycoprotein allowed differentiation of MCMV from MCMV bound by antibody from the collision frequency decrease and current magnitudes in the electrochemical collision experiments, which shows the efficacy of the method to size viral samples. To add selectivity to the technique, interactions between MCMV, a glycoprotein-specific primary antibody to MCMV, and polystyrene bead “anchors,” which were functionalized with a secondary antibody specific to the Fc region of the primary antibody, were used to affect virus mobility. Bead aggregation was observed, and the extent of aggregation was measured using the electrochemical collision technique. Scanning electron microscopy and optical microscopy further supported aggregate shape and extent of aggregation with and without MCMV. This work extends the field of collisions to biologically relevant antigens and provides a novel foundation upon which qualitative sensor technology might be built for selective detection of viruses and other biologically relevant analytes. PMID:25870261

  15. Interconnections between various analytic approaches applicable to third-order nonlinear differential equations

    PubMed Central

    Mohanasubha, R.; Chandrasekar, V. K.; Senthilvelan, M.; Lakshmanan, M.

    2015-01-01

    We unearth the interconnection between various analytical methods which are widely used in the current literature to identify integrable nonlinear dynamical systems described by third-order nonlinear ODEs. We establish an important interconnection between the extended Prelle–Singer procedure and λ-symmetries approach applicable to third-order ODEs to bring out the various linkages associated with these different techniques. By establishing this interconnection we demonstrate that given any one of the quantities as a starting point in the family consisting of Jacobi last multipliers, Darboux polynomials, Lie point symmetries, adjoint-symmetries, λ-symmetries, integrating factors and null forms one can derive the rest of the quantities in this family in a straightforward and unambiguous manner. We also illustrate our findings with three specific examples. PMID:27547076

  16. Interconnections between various analytic approaches applicable to third-order nonlinear differential equations.

    PubMed

    Mohanasubha, R; Chandrasekar, V K; Senthilvelan, M; Lakshmanan, M

    2015-04-08

    We unearth the interconnection between various analytical methods which are widely used in the current literature to identify integrable nonlinear dynamical systems described by third-order nonlinear ODEs. We establish an important interconnection between the extended Prelle-Singer procedure and λ-symmetries approach applicable to third-order ODEs to bring out the various linkages associated with these different techniques. By establishing this interconnection we demonstrate that given any one of the quantities as a starting point in the family consisting of Jacobi last multipliers, Darboux polynomials, Lie point symmetries, adjoint-symmetries, λ-symmetries, integrating factors and null forms one can derive the rest of the quantities in this family in a straightforward and unambiguous manner. We also illustrate our findings with three specific examples.

  17. Chiral Separations

    NASA Astrophysics Data System (ADS)

    Stalcup, A. M.

    2010-07-01

    The main goal of this review is to provide a brief overview of chiral separations to researchers who are versed in the area of analytical separations but unfamiliar with chiral separations. To researchers who are not familiar with this area, there is currently a bewildering array of commercially available chiral columns, chiral derivatizing reagents, and chiral selectors for approaches that span the range of analytical separation platforms (e.g., high-performance liquid chromatography, gas chromatography, supercritical-fluid chromatography, and capillary electrophoresis). This review begins with a brief discussion of chirality before examining the general strategies and commonalities among all of the chiral separation techniques. Rather than exhaustively listing all the chiral selectors and applications, this review highlights significant issues and differences between chiral and achiral separations, providing salient examples from specific classes of chiral selectors where appropriate.

  18. Priority survey between indicators and analytic hierarchy process analysis for green chemistry technology assessment

    PubMed Central

    Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong

    2015-01-01

    Objectives This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. Methods The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. Results These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. Conclusions This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies. PMID:26206364

  19. Annual banned-substance review: analytical approaches in human sports drug testing.

    PubMed

    Thevis, Mario; Kuuranne, Tiia; Geyer, Hans; Schänzer, Wilhelm

    2010-04-01

    The annual update of the list of prohibited substances and doping methods as issued by the World Anti-Doping Agency (WADA) allows the implementation of most recent considerations of performance manipulation and emerging therapeutics into human sports doping control programmes. The annual banned-substance review for human doping controls critically summarizes recent innovations in analytical approaches that support the efforts of convicting cheating athletes by improved or newly established methods that focus on known as well as newly outlawed substances and doping methods. In the current review, literature published between October 2008 and September 2009 reporting on new and/or enhanced procedures and techniques for doping analysis, as well as aspects relevant to the doping control arena, was considered to complement the 2009 annual banned-substance review.

  20. 75 FR 49930 - Stakeholder Meeting Regarding Re-Evaluation of Currently Approved Total Coliform Analytical Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-16

    ... Currently Approved Total Coliform Analytical Methods AGENCY: Environmental Protection Agency (EPA). ACTION... of currently approved Total Coliform Rule (TCR) analytical methods. At these meetings, stakeholders will be given an opportunity to discuss potential elements of a method re-evaluation study, such as...

  1. Demonstration of Laser Induced Acoustic Desoprtion - Chemical Ionization Mass Spectrometry (LIAD-CIMS) for Fragment-Free Measurements of Organic Aerosol Molecular Composition

    NASA Astrophysics Data System (ADS)

    Browne, E. C.; Abdelhamid, A.; Berry, J.; Alton, M.

    2017-12-01

    Organic compounds account for a significant portion of fine atmospheric aerosol. Current analytical techniques have provided insights on organic aerosol (OA) sources, composition, and chemical modification pathways. Despite this knowledge, large uncertainties remain and hinder our understanding of aerosol impacts on climate, air quality, and health. Measuring OA composition is challenging due to the complex chemical composition and the wide variation in the properties (e.g., vapor pressure, solubility, reactivity) of organic compounds. In many current measurement techniques, the ability to chemically resolve and quantify OA components is complicated by molecular decomposition, matrix effects, and/or preferential ionization mechanisms. Here, we utilize a novel desorption technique, laser induced acoustic desorption (LIAD), that generates fragment-free, neutral gas-phase molecules. We couple LIAD with a high-resolution chemical ionization mass spectrometer (CIMS) to provide molecular composition OA measurements. Through a series of laboratory experiments, we demonstrate the ability of this technique to measure large, thermally labile species without fragmentation/thermal decomposition. We discuss quantification and detection limits of this technique. We compare LIAD-CIMS measurements with thermal desorption-CIMS measurements using off-line measurements of ambient aerosol collected in Boulder, CO. Lastly, we discuss future development for on-line measurements of OA using LIAD-CIMS.

  2. Analytical model for advective-dispersive transport involving flexible boundary inputs, initial distributions and zero-order productions

    NASA Astrophysics Data System (ADS)

    Chen, Jui-Sheng; Li, Loretta Y.; Lai, Keng-Hsin; Liang, Ching-Ping

    2017-11-01

    A novel solution method is presented which leads to an analytical model for the advective-dispersive transport in a semi-infinite domain involving a wide spectrum of boundary inputs, initial distributions, and zero-order productions. The novel solution method applies the Laplace transform in combination with the generalized integral transform technique (GITT) to obtain the generalized analytical solution. Based on this generalized analytical expression, we derive a comprehensive set of special-case solutions for some time-dependent boundary distributions and zero-order productions, described by the Dirac delta, constant, Heaviside, exponentially-decaying, or periodically sinusoidal functions as well as some position-dependent initial conditions and zero-order productions specified by the Dirac delta, constant, Heaviside, or exponentially-decaying functions. The developed solutions are tested against an analytical solution from the literature. The excellent agreement between the analytical solutions confirms that the new model can serve as an effective tool for investigating transport behaviors under different scenarios. Several examples of applications, are given to explore transport behaviors which are rarely noted in the literature. The results show that the concentration waves resulting from the periodically sinusoidal input are sensitive to dispersion coefficient. The implication of this new finding is that a tracer test with a periodic input may provide additional information when for identifying the dispersion coefficients. Moreover, the solution strategy presented in this study can be extended to derive analytical models for handling more complicated problems of solute transport in multi-dimensional media subjected to sequential decay chain reactions, for which analytical solutions are not currently available.

  3. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...

    EPA Pesticide Factsheets

    Synthetic musk compounds have been found in surface water, fish tissues, and human breast milk. Current techniques for separating these compounds from fish tissues require tedious sample clean-upprocedures A simple method for the deterrnination of these compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge-and-trap vessel is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar and nonpolar solvents, concentrated, and directly analyzed by high resolution gas chromatography coupled to a mass spectrometer operating in the selected ion monitoring mode. In this paper, we analyzed two homogenized samples of whole fish tissues with spiked synthetic musk compounds using closed-loop stripping analysis (CLSA) and pressurized liquid extraction (PLE). The analytes were not recovered quantitatively but the extraction yield was sufficiently reproducible for at least semi-quantitative purposes (screening). The method was less expensive to implement and required significantly less sample preparation than the PLE technique. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water,

  4. Bring It to the Pitch: Combining Video and Movement Data to Enhance Team Sport Analysis.

    PubMed

    Stein, Manuel; Janetzko, Halldor; Lamprecht, Andreas; Breitkreutz, Thorsten; Zimmermann, Philipp; Goldlucke, Bastian; Schreck, Tobias; Andrienko, Gennady; Grossniklaus, Michael; Keim, Daniel A

    2018-01-01

    Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.

  5. Ambient ionization and miniature mass spectrometry system for chemical and biological analysis

    PubMed Central

    Ma, Xiaoxiao; Ouyang, Zheng

    2016-01-01

    Ambien ionization and miniaturization of mass spectrometers are two fields in mass spectrometry that have advanced significantly in the last decade. The integration of the techniques developed in these two fields is leading to the development of complete miniature analytical systems that can be used for on-site or point-of-care analysis by non-expert users. In this review, we report the current status of development in ambient ionization and miniature mass spectrometers, with an emphasis on those techniques with potential impact on the point-of-care (POC) diagnostics. The challenges in the future development of the integrated systems are discussed with possible solutions presented. PMID:28042191

  6. Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches.

    PubMed

    Lin, Yu-Chun; Phua, Siew Cheng; Lin, Benjamin; Inoue, Takanari

    2013-08-01

    Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. An Example of a Hakomi Technique Adapted for Functional Analytic Psychotherapy

    ERIC Educational Resources Information Center

    Collis, Peter

    2012-01-01

    Functional Analytic Psychotherapy (FAP) is a model of therapy that lends itself to integration with other therapy models. This paper aims to provide an example to assist others in assimilating techniques from other forms of therapy into FAP. A technique from the Hakomi Method is outlined and modified for FAP. As, on the whole, psychotherapy…

  8. Investigation of the feasibility of an analytical method of accounting for the effects of atmospheric drag on satellite motion

    NASA Technical Reports Server (NTRS)

    Bozeman, Robert E.

    1987-01-01

    An analytic technique for accounting for the joint effects of Earth oblateness and atmospheric drag on close-Earth satellites is investigated. The technique is analytic in the sense that explicit solutions to the Lagrange planetary equations are given; consequently, no numerical integrations are required in the solution process. The atmospheric density in the technique described is represented by a rotating spherical exponential model with superposed effects of the oblate atmosphere and the diurnal variations. A computer program implementing the process is discussed and sample output is compared with output from program NSEP (Numerical Satellite Ephemeris Program). NSEP uses a numerical integration technique to account for atmospheric drag effects.

  9. Global electromagnetic induction in the moon and planets. [poloidal eddy current transient response

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.

    1973-01-01

    Experiments and analyses concerning electromagnetic induction in the moon and other extraterrestrial bodies are summarized. The theory of classical electromagnetic induction in a sphere is first considered, and this treatment is extended to the case of the moon, where poloidal eddy-current response has been found experimentally to dominate other induction modes. Analysis of lunar poloidal induction yields lunar internal electrical conductivity and temperature profiles. Two poloidal-induction analytical techniques are discussed: a transient-response method applied to time-series magnetometer data, and a harmonic-analysis method applied to data numerically Fourier-transformed to the frequency domain, with emphasis on the former technique. Attention is given to complicating effects of the solar wind interaction with both induced poloidal fields and remanent steady fields. The static magnetization field induction mode is described, from which are calculated bulk magnetic permeability profiles. Magnetic field measurements obtained from the moon and from fly-bys of Venus and Mars are studied to determine the feasibility of extending theoretical and experimental induction techniques to other bodies in the solar system.

  10. Functionality of empirical model-based predictive analytics for the early detection of hemodynamic instabilty.

    PubMed

    Summers, Richard L; Pipke, Matt; Wegerich, Stephan; Conkright, Gary; Isom, Kristen C

    2014-01-01

    Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patient’s pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (“SBM”), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or “QCP”) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patient’s physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patient’s condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. predictive analytics, hemodynamic, monitoring.

  11. Evaluating biological variation in non-transgenic crops: executive summary from the ILSI Health and Environmental Sciences Institute workshop, November 16-17, 2009, Paris, France.

    PubMed

    Doerrer, Nancy; Ladics, Gregory; McClain, Scott; Herouet-Guicheney, Corinne; Poulsen, Lars K; Privalle, Laura; Stagg, Nicola

    2010-12-01

    The International Life Sciences Institute Health and Environmental Sciences Institute Protein Allergenicity Technical Committee hosted an international workshop November 16-17, 2009, in Paris, France, with over 60 participants from academia, government, and industry to review and discuss the potential utility of "-omics" technologies for assessing the variability in plant gene, protein, and metabolite expression. The goal of the workshop was to illustrate how a plant's constituent makeup and phenotypic processes can be surveyed analytically. Presentations on the "-omics" techniques (i.e., genomics, proteomics, and metabolomics) highlighted the workshop, and summaries of these presentations are published separately in this supplemental issue. This paper summarizes key messages, as well as the consensus points reached, in a roundtable discussion on eight specific questions posed during the final session of the workshop. The workshop established some common, though not unique, challenges for all "-omics" techniques, and include (a) standardization of separation/extraction and analytical techniques; (b) difficulty in associating environmental impacts (e.g., planting, soil texture, location, climate, stress) with potential alterations in plants at genomic, proteomic, and metabolomic levels; (c) many independent analytical measurements, but few replicates/subjects--poorly defined accuracy and precision; and (d) bias--a lack of hypothesis-driven science. Information on natural plant variation is critical in establishing the utility of new technologies due to the variability in specific analytes that may result from genetic differences (crop genotype), different crop management practices (conventional high input, low input, organic), interaction between genotype and environment, and the use of different breeding methods. For example, variations of several classes of proteins were reported among different soybean, rice, or wheat varieties or varieties grown at different locations. Data on the variability of allergenic proteins are important in defining the risk of potential allergenicity. Once established as a standardized assay, survey approaches such as the "-omics" techniques can be considered in a hypothesis-driven analysis of plants, such as determining unintended effects in genetically modified (GM) crops. However, the analysis should include both the GM and control varieties that have the same breeding history and exposure to the same environmental conditions. Importantly, the biological relevance and safety significance of changes in "-omic" data are still unknown. Furthermore, the current compositional assessment for evaluating the substantial equivalence of GM crops is robust, comprehensive, and a good tool for food safety assessments. The overall consensus of the workshop participants was that many "-omics" techniques are extremely useful in the discovery and research phases of biotechnology, and are valuable for hypothesis generation. However, there are many methodological shortcomings identified with "-omics" approaches, a paucity of reference materials, and a lack of focused strategy for their use that currently make them not conducive for the safety assessment of GM crops. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Cyclodextrins Based Electrochemical Sensors for Biomedical and Pharmaceutical Analysis.

    PubMed

    Lenik, Joanna

    2017-01-01

    Electrochemical sensors are very convenient devices, as they may be used in a lot of fields starting from the food industry to environmental monitoring and medical diagnostics. They offer the values of simple design, reversible and reproducible measurements, as well as ensuring precise and accurate analytical information. Compared with other methods, electrochemical sensors are relatively simple as well as having low costs, which has led to intensive development, especially in the field of medicine and pharmaceuticals within the last decade. Recently, the number of publications covering the determination of aminoacids, dopamine, cholesterol, uric acid, biomarkers, vitamins and other pharmaceutical and biological compounds has significantly increased. Many possible types of such sensors and biosensors have been proposed: owing to the kind of the detection-potentiometric voltametric, amperometry, and the materials that can be used for, e.g. designing molecular architecture of the electrode/solution interface, carbon paste, carbon nanotubes, glass carbon, graphite, graphene, PVC, conductive polymers and/or nanoparticles. The active compounds which provide the complex formation with analyte (in the case of non-current techniques) or activate biomolecules electrochemically by particle recognition and selective preconcentration of analyte on the electrode surface (in the case of current techniques) are the most recently used cyclodextrins. These macrocyclic compounds have the ability to interact with a large diversity of guest particles to form complexes of the type of guest host, for example, with particles from drugs, biomolecules, through their hydrophilic outer surface and lipophilic inner cavities. Cyclodextrins have been the subject of frequent electrochemical studies that focused mostly on both their interactions in a solid state and in solution. The process of preparing of CDs modified electrodes would, consequently, open new avenues for new electrochemical sensors and, therefore, widen their use in biomedical and drug analysis. This review presents information on manufacturing techniques and performances of these sensors and biosensors. The opportunities for these sensors to carry out biomedical and pharmaceutical researches are demonstrated. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. An Intelligent Content Discovery Technique for Health Portal Content Management

    PubMed Central

    2014-01-01

    Background Continuous content management of health information portals is a feature vital for its sustainability and widespread acceptance. Knowledge and experience of a domain expert is essential for content management in the health domain. The rate of generation of online health resources is exponential and thereby manual examination for relevance to a specific topic and audience is a formidable challenge for domain experts. Intelligent content discovery for effective content management is a less researched topic. An existing expert-endorsed content repository can provide the necessary leverage to automatically identify relevant resources and evaluate qualitative metrics. Objective This paper reports on the design research towards an intelligent technique for automated content discovery and ranking for health information portals. The proposed technique aims to improve efficiency of the current mostly manual process of portal content management by utilising an existing expert-endorsed content repository as a supporting base and a benchmark to evaluate the suitability of new content Methods A model for content management was established based on a field study of potential users. The proposed technique is integral to this content management model and executes in several phases (ie, query construction, content search, text analytics and fuzzy multi-criteria ranking). The construction of multi-dimensional search queries with input from Wordnet, the use of multi-word and single-word terms as representative semantics for text analytics and the use of fuzzy multi-criteria ranking for subjective evaluation of quality metrics are original contributions reported in this paper. Results The feasibility of the proposed technique was examined with experiments conducted on an actual health information portal, the BCKOnline portal. Both intermediary and final results generated by the technique are presented in the paper and these help to establish benefits of the technique and its contribution towards effective content management. Conclusions The prevalence of large numbers of online health resources is a key obstacle for domain experts involved in content management of health information portals and websites. The proposed technique has proven successful at search and identification of resources and the measurement of their relevance. It can be used to support the domain expert in content management and thereby ensure the health portal is up-to-date and current. PMID:25654440

  14. Understanding carbohydrate-carbohydrate interactions by means of glyconanotechnology.

    PubMed

    de la Fuente, Jesus M; Penadés, Soledad

    2004-01-01

    Carbohydrate-carbohydrate interaction is a reliable and versatile mechanism for cell adhesion and recognition. Glycosphingolipid (GSL) clusters at the cell membrane are mainly involved in this interaction. To investigate carbohydrate-carbohydrate interaction an integrated strategy (Glyconanotechnology) was developed. This strategy includes polyvalent tools (gold glyconanoparticles) mimicking GSL clustering at the cell membrane as well as analytical techniques such as AFM, TEM, and SPR to evaluate the interactions. The results obtained by means of this strategy and current status are presented.

  15. Preparation Torque Limit for Composites Joined with Mechanical Fasteners

    NASA Technical Reports Server (NTRS)

    Thomas, Frank P.; Yi, Zhao

    2005-01-01

    Current design guidelines for determining torque ranges for composites are based on tests and analysis from isotropic materials. Properties of composites are not taken into account. No design criteria based upon a systematic analytical and test analyses is available. This paper is to study the maximum torque load a composite component could carry prior to any failure. Specifically, the torque-tension tests are conducted. NDT techniques including acoustic emission, thermography and photomicroscopy are also utilized to characterize the damage modes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The feasibility of constructing a 25-50 MWe geothermal power plant using low salinity hydrothermal fluid as the energy source was assessed. Here, the geotechnical aspects of geothermal power generation and their relationship to environmental impacts in the Imperial Valley of California were investigated. Geology, geophysics, hydrogeology, seismicity and subsidence are discussed in terms of the availability of data, state-of-the-art analytical techniques, historical and technical background and interpretation of current data. Estimates of the impact of these geotechnical factors on the environment in the Imperial Valley, if geothermal development proceeds, are discussed.

  17. Quantitative Determination of Caffeine in Beverages Using a Combined SPME-GC/MS Method

    NASA Astrophysics Data System (ADS)

    Pawliszyn, Janusz; Yang, Min J.; Orton, Maureen L.

    1997-09-01

    Solid-phase microextraction (SPME) combined with gas chromatography/mass spectrometry (GC/MS) has been applied to the analysis of various caffeinated beverages. Unlike the current methods, this technique is solvent free and requires no pH adjustments. The simplicity of the SPME-GC/MS method lends itself to a good undergraduate laboratory practice. This publication describes the analytical conditions and presents the data for determination of caffeine in coffee, tea, and coke. Quantitation by isotopic dilution is also illustrated.

  18. Measuring solids concentration in stormwater runoff: comparison of analytical methods.

    PubMed

    Clark, Shirley E; Siu, Christina Y S

    2008-01-15

    Stormwater suspended solids typically are quantified using one of two methods: aliquot/subsample analysis (total suspended solids [TSS]) or whole-sample analysis (suspended solids concentration [SSC]). Interproject comparisons are difficult because of inconsistencies in the methods and in their application. To address this concern, the suspended solids content has been measured using both methodologies in many current projects, but the question remains about how to compare these values with historical water-quality data where the analytical methodology is unknown. This research was undertaken to determine the effect of analytical methodology on the relationship between these two methods of determination of the suspended solids concentration, including the effect of aliquot selection/collection method and of particle size distribution (PSD). The results showed that SSC was best able to represent the known sample concentration and that the results were independent of the sample's PSD. Correlations between the results and the known sample concentration could be established for TSS samples, but they were highly dependent on the sample's PSD and on the aliquot collection technique. These results emphasize the need to report not only the analytical method but also the particle size information on the solids in stormwater runoff.

  19. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Treesearch

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  20. Reduction of multi-dimensional laboratory data to a two-dimensional plot: a novel technique for the identification of laboratory error.

    PubMed

    Kazmierczak, Steven C; Leen, Todd K; Erdogmus, Deniz; Carreira-Perpinan, Miguel A

    2007-01-01

    The clinical laboratory generates large amounts of patient-specific data. Detection of errors that arise during pre-analytical, analytical, and post-analytical processes is difficult. We performed a pilot study, utilizing a multidimensional data reduction technique, to assess the utility of this method for identifying errors in laboratory data. We evaluated 13,670 individual patient records collected over a 2-month period from hospital inpatients and outpatients. We utilized those patient records that contained a complete set of 14 different biochemical analytes. We used two-dimensional generative topographic mapping to project the 14-dimensional record to a two-dimensional space. The use of a two-dimensional generative topographic mapping technique to plot multi-analyte patient data as a two-dimensional graph allows for the rapid identification of potentially anomalous data. Although we performed a retrospective analysis, this technique has the benefit of being able to assess laboratory-generated data in real time, allowing for the rapid identification and correction of anomalous data before they are released to the physician. In addition, serial laboratory multi-analyte data for an individual patient can also be plotted as a two-dimensional plot. This tool might also be useful for assessing patient wellbeing and prognosis.

  1. Analytical Chemistry of Surfaces: Part II. Electron Spectroscopy.

    ERIC Educational Resources Information Center

    Hercules, David M.; Hercules, Shirley H.

    1984-01-01

    Discusses two surface techniques: X-ray photoelectron spectroscopy (ESCA) and Auger electron spectroscopy (AES). Focuses on fundamental aspects of each technique, important features of instrumentation, and some examples of how ESCA and AES have been applied to analytical surface problems. (JN)

  2. State-of-the-art nanoplatform-integrated MALDI-MS impacting resolutions in urinary proteomics.

    PubMed

    Gopal, Judy; Muthu, Manikandan; Chun, Se-Chul; Wu, Hui-Fen

    2015-06-01

    Urine proteomics has become a subject of interest, since it has led to a number of breakthroughs in disease diagnostics. Urine contains information not only from the kidney and the urinary tract but also from other organs, thus urinary proteome analysis allows for identification of biomarkers for both urogenital and systemic diseases. The following review gives a brief overview of the analytical techniques that have been in practice for urinary proteomics. MALDI-MS technique and its current application status in this area of clinical research have been discussed. The review comments on the challenges facing the conventional MALDI-MS technique and the upgradation of this technique with the introduction of nanotechnology. This review projects nano-based techniques such as nano-MALDI-MS, surface-assisted laser desorption/ionization, and nanostructure-initiator MS as the platforms that have the potential in trafficking MALDI-MS from the lab to the bedside. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Techniques for hot structures testing

    NASA Technical Reports Server (NTRS)

    Deangelis, V. Michael; Fields, Roger A.

    1990-01-01

    Hot structures testing have been going on since the early 1960's beginning with the Mach 6, X-15 airplane. Early hot structures test programs at NASA-Ames-Dryden focused on operational testing required to support the X-15 flight test program, and early hot structures research projects focused on developing lab test techniques to simulate flight thermal profiles. More recent efforts involved numerous large and small hot structures test programs that served to develop test methods and measurement techniques to provide data that promoted the correlation of test data with results from analytical codes. In Nov. 1988 a workshop was sponsored that focused on the correlation of hot structures test data with analysis. Limited material is drawn from the workshop and a more formal documentation is provided of topics that focus on hot structures test techniques used at NASA-Ames-Dryden. Topics covered include the data acquisition and control of testing, the quartz lamp heater systems, current strain and temperature sensors, and hot structures test techniques used to simulate the flight thermal environment in the lab.

  4. Three-dimensional circulation dynamics of along-channel flow in stratified estuaries

    NASA Astrophysics Data System (ADS)

    Musiak, Jeffery Daniel

    Estuaries are vital because they are the major interface between humans and the oceans and provide valuable habitat for a wide range of organisms. Therefore it is important to model estuarine circulation to gain a better comprehension of the mechanics involved and how people effect estuaries. To this end, this dissertation combines analysis of data collected in the Columbia River estuary (CRE) with novel data processing and modeling techniques to further the understanding of estuaries that are strongly forced by riverflow and tides. The primary hypothesis tested in this work is that the three- dimensional (3-D) variability in along-channel currents in a strongly forced estuary can be largely accounted for by including the lateral variations in density and bathymetry but neglecting the secondary, or lateral, flow. Of course, the forcing must also include riverflow and oceanic tides. Incorporating this simplification and the modeling ideas put forth by others with new modeling techniques and new ideas on estuarine circulation will allow me to create a semi-analytical quasi 3-D profile model. This approach was chosen because it is of intermediate complexity to purely analytical models, that, if tractable, are too simple to be useful, and 3-D numerical models which can have excellent resolution but require large amounts of time, computer memory and computing power. Validation of the model will be accomplished using velocity and density data collected in the Columbia River Estuary and by comparison to analytical solutions. Components of the modeling developed here include: (1) development of a 1-D barotropic model for tidal wave propagation in frictionally dominated systems with strong topography. This model can have multiple tidal constituents and multiply connected channels. (2) Development and verification of a new quasi 3-D semi-analytical velocity profile model applicable to estuarine systems which are strongly forced by both oceanic tides and riverflow. This model includes diurnal and semi-diurnal tidal and non- linearly generated overtide circulation and residual circulation driven by riverflow, baroclinic forcing, surface wind stress and non-linear tidal forcing. (3) Demonstration that much of the lateral variation in along-channel currents is caused by variations in along- channel density forcing and bathymetry.

  5. Ultrasonics Equipped Crimp Tool: A New Technology for Aircraft Wiring Safety

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Perey, Daniel F.; Cramer, Elliott

    2006-01-01

    We report on the development of a new measurement technique to quantitatively assess the condition of wire crimp connections. This ultrasonic (UT) method transmits high frequency sound waves through the joint under inspection. The wire-crimp region filters and scatters the ultrasonic energy as it passes through the crimp and wire. The resulting output (both time and frequency domains) provides a quantitative measure of the joint quality that is independent and unaffected by current. Crimps of poor mechanical and electrical quality will result in low temporal output and will distort the spectrum into unique and predictable patterns, depending on crimp "quality". This inexpensive, real-time measurement system can provide certification of crimps as they are made and recertification of existing wire crimps currently in service. The measurements for re-certification do not require that the wire be disconnected from its circuit. No other technology exists to measure in-situ the condition of wire joints (no electrical currents through the crimp are used in this analytical technique). We discuss the signals obtained from this instrument, and correlate these signals with destructive wire pull tests.

  6. Problem Formulation in Knowledge Discovery via Data Analytics (KDDA) for Environmental Risk Management

    PubMed Central

    Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason

    2016-01-01

    With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM3 ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs. PMID:27983713

  7. Problem Formulation in Knowledge Discovery via Data Analytics (KDDA) for Environmental Risk Management.

    PubMed

    Li, Yan; Thomas, Manoj; Osei-Bryson, Kweku-Muata; Levy, Jason

    2016-12-15

    With the growing popularity of data analytics and data science in the field of environmental risk management, a formalized Knowledge Discovery via Data Analytics (KDDA) process that incorporates all applicable analytical techniques for a specific environmental risk management problem is essential. In this emerging field, there is limited research dealing with the use of decision support to elicit environmental risk management (ERM) objectives and identify analytical goals from ERM decision makers. In this paper, we address problem formulation in the ERM understanding phase of the KDDA process. We build a DM³ ontology to capture ERM objectives and to inference analytical goals and associated analytical techniques. A framework to assist decision making in the problem formulation process is developed. It is shown how the ontology-based knowledge system can provide structured guidance to retrieve relevant knowledge during problem formulation. The importance of not only operationalizing the KDDA approach in a real-world environment but also evaluating the effectiveness of the proposed procedure is emphasized. We demonstrate how ontology inferencing may be used to discover analytical goals and techniques by conceptualizing Hazardous Air Pollutants (HAPs) exposure shifts based on a multilevel analysis of the level of urbanization (and related economic activity) and the degree of Socio-Economic Deprivation (SED) at the local neighborhood level. The HAPs case highlights not only the role of complexity in problem formulation but also the need for integrating data from multiple sources and the importance of employing appropriate KDDA modeling techniques. Challenges and opportunities for KDDA are summarized with an emphasis on environmental risk management and HAPs.

  8. Pre-concentration technique for reduction in "Analytical instrument requirement and analysis"

    NASA Astrophysics Data System (ADS)

    Pal, Sangita; Singha, Mousumi; Meena, Sher Singh

    2018-04-01

    Availability of analytical instruments for a methodical detection of known and unknown effluents imposes a serious hindrance in qualification and quantification. Several analytical instruments such as Elemental analyzer, ICP-MS, ICP-AES, EDXRF, ion chromatography, Electro-analytical instruments which are not only expensive but also time consuming, required maintenance, damaged essential parts replacement which are of serious concern. Move over for field study and instant detection installation of these instruments are not convenient to each and every place. Therefore, technique such as pre-concentration of metal ions especially for lean stream elaborated and justified. Chelation/sequestration is the key of immobilization technique which is simple, user friendly, most effective, least expensive, time efficient; easy to carry (10g - 20g vial) to experimental field/site has been demonstrated.

  9. Green Aspects of Techniques for the Determination of Currently Used Pesticides in Environmental Samples

    PubMed Central

    Stocka, Jolanta; Tankiewicz, Maciej; Biziuk, Marek; Namieśnik, Jacek

    2011-01-01

    Pesticides are among the most dangerous environmental pollutants because of their stability, mobility and long-term effects on living organisms. Their presence in the environment is a particular danger. It is therefore crucial to monitor pesticide residues using all available analytical methods. The analysis of environmental samples for the presence of pesticides is very difficult: the processes involved in sample preparation are labor-intensive and time-consuming. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solvent-less and solvent-minimized techniques are becoming popular. The application of Green Chemistry principles to sample preparation is primarily leading to the miniaturization of procedures and the use of solvent-less techniques, and these are discussed in the paper. PMID:22174632

  10. Diagnostics and Active Control of Aircraft Interior Noise

    NASA Technical Reports Server (NTRS)

    Fuller, C. R.

    1998-01-01

    This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.

  11. Approximate analytical relationships for linear optimal aeroelastic flight control laws

    NASA Astrophysics Data System (ADS)

    Kassem, Ayman Hamdy

    1998-09-01

    This dissertation introduces new methods to uncover functional relationships between design parameters of a contemporary control design technique and the resulting closed-loop properties. Three new methods are developed for generating such relationships through analytical expressions: the Direct Eigen-Based Technique, the Order of Magnitude Technique, and the Cost Function Imbedding Technique. Efforts concentrated on the linear-quadratic state-feedback control-design technique applied to an aeroelastic flight control task. For this specific application, simple and accurate analytical expressions for the closed-loop eigenvalues and zeros in terms of basic parameters such as stability and control derivatives, structural vibration damping and natural frequency, and cost function weights are generated. These expressions explicitly indicate how the weights augment the short period and aeroelastic modes, as well as the closed-loop zeros, and by what physical mechanism. The analytical expressions are used to address topics such as damping, nonminimum phase behavior, stability, and performance with robustness considerations, and design modifications. This type of knowledge is invaluable to the flight control designer and would be more difficult to formulate when obtained from numerical-based sensitivity analysis.

  12. Isotope-ratio-monitoring gas chromatography-mass spectrometry: methods for isotopic calibration

    NASA Technical Reports Server (NTRS)

    Merritt, D. A.; Brand, W. A.; Hayes, J. M.

    1994-01-01

    In trial analyses of a series of n-alkanes, precise determinations of 13C contents were based on isotopic standards introduced by five different techniques and results were compared. Specifically, organic-compound standards were coinjected with the analytes and carried through chromatography and combustion with them; or CO2 was supplied from a conventional inlet and mixed with the analyte in the ion source, or CO2 was supplied from an auxiliary mixing volume and transmitted to the source without interruption of the analyte stream. Additionally, two techniques were investigated in which the analyte stream was diverted and CO2 standards were placed on a near-zero background. All methods provided accurate results. Where applicable, methods not involving interruption of the analyte stream provided the highest performance (sigma = 0.00006 at.% 13C or 0.06% for 250 pmol C as CO2 reaching the ion source), but great care was required. Techniques involving diversion of the analyte stream were immune to interference from coeluting sample components and still provided high precision (0.0001 < or = sigma < or = 0.0002 at.% or 0.1 < or = sigma < or = 0.2%).

  13. Analytical technique characterizes all trace contaminants in water

    NASA Technical Reports Server (NTRS)

    Foster, J. N.; Lysyj, I.; Nelson, K. H.

    1967-01-01

    Properly programmed combination of advanced chemical and physical analytical techniques characterize critically all trace contaminants in both the potable and waste water from the Apollo Command Module. This methodology can also be applied to the investigation of the source of water pollution.

  14. A comparison of lightning and nuclear electromagnetic pulse response of a helicopter

    NASA Technical Reports Server (NTRS)

    Easterbrook, C. C.; Perala, R. A.

    1984-01-01

    A numerical modeling technique is utilized to investigate the response of a UH-60A helicopter to both lightning and nuclear electromagnetic pulses (NEMP). The analytical approach involves the three-dimensional time domain finite-difference solutions of Maxwell's equations. Both the external currents and charges as well as the internal electromagnetic fields and cable responses are computed. Results of the analysis indicate that, in general, the short circuit current on internal cables is larger for lightning, whereas the open-circuit voltages are slightly higher for NEMP. The lightning response is highly dependent upon the rise time of the injected current as was expected. The analysis shows that a coupling levels to cables in a helicopter are 20 to 30 dB larger than those observed in fixed-wing aircraft.

  15. Nuclear Forensics and Attribution: A National Laboratory Perspective

    NASA Astrophysics Data System (ADS)

    Hall, Howard L.

    2008-04-01

    Current capabilities in technical nuclear forensics - the extraction of information from nuclear and/or radiological materials to support the attribution of a nuclear incident to material sources, transit routes, and ultimately perpetrator identity - derive largely from three sources: nuclear weapons testing and surveillance programs of the Cold War, advances in analytical chemistry and materials characterization techniques, and abilities to perform ``conventional'' forensics (e.g., fingerprints) on radiologically contaminated items. Leveraging that scientific infrastructure has provided a baseline capability to the nation, but we are only beginning to explore the scientific challenges that stand between today's capabilities and tomorrow's requirements. These scientific challenges include radically rethinking radioanalytical chemistry approaches, developing rapidly deployable sampling and analysis systems for field applications, and improving analytical instrumentation. Coupled with the ability to measure a signature faster or more exquisitely, we must also develop the ability to interpret those signatures for meaning. This requires understanding of the physics and chemistry of nuclear materials processes well beyond our current level - especially since we are unlikely to ever have direct access to all potential sources of nuclear threat materials.

  16. Three-phase double-arc plasma for spectrochemical analysis of environmental samples.

    PubMed

    Mohamed, M M; Ghatass, Z F; Shalaby, E A; Kotb, M M; El-Raey, M

    2000-12-01

    A new instrument, which uses a three-phase current to support a double-arc argon plasma torch for evaporation, atomization and excitation of solid or powder samples, is described. The sampling arc is ignited between the first and second electrode while the excitation arc is ignited between the second and third electrode. Aerosol generated from the sample (first electrode) is swept by argon gas, through a hole in the second electrode (carbon tubing electrode), into the excitation plasma. A tangential stream of argon gas is introduced through an inlet orifice as a coolant gas for the second electrode. This gas stream forces the excitation arc discharge to rotate reproducibly around the electrode surface. Discharge rotation increases the stability of the excitation plasma. Spectroscopic measurements are made directly in the current-carrying region of the excitation arc. An evaluation of each parameter influencing the device performance was performed. Analytical calibration curves were obtained for Fe, Al, K, and Pb. Finally, the present technique was applied for the analysis of environmental samples. The present method appears to have significant, low cost analytical utility for environmental measurements.

  17. Multi-technique quantitative analysis and socioeconomic considerations of lead, cadmium, and arsenic in children's toys and toy jewelry.

    PubMed

    Hillyer, Margot M; Finch, Lauren E; Cerel, Alisha S; Dattelbaum, Jonathan D; Leopold, Michael C

    2014-08-01

    A wide spectrum and large number of children's toys and toy jewelry items were purchased from both bargain and retail vendors and analyzed for arsenic, cadmium, and lead metal content using multiple analytical techniques, including flame and furnace atomic absorption spectroscopy as well as X-ray fluorescence spectroscopy. Particularly dangerous for young children, metal concentrations in toys/toy jewelry were assessed for compliance with current Consumer Safety Product Commission (CPSC) regulations (F963-11). A conservative metric involving multiple analytical techniques was used to categorize compliance: one technique confirmation of metal in excess of CPSC limits indicated a "suspect" item while confirmation on two different techniques warranted a non-compliant designation. Sample matrix-based standard addition provided additional confirmation of non-compliant and suspect products. Results suggest that origin of purchase, rather than cost, is a significant factor in the risk assessment of these materials with 57% of toys/toy jewelry items from bargain stores non-compliant or suspect compared to only 15% from retail outlets and 13% if only low cost items from the retail stores are compared. While jewelry was found to be the most problematic product (73% of non-compliant/suspect samples), lead (45%) and arsenic (76%) were the most dominant toxins found in non-compliant/suspect samples. Using the greater Richmond area as a model, the discrepancy between bargain and retail children's products, along with growing numbers of bargain stores in low-income and urban areas, exemplifies an emerging socioeconomic public health issue. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Evaluation Applied to Reliability Analysis of Reconfigurable, Highly Reliable, Fault-Tolerant, Computing Systems for Avionics

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1979-01-01

    Emulation techniques are proposed as a solution to a difficulty arising in the analysis of the reliability of highly reliable computer systems for future commercial aircraft. The difficulty, viz., the lack of credible precision in reliability estimates obtained by analytical modeling techniques are established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible, (2) a complex system design technique, fault tolerance, (3) system reliability dominated by errors due to flaws in the system definition, and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. The technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. The use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques.

  19. Direct Analysis of Samples of Various Origin and Composition Using Specific Types of Mass Spectrometry.

    PubMed

    Byliński, Hubert; Gębicki, Jacek; Dymerski, Tomasz; Namieśnik, Jacek

    2017-07-04

    One of the major sources of error that occur during chemical analysis utilizing the more conventional and established analytical techniques is the possibility of losing part of the analytes during the sample preparation stage. Unfortunately, this sample preparation stage is required to improve analytical sensitivity and precision. Direct techniques have helped to shorten or even bypass the sample preparation stage; and in this review, we comment of some of the new direct techniques that are mass-spectrometry based. The study presents information about the measurement techniques using mass spectrometry, which allow direct sample analysis, without sample preparation or limiting some pre-concentration steps. MALDI - MS, PTR - MS, SIFT - MS, DESI - MS techniques are discussed. These solutions have numerous applications in different fields of human activity due to their interesting properties. The advantages and disadvantages of these techniques are presented. The trends in development of direct analysis using the aforementioned techniques are also presented.

  20. Common aspects influencing the translocation of SERS to Biomedicine.

    PubMed

    Gil, Pilar Rivera; Tsouts, Dionysia; Sanles-Sobrido, Marcos; Cabo, Andreu

    2018-01-04

    In this review, we introduce the reader the analytical technique, surface-enhanced Raman scattering motivated by the great potential we believe this technique have in biomedicine. We present the advantages and limitations of this technique relevant for bioanalysis in vitro and in vivo and how this technique goes beyond the state of the art of traditional analytical, labelling and healthcare diagnosis technologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. A dynamic mechanical analysis technique for porous media

    PubMed Central

    Pattison, Adam J; McGarry, Matthew; Weaver, John B; Paulsen, Keith D

    2015-01-01

    Dynamic mechanical analysis (DMA) is a common way to measure the mechanical properties of materials as functions of frequency. Traditionally, a viscoelastic mechanical model is applied and current DMA techniques fit an analytical approximation to measured dynamic motion data by neglecting inertial forces and adding empirical correction factors to account for transverse boundary displacements. Here, a finite element (FE) approach to processing DMA data was developed to estimate poroelastic material properties. Frequency-dependent inertial forces, which are significant in soft media and often neglected in DMA, were included in the FE model. The technique applies a constitutive relation to the DMA measurements and exploits a non-linear inversion to estimate the material properties in the model that best fit the model response to the DMA data. A viscoelastic version of this approach was developed to validate the approach by comparing complex modulus estimates to the direct DMA results. Both analytical and FE poroelastic models were also developed to explore their behavior in the DMA testing environment. All of the models were applied to tofu as a representative soft poroelastic material that is a common phantom in elastography imaging studies. Five samples of three different stiffnesses were tested from 1 – 14 Hz with rough platens placed on the top and bottom surfaces of the material specimen under test to restrict transverse displacements and promote fluid-solid interaction. The viscoelastic models were identical in the static case, and nearly the same at frequency with inertial forces accounting for some of the discrepancy. The poroelastic analytical method was not sufficient when the relevant physical boundary constraints were applied, whereas the poroelastic FE approach produced high quality estimates of shear modulus and hydraulic conductivity. These results illustrated appropriate shear modulus contrast between tofu samples and yielded a consistent contrast in hydraulic conductivity as well. PMID:25248170

  2. Analytical techniques and method validation for the measurement of selected semivolatile and nonvolatile organofluorochemicals in air.

    PubMed

    Reagen, William K; Lindstrom, Kent R; Thompson, Kathy L; Flaherty, John M

    2004-09-01

    The widespread use of semi- and nonvolatile organofluorochemicals in industrial facilities, concern about their persistence, and relatively recent advancements in liquid chromatography/mass spectrometry (LC/MS) technology have led to the development of new analytical methods to assess potential worker exposure to airborne organofluorochemicals. Techniques were evaluated for the determination of 19 organofluorochemicals and for total fluorine in ambient air samples. Due to the potential biphasic nature of most of these fluorochemicals when airborne, Occupational Safety and Health Administration (OSHA) versatile sampler (OVS) tubes were used to simultaneously trap fluorochemical particulates and vapors from workplace air. Analytical methods were developed for OVS air samples to quantitatively analyze for total fluorine using oxygen bomb combustion/ion selective electrode and for 17 organofluorochemicals using LC/MS and gas chromatography/mass spectrometry (GC/MS). The experimental design for this validation was based on the National Institute of Occupational Safety and Health (NIOSH) Guidelines for Air Sampling and Analytical Method Development and Evaluation, with some revisions of the experimental design. The study design incorporated experiments to determine analytical recovery and stability, sampler capacity, the effect of some environmental parameters on recoveries, storage stability, limits of detection, precision, and accuracy. Fluorochemical mixtures were spiked onto each OVS tube over a range of 0.06-6 microg for each of 12 compounds analyzed by LC/MS and 0.3-30 microg for 5 compounds analyzed by GC/MS. These ranges allowed reliable quantitation at 0.001-0.1 mg/m3 in general for LC/MS analytes and 0.005-0.5 mg/m3 for GC/MS analytes when 60 L of air are sampled. The organofluorochemical exposure guideline (EG) is currently 0.1 mg/m3 for many analytes, with one exception being ammonium perfluorooctanoate (EG is 0.01 mg/m3). Total fluorine results may be used to determine if the individual compounds quantified provide a suitable mass balance of total airborne organofluorochemicals based on known fluorine content. Improvements in precision and/or recovery as well as some additional testing would be needed to meet all NIOSH validation criteria. This study provided valuable information about the accuracy of this method for organofluorochemical exposure assessment.

  3. Light aircraft crash safety program

    NASA Technical Reports Server (NTRS)

    Thomson, R. G.; Hayduk, R. J.

    1974-01-01

    NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions. The analytical techniques being developed both in-house and under contract are described, and a comparison of some analytical predictions with experimental results is shown.

  4. Development of Gold Standard Ion-Selective Electrode-Based Methods for Fluoride Analysis

    PubMed Central

    Martínez-Mier, E.A.; Cury, J.A.; Heilman, J.R.; Katz, B.P.; Levy, S.M.; Li, Y.; Maguire, A.; Margineda, J.; O’Mullane, D.; Phantumvanit, P.; Soto-Rojas, A.E.; Stookey, G.K.; Villa, A.; Wefel, J.S.; Whelton, H.; Whitford, G.M.; Zero, D.T.; Zhang, W.; Zohouri, V.

    2011-01-01

    Background/Aims: Currently available techniques for fluoride analysis are not standardized. Therefore, this study was designed to develop standardized methods for analyzing fluoride in biological and nonbiological samples used for dental research. Methods A group of nine laboratories analyzed a set of standardized samples for fluoride concentration using their own methods. The group then reviewed existing analytical techniques for fluoride analysis, identified inconsistencies in the use of these techniques and conducted testing to resolve differences. Based on the results of the testing undertaken to define the best approaches for the analysis, the group developed recommendations for direct and microdiffusion methods using the fluoride ion-selective electrode. Results Initial results demonstrated that there was no consensus regarding the choice of analytical techniques for different types of samples. Although for several types of samples, the results of the fluoride analyses were similar among some laboratories, greater differences were observed for saliva, food and beverage samples. In spite of these initial differences, precise and true values of fluoride concentration, as well as smaller differences between laboratories, were obtained once the standardized methodologies were used. Intraclass correlation coefficients ranged from 0.90 to 0.93, for the analysis of a certified reference material, using the standardized methodologies. Conclusion The results of this study demonstrate that the development and use of standardized protocols for F analysis significantly decreased differences among laboratories and resulted in more precise and true values. PMID:21160184

  5. Development of Ecogenomic Sensors for Remote Detection of Marine Microbes, Their Genes and Gene Products

    NASA Astrophysics Data System (ADS)

    Scholin, C.; Preston, C.; Harris, A.; Birch, J.; Marin, R.; Jensen, S.; Roman, B.; Everlove, C.; Makarewicz, A.; Riot, V.; Hadley, D.; Benett, W.; Dzenitis, J.

    2008-12-01

    An internet search using the phrase "ecogenomic sensor" will return numerous references that speak broadly to the idea of detecting molecular markers indicative of specific organisms, genes or other biomarkers within an environmental context. However, a strict and unified definition of "ecogenomic sensor" is lacking and the phrase may be used for laboratory-based tools and techniques as well as semi or fully autonomous systems that can be deployed outside of laboratory. We are exploring development of an ecogenomic sensor from the perspective of a field-portable device applied towards oceanographic research and water quality monitoring. The device is known as the Environmental Sample Processor, or ESP. The ESP employs wet chemistry molecular analytical techniques to autonomously assess the presence and abundance of specific organisms, their genes and/or metabolites in near real-time. Current detection chemistries rely on low- density DNA probe and protein arrays. This presentation will emphasize results from 2007-8 field trials when the ESP was moored in Monterey Bay, CA, as well as current engineering activities for improving analytical capacity of the instrument. Changes in microbial community structure at the rRNA level were observed remotely in accordance with changing chemical and physical oceanographic conditions. Current developments include incorporation of a reusable solid phase extraction column for purifying nucleic acids and a 4-channel real-time PCR module. Users can configure this system to support a variety of PCR master mixes, primer/probe combinations and control templates. An update on progress towards fielding a PCR- enabled ESP will be given along with an outline of plans for its use in coastal and oligotrophic oceanic regimes.

  6. Arsenic, Antimony, Chromium, and Thallium Speciation in Water and Sediment Samples with the LC-ICP-MS Technique

    PubMed Central

    Jabłońska-Czapla, Magdalena

    2015-01-01

    Chemical speciation is a very important subject in the environmental protection, toxicology, and chemical analytics due to the fact that toxicity, availability, and reactivity of trace elements depend on the chemical forms in which these elements occur. Research on low analyte levels, particularly in complex matrix samples, requires more and more advanced and sophisticated analytical methods and techniques. The latest trends in this field concern the so-called hyphenated techniques. Arsenic, antimony, chromium, and (underestimated) thallium attract the closest attention of toxicologists and analysts. The properties of those elements depend on the oxidation state in which they occur. The aim of the following paper is to answer the question why the speciation analytics is so important. The paper also provides numerous examples of the hyphenated technique usage (e.g., the LC-ICP-MS application in the speciation analysis of chromium, antimony, arsenic, or thallium in water and bottom sediment samples). An important issue addressed is the preparation of environmental samples for speciation analysis. PMID:25873962

  7. On using the Hilbert transform for blind identification of complex modes: A practical approach

    NASA Astrophysics Data System (ADS)

    Antunes, Jose; Debut, Vincent; Piteau, Pilippe; Delaune, Xavier; Borsoi, Laurent

    2018-01-01

    The modal identification of dynamical systems under operational conditions, when subjected to wide-band unmeasured excitations, is today a viable alternative to more traditional modal identification approaches based on processing sets of measured FRFs or impulse responses. Among current techniques for performing operational modal identification, the so-called blind identification methods are the subject of considerable investigation. In particular, the SOBI (Second-Order Blind Identification) method was found to be quite efficient. SOBI was originally developed for systems with normal modes. To address systems with complex modes, various extension approaches have been proposed, in particular: (a) Using a first-order state-space formulation for the system dynamics; (b) Building complex analytic signals from the measured responses using the Hilbert transform. In this paper we further explore the latter option, which is conceptually interesting while preserving the model order and size. Focus is on applicability of the SOBI technique for extracting the modal responses from analytic signals built from a set of vibratory responses. The novelty of this work is to propose a straightforward computational procedure for obtaining the complex cross-correlation response matrix to be used for the modal identification procedure. After clarifying subtle aspects of the general theoretical framework, we demonstrate that the correlation matrix of the analytic responses can be computed through a Hilbert transform of the real correlation matrix, so that the actual time-domain responses are no longer required for modal identification purposes. The numerical validation of the proposed technique is presented based on time-domain simulations of a conceptual physical multi-modal system, designed to display modes ranging from normal to highly complex, while keeping modal damping low and nearly independent of the modal complexity, and which can prove very interesting in test bench applications. Numerical results for complex modal identifications are presented, and the quality of the identified modal matrix and modal responses, extracted using the complex SOBI technique and implementing the proposed formulation, is assessed.

  8. A Critical Review on Clinical Application of Separation Techniques for Selective Recognition of Uracil and 5-Fluorouracil.

    PubMed

    Pandey, Khushaboo; Dubey, Rama Shankar; Prasad, Bhim Bali

    2016-03-01

    The most important objectives that are frequently found in bio-analytical chemistry involve applying tools to relevant medical/biological problems and refining these applications. Developing a reliable sample preparation step, for the medical and biological fields is another primary objective in analytical chemistry, in order to extract and isolate the analytes of interest from complex biological matrices. Since, main inborn errors of metabolism (IEM) diagnosable through uracil analysis and the therapeutic monitoring of toxic 5-fluoruracil (an important anti-cancerous drug) in dihydropyrimidine dehydrogenase deficient patients, require an ultra-sensitive, reproducible, selective, and accurate analytical techniques for their measurements. Therefore, keeping in view, the diagnostic value of uracil and 5-fluoruracil measurements, this article refines several analytical techniques involved in selective recognition and quantification of uracil and 5-fluoruracil from biological and pharmaceutical samples. The prospective study revealed that implementation of molecularly imprinted polymer as a solid-phase material for sample preparation and preconcentration of uracil and 5-fluoruracil had proven to be effective as it could obviates problems related to tedious separation techniques, owing to protein binding and drastic interferences, from the complex matrices in real samples such as blood plasma, serum samples.

  9. When can social media lead financial markets?

    PubMed

    Zheludev, Ilya; Smith, Robert; Aste, Tomaso

    2014-02-27

    Social media analytics is showing promise for the prediction of financial markets. However, the true value of such data for trading is unclear due to a lack of consensus on which instruments can be predicted and how. Current approaches are based on the evaluation of message volumes and are typically assessed via retrospective (ex-post facto) evaluation of trading strategy returns. In this paper, we present instead a sentiment analysis methodology to quantify and statistically validate which assets could qualify for trading from social media analytics in an ex-ante configuration. We use sentiment analysis techniques and Information Theory measures to demonstrate that social media message sentiment can contain statistically-significant ex-ante information on the future prices of the S&P500 index and a limited set of stocks, in excess of what is achievable using solely message volumes.

  10. When Can Social Media Lead Financial Markets?

    NASA Astrophysics Data System (ADS)

    Zheludev, Ilya; Smith, Robert; Aste, Tomaso

    2014-02-01

    Social media analytics is showing promise for the prediction of financial markets. However, the true value of such data for trading is unclear due to a lack of consensus on which instruments can be predicted and how. Current approaches are based on the evaluation of message volumes and are typically assessed via retrospective (ex-post facto) evaluation of trading strategy returns. In this paper, we present instead a sentiment analysis methodology to quantify and statistically validate which assets could qualify for trading from social media analytics in an ex-ante configuration. We use sentiment analysis techniques and Information Theory measures to demonstrate that social media message sentiment can contain statistically-significant ex-ante information on the future prices of the S&P500 index and a limited set of stocks, in excess of what is achievable using solely message volumes.

  11. When Can Social Media Lead Financial Markets?

    PubMed Central

    Zheludev, Ilya; Smith, Robert; Aste, Tomaso

    2014-01-01

    Social media analytics is showing promise for the prediction of financial markets. However, the true value of such data for trading is unclear due to a lack of consensus on which instruments can be predicted and how. Current approaches are based on the evaluation of message volumes and are typically assessed via retrospective (ex-post facto) evaluation of trading strategy returns. In this paper, we present instead a sentiment analysis methodology to quantify and statistically validate which assets could qualify for trading from social media analytics in an ex-ante configuration. We use sentiment analysis techniques and Information Theory measures to demonstrate that social media message sentiment can contain statistically-significant ex-ante information on the future prices of the S&P500 index and a limited set of stocks, in excess of what is achievable using solely message volumes. PMID:24572909

  12. An illustrative analysis of technological alternatives for satellite communications

    NASA Technical Reports Server (NTRS)

    Metcalfe, M. R.; Cazalet, E. G.; North, D. W.

    1979-01-01

    The demand for satellite communications services in the domestic market is discussed. Two approaches to increasing system capacity are the expansion of service into frequencies presently allocated but not used for satellite communications, and the development of technologies that provide a greater level of service within the currently used frequency bands. The development of economic models and analytic techniques for evaluating capacity expansion alternatives such as these are presented. The satellite orbit spectrum problem, and also outlines of some suitable analytic approaches are examined. Illustrative analysis of domestic communications satellite technology options for providing increased levels of service are also examined. The analysis illustrates the use of probabilities and decision trees in analyzing alternatives, and provides insight into the important aspects of the orbit spectrum problem that would warrant inclusion in a larger scale analysis.

  13. A microfluidic paper-based analytical device for the assay of albumin-corrected fructosamine values from whole blood samples.

    PubMed

    Boonyasit, Yuwadee; Laiwattanapaisal, Wanida

    2015-01-01

    A method for acquiring albumin-corrected fructosamine values from whole blood using a microfluidic paper-based analytical system that offers substantial improvement over previous methods is proposed. The time required to quantify both serum albumin and fructosamine is shortened to 10 min with detection limits of 0.50 g dl(-1) and 0.58 mM, respectively (S/N = 3). The proposed system also exhibited good within-run and run-to-run reproducibility. The results of the interference study revealed that the acceptable recoveries ranged from 95.1 to 106.2%. The system was compared with currently used large-scale methods (n = 15), and the results demonstrated good agreement among the techniques. The microfluidic paper-based system has the potential to continuously monitor glycemic levels in low resource settings.

  14. Graphite nanocomposites sensor for multiplex detection of antioxidants in food.

    PubMed

    Ng, Khan Loon; Tan, Guan Huat; Khor, Sook Mei

    2017-12-15

    Butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and tert-butylhydroquinone (TBHQ) are synthetic antioxidants used in the food industry. Herein, we describe the development of a novel graphite nanocomposite-based electrochemical sensor for the multiplex detection and measurement of BHA, BHT, and TBHQ levels in complex food samples using a linear sweep voltammetry technique. Moreover, our newly established analytical method exhibited good sensitivity, limit of detection, limit of quantitation, and selectivity. The accuracy and reliability of analytical results were challenged by method validation and comparison with the results of the liquid chromatography method, where a linear correlation of more than 0.99 was achieved. The addition of sodium dodecyl sulfate as supporting additive further enhanced the LSV response (anodic peak current, I pa ) of BHA and BHT by 2- and 20-times, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Adaptive steganography

    NASA Astrophysics Data System (ADS)

    Chandramouli, Rajarathnam; Li, Grace; Memon, Nasir D.

    2002-04-01

    Steganalysis techniques attempt to differentiate between stego-objects and cover-objects. In recent work we developed an explicit analytic upper bound for the steganographic capacity of LSB based steganographic techniques for a given false probability of detection. In this paper we look at adaptive steganographic techniques. Adaptive steganographic techniques take explicit steps to escape detection. We explore different techniques that can be used to adapt message embedding to the image content or to a known steganalysis technique. We investigate the advantages of adaptive steganography within an analytical framework. We also give experimental results with a state-of-the-art steganalysis technique demonstrating that adaptive embedding results in a significant number of bits embedded without detection.

  16. WHAEM: PROGRAM DOCUMENTATION FOR THE WELLHEAD ANALYTIC ELEMENT MODEL

    EPA Science Inventory

    The Wellhead Analytic Element Model (WhAEM) demonstrates a new technique for the definition of time-of-travel capture zones in relatively simple geohydrologic settings. he WhAEM package includes an analytic element model that uses superposition of (many) analytic solutions to gen...

  17. Mass spectrometric methods for monitoring redox processes in electrochemical cells.

    PubMed

    Oberacher, Herbert; Pitterl, Florian; Erb, Robert; Plattner, Sabine

    2015-01-01

    Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation-reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common. © 2013 The Authors. Mass Spectrometry Reviews published by Wiley Periodicals, Inc.

  18. Mass spectrometric methods for monitoring redox processes in electrochemical cells

    PubMed Central

    Oberacher, Herbert; Pitterl, Florian; Erb, Robert; Plattner, Sabine

    2015-01-01

    Electrochemistry (EC) is a mature scientific discipline aimed to study the movement of electrons in an oxidation–reduction reaction. EC covers techniques that use a measurement of potential, charge, or current to determine the concentration or the chemical reactivity of analytes. The electrical signal is directly converted into chemical information. For in-depth characterization of complex electrochemical reactions involving the formation of diverse intermediates, products and byproducts, EC is usually combined with other analytical techniques, and particularly the hyphenation of EC with mass spectrometry (MS) has found broad applicability. The analysis of gases and volatile intermediates and products formed at electrode surfaces is enabled by differential electrochemical mass spectrometry (DEMS). In DEMS an electrochemical cell is sampled with a membrane interface for electron ionization (EI)-MS. The chemical space amenable to EC/MS (i.e., bioorganic molecules including proteins, peptides, nucleic acids, and drugs) was significantly increased by employing electrospray ionization (ESI)-MS. In the simplest setup, the EC of the ESI process is used to analytical advantage. A limitation of this approach is, however, its inability to precisely control the electrochemical potential at the emitter electrode. Thus, particularly for studying mechanistic aspects of electrochemical processes, the hyphenation of discrete electrochemical cells with ESI-MS was found to be more appropriate. The analytical power of EC/ESI-MS can further be increased by integrating liquid chromatography (LC) as an additional dimension of separation. Chromatographic separation was found to be particularly useful to reduce the complexity of the sample submitted either to the EC cell or to ESI-MS. Thus, both EC/LC/ESI-MS and LC/EC/ESI-MS are common. PMID:24338642

  19. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  20. Meta-Analytic Structural Equation Modeling (MASEM): Comparison of the Multivariate Methods

    ERIC Educational Resources Information Center

    Zhang, Ying

    2011-01-01

    Meta-analytic Structural Equation Modeling (MASEM) has drawn interest from many researchers recently. In doing MASEM, researchers usually first synthesize correlation matrices across studies using meta-analysis techniques and then analyze the pooled correlation matrix using structural equation modeling techniques. Several multivariate methods of…

  1. Turbine blade tip durability analysis

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.; Laflen, J. H.; Spamer, G. T.

    1981-01-01

    An air-cooled turbine blade from an aircraft gas turbine engine chosen for its history of cracking was subjected to advanced analytical and life-prediction techniques. The utility of advanced structural analysis techniques and advanced life-prediction techniques in the life assessment of hot section components are verified. Three dimensional heat transfer and stress analyses were applied to the turbine blade mission cycle and the results were input into advanced life-prediction theories. Shortcut analytical techniques were developed. The proposed life-prediction theories are evaluated.

  2. [Raman spectroscopy applied to analytical quality control of injectable drugs: analytical evaluation and comparative economic versus HPLC and UV / visible-FTIR].

    PubMed

    Bourget, P; Amin, A; Vidal, F; Merlette, C; Troude, P; Corriol, O

    2013-09-01

    In France, central IV admixture of chemotherapy (CT) treatments at the hospital is now required by law. We have previously shown that the shaping of Therapeutic Objects (TOs) could profit from an Analytical Quality Assurance (AQA), closely linked to the batch release, for the three key parameters: identity, purity, and initial concentration of the compound of interest. In the course of recent and diversified works, we showed the technical superiority of non-intrusive Raman Spectroscopy (RS) vs. any other analytical option and, especially for both HPLC and vibrational method using a UV/visible-FTIR coupling. An interconnected qualitative and economic assessment strongly helps to enrich these relevant works. The study compares in operational situation, the performance of three analytical methods used for the AQC of TOs. We used: a) a set of evaluation criteria, b) the depreciation tables of the machinery, c) the cost of disposables, d) the weight of equipment and technical installations, e) the basic accounting unit (unit of work) and its composite costs (Euros), which vary according to the technical options, the weight of both human resources and disposables; finally, different combinations are described. So, the unit of work can take 12 different values between 1 and 5.5 Euros, and we provide various recommendations. A qualitative evaluation grid constantly places the SR technology as superior or equal to the 2 other techniques currently available. Our results demonstrated: a) the major interest of the non-intrusive AQC performed by RS, especially when it is not possible to analyze a TO with existing methods e.g. elastomeric portable pumps, and b) the high potential for this technique to be a strong contributor to the security of the medication circuit, and to fight the iatrogenic effects of drugs especially in the hospital. It also contributes to the protection of all actors in healthcare and of their working environment.

  3. Analytical Challenges in Biotechnology.

    ERIC Educational Resources Information Center

    Glajch, Joseph L.

    1986-01-01

    Highlights five major analytical areas (electrophoresis, immunoassay, chromatographic separations, protein and DNA sequencing, and molecular structures determination) and discusses how analytical chemistry could further improve these techniques and thereby have a major impact on biotechnology. (JN)

  4. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    NASA Astrophysics Data System (ADS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  5. An analytical and experimental evaluation of a Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. A.; Cosby, R. M.

    1976-01-01

    An analytical and experimental evaluation of line focusing Fresnel lenses with application potential in the 200 to 370 C range was studied. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves down lens. Experimentation was based on a 56 cm wide, f/1.0 lens. A Sun tracking heliostat provided a nonmoving solar source. Measured data indicated more spreading at the profile base than analytically predicted, resulting in a peak concentration 18 percent lower than the computed peak of 57. The measured and computed transmittances were 85 and 87 percent, respectively. Preliminary testing with a subsequent lens indicated that modified manufacturing techniques corrected the profile spreading problem and should enable improved analytical experimental correlation.

  6. Vibration energy harvesting with polyphase AC transducers

    NASA Astrophysics Data System (ADS)

    McCullagh, James J.; Scruggs, Jeffrey T.; Asai, Takehiko

    2016-04-01

    Three-phase transduction affords certain advantages in the efficient electromechanical conversion of energy, especially at higher power scales. This paper considers the use of a three-phase electric machine for harvesting energy from vibrations. We consider the use of vector control techniques, which are common in the area of industrial electronics, for optimizing the feedback loops in a stochastically-excited energy harvesting system. To do this, we decompose the problem into two separate feedback loops for direct and quadrature current components, and illustrate how each might be separately optimized to maximize power output. In a simple analytical example, we illustrate how these techniques might be used to gain insight into the tradeoffs in the design of the electronic hardware and the choice of bus voltage.

  7. From thermometric to spectrophotometric kinetic-catalytic methods of analysis. A review.

    PubMed

    Cerdà, Víctor; González, Alba; Danchana, Kaewta

    2017-05-15

    Kinetic-catalytic analytical methods have proved to be very easy and highly sensitive strategies for chemical analysis, that rely on simple instrumentation [1,2]. Molecular absorption spectrophotometry is commonly used as the detection technique. However, other detection systems, like electrochemical or thermometric ones, offer some interesting possibilities since they are not affected by the color or turbidity of the samples. In this review some initial experience with thermometric kinetic-catalytic methods is described, up to our current experience exploiting spectrophotometric flow techniques to automate this kind of reactions, including the use of integrated chips. Procedures for determination of inorganic and organic species in organic and inorganic matrices are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Tip-Enhanced Raman Scattering Microscopy: A Step toward Nanoscale Control of Intrinsic Molecular Properties

    NASA Astrophysics Data System (ADS)

    Yano, Taka-aki; Hara, Masahiko

    2018-06-01

    Tip-enhanced Raman scattering microscopy, a family of scanning probe microscopy techniques, has been recognized as a powerful surface analytical technique with both single-molecule sensitivity and angstrom-scale spatial resolution. This review covers the current status of tip-enhanced Raman scattering microscopy in surface and material nanosciences, including a brief history, the basic principles, and applications for the nanoscale characterization of a variety of nanomaterials. The focus is on the recent trend of combining tip-enhanced Raman scattering microscopy with various external stimuli such as pressure, voltage, light, and temperature, which enables the local control of the molecular properties and functions and also enables chemical reactions to be induced on a nanometer scale.

  9. The phonetics of talk in interaction--introduction to the special issue.

    PubMed

    Ogden, Richard

    2012-03-01

    This overview paper provides an introduction to work on naturally-occurring speech data, combining techniques of conversation analysis with techniques and methods from phonetics. The paper describes the development of the field, highlighting current challenges and progress in interdisciplinary work. It considers the role of quantification and its relationship to a qualitative methodology. It presents the conversation analytic notion of sequence as a version of context, and argues that sequences of talk constrain relevant phonetic design, and so provide one account for variability in naturally occurring speech. The paper also describes the manipulation of speech and language on many levels simultaneously. All of these themes occur and are explored in more detail in the papers contained in this special issue.

  10. Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.

    PubMed

    Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel

    2014-08-01

    As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.

  11. Deriving Earth Science Data Analytics Requirements

    NASA Technical Reports Server (NTRS)

    Kempler, Steven J.

    2015-01-01

    Data Analytics applications have made successful strides in the business world where co-analyzing extremely large sets of independent variables have proven profitable. Today, most data analytics tools and techniques, sometimes applicable to Earth science, have targeted the business industry. In fact, the literature is nearly absent of discussion about Earth science data analytics. Earth science data analytics (ESDA) is the process of examining large amounts of data from a variety of sources to uncover hidden patterns, unknown correlations, and other useful information. ESDA is most often applied to data preparation, data reduction, and data analysis. Co-analysis of increasing number and volume of Earth science data has become more prevalent ushered by the plethora of Earth science data sources generated by US programs, international programs, field experiments, ground stations, and citizen scientists.Through work associated with the Earth Science Information Partners (ESIP) Federation, ESDA types have been defined in terms of data analytics end goals. Goals of which are very different than those in business, requiring different tools and techniques. A sampling of use cases have been collected and analyzed in terms of data analytics end goal types, volume, specialized processing, and other attributes. The goal of collecting these use cases is to be able to better understand and specify requirements for data analytics tools and techniques yet to be implemented. This presentation will describe the attributes and preliminary findings of ESDA use cases, as well as provide early analysis of data analytics toolstechniques requirements that would support specific ESDA type goals. Representative existing data analytics toolstechniques relevant to ESDA will also be addressed.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Part, Florian; Zecha, Gudrun; Causon, Tim

    Highlights: • First review on detection of nanomaterials in complex waste samples. • Focus on nanoparticles in solid, liquid and gaseous waste samples. • Summary of current applicable methods for nanowaste detection and characterisation. • Limitations and challenges of characterisation of nanoparticles in waste. - Abstract: Engineered nanomaterials (ENMs) are already extensively used in diverse consumer products. Along the life cycle of a nano-enabled product, ENMs can be released and subsequently accumulate in the environment. Material flow models also indicate that a variety of ENMs may accumulate in waste streams. Therefore, a new type of waste, so-called nanowaste, is generatedmore » when end-of-life ENMs and nano-enabled products are disposed of. In terms of the precautionary principle, environmental monitoring of end-of-life ENMs is crucial to allow assessment of the potential impact of nanowaste on our ecosystem. Trace analysis and quantification of nanoparticulate species is very challenging because of the variety of ENM types that are used in products and low concentrations of nanowaste expected in complex environmental media. In the framework of this paper, challenges in nanowaste characterisation and appropriate analytical techniques which can be applied to nanowaste analysis are summarised. Recent case studies focussing on the characterisation of ENMs in waste streams are discussed. Most studies aim to investigate the fate of nanowaste during incineration, particularly considering aerosol measurements; whereas, detailed studies focusing on the potential release of nanowaste during waste recycling processes are currently not available. In terms of suitable analytical methods, separation techniques coupled to spectrometry-based methods are promising tools to detect nanowaste and determine particle size distribution in liquid waste samples. Standardised leaching protocols can be applied to generate soluble fractions stemming from solid wastes, while micro- and ultrafiltration can be used to enrich nanoparticulate species. Imaging techniques combined with X-ray-based methods are powerful tools for determining particle size, morphology and screening elemental composition. However, quantification of nanowaste is currently hampered due to the problem to differentiate engineered from naturally-occurring nanoparticles. A promising approach to face these challenges in nanowaste characterisation might be the application of nanotracers with unique optical properties, elemental or isotopic fingerprints. At present, there is also a need to develop and standardise analytical protocols regarding nanowaste sampling, separation and quantification. In general, more experimental studies are needed to examine the fate and transport of ENMs in waste streams and to deduce transfer coefficients, respectively to develop reliable material flow models.« less

  13. A fast method for detecting Cryptosporidium parvum oocysts in real world samples

    NASA Astrophysics Data System (ADS)

    Stewart, Shona; McClelland, Lindy; Maier, John

    2005-04-01

    Contamination of drinking water with pathogenic microorganisms such as Cryptosporidium has become an increasing concern in recent years. Cryptosporidium oocysts are particularly problematic, as infections caused by this organism can be life threatening in immunocompromised patients. Current methods for monitoring and analyzing water are often laborious and require experts to conduct. In addition, many of the techniques require very specific reagents to be employed. These factors add considerable cost and time to the analytical process. Raman spectroscopy provides specific molecular information on samples, and offers advantages of speed, sensitivity and low cost over current methods of water monitoring. Raman spectroscopy is an optical method that has demonstrated the capability to identify and differentiate microorganisms at the species and strain levels. In addition, this technique has exhibited sensitivities down to the single organism detection limit. We have employed Raman spectroscopy and Raman Chemical Imaging, in conjunction with chemometric techniques, to detect small numbers of oocysts in the presence of interferents derived from real-world water samples. Our investigations have also indicated that Raman Chemical Imaging may provide chemical and physiological information about an oocyst sample which complements information provided by the traditional methods. This work provides evidence that Raman imaging is a useful technique for consideration in the water quality industry.

  14. High-Precision Isotope Ratio Measurements of Sub-Picogram Actinide Samples

    NASA Astrophysics Data System (ADS)

    Pollington, A. D.; Kinman, W.

    2016-12-01

    One of the most exciting trends in analytical geochemistry over the past decade is the push towards smaller and smaller sample sizes while simultaneously achieving high precision isotope ratio measurements. This trend has been driven by advances in clean chemistry protocols, and by significant breakthroughs in mass spectrometer ionization efficiency and detector quality (stability and noise for low signals). In this presentation I will focus on new techniques currently being developed at Los Alamos National Laboratory for the characterization of ultra-small samples (pg, fg, ag), with particular focus on actinide measurements by MC-ICP-MS. Analyses of U, Pu, Th and Am are routinely carried out in our facility using multi-ion counting techniques. I will describe some of the challenges associated with using exclusively ion counting methods (e.g., stability, detector cross calibration, etc.), and how we work to mitigate them. While the focus of much of the work currently being carried out is in the broad field of nuclear forensics and safeguards, the techniques that are being developed are directly applicable to many geologic questions that require analyses of small samples of U and Th, for example. In addition to the description of the technique development, I will present case studies demonstrating the precision and accuracy of the method as applied to real-world samples.

  15. A subjective framework for seat comfort based on a heuristic multi criteria decision making technique and anthropometry.

    PubMed

    Fazlollahtabar, Hamed

    2010-12-01

    Consumer expectations for automobile seat comfort continue to rise. With this said, it is evident that the current automobile seat comfort development process, which is only sporadically successful, needs to change. In this context, there has been growing recognition of the need for establishing theoretical and methodological automobile seat comfort. On the other hand, seat producer need to know the costumer's required comfort to produce based on their interests. The current research methodologies apply qualitative approaches due to anthropometric specifications. The most significant weakness of these approaches is the inexact extracted inferences. Despite the qualitative nature of the consumer's preferences there are some methods to transform the qualitative parameters into numerical value which could help seat producer to improve or enhance their products. Nonetheless this approach would help the automobile manufacturer to provide their seats from the best producer regarding to the consumers idea. In this paper, a heuristic multi criteria decision making technique is applied to make consumers preferences in the numeric value. This Technique is combination of Analytical Hierarchy Procedure (AHP), Entropy method, and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). A case study is conducted to illustrate the applicability and the effectiveness of the proposed heuristic approach. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Assessing the Value of Structured Analytic Techniques in the U.S. Intelligence Community

    DTIC Science & Technology

    2016-01-01

    Analytic Techniques, and Why Do Analysts Use Them? SATs are methods of organizing and stimulating thinking about intelligence problems. These methods... thinking ; and imaginative thinking techniques encourage new perspectives, insights, and alternative scenarios. Among the many SATs in use today, the...more transparent, so that other analysts and customers can bet - ter understand how the judgments were reached. SATs also facilitate group involvement

  17. 40 CFR Table 4 to Subpart Zzzz of... - Requirements for Performance Tests

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... D6348-03,c provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater... ASTM D6348-03,c provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be...

  18. 40 CFR Table 4 to Subpart Zzzz of... - Requirements for Performance Tests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... D6348-03,c provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be greater... ASTM D6348-03,c provided in ASTM D6348-03 Annex A5 (Analyte Spiking Technique), the percent R must be...

  19. Analytical aids in land management planning

    Treesearch

    David R. Betters

    1978-01-01

    Quantitative techniques may be applied to aid in completing various phases of land management planning. Analytical procedures which have been used include a procedure for public involvement, PUBLIC; a matrix information generator, MAGE5; an allocation procedure, linear programming (LP); and an input-output economic analysis (EA). These techniques have proven useful in...

  20. Structural modeling of HTS tapes and cables

    NASA Astrophysics Data System (ADS)

    Allen, N. C.; Chiesa, L.; Takayasu, M.

    2016-12-01

    Structural finite element analysis (FEA) has been used as an insightful tool to investigate the electromechanical behavior of HTS REBCO tapes and twisted stacked-tape cables under tension, torsion, bending and combined loads. A novel technique was developed for modeling the layered composite structure of the 2G tapes with structural solid-shell elements in ANSYS®. The FEA models produced detailed strain information for the REBCO superconducting layer which was then paired with an analytical model to predict the critical current performance of the 2G HTS tapes under various loads. Two commercially available HTS tapes (SuperPower and SuNAM) under tension, torsion and combined tension-torsion were first analyzed with FEA and compared with available experimental results at 77 K. A sharp critical current degradation was experienced at the yield strength of the tapes under tension and below a 100 mm twist-pitch under torsion. Combined tension-torsion loads had a more gradual degradation of critical current for twist-pitches of 115 mm or shorter but had a negligible difference compared to pure tension for longer twist-pitches. Using the structural solid-shell technique for modeling 2G tapes in ANSYS®, an FEA methodology for simulating full scale three-dimensional HTS stacked-tape cables under pure bending was created. A model of a Twisted-Stacked Tape Cable (TSTC), a configuration first proposed at MIT, was initially developed and then adapted to the slotted-core HTS Cable-In-Conduit Conductor produced by the ENEA laboratory in Italy. The numerical axial strain of the HTS REBCO tapes within the cables as calculated by FEA were found to agree with an analytical model for two cases: perfect-slip (frictionless) and no-slip (bonded). The ENEA CICC model was also compared with recent experimental critical current data at 77 K and was found to match best using a low friction coefficient of 0.02 indicating that the tapes within the cable freely slide with respect to each other helping to reduce the axial strain during bending.

  1. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2014-07-01

    Noteworthy experimental practices, which are advancing forward the frontiers of the field of two-dimensional (2D) correlation spectroscopy, are reviewed with the focus on various perturbation methods currently practiced to induce spectral changes, pertinent examples of applications in various fields, and types of analytical probes employed. Types of perturbation methods found in the published literature are very diverse, encompassing both dynamic and static effects. Although a sizable portion of publications report the use of dynamic perturbatuions, much greater number of studies employ static effect, especially that of temperature. Fields of applications covered by the literature are also very broad, ranging from fundamental research to practical applications in a number of physical, chemical and biological systems, such as synthetic polymers, composites and biomolecules. Aside from IR spectroscopy, which is the most commonly used tool, many other analytical probes are used in 2D correlation analysis. The ever expanding trend in depth, breadth and versatility of 2D correlation spectroscopy techniques and their broad applications all point to the robust and healthy state of the field.

  2. Boron doped diamond sensor for sensitive determination of metronidazole: Mechanistic and analytical study by cyclic voltammetry and square wave voltammetry.

    PubMed

    Ammar, Hafedh Belhadj; Brahim, Mabrouk Ben; Abdelhédi, Ridha; Samet, Youssef

    2016-02-01

    The performance of boron-doped diamond (BDD) electrode for the detection of metronidazole (MTZ) as the most important drug of the group of 5-nitroimidazole was proven using cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. A comparison study between BDD, glassy carbon and silver electrodes on the electrochemical response was carried out. The process is pH-dependent. In neutral and alkaline media, one irreversible reduction peak related to the hydroxylamine derivative formation was registered, involving a total of four electrons. In acidic medium, a prepeak appears probably related to the adsorption affinity of hydroxylamine at the electrode surface. The BDD electrode showed higher sensitivity and reproducibility analytical response, compared with the other electrodes. The higher reduction peak current was registered at pH11. Under optimal conditions, a linear analytical curve was obtained for the MTZ concentration in the range of 0.2-4.2μmolL(-1), with a detection limit of 0.065μmolL(-1). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. NASA/University JOint VEnture (JOVE) Program: Transverse Shear Moduli Using the Torsional Responses of Rectangular Laminates

    NASA Technical Reports Server (NTRS)

    Bogan, Sam

    2001-01-01

    The first year included a study of the non-visible damage of composite overwrapped pressure vessels with B. Poe of the Materials Branch of Nasa-Langley. Early determinations showed a clear reduction in non-visible damage for thin COPVs when partially pressurized rather than unpressurized. Literature searches on Thicker-wall COPVs revealed surface damage but clearly visible. Analysis of current Analytic modeling indicated that that current COPV models lacked sufficient thickness corrections to predict impact damage. After a comprehensive study of available published data and numerous numerical studies based on observed data from Langley, the analytic framework for modeling the behavior was determined lacking and both Poe and Bogan suggested any short term (3yr) result for Jove would be overly ambitious and emphasis should be placed on transverse shear moduli studies. Transverse shear moduli determination is relevant to the study of fatigue, fracture and aging effects in composite structures. Based on the techniques developed by Daniel & Tsai, Bogan and Gates determined to verify the results for K3B and 8320. A detailed analytic and experimental plan was established and carried out that included variations in layup, width, thickness, and length. As well as loading rate variations to determine effects and relaxation moduli. The additional axial loads during the torsion testing were studied as was the placement of gages along the composite specimen. Of the proposed tasks, all of tasks I and 2 were completed with presentations given at Langley, SEM conferences and ASME/AIAA conferences. Sensitivity issues with the technique associated with the use of servohydraulic test systems for applying the torsional load to the composite specimen limited the torsion range for predictable and repeatable transverse shear properties. Bogan and Gates determined to diverge on research efforts with Gates continuing the experimental testing at Langley and Bogan modeling the apparent non-linear behavior at low torque & angles apparent from the tests.

  4. Implementing Operational Analytics using Big Data Technologies to Detect and Predict Sensor Anomalies

    NASA Astrophysics Data System (ADS)

    Coughlin, J.; Mital, R.; Nittur, S.; SanNicolas, B.; Wolf, C.; Jusufi, R.

    2016-09-01

    Operational analytics when combined with Big Data technologies and predictive techniques have been shown to be valuable in detecting mission critical sensor anomalies that might be missed by conventional analytical techniques. Our approach helps analysts and leaders make informed and rapid decisions by analyzing large volumes of complex data in near real-time and presenting it in a manner that facilitates decision making. It provides cost savings by being able to alert and predict when sensor degradations pass a critical threshold and impact mission operations. Operational analytics, which uses Big Data tools and technologies, can process very large data sets containing a variety of data types to uncover hidden patterns, unknown correlations, and other relevant information. When combined with predictive techniques, it provides a mechanism to monitor and visualize these data sets and provide insight into degradations encountered in large sensor systems such as the space surveillance network. In this study, data from a notional sensor is simulated and we use big data technologies, predictive algorithms and operational analytics to process the data and predict sensor degradations. This study uses data products that would commonly be analyzed at a site. This study builds on a big data architecture that has previously been proven valuable in detecting anomalies. This paper outlines our methodology of implementing an operational analytic solution through data discovery, learning and training of data modeling and predictive techniques, and deployment. Through this methodology, we implement a functional architecture focused on exploring available big data sets and determine practical analytic, visualization, and predictive technologies.

  5. Ring-oven based preconcentration technique for microanalysis: simultaneous determination of Na, Fe, and Cu in fuel ethanol by laser induced breakdown spectroscopy.

    PubMed

    Cortez, Juliana; Pasquini, Celio

    2013-02-05

    The ring-oven technique, originally applied for classical qualitative analysis in the years 1950s to 1970s, is revisited to be used in a simple though highly efficient and green procedure for analyte preconcentration prior to its determination by the microanalytical techniques presently available. The proposed preconcentration technique is based on the dropwise delivery of a small volume of sample to a filter paper substrate, assisted by a flow-injection-like system. The filter paper is maintained in a small circular heated oven (the ring oven). Drops of the sample solution diffuse by capillarity from the center to a circular area of the paper substrate. After the total sample volume has been delivered, a ring with a sharp (c.a. 350 μm) circular contour, of about 2.0 cm diameter, is formed on the paper to contain most of the analytes originally present in the sample volume. Preconcentration coefficients of the analyte can reach 250-fold (on a m/m basis) for a sample volume as small as 600 μL. The proposed system and procedure have been evaluated to concentrate Na, Fe, and Cu in fuel ethanol, followed by simultaneous direct determination of these species in the ring contour, employing the microanalytical technique of laser induced breakdown spectroscopy (LIBS). Detection limits of 0.7, 0.4, and 0.3 μg mL(-1) and mean recoveries of (109 ± 13)%, (92 ± 18)%, and (98 ± 12)%, for Na, Fe, and Cu, respectively, were obtained in fuel ethanol. It is possible to anticipate the application of the technique, coupled to modern microanalytical and multianalyte techniques, to several analytical problems requiring analyte preconcentration and/or sample stabilization.

  6. Quality assessment of internet pharmaceutical products using traditional and non-traditional analytical techniques.

    PubMed

    Westenberger, Benjamin J; Ellison, Christopher D; Fussner, Andrew S; Jenney, Susan; Kolinski, Richard E; Lipe, Terra G; Lyon, Robbe C; Moore, Terry W; Revelle, Larry K; Smith, Anjanette P; Spencer, John A; Story, Kimberly D; Toler, Duckhee Y; Wokovich, Anna M; Buhse, Lucinda F

    2005-12-08

    This work investigated the use of non-traditional analytical methods to evaluate the quality of a variety of pharmaceutical products purchased via internet sites from foreign sources and compared the results with those obtained from conventional quality assurance methods. Traditional analytical techniques employing HPLC for potency, content uniformity, chromatographic purity and drug release profiles were used to evaluate the quality of five selected drug products (fluoxetine hydrochloride, levothyroxine sodium, metformin hydrochloride, phenytoin sodium, and warfarin sodium). Non-traditional techniques, such as near infrared spectroscopy (NIR), NIR imaging and thermogravimetric analysis (TGA), were employed to verify the results and investigate their potential as alternative testing methods. Two of 20 samples failed USP monographs for quality attributes. The additional analytical methods found 11 of 20 samples had different formulations when compared to the U.S. product. Seven of the 20 samples arrived in questionable containers, and 19 of 20 had incomplete labeling. Only 1 of the 20 samples had final packaging similar to the U.S. products. The non-traditional techniques complemented the traditional techniques used and highlighted additional quality issues for the products tested. For example, these methods detected suspect manufacturing issues (such as blending), which were not evident from traditional testing alone.

  7. An Experiential Research-Focused Approach: Implementation in a Nonlaboratory-Based Graduate-Level Analytical Chemistry Course

    ERIC Educational Resources Information Center

    Toh, Chee-Seng

    2007-01-01

    A project is described which incorporates nonlaboratory research skills in a graduate level course on analytical chemistry. This project will help students to grasp the basic principles and concepts of modern analytical techniques and also help them develop relevant research skills in analytical chemistry.

  8. Analytical and numerical techniques for predicting the interfacial stresses of wavy carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Yazdchi, K.; Salehi, M.; Shokrieh, M. M.

    2009-03-01

    By introducing a new simplified 3D representative volume element for wavy carbon nanotubes, an analytical model is developed to study the stress transfer in single-walled carbon nanotube-reinforced polymer composites. Based on the pull-out modeling technique, the effects of waviness, aspect ratio, and Poisson ratio on the axial and interfacial shear stresses are analyzed in detail. The results of the present analytical model are in a good agreement with corresponding results for straight nanotubes.

  9. Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas.

    PubMed

    Koch, Jeffrey A; Landen, Otto L; Suter, Laurence J; Masse, Laurent P; Clark, Daniel S; Ross, James S; Mackinnon, Andrew J; Meezan, Nathan B; Thomas, Cliff A; Ping, Yuan

    2013-05-20

    X-ray backlit radiographs of dense plasma shells can be significantly altered by refraction of x rays that would otherwise travel straight-ray paths, and this effect can be a powerful tool for diagnosing the spatial structure of the plasma being radiographed. We explore the conditions under which refraction effects may be observed, and we use analytical and numerical approaches to quantify these effects for one-dimensional radial opacity and density profiles characteristic of inertial-confinement fusion (ICF) implosions. We also show how analytical and numerical approaches allow approximate radial plasma opacity and density profiles to be inferred from point-projection refraction-enhanced radiography data. This imaging technique can provide unique data on electron density profiles in ICF plasmas that cannot be obtained using other techniques, and the uniform illumination provided by point-like x-ray backlighters eliminates a significant source of uncertainty in inferences of plasma opacity profiles from area-backlit pinhole imaging data when the backlight spatial profile cannot be independently characterized. The technique is particularly suited to in-flight radiography of imploding low-opacity shells surrounding hydrogen ice, because refraction is sensitive to the electron density of the hydrogen plasma even when it is invisible to absorption radiography. It may also provide an alternative approach to timing shockwaves created by the implosion drive, that are currently invisible to absorption radiography.

  10. A validation of event-related FMRI comparisons between users of cocaine, nicotine, or cannabis and control subjects.

    PubMed

    Murphy, Kevin; Dixon, Veronica; LaGrave, Kathleen; Kaufman, Jacqueline; Risinger, Robert; Bloom, Alan; Garavan, Hugh

    2006-07-01

    Noninvasive brain imaging techniques are a powerful tool for researching the effects of drug abuse on brain activation measures. However, because many drugs have direct vascular effects, the validity of techniques that depend on blood flow measures as a reflection of neuronal activity may be called into question. This may be of particular concern in event-related functional magnetic resonance imaging (fMRI), where current analytic techniques search for a specific shape in the hemodynamic response to neuronal activity. To investigate possible alterations in task-related activation as a result of drug abuse, fMRI scans were conducted on subjects in four groups as they performed a simple event-related finger-tapping task: users of cocaine, nicotine, or cannabis and control subjects. Activation measures, as determined by two different analytic methods, did not differ between the groups. A comparison between an intravenous saline and an intravenous cocaine condition in cocaine users found a similar null result. Further in-depth analyses of the shape of the hemodynamic responses in each group also showed no differences. This study demonstrates that drug groups may be compared with control subjects using event-related fMRI without the need for any post hoc procedures to correct for possible drug-induced cardiovascular alterations. Thus, fMRI activation differences reported between these drug groups can be more confidently interpreted as reflecting neuronal differences.

  11. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission.

    PubMed

    Edwards, Howell G M; Hutchinson, Ian B; Ingley, Richard; Parnell, John; Vítek, Petr; Jehlička, Jan

    2013-06-01

    A novel miniaturized Raman spectrometer is scheduled to fly as part of the analytical instrumentation package on an ESA remote robotic lander in the ESA/Roscosmos ExoMars mission to search for evidence for extant or extinct life on Mars in 2018. The Raman spectrometer will be part of the first-pass analytical stage of the sampling procedure, following detailed surface examination by the PanCam scanning camera unit on the ExoMars rover vehicle. The requirements of the analytical protocol are stringent and critical; this study represents a laboratory blind interrogation of specimens that form a list of materials that are of relevance to martian exploration and at this stage simulates a test of current laboratory instrumentation to highlight the Raman technique strengths and possible weaknesses that may be encountered in practice on the martian surface and from which future studies could be formulated. In this preliminary exercise, some 10 samples that are considered terrestrial representatives of the mineralogy and possible biogeologically modified structures that may be identified on Mars have been examined with Raman spectroscopy, and conclusions have been drawn about the viability of the unambiguous spectral identification of biomolecular life signatures. It is concluded that the Raman spectroscopic technique does indeed demonstrate the capability to identify biomolecular signatures and the mineralogy in real-world terrestrial samples with a very high degree of success without any preconception being made about their origin and classification.

  12. Recent Progress in Optical Biosensors Based on Smartphone Platforms

    PubMed Central

    Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda

    2017-01-01

    With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms. PMID:29068375

  13. Recent Progress in Optical Biosensors Based on Smartphone Platforms.

    PubMed

    Geng, Zhaoxin; Zhang, Xiong; Fan, Zhiyuan; Lv, Xiaoqing; Su, Yue; Chen, Hongda

    2017-10-25

    With a rapid improvement of smartphone hardware and software, especially complementary metal oxide semiconductor (CMOS) cameras, many optical biosensors based on smartphone platforms have been presented, which have pushed the development of the point-of-care testing (POCT). Imaging-based and spectrometry-based detection techniques have been widely explored via different approaches. Combined with the smartphone, imaging-based and spectrometry-based methods are currently used to investigate a wide range of molecular properties in chemical and biological science for biosensing and diagnostics. Imaging techniques based on smartphone-based microscopes are utilized to capture microscale analysts, while spectrometry-based techniques are used to probe reactions or changes of molecules. Here, we critically review the most recent progress in imaging-based and spectrometry-based smartphone-integrated platforms that have been developed for chemical experiments and biological diagnosis. We focus on the analytical performance and the complexity for implementation of the platforms.

  14. Widespread Nanoparticle-Assay Interference: Implications for Nanotoxicity Testing

    PubMed Central

    Ong, Kimberly J.; MacCormack, Tyson J.; Clark, Rhett J.; Ede, James D.; Ortega, Van A.; Felix, Lindsey C.; Dang, Michael K. M.; Ma, Guibin; Fenniri, Hicham; Veinot, Jonathan G. C.; Goss, Greg G.

    2014-01-01

    The evaluation of engineered nanomaterial safety has been hindered by conflicting reports demonstrating differential degrees of toxicity with the same nanoparticles. The unique properties of these materials increase the likelihood that they will interfere with analytical techniques, which may contribute to this phenomenon. We tested the potential for: 1) nanoparticle intrinsic fluorescence/absorbance, 2) interactions between nanoparticles and assay components, and 3) the effects of adding both nanoparticles and analytes to an assay, to interfere with the accurate assessment of toxicity. Silicon, cadmium selenide, titanium dioxide, and helical rosette nanotubes each affected at least one of the six assays tested, resulting in either substantial over- or under-estimations of toxicity. Simulation of realistic assay conditions revealed that interference could not be predicted solely by interactions between nanoparticles and assay components. Moreover, the nature and degree of interference cannot be predicted solely based on our current understanding of nanomaterial behaviour. A literature survey indicated that ca. 95% of papers from 2010 using biochemical techniques to assess nanotoxicity did not account for potential interference of nanoparticles, and this number had not substantially improved in 2012. We provide guidance on avoiding and/or controlling for such interference to improve the accuracy of nanotoxicity assessments. PMID:24618833

  15. Test and Analysis Capabilities of the Space Environment Effects Team at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Finckenor, M. M.; Edwards, D. L.; Vaughn, J. A.; Schneider, T. A.; Hovater, M. A.; Hoppe, D. T.

    2002-01-01

    Marshall Space Flight Center has developed world-class space environmental effects testing facilities to simulate the space environment. The combined environmental effects test system exposes temperature-controlled samples to simultaneous protons, high- and low-energy electrons, vacuum ultraviolet (VUV) radiation, and near-ultraviolet (NUV) radiation. Separate chambers for studying the effects of NUV and VUV at elevated temperatures are also available. The Atomic Oxygen Beam Facility exposes samples to atomic oxygen of 5 eV energy to simulate low-Earth orbit (LEO). The LEO space plasma simulators are used to study current collection to biased spacecraft surfaces, arcing from insulators and electrical conductivity of materials. Plasma propulsion techniques are analyzed using the Marshall magnetic mirror system. The micro light gas gun simulates micrometeoroid and space debris impacts. Candidate materials and hardware for spacecraft can be evaluated for durability in the space environment with a variety of analytical techniques. Mass, solar absorptance, infrared emittance, transmission, reflectance, bidirectional reflectance distribution function, and surface morphology characterization can be performed. The data from the space environmental effects testing facilities, combined with analytical results from flight experiments, enable the Environmental Effects Group to determine optimum materials for use on spacecraft.

  16. Some aspects of analytical chemistry as applied to water quality assurance techniques for reclaimed water: The potential use of X-ray fluorescence spectrometry for automated on-line fast real-time simultaneous multi-component analysis of inorganic pollutants in reclaimed water

    NASA Technical Reports Server (NTRS)

    Ling, A. C.; Macpherson, L. H.; Rey, M.

    1981-01-01

    The potential use of isotopically excited energy dispersive X-ray fluorescence (XRF) spectrometry for automated on line fast real time (5 to 15 minutes) simultaneous multicomponent (up to 20) trace (1 to 10 parts per billion) analysis of inorganic pollutants in reclaimed water was examined. Three anionic elements (chromium 6, arsenic and selenium) were studied. The inherent lack of sensitivity of XRF spectrometry for these elements mandates use of a preconcentration technique and various methods were examined, including: several direct and indirect evaporation methods; ion exchange membranes; selective and nonselective precipitation; and complexation processes. It is shown tha XRF spectrometry itself is well suited for automated on line quality assurance, and can provide a nondestructive (and thus sample storage and repeat analysis capabilities) and particularly convenient analytical method. Further, the use of an isotopically excited energy dispersive unit (50 mCi Cd-109 source) coupled with a suitable preconcentration process can provide sufficient sensitivity to achieve the current mandated minimum levels of detection without the need for high power X-ray generating tubes.

  17. Evaluation of healthcare waste treatment/disposal alternatives by using multi-criteria decision-making techniques.

    PubMed

    Özkan, Aysun

    2013-02-01

    Healthcare waste should be managed carefully because of infected, pathological, etc. content especially in developing countries. Applied management systems must be the most appropriate solution from a technical, environmental, economic and social point of view. The main objective of this study was to analyse the current status of healthcare waste management in Turkey, and to investigate the most appropriate treatment/disposal option by using different decision-making techniques. For this purpose, five different healthcare waste treatment/disposal alternatives including incineration, microwaving, on-site sterilization, off-site sterilization and landfill were evaluated according to two multi-criteria decision-making techniques: analytic network process (ANP) and ELECTRE. In this context, benefits, costs and risks for the alternatives were taken into consideration. Furthermore, the prioritization and ranking of the alternatives were determined and compared for both methods. According to the comparisons, the off-site sterilization technique was found to be the most appropriate solution in both cases.

  18. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC),more » supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.« less

  19. An Analytical Solution for Transient Thermal Response of an Insulated Structure

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    2012-01-01

    An analytical solution was derived for the transient response of an insulated aerospace vehicle structure subjected to a simplified heat pulse. This simplified problem approximates the thermal response of a thermal protection system of an atmospheric entry vehicle. The exact analytical solution is solely a function of two non-dimensional parameters. A simpler function of these two parameters was developed to approximate the maximum structural temperature over a wide range of parameter values. Techniques were developed to choose constant, effective properties to represent the relevant temperature and pressure-dependent properties for the insulator and structure. A technique was also developed to map a time-varying surface temperature history to an equivalent square heat pulse. Using these techniques, the maximum structural temperature rise was calculated using the analytical solutions and shown to typically agree with finite element simulations within 10 to 20 percent over the relevant range of parameters studied.

  20. Emulation applied to reliability analysis of reconfigurable, highly reliable, fault-tolerant computing systems

    NASA Technical Reports Server (NTRS)

    Migneault, G. E.

    1979-01-01

    Emulation techniques applied to the analysis of the reliability of highly reliable computer systems for future commercial aircraft are described. The lack of credible precision in reliability estimates obtained by analytical modeling techniques is first established. The difficulty is shown to be an unavoidable consequence of: (1) a high reliability requirement so demanding as to make system evaluation by use testing infeasible; (2) a complex system design technique, fault tolerance; (3) system reliability dominated by errors due to flaws in the system definition; and (4) elaborate analytical modeling techniques whose precision outputs are quite sensitive to errors of approximation in their input data. Next, the technique of emulation is described, indicating how its input is a simple description of the logical structure of a system and its output is the consequent behavior. Use of emulation techniques is discussed for pseudo-testing systems to evaluate bounds on the parameter values needed for the analytical techniques. Finally an illustrative example is presented to demonstrate from actual use the promise of the proposed application of emulation.

  1. Effects of finite ground plane on the radiation characteristics of a circular patch antenna

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Arun K.

    1990-02-01

    An analytical technique to determine the effects of finite ground plane on the radiation characteristics of a microstrip antenna is presented. The induced currents on the ground plane and on the upper surface of the patch are determined from the discontinuity of the near field produced by the equivalent magnetic current source on the physical aperture of the patch. The radiated fields contributed by the induced current on the ground plane and the equivalent sources on the physical aperture yield the radiation pattern of the antenna. Radiation patterns of the circular patch with finite ground plane size are computed and compared with the experimental data, and the agreement is found to be good. The radiation pattern, directive gain, and input impedance are found to vary widely with the ground plane size.

  2. Optical trapping for analytical biotechnology.

    PubMed

    Ashok, Praveen C; Dholakia, Kishan

    2012-02-01

    We describe the exciting advances of using optical trapping in the field of analytical biotechnology. This technique has opened up opportunities to manipulate biological particles at the single cell or even at subcellular levels which has allowed an insight into the physical and chemical mechanisms of many biological processes. The ability of this technique to manipulate microparticles and measure pico-Newton forces has found several applications such as understanding the dynamics of biological macromolecules, cell-cell interactions and the micro-rheology of both cells and fluids. Furthermore we may probe and analyse the biological world when combining trapping with analytical techniques such as Raman spectroscopy and imaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Discreet passive explosive detection through 2-sided waveguided fluorescence

    DOEpatents

    Harper, Ross James [Stillwater, OK; la Grone, Marcus [Cushing, OK; Fisher, Mark [Stillwater, OK

    2011-10-18

    The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.

  4. Revisiting the Relationship between Individual Differences in Analytic Thinking and Religious Belief: Evidence That Measurement Order Moderates Their Inverse Correlation.

    PubMed

    Finley, Anna J; Tang, David; Schmeichel, Brandon J

    2015-01-01

    Prior research has found that persons who favor more analytic modes of thought are less religious. We propose that individual differences in analytic thought are associated with reduced religious beliefs particularly when analytic thought is measured (hence, primed) first. The current study provides a direct replication of prior evidence that individual differences in analytic thinking are negatively related to religious beliefs when analytic thought is measured before religious beliefs. When religious belief is measured before analytic thinking, however, the negative relationship is reduced to non-significance, suggesting that the link between analytic thought and religious belief is more tenuous than previously reported. The current study suggests that whereas inducing analytic processing may reduce religious belief, more analytic thinkers are not necessarily less religious. The potential for measurement order to inflate the inverse correlation between analytic thinking and religious beliefs deserves additional consideration.

  5. Revisiting the Relationship between Individual Differences in Analytic Thinking and Religious Belief: Evidence That Measurement Order Moderates Their Inverse Correlation

    PubMed Central

    Finley, Anna J.; Tang, David; Schmeichel, Brandon J.

    2015-01-01

    Prior research has found that persons who favor more analytic modes of thought are less religious. We propose that individual differences in analytic thought are associated with reduced religious beliefs particularly when analytic thought is measured (hence, primed) first. The current study provides a direct replication of prior evidence that individual differences in analytic thinking are negatively related to religious beliefs when analytic thought is measured before religious beliefs. When religious belief is measured before analytic thinking, however, the negative relationship is reduced to non-significance, suggesting that the link between analytic thought and religious belief is more tenuous than previously reported. The current study suggests that whereas inducing analytic processing may reduce religious belief, more analytic thinkers are not necessarily less religious. The potential for measurement order to inflate the inverse correlation between analytic thinking and religious beliefs deserves additional consideration. PMID:26402334

  6. NASA CF6 jet engine diagnostics program: Long-term CF6-6D low-pressure turbine deterioration

    NASA Technical Reports Server (NTRS)

    Smith, J. J.

    1979-01-01

    Back-to-back performance tests were run on seven airline low pressure turbine (LPT) modules and four new CF6-6D modules. Back-to-back test cell runs, in which an airline LPT module was directly compared to a new production module, were included. The resulting change, measured in fuel burn, equaled the level of LPT module deterioration. Three of the LPT modules were analytically inspected followed by a back-to-back test cell run to evaluate current refurbishment techniques.

  7. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Rule, D. W.; Downer, M. C.

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  8. Investigation of the microstructure and mineralogical composition of urinary calculi fragments by synchrotron radiation X-ray microtomography: a feasibility study.

    PubMed

    Kaiser, Jozef; Holá, Markéta; Galiová, Michaela; Novotný, Karel; Kanický, Viktor; Martinec, Petr; Sčučka, Jiří; Brun, Francesco; Sodini, Nicola; Tromba, Giuliana; Mancini, Lucia; Kořistková, Tamara

    2011-08-01

    The outcomes from the feasibility study on utilization of synchrotron radiation X-ray microtomography (SR-μCT) to investigate the texture and the quantitative mineralogical composition of selected calcium oxalate-based urinary calculi fragments are presented. The comparison of the results obtained by SR-μCT analysis with those derived from current standard analytical approaches is provided. SR-μCT is proved as a potential effective technique for determination of texture, 3D microstructure, and composition of kidney stones.

  9. Architecture for Business Intelligence in the Healthcare Sector

    NASA Astrophysics Data System (ADS)

    Lee, Sang Young

    2018-03-01

    Healthcare environment is growing to include not only the traditional information systems, but also a business intelligence platform. For executive leaders, consultants, and analysts, there is no longer a need to spend hours in design and develop of typical reports or charts, the entire solution can be completed through using Business Intelligence software. The current paper highlights the advantages of big data analytics and business intelligence in the healthcare industry. In this paper, In this paper we focus our discussion around intelligent techniques and methodologies which are recently used for business intelligence in healthcare.

  10. Nuclear and atomic analytical techniques in environmental studies in South America.

    PubMed

    Paschoa, A S

    1990-01-01

    The use of nuclear analytical techniques for environmental studies in South America is selectively reviewed since the time of earlier works of Lattes with cosmic rays until the recent applications of the PIXE (particle-induced X-ray emission) technique to study air pollution problems in large cities, such as São Paulo and Rio de Janeiro. The studies on natural radioactivity and fallout from nuclear weapons in South America are briefly examined.

  11. Green aspects, developments and perspectives of liquid phase microextraction techniques.

    PubMed

    Spietelun, Agata; Marcinkowski, Łukasz; de la Guardia, Miguel; Namieśnik, Jacek

    2014-02-01

    Determination of analytes at trace levels in complex samples (e.g. biological or contaminated water or soils) are often required for the environmental assessment and monitoring as well as for scientific research in the field of environmental pollution. A limited number of analytical techniques are sensitive enough for the direct determination of trace components in samples and, because of that, a preliminary step of the analyte isolation/enrichment prior to analysis is required in many cases. In this work the newest trends and innovations in liquid phase microextraction, like: single-drop microextraction (SDME), hollow fiber liquid-phase microextraction (HF-LPME), and dispersive liquid-liquid microextraction (DLLME) have been discussed, including their critical evaluation and possible application in analytical practice. The described modifications of extraction techniques deal with system miniaturization and/or automation, the use of ultrasound and physical agitation, and electrochemical methods. Particular attention was given to pro-ecological aspects therefore the possible use of novel, non-toxic extracting agents, inter alia, ionic liquids, coacervates, surfactant solutions and reverse micelles in the liquid phase microextraction techniques has been evaluated in depth. Also, new methodological solutions and the related instruments and devices for the efficient liquid phase micoextraction of analytes, which have found application at the stage of procedure prior to chromatographic determination, are presented. © 2013 Published by Elsevier B.V.

  12. Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors

    PubMed Central

    Boukhayma, Assim; Peizerat, Arnaud; Enz, Christian

    2016-01-01

    This paper presents an overview of the read noise in CMOS image sensors (CISs) based on four-transistors (4T) pixels, column-level amplification and correlated multiple sampling. Starting from the input-referred noise analytical formula, process level optimizations, device choices and circuit techniques at the pixel and column level of the readout chain are derived and discussed. The noise reduction techniques that can be implemented at the column and pixel level are verified by transient noise simulations, measurement and results from recently-published low noise CIS. We show how recently-reported process refinement, leading to the reduction of the sense node capacitance, can be combined with an optimal in-pixel source follower design to reach a sub-0.3erms- read noise at room temperature. This paper also discusses the impact of technology scaling on the CIS read noise. It shows how designers can take advantage of scaling and how the Metal-Oxide-Semiconductor (MOS) transistor gate leakage tunneling current appears as a challenging limitation. For this purpose, both simulation results of the gate leakage current and 1/f noise data reported from different foundries and technology nodes are used.

  13. Vista goes online: Decision-analytic systems for real-time decision-making in mission control

    NASA Technical Reports Server (NTRS)

    Barry, Matthew; Horvitz, Eric; Ruokangas, Corinne; Srinivas, Sampath

    1994-01-01

    The Vista project has centered on the use of decision-theoretic approaches for managing the display of critical information relevant to real-time operations decisions. The Vista-I project originally developed a prototype of these approaches for managing flight control displays in the Space Shuttle Mission Control Center (MCC). The follow-on Vista-II project integrated these approaches in a workstation program which currently is being certified for use in the MCC. To our knowledge, this will be the first application of automated decision-theoretic reasoning techniques for real-time spacecraft operations. We shall describe the development and capabilities of the Vista-II system, and provide an overview of the use of decision-theoretic reasoning techniques to the problems of managing the complexity of flight controller displays. We discuss the relevance of the Vista techniques within the MCC decision-making environment, focusing on the problems of detecting and diagnosing spacecraft electromechanical subsystems component failures with limited information, and the problem of determining what control actions should be taken in high-stakes, time-critical situations in response to a diagnosis performed under uncertainty. Finally, we shall outline our current research directions for follow-on projects.

  14. Double-injection, deep-impurity switch development

    NASA Technical Reports Server (NTRS)

    Selim, F. A.; Whitson, D. W.

    1983-01-01

    The overall objective of this program is the development of device design and process techniques for the fabrication of a double-injection, deep-impurity (DI)(2) silicon switch that operates in the 1-10 kV range with conduction current of 10 and 1A, respectively. Other major specifications include a holding voltage of 0 to 5 volts at 1 A anode current, 10 microsecond switching time, and power dissipation of 50 W at 75 C. This report describes work that shows how the results obtained at the University of Cincinnati under NASA Grant NSG-3022 have been applied to larger area and higher voltage devices. The investigations include theoretical, analytical, and experimental studies of device design and processing. Methods to introduce deep levels, such as Au diffusion and electron irradiation, have been carried out to "pin down' the Fermi level and control device-switching characteristics. Different anode, cathode, and gate configurations are presented. Techniques to control the surface electric field of planar structures used for (DI)(2) switches are examined. Various sections of this report describe the device design, wafer-processing techniques, and various measurements which include ac and dc characteristics, 4-point probe, and spreading resistance.

  15. Blood doping by cobalt. Should we measure cobalt in athletes?

    PubMed

    Lippi, Giuseppe; Franchini, Massimo; Guidi, Gian Cesare

    2006-07-24

    Blood doping is commonplace in competitive athletes who seek to enhance their aerobic performances through illicit techniques. Cobalt, a naturally-occurring element with properties similar to those of iron and nickel, induces a marked and stable polycythemic response through a more efficient transcription of the erythropoietin gene. Although little information is available so far on cobalt metabolism, reference value ranges or supplementation in athletes, there is emerging evidence that cobalt is used as a supplement and increased serum concentrations are occasionally observed in athletes. Therefore, given the athlete's connatural inclination to experiment with innovative, unfair and potentially unhealthy doping techniques, cobalt administration might soon become the most suited complement or surrogate for erythropoiesis-stimulating substances. Nevertheless, cobalt administration is not free from unsafe consequences, which involve toxic effects on heart, liver, kidney, thyroid and cancer promotion. Cobalt is easily purchasable, inexpensive and not currently comprehended within the World Anti-Doping Agency prohibited list. Moreover, available techniques for measuring whole blood, serum, plasma or urinary cobalt involve analytic approaches which are currently not practical for antidoping laboratories. Thus more research on cobalt metabolism in athletes is compelling, along with implementation of effective strategies to unmask this potentially deleterious doping practice.

  16. Pre-analytic and analytic sources of variations in thiopurine methyltransferase activity measurement in patients prescribed thiopurine-based drugs: A systematic review.

    PubMed

    Loit, Evelin; Tricco, Andrea C; Tsouros, Sophia; Sears, Margaret; Ansari, Mohammed T; Booth, Ronald A

    2011-07-01

    Low thiopurine S-methyltransferase (TPMT) enzyme activity is associated with increased thiopurine drug toxicity, particularly myelotoxicity. Pre-analytic and analytic variables for TPMT genotype and phenotype (enzyme activity) testing were reviewed. A systematic literature review was performed, and diagnostic laboratories were surveyed. Thirty-five studies reported relevant data for pre-analytic variables (patient age, gender, race, hematocrit, co-morbidity, co-administered drugs and specimen stability) and thirty-three for analytic variables (accuracy, reproducibility). TPMT is stable in blood when stored for up to 7 days at room temperature, and 3 months at -30°C. Pre-analytic patient variables do not affect TPMT activity. Fifteen drugs studied to date exerted no clinically significant effects in vivo. Enzymatic assay is the preferred technique. Radiochemical and HPLC techniques had intra- and inter-assay coefficients of variation (CVs) below 10%. TPMT is a stable enzyme, and its assay is not affected by age, gender, race or co-morbidity. Copyright © 2011. Published by Elsevier Inc.

  17. IoT Big-Data Centred Knowledge Granule Analytic and Cluster Framework for BI Applications: A Case Base Analysis.

    PubMed

    Chang, Hsien-Tsung; Mishra, Nilamadhab; Lin, Chung-Chih

    2015-01-01

    The current rapid growth of Internet of Things (IoT) in various commercial and non-commercial sectors has led to the deposition of large-scale IoT data, of which the time-critical analytic and clustering of knowledge granules represent highly thought-provoking application possibilities. The objective of the present work is to inspect the structural analysis and clustering of complex knowledge granules in an IoT big-data environment. In this work, we propose a knowledge granule analytic and clustering (KGAC) framework that explores and assembles knowledge granules from IoT big-data arrays for a business intelligence (BI) application. Our work implements neuro-fuzzy analytic architecture rather than a standard fuzzified approach to discover the complex knowledge granules. Furthermore, we implement an enhanced knowledge granule clustering (e-KGC) mechanism that is more elastic than previous techniques when assembling the tactical and explicit complex knowledge granules from IoT big-data arrays. The analysis and discussion presented here show that the proposed framework and mechanism can be implemented to extract knowledge granules from an IoT big-data array in such a way as to present knowledge of strategic value to executives and enable knowledge users to perform further BI actions.

  18. Critical review of dog detection and the influences of physiology, training, and analytical methodologies.

    PubMed

    Hayes, J E; McGreevy, P D; Forbes, S L; Laing, G; Stuetz, R M

    2018-08-01

    Detection dogs serve a plethora of roles within modern society, and are relied upon to identify threats such as explosives and narcotics. Despite their importance, research and training regarding detection dogs has involved ambiguity. This is partially due to the fact that the assessment of effectiveness regarding detection dogs continues to be entrenched within a traditional, non-scientific understanding. Furthermore, the capabilities of detection dogs are also based on their olfactory physiology and training methodologies, both of which are hampered by knowledge gaps. Additionally, the future of detection dogs is strongly influenced by welfare and social implications. Most importantly however, is the emergence of progressively inexpensive and efficacious analytical methodologies including gas chromatography related techniques, "e-noses", and capillary electrophoresis. These analytical methodologies provide both an alternative and assistor for the detection dog industry, however the interrelationship between these two detection paradigms requires clarification. These factors, when considering their relative contributions, illustrate a need to address research gaps, formalise the detection dog industry and research process, as well as take into consideration analytical methodologies and their influence on the future status of detection dogs. This review offers an integrated assessment of the factors involved in order to determine the current and future status of detection dogs. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Analytical Parameters of an Amperometric Glucose Biosensor for Fast Analysis in Food Samples.

    PubMed

    Artigues, Margalida; Abellà, Jordi; Colominas, Sergi

    2017-11-14

    Amperometric biosensors based on the use of glucose oxidase (GOx) are able to combine the robustness of electrochemical techniques with the specificity of biological recognition processes. However, very little information can be found in literature about the fundamental analytical parameters of these sensors. In this work, the analytical behavior of an amperometric biosensor based on the immobilization of GOx using a hydrogel (Chitosan) onto highly ordered titanium dioxide nanotube arrays (TiO₂NTAs) has been evaluated. The GOx-Chitosan/TiO₂NTAs biosensor showed a sensitivity of 5.46 μA·mM -1 with a linear range from 0.3 to 1.5 mM; its fundamental analytical parameters were studied using a commercial soft drink. The obtained results proved sufficient repeatability (RSD = 1.9%), reproducibility (RSD = 2.5%), accuracy (95-105% recovery), and robustness (RSD = 3.3%). Furthermore, no significant interferences from fructose, ascorbic acid and citric acid were obtained. In addition, the storage stability was further examined, after 30 days, the GOx-Chitosan/TiO₂NTAs biosensor retained 85% of its initial current response. Finally, the glucose content of different food samples was measured using the biosensor and compared with the respective HPLC value. In the worst scenario, a deviation smaller than 10% was obtained among the 20 samples evaluated.

  20. IoT Big-Data Centred Knowledge Granule Analytic and Cluster Framework for BI Applications: A Case Base Analysis

    PubMed Central

    Chang, Hsien-Tsung; Mishra, Nilamadhab; Lin, Chung-Chih

    2015-01-01

    The current rapid growth of Internet of Things (IoT) in various commercial and non-commercial sectors has led to the deposition of large-scale IoT data, of which the time-critical analytic and clustering of knowledge granules represent highly thought-provoking application possibilities. The objective of the present work is to inspect the structural analysis and clustering of complex knowledge granules in an IoT big-data environment. In this work, we propose a knowledge granule analytic and clustering (KGAC) framework that explores and assembles knowledge granules from IoT big-data arrays for a business intelligence (BI) application. Our work implements neuro-fuzzy analytic architecture rather than a standard fuzzified approach to discover the complex knowledge granules. Furthermore, we implement an enhanced knowledge granule clustering (e-KGC) mechanism that is more elastic than previous techniques when assembling the tactical and explicit complex knowledge granules from IoT big-data arrays. The analysis and discussion presented here show that the proposed framework and mechanism can be implemented to extract knowledge granules from an IoT big-data array in such a way as to present knowledge of strategic value to executives and enable knowledge users to perform further BI actions. PMID:26600156

  1. Big Data Analytics with Datalog Queries on Spark.

    PubMed

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2016-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics.

  2. Big Data Analytics with Datalog Queries on Spark

    PubMed Central

    Shkapsky, Alexander; Yang, Mohan; Interlandi, Matteo; Chiu, Hsuan; Condie, Tyson; Zaniolo, Carlo

    2017-01-01

    There is great interest in exploiting the opportunity provided by cloud computing platforms for large-scale analytics. Among these platforms, Apache Spark is growing in popularity for machine learning and graph analytics. Developing efficient complex analytics in Spark requires deep understanding of both the algorithm at hand and the Spark API or subsystem APIs (e.g., Spark SQL, GraphX). Our BigDatalog system addresses the problem by providing concise declarative specification of complex queries amenable to efficient evaluation. Towards this goal, we propose compilation and optimization techniques that tackle the important problem of efficiently supporting recursion in Spark. We perform an experimental comparison with other state-of-the-art large-scale Datalog systems and verify the efficacy of our techniques and effectiveness of Spark in supporting Datalog-based analytics. PMID:28626296

  3. Scoping study to expedite development of a field deployable and portable instrument for UF6 enrichment assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, George; Valentine, John D.; Russo, Richard E.

    The primary objective of the present study is to identity the most promising, viable technologies that are likely to culminate in an expedited development of the next-generation, field-deployable instrument for providing rapid, accurate, and precise enrichment assay of uranium hexafluoride (UF6). UF6 is typically involved, and is arguably the most important uranium compound, in uranium enrichment processes. As the first line of defense against proliferation, accurate analytical techniques to determine the uranium isotopic distribution in UF6 are critical for materials verification, accounting, and safeguards at enrichment plants. As nuclear fuel cycle technology becomes more prevalent around the world, international nuclearmore » safeguards and interest in UF6 enrichment assay has been growing. At present, laboratory-based mass spectrometry (MS), which offers the highest attainable analytical accuracy and precision, is the technique of choice for the analysis of stable and long-lived isotopes. Currently, the International Atomic Energy Agency (IAEA) monitors the production of enriched UF6 at declared facilities by collecting a small amount (between 1 to 10 g) of gaseous UF6 into a sample bottle, which is then shipped under chain of custody to a central laboratory (IAEA’s Nuclear Materials Analysis Laboratory) for high-precision isotopic assay by MS. The logistics are cumbersome and new shipping regulations are making it more difficult to transport UF6. Furthermore, the analysis is costly, and results are not available for some time after sample collection. Hence, the IAEA is challenged to develop effective safeguards approaches at enrichment plants. In-field isotopic analysis of UF6 has the potential to substantially reduce the time, logistics and expense of sample handling. However, current laboratory-based MS techniques require too much infrastructure and operator expertise for field deployment and operation. As outlined in the IAEA Department of Safeguards Long-Term R&D Plan, 2012–2023, one of the IAEA long-term R&D needs is to “develop tools and techniques to enable timely, potentially real-time, detection of HEU (Highly Enriched Uranium) production in LEU (Lowly Enriched Uranium) enrichment facilities” (Milestone 5.2). Because it is common that the next generation of analytical instruments is driven by technologies that are either currently available or just now emerging, one reasonable and practical approach to project the next generation of chemical instrumentation is to track the recent trends and to extrapolate them. This study adopted a similar approach, and an extensive literature review on existing and emerging technologies for UF6 enrichment assay was performed. The competitive advantages and current limitations of different analytical techniques for in-field UF6 enrichment assay were then compared, and the main gaps between needs and capabilities for their field use were examined. Subsequently, based on these results, technologies for the next-generation field-deployable instrument for UF6 enrichment assay were recommended. The study was organized in a way that a suite of assessment metric was first identified. Criteria used in this evaluation are presented in Section 1 of this report, and the most important ones are described briefly in the next few paragraphs. Because one driving force for in-field UF6 enrichment assay is related to the demanding transportation regulation for gaseous UF6, Section 2 contains a review of solid sorbents that convert and immobilized gaseous UF6 to a solid state, which is regarded as more transportation friendly and is less regulated. Furthermore, candidate solid sorbents, which show promise in mating with existing and emerging assay technologies, also factor into technology recommendations. Extensive literature reviews on existing and emerging technologies for UF6 enrichment assay, covering their scientific principles, instrument options, and current limitations are detailed in Sections 3 and 4, respectively. In Section 5, the technological gaps as well as start-of-the-art and commercial off-the-shelf components that can be adopted to expedite the development of a fieldable or portable UF6 enrichment-assay instrument are identified and discussed. Finally, based on the results of the review, requirements and recommendations for developing the next-generation field-deployable instrument for UF6 enrichment assay are presented in Section 6.« less

  4. Data Filtering in Instrumental Analyses with Applications to Optical Spectroscopy and Chemical Imaging

    ERIC Educational Resources Information Center

    Vogt, Frank

    2011-01-01

    Most measurement techniques have some limitations imposed by a sensor's signal-to-noise ratio (SNR). Thus, in analytical chemistry, methods for enhancing the SNR are of crucial importance and can be ensured experimentally or established via pre-treatment of digitized data. In many analytical curricula, instrumental techniques are given preference…

  5. Is Quality/Effectiveness An Empirically Demonstrable School Attribute? Statistical Aids for Determining Appropriate Levels of Analysis.

    ERIC Educational Resources Information Center

    Griffith, James

    2002-01-01

    Describes and demonstrates analytical techniques used in organizational psychology and contemporary multilevel analysis. Using these analytic techniques, examines the relationship between educational outcomes and the school environment. Finds that at least some indicators might be represented as school-level phenomena. Results imply that the…

  6. Revisiting the positive DC corona discharge theory: Beyond Peek's and Townsend's law

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Praud, Olivier; Plouraboué, Franck

    2018-06-01

    The classical positive Corona Discharge theory in a cylindrical axisymmetric configuration is revisited in order to find analytically the influence of gas properties and thermodynamic conditions on the corona current. The matched asymptotic expansion of Durbin and Turyn [J. Phys. D: Appl. Phys. 20, 1490-1495 (1987)] of a simplified but self-consistent problem is performed and explicit analytical solutions are derived. The mathematical derivation enables us to express a new positive DC corona current-voltage characteristic, choosing either a dimensionless or dimensional formulation. In dimensional variables, the current voltage law and the corona inception voltage explicitly depend on the electrode size and physical gas properties such as ionization and photoionization parameters. The analytical predictions are successfully confronted with experiments and Peek's and Townsend's laws. An analytical expression of the corona inception voltage φ o n is proposed, which depends on the known values of physical parameters without adjustable parameters. As a proof of consistency, the classical Townsend current-voltage law I = C φ ( φ - φ o n ) is retrieved by linearizing the non-dimensional analytical solution. A brief parametric study showcases the interest in this analytical current model, especially for exploring small corona wires or considering various thermodynamic conditions.

  7. Single Particle-Inductively Coupled Plasma Mass Spectroscopy Analysis of Metallic Nanoparticles in Environmental Samples with Large Dissolved Analyte Fractions.

    PubMed

    Schwertfeger, D M; Velicogna, Jessica R; Jesmer, Alexander H; Scroggins, Richard P; Princz, Juliska I

    2016-10-18

    There is an increasing interest to use single particle-inductively coupled plasma mass spectroscopy (SP-ICPMS) to help quantify exposure to engineered nanoparticles, and their transformation products, released into the environment. Hindering the use of this analytical technique for environmental samples is the presence of high levels of dissolved analyte which impedes resolution of the particle signal from the dissolved. While sample dilution is often necessary to achieve the low analyte concentrations necessary for SP-ICPMS analysis, and to reduce the occurrence of matrix effects on the analyte signal, it is used here to also reduce the dissolved signal relative to the particulate, while maintaining a matrix chemistry that promotes particle stability. We propose a simple, systematic dilution series approach where by the first dilution is used to quantify the dissolved analyte, the second is used to optimize the particle signal, and the third is used as an analytical quality control. Using simple suspensions of well characterized Au and Ag nanoparticles spiked with the dissolved analyte form, as well as suspensions of complex environmental media (i.e., extracts from soils previously contaminated with engineered silver nanoparticles), we show how this dilution series technique improves resolution of the particle signal which in turn improves the accuracy of particle counts, quantification of particulate mass and determination of particle size. The technique proposed here is meant to offer a systematic and reproducible approach to the SP-ICPMS analysis of environmental samples and improve the quality and consistency of data generated from this relatively new analytical tool.

  8. Quantitative and qualitative sensing techniques for biogenic volatile organic compounds and their oxidation products.

    PubMed

    Kim, Saewung; Guenther, Alex; Apel, Eric

    2013-07-01

    The physiological production mechanisms of some of the organics in plants, commonly known as biogenic volatile organic compounds (BVOCs), have been known for more than a century. Some BVOCs are emitted to the atmosphere and play a significant role in tropospheric photochemistry especially in ozone and secondary organic aerosol (SOA) productions as a result of interplays between BVOCs and atmospheric radicals such as hydroxyl radical (OH), ozone (O3) and NOX (NO + NO2). These findings have been drawn from comprehensive analysis of numerous field and laboratory studies that have characterized the ambient distribution of BVOCs and their oxidation products, and reaction kinetics between BVOCs and atmospheric oxidants. These investigations are limited by the capacity for identifying and quantifying these compounds. This review highlights the major analytical techniques that have been used to observe BVOCs and their oxidation products such as gas chromatography, mass spectrometry with hard and soft ionization methods, and optical techniques from laser induced fluorescence (LIF) to remote sensing. In addition, we discuss how new analytical techniques can advance our understanding of BVOC photochemical processes. The principles, advantages, and drawbacks of the analytical techniques are discussed along with specific examples of how the techniques were applied in field and laboratory measurements. Since a number of thorough review papers for each specific analytical technique are available, readers are referred to these publications rather than providing thorough descriptions of each technique. Therefore, the aim of this review is for readers to grasp the advantages and disadvantages of various sensing techniques for BVOCs and their oxidation products and to provide guidance for choosing the optimal technique for a specific research task.

  9. Analytical techniques for characterization of cyclodextrin complexes in the solid state: A review.

    PubMed

    Mura, Paola

    2015-09-10

    Cyclodextrins are cyclic oligosaccharides able to form inclusion complexes with a variety of hydrophobic guest molecules, positively modifying their physicochemical properties. A thorough analytical characterization of cyclodextrin complexes is of fundamental importance to provide an adequate support in selection of the most suitable cyclodextrin for each guest molecule, and also in view of possible future patenting and marketing of drug-cyclodextrin formulations. The demonstration of the actual formation of a drug-cyclodextrin inclusion complex in solution does not guarantee its existence also in the solid state. Moreover, the technique used to prepare the solid complex can strongly influence the properties of the final product. Therefore, an appropriate characterization of the drug-cyclodextrin solid systems obtained has also a key role in driving in the choice of the most effective preparation method, able to maximize host-guest interactions. The analytical characterization of drug-cyclodextrin solid systems and the assessment of the actual inclusion complex formation is not a simple task and involves the combined use of several analytical techniques, whose results have to be evaluated together. The objective of the present review is to present a general prospect of the principal analytical techniques which can be employed for a suitable characterization of drug-cyclodextrin systems in the solid state, evidencing their respective potential advantages and limits. The applications of each examined technique are described and discussed by pertinent examples from literature. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Automated Desalting Apparatus

    NASA Technical Reports Server (NTRS)

    Spencer, Maegan K.; Liu, De-Ling; Kanik, Isik; Beegle, Luther

    2010-01-01

    Because salt and metals can mask the signature of a variety of organic molecules (like amino acids) in any given sample, an automated system to purify complex field samples has been created for the analytical techniques of electrospray ionization/ mass spectroscopy (ESI/MS), capillary electrophoresis (CE), and biological assays where unique identification requires at least some processing of complex samples. This development allows for automated sample preparation in the laboratory and analysis of complex samples in the field with multiple types of analytical instruments. Rather than using tedious, exacting protocols for desalting samples by hand, this innovation, called the Automated Sample Processing System (ASPS), takes analytes that have been extracted through high-temperature solvent extraction and introduces them into the desalting column. After 20 minutes, the eluent is produced. This clear liquid can then be directly analyzed by the techniques listed above. The current apparatus including the computer and power supplies is sturdy, has an approximate mass of 10 kg, and a volume of about 20 20 20 cm, and is undergoing further miniaturization. This system currently targets amino acids. For these molecules, a slurry of 1 g cation exchange resin in deionized water is packed into a column of the apparatus. Initial generation of the resin is done by flowing sequentially 2.3 bed volumes of 2N NaOH and 2N HCl (1 mL each) to rinse the resin, followed by .5 mL of deionized water. This makes the pH of the resin near neutral, and eliminates cross sample contamination. Afterward, 2.3 mL of extracted sample is then loaded into the column onto the top of the resin bed. Because the column is packed tightly, the sample can be applied without disturbing the resin bed. This is a vital step needed to ensure that the analytes adhere to the resin. After the sample is drained, oxalic acid (1 mL, pH 1.6-1.8, adjusted with NH4OH) is pumped into the column. Oxalic acid works as a chelating reagent to bring out metal ions, such as calcium and iron, which would otherwise interfere with amino acid analysis. After oxalic acid, 1 mL 0.01 N HCl and 1 mL deionized water is used to sequentially rinse the resin. Finally, the amino acids attached to the resin, and the analytes are eluted using 2.5 M NH4OH (1 mL), and the NH4OH eluent is collected in a vial for analysis.

  11. Metabolomics for laboratory diagnostics.

    PubMed

    Bujak, Renata; Struck-Lewicka, Wiktoria; Markuszewski, Michał J; Kaliszan, Roman

    2015-09-10

    Metabolomics is an emerging approach in a systems biology field. Due to continuous development in advanced analytical techniques and in bioinformatics, metabolomics has been extensively applied as a novel, holistic diagnostic tool in clinical and biomedical studies. Metabolome's measurement, as a chemical reflection of a current phenotype of a particular biological system, is nowadays frequently implemented to understand pathophysiological processes involved in disease progression as well as to search for new diagnostic or prognostic biomarkers of various organism's disorders. In this review, we discussed the research strategies and analytical platforms commonly applied in the metabolomics studies. The applications of the metabolomics in laboratory diagnostics in the last 5 years were also reviewed according to the type of biological sample used in the metabolome's analysis. We also discussed some limitations and further improvements which should be considered taking in mind potential applications of metabolomic research and practice. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The fate of the dream in contemporary psychoanalysis.

    PubMed

    Loden, Susan

    2003-01-01

    Freud's metapsychology of dream formation has implicitly been discarded, as indicated in a brief review of trends in psychoanalytic thinking about dreams, with a focus on the relationship of the dream process to ego capacities. The current bias toward exclusive emphasis on the exploration of the analytic relationship and the transference has evolved at the expense of classical, in-depth dream interpretation, and, by extension, at the expense of strengthening the patient's capacity for self-inquiry. This trend is shown to be especially evident in the treatment of borderline patients, who today are believed by many analysts to misuse the dream in the analytic situation. An extended clinical example of a borderline patient with whom an unmodified Freudian associative technique of dream interpretation is used with good outcome illustrates the author's contrary conviction. In clinical practice, we should neglect neither the uniqueness of the dream as a central intrapsychic event nor the Freudian art of total dream analysis.

  13. Need total sulfur content? Use chemiluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubala, S.W.; Campbell, D.N.; DiSanzo, F.P.

    Regulations issued by the United States Environmental Protection Agency require petroleum refineries to reduce or control the amount of total sulfur present in their refined products. These legislative requirements have led many refineries to search for online instrumentation that can produce accurate and repeatable total sulfur measurements within allowed levels. Several analytical methods currently exist to measure total sulfur content. They include X-ray fluorescence (XRF), microcoulometry, lead acetate tape, and pyrofluorescence techniques. Sulfur-specific chemiluminescence detection (SSCD) has recently received much attention due to its linearity, selectivity, sensitivity, and equimolar response. However, its use has been largely confined to the areamore » of gas chromatography. This article focuses on the special design considerations and analytical utility of an SSCD system developed to determine total sulfur content in gasoline. The system exhibits excellent linearity and selectivity, the ability to detect low minimum levels, and an equimolar response to various sulfur compounds. 2 figs., 2 tabs.« less

  14. Evaluation of capillary electrophoresis for in-flight ionic contaminant monitoring of SSF potable water

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Schultz, John R.; Sauer, Richard L.

    1992-01-01

    Until 1989, ion chromatography (IC) was the baseline technology selected for the Specific Ion Analyzer, an in-flight inorganic water quality monitor being designed for Space Station Freedom. Recent developments in capillary electrophoresis (CE) may offer significant savings of consumables, power consumption, and weight/volume allocation, relative to IC technology. A thorough evaluation of CE's analytical capability, however, is necessary before one of the two techniques is chosen. Unfortunately, analytical methods currently available for inorganic CE are unproven for NASA's target list of anions and cations. Thus, CE electrolyte chemistry and methods to measure the target contaminants must be first identified and optimized. This paper reports the status of a study to evaluate CE's capability with regard to inorganic and carboxylate anions, alkali and alkaline earth cations, and transition metal cations. Preliminary results indicate that CE has an impressive selectivity and trace sensitivity, although considerable methods development remains to be performed.

  15. ICP-MS: Analytical Method for Identification and Detection of Elemental Impurities.

    PubMed

    Mittal, Mohini; Kumar, Kapil; Anghore, Durgadas; Rawal, Ravindra K

    2017-01-01

    Aim of this article is to review and discuss the currently used quantitative analytical method ICP-MS, which is used for quality control of pharmaceutical products. ICP-MS technique has several applications such as determination of single elements, multi element analysis in synthetic drugs, heavy metals in environmental water, trace element content of selected fertilizers and dairy manures. ICP-MS is also used for determination of toxic and essential elements in different varieties of food samples and metal pollutant present in the environment. The pharmaceuticals may generate impurities at various stages of development, transportation and storage which make them risky to be administered. Thus, it is essential that these impurities must be detected and quantified. ICP-MS plays an important function in the recognition and revealing of elemental impurities. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Stabilization of glucose-oxidase in the graphene paste for screen-printed glucose biosensor

    NASA Astrophysics Data System (ADS)

    Pepłowski, Andrzej; Janczak, Daniel; Jakubowska, Małgorzata

    2015-09-01

    Various methods and materials for enzyme stabilization within screen-printed graphene sensor were analyzed. Main goal was to develop technology allowing immediate printing of the biosensors in single printing process. Factors being considered were: toxicity of the materials used, ability of the material to be screen-printed (squeezed through the printing mesh) and temperatures required in the fabrication process. Performance of the examined sensors was measured using chemical amperometry method, then appropriate analysis of the measurements was conducted. The analysis results were then compared with the medical requirements. Parameters calculated were: correlation coefficient between concentration of the analyte and the measured electrical current (0.986) and variation coefficient for the particular concentrations of the analyte used as the calibration points. Variation of the measured values was significant only in ranges close to 0, decreasing for the concentrations of clinical importance. These outcomes justify further development of the graphene-based biosensors fabricated through printing techniques.

  17. Photoacoustic spectroscopy for chemical detection

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Pellegrino, Paul M.

    2012-06-01

    The Global War on Terror has made rapid detection and identification of chemical and biological agents a priority for Military and Homeland Defense applications. Reliable real-time detection of these threats is complicated by our enemy's use of a diverse range of materials. Therefore, an adaptable platform is necessary. Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace detection of gaseous media. This method routinely exhibits detection limits at the parts-per-billion (ppb) or sub-ppb range. The versatility of PAS also allows for the investigation of solid and liquid analytes. Current research utilizes quantum cascade lasers (QCLs) in combination with an air-coupled solid-phase photoacoustic cell design for the detection of condensed phase material films deposited on a surface. Furthermore, variation of the QCL pulse repetition rate allows for identification and molecular discrimination of analytes based solely on photoacoustic spectra collected at different film depths.

  18. Advances in Molecular Rotational Spectroscopy for Applied Science

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  19. Conformal Bootstrap in Mellin Space

    NASA Astrophysics Data System (ADS)

    Gopakumar, Rajesh; Kaviraj, Apratim; Sen, Kallol; Sinha, Aninda

    2017-02-01

    We propose a new approach towards analytically solving for the dynamical content of conformal field theories (CFTs) using the bootstrap philosophy. This combines the original bootstrap idea of Polyakov with the modern technology of the Mellin representation of CFT amplitudes. We employ exchange Witten diagrams with built-in crossing symmetry as our basic building blocks rather than the conventional conformal blocks in a particular channel. Demanding consistency with the operator product expansion (OPE) implies an infinite set of constraints on operator dimensions and OPE coefficients. We illustrate the power of this method in the ɛ expansion of the Wilson-Fisher fixed point by reproducing anomalous dimensions and, strikingly, obtaining OPE coefficients to higher orders in ɛ than currently available using other analytic techniques (including Feynman diagram calculations). Our results enable us to get a somewhat better agreement between certain observables in the 3D Ising model and the precise numerical values that have been recently obtained.

  20. Improved analysis techniques for cylindrical and spherical double probes.

    PubMed

    Beal, Brian; Johnson, Lee; Brown, Daniel; Blakely, Joseph; Bromaghim, Daron

    2012-07-01

    A versatile double Langmuir probe technique has been developed by incorporating analytical fits to Laframboise's numerical results for ion current collection by biased electrodes of various sizes relative to the local electron Debye length. Application of these fits to the double probe circuit has produced a set of coupled equations that express the potential of each electrode relative to the plasma potential as well as the resulting probe current as a function of applied probe voltage. These equations can be readily solved via standard numerical techniques in order to determine electron temperature and plasma density from probe current and voltage measurements. Because this method self-consistently accounts for the effects of sheath expansion, it can be readily applied to plasmas with a wide range of densities and low ion temperature (T(i)/T(e) ≪ 1) without requiring probe dimensions to be asymptotically large or small with respect to the electron Debye length. The presented approach has been successfully applied to experimental measurements obtained in the plume of a low-power Hall thruster, which produced a quasineutral, flowing xenon plasma during operation at 200 W on xenon. The measured plasma densities and electron temperatures were in the range of 1 × 10(12)-1 × 10(17) m(-3) and 0.5-5.0 eV, respectively. The estimated measurement uncertainty is +6%∕-34% in density and +∕-30% in electron temperature.

  1. Discreet passive explosive detection through 2-sided wave guided fluorescence

    DOEpatents

    Harper, Ross James; la Grone, Marcus; Fisher, Mark

    2012-10-16

    The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.

  2. Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.

    PubMed

    Ahmadi, S M; Campoli, G; Amin Yavari, S; Sajadi, B; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2014-06-01

    Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Detection, characterization and quantification of inorganic engineered nanomaterials: A review of techniques and methodological approaches for the analysis of complex samples.

    PubMed

    Laborda, Francisco; Bolea, Eduardo; Cepriá, Gemma; Gómez, María T; Jiménez, María S; Pérez-Arantegui, Josefina; Castillo, Juan R

    2016-01-21

    The increasing demand of analytical information related to inorganic engineered nanomaterials requires the adaptation of existing techniques and methods, or the development of new ones. The challenge for the analytical sciences has been to consider the nanoparticles as a new sort of analytes, involving both chemical (composition, mass and number concentration) and physical information (e.g. size, shape, aggregation). Moreover, information about the species derived from the nanoparticles themselves and their transformations must also be supplied. Whereas techniques commonly used for nanoparticle characterization, such as light scattering techniques, show serious limitations when applied to complex samples, other well-established techniques, like electron microscopy and atomic spectrometry, can provide useful information in most cases. Furthermore, separation techniques, including flow field flow fractionation, capillary electrophoresis and hydrodynamic chromatography, are moving to the nano domain, mostly hyphenated to inductively coupled plasma mass spectrometry as element specific detector. Emerging techniques based on the detection of single nanoparticles by using ICP-MS, but also coulometry, are in their way to gain a position. Chemical sensors selective to nanoparticles are in their early stages, but they are very promising considering their portability and simplicity. Although the field is in continuous evolution, at this moment it is moving from proofs-of-concept in simple matrices to methods dealing with matrices of higher complexity and relevant analyte concentrations. To achieve this goal, sample preparation methods are essential to manage such complex situations. Apart from size fractionation methods, matrix digestion, extraction and concentration methods capable of preserving the nature of the nanoparticles are being developed. This review presents and discusses the state-of-the-art analytical techniques and sample preparation methods suitable for dealing with complex samples. Single- and multi-method approaches applied to solve the nanometrological challenges posed by a variety of stakeholders are also presented. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Accuracy of trace element determinations in alternate fuels

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. A.

    1980-01-01

    NASA-Lewis Research Center's work on accurate measurement of trace level of metals in various fuels is presented. The differences between laboratories and between analytical techniques especially for concentrations below 10 ppm, are discussed, detailing the Atomic Absorption Spectrometry (AAS) and DC Arc Emission Spectrometry (dc arc) techniques used by NASA-Lewis. Also presented is the design of an Interlaboratory Study which is considering the following factors: laboratory, analytical technique, fuel type, concentration and ashing additive.

  5. High temperature ion channels and pores

    NASA Technical Reports Server (NTRS)

    Cheley, Stephen (Inventor); Gu, Li Qun (Inventor); Bayley, Hagan (Inventor); Kang, Xiaofeng (Inventor)

    2011-01-01

    The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.

  6. MICROORGANISMS IN BIOSOLIDS: ANALYTICAL METHODS DEVELOPMENT, STANDARDIZATION, AND VALIDATION

    EPA Science Inventory

    The objective of this presentation is to discuss pathogens of concern in biosolids, the analytical techniques used to evaluate microorganisms in biosolids, and to discuss standardization and validation of analytical protocols for microbes within such a complex matrix. Implicatio...

  7. Product identification techniques used as training aids for analytical chemists

    NASA Technical Reports Server (NTRS)

    Grillo, J. P.

    1968-01-01

    Laboratory staff assistants are trained to use data and observations of routine product analyses performed by experienced analytical chemists when analyzing compounds for potential toxic hazards. Commercial products are used as examples in teaching the analytical approach to unknowns.

  8. Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakkila, E.A.

    1978-10-01

    Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references.

  9. Independent Research and Independent Exploratory Development Annual Report Fiscal Year 1975

    DTIC Science & Technology

    1975-09-01

    and Coding Study.(Z?80) ................................... ......... .................... 40 Optical Cover CMMUnicallor’s Using Laser Transceiverst...Using Auger Spectroscopy and PUBLICATIONS Additional Advanced Analytical Techniques," Wagner, N. K., "Auger Electron Spectroscopy NELC Technical Note 2904...K.. "Analysis of Microelectronic Materials Using Auger Spectroscopy and Additional Advanced Analytical Techniques," Contact: Proceedings of the

  10. Quantification of crew workload imposed by communications-related tasks in commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    Acton, W. H.; Crabtree, M. S.; Simons, J. C.; Gomer, F. E.; Eckel, J. S.

    1983-01-01

    Information theoretic analysis and subjective paired-comparison and task ranking techniques were employed in order to scale the workload of 20 communications-related tasks frequently performed by the captain and first officer of transport category aircraft. Tasks were drawn from taped conversations between aircraft and air traffic controllers (ATC). Twenty crewmembers performed subjective message comparisons and task rankings on the basis of workload. Information theoretic results indicated a broad range of task difficulty levels, and substantial differences between captain and first officer workload levels. Preliminary subjective data tended to corroborate these results. A hybrid scale reflecting the results of both the analytical and the subjective techniques is currently being developed. The findings will be used to select representative sets of communications for use in high fidelity simulation.

  11. Search for life on Mars: Evaluation of techniques

    NASA Technical Reports Server (NTRS)

    Schwartz, D. E.; Mancinelli, R. L.; White, M. R.

    1995-01-01

    An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, a-proton backscatter, g-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples.

  12. Search for life on Mars: evaluation of techniques.

    PubMed

    Schwartz, D E; Mancinelli, R L; White, M R

    1995-03-01

    An important question for exobiology is, did life evolve on Mars? To answer this question, experiments must be conducted on the martian surface. Given current mission constraints on mass, power, and volume, these experiments can only be performed using proposed analytical techniques such as: electron microscopy, X-ray fluorescence, X-ray diffraction, alpha-proton backscatter, gamma-ray spectrometry, differential thermal analysis, differential scanning calorimetry, pyrolysis gas chromatography, mass spectrometry, and specific element detectors. Using prepared test samples consisting of 1% organic matter (bovine serum albumin) in palagonite and a mixture of palagonite, clays, iron oxides, and evaporites, it was determined that a combination of X-ray diffraction and differential thermal analysis coupled with gas chromatography provides the best insight into the chemistry, mineralogy, and geological history of the samples.

  13. Review on failure prediction techniques of composite single lap joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ab Ghani, A.F., E-mail: ahmadfuad@utem.edu.my; Rivai, Ahmad, E-mail: ahmadrivai@utem.edu.my

    2016-03-29

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint.more » The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.« less

  14. Current trends in sample preparation for cosmetic analysis.

    PubMed

    Zhong, Zhixiong; Li, Gongke

    2017-01-01

    The widespread applications of cosmetics in modern life make their analysis particularly important from a safety point of view. There is a wide variety of restricted ingredients and prohibited substances that primarily influence the safety of cosmetics. Sample preparation for cosmetic analysis is a crucial step as the complex matrices may seriously interfere with the determination of target analytes. In this review, some new developments (2010-2016) in sample preparation techniques for cosmetic analysis, including liquid-phase microextraction, solid-phase microextraction, matrix solid-phase dispersion, pressurized liquid extraction, cloud point extraction, ultrasound-assisted extraction, and microwave digestion, are presented. Furthermore, the research and progress in sample preparation techniques and their applications in the separation and purification of allowed ingredients and prohibited substances are reviewed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Multidisciplinary design optimization using multiobjective formulation techniques

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Pagaldipti, Narayanan S.

    1995-01-01

    This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.

  16. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review

    PubMed Central

    Islas, Gabriela; Hernandez, Prisciliano

    2017-01-01

    To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis. PMID:29181027

  17. ANALYTICAL MODELING OF ELECTRON BACK-BOMBARDMENT INDUCED CURRENT INCREASE IN UN-GATED THERMIONIC CATHODE RF GUNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, J. P.; Sun, Y.; Harris, J. R.

    In this paper we derive analytical expressions for the output current of an un-gated thermionic cathode RF gun in the presence of back-bombardment heating. We provide a brief overview of back-bombardment theory and discuss comparisons between the analytical back-bombardment predictions and simulation models. We then derive an expression for the output current as a function of the RF repetition rate and discuss relationships between back-bombardment, fieldenhancement, and output current. We discuss in detail the relevant approximations and then provide predictions about how the output current should vary as a function of repetition rate for some given system configurations.

  18. Dynamic Response of a Magnetized Plasma to AN External Source: Application to Space and Solid State Plasmas

    NASA Astrophysics Data System (ADS)

    Zhou, Huai-Bei

    This dissertation examines the dynamic response of a magnetoplasma to an external time-dependent current source. To achieve this goal a new method which combines analytic and numerical techniques to study the dynamic response of a 3-D magnetoplasma to a time-dependent current source imposed across the magnetic field was developed. The set of the cold electron and/or ion plasma equations and Maxwell's equations are first solved analytically in (k, omega)^ace; inverse Laplace and 3 -D complex Fast Fourier Transform (FFT) techniques are subsequently used to numerically transform the radiation fields and plasma currents from the (k, omega) ^ace to the (r, t) space. The dynamic responses of the electron plasma and of the compensated two-component plasma to external current sources are studied separately. The results show that the electron plasma responds to a time -varying current source imposed across the magnetic field by exciting whistler/helicon waves and forming of an expanding local current loop, induced by field aligned plasma currents. The current loop consists of two anti-parallel field-aligned current channels concentrated at the ends of the imposed current and a cross-field current region connecting these channels. The latter is driven by an electron Hall drift. A compensated two-component plasma responds to the same current source as following: (a) For slow time scales tau > Omega_sp{i}{-1} , it generates Alfven waves and forms a non-local current loop in which the ion polarization currents dominate the cross-field current; (b) For fast time scales tau < Omega_sp{i}{-1} , the dynamic response of the compensated two-component plasma is the same as that of the electron plasma. The characteristics of the current closure region are determined by the background plasma density, the magnetic field and the time scale of the current source. This study has applications to a diverse range of space and solid state plasma problems. These problems include current closure in emf inducing tethered satellite systems (TSS), generation of ELF/VLF waves by ionospheric heating, current closure and quasineutrality in thin magnetopause transitions, and short electromagnetic pulse generation in solid state plasmas. The cross-field current in TSS builds up on a time scale corresponding to the whistler waves and results in local current closure. Amplitude modulated HF ionospheric heating generates ELF/VLF waves by forming a horizontal magnetic dipole. The dipole is formed by the current closure in the modified region. For thin transition the time-dependent cross-field polarization field at the magnetopause could be neutralized by the formation of field aligned current loops that close by a cross-field electron Hall current. A moving current source in a solid state plasma results in microwave emission if the speed of the source exceeds the local phase velocity of the helicon or Alfven waves. Detailed analysis of the above problems is presented in the thesis.

  19. 21st century toolkit for optimizing population health through precision nutrition.

    PubMed

    O'Sullivan, Aifric; Henrick, Bethany; Dixon, Bonnie; Barile, Daniela; Zivkovic, Angela; Smilowitz, Jennifer; Lemay, Danielle; Martin, William; German, J Bruce; Schaefer, Sara Elizabeth

    2017-07-05

    Scientific, technological, and economic progress over the last 100 years all but eradicated problems of widespread food shortage and nutrient deficiency in developed nations. But now society is faced with a new set of nutrition problems related to energy imbalance and metabolic disease, which require new kinds of solutions. Recent developments in the area of new analytical tools enable us to systematically study large quantities of detailed and multidimensional metabolic and health data, providing the opportunity to address current nutrition problems through an approach called Precision Nutrition. This approach integrates different kinds of "big data" to expand our understanding of the complexity and diversity of human metabolism in response to diet. With these tools, we can more fully elucidate each individual's unique phenotype, or the current state of health, as determined by the interactions among biology, environment, and behavior. The tools of precision nutrition include genomics, metabolomics, microbiomics, phenotyping, high-throughput analytical chemistry techniques, longitudinal tracking with body sensors, informatics, data science, and sophisticated educational and behavioral interventions. These tools are enabling the development of more personalized and predictive dietary guidance and interventions that have the potential to transform how the public makes food choices and greatly improve population health.

  20. Electromembrane extraction--three-phase electrophoresis for future preparative applications.

    PubMed

    Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2014-09-01

    The purpose of this article is to discuss the principle and the future potential for electromembrane extraction (EME). EME was presented in 2006 as a totally new sample preparation technique for ionized target analytes, based on electrokinetic migration across a supported liquid membrane under the influence of an external electrical field. The principle of EME is presented, and typical performance data for EME are discussed. Most work with EME up to date has been performed with low-molecular weight pharmaceutical substances as model analytes, but the principles of EME should be developed in other directions in the future to fully explore the potential. Recent research in new directions is critically reviewed, with focus on extraction of different types of chemical and biochemical substances, new separation possibilities, new approaches, and challenges related to mass transfer and background current. The intention of this critical review is to give a flavor of EME and to stimulate into more research in the area of EME. Unlike other review articles, the current one is less comprehensive, but put more emphasis on new directions for EME. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Exact analytical solution of a classical Josephson tunnel junction problem

    NASA Astrophysics Data System (ADS)

    Kuplevakhsky, S. V.; Glukhov, A. M.

    2010-10-01

    We give an exact and complete analytical solution of the classical problem of a Josephson tunnel junction of arbitrary length W ɛ(0,∞) in the presence of external magnetic fields and transport currents. Contrary to a wide-spread belief, the exact analytical solution unambiguously proves that there is no qualitative difference between so-called "small" (W≪1) and "large" junctions (W≫1). Another unexpected physical implication of the exact analytical solution is the existence (in the current-carrying state) of unquantized Josephson vortices carrying fractional flux and located near one of the edges of the junction. We also refine the mathematical definition of critical transport current.

  2. A general, cryogenically-based analytical technique for the determination of trace quantities of volatile organic compounds in the atmosphere

    NASA Technical Reports Server (NTRS)

    Coleman, R. A.; Cofer, W. R., III; Edahl, R. A., Jr.

    1985-01-01

    An analytical technique for the determination of trace (sub-ppbv) quantities of volatile organic compounds in air was developed. A liquid nitrogen-cooled trap operated at reduced pressures in series with a Dupont Nafion-based drying tube and a gas chromatograph was utilized. The technique is capable of analyzing a variety of organic compounds, from simple alkanes to alcohols, while offering a high level of precision, peak sharpness, and sensitivity.

  3. Using Rollback Avoidance to Mitigate Failures in Next-Generation Extreme-Scale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Scott N.

    2016-05-01

    High-performance computing (HPC) systems enable scientists to numerically model complex phenomena in many important physical systems. The next major milestone in the development of HPC systems is the construction of the rst supercomputer capable executing more than an exa op, 10 18 oating point operations per second. On systems of this scale, failures will occur much more frequently than on current systems. As a result, resilience is a key obstacle to building next-generation extremescale systems. Coordinated checkpointing is currently the most widely-used mechanism for handling failures on HPC systems. Although coordinated checkpointing remains e ective on current systems, increasing themore » scale of today's systems to build next-generation systems will increase the cost of fault tolerance as more and more time is taken away from the application to protect against or recover from failure. Rollback avoidance techniques seek to mitigate the cost of checkpoint/restart by allowing an application to continue its execution rather than rolling back to an earlier checkpoint when failures occur. These techniqes include failure prediction and preventive migration, replicated computation, fault-tolerant algorithms, and softwarebased memory fault correction. In this thesis, we examine how rollback avoidance techniques can be used to address failures on extreme-scale systems. Using a combination of analytic modeling and simulation, we evaluate the potential impact of rollback avoidance on these systems. We then present a novel rollback avoidance technique that exploits similarities in application memory. Finally, we examine the feasibility of using this technique to protect against memory faults in kernel memory.« less

  4. Airborne chemistry: acoustic levitation in chemical analysis.

    PubMed

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals.

  5. Macroecology of biodiversity: disentangling local and regional effects.

    PubMed

    Pärtel, Meelis; Bennett, Jonathan A; Zobel, Martin

    2016-07-01

    Contents 404 I. 404 II. 404 III. 405 IV. 406 V. 407 VI. 408 409 References 409 SUMMARY: Macroecology of biodiversity disentangles local and regional drivers of biodiversity by exploring large-scale biodiversity relationships with environmental or biotic gradients, generalizing local biodiversity relationships across regions, or comparing biodiversity patterns among species groups. A macroecological perspective is also important at local scales: a full understanding of local biodiversity drivers, including human impact, demands that regional processes be taken into account. This requires knowledge of which species could inhabit a site (the species pool), including those that are currently absent (dark diversity). Macroecology of biodiversity is currently advancing quickly owing to an unprecedented accumulation of biodiversity data, new sampling techniques and analytical methods, all of which better equip us to face current and future challenges in ecology and biodiversity conservation. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Research trend in thermally stimulated current method for development of materials and devices in Japan

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Taguchi, Dai

    2018-03-01

    Thermally stimulated current (TSC) measurement is widely used in a variety of research fields, i.e., physics, electronics, electrical engineering, chemistry, ceramics, and biology. TSC is short-circuit current that flows owing to the displacement of charges in samples during heating. TSC measurement is very simple, but TSC curves give very important information on charge behaviors. In the 1970s, TSC measurement contributed greatly to the development of electrical insulation engineering, semiconductor device technology, and so forth. Accordingly, the TSC experimental technique and its analytical method advanced. Over the past decades, many new molecules and advanced functional materials have been discovered and developed. Along with this, TSC measurement has attracted much attention in industries and academic laboratories as a way of characterizing newly discovered materials and devices. In this review, we report the latest research trend in the TSC method for the development of materials and devices in Japan.

  7. Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory.

    PubMed

    Olivieri, Alejandro C

    2005-08-01

    Sensitivity and selectivity are important figures of merit in multiway analysis, regularly employed for comparison of the analytical performance of methods and for experimental design and planning. They are especially interesting in the second-order advantage scenario, where the latter property allows for the analysis of samples with a complex background, permitting analyte determination even in the presence of unsuspected interferences. Since no general theory exists for estimating the multiway sensitivity, Monte Carlo numerical calculations have been developed for estimating variance inflation factors, as a convenient way of assessing both sensitivity and selectivity parameters for the popular parallel factor (PARAFAC) analysis and also for related multiway techniques. When the second-order advantage is achieved, the existing expressions derived from net analyte signal theory are only able to adequately cover cases where a single analyte is calibrated using second-order instrumental data. However, they fail for certain multianalyte cases, or when third-order data are employed, calling for an extension of net analyte theory. The results have strong implications in the planning of multiway analytical experiments.

  8. Culture-Sensitive Functional Analytic Psychotherapy

    ERIC Educational Resources Information Center

    Vandenberghe, L.

    2008-01-01

    Functional analytic psychotherapy (FAP) is defined as behavior-analytically conceptualized talk therapy. In contrast to the technique-oriented educational format of cognitive behavior therapy and the use of structural mediational models, FAP depends on the functional analysis of the moment-to-moment stream of interactions between client and…

  9. An Analytical Technique to Elucidate Field Impurities From Manufacturing Uncertainties of an Double Pancake Type HTS Insert for High Field LTS/HTS NMR Magnets

    PubMed Central

    Hahn, Seung-yong; Ahn, Min Cheol; Bobrov, Emanuel Saul; Bascuñán, Juan; Iwasa, Yukikazu

    2010-01-01

    This paper addresses adverse effects of dimensional uncertainties of an HTS insert assembled with double-pancake coils on spatial field homogeneity. Each DP coil was wound with Bi2223 tapes having dimensional tolerances larger than one order of magnitude of those accepted for LTS wires used in conventional NMR magnets. The paper presents: 1) dimensional variations measured in two LTS/HTS NMR magnets, 350 MHz (LH350) and 700 MHz (LH700), both built and operated at the Francis Bitter Magnet Laboratory; and 2) an analytical technique and its application to elucidate the field impurities measured with the two LTS/HTS magnets. Field impurities computed with the analytical model and those measured with the two LTS/HTS magnets agree quite well, demonstrating that this analytical technique is applicable to design a DP-assembled HTS insert with an improved field homogeneity for a high-field LTS/HTS NMR magnet. PMID:20407595

  10. Methods for geochemical analysis

    USGS Publications Warehouse

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  11. Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues

    PubMed Central

    Boyle, John J.; Kume, Maiko; Wyczalkowski, Matthew A.; Taber, Larry A.; Pless, Robert B.; Xia, Younan; Genin, Guy M.; Thomopoulos, Stavros

    2014-01-01

    When mechanical factors underlie growth, development, disease or healing, they often function through local regions of tissue where deformation is highly concentrated. Current optical techniques to estimate deformation can lack precision and accuracy in such regions due to challenges in distinguishing a region of concentrated deformation from an error in displacement tracking. Here, we present a simple and general technique for improving the accuracy and precision of strain estimation and an associated technique for distinguishing a concentrated deformation from a tracking error. The strain estimation technique improves accuracy relative to other state-of-the-art algorithms by directly estimating strain fields without first estimating displacements, resulting in a very simple method and low computational cost. The technique for identifying local elevation of strain enables for the first time the successful identification of the onset and consequences of local strain concentrating features such as cracks and tears in a highly strained tissue. We apply these new techniques to demonstrate a novel hypothesis in prenatal wound healing. More generally, the analytical methods we have developed provide a simple tool for quantifying the appearance and magnitude of localized deformation from a series of digital images across a broad range of disciplines. PMID:25165601

  12. Electrochemical concentration measurements for multianalyte mixtures in simulated electrorefiner salt

    NASA Astrophysics Data System (ADS)

    Rappleye, Devin Spencer

    The development of electroanalytical techniques in multianalyte molten salt mixtures, such as those found in used nuclear fuel electrorefiners, would enable in situ, real-time concentration measurements. Such measurements are beneficial for process monitoring, optimization and control, as well as for international safeguards and nuclear material accountancy. Electroanalytical work in molten salts has been limited to single-analyte mixtures with a few exceptions. This work builds upon the knowledge of molten salt electrochemistry by performing electrochemical measurements on molten eutectic LiCl-KCl salt mixture containing two analytes, developing techniques for quantitatively analyzing the measured signals even with an additional signal from another analyte, correlating signals to concentration and identifying improvements in experimental and analytical methodologies. (Abstract shortened by ProQuest.).

  13. Analytical methods for gelatin differentiation from bovine and porcine origins and food products.

    PubMed

    Nhari, Raja Mohd Hafidz Raja; Ismail, Amin; Che Man, Yaakob B

    2012-01-01

    Usage of gelatin in food products has been widely debated for several years, which is about the source of gelatin that has been used, religion, and health. As an impact, various analytical methods have been introduced and developed to differentiate gelatin whether it is made from porcine or bovine sources. The analytical methods comprise a diverse range of equipment and techniques including spectroscopy, chemical precipitation, chromatography, and immunochemical. Each technique can differentiate gelatins for certain extent with advantages and limitations. This review is focused on overview of the analytical methods available for differentiation of bovine and porcine gelatin and gelatin in food products so that new method development can be established. © 2011 Institute of Food Technologists®

  14. An analytical and experimental evaluation of the plano-cylindrical Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. L.; Cosby, R. M.

    1976-01-01

    Plastic Fresnel lenses for solar concentration are attractive because of potential for low-cost mass production. An analytical and experimental evaluation of line-focusing Fresnel lenses with application potential in the 200 to 370 C range is reported. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves-down lens. Experimentation was based primarily on a 56 cm-wide lens with f-number 1.0. A sun-tracking heliostat provided a non-moving solar source. Measured data indicated more spreading at the profile base than analytically predicted. The measured and computed transmittances were 85 and 87% respectively. Preliminary testing with a second lens (1.85 m) indicated that modified manufacturing techniques corrected the profile spreading problem.

  15. Adequacy of surface analytical tools for studying the tribology of ceramics

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1986-01-01

    Surface analytical tools are very beneficial in tribological studies of ceramics. Traditional methods of optical microscopy, XRD, XRF, and SEM should be combined with newer surface sensitive techniques especially AES and XPS. ISS and SIMS can also be useful in providing additional compositon details. Tunneling microscopy and electron energy loss spectroscopy are less known techniques that may also prove useful.

  16. Bioanalytical Applications of Fluorescence Line-Narrowing and Non-Line-Narrowing Spectroscopy Interfaced with Capillary Electrophoresis and High-Performance Liquid Chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Kenneth Paul

    Capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC) are widely used analytical separation techniques with many applications in chemical, biochemical, and biomedical sciences. Conventional analyte identification in these techniques is based on retention/migration times of standards; requiring a high degree of reproducibility, availability of reliable standards, and absence of coelution. From this, several new information-rich detection methods (also known as hyphenated techniques) are being explored that would be capable of providing unambiguous on-line identification of separating analytes in CE and HPLC. As further discussed, a number of such on-line detection methods have shown considerable success, including Raman, nuclear magnetic resonancemore » (NMR), mass spectrometry (MS), and fluorescence line-narrowing spectroscopy (FLNS). In this thesis, the feasibility and potential of combining the highly sensitive and selective laser-based detection method of FLNS with analytical separation techniques are discussed and presented. A summary of previously demonstrated FLNS detection interfaced with chromatography and electrophoresis is given, and recent results from on-line FLNS detection in CE (CE-FLNS), and the new combination of HPLC-FLNS, are shown.« less

  17. Chemometric applications to assess quality and critical parameters of virgin and extra-virgin olive oil. A review.

    PubMed

    Gómez-Caravaca, Ana M; Maggio, Rubén M; Cerretani, Lorenzo

    2016-03-24

    Today virgin and extra-virgin olive oil (VOO and EVOO) are food with a large number of analytical tests planned to ensure its quality and genuineness. Almost all official methods demand high use of reagents and manpower. Because of that, analytical development in this area is continuously evolving. Therefore, this review focuses on analytical methods for EVOO/VOO which use fast and smart approaches based on chemometric techniques in order to reduce time of analysis, reagent consumption, high cost equipment and manpower. Experimental approaches of chemometrics coupled with fast analytical techniques such as UV-Vis spectroscopy, fluorescence, vibrational spectroscopies (NIR, MIR and Raman fluorescence), NMR spectroscopy, and other more complex techniques like chromatography, calorimetry and electrochemical techniques applied to EVOO/VOO production and analysis have been discussed throughout this work. The advantages and drawbacks of this association have also been highlighted. Chemometrics has been evidenced as a powerful tool for the oil industry. In fact, it has been shown how chemometrics can be implemented all along the different steps of EVOO/VOO production: raw material input control, monitoring during process and quality control of final product. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. MO-C-BRCD-03: The Role of Informatics in Medical Physics and Vice Versa.

    PubMed

    Andriole, K

    2012-06-01

    Like Medical Physics, Imaging Informatics encompasses concepts touching every aspect of the imaging chain from image creation, acquisition, management and archival, to image processing, analysis, display and interpretation. The two disciplines are in fact quite complementary, with similar goals to improve the quality of care provided to patients using an evidence-based approach, to assure safety in the clinical and research environments, to facilitate efficiency in the workplace, and to accelerate knowledge discovery. Use-cases describing several areas of informatics activity will be given to illustrate current limitations that would benefit from medical physicist participation, and conversely areas in which informaticists may contribute to the solution. Topics to be discussed include radiation dose monitoring, process management and quality control, display technologies, business analytics techniques, and quantitative imaging. Quantitative imaging is increasingly becoming an essential part of biomedicalresearch as well as being incorporated into clinical diagnostic activities. Referring clinicians are asking for more objective information to be gleaned from the imaging tests that they order so that they may make the best clinical management decisions for their patients. Medical Physicists may be called upon to identify existing issues as well as develop, validate and implement new approaches and technologies to help move the field further toward quantitative imaging methods for the future. Biomedical imaging informatics tools and techniques such as standards, integration, data mining, cloud computing and new systems architectures, ontologies and lexicons, data visualization and navigation tools, and business analytics applications can be used to overcome some of the existing limitations. 1. Describe what is meant by Medical Imaging Informatics and understand why the medical physicist should care. 2. Identify existing limitations in information technologies with respect to Medical Physics, and conversely see how Informatics may assist the medical physicist in filling some of the current gaps in their activities. 3. Understand general informatics concepts and areas of investigation including imaging and workflow standards, systems integration, computing architectures, ontologies, data mining and business analytics, data visualization and human-computer interface tools, and the importance of quantitative imaging for the future of Medical Physics and Imaging Informatics. 4. Become familiar with on-going efforts to address current challenges facing future research into and clinical implementation of quantitative imaging applications. © 2012 American Association of Physicists in Medicine.

  19. Integration of analytical measurements and wireless communications--current issues and future strategies.

    PubMed

    Diamond, Dermot; Lau, King Tong; Brady, Sarah; Cleary, John

    2008-05-15

    Rapid developments in wireless communications are opening up opportunities for new ways to perform many types of analytical measurements that up to now have been restricted in scope due to the need to have access to centralised facilities. This paper will address both the potential for new applications and the challenges that currently inhibit more widespread integration of wireless communications with autonomous sensors and analytical devices. Key issues are identified and strategies for closer integration of analytical information and wireless communications systems discussed.

  20. Characterization and modeling of 1.3 micron indium arsenide quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Dikshit, Amit A.

    2006-12-01

    Quantum-dot (QD) lasers have the potential to offer superior characteristics compared to currently used QW lasers in optical fiber communications. In this work we have performed modeling and characterization of QD lasers with an aim to understand the physics in order to design better lasers in the future. A comprehensive analytical model is built which explains the observed temperature sensitivity of threshold current in QD lasers. The model shows that the ratio of excitons and free carriers is important to accurately model the carrier distribution and hence temperature performance of QD lasers. To understand the recombination mechanisms in QD lasers, carrier lifetime measurements were performed along with advanced numerical rate equation modeling. The carrier lifetime measurements were performed using the small-signal optical response and impedance technique. The rate equation models were then used to extract the recombination coefficients in QD lasers which represent the strength of various recombination mechanisms. Using these measurements and the rate equation models it is shown that Auger recombination is the dominant contribution to current and comprises approximately 80% of current at threshold. Further, we investigated the origin of the low injection efficiencies observed in QD lasers using a rate equation model that included the effect of inhomogeneous broadening. It is shown that the observed low injection efficiencies are likely a consequence of the cavity length vs. slope efficiency measurement technique, and therefore do not represent the intrinsic or true injection efficiencies in QD lasers. The limitation of this commonly used technique arises from the carrier occupation of non-lasing states in the inhomogeneously broadened QD ensemble.

  1. Electromigrative separation techniques in forensic science: combining selectivity, sensitivity, and robustness.

    PubMed

    Posch, Tjorben Nils; Pütz, Michael; Martin, Nathalie; Huhn, Carolin

    2015-01-01

    In this review we introduce the advantages and limitations of electromigrative separation techniques in forensic toxicology. We thus present a summary of illustrative studies and our own experience in the field together with established methods from the German Federal Criminal Police Office rather than a complete survey. We focus on the analytical aspects of analytes' physicochemical characteristics (e.g. polarity, stereoisomers) and analytical challenges including matrix tolerance, separation from compounds present in large excess, sample volumes, and orthogonality. For these aspects we want to reveal the specific advantages over more traditional methods. Both detailed studies and profiling and screening studies are taken into account. Care was taken to nearly exclusively document well-validated methods outstanding for the analytical challenge discussed. Special attention was paid to aspects exclusive to electromigrative separation techniques, including the use of the mobility axis, the potential for on-site instrumentation, and the capillary format for immunoassays. The review concludes with an introductory guide to method development for different separation modes, presenting typical buffer systems as starting points for different analyte classes. The objective of this review is to provide an orientation for users in separation science considering using capillary electrophoresis in their laboratory in the future.

  2. Large Ensemble Analytic Framework for Consequence-Driven Discovery of Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Lamontagne, Jonathan R.; Reed, Patrick M.; Link, Robert; Calvin, Katherine V.; Clarke, Leon E.; Edmonds, James A.

    2018-03-01

    An analytic scenario generation framework is developed based on the idea that the same climate outcome can result from very different socioeconomic and policy drivers. The framework builds on the Scenario Matrix Framework's abstraction of "challenges to mitigation" and "challenges to adaptation" to facilitate the flexible discovery of diverse and consequential scenarios. We combine visual and statistical techniques for interrogating a large factorial data set of 33,750 scenarios generated using the Global Change Assessment Model. We demonstrate how the analytic framework can aid in identifying which scenario assumptions are most tied to user-specified measures for policy relevant outcomes of interest, specifically for our example high or low mitigation costs. We show that the current approach for selecting reference scenarios can miss policy relevant scenario narratives that often emerge as hybrids of optimistic and pessimistic scenario assumptions. We also show that the same scenario assumption can be associated with both high and low mitigation costs depending on the climate outcome of interest and the mitigation policy context. In the illustrative example, we show how agricultural productivity, population growth, and economic growth are most predictive of the level of mitigation costs. Formulating policy relevant scenarios of deeply and broadly uncertain futures benefits from large ensemble-based exploration of quantitative measures of consequences. To this end, we have contributed a large database of climate change futures that can support "bottom-up" scenario generation techniques that capture a broader array of consequences than those that emerge from limited sampling of a few reference scenarios.

  3. Raman Spectroscopic Analysis of Geological and Biogeological Specimens of Relevance to the ExoMars Mission

    PubMed Central

    Edwards, Howell G.M.; Ingley, Richard; Parnell, John; Vítek, Petr; Jehlička, Jan

    2013-01-01

    Abstract A novel miniaturized Raman spectrometer is scheduled to fly as part of the analytical instrumentation package on an ESA remote robotic lander in the ESA/Roscosmos ExoMars mission to search for evidence for extant or extinct life on Mars in 2018. The Raman spectrometer will be part of the first-pass analytical stage of the sampling procedure, following detailed surface examination by the PanCam scanning camera unit on the ExoMars rover vehicle. The requirements of the analytical protocol are stringent and critical; this study represents a laboratory blind interrogation of specimens that form a list of materials that are of relevance to martian exploration and at this stage simulates a test of current laboratory instrumentation to highlight the Raman technique strengths and possible weaknesses that may be encountered in practice on the martian surface and from which future studies could be formulated. In this preliminary exercise, some 10 samples that are considered terrestrial representatives of the mineralogy and possible biogeologically modified structures that may be identified on Mars have been examined with Raman spectroscopy, and conclusions have been drawn about the viability of the unambiguous spectral identification of biomolecular life signatures. It is concluded that the Raman spectroscopic technique does indeed demonstrate the capability to identify biomolecular signatures and the mineralogy in real-world terrestrial samples with a very high degree of success without any preconception being made about their origin and classification. Key Words: Biosignatures—Mars Exploration Rovers—Raman spectroscopy—Search for life (biosignatures)—Planetary instrumentation. Astrobiology 13, 543–549. PMID:23758166

  4. Innovations in coating technology.

    PubMed

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review.

  5. Protein assay structured on paper by using lithography

    NASA Astrophysics Data System (ADS)

    Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.

    2015-03-01

    There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.

  6. Raman Spectrometry.

    ERIC Educational Resources Information Center

    Gardiner, Derek J.

    1980-01-01

    Reviews mainly quantitative analytical applications in the field of Raman spectrometry. Includes references to other reviews, new and analytically untested techniques, and novel sampling and instrument designs. Cites 184 references. (CS)

  7. Stripping Voltammetry

    NASA Astrophysics Data System (ADS)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact, it is frequently ignored. For the analysis it suffices to establish the linear relationship empirically. The slope of this relationship may vary from one sample to another because of different influences of the matrix. In this case the concentration of the analyte is determined by the method of standard additions [1]. After measuring the response of the sample, the concentration of the analyte is deliberately increased by adding a certain volume of its standard solution. The response is measured again, and this procedure is repeated three or four times. The unknown concentration is determined by extrapolation of the regression line to the concentration axis [9]. However, in many analytical methods, the final measurement is performed in a standard matrix that allows the construction of a calibration plot. Still, the slope of this plot depends on the active area of the working electrode surface. Each solid electrode needs a separate calibration plot, and that plot must be checked from time to time because of possible deterioration of the electrode surface [2].

  8. Ionic liquids in chromatographic and electrophoretic techniques: toward additional improvements in the separation of natural compounds

    PubMed Central

    Freire, Carmen S. R.; Coutinho, João A. P.; Silvestre, Armando J. D.; Freire, Mara G.

    2016-01-01

    Due to their unique properties, in recent years, ionic liquids (ILs) have been largely investigated in the field of analytical chemistry. Particularly during the last sixteen years, they have been successfully applied in the chromatographic and electrophoretic analysis of value-added compounds extracted from biomass. Considering the growing interest in the use of ILs in this field, this critical review provides a comprehensive overview on the improvements achieved using ILs as constituents of mobile or stationary phases in analytical techniques, namely in capillary electrophoresis and its different modes, in high performance liquid chromatography, and in gas chromatography, for the separation and analysis of natural compounds. The impact of the IL chemical structure and the influence of secondary parameters, such as the IL concentration, temperature, pH, voltage and analysis time (when applied), are also critically addressed regarding the achieved separation improvements. Major conclusions on the role of ILs in the separation mechanisms and the performance of these techniques in terms of efficiency, resolution and selectivity are provided. Based on a critical analysis of all published results, some target-oriented ILs are suggested. Finally, current drawbacks and future challenges in the field are highlighted. In particular, the design and use of more benign and effective ILs as well as the development of integrated (and thus more sustainable) extraction–separation processes using IL aqueous solutions are suggested within a green chemistry perspective. PMID:27667965

  9. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography.

    PubMed

    Kremser, Andreas; Jochmann, Maik A; Schmidt, Torsten C

    2016-09-01

    Six automated, headspace-based sample preparation techniques were used to extract volatile analytes from water with the goal of establishing a systematic comparison between commonly available instrumental alternatives. To that end, these six techniques were used in conjunction with the same gas chromatography instrument for analysis of a common set of volatile organic carbon (VOC) analytes. The methods were thereby divided into three classes: static sampling (by syringe or loop), static enrichment (SPME and PAL SPME Arrow), and dynamic enrichment (ITEX and trap sampling). For PAL SPME Arrow, different sorption phase materials were also included in the evaluation. To enable an effective comparison, method detection limits (MDLs), relative standard deviations (RSDs), and extraction yields were determined and are discussed for all techniques. While static sampling techniques exhibited sufficient extraction yields (approx. 10-20 %) to be reliably used down to approx. 100 ng L(-1), enrichment techniques displayed extraction yields of up to 80 %, resulting in MDLs down to the picogram per liter range. RSDs for all techniques were below 27 %. The choice on one of the different instrumental modes of operation (aforementioned classes) was thereby the most influential parameter in terms of extraction yields and MDLs. Individual methods inside each class showed smaller deviations, and the least influences were observed when evaluating different sorption phase materials for the individual enrichment techniques. The option of selecting specialized sorption phase materials may, however, be more important when analyzing analytes with different properties such as high polarity or the capability of specific molecular interactions. Graphical Abstract PAL SPME Arrow during the extraction of volatile analytes from the headspace of an aqueous sample.

  10. Automated Solid Phase Extraction (SPE) LC/NMR Applied to the Structural Analysis of Extractable Compounds from a Pharmaceutical Packaging Material of Construction.

    PubMed

    Norwood, Daniel L; Mullis, James O; Davis, Mark; Pennino, Scott; Egert, Thomas; Gonnella, Nina C

    2013-01-01

    The structural analysis (i.e., identification) of organic chemical entities leached into drug product formulations has traditionally been accomplished with techniques involving the combination of chromatography with mass spectrometry. These include gas chromatography/mass spectrometry (GC/MS) for volatile and semi-volatile compounds, and various forms of liquid chromatography/mass spectrometry (LC/MS or HPLC/MS) for semi-volatile and relatively non-volatile compounds. GC/MS and LC/MS techniques are complementary for structural analysis of leachables and potentially leachable organic compounds produced via laboratory extraction of pharmaceutical container closure/delivery system components and corresponding materials of construction. Both hyphenated analytical techniques possess the separating capability, compound specific detection attributes, and sensitivity required to effectively analyze complex mixtures of trace level organic compounds. However, hyphenated techniques based on mass spectrometry are limited by the inability to determine complete bond connectivity, the inability to distinguish between many types of structural isomers, and the inability to unambiguously determine aromatic substitution patterns. Nuclear magnetic resonance spectroscopy (NMR) does not have these limitations; hence it can serve as a complement to mass spectrometry. However, NMR technology is inherently insensitive and its ability to interface with chromatography has been historically challenging. This article describes the application of NMR coupled with liquid chromatography and automated solid phase extraction (SPE-LC/NMR) to the structural analysis of extractable organic compounds from a pharmaceutical packaging material of construction. The SPE-LC/NMR technology combined with micro-cryoprobe technology afforded the sensitivity and sample mass required for full structure elucidation. Optimization of the SPE-LC/NMR analytical method was achieved using a series of model compounds representing the chemical diversity of extractables. This study demonstrates the complementary nature of SPE-LC/NMR with LC/MS for this particular pharmaceutical application. The identification of impurities leached into drugs from the components and materials associated with pharmaceutical containers, packaging components, and materials has historically been done using laboratory techniques based on the combination of chromatography with mass spectrometry. Such analytical techniques are widely recognized as having the selectivity and sensitivity required to separate the complex mixtures of impurities often encountered in such identification studies, including both the identification of leachable impurities as well as potential leachable impurities produced by laboratory extraction of packaging components and materials. However, while mass spectrometry-based analytical techniques have limitations for this application, newer analytical techniques based on the combination of chromatography with nuclear magnetic resonance spectroscopy provide an added dimension of structural definition. This article describes the development, optimization, and application of an analytical technique based on the combination of chromatography and nuclear magnetic resonance spectroscopy to the identification of potential leachable impurities from a pharmaceutical packaging material. The complementary nature of the analytical techniques for this particular pharmaceutical application is demonstrated.

  11. The HVT technique and the 'uncertainty' relation for central potentials

    NASA Astrophysics Data System (ADS)

    Grypeos, M. E.; Koutroulos, C. G.; Oyewumi, K. J.; Petridou, Th

    2004-08-01

    The quantum mechanical hypervirial theorems (HVT) technique is used to treat the so-called 'uncertainty' relation for quite a general class of central potential wells, including the (reduced) Poeschl-Teller and the Gaussian one. It is shown that this technique is quite suitable in deriving an approximate analytic expression in the form of a truncated power series expansion for the dimensionless product Pnl equiv langr2rangnllangp2rangnl/planck2, for every (deeply) bound state of a particle moving non-relativistically in the well, provided that a (dimensionless) parameter s is sufficiently small. Attention is also paid to a number of cases, among the limited existing ones, in which exact analytic or semi-analytic expressions for Pnl can be derived. Finally, numerical results are given and discussed.

  12. 7 CFR 90.2 - General terms defined.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... agency, or other agency, organization or person that defines in the general terms the basis on which the... analytical data using proficiency check sample or analyte recovery techniques. In addition, the certainty.... Quality control. The system of close examination of the critical details of an analytical procedure in...

  13. Analytical Applications of NMR: Summer Symposium on Analytical Chemistry.

    ERIC Educational Resources Information Center

    Borman, Stuart A.

    1982-01-01

    Highlights a symposium on analytical applications of nuclear magnetic resonance spectroscopy (NMR), discussing pulse Fourier transformation technique, two-dimensional NMR, solid state NMR, and multinuclear NMR. Includes description of ORACLE, an NMR data processing system at Syracuse University using real-time color graphics, and algorithms for…

  14. Microgenetic Learning Analytics Methods: Workshop Report

    ERIC Educational Resources Information Center

    Aghababyan, Ani; Martin, Taylor; Janisiewicz, Philip; Close, Kevin

    2016-01-01

    Learning analytics is an emerging discipline and, as such, benefits from new tools and methodological approaches. This work reviews and summarizes our workshop on microgenetic data analysis techniques using R, held at the second annual Learning Analytics Summer Institute in Cambridge, Massachusetts, on 30 June 2014. Specifically, this paper…

  15. Predictive modeling of complications.

    PubMed

    Osorio, Joseph A; Scheer, Justin K; Ames, Christopher P

    2016-09-01

    Predictive analytic algorithms are designed to identify patterns in the data that allow for accurate predictions without the need for a hypothesis. Therefore, predictive modeling can provide detailed and patient-specific information that can be readily applied when discussing the risks of surgery with a patient. There are few studies using predictive modeling techniques in the adult spine surgery literature. These types of studies represent the beginning of the use of predictive analytics in spine surgery outcomes. We will discuss the advancements in the field of spine surgery with respect to predictive analytics, the controversies surrounding the technique, and the future directions.

  16. Experimental Investigation and Optimization of TIG Welding Parameters on Aluminum 6061 Alloy Using Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Kumar, Rishi; Mevada, N. Ramesh; Rathore, Santosh; Agarwal, Nitin; Rajput, Vinod; Sinh Barad, AjayPal

    2017-08-01

    To improve Welding quality of aluminum (Al) plate, the TIG Welding system has been prepared, by which Welding current, Shielding gas flow rate and Current polarity can be controlled during Welding process. In the present work, an attempt has been made to study the effect of Welding current, current polarity, and shielding gas flow rate on the tensile strength of the weld joint. Based on the number of parameters and their levels, the Response Surface Methodology technique has been selected as the Design of Experiment. For understanding the influence of input parameters on Ultimate tensile strength of weldment, ANOVA analysis has been carried out. Also to describe and optimize TIG Welding using a new metaheuristic Nature - inspired algorithm which is called as Firefly algorithm which was developed by Dr. Xin-She Yang at Cambridge University in 2007. A general formulation of firefly algorithm is presented together with an analytical, mathematical modeling to optimize the TIG Welding process by a single equivalent objective function.

  17. Electron Cyclotron Current Drive Efficiency in General Tokamak Geometry and Its Application to Advanced Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Lin-Liu, Y. R.; Chan, V. S.; Luce, T. C.; Prater, R.

    1998-11-01

    Owing to relativistic mass shift in the cyclotron resonance condition, a simple and accurate interpolation formula for estimating the current drive efficiency, such as those(S.C. Chiu et al.), Nucl. Fusion 29, 2175 (1989).^,(D.A. Ehst and C.F.F. Karney, Nucl. Fusion 31), 1933 (1991). commonly used in FWCD, is not available in the case of ECCD. In this work, we model ECCD using the adjoint techniques. A semi-analytic adjoint function appropriate for general tokamak geometry is obtained using Fisch's relativistic collision model. Predictions of off-axis ECCD qualitatively and semi-quantitatively agrees with those of Cohen,(R.H. Cohen, Phys. Fluids 30), 2442 (1987). currently implemented in the raytracing code TORAY. The dependences of the current drive efficiency on the wave launch configuration and the plasma parameters will be presented. Strong absorption of the wave away from the resonance layer is shown to be an important factor in optimizing the off-axis ECCD for application to advanced tokamak operations.

  18. Quantitative Determination of Noa (Naturally Occurring Asbestos) in Rocks : Comparison Between Pcom and SEM Analysis

    NASA Astrophysics Data System (ADS)

    Baietto, Oliviero; Amodeo, Francesco; Giorgis, Ilaria; Vitaliti, Martina

    2017-04-01

    The quantification of NOA (Naturally Occurring Asbestos) in a rock or soil matrix is complex and subject to numerous errors. The purpose of this study is to compare two fundamental methodologies used for the analysis: the first one uses Phase Contrast Optical Microscope (PCOM) while the second one uses Scanning Electron Microscope (SEM). The two methods, although they provide the same result, which is the asbestos mass to total mass ratio, have completely different characteristics and both present pros and cons. The current legislation in Italy involves the use of SEM, DRX, FTIR, PCOM (DM 6/9/94) for the quantification of asbestos in bulk materials and soils and the threshold beyond which the material is considered as hazardous waste is a concentration of asbestos fiber of 1000 mg/kg.(DM 161/2012). The most used technology is the SEM which is the one among these with the better analytical sensitivity.(120mg/Kg DM 6 /9/94) The fundamental differences among the analyses are mainly: - Amount of analyzed sample portion - Representativeness of the sample - Resolution - Analytical precision - Uncertainty of the methodology - Operator errors Due to the problem of quantification of DRX and FTIR (1% DM 6/9/94) our Asbestos Laboratory (DIATI POLITO) since more than twenty years apply the PCOM methodology and in the last years the SEM methodology for quantification of asbestos content. The aim of our research is to compare the results obtained from a PCOM analysis with the results provided by SEM analysis on the base of more than 100 natural samples both from cores (tunnel-boring or explorative-drilling) and from tunnelling excavation . The results obtained show, in most cases, a good correlation between the two techniques. Of particular relevance is the fact that both techniques are reliable for very low quantities of asbestos, even lower than the analytical sensitivity. This work highlights the comparison between the two techniques emphasizing strengths and weaknesses of the two procedures and suggests how an integrated approach, together with the skills and experience of the operator may be the best way forward in order to obtain a constructive improvement of analysis techniques.

  19. Analysis of multiple mycotoxins in food.

    PubMed

    Hajslova, Jana; Zachariasova, Milena; Cajka, Tomas

    2011-01-01

    Mycotoxins are secondary metabolites of microscopic filamentous fungi. With regard to the widespread distribution of fungi in the environment, mycotoxins are considered to be one of the most important natural contaminants in foods and feeds. To protect consumers' health and reduce economic losses, surveillance and control of mycotoxins in food and feed has become a major objective for producers, regulatory authorities, and researchers worldwide. In this context, availability of reliable analytical methods applicable for this purpose is essential. Since the variety of chemical structures of mycotoxins makes impossible to use one single technique for their analysis, a vast number of analytical methods has been developed and validated. Both a large variability of food matrices and growing demands for a fast, cost-saving and accurate determination of multiple mycotoxins by a single method outline new challenges for analytical research. This strong effort is facilitated by technical developments in mass spectrometry allowing decreasing the influence of matrix effects in spite of omitting sample clean-up step. The current state-of-the-art together with future trends is presented in this chapter. Attention is focused mainly on instrumental method; advances in biosensors and other screening bioanalytical approaches enabling analysis of multiple mycotoxins are not discussed in detail.

  20. Enabling fluorescent biosensors for the forensic identification of body fluids.

    PubMed

    Frascione, Nunzianda; Gooch, James; Daniel, Barbara

    2013-11-12

    The search for body fluids often forms a crucial element of many forensic investigations. Confirming fluid presence at a scene can not only support or refute the circumstantial claims of a victim, suspect or witness, but may additionally provide a valuable source of DNA for further identification purposes. However, current biological fluid testing techniques are impaired by a number of well-characterised limitations; they often give false positives, cannot be used simultaneously, are sample destructive and lack the ability to visually locate fluid depositions. These disadvantages can negatively affect the outcome of a case through missed or misinterpreted evidence. Biosensors are devices able to transduce a biological recognition event into a measurable signal, resulting in real-time analyte detection. The use of innovative optical sensing technology may enable the highly specific and non-destructive detection of biological fluid depositions through interaction with several fluid-endogenous biomarkers. Despite considerable impact in a variety of analytical disciplines, biosensor application within forensic analyses may be considered extremely limited. This article aims to explore a number of prospective biosensing mechanisms and to outline the challenges associated with their adaptation towards detection of fluid-specific analytes.

  1. MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission: results and performance

    NASA Astrophysics Data System (ADS)

    Buch, A.; Pinnick, V. T.; Szopa, C.; Grand, N.; Humeau, O.; van Amerom, F. H.; Danell, R.; Freissinet, C.; Brinckerhoff, W.; Gonnsen, Z.; Mahaffy, P. R.; Coll, P.; Raulin, F.; Goesmann, F.

    2015-10-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquiring samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular and chiral) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis/chemical derivatization gas chromatography (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide information on elemental and molecular makeup, polarity, chirality and isotopic patterns of analyte species. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatographymass spectrometry (GC-MS) mode of operation.

  2. Liquid Microjunction Surface Sampling Probe Fluid Dynamics: Computational and Experimental Analysis of Coaxial Intercapillary Positioning Effects on Sample Manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ElNaggar, Mariam S; Barbier, Charlotte N; Van Berkel, Gary J

    A coaxial geometry liquid microjunction surface sampling probe (LMJ-SSP) enables direct extraction of analytes from surfaces for subsequent analysis by techniques like mass spectrometry. Solution dynamics at the probe-to-sample surface interface in the LMJ-SSP has been suspected to influence sampling efficiency and dispersion but has not been rigorously investigated. The effect on flow dynamics and analyte transport to the mass spectrometer caused by coaxial retraction of the inner and outer capillaries from each other and the surface during sampling with a LMJ-SSP was investigated using computational fluid dynamics and experimentation. A transparent LMJ-SSP was constructed to provide the means formore » visual observation of the dynamics of the surface sampling process. Visual observation, computational fluid dynamics (CFD) analysis, and experimental results revealed that inner capillary axial retraction from the flush position relative to the outer capillary transitioned the probe from a continuous sampling and injection mode through an intermediate regime to sample plug formationmode caused by eddy currents at the sampling end of the probe. The potential for analytical implementation of these newly discovered probe operational modes is discussed.« less

  3. Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution

    NASA Astrophysics Data System (ADS)

    Hosseini; Hamedi; Ebrahimi Mamaghani; Kim; Kim; Dayou

    2017-07-01

    Among the various techniques of power scavenging, piezoelectric energy harvesting usually has more power density. Although piezoceramics are usually more efficient than other piezoelectric materials, since they are very brittle and fragile, researchers are looking for alternative materials. Recently Cellulose Electro-active paper (EAPap) has been recognized as a smart material with piezoelectric behavior that can be used in energy scavenging systems. The majority of researches in energy harvesting area, use unimorph piezoelectric cantilever beams. This paper presents an analytical solution based on distributed parameter model for partially covered pieoelectric cantilever energy harvester. The purpose of the paper is to describe the changes in generated power with damping and the load resistance using analytical calculations. The analytical data are verified using experiment on a vibrating cantilever substrate that is partially covered by EAPap films. The results are very close to each other. Also asymptotic trends of the voltage, current and power outputs are investigated and expressions are obtained for the extreme conditions of the load resistance. These new findings provide guidelines for identification and manipulation of effective parameters in order to achieve the efficient performance in different ambient source conditions.

  4. Rapid perfusion quantification using Welch-Satterthwaite approximation and analytical spectral filtering

    NASA Astrophysics Data System (ADS)

    Krishnan, Karthik; Reddy, Kasireddy V.; Ajani, Bhavya; Yalavarthy, Phaneendra K.

    2017-02-01

    CT and MR perfusion weighted imaging (PWI) enable quantification of perfusion parameters in stroke studies. These parameters are calculated from the residual impulse response function (IRF) based on a physiological model for tissue perfusion. The standard approach for estimating the IRF is deconvolution using oscillatory-limited singular value decomposition (oSVD) or Frequency Domain Deconvolution (FDD). FDD is widely recognized as the fastest approach currently available for deconvolution of CT Perfusion/MR PWI. In this work, three faster methods are proposed. The first is a direct (model based) crude approximation to the final perfusion quantities (Blood flow, Blood volume, Mean Transit Time and Delay) using the Welch-Satterthwaite approximation for gamma fitted concentration time curves (CTC). The second method is a fast accurate deconvolution method, we call Analytical Fourier Filtering (AFF). The third is another fast accurate deconvolution technique using Showalter's method, we call Analytical Showalter's Spectral Filtering (ASSF). Through systematic evaluation on phantom and clinical data, the proposed methods are shown to be computationally more than twice as fast as FDD. The two deconvolution based methods, AFF and ASSF, are also shown to be quantitatively accurate compared to FDD and oSVD.

  5. An AK-LDMeans algorithm based on image clustering

    NASA Astrophysics Data System (ADS)

    Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan

    2018-03-01

    Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.

  6. Field-effect amperometric immuno-detection of protein biomarker.

    PubMed

    Wang, Jiapeng; Yau, Siu-Tung

    2011-11-15

    The field-effect enzymatic detection technique has been applied to the amperometric immunoassay of the cancer biomarker, carcinoma antigen 125 (CA 125). The detection adopted a reagentless approach, in which the analyte, CA 125, was immobilized on the detecting electrode, which was modified using carbon nanotubes, and the detection signal was obtained by measuring the reduction peak current of the enzyme that was used to label the antibody. A gating voltage was applied to the detecting electrode, inducing increase in the signal current and therefore providing amplification of the detection signal. The voltage-controlled signal amplification of the detection system has increased the sensitivity and lowered the detection limit of the system. A detection limit of 0.9U/ml was obtained in the work. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The current role of on-line extraction approaches in clinical and forensic toxicology.

    PubMed

    Mueller, Daniel M

    2014-08-01

    In today's clinical and forensic toxicological laboratories, automation is of interest because of its ability to optimize processes, to reduce manual workload and handling errors and to minimize exposition to potentially infectious samples. Extraction is usually the most time-consuming step; therefore, automation of this step is reasonable. Currently, from the field of clinical and forensic toxicology, methods using the following on-line extraction techniques have been published: on-line solid-phase extraction, turbulent flow chromatography, solid-phase microextraction, microextraction by packed sorbent, single-drop microextraction and on-line desorption of dried blood spots. Most of these published methods are either single-analyte or multicomponent procedures; methods intended for systematic toxicological analysis are relatively scarce. However, the use of on-line extraction will certainly increase in the near future.

  8. Extended performance solar electric propulsion thrust system study. Volume 5. Capacitor-diode voltage multiplier: Technology evaluation

    NASA Technical Reports Server (NTRS)

    Martinelli, R. M.

    1977-01-01

    A 1-kW capacitor-diode voltage multiplier (CDVM) was designed, fabricated and tested to demonstrate the power of feasibility of high power CDVM's and to verify the analytical techniques that had been used to predict the performance characteristics of a 6-kw CDVM. High efficiency (96.2%), a low ratio of component weight to power (0.55 kg/kW), and low output ripple voltage (less than 1%, peak to peak) were obtained during the operation of a 1-kW CDVM various input line, load current, and load fault conditions.

  9. Time-resolved SERS for characterizing extracellular vesicles

    NASA Astrophysics Data System (ADS)

    Rojalin, Tatu; Saari, Heikki; Somersalo, Petter; Laitinen, Saara; Turunen, Mikko; Viitala, Tapani; Wachsmann-Hogiu, Sebastian; Smith, Zachary J.; Yliperttula, Marjo

    2017-02-01

    The aim of this work is to develop a platform for characterizing extracellular vesicles (EV) by using gold-polymer nanopillar SERS arrays simultaneously circumventing the photoluminescence-related disadvantages of Raman with a time-resolved approach. EVs are rich of biochemical information reporting of, for example, diseased state of the biological system. Currently, straightforward, label-free and fast EV characterization methods with low sample consumption are warranted. In this study, SERS spectra of red blood cell and platelet derived EVs were successfully measured and their biochemical contents analyzed using multivariate data analysis techniques. The developed platform could be conveniently used for EV analytics in general.

  10. Procedure for rapid determination of nickel, cobalt, and chromium in airborne particulate samples

    NASA Technical Reports Server (NTRS)

    Davis, W. F.; Graab, J. W.

    1972-01-01

    A rapid, selective procedure for the determination of 1 to 20 micrograms of nickel, chromium, and cobalt in airborne particulates is described. The method utilizes the combined techniques of low temperature ashing and atomic absorption spectroscopy. The airborne particulates are collected on analytical filter paper. The filter papers are ashed, and the residues are dissolved in hydrochloric acid. Nickel, chromium, and cobalt are determined directly with good precision and accuracy by means of atomic absorption. The effects of flame type, burner height, slit width, and lamp current on the atomic absorption measurements are reported.

  11. Applying the design-build-test paradigm in microbiome engineering.

    PubMed

    Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook

    2017-12-01

    The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evaluation Criteria for Micro-CAI: A Psychometric Approach

    PubMed Central

    Wallace, Douglas; Slichter, Mark; Bolwell, Christine

    1985-01-01

    The increased use of microcomputer-based instructional programs has resulted in a greater need for third-party evaluation of the software. This in turn has prompted the development of micro-CAI evaluation tools. The present project sought to develop a prototype instrument to assess the impact of CAI program presentation characteristics on students. Data analysis and scale construction was conducted using standard item reliability analyses and factor analytic techniques. Adequate subscale reliabilities and factor structures were found, suggesting that a psychometric approach to CAI evaluation may possess some merit. Efforts to assess the utility of the resultant instrument are currently underway.

  13. Biologically inspired technologies using artificial muscles

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2005-01-01

    One of the newest fields of biomimetics is the electroactive polymers (EAP) that are also known as artificial muscles. To take advantage of these materials, efforts are made worldwide to establish a strong infrastructure addressing the need for comprehensive analytical modeling of their response mechanism and develop effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available however in recent years significant progress has been made and commercial products have already started to appear. This paper covers the current state of- the-art and challenges to making artificial muscles and their potential biomimetic applications.

  14. Electrostatic Propulsion Beam Divergence Effects on Spacecraft Surfaces. Volume 2, Addendum 1: Ion Time-of-flight Determinations of Doubly to Singly Ionized Mercury Ion Ratios from a Mercury Electron Bombardment Discharge

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.

    1973-01-01

    The analysis of ion exhaust beam current flow for multiply charged ion species and the application to propellant utilization for the thruster are discussed. The ion engine in use in the experiments is a twenty centimeter diameter electromagnet electron bombardment engine. The experimental technique to determine the multiply charged ion abundance ratios using ion time of flight is described. An analytical treatment of the discharge action in producing various ion species has been carried out.

  15. Development of Novel Method for Rapid Extract of Radionuclides from Solution Using Polymer Ligand Film

    NASA Astrophysics Data System (ADS)

    Rim, Jung H.

    Accurate and fast determination of the activity of radionuclides in a sample is critical for nuclear forensics and emergency response. Radioanalytical techniques are well established for radionuclides measurement, however, they are slow and labor intensive, requiring extensive radiochemical separations and purification prior to analysis. With these limitations of current methods, there is great interest for a new technique to rapidly process samples. This dissertation describes a new analyte extraction medium called Polymer Ligand Film (PLF) developed to rapidly extract radionuclides. Polymer Ligand Film is a polymer medium with ligands incorporated in its matrix that selectively and rapidly extract analytes from a solution. The main focus of the new technique is to shorten and simplify the procedure necessary to chemically isolate radionuclides for determination by alpha spectrometry or beta counting. Five different ligands were tested for plutonium extraction: bis(2-ethylhexyl) methanediphosphonic acid (H2DEH[MDP]), di(2-ethyl hexyl) phosphoric acid (HDEHP), trialkyl methylammonium chloride (Aliquat-336), 4,4'(5')-di-t-butylcyclohexano 18-crown-6 (DtBuCH18C6), and 2-ethylhexyl 2-ethylhexylphosphonic acid (HEH[EHP]). The ligands that were effective for plutonium extraction further studied for uranium extraction. The plutonium recovery by PLFs has shown dependency on nitric acid concentration and ligand to total mass ratio. H2DEH[MDP] PLFs performed best with 1:10 and 1:20 ratio PLFs. 50.44% and 47.61% of plutonium were extracted on the surface of PLFs with 1M nitric acid for 1:10 and 1:20 PLF, respectively. HDEHP PLF provided the best combination of alpha spectroscopy resolution and plutonium recovery with 1:5 PLF when used with 0.1M nitric acid. The overall analyte recovery was lower than electrodeposited samples, which typically has recovery above 80%. However, PLF is designed to be a rapid field deployable screening technique and consistency is more important than recovery. PLFs were also tested using blind quality control samples and the activities were accurately measured. It is important to point out that PLFs were consistently susceptible to analytes penetrating and depositing below the surface. The internal radiation within the body of PLF is mostly contained and did not cause excessive self-attenuation and peak broadening in alpha spectroscopy. The analyte penetration issue was beneficial in the destructive analysis. H2DEH[MDP] PLF was tested with environmental samples to fully understand the capabilities and limitations of the PLF in relevant environments. The extraction system was very effective in extracting plutonium from environmental water collected from Mortandad Canyon at Los Alamos National Laboratory with minimal sample processing. Soil samples were tougher to process than the water samples. Analytes were first leached from the soil matrixes using nitric acid before processing with PLF. This approach had a limitation in extracting plutonium using PLF. The soil samples from Mortandad Canyon, which are about 1% iron by weight, were effectively processed with the PLF system. Even with certain limitations of the PLF extraction system, this technique was able to considerably decrease the sample analysis time. The entire environmental sample was analyzed within one to two days. The decrease in time can be attributed to the fact that PLF is replacing column chromatography and electrodeposition with a single step for preparing alpha spectrometry samples. The two-step process of column chromatography and electrodeposition takes a couple days to a week to complete depending on the sample. The decrease in time and the simplified procedure make this technique a unique solution for application to nuclear forensics and emergency response. A large number of samples can be quickly analyzed and selective samples can be further analyzed with more sensitive techniques based on the initial data. The deployment of a PLF system as a screening method will greatly reduce a total analysis time required to gain meaningful isotopic data for the nuclear forensics application. (Abstract shortened by UMI.)

  16. Ratio of sequential chromatograms for quantitative analysis and peak deconvolution: Application to standard addition method and process monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Synovec, R.E.; Johnson, E.L.; Bahowick, T.J.

    1990-08-01

    This paper describes a new technique for data analysis in chromatography, based on taking the point-by-point ratio of sequential chromatograms that have been base line corrected. This ratio chromatogram provides a robust means for the identification and the quantitation of analytes. In addition, the appearance of an interferent is made highly visible, even when it coelutes with desired analytes. For quantitative analysis, the region of the ratio chromatogram corresponding to the pure elution of an analyte is identified and is used to calculate a ratio value equal to the ratio of concentrations of the analyte in sequential injections. For themore » ratio value calculation, a variance-weighted average is used, which compensates for the varying signal-to-noise ratio. This ratio value, or equivalently the percent change in concentration, is the basis of a chromatographic standard addition method and an algorithm to monitor analyte concentration in a process stream. In the case of overlapped peaks, a spiking procedure is used to calculate both the original concentration of an analyte and its signal contribution to the original chromatogram. Thus, quantitation and curve resolution may be performed simultaneously, without peak modeling or curve fitting. These concepts are demonstrated by using data from ion chromatography, but the technique should be applicable to all chromatographic techniques.« less

  17. Bioimpedance measurements of human body composition: critical analysis and outlook.

    PubMed

    Matthie, James R

    2008-03-01

    Bioimpedance spectroscopy represents one of the largest emerging medical device technologies. The method is generally known as impedance spectroscopy and is an inexpensive, yet extremely powerful, analytical technique for studying the electrical properties of materials. Much of what we know about biological cells and tissues comes from use of this technique in vitro. Due to the high impedance of the cell membrane, current flow through the cell is frequency dependent and this allows the fluid volume inside versus outside the body's cells to be determined. The fluid outside the cells is primarily related to fluid volume status while the intracellular fluid also relates to the body's cellular mass. Technical advances have removed much of the method's basic complexities. The first commercial bioimpedance spectroscopy device for in vivo human body composition studies was introduced in 1990. Major strides have been made and the method is now poised to enter mainstream clinical medicine but the field is only in its infancy. This paper attempts to fully describe the current use of impedance in the body composition field.

  18. Molecular markers: progress and prospects for understanding reproductive ecology in elasmobranchs.

    PubMed

    Portnoy, D S; Heist, E J

    2012-04-01

    Application of modern molecular tools is expanding the understanding of elasmobranch reproductive ecology. High-resolution molecular markers provide information at scales ranging from the identification of reproductively isolated populations in sympatry (i.e. cryptic species) to the relationships among parents, offspring and siblings. This avenue of study has not only augmented the current understanding of the reproductive biology of elasmobranchs but has also provided novel insights that could not be obtained through experimental or observational techniques. Sharing of genetic polymorphisms across ocean basins indicates that for some species there may be gene flow on global scales. The presence, however, of morphologically similar but genetically distinct entities in sympatry suggests that reproductive isolation can occur with minimal morphological differentiation. This review discusses the recent findings in elasmobranch reproductive biology like philopatry, hybridization and polyandry while highlighting important molecular and analytical techniques. Furthermore, the review examines gaps in current knowledge and discusses how new technologies may be applied to further the understanding of elasmobranch reproductive ecology. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  19. A MASSive Laboratory Tour. An Interactive Mass Spectrometry Outreach Activity for Children

    NASA Astrophysics Data System (ADS)

    Jungmann, Julia H.; Mascini, Nadine E.; Kiss, Andras; Smith, Donald F.; Klinkert, Ivo; Eijkel, Gert B.; Duursma, Marc C.; Cillero Pastor, Berta; Chughtai, Kamila; Chughtai, Sanaullah; Heeren, Ron M. A.

    2013-07-01

    It is imperative to fascinate young children at an early stage in their education for the analytical sciences. The exposure of the public to mass spectrometry presently increases rapidly through the common media. Outreach activities can take advantage of this exposure and employ mass spectrometry as an exquisite example of an analytical science in which children can be fascinated. The presented teaching modules introduce children to mass spectrometry and give them the opportunity to experience a modern research laboratory. The modules are highly adaptable and can be applied to young children from the age of 6 to 14 y. In an interactive tour, the students explore three major scientific concepts related to mass spectrometry; the building blocks of matter, charged particle manipulation by electrostatic fields, and analyte identification by mass analysis. Also, the students carry out a mass spectrometry experiment and learn to interpret the resulting mass spectra. The multistage, inquiry-based tour contains flexible methods, which teach the students current-day research techniques and possible applications to real research topics. Besides the scientific concepts, laboratory safety and hygiene are stressed and the students are enthused for the analytical sciences by participating in "hands-on" work. The presented modules have repeatedly been successfully employed during laboratory open days. They are also found to be extremely suitable for (early) high school science classes during laboratory visit-focused field trips.

  20. Comparison of soil sampling and analytical methods for asbestos at the Sumas Mountain Asbestos Site-Working towards a toolbox for better assessment.

    PubMed

    Wroble, Julie; Frederick, Timothy; Frame, Alicia; Vallero, Daniel

    2017-01-01

    Established soil sampling methods for asbestos are inadequate to support risk assessment and risk-based decision making at Superfund sites due to difficulties in detecting asbestos at low concentrations and difficulty in extrapolating soil concentrations to air concentrations. Environmental Protection Agency (EPA)'s Office of Land and Emergency Management (OLEM) currently recommends the rigorous process of Activity Based Sampling (ABS) to characterize site exposures. The purpose of this study was to compare three soil analytical methods and two soil sampling methods to determine whether one method, or combination of methods, would yield more reliable soil asbestos data than other methods. Samples were collected using both traditional discrete ("grab") samples and incremental sampling methodology (ISM). Analyses were conducted using polarized light microscopy (PLM), transmission electron microscopy (TEM) methods or a combination of these two methods. Data show that the fluidized bed asbestos segregator (FBAS) followed by TEM analysis could detect asbestos at locations that were not detected using other analytical methods; however, this method exhibited high relative standard deviations, indicating the results may be more variable than other soil asbestos methods. The comparison of samples collected using ISM versus discrete techniques for asbestos resulted in no clear conclusions regarding preferred sampling method. However, analytical results for metals clearly showed that measured concentrations in ISM samples were less variable than discrete samples.

Top