Sample records for current balance tests

  1. The effect of activity history and current activity on static and dynamic postural balance in older adults.

    PubMed

    Bulbulian, R; Hargan, M L

    2000-01-01

    The purpose of this study was to investigate the effects of former athleticism and current activity status on static and dynamic postural balance in older adults. Fifty-six subjects participated in four study groups including former athletes, currently active (AA; n = 15; 69.1+/-4.4 years.; 77.8+/-9.8 kg), former athletes, currently inactive (AI; n = 12; 66.7 years.; 87.2+/-15.1 kg), controls currently active (CA; n = 14; 68.6 +/- 4.5 years.; 73.9+/-15 kg), and controls currently inactive (CI; n = 15; 72.8+/-4.8 years; 81.1+/-14.8). All subjects were tested for height, weight, flexibility, thigh circumference, and static (sharpened Romberg/unipedal stance), and dynamic (step length and width) balance tests. The sharpened Romberg (eyes open) test showed that AA (60.0+/-0 s) and CA (59.4+/- 0.5 s) balanced significantly longer than AI (41.5+/-7.2 s), and CI (41.8+/-6.1 s) (p<0.05). The unipedal (eyes open) test balance scores for AA, CA, AI, and CI were respectively 40.0+/-4.5, 55.1+/- 3.4, 33.0+/-7.1, and 27.5+/-6.1 s, with CA significantly better than CI (p<0.05). In dynamic balance AA and CA (746.1+/-28.0 and 724.6+/-24.3 mm) showed significantly longer step lengths (p<0.05) than CI (643.7+/-26.5 mm). The eyes closed test results for relative group comparisons were similar. Overall, two-way analysis of variance showed a significant activity main effect for all dependent variables measured (p<0.05). The results indicated that current activity status plays a key role on balance performance in older adults. Furthermore, former athletic activity history provides no protection for the age related onset of postural imbalance.

  2. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1995-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within +/-0.05% the entire system has an accuracy of +/-0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  3. Automatic force balance calibration system

    NASA Technical Reports Server (NTRS)

    Ferris, Alice T. (Inventor)

    1996-01-01

    A system for automatically calibrating force balances is provided. The invention uses a reference balance aligned with the balance being calibrated to provide superior accuracy while minimizing the time required to complete the calibration. The reference balance and the test balance are rigidly attached together with closely aligned moment centers. Loads placed on the system equally effect each balance, and the differences in the readings of the two balances can be used to generate the calibration matrix for the test balance. Since the accuracy of the test calibration is determined by the accuracy of the reference balance and current technology allows for reference balances to be calibrated to within .+-.0.05%, the entire system has an accuracy of a .+-.0.2%. The entire apparatus is relatively small and can be mounted on a movable base for easy transport between test locations. The system can also accept a wide variety of reference balances, thus allowing calibration under diverse load and size requirements.

  4. Combining physical training with transcranial direct current stimulation to improve gait in Parkinson's disease: a pilot randomized controlled study.

    PubMed

    Kaski, D; Dominguez, R O; Allum, J H; Islam, A F; Bronstein, A M

    2014-11-01

    To improve gait and balance in patients with Parkinson's disease by combining anodal transcranial direct current stimulation with physical training. In a double-blind design, one group (physical training; n = 8) underwent gait and balance training during transcranial direct current stimulation (tDCS; real/sham). Real stimulation consisted of 15 minutes of 2 mA transcranial direct current stimulation over primary motor and premotor cortex. For sham, the current was switched off after 30 seconds. Patients received the opposite stimulation (sham/real) with physical training one week later; the second group (No physical training; n = 8) received stimulation (real/sham) but no training, and also repeated a sequential transcranial direct current stimulation session one week later (sham/real). Hospital Srio Libanes, Buenos Aires, Argentina. Sixteen community-dwelling patients with Parkinson's disease. Transcranial direct current stimulation with and without concomitant physical training. Gait velocity (primary gait outcome), stride length, timed 6-minute walk test, Timed Up and Go Test (secondary outcomes), and performance on the pull test (primary balance outcome). Transcranial direct current stimulation with physical training increased gait velocity (mean = 29.5%, SD = 13; p < 0.01) and improved balance (pull test: mean = 50.9%, SD = 37; p = 0.01) compared with transcranial direct current stimulation alone. There was no isolated benefit of transcranial direct current stimulation alone. Although physical training improved gait velocity (mean = 15.5%, SD = 12.3; p = 0.03), these effects were comparatively less than with combined tDCS + physical therapy (p < 0.025). Greater stimulation-related improvements were seen in patients with more advanced disease. Anodal transcranial direct current stimulation during physical training improves gait and balance in patients with Parkinson's disease. Power calculations revealed that 14 patients per treatment arm (α = 0.05; power = 0.8) are required for a definitive trial. © The Author(s) 2014.

  5. Fabrication and physical testing of graphite composite panels utilizing woven graphite fabric with current and advanced state-of-the-art resin systems

    NASA Technical Reports Server (NTRS)

    Lee, S. C. S.

    1979-01-01

    Three weaves were evaluated; a balanced plain weave, a balanced 8-harness satin weave, and a semiunidirectional crowfoot satin weave. The current state-of-the-art resin system selected was Fiberite's 934 Epoxy; the advanced resin systems evaluated were Phenolic, Phenolic/Novolac, Benzyl and Bismaleimide. The panels were fabricated for testing on NASA/Ames Research Center's Composites Modification Program. Room temperature mechanical tests only were performed by Hitco; the results are presented.

  6. An alternative to the balance error scoring system: using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing.

    PubMed

    Chang, Jasper O; Levy, Susan S; Seay, Seth W; Goble, Daniel J

    2014-05-01

    Recent guidelines advocate sports medicine professionals to use balance tests to assess sensorimotor status in the management of concussions. The present study sought to determine whether a low-cost balance board could provide a valid, reliable, and objective means of performing this balance testing. Criterion validity testing relative to a gold standard and 7 day test-retest reliability. University biomechanics laboratory. Thirty healthy young adults. Balance ability was assessed on 2 days separated by 1 week using (1) a gold standard measure (ie, scientific grade force plate), (2) a low-cost Nintendo Wii Balance Board (WBB), and (3) the Balance Error Scoring System (BESS). Validity of the WBB center of pressure path length and BESS scores were determined relative to the force plate data. Test-retest reliability was established based on intraclass correlation coefficients. Composite scores for the WBB had excellent validity (r = 0.99) and test-retest reliability (R = 0.88). Both the validity (r = 0.10-0.52) and test-retest reliability (r = 0.61-0.78) were lower for the BESS. These findings demonstrate that a low-cost balance board can provide improved balance testing accuracy/reliability compared with the BESS. This approach provides a potentially more valid/reliable, yet affordable, means of assessing sports-related concussion compared with current methods.

  7. Posturography and locomotor tests of dynamic balance after long-duration spaceflight.

    PubMed

    Cohen, Helen S; Kimball, Kay T; Mulavara, Ajitkumar P; Bloomberg, Jacob J; Paloski, William H

    2012-01-01

    The currently approved objective clinical measure of standing balance in astronauts after space flight is the Sensory Organization Test battery of computerized dynamic posturography. No tests of walking balance are currently approved for standard clinical testing of astronauts. This study determined the sensitivity and specificity of standing and walking balance tests for astronauts before and after long-duration space flight. Astronauts were tested on an obstacle avoidance test known as the Functional Mobility Test (FMT) and on the Sensory Organization Test using sway-referenced support surface motion with eyes closed (SOT 5) before and six months after (n=15) space flight on the International Space Station. They were tested two to seven days after landing. Scores on SOT tests decreased and scores on FMT increased significantly from pre- to post-flight. In other words, post-flight scores were worse than pre-flight scores. SOT and FMT scores were not significantly related. ROC analyses indicated supra-clinical cut-points for SOT 5 and for FMT. The standard clinical cut-point for SOT 5 had low sensitivity to post-flight astronauts. Higher cut-points increased sensitivity to post-flight astronauts but decreased specificity to pre-flight astronauts. Using an FMT cut-point that was moderately highly sensitive and highly specific plus SOT 5 at the standard clinical cut-point was no more sensitive than SOT 5, alone. FMT plus SOT 5 at higher cut-points was more specific and more sensitive. The total correctly classified was highest for FMT, alone, and for FMT plus SOT 5 at the highest cut-point. These findings indicate that standard clinical comparisons are not useful for identifying problems. Testing both standing and walking balance will be more likely to identify balance deficits.

  8. Dynamic balance ability in young elite soccer players: implication of isometric strength.

    PubMed

    Chtara, Moktar; Rouissi, Mehdi; Bragazzi, Nicola L; Owen, Adam L; Haddad, Monoem; Chamari, Karim

    2018-04-01

    Soccer requires maintaining unilateral balance when executing movement with the contralateral leg. Despite the fact that balance requires standing with maintaining isometric posture with the support leg, currently there is a lack of studies regarding the implication of isometric strength on dynamic balance's performance among young soccer players. Therefore, the aim of this study was to examine the relationship between the Y-Balance Test and 12 lower limbs isometric strength tests. Twenty-six right footed soccer players (mean±SD, age=16.2±1.6 years, height=175±4.2 cm, body mass=68.8±6.1 kg) performed a dynamic balance test (star excursion balance-test with dominant- (DL) and nondominant-legs (NDL). Furthermore, maximal isometric contraction tests of 12 lower limb muscle groups were assessed in DL and NDL. Correlations analysis reported a significant positive relationship between some of isometric strength tests (with DL and NDL) and the Y-Balance Test. Furthermore, stepwise multiple regression analysis showed that maximal isometric strength explained between 21.9% and 49.4% of the variance of the Y-Balance Test. Moreover, maximal isometric strength was dependent upon the reaching angle of the Y-Balance Test and the leg used to support body weight. This study showed a significant implication of maximal isometric strength of the lower limb and the Y-Balance Test. Moreover, the present investigation suggests the implementation of specific lower limb strengthening exercises depending on players' deficit in each reaching direction and leg. This result suggests that further studies should experiment if increasing lower limbs isometric strength could improve dynamic balance ability among young soccer players.

  9. Development of the NTF-117S Semi-Span Balance

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C.

    2010-01-01

    A new high-capacity semi-span force and moment balance has recently been developed for use at the National Transonic Facility at the NASA Langley Research Center. This new semi-span balance provides the NTF a new measurement capability that will support testing of semi-span test models at transonic high-lift testing regimes. Future testing utilizing this new balance capability will include active circulation control and propulsion simulation testing of semi-span transonic wing models. The NTF has recently implemented a new highpressure air delivery station that will provide both high and low mass flow pressure lines that are routed out to the semi-span models via a set high/low pressure bellows that are indirectly linked to the metric end of the NTF-117S balance. A new check-load stand is currently being developed to provide the NTF with an in-house capability that will allow for performing check-loads on the NTF-117S balance in order to determine the pressure tare affects on the overall performance of the balance. An experimental design is being developed that will allow for experimentally assessing the static pressure tare affects on the balance performance.

  10. A model of the endogenous glucose balance incorporating the characteristics of glucose transporters.

    PubMed

    Arleth, T; Andreassen, S; Federici, M O; Benedetti, M M

    2000-07-01

    This paper describes the development and preliminary test of a model of the endogenous glucose balance that incorporates the characteristics of the glucose transporters GLUT1, GLUT3 and GLUT4. In the modeling process the model is parameterized with nine parameters that are subsequently estimated from data in the literature on the hepatic- and endogenous- balances at various combinations of blood glucose and insulin levels. The ability of the resulting endogenous balance to fit blood glucose measured from patients was tested on 20 patients. The fit obtained with this model compared favorably with the fit obtained with the endogenous balance currently incorporated in the DIAS system.

  11. Reliability and Validity Evidence of Multiple Balance Assessments in Athletes With a Concussion

    PubMed Central

    Murray, Nicholas; Salvatore, Anthony; Powell, Douglas; Reed-Jones, Rebecca

    2014-01-01

    Context: An estimated 300 000 sport-related concussion injuries occur in the United States annually. Approximately 30% of individuals with concussions experience balance disturbances. Common methods of balance assessment include the Clinical Test of Sensory Organization and Balance (CTSIB), the Sensory Organization Test (SOT), the Balance Error Scoring System (BESS), and the Romberg test; however, the National Collegiate Athletic Association recommended the Wii Fit as an alternative measure of balance in athletes with a concussion. A central concern regarding the implementation of the Wii Fit is whether it is reliable and valid for measuring balance disturbance in athletes with concussion. Objective: To examine the reliability and validity evidence for the CTSIB, SOT, BESS, Romberg test, and Wii Fit for detecting balance disturbance in athletes with a concussion. Data Sources: Literature considered for review included publications with reliability and validity data for the assessments of balance (CTSIB, SOT, BESS, Romberg test, and Wii Fit) from PubMed, PsycINFO, and CINAHL. Data Extraction: We identified 63 relevant articles for consideration in the review. Of the 63 articles, 28 were considered appropriate for inclusion and 35 were excluded. Data Synthesis: No current reliability or validity information supports the use of the CTSIB, SOT, Romberg test, or Wii Fit for balance assessment in athletes with a concussion. The BESS demonstrated moderate to high reliability (interclass correlation coefficient = 0.87) and low to moderate validity (sensitivity = 34%, specificity = 87%). However, the Romberg test and Wii Fit have been shown to be reliable tools in the assessment of balance in Parkinson patients. Conclusions: The BESS can evaluate balance problems after a concussion. However, it lacks the ability to detect balance problems after the third day of recovery. Further investigation is needed to establish the use of the CTSIB, SOT, Romberg test, and Wii Fit for assessing balance in athletes with concussions. PMID:24933431

  12. Mobility Lab to Assess Balance and Gait with Synchronized Body-worn Sensors

    PubMed Central

    Mancini, Martina; King, Laurie; Salarian, Arash; Holmstrom, Lars; McNames, James; Horak, Fay B

    2014-01-01

    This paper is a commentary to introduce how rehabilitation professionals can use a new, body-worn sensor system to obtain objective measures of balance and gait. Current assessments of balance and gait in clinical rehabilitation are largely limited to subjective scales, simple stop-watch measures, or complex, expensive machines not practical or largely available. Although accelerometers and gyroscopes have been shown to accurately quantify many aspects of gait and balance kinematics, only recently a comprehensive, portable system has become available for clinicians. By measuring body motion during tests that clinicians are already performing, such as the Timed Up and Go test (TUG) and the Clinical Test of Sensory Integration for Balance (CITSIB), the additional time for assessment is minimal. By providing instant analysis of balance and gait and comparing a patient’s performance to age-matched control values, therapists receive an objective, sensitive screening profile of balance and gait strategies. This motion screening profile can be used to identify mild abnormalities not obvious with traditional clinical testing, measure small changes due to rehabilitation, and design customized rehabilitation programs for each individual’s specific balance and gait deficits. PMID:24955286

  13. NASA LaRC Strain Gage Balance Design Concepts

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    1999-01-01

    The NASA Langley Research Center (LaRC) has been designing strain-gage balances for more than fifty years. These balances have been utilized in Langley's wind tunnels, which span over a wide variety of aerodynamic test regimes, as well as other ground based test facilities and in space flight applications. As a result, the designs encompass a large array of sizes, loads, and environmental effects. Currently Langley has more than 300 balances available for its researchers. This paper will focus on the design concepts for internal sting mounted strain-gage balances. However, these techniques can be applied to all force measurement design applications. Strain-gage balance concepts that have been developed over the years including material selection, sting, model interfaces, measuring, sections, fabrication, strain-gaging and calibration will be discussed.

  14. Testing for Accountability: A Balancing Act That Challenges Current Testing Practices and Theories

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2015-01-01

    Koretz, in his article published in this issue, provides compelling arguments that the high stakes currently associated with accountability testing lead to behavioral changes in students, teachers, and other stakeholders that often have negative consequences, such as inflated scores. Koretz goes on to argue that these negative consequences require…

  15. A computer vision based candidate for functional balance test.

    PubMed

    Nalci, Alican; Khodamoradi, Alireza; Balkan, Ozgur; Nahab, Fatta; Garudadri, Harinath

    2015-08-01

    Balance in humans is a motor skill based on complex multimodal sensing, processing and control. Ability to maintain balance in activities of daily living (ADL) is compromised due to aging, diseases, injuries and environmental factors. Center for Disease Control and Prevention (CDC) estimate of the costs of falls among older adults was $34 billion in 2013 and is expected to reach $54.9 billion in 2020. In this paper, we present a brief review of balance impairments followed by subjective and objective tools currently used in clinical settings for human balance assessment. We propose a novel computer vision (CV) based approach as a candidate for functional balance test. The test will take less than a minute to administer and expected to be objective, repeatable and highly discriminative in quantifying ability to maintain posture and balance. We present an informal study with preliminary data from 10 healthy volunteers, and compare performance with a balance assessment system called BTrackS Balance Assessment Board. Our results show high degree of correlation with BTrackS. The proposed system promises to be a good candidate for objective functional balance tests and warrants further investigations to assess validity in clinical settings, including acute care, long term care and assisted living care facilities. Our long term goals include non-intrusive approaches to assess balance competence during ADL in independent living environments.

  16. A systematic review of balance and fall risk assessments with mobile phone technology.

    PubMed

    Roeing, Kathleen L; Hsieh, Katherine L; Sosnoff, Jacob J

    2017-11-01

    Falls are a major health concern for older adults. Preventative measures can help reduce the incidence and severity of falls. Methods for assessing balance and fall risk factors are necessary to effectively implement preventative measures. Research groups are currently developing mobile applications to enable seniors, caregivers, and clinicians to monitor balance and fall risk. The following systematic review assesses the current state of mobile health apps for testing balance as a fall risk factor. Thirteen studies were identified and included in the review and analyzed based on study design, population, sample size, measures of balance, main outcome measures, and evaluation of validity and reliability. All studies successfully tested their applications, but only 38% evaluated the validity, and 23% evaluated the reliability of their applications. Of those, all applications were found to accurately and reliably measure balance on select variables. Four of the 13 studies included special populations groups. Out of the 13 studies, 12 reported clinicians as their intended user and seven reported seniors as their intended user. Further research should examine the validity of mobile health applications as well as report on the application's usability. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Balance Assessment Practices and Use of Standardized Balance Measures Among Ontario Physical Therapists

    PubMed Central

    Sibley, Kathryn M.; Straus, Sharon E.; Inness, Elizabeth L.; Salbach, Nancy M.

    2011-01-01

    Background Balance impairment is a significant problem for older adults, as it can influence daily functioning. Treating balance impairment in this population is a major focus of physical therapist practice. Objective The purpose of this study was to document current practices in clinical balance assessment and compare components of balance assessed and measures used across practice areas among physical therapists. Design This was a cross-sectional study. Methods A survey questionnaire was mailed to 1,000 practicing physical therapists in Ontario, Canada. Results Three hundred sixty-nine individuals completed the survey questionnaire. More than 80% of respondents reported that they regularly (more than 60% of the time) assessed postural alignment, static and dynamic stability, functional balance, and underlying motor systems. Underlying sensory systems, cognitive contributions to balance, and reactive control were regularly assessed by 59.6%, 55.0%, and 41.2% of the respondents, respectively. The standardized measures regularly used by the most respondents were the single-leg stance test (79.1%), the Berg Balance Scale (45.0%), and the Timed “Up & Go” Test (27.6%). There was considerable variation in the components of balance assessed and measures used by respondents treating individuals in the orthopedic, neurologic, geriatric, and general rehabilitation populations. Limitations The survey provides quantitative data about what is done to assess balance, but does not explain the factors influencing current practice. Conclusions Many important components of balance and standardized measures are regularly used by physical therapists to assess balance. Further research, however, is needed to understand the factors contributing to the relatively lower rates of assessing reactive control, the component of balance most directly responsible for avoiding a fall. PMID:21868613

  18. Differential Sensitivity Between a Virtual Reality Balance Module and Clinically Used Concussion Balance Modalities.

    PubMed

    Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M

    2016-03-01

    Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Retrospective case-control study. Institutional research laboratory. Normal controls (n = 94) and concussed participants (n = 27). All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours postinjury) and tested in the laboratory between 7 and 10 days postinjury. Receiver operating characteristic curves were performed to establish the VR module's sensitivity and specificity for detecting lingering balance deficits. Final balance score. For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. The VR balance module has high sensitivity and specificity for detecting subacute balance deficits after concussive injury. The VR balance has a high subacute sensitivity and specificity as a stand-alone balance assessment tool and may detect ongoing balance deficits not readily detectable by the Balance Error Scoring System or Sensory Organization Test. Virtual reality balance modules may be a beneficial addition to the current clinical concussion diagnostic battery.

  19. Load Balancing Strategies for Multiphase Flows on Structured Grids

    NASA Astrophysics Data System (ADS)

    Olshefski, Kristopher; Owkes, Mark

    2017-11-01

    The computation time required to perform large simulations of complex systems is currently one of the leading bottlenecks of computational research. Parallelization allows multiple processing cores to perform calculations simultaneously and reduces computational times. However, load imbalances between processors waste computing resources as processors wait for others to complete imbalanced tasks. In multiphase flows, these imbalances arise due to the additional computational effort required at the gas-liquid interface. However, many current load balancing schemes are only designed for unstructured grid applications. The purpose of this research is to develop a load balancing strategy while maintaining the simplicity of a structured grid. Several approaches are investigated including brute force oversubscription, node oversubscription through Message Passing Interface (MPI) commands, and shared memory load balancing using OpenMP. Each of these strategies are tested with a simple one-dimensional model prior to implementation into the three-dimensional NGA code. Current results show load balancing will reduce computational time by at least 30%.

  20. Design and development of a low-cost biphasic charge-balanced functional electric stimulator and its clinical validation.

    PubMed

    Shendkar, Chandrashekhar; Lenka, Prasanna K; Biswas, Abhishek; Kumar, Ratnesh; Mahadevappa, Manjunatha

    2015-10-01

    Functional electric stimulators that produce near-ideal, charge-balanced biphasic stimulation waveforms with interphase delay are considered safer and more efficacious than conventional stimulators. An indigenously designed, low-cost, portable FES device named InStim is developed. It features a charge-balanced biphasic single channel. The authors present the complete design, mathematical analysis of the circuit and the clinical evaluation of the device. The developed circuit was tested on stroke patients affected by foot drop problems. It was tested both under laboratory conditions and in clinical settings. The key building blocks of this circuit are low dropout regulators, a DC-DC voltage booster and a single high-power current source OP-Amp with current-limiting capabilities. This allows the device to deliver high-voltage, constant current, biphasic pulses without the use of a bulky step-up transformer. The advantages of the proposed design over the currently existing devices include improved safety features (zero DC current, current-limiting mechanism and safe pulses), waveform morphology that causes less muscle fatigue, cost-effectiveness and compact power-efficient circuit design with minimal components. The device is also capable of producing appropriate ankle dorsiflexion in patients having foot drop problems of various Medical Research Council scale grades.

  1. Assessing and training standing balance in older adults: a novel approach using the 'Nintendo Wii' Balance Board.

    PubMed

    Young, William; Ferguson, Stuart; Brault, Sébastien; Craig, Cathy

    2011-02-01

    Older adults, deemed to be at a high risk of falling, are often unable to participate in dynamic exercises due to physical constraints and/or a fear of falling. Using the Nintendo 'Wii Balance Board' (WBB) (Nintendo, Kyoto, Japan), we have developed an interface that allows a user to accurately calculate a participant's centre of pressure (COP) and incorporate it into a virtual environment to create bespoke diagnostic or training programmes that exploit real-time visual feedback of current COP position. This platform allows researchers to design, control and validate tasks that both train and test balance function. This technology provides a safe, adaptable and low-cost balance training/testing solution for older adults, particularly those at high-risk of falling. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  3. Balancing Selection and Its Effects on Sequences in Nearby Genome Regions

    PubMed Central

    Charlesworth, Deborah

    2006-01-01

    Our understanding of balancing selection is currently becoming greatly clarified by new sequence data being gathered from genes in which polymorphisms are known to be maintained by selection. The data can be interpreted in conjunction with results from population genetics models that include recombination between selected sites and nearby neutral marker variants. This understanding is making possible tests for balancing selection using molecular evolutionary approaches. Such tests do not necessarily require knowledge of the functional types of the different alleles at a locus, but such information, as well as information about the geographic distribution of alleles and markers near the genes, can potentially help towards understanding what form of balancing selection is acting, and how long alleles have been maintained. PMID:16683038

  4. A Single-Vector Force Calibration Method Featuring the Modern Design of Experiments

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Morton, M.; Draper, N.; Line, W.

    2001-01-01

    This paper proposes a new concept in force balance calibration. An overview of the state-of-the-art in force balance calibration is provided with emphasis on both the load application system and the experimental design philosophy. Limitations of current systems are detailed in the areas of data quality and productivity. A unique calibration loading system integrated with formal experimental design techniques has been developed and designated as the Single-Vector Balance Calibration System (SVS). This new concept addresses the limitations of current systems. The development of a quadratic and cubic calibration design is presented. Results from experimental testing are compared and contrasted with conventional calibration systems. Analyses of data are provided that demonstrate the feasibility of this concept and provide new insights into balance calibration.

  5. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance.

    PubMed

    Clark, Ross A; Bryant, Adam L; Pua, Yonghao; McCrory, Paul; Bennell, Kim; Hunt, Michael

    2010-03-01

    Impaired standing balance has a detrimental effect on a person's functional ability and increases their risk of falling. There is currently no validated system which can precisely quantify center of pressure (COP), an important component of standing balance, while being inexpensive, portable and widely available. The Wii Balance Board (WBB) fits these criteria, and we examined its validity in comparison with the 'gold standard'-a laboratory-grade force platform (FP). Thirty subjects without lower limb pathology performed a combination of single and double leg standing balance tests with eyes open or closed on two separate occasions. Data from the WBB were acquired using a laptop computer. The test-retest reliability for COP path length for each of the testing devices, including a comparison of the WBB and FP data, was examined using intraclass correlation coefficients (ICC), Bland-Altman plots (BAP) and minimum detectable change (MDC). Both devices exhibited good to excellent COP path length test-retest reliability within-device (ICC=0.66-0.94) and between-device (ICC=0.77-0.89) on all testing protocols. Examination of the BAP revealed no relationship between the difference and the mean in any test, however the MDC values for the WBB did exceed those of the FP in three of the four tests. These findings suggest that the WBB is a valid tool for assessing standing balance. Given that the WBB is portable, widely available and a fraction of the cost of a FP, it could provide the average clinician with a standing balance assessment tool suitable for the clinical setting. Copyright 2009 Elsevier B.V. All rights reserved.

  6. No Such Thing as Balance

    ERIC Educational Resources Information Center

    Zigler, Ted

    2007-01-01

    The demands of the principalship today are keeping good people away. They do not want to deal with the demands on their time, the drive for great test scores, hovering parents, neglectful parents, teachers' needs, and the political hot spot that some schools have become in their communities. They do not see current principals finding balance and…

  7. Impact of electromagnetic fields on human vestibular system and standing balance: pilot results and future developments

    NASA Astrophysics Data System (ADS)

    Allen, A.; Villard, S.; Corbacio, M.; Goulet, D.; Plante, M.; Souques, M.; Deschamps, F.; Ostiguy, G.; Lambrozo, J.; Thomas, A. W.; Legros, A.

    2016-03-01

    Although studies have found that extremely low-frequency (ELF, < 300 Hz) magnetic fields (MF) can modulate human standing balance, the acute effects of electromagnetic fields on standing balance have not been systematically investigated. This work aims to establish the threshold for acute standing balance modulation during ELFMF exposure. One hundred volunteers will be exposed to transcranial electric stimulations (Direct Current - DC and Alternating Current - AC, 1 mA) and ELFMF (0 to 160 Hz, 0 to 100 mT). The displacement of their center of pressure will be collected and analyzed as an indicator of vestibular performance. During pilot testing (n=6), we found increased lateral sway with DC, and to a lesser extent, AC exposure. The ELFMF exposure system still needs to be adapted to allow meaningful results. Future protocol design will test for possible effects due to exposures in the radiofrequency range (i.e. above 3 kHz). These results will contribute to the literature documenting exposure guidelines aiming to protect workers and the general public.

  8. Smartphone Applications to Perform Body Balance Assessment: a Standardized Review.

    PubMed

    Moral-Munoz, Jose A; Esteban-Moreno, Bernabe; Herrera-Viedma, Enrique; Cobo, Manuel J; Pérez, Ignacio J

    2018-05-29

    Body balance disorders are related to different injuries that contribute to a wide range of healthcare issues. The social and financial costs of these conditions are high. Therefore, quick and reliable body balance assessment can contribute to the prevention of injuries, as well as enhancement of clinical rehabilitation. Moreover, the use of smartphone applications is increasing rapidly since they incorporate different hardware components that allow for body balance assessment. The present study aims to show an analysis of the current applications available on Google Play Store TM and iTunes App Store TM to measure this physical condition, using the Mobile Application Rating Scale (MARS). Three iOS and two Android applications met the inclusion criteria. Three applications have scientific support, Balance test YMED, Balance Test by Slani, and Sway. Furthermore, according to MARS, the main scores for each evaluated domain were: Engagement (2.04), Functionality (3.8), Esthetics (3.53), and Information (3.80). The reviewed applications targeted to assess body balance obtained good mean scores. Sway is the app with highest scores in each MARS domain, followed by iBalance Fitness and Gyrobalance.

  9. Identifying Balance Measures Most Likely to Identify Recent Falls.

    PubMed

    Criter, Robin E; Honaker, Julie A

    2016-01-01

    Falls sustained by older adults are an increasing health care issue. Early identification of those at risk for falling can lead to successful prevention of falls. Balance complaints are common among individuals who fall or are at risk for falling. The purpose of this study was to evaluate the clinical utility of a multifaceted balance protocol used for fall risk screening, with the hypothesis that this protocol would successfully identify individuals who had a recent fall (within the previous 12 months). This is a retrospective review of 30 individuals who self-referred for a free fall risk screening. Measures included case history, Activities-Specific Balance Confidence Scale, modified Clinical Test of Sensory Interaction on Balance, Timed Up and Go test, and Dynamic Visual Acuity. Statistical analyses were focused on the ability of the test protocol to identify a fall within the past 12 months and included descriptive statistics, clinical utility indices, logistic regression, receiver operating characteristic curve, area under the curve analysis, effect size (Cohen d), and Spearman correlation coefficients. All individuals who self-referred for this free screening had current imbalance complaints, and were typically women (70%), had a mean age of 77.2 years, and had a fear of falling (70%). Almost half (46.7%) reported at least 1 lifetime fall and 40.0% within the past 12 months. Regression analysis suggested that the Timed Up and Go test was the most important indicator of a recent fall. A cutoff score of 12 or more seconds was optimal (sensitivity: 83.3%; specificity: 61.1%). Older adults with current complaints of imbalance have a higher rate of falls, fall-related injury, and fear of falling than the general community-dwelling public. The Timed Up and Go test is useful for determining recent fall history in individuals with imbalance.

  10. The Impact of a Rigorous Multiple Work Shift Schedule and Day Versus Night Shift Work on Reaction Time and Balance Performance in Female Nurses: A Repeated Measures Study.

    PubMed

    Thompson, Brennan J; Stock, Matt S; Banuelas, Victoria K; Akalonu, Chibuzo C

    2016-07-01

    The aim of this study was to determine the impact of a demanding work schedule involving long, cumulative work shifts on response time and balance-related performance outcomes and to evaluate the prevalence of musculoskeletal disorders between day and night shift working nurses. A questionnaire was used to identify the prevalence of past (12-month) and current (7-day) musculoskeletal disorders. Nurses worked three 12-hour work shifts in a 4-day period. Reaction time and balance tests were conducted before and after the work period. The work period induced impairments for reaction time, errors on reaction time tasks, and balance performance, independent of shift type. Musculoskeletal symptom prevalence was high in workers of both work shifts. Compressed work shifts caused performance-based fatigue in nurses. Reaction time and balance tests may be sensitive fatigue identification markers in nurses.

  11. Functional performance testing of the hip in athletes: a systematic review for reliability and validity.

    PubMed

    Kivlan, Benjamin R; Martin, Robroy L

    2012-08-01

    The purpose of this study was to systematically review the literature for functional performance tests with evidence of reliability and validity that could be used for a young, athletic population with hip dysfunction. A search of PubMed and SPORTDiscus databases were performed to identify movement, balance, hop/jump, or agility functional performance tests from the current peer-reviewed literature used to assess function of the hip in young, athletic subjects. The single-leg stance, deep squat, single-leg squat, and star excursion balance tests (SEBT) demonstrated evidence of validity and normative data for score interpretation. The single-leg stance test and SEBT have evidence of validity with association to hip abductor function. The deep squat test demonstrated evidence as a functional performance test for evaluating femoroacetabular impingement. Hop/Jump tests and agility tests have no reported evidence of reliability or validity in a population of subjects with hip pathology. Use of functional performance tests in the assessment of hip dysfunction has not been well established in the current literature. Diminished squat depth and provocation of pain during the single-leg balance test have been associated with patients diagnosed with FAI and gluteal tendinopathy, respectively. The SEBT and single-leg squat tests provided evidence of convergent validity through an analysis of kinematics and muscle function in normal subjects. Reliability of functional performance tests have not been established on patients with hip dysfunction. Further study is needed to establish reliability and validity of functional performance tests that can be used in a young, athletic population with hip dysfunction. 2b (Systematic Review of Literature).

  12. Clinical balance assessment: perceptions of commonly-used standardized measures and current practices among physiotherapists in Ontario, Canada.

    PubMed

    Sibley, Kathryn M; Straus, Sharon E; Inness, Elizabeth L; Salbach, Nancy M; Jaglal, Susan B

    2013-03-20

    Balance impairment is common in multiple clinical populations, and comprehensive assessment is important for identifying impairments, planning individualized treatment programs, and evaluating change over time. However, little information is available regarding whether clinicians who treat balance are satisfied with existing assessment tools. In 2010 we conducted a cross-sectional survey of balance assessment practices among physiotherapists in Ontario, Canada, and reported on the use of standardized balance measures (Sibley et al. 2011 Physical Therapy; 91: 1583-91). The purpose of this study was to analyse additional survey data and i) evaluate satisfaction with current balance assessment practices and standardized measures among physiotherapists who treat adult or geriatric populations with balance impairment, and ii) identify factors associated with satisfaction. The questionnaire was distributed to 1000 practicing physiotherapists. This analysis focuses on questions in which respondents were asked to rate their general perceptions about balance assessment, the perceived utility of individual standardized balance measures, whether they wanted to improve balance assessment practices, and why. Data were summarized with descriptive statistics and utility of individual measures was compared across clinical practice areas (orthopaedic, neurological, geriatric or general rehabilitation). The questionnaire was completed by 369 respondents, of which 43.4% of respondents agreed that existing standardized measures of balance meet their needs. In ratings of individual measures, the Single Leg Stance test and Berg Balance Scale were perceived as useful for clinical decision-making and evaluating change over time by over 70% of respondents, and the Timed Up-and-Go test was perceived as useful for decision-making by 56.9% of respondents and useful for evaluating change over time by 62.9% of respondents, but there were significant differences across practice groups. Seventy-nine percent of respondents wanted to improve their assessments, identifying individual, environmental and measure-specific barriers. The most common barriers were lack of time and knowledge. This study offers new information on issues affecting the evaluation of balance in clinical settings from a broad sample of physiotherapists. Continued work to address barriers by specific practice area will be critical for the success of any intervention attempting to implement optimal balance assessment practices in the clinical setting.

  13. The community balance and mobility scale alleviates the ceiling effects observed in the currently used gait and balance assessments for the community-dwelling older adults.

    PubMed

    Balasubramanian, Chitralakshmi K

    2015-01-01

    Currently used balance assessments show a ceiling effect and lack activities essential for community mobility in higher-functioning older adults. The aim of this study was to investigate the reliability and validity of the Community Balance and Mobility (CB&M) Scale in a high-functioning community-dwelling older adult population since the CB&M Scale includes assessment of several challenging tasks and may alleviate the ceiling effects observed in commonly used gait and balance assessments for this cohort. A convenience sample of 40 older adults (73.4 ± 6.9 years) participated in this cross-sectional study. Previously standardized balance and mobility assessments measuring similar constructs as the CB&M were used for validation. Outcomes included Timed Up and Go Test, Berg Balance Scale (BBS), Dynamic Gait Index (DGI), Functional Reach Test (FRT), Short Physical Performance Battery (SPPB), 6-Minute Walk Test (6MWT), Activities Specific Balance Confidence scale (ABC), gait speed, and intraindividual gait variability. A falls questionnaire documented the history of falls. Rater reliability (ICC > 0.95) and internal consistency (α= .97) of the CB&M scale were high. CB&M scores demonstrated strong correlations with DGI, BBS, SPPB, and 6MWT (ρ= 0.70-0.87; P < .01); moderate correlations with falls history, TUG, ABC, and gait speed (ρ= 0.44-0.65; P < .01); and low correlations with FRT, swing and stance time variability (ρ= 0.34-0.37; P < .05). Dynamic Gait Index, BBS, SPPB, and ABC assessments demonstrated ceiling effects (7.5%-32.5%), while no floor or ceiling effects were noted on the CB&M. Logistic regression model showed that the CB&M scores significantly predicted falls history (χ(2) = 6.66, odds ratio = 0.92; P < .01). Area under the curve for the CB&M scale was 0.80 (95% CI: 0.65-0.95). A score of CB&M ≤ 39 was the optimal trade-off between sensitivity and specificity (sensitivity = 79%, specificity = 76%) and a score of CB&M ≤ 45 maximized sensitivity (sensitivity = 93%, specificity = 60%) to discriminate persons with 2 or more falls from those with fewer than 2 falls in the past year. CB&M scale is reliable and valid to evaluate gait, balance, and mobility in community-dwelling older adults. Unlike some currently used balance and mobility assessments for the community-dwelling older adults, the CB&M scale did not show a ceiling in detection of balance and mobility deficits. In addition, cutoff scores have been proposed that might serve as criteria to discriminate older adults with balance and mobility deficits. The CB&M scale might enable assessment of balance and mobility limitations masked by other assessments and help design interventions to improve community mobility and sustain independence in the higher-functioning community-dwelling older adult.

  14. Scheduling viability tests for seeds in long-term storage based on a Bayesian Multi-Level Model

    USDA-ARS?s Scientific Manuscript database

    Genebank managers conduct viability tests on stored seeds so they can replace lots that have viability near a critical threshold, such as 50 or 85% germination. Currently, these tests are typically scheduled at uniform intervals; testing every 5 years is common. A manager needs to balance the cost...

  15. FUNCTIONAL PERFORMANCE TESTING OF THE HIP IN ATHLETES: A SYSTEMATIC REVIEW FOR RELIABILITY AND VALIDITY

    PubMed Central

    Martin, RobRoy L.

    2012-01-01

    Purpose/Background: The purpose of this study was to systematically review the literature for functional performance tests with evidence of reliability and validity that could be used for a young, athletic population with hip dysfunction. Methods: A search of PubMed and SPORTDiscus databases were performed to identify movement, balance, hop/jump, or agility functional performance tests from the current peer-reviewed literature used to assess function of the hip in young, athletic subjects. Results: The single-leg stance, deep squat, single-leg squat, and star excursion balance tests (SEBT) demonstrated evidence of validity and normative data for score interpretation. The single-leg stance test and SEBT have evidence of validity with association to hip abductor function. The deep squat test demonstrated evidence as a functional performance test for evaluating femoroacetabular impingement. Hop/Jump tests and agility tests have no reported evidence of reliability or validity in a population of subjects with hip pathology. Conclusions: Use of functional performance tests in the assessment of hip dysfunction has not been well established in the current literature. Diminished squat depth and provocation of pain during the single-leg balance test have been associated with patients diagnosed with FAI and gluteal tendinopathy, respectively. The SEBT and single-leg squat tests provided evidence of convergent validity through an analysis of kinematics and muscle function in normal subjects. Reliability of functional performance tests have not been established on patients with hip dysfunction. Further study is needed to establish reliability and validity of functional performance tests that can be used in a young, athletic population with hip dysfunction. Level of Evidence: 2b (Systematic Review of Literature) PMID:22893860

  16. Application of superconducting coils to the NASA prototype magnetic balance

    NASA Technical Reports Server (NTRS)

    Haldeman, C. W.; Kraemer, R. A.; Phey, S. W.; Alishahi, M. M.; Covert, E. E.

    1981-01-01

    Application of superconducting coils to a general purpose magnetic balance was studied. The most suitable currently available superconducting cable for coils appears to be a bundle of many fine wires which are transposed and are mechanically confined. Sample coils were tested at central fields up to .5 Tesla, slewing rates up to 53 Tesla/ sec and frequencies up to 30 Hz. The ac losses were measured from helium boil-off and were approximately 20% higher than those calculated. Losses were dominated by hysteresis and a model for loss calculation which appears suitable for design purposes is presented along with computer listings. Combinations of two coils were also tested and interaction losses are reported. Two feasible geometries are also presented for prototype magnetic balance using superconductors.

  17. Design and application of a test rig for super-critical power transmission shafts

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Smalley, A.

    1979-01-01

    The design, assembly, operational check-out and application of a test facility for testing supercritical power transmission shafts under realistic conditions of size, speed and torque are described. Alternative balancing methods and alternative damping mechanisms are demonstrated and compared. The influence of torque upon the unbalance distribution is studied, and its effect on synchronous vibrations is investigated. The feasibility of operating supercritical power transmission shafting is demonstrated, but the need for careful control, by balancing and damping, of synchronous and nonsynchronous vibrations is made clear. The facility was demonstrated to be valuable for shaft system development programs and studies for both advanced and current-production hardware.

  18. THE RELATIONSHIP BETWEEN VARIOUS MODES OF SINGLE LEG POSTURAL CONTROL ASSESSMENT

    PubMed Central

    Schmitz, Randy

    2012-01-01

    Purpose/Background: While various techniques have been developed to assess the postural control system, little is known about the relationship between single leg static and functional balance. The purpose of the current study was to determine the relationship between the performance measures of several single leg postural stability tests. Methods: Forty six recreationally active college students (17 males, 29 females, 21±3 yrs, 173±10 cm) performed six single leg tests in a counterbalanced order: 1) Firm Surface-Eyes Open, 2) Firm Surface-Eyes Closed, 3) Multiaxial Surface-Eyes Open, 4) Multiaxial Surface-Eyes Closed, 5) Star Excursion Balance Test (posterior medial reach), 6) Single leg Hop-Stabilization Test. Bivariate correlations were conducted between the six outcome variables. Results: Mild to moderate correlations existed between the static tests. No significant correlations existed involving either of the functional tests. Conclusions: The results indicate that while performance of static balance tasks are mildly to moderately related, they appear to be unrelated to functional reaching or hopping movements, supporting the utilization of a battery of tests to determine overall postural control performance. Level of Evidence: 3b PMID:22666640

  19. Validation of a virtual reality balance module for use in clinical concussion assessment and management.

    PubMed

    Teel, Elizabeth F; Slobounov, Semyon M

    2015-03-01

    To determine the criterion and content validity of a virtual reality (VR) balance module for use in clinical practice. Retrospective, VR balance module completed by participants during concussion baseline or assessment testing session. A Pennsylvania State University research laboratory. A total of 60 control and 28 concussed students and athletes from the Pennsylvania State University. None. This study examined: (1) the relationship between VR composite balance scores (final, stationary, yaw, pitch, and roll) and area of the center-of-pressure (eyes open and closed) scores and (2) group differences (normal volunteers and concussed student-athletes) on VR composite balance scores. With the exception of the stationary composite score, all other VR balance composite scores were significantly correlated with the center of pressure data obtained from a force platform. Significant correlations ranged from r = -0.273 to -0.704 for the eyes open conditions and from r = -0.353 to -0.876 for the eyes closed condition. When examining group differences on the VR balance composite modules, the concussed group did significantly (P < 0.01) worse on all measures compared with the control group. The VR balance module met or exceeded the criterion and content validity standard set by the current balance tools and may be appropriate for use in a clinical concussion setting. Virtual reality balance module is a valid tool for concussion assessment in clinical settings. This novel type of balance assessment may be more sensitive to concussion diagnoses, especially later (7-10 days) in the recovery phase than current clinical balance tools.

  20. Results of a Pilates exercise program in patients with chronic non-specific low back pain: a randomized controlled trial.

    PubMed

    Valenza, M C; Rodríguez-Torres, J; Cabrera-Martos, I; Díaz-Pelegrina, A; Aguilar-Ferrándiz, M E; Castellote-Caballero, Y

    2017-06-01

    To investigate the effects of a Pilates exercise program on disability, pain, lumbar mobility, flexibility and balance in patients with chronic non-specific low back pain. Randomized controlled trial. University laboratory. A total of 54 patients with chronic non-specific low back pain. Patients were randomly allocated to an experimental group ( n=27) included in a Pilates exercise program or to a control group ( n=27) receiving information in a form of a leaflet. Disability (Roland-Morris Disability Questionnaire and Oswestry Disability Index), current, average and pain at it least and at its worst (Visual Analogue Scales), lumbar mobility (modified Shober test), flexibility (finger-to-floor test) and balance (single limb stance test) were measured at baseline and after the intervention. A between-group analysis showed significant differences in the intervention group compared to the control group for both disability scores, the Rolland-Morris questionnaire (mean change±standard deviation of 5.31±3.37 and 2.40±6.78 respectively and between-groups mean difference of 3.2 ± 4.12, p=0.003) and the Oswestry Disability Index ( p<0.001), current pain ( p=0.002) and pain at it least ( p=0.033), flexibility (0.032) and balance (0.043). An 8-week Pilates exercise program is effective in improving disability, pain, flexibility and balance in patients with chronic non-specific low back pain.

  1. Measuring standing balance in multiple sclerosis: Further progress towards an automatic and reliable method in clinical practice.

    PubMed

    Keune, Philipp M; Young, William R; Paraskevopoulos, Ioannis T; Hansen, Sascha; Muenssinger, Jana; Oschmann, Patrick; Müller, Roy

    2017-08-15

    Balance deficits in multiple sclerosis (MS) are often monitored by means of observer-rated tests. These may provide reliable data, but may also be time-consuming, subject to inter-rater variability, and potentially insensitive to mild fluctuations throughout the clinical course. On the other hand, laboratory assessments are often not available. The Nintendo Wii Balance Board (WBB) may represent a low-cost solution. The purpose of the current study was to examine the methodological quality of WBB data in MS (internal consistency, test-retest reliability), convergent validity with observer-rated tests (Berg Balance Scale, BBS; Timed-Up and Go Test, TUG), and discriminative validity concerning clinical status (Expanded Disability Status Scale, EDSS). Standing balance was assessed with the WBB for 4min in 63 MS patients at two assessment points, four months apart. Additionally, patients were examined with the BBS, TUG and the EDSS. A period of 4min on the WBB provided data characterized by excellent internal consistency and test-retest reliability. Significant correlations between WBB data and results of the BBS and TUG were obtained after merely 2min on the board. An EDSS median-split revealed that higher EDSS values (>3) were associated with significantly increased postural sway on the WBB. WBB measures reflecting postural sway are methodologically robust in MS, involving excellent internal consistency and test-retest reliability. They are also characterized by convergent validity with other considerably lengthier observer-rated balance measures (BBS) and sensitive to broader clinical characteristics (EDSS). The WBB may hence represent an effective, easy-to-use monitoring tool for MS patients in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Improve SSME power balance model

    NASA Technical Reports Server (NTRS)

    Karr, Gerald R.

    1992-01-01

    Effort was dedicated to development and testing of a formal strategy for reconciling uncertain test data with physically limited computational prediction. Specific weaknesses in the logical structure of the current Power Balance Model (PBM) version are described with emphasis given to the main routing subroutines BAL and DATRED. Selected results from a variational analysis of PBM predictions are compared to Technology Test Bed (TTB) variational study results to assess PBM predictive capability. The motivation for systematic integration of uncertain test data with computational predictions based on limited physical models is provided. The theoretical foundation for the reconciliation strategy developed in this effort is presented, and results of a reconciliation analysis of the Space Shuttle Main Engine (SSME) high pressure fuel side turbopump subsystem are examined.

  3. Clinical balance assessment: perceptions of commonly-used standardized measures and current practices among physiotherapists in Ontario, Canada

    PubMed Central

    2013-01-01

    Background Balance impairment is common in multiple clinical populations, and comprehensive assessment is important for identifying impairments, planning individualized treatment programs, and evaluating change over time. However, little information is available regarding whether clinicians who treat balance are satisfied with existing assessment tools. In 2010 we conducted a cross-sectional survey of balance assessment practices among physiotherapists in Ontario, Canada, and reported on the use of standardized balance measures (Sibley et al. 2011 Physical Therapy; 91: 1583-91). The purpose of this study was to analyse additional survey data and i) evaluate satisfaction with current balance assessment practices and standardized measures among physiotherapists who treat adult or geriatric populations with balance impairment, and ii) identify factors associated with satisfaction. Methods The questionnaire was distributed to 1000 practicing physiotherapists. This analysis focuses on questions in which respondents were asked to rate their general perceptions about balance assessment, the perceived utility of individual standardized balance measures, whether they wanted to improve balance assessment practices, and why. Data were summarized with descriptive statistics and utility of individual measures was compared across clinical practice areas (orthopaedic, neurological, geriatric or general rehabilitation). Results The questionnaire was completed by 369 respondents, of which 43.4% of respondents agreed that existing standardized measures of balance meet their needs. In ratings of individual measures, the Single Leg Stance test and Berg Balance Scale were perceived as useful for clinical decision-making and evaluating change over time by over 70% of respondents, and the Timed Up-and-Go test was perceived as useful for decision-making by 56.9% of respondents and useful for evaluating change over time by 62.9% of respondents, but there were significant differences across practice groups. Seventy-nine percent of respondents wanted to improve their assessments, identifying individual, environmental and measure-specific barriers. The most common barriers were lack of time and knowledge. Conclusions This study offers new information on issues affecting the evaluation of balance in clinical settings from a broad sample of physiotherapists. Continued work to address barriers by specific practice area will be critical for the success of any intervention attempting to implement optimal balance assessment practices in the clinical setting. PMID:23510277

  4. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  5. Validation of measures from the smartphone sway balance application: a pilot study.

    PubMed

    Patterson, Jeremy A; Amick, Ryan Z; Thummar, Tarunkumar; Rogers, Michael E

    2014-04-01

    A number of different balance assessment techniques are currently available and widely used. These include both subjective and objective assessments. The ability to provide quantitative measures of balance and posture is the benefit of objective tools, however these instruments are not generally utilized outside of research laboratory settings due to cost, complexity of operation, size, duration of assessment, and general practicality. The purpose of this pilot study was to assess the value and validity of using software developed to access the iPod and iPhone accelerometers output and translate that to the measurement of human balance. Thirty healthy college-aged individuals (13 male, 17 female; age = 26.1 ± 8.5 years) volunteered. Participants performed a static Athlete's Single Leg Test protocol for 10 sec, on a Biodex Balance System SD while concurrently utilizing a mobile device with balance software. Anterior/posterior stability was recorded using both devices, described as the displacement in degrees from level, and was termed the "balance score." There were no significant differences between the two reported balance scores (p = 0.818. Mean balance score on the balance platform was 1.41 ± 0.90, as compared to 1.38 ± 0.72 using the mobile device. There is a need for a valid, convenient, and cost-effective tool to objectively measure balance. Results of this study are promising, as balance score derived from the Smartphone accelerometers were consistent with balance scores obtained from a previously validated balance system. However, further investigation is necessary as this version of the mobile software only assessed balance in the anterior/posterior direction. Additionally, further testing is necessary on a healthy populations and as well as those with impairment of the motor control system. Level 2b (Observational study of validity)(1.)

  6. Dynamic testing of a single-degree-of-freedom strapdown gyroscope

    NASA Technical Reports Server (NTRS)

    Lory, C. B.; Feldman, J.; Sinkiewicz, J. S., Jr.

    1971-01-01

    Test methods and results are presented for the equivalent average input rate of a single-degree-of-freedom gyroscope operated both open loop and with a ternary-logic pulse-torque-to-balance loop during multiaxis angular oscillation. For the open-loop tests, good agreement was obtained with theoretical results. Two-axis testing was performed for oscillations about the Input-Output axes, the Input-Spin axes, and the Spin-Output axes. These tests run in the torque-to-balance mode revealed significant departures from open-loop results in the induced drift rate. An analysis is developed explaining much of the closed-loop data presented. Test data for the gryoscope in a ternary torque-to-balance loop with constant input rates is presented. The tests demonstrate that the instrument rate linearity does not change with interrogation frequency from 3,600 to 14,400 Hz if the torque coil is tuned to offer a resistive load to the current switch. Analysis cited shows that gyroscope lag compensation eliminates multiple pulsing and other equivalent forms of degraded resolution in a wide variety of quantizing loops. This result is test verified for the ternary delta-modulator loop.

  7. History of falls, gait, balance, and fall risks in older cancer survivors living in the community.

    PubMed

    Huang, Min H; Shilling, Tracy; Miller, Kara A; Smith, Kristin; LaVictoire, Kayle

    2015-01-01

    Older cancer survivors may be predisposed to falls because cancer-related sequelae affect virtually all body systems. The use of a history of falls, gait speed, and balance tests to assess fall risks remains to be investigated in this population. This study examined the relationship of previous falls, gait, and balance with falls in community-dwelling older cancer survivors. At the baseline, demographics, health information, and the history of falls in the past year were obtained through interviewing. Participants performed tests including gait speed, Balance Evaluation Systems Test, and short-version of Activities-specific Balance Confidence scale. Falls were tracked by mailing of monthly reports for 6 months. A "faller" was a person with ≥1 fall during follow-up. Univariate analyses, including independent sample t-tests and Fisher's exact tests, compared baseline demographics, gait speed, and balance between fallers and non-fallers. For univariate analyses, Bonferroni correction was applied for multiple comparisons. Baseline variables with P<0.15 were included in a forward logistic regression model to identify factors predictive of falls with age as covariate. Sensitivity and specificity of each predictor of falls in the model were calculated. Significance level for the regression analysis was P<0.05. During follow-up, 59% of participants had one or more falls. Baseline demographics, health information, history of falls, gaits speed, and balance tests did not differ significantly between fallers and non-fallers. Forward logistic regression revealed that a history of falls was a significant predictor of falls in the final model (odds ratio =6.81; 95% confidence interval =1.594-29.074) (P<0.05). Sensitivity and specificity for correctly identifying a faller using the positive history of falls were 74% and 69%, respectively. Current findings suggested that for community-dwelling older cancer survivors with mixed diagnoses, asking about the history of falls may help detect individuals at risk of falling.

  8. History of falls, gait, balance, and fall risks in older cancer survivors living in the community

    PubMed Central

    Huang, Min H; Shilling, Tracy; Miller, Kara A; Smith, Kristin; LaVictoire, Kayle

    2015-01-01

    Older cancer survivors may be predisposed to falls because cancer-related sequelae affect virtually all body systems. The use of a history of falls, gait speed, and balance tests to assess fall risks remains to be investigated in this population. This study examined the relationship of previous falls, gait, and balance with falls in community-dwelling older cancer survivors. At the baseline, demographics, health information, and the history of falls in the past year were obtained through interviewing. Participants performed tests including gait speed, Balance Evaluation Systems Test, and short-version of Activities-specific Balance Confidence scale. Falls were tracked by mailing of monthly reports for 6 months. A “faller” was a person with ≥1 fall during follow-up. Univariate analyses, including independent sample t-tests and Fisher’s exact tests, compared baseline demographics, gait speed, and balance between fallers and non-fallers. For univariate analyses, Bonferroni correction was applied for multiple comparisons. Baseline variables with P<0.15 were included in a forward logistic regression model to identify factors predictive of falls with age as covariate. Sensitivity and specificity of each predictor of falls in the model were calculated. Significance level for the regression analysis was P<0.05. During follow-up, 59% of participants had one or more falls. Baseline demographics, health information, history of falls, gaits speed, and balance tests did not differ significantly between fallers and non-fallers. Forward logistic regression revealed that a history of falls was a significant predictor of falls in the final model (odds ratio =6.81; 95% confidence interval =1.594–29.074) (P<0.05). Sensitivity and specificity for correctly identifying a faller using the positive history of falls were 74% and 69%, respectively. Current findings suggested that for community-dwelling older cancer survivors with mixed diagnoses, asking about the history of falls may help detect individuals at risk of falling. PMID:26425079

  9. Xe/Kr Selectivity Measurements using AgZ-PAN at Various Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garn, Troy Gerry; Greenhalgh, Mitchell Randy; Watson, Tony Leroy

    2015-05-01

    In preparation for planned FY-15 Xe/Kr multi-column testing, a series of experiments were performed to determine the selectivity of Xe over Kr using the silver converted mordenite-polyacrylonitrile (AgZ-PAN) sorbent. Results from these experiments will be used for parameter selection guidelines to define test conditions for Kr gas capture purity evaluations later this year. The currently configured experimental test bed was modified by installing a new cooling apparatus to permit future multi-column testing with independent column temperature control. The modified test bed will allow for multi-column testing to facilitate a Xe separation followed by a Kr separation using engineered form sorbents.more » Selectivity experiments were run at temperatures of 295, 250 and 220 K. Two feed gas compositions of 1000 ppmv Xe, 150 ppmv Kr in either a He or an air balance were used. AgZ-PAN sorbent selectivity was calculated using Xe and Kr capacity determinations. AgZ-PAN sorbent selectivities for Xe over Kr of 72 were calculated at room temperature (295 K) using the feed gas with a He balance and 34 using the feed gas with an air balance. As the test temperatures were decreased the selectivity of Xe over Kr also decreased due to an increase in both Xe and Kr capacities. At 220 K, the sorbent selectivities for Xe over Kr were 22 using the feed gas with a He balance and 28 using the feed gas with an air balance. The selectivity results indicate that AgZ-PAN used in the first column of a multi-column configuration will provide adequate partitioning of Xe from Kr in the tested temperature range to produce a more pure Kr end product for collection.« less

  10. Study protocol of a randomized clinical trial evaluating the effectiveness of a primary care intervention using the Nintendo™ Wii console to improve balance and decrease falls in the elderly.

    PubMed

    Montero-Alía, Pilar; Muñoz-Ortiz, Laura; Jiménez-González, Mercè; Benedicto-Pañell, Carla; Altimir-Losada, Salvador; López-Colomer, Yolanda; Prat-Rovira, Josep; Amargant-Rubio, Joan Francesc; Jastes, Sheila Mendes; Moreno-Buitrago, Ana; Rodríguez-Pérez, M Carmen; Teixidó-Vargas, Cristina; Albarrán-Sánchez, José Luís; Candel-Gil, Anna; Serra-Serra, Domènec; Martí-Cervantes, Juan José; Sánchez-Pérez, Carlos Andrés; Sañudo-Blanco, Lidia; Dolader-Olivé, Sònia; Torán-Monserrat, Pere

    2016-01-12

    Balance alteration is a risk factor for falls in elderly individuals that has physical, psychological and economic consequences. The objectives of this study are to evaluate the usefulness of an intervention utilizing the Nintendo™ Wii console in order to improve balance, thereby decreasing both the fear of falling as well as the number of falls, and to evaluate the correlation between balance as determined by the console and the value obtained in the Tinetti tests and the one foot stationary test. This is a controlled, randomized clinical trial of individual assignment, carried out on patients over 70 years in age, from five primary care centers in the city of Mataró (Barcelona). 380 patients were necessary for the intervention group that carried out the balance board exercises in 2 sessions per week for a 3 month period, and 380 patients in the control group who carried out their usual habits. Balance was evaluated using the Tinetti test, the one foot stationary test and with the console, at the start of the study, at the end of the intervention (3 months) and one year later. Quarterly telephone follow-up was also conducted to keep track of falls and their consequences. The study aimed to connect the community with a technology that may be an easy and fun way to assist the elderly in improving their balance without the need to leave home or join rehabilitation groups, offering greater comfort for this population and decreasing healthcare costs since there is no need for specialized personnel. Current Control Trial NCT02570178.

  11. Changes in the Relative Balance of Approach and Avoidance Inclinations to Use Alcohol Following Cue Exposure Vary in Low and High Risk Drinkers

    PubMed Central

    Hollett, Ross C.; Stritzke, Werner G. K.; Edgeworth, Phoebe; Weinborn, Michael

    2017-01-01

    According to the ambivalence model of craving, alcohol craving involves the dynamic interplay of separate approach and avoidance inclinations. Cue-elicited increases in approach inclinations are posited to be more likely to result in alcohol consumption and risky drinking behaviors only if unimpeded by restraint inclinations. Current study aims were (1) to test if changes in the net balance between approach and avoidance inclinations following alcohol cue exposure differentiate between low and high risk drinkers, and (2) if this balance is associated with alcohol consumption on a subsequent taste test. In two experiments (N = 60; N = 79), low and high risk social drinkers were exposed to alcohol cues, and pre- and post- approach and avoidance inclinations measured. An ad libitum alcohol consumption paradigm and a non-alcohol exposure condition were also included in Study 2. Cue-elicited craving was characterized by a predominant approach inclination only in the high risk drinkers. Conversely, approach inclinations were adaptively balanced by equally strong avoidance inclinations when cue-elicited craving was induced in low risk drinkers. For these low risk drinkers with the balanced craving profile, neither approach or avoidance inclinations predicted subsequent alcohol consumption levels during the taste test. Conversely, for high risk drinkers, where the approach inclination predominated, each inclination synergistically predicted subsequent drinking levels during the taste test. In conclusion, results support the importance of assessing both approach and avoidance inclinations, and their relative balance following alcohol cue exposure. Specifically, this more comprehensive assessment reveals changes in craving profiles that are not apparent from examining changes in approach inclinations alone, and it is this shift in the net balance that distinguishes high from low risk drinkers. PMID:28533759

  12. Life Balancing -- A Better Way to Balance Large Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, R. Dyche; Zane, Regan; Plett, Gregory

    2017-03-28

    A new cell balancing technology was developed under a Department of Energy contract which merges the DC/DC converter function into cell balancing. Instead of conventional passive cell balancing technology which bypasses current through a resistor, or active cell balancing which moves current from one cell to another, with significant cost and additional inefficiencies, this concept takes variable amount of current from each cell or small group of cells and converts it to current for the low voltage system.

  13. Concussion Assessment With Smartglasses: Validation Study of Balance Measurement Toward a Lightweight, Multimodal, Field-Ready Platform

    PubMed Central

    Salisbury, Joseph P; Keshav, Neha U; Sossong, Anthony D

    2018-01-01

    Background Lightweight and portable devices that objectively measure concussion-related impairments could improve injury detection and critical decision-making in contact sports and the military, where brain injuries commonly occur but remain underreported. Current standard assessments often rely heavily on subjective methods such as symptom self-reporting. Head-mounted wearables, such as smartglasses, provide an emerging platform for consideration that could deliver the range of assessments necessary to develop a rapid and objective screen for brain injury. Standing balance assessment, one parameter that may inform a concussion diagnosis, could theoretically be performed quantitatively using current off-the-shelf smartglasses with an internal accelerometer. However, the validity of balance measurement using smartglasses has not been investigated. Objective This study aimed to perform preliminary validation of a smartglasses-based balance accelerometer measure (BAM) compared with the well-described and characterized waist-based BAM. Methods Forty-two healthy individuals (26 male, 16 female; mean age 23.8 [SD 5.2] years) participated in the study. Following the BAM protocol, each subject performed 2 trials of 6 balance stances while accelerometer and gyroscope data were recorded from smartglasses (Glass Explorer Edition). Test-retest reliability and correlation were determined relative to waist-based BAM as used in the National Institutes of Health’s Standing Balance Toolbox. Results Balance measurements obtained using a head-mounted wearable were highly correlated with those obtained through a waist-mounted accelerometer (Spearman rho, ρ=.85). Test-retest reliability was high (intraclass correlation coefficient, ICC2,1=0.85, 95% CI 0.81-0.88) and in good agreement with waist balance measurements (ICC2,1=0.84, 95% CI 0.80-0.88). Considering the normalized path length magnitude across all 3 axes improved interdevice correlation (ρ=.90) while maintaining test-retest reliability (ICC2,1=0.87, 95% CI 0.83-0.90). All subjects successfully completed the study, demonstrating the feasibility of using a head-mounted wearable to assess balance in a healthy population. Conclusions Balance measurements derived from the smartglasses-based accelerometer were consistent with those obtained using a waist-mounted accelerometer. Additional research is necessary to determine to what extent smartglasses-based accelerometry measures can detect balance dysfunction associated with concussion. However, given the potential for smartglasses to perform additional concussion-related assessments in an integrated, wearable platform, continued development and validation of a smartglasses-based balance assessment is warranted. This approach could lead to a wearable platform for real-time assessment of concussion-related impairments that could be further augmented with telemedicine capabilities to integrate professional clinical guidance. Smartglasses may be superior to fully immersive virtual reality headsets for this application, given their lighter weight and reduced likelihood of potential safety concerns. PMID:29362210

  14. Identification of Balance Deficits in People with Parkinson Disease; is the Sensory Organization Test Enough?

    PubMed

    Gera, G; Freeman, D L; Blackinton, M T; Horak, F B; King, L

    2016-02-01

    Balance deficits in people with Parkinson's disease can affect any of the multiple systems encompassing balance control. Thus, identification of the specific deficit is crucial in customizing balance rehabilitation. The sensory organization test, a test of sensory integration for balance control, is sometimes used in isolation to identify balance deficits in people with Parkinson's disease. More recently, the Mini-Balance Evaluations Systems Test, a clinical scale that tests multiple domains of balance control, has begun to be used to assess balance in patients with Parkinson's disease. The purpose of our study was to compare the use of Sensory Organization Test and Mini-Balance Evaluations Systems Test in identifying balance deficits in people with Parkinson's disease. 45 participants (27M, 18F; 65.2 ± 8.2 years) with idiopathic Parkinson's disease participated in the cross-sectional study. Balance assessment was performed using the Sensory Organization Test and the Mini-Balance Evaluations Systems Test. People were classified into normal and abnormal balance based on the established cutoff scores (normal balance: Sensory Organization Test >69; Mini-Balance Evaluations Systems Test >73). More subjects were classified as having abnormal balance with the Mini-Balance Evaluations Systems Test (71% abnormal) than with the Sensory Organization Test (24% abnormal) in our cohort of people with Parkinson's disease. There were no subjects with a normal Mini-Balance Evaluations Systems Test score but abnormal Sensory Organization Test score. In contrast, there were 21 subjects who had an abnormal Mini-Balance Evaluations Systems Test score but normal Sensory Organization Test scores. Findings from this study suggest that investigation of sensory integration deficits, alone, may not be able to identify all types of balance deficits found in patients with Parkinson's disease. Thus, a comprehensive approach should be used to test of multiple balance systems to provide customized rehabilitation.

  15. Correlation Between Subacute Sensorimotor Deficits and Brain Edema in Rats after Surgical Brain Injury.

    PubMed

    McBride, Devin W; Wang, Yuechun; Adam, Loic; Oudin, Guillaume; Louis, Jean-Sébastien; Tang, Jiping; Zhang, John H

    2016-01-01

    No matter how carefully a neurosurgical procedure is performed, it is intrinsically linked to postoperative deficits resulting in delayed healing caused by direct trauma, hemorrhage, and brain edema, termed surgical brain injury (SBI). Cerebral edema occurs several hours after SBI and is a major contributor to patient morbidity, resulting in increased postoperative care. Currently, the correlation between functional recovery and brain edema after SBI remains unknown. Here we examine the correlation between neurological function and brain water content in rats 42 h after SBI. SBI was induced in male Sprague-Dawley rats via frontal lobectomy. Twenty-four hours post-ictus animals were subjected to four neurobehavior tests: composite Garcia neuroscore, beam walking test, corner turn test, and beam balance test. Animals were then sacrificed for right-frontal brain water content measurement via the wet-dry method. Right-frontal lobe brain water content was found to significantly correlate with neurobehavioral deficits in the corner turn and beam balance tests: the number of left turns (percentage of total turns) for the corner turn test and distance traveled for the beam balance test were both inversely proportional with brain water content. No correlation was observed for the composite Garcia neuroscore or the beam walking test.

  16. Using a dry electrode EEG device during balance tasks in healthy young-adult males: Test-retest reliability analysis.

    PubMed

    Collado-Mateo, Daniel; Adsuar, Jose C; Olivares, Pedro R; Cano-Plasencia, Ricardo; Gusi, Narcis

    2015-01-01

    The analysis of brain activity during balance is an important topic in different fields of science. Given that all measurements involve an error that is caused by different agents, like the instrument, the researcher, or the natural human variability, a test-retest reliability evaluation of the electroencephalographic assessment is a needed starting point. However, there is a lack of information about the reliability of electroencephalographic measurements, especially in a new wireless device with dry electrodes. The current study aims to analyze the reliability of electroencephalographic measurements from a wireless device using dry electrodes during two different balance tests. Seventeen healthy male volunteers performed two different static balance tasks on a Biodex Balance Platform: (a) with two feet on the platform and (b) with one foot on the platform. Electroencephalographic data was recorded using Enobio (Neuroelectrics). The mean power spectrum of the alpha band of the central and frontal channels was calculated. Relative and absolute indices of reliability were also calculated. In general terms, the intraclass correlation coefficient (ICC) values of all the assessed channels can be classified as excellent (>0.90). The percentage standard error of measurement oscillated from 0.54% to 1.02% and the percentage smallest real difference ranged from 1.50% to 2.82%. Electroencephalographic assessment through an Enobio device during balance tasks has an excellent reliability. However, its utility was not demonstrated because responsiveness was not assessed.

  17. Development of a two-dimensional skin friction balance nulling circuit using multivariable control theory

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Patek, Stephen D.

    1988-01-01

    Measurement of planar skin friction forces in aerodynamic testing currently requires installation of two perpendicularly mounted, single-axis balances; consequently, force components must be sensed at two distinct locations. A two-axis instrument developed at the Langley Research Center to overcome this disadvantage allows measurement of a two-dimensional force at one location. This paper describes a feedback-controlled nulling circuit developed for the NASA two-axis balance which, without external compensation, is inherently unstable because of its low friction mechanical design. Linear multivariable control theory is applied to an experimentally validated mathematical model of the balance to synthesize a state-variable feedback control law. Pole placement techniques and computer simulation studies are employed to select eigenvalues which provide ideal transient response with decoupled sensing dynamics.

  18. Upper Elementary Reading Instruction in the Age of Accountability: Balancing Best Practices with Pressures to Achieve on High-Stakes Tests

    ERIC Educational Resources Information Center

    Saunders, Christina Henry

    2017-01-01

    The present study identifies reading instructional practices used in upper elementary classrooms during the age of high-stakes test accountability and compares reading practices among schools of varying accreditation status and socio-economic status (SES). The current study partially replicates and extends a study conducted by Baumann, Hoffman,…

  19. Reconceptualizing Balance: Attributes associated with balance performance

    PubMed Central

    Thomas, Julia C.; Odonkor, Charles; Griffith, Laura; Holt, Nicole; Percac-Lima, Sanja; Leveille, Suzanne; Ni, Pensheng; Latham, Nancy K.; Jette, Alan M.; Bean, Jonathan F.

    2014-01-01

    Balance tests are commonly used to screen for impairments that put older adults at risk for falls. The purpose of this study was to determine the attributes that were associated with balance performance as measured by the The Frailty and Injuries: Cooperative Studies of Intervention Techniques (FICSIT) balance test. This study was a cross-sectional secondary analysis of baseline data from a longitudinal cohort study, the Boston Rehabilitative Impairment Study of the Elderly (Boston RISE). Boston RISE was performed in an outpatient rehabilitation research center and evaluated Boston area primary care patients aged 65 to 96 (N=364) with self-reported difficulty or task-modification climbing a flight of stairs or walking ½ of a mile. The outcome measure was standing balance as measured by the FICSIT-4 balance assessment. Other measures included: self-efficacy, pain, depression, executive function, vision, sensory loss, reaction time, kyphosis, leg range of motion, trunk extensor muscle endurance, leg strength and leg velocity at peak power. Participants were 67% female, had an average age of 76.5 (± 7.0) years, an average of 4.1 (± 2.0) chronic conditions, and an average FICSIT-4 score of 6.7 (± 2.2) out of 9. After adjusting for age and gender, attributes significantly associated with balance performance were falls self-efficacy, trunk extensor muscle endurance, sensory loss, and leg velocity at peak power. FICSIT-4 balance performance is associated with a number of behavioral and physiologic attributes, many of which are amenable to rehabilitative treatment. Our findings support a consideration of balance as multidimensional activity as proposed by the current International Classification of Functioning, Disability, and Health (ICF) model. PMID:24952097

  20. Beam walking can detect differences in walking balance proficiency across a range of sensorimotor abilities.

    PubMed

    Sawers, Andrew; Ting, Lena H

    2015-02-01

    The ability to quantify differences in walking balance proficiency is critical to curbing the rising health and financial costs of falls. Current laboratory-based approaches typically focus on successful recovery of balance while clinical instruments often pose little difficulty for all but the most impaired patients. Rarely do they test motor behaviors of sufficient difficulty to evoke failures in balance control limiting their ability to quantify balance proficiency. Our objective was to test whether a simple beam-walking task could quantify differences in walking balance proficiency across a range of sensorimotor abilities. Ten experts, ten novices, and five individuals with transtibial limb loss performed six walking trials across three different width beams. Walking balance proficiency was quantified as the ratio of distance walked to total possible distance. Balance proficiency was not significantly different between cohorts on the wide-beam, but clear differences between cohorts on the mid and narrow-beams were identified. Experts walked a greater distance than novices on the mid-beam (average of 3.63±0.04m verus 2.70±0.21m out of 3.66m; p=0.009), and novices walked further than amputees (1.52±0.20m; p=0.03). Amputees were unable to walk on the narrow-beam, while experts walked further (3.07±0.14m) than novices (1.55±0.26m; p=0.0005). A simple beam-walking task and an easily collected measure of distance traveled detected differences in walking balance proficiency across sensorimotor abilities. This approach provides a means to safely study and evaluate successes and failures in walking balance in the clinic or lab. It may prove useful in identifying mechanisms underlying falls versus fall recoveries. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Longitudinal Study Evaluating Postural Balance of Young Athletes.

    PubMed

    Steinberg, Nili; Nemet, Dan; Pantanowitz, Michal; Zeev, Aviva; Hallumi, Monder; Sindiani, Mahmood; Meckel, Yoav; Eliakim, Alon

    2016-02-01

    Repeated anaerobic conditions during athletic performance may cause general and local fatigue that result in postural balance deficit. Evidence suggests that improved postural balance during athletic training may decrease the risk for fallings and traumatic injuries among athletes. Twenty athletes (12 girls, 8 boys) and 20 controls (12 girls, 8 boys) ages 10-15 years participated in the current study. All athletes were active in an 8-month physical activity program, 3 times per week for 90 min., specific to basketball, soccer, or athletic training. The control children participated in physical education at school only, with no involvement in organized extracurricular sports. All participants were evaluated for postural balance in three assessments over one year (at 4-mo intervals); the Interactive Balance System machine (Tetrax device) was used to assess balance at three test times (pre-, post-, and 10 min) after a session of a repeated sprint anaerobic test, consisting of 12 × 20 m run starting every 20 sec. The athletes had better postural balance than controls. There were different group patterns of change over the sessions; a significant interaction of session and group indicated that postural balance of the groups differed. The contribution of low sway frequencies (F1) and high sway frequencies (F6) differed between the controls and the athletes group. Results suggested that although athletes had better postural balance, improvement should be encouraged during training over the sessions and seasons, with special awareness of the balance deficit that occurs immediately after anaerobic stress and at the end of the season, to decrease the risk of injuries. © The Author(s) 2016.

  2. The m/r SEBT: development of a functional screening tool for dance educators.

    PubMed

    Wilson, Margaret; Batson, Glenna

    2014-12-01

    Dance screenings provide direct and indirect data bearing on a dancer's readiness to undertake rigorous physical training. Rarely, however, are dance teachers able to translate results from these screenings into practical technical knowledge. In this article, an example of a preseason assessment tool is presented that translates scientific findings into useful information for dance teachers conducting auditions. Designed as a baseline assessment of the dancer during auditioning, the m/r SEBT tool helps teachers stratify technical levels, identify injury risk, and consequently assist with immediate and appropriate recommendations for supplemental training and//or follow-up with a medical professional. The tool evolved out of more than 3 years of collaborative, multisite research utilizing the Star Excursion Balance Test (SEBT) as a dynamic test of balance. Modifications were made to render the test more dance-specific and to increase balance challenges. Within the 3-year period, more than 100 dancers were tested in four sites, two in the United States and two in the United Kingdom. Despite the relatively large collective sample size, neither the original SEBT nor its modifications (m/r SEBT) held robust face or content validity as balance screens. What did emerge, however, were qualitative criteria that the authors organized into a feasible assessment tool for preseason auditions. While this tool awaits further validation, its current evolution helps serve as a bridge between dance teachers' clinical and practical knowledge.

  3. Concussion Assessment With Smartglasses: Validation Study of Balance Measurement Toward a Lightweight, Multimodal, Field-Ready Platform.

    PubMed

    Salisbury, Joseph P; Keshav, Neha U; Sossong, Anthony D; Sahin, Ned T

    2018-01-23

    Lightweight and portable devices that objectively measure concussion-related impairments could improve injury detection and critical decision-making in contact sports and the military, where brain injuries commonly occur but remain underreported. Current standard assessments often rely heavily on subjective methods such as symptom self-reporting. Head-mounted wearables, such as smartglasses, provide an emerging platform for consideration that could deliver the range of assessments necessary to develop a rapid and objective screen for brain injury. Standing balance assessment, one parameter that may inform a concussion diagnosis, could theoretically be performed quantitatively using current off-the-shelf smartglasses with an internal accelerometer. However, the validity of balance measurement using smartglasses has not been investigated. This study aimed to perform preliminary validation of a smartglasses-based balance accelerometer measure (BAM) compared with the well-described and characterized waist-based BAM. Forty-two healthy individuals (26 male, 16 female; mean age 23.8 [SD 5.2] years) participated in the study. Following the BAM protocol, each subject performed 2 trials of 6 balance stances while accelerometer and gyroscope data were recorded from smartglasses (Glass Explorer Edition). Test-retest reliability and correlation were determined relative to waist-based BAM as used in the National Institutes of Health's Standing Balance Toolbox. Balance measurements obtained using a head-mounted wearable were highly correlated with those obtained through a waist-mounted accelerometer (Spearman rho, ρ=.85). Test-retest reliability was high (intraclass correlation coefficient, ICC 2,1 =0.85, 95% CI 0.81-0.88) and in good agreement with waist balance measurements (ICC 2,1 =0.84, 95% CI 0.80-0.88). Considering the normalized path length magnitude across all 3 axes improved interdevice correlation (ρ=.90) while maintaining test-retest reliability (ICC 2,1 =0.87, 95% CI 0.83-0.90). All subjects successfully completed the study, demonstrating the feasibility of using a head-mounted wearable to assess balance in a healthy population. Balance measurements derived from the smartglasses-based accelerometer were consistent with those obtained using a waist-mounted accelerometer. Additional research is necessary to determine to what extent smartglasses-based accelerometry measures can detect balance dysfunction associated with concussion. However, given the potential for smartglasses to perform additional concussion-related assessments in an integrated, wearable platform, continued development and validation of a smartglasses-based balance assessment is warranted. This approach could lead to a wearable platform for real-time assessment of concussion-related impairments that could be further augmented with telemedicine capabilities to integrate professional clinical guidance. Smartglasses may be superior to fully immersive virtual reality headsets for this application, given their lighter weight and reduced likelihood of potential safety concerns. ©Joseph P Salisbury, Neha U Keshav, Anthony D Sossong, Ned T Sahin. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 23.01.2018.

  4. Objective impairments of gait and balance in adults living with HIV-1 infection: a systematic review and meta-analysis of observational studies.

    PubMed

    Berner, Karina; Morris, Linzette; Baumeister, Jochen; Louw, Quinette

    2017-08-01

    Gait and balance deficits are reported in adults with HIV infection and are associated with reduced quality of life. Current research suggests an increased fall-incidence in this population, with fall rates among middle-aged adults with HIV approximating that in seronegative elderly populations. Gait and postural balance rely on a complex interaction of the motor system, sensory control, and cognitive function. However, due to disease progression and complications related to ongoing inflammation, these systems may be compromised in people with HIV. Consequently, locomotor impairments may result that can contribute to higher-than-expected fall rates. The aim of this review was to synthesize the evidence regarding objective gait and balance impairments in adults with HIV, and to emphasize those which could contribute to increased fall risk. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. An electronic search of published observational studies was conducted in March 2016. Methodological quality was assessed using the NIH Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Narrative synthesis of gait and balance outcomes was performed, and meta-analyses where possible. Seventeen studies were included, with fair to low methodological quality. All studies used clinical tests for gait-assessment. Gait outcomes assessed were speed, initiation-time and cadence. No studies assessed kinetics or kinematics. Balance was assessed using both instrumented and clinical tests. Outcomes were mainly related to center of pressure, postural reflex latencies, and timed clinical tests. There is some agreement that adults with HIV walk slower and have increased center of pressure excursions and -long loop postural reflex latencies, particularly under challenging conditions. Gait and balance impairments exist in people with HIV, resembling fall-associated parameters in the elderly. Impairments are more pronounced during challenging conditions, might be associated with disease severity, are not influenced by antiretroviral therapy, and might not be associated with peripheral neuropathy. Results should be interpreted cautiously due to overall poor methodological quality and heterogeneity. Locomotor impairments in adults with HIV are currently insufficiently quantified. Future research involving more methodological uniformity is warranted to better understand such impairments and to inform clinical decision-making, including fall-prevention strategies, in this population.

  5. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice

    PubMed Central

    Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921

  6. Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice.

    PubMed

    Tung, Victoria W K; Burton, Thomas J; Quail, Stephanie L; Mathews, Miranda A; Camp, Aaron J

    2016-01-01

    Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27-28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27-28 months. this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed.

  7. Neck pain and postural balance among workers with high postural demands - a cross-sectional study

    PubMed Central

    2011-01-01

    Background Neck pain is related to impaired postural balance among patients and is highly prevalent among workers with high postural demands, for example, cleaners. We therefore hypothesised, that cleaners with neck pain suffer from postural dysfunction. This cross-sectional study tested if cleaners with neck pain have an impaired postural balance compared with cleaners without neck pain. Methods Postural balance of 194 cleaners with (n = 85) and without (N = 109) neck pain was studied using three different tests. Success or failure to maintain the standing position for 30 s in unilateral stance was recorded. Participants were asked to stand on a force platform for 30 s in the Romberg position with eyes open and closed. The centre of pressure of the sway was calculated, and separated into a slow (rambling) and fast (trembling) component. Subsequently, the 95% confidence ellipse area (CEA) was calculated. Furthermore a perturbation test was performed. Results More cleaners with neck pain (81%) failed the unilateral stance compared with cleaners without neck pain (61%) (p < 0.01). However, the risk of failure in unilateral stance was statistically elevated in cleaners with concurrent neck/low back pain compared to cleaners without neck/low back pain (p < 0.01), whereas pain at only neck or only low back did not increase the risk. Impaired postural balance, measured as CEA (p < 0.01), rambling (p < 0.05) and trembling (p < 0.05) was observed among cleaners with neck pain in comparison with cleaners without neck pain in the Romberg position with eyes closed, but not with eyes open. Conclusions Postural balance is impaired among cleaners with neck pain and the current study suggests a particular role of the slow component of postural sway. Furthermore, the unilateral stance test is a simple test to illustrate functional impairment among cleaners with concurrent neck and low back pain. Trial registration ISRCTN96241850 PMID:21806796

  8. Clinimetric properties of the Tinetti Mobility Test, Four Square Step Test, Activities-specific Balance Confidence Scale, and spatiotemporal gait measures in individuals with Huntington's disease.

    PubMed

    Kloos, Anne D; Fritz, Nora E; Kostyk, Sandra K; Young, Gregory S; Kegelmeyer, Deb A

    2014-09-01

    Individuals with Huntington's disease (HD) experience balance and gait problems that lead to falls. Clinicians currently have very little information about the reliability and validity of outcome measures to determine the efficacy of interventions that aim to reduce balance and gait impairments in HD. This study examined the reliability and concurrent validity of spatiotemporal gait measures, the Tinetti Mobility Test (TMT), Four Square Step Test (FSST), and Activities-specific Balance Confidence (ABC) Scale in individuals with HD. Participants with HD [n = 20; mean age ± SD=50.9 ± 13.7; 7 male] were tested on spatiotemporal gait measures and the TMT, FSST, and ABC Scale before and after a six week period to determine test-retest reliability and minimal detectable change (MDC) values. Linear relationships between gait and clinical measures were estimated using Pearson's correlation coefficients. Spatiotemporal gait measures, the TMT total and the FSST showed good to excellent test-retest reliability (ICC > 0.75). MDC values were 0.30 m/s and 0.17 m/s for velocity in forward and backward walking respectively, four points for the TMT, and 3s for the FSST. The TMT and FSST were highly correlated with most spatiotemporal measures. The ABC Scale demonstrated lower reliability and less concurrent validity than other measures. The high test-retest reliability over a six week period and concurrent validity between the TMT, FSST, and spatiotemporal gait measures suggest that the TMT and FSST may be useful outcome measures for future intervention studies in ambulatory individuals with HD. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A variable acceleration calibration system

    NASA Astrophysics Data System (ADS)

    Johnson, Thomas H.

    2011-12-01

    A variable acceleration calibration system that applies loads using gravitational and centripetal acceleration serves as an alternative, efficient and cost effective method for calibrating internal wind tunnel force balances. Two proof-of-concept variable acceleration calibration systems are designed, fabricated and tested. The NASA UT-36 force balance served as the test balance for the calibration experiments. The variable acceleration calibration systems are shown to be capable of performing three component calibration experiments with an approximate applied load error on the order of 1% of the full scale calibration loads. Sources of error are indentified using experimental design methods and a propagation of uncertainty analysis. Three types of uncertainty are indentified for the systems and are attributed to prediction error, calibration error and pure error. Angular velocity uncertainty is shown to be the largest indentified source of prediction error. The calibration uncertainties using a production variable acceleration based system are shown to be potentially equivalent to current methods. The production quality system can be realized using lighter materials and a more precise instrumentation. Further research is needed to account for balance deflection, forcing effects due to vibration, and large tare loads. A gyroscope measurement technique is shown to be capable of resolving the balance deflection angle calculation. Long term research objectives include a demonstration of a six degree of freedom calibration, and a large capacity balance calibration.

  10. Safety Testing of Ammonium Nitrate Based Mixtures

    NASA Astrophysics Data System (ADS)

    Phillips, Jason; Lappo, Karmen; Phelan, James; Peterson, Nathan; Gilbert, Don

    2013-06-01

    Ammonium nitrate (AN)/ammonium nitrate based explosives have a lengthy documented history of use by adversaries in acts of terror. While historical research has been conducted on AN-based explosive mixtures, it has primarily focused on detonation performance while varying the oxygen balance between the oxidizer and fuel components. Similarly, historical safety data on these materials is often lacking in pertinent details such as specific fuel type, particle size parameters, oxidizer form, etc. A variety of AN-based fuel-oxidizer mixtures were tested for small-scale sensitivity in preparation for large-scale testing. Current efforts focus on maintaining a zero oxygen-balance (a stoichiometric ratio for active chemical participants) while varying factors such as charge geometry, oxidizer form, particle size, and inert diluent ratios. Small-scale safety testing was conducted on various mixtures and fuels. It was found that ESD sensitivity is significantly affected by particle size, while this is less so for impact and friction. Thermal testing is in progress to evaluate hazards that may be experienced during large-scale testing.

  11. The F-15B Propulsion Flight Test Fixture: A New Flight Facility For Propulsion Research

    NASA Technical Reports Server (NTRS)

    Corda, Stephen; Vachon, M. Jake; Palumbo, Nathan; Diebler, Corey; Tseng, Ting; Ginn, Anthony; Richwine, David

    2001-01-01

    The design and development of the F-15B Propulsion Flight Test Fixture (PFTF), a new facility for propulsion flight research, is described. Mounted underneath an F-15B fuselage, the PFTF provides volume for experiment systems and attachment points for propulsion devices. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. Three-axis forces and moments can be measured in flight for experiments mounted to the force balance. The NASA F-15B airplane is described, including its performance and capabilities as a research test bed aircraft. The detailed description of the PFTF includes the geometry, internal layout and volume, force-balance operation, available instrumentation, and allowable experiment size and weight. The aerodynamic, stability and control, and structural designs of the PFTF are discussed, including results from aerodynamic computational fluid dynamic calculations and structural analyses. Details of current and future propulsion flight experiments are discussed. Information about the integration of propulsion flight experiments is provided for the potential PFTF user.

  12. Vestibular function assessment using the NIH Toolbox

    PubMed Central

    Schubert, Michael C.; Whitney, Susan L.; Roberts, Dale; Redfern, Mark S.; Musolino, Mark C.; Roche, Jennica L.; Steed, Daniel P.; Corbin, Bree; Lin, Chia-Cheng; Marchetti, Greg F.; Beaumont, Jennifer; Carey, John P.; Shepard, Neil P.; Jacobson, Gary P.; Wrisley, Diane M.; Hoffman, Howard J.; Furman, Gabriel; Slotkin, Jerry

    2013-01-01

    Objective: Development of an easy to administer, low-cost test of vestibular function. Methods: Members of the NIH Toolbox Sensory Domain Vestibular, Vision, and Motor subdomain teams collaborated to identify 2 tests: 1) Dynamic Visual Acuity (DVA), and 2) the Balance Accelerometry Measure (BAM). Extensive work was completed to identify and develop appropriate software and hardware. More than 300 subjects between the ages of 3 and 85 years, with and without vestibular dysfunction, were recruited and tested. Currently accepted gold standard measures of static visual acuity, vestibular function, dynamic visual acuity, and balance were performed to determine validity. Repeat testing was performed to examine reliability. Results: The DVA and BAM tests are affordable and appropriate for use for individuals 3 through 85 years of age. The DVA had fair to good reliability (0.41–0.94) and sensitivity and specificity (50%–73%), depending on age and optotype chosen. The BAM test was moderately correlated with center of pressure (r = 0.42–0.48) and dynamic posturography (r = −0.48), depending on age and test condition. Both tests differentiated those with and without vestibular impairment and the young from the old. Each test was reliable. Conclusion: The newly created DVA test provides a valid measure of visual acuity with the head still and moving quickly. The novel BAM is a valid measure of balance. Both tests are sensitive to age-related changes and are able to screen for impairment of the vestibular system. PMID:23479540

  13. Relationship between asymmetry of quiet standing balance control and walking post-stroke.

    PubMed

    Hendrickson, Janna; Patterson, Kara K; Inness, Elizabeth L; McIlroy, William E; Mansfield, Avril

    2014-01-01

    Spatial and temporal gait asymmetry is common after stroke. Such asymmetric gait is inefficient, can contribute to instability and may lead to musculoskeletal injury. However, understanding of the determinants of such gait asymmetry remains incomplete. The current study is focused on revealing if there is a link between asymmetry during the control of standing balance and asymmetry during walking. This study involved review of data from 94 individuals with stroke referred to a gait and balance clinic. Participants completed three tests: (1) walking at their usual pace; (2) quiet standing; and (3) standing with maximal loading of the paretic side. A pressure sensitive mat recorded placement and timing of each footfall during walking. Standing tests were completed on two force plates to evaluate symmetry of weight bearing and contribution of each limb to balance control. Multiple regression was conducted to determine the relationships between symmetry during standing and swing time, stance time, and step length symmetry during walking. Symmetry of antero-posterior balance control and weight bearing were related to swing time and step length symmetry during walking. Weight-bearing symmetry, weight-bearing capacity, and symmetry of antero-posterior balance control were related to stance time symmetry. These associations were independent of underlying lower limb impairment. The results support the hypothesis that impaired ability of the paretic limb to control balance may contribute to gait asymmetry post-stroke. Such work suggests that rehabilitation strategies that increase the contribution of the paretic limb to standing balance control may increase symmetry of walking post-stroke. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. 5 CFR 843.208 - Notification of current and/or former spouse before payment of unexpended balance to a separated...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... spouse before payment of unexpended balance to a separated employee. 843.208 Section 843.208... current and/or former spouse before payment of unexpended balance to a separated employee. (a) Payment to an employee of the unexpended balance may be made only if current and former spouses are notified of...

  15. 5 CFR 843.208 - Notification of current and/or former spouse before payment of unexpended balance to a separated...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... spouse before payment of unexpended balance to a separated employee. 843.208 Section 843.208... current and/or former spouse before payment of unexpended balance to a separated employee. (a) Payment to an employee of the unexpended balance may be made only if current and former spouses are notified of...

  16. Specific balance training included in an endurance-resistance exercise program improves postural balance in elderly patients undergoing haemodialysis.

    PubMed

    Frih, Bechir; Mkacher, Wajdi; Jaafar, Hamdi; Frih, Ameur; Ben Salah, Zohra; El May, Mezry; Hammami, Mohamed

    2018-04-01

    The purpose of this study was to evaluate the effects of 6 months of specific balance training included in endurance-resistance program on postural balance in haemodialysis (HD) patients. Forty-nine male patients undergoing HD were randomly assigned to an intervention group (balance training included in an endurance-resistance training, n = 26) or a control group (resistance-endurance training only, n = 23). Postural control was assessed using six clinical tests; Timed Up and Go test, Tinetti Mobility Test, Berg Balance Scale, Unipodal Stance test, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scale. All balance measures increased significantly after the period of rehabilitation training in the intervention group. Only the Timed Up and Go, Berg Balance Scale, Mini-Balance Evaluation Systems Test and Activities Balance Confidence scores were improved in the control group. The ranges of change in these tests were greater in the balance training group. In HD patients, specific balance training included in a usual endurance-resistance training program improves static and dynamic balance better than endurance-resistance training only. Implications for rehabilitation Rehabilitation using exercise in haemodialysis patients improved global mobility and functional abilities. Specific balance training included in usual endurance resistance training program could lead to improved static and dynamic balance.

  17. Feasibility of early functional rehabilitation in acute stroke survivors using the Balance-Bed—a technology that emulates microgravity

    PubMed Central

    Oddsson, Lars I. E.; Finkelstein, Marsha J.; Meissner, Sarah

    2015-01-01

    Evidence-based guidelines recommend early functional rehabilitation of stroke patients when risk of patient harm can be managed. Current tools do not allow balance training under load conditions sufficiently low for acute stroke patients. This single-arm pilot study tested feasibility and safety for acute stroke survivors to use “Balance-Bed”, a technology for balance exercises in supine initially developed to emulate microgravity effects on balance. Nine acute stroke patients (50–79 years) participated in 3–10 sessions over 16–46 days as part of their rehabilitation in a hospital inpatient setting. Standard inpatient measures of outcome were monitored where lack of progress from admission to discharge might indicate possible harm. Total FIM scores at admission (median 40, range 22–53) changed to (74, 50–96), Motor FIM scores from (23, 13–32) to (50, 32–68) and Berg Balance scores from (3, 0–6) to (19, 7–43) at discharge. Changes reached Minimal Clinical Important Difference for a sufficient proportion (>0.6) of the patients to indicate no harm to the patients. In addition, therapists reported the technology was safe, provided a positive experience for the patient and fit within the rehabilitation program. They reported the device should be easier to set up and exit. We conclude acute stroke patients tolerated Balance-Bed exercises such as standing on one or two legs, squats, stepping in place as well as balance perturbations provided by the therapist. We believe this is the first time it has been demonstrated that acute stroke patients can safely perform whole body balance training including balance perturbations as part of their rehabilitation program. Future studies should include a control group and compare outcomes from best practices to interventions using the Balance-Bed. In addition, the technology is relevant for countermeasure development for spaceflight and as a test-bed of balance function under microgravity-like conditions. PMID:26074789

  18. AN INITIAL EVALUATION OF THE BTRACKS BALANCE PLATE AND SPORTS BALANCE SOFTWARE FOR CONCUSSION DIAGNOSIS

    PubMed Central

    Manyak, Kristin A.; Abdenour, Thomas E.; Rauh, Mitchell J.; Baweja, Harsimran S.

    2016-01-01

    Background As recently dictated by the American Medical Society, balance testing is an important component in the clinical evaluation of concussion. Despite this, previous research on the efficacy of balance testing for concussion diagnosis suggests low sensitivity (∼30%), based primarily on the popular Balance Error Scoring System (BESS). The Balance Tracking System (BTrackS, Balance Tracking Systems Inc., San Diego, CA, USA) consists of a force plate (BTrackS Balance Plate) and software (BTrackS Sport Balance) which can quickly (<2 min) perform concussion balance testing with gold standard accuracy. Purpose The present study aimed to determine the sensitivity of the BTrackS Balance Plate and Sports Balance Software for concussion diagnosis. Study Design Cross-Sectional Study Methods Preseason baseline balance testing of 519 healthy Division I college athletes playing sports with a relatively high risk for concussions was performed with the BTrackS Balance Test. Testing was administered by certified athletic training staff using the BTrackS Balance Plate and Sport Balance software. Of the baselined athletes, 25 later experienced a concussion during the ensuing sport season. Post-injury balance testing was performed on these concussed athletes within 48 of injury and the sensitivity of the BTrackS Balance Plate and Sport Balance software was estimated based on the number of athletes showing a balance decline according to the criteria specified in the Sport Balance software. This criteria is based on the minimal detectable change statistic with a 90% confidence level (i.e. 90% specificity). Results Of 25 athletes who experienced concussions, 16 had balance declines relative to baseline testing results according to the BTrackS Sport Balance software criteria. This corresponds to an estimated concussion sensitivity of 64%, which is twice as great as that reported previously for the BESS. Conclusions The BTrackS Balance Plate and Sport Balance software has the greatest concussion sensitivity of any balance testing instrument reported to date. Level of Evidence Level 2 (Individual cross sectional diagnostic study) PMID:27104048

  19. Study on needs for a magnetic suspension system operating with a transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Martindale, W. R.; Butler, R. W.; Starr, R. F.

    1985-01-01

    The U.S. aeronautical industry was surveyed to determine if current and future transonic testing requirements are sufficient to justify continued development work on magnetic suspension and balance systems (MSBS) by NASA. The effort involved preparation of a brief technical description of magnetic suspension and balance systems, design of a survey form asking specific questions about the role of the MSBS in satisfying future testing requirements, selecting nine major aeronautics companies to which the description and survey forms were sent, and visiting the companies and discussing the survey to obtain greater insight to their response to the survey. Evaluation and documentation of the survey responses and recommendations which evolved from the study are presented.

  20. Influence of Isokinetic Strength Training of Unilateral Ankle on Ipsilateral One-legged Standing Balance of Adults

    PubMed Central

    Son, Sung Min; Kang, Kyung Woo; Lee, Na Kyung; Nam, Seok Hyun; Kwon, Jung Won; Kim, Kyoung

    2013-01-01

    [Purpose] The purpose of the current study was to investigate the changes in one-legged standing balance of the ipsilateral lower limb following unilateral isokinetic strength training. [Subjects and Methods] Thirty healthy adult volunteers were randomly assigned to either a training group or a control group, so that each group included 15 subjects. Subjects in the training group performed unilateral ankle isokinetic exercises of the dominant leg using the Biodex 3 PRO System for a period of four weeks. Ipsilateral one-legged standing balance was evaluated before and after the intervention with three stability indexes of balance using the Biodex System: Anterior-Posterior Stability Index (APSI), Medial-Lateral Stability Index (MLSI), and Overall Stability Index (OSI). [Results] Comparison of pre- and post-test data revealed significant improvements in strength values (dorsiflexion, plantarflexion, eversion, and inversion) and stability indexes (APSI, MLSI, OSI). [Conclusion] These results suggest that ankle strengthening exercise can be considered as a form of exercise that may assist individuals with improvement of balance. PMID:24259783

  1. Systematic review of postural control and lateral ankle instability, part II: is balance training clinically effective?

    PubMed

    McKeon, Patrick O; Hertel, Jay

    2008-01-01

    To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.

  2. Spacecraft Charging Current Balance Model Applied to High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Pour, Maria Z. A.

    2016-01-01

    Spacecraft charging induced by high voltage solar arrays can result in power losses and degradation of spacecraft surfaces. In some cases, it can even present safety issues for astronauts performing extravehicular activities. An understanding of the dominant processes contributing to spacecraft charging induced by solar arrays is important to current space missions, such as the International Space Station, and to any future space missions that may employ high voltage solar arrays. A common method of analyzing the factors contributing to spacecraft charging is the current balance model. Current balance models are based on the simple idea that the spacecraft will float to a potential such that the current collecting to the surfaces equals the current lost from the surfaces. However, when solar arrays are involved, these currents are dependent on so many factors that the equation becomes quite complicated. In order for a current balance model to be applied to solar array operations, it must incorporate the time dependent nature of the charging of dielectric surfaces in the vicinity of conductors1-3. This poster will present the factors which must be considered when developing a current balance model for high voltage solar array operations and will compare results of a current balance model with data from the Floating Potential Measurement Unit4 on board the International Space Station.

  3. Balance maintenance as an acquired motor skill: Delayed gains and robust retention after a single session of training in a virtual environment.

    PubMed

    Elion, Orit; Sela, Itamar; Bahat, Yotam; Siev-Ner, Itzhak; Weiss, Patrice L Tamar; Karni, Avi

    2015-06-03

    Does the learning of a balance and stability skill exhibit time-course phases and transfer limitations characteristic of the acquisition and consolidation of voluntary movement sequences? Here we followed the performance of young adults trained in maintaining balance while standing on a moving platform synchronized with a virtual reality road travel scene. The training protocol included eight 3 min long iterations of the road scene. Center of Pressure (CoP) displacements were analyzed for each task iteration within the training session, as well as during tests at 24h, 4 weeks and 12 weeks post-training to test for consolidation phase ("offline") gains and assess retention. In addition, CoP displacements in reaction to external perturbations were assessed before and after the training session and in the 3 subsequent post-training assessments (stability tests). There were significant reductions in CoP displacements as experience accumulated within session, with performance stabilizing by the end of the session. However, CoP displacements were further reduced at 24h post-training (delayed "offline" gains) and these gains were robustly retained. There was no transfer of the practice-related gains to performance in the stability tests. The time-course of learning the balance maintenance task, as well as the limitation on generalizing the gains to untrained conditions, are in line with the results of studies of manual movement skill learning. The current results support the conjecture that a similar repertoire of basic neuronal mechanisms of plasticity may underlay skill (procedural, "how to" knowledge) acquisition and skill memory consolidation in voluntary and balance maintenance tasks. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Measuring practical knowledge about balanced meals: development and validation of the brief PKB-7 scale.

    PubMed

    Mötteli, S; Barbey, J; Keller, C; Bucher, T; Siegrist, M

    2016-04-01

    As a high-quality diet is associated with a lower risk for several diseases and all-cause mortality, current nutrition education tools provide people with information regarding how to build a healthy and a balanced meal. To assess this basic nutrition knowledge, the research aim was to develop and validate a brief scale to measure the Practical Knowledge about Balanced meals (PKB-7). A pool of 25 items was pretested with experts and laypeople before being tested on a random sample in Switzerland (n=517). For item selection, a Rasch model analysis was applied. The validity and reliability of the new scale were assessed by three additional studies including laypeople (n=597; n=145) and nutrition experts (n=59). The final scale consists of seven multiple-choice items, which met the assumptions of the Rasch model. The validity of the new scale was shown by several aspects: the Rasch model was replicated in a second study, and nutrition experts achieved significantly higher scores than laypeople (t(148)=20.27, P<0.001, d=1.78). In addition, the PKB-7 scale was correlated with other nutrition-related constructs and associated with reported vegetable consumption. Test-retest reliability (r=0.68, P<0.001) was acceptable. The PKB-7 scale is a reliable and a valid Rasch-based instrument in Swiss citizens aged between 18 and 80 years for measuring the practical knowledge about balanced meals based on current dietary guidelines. This brief and easy-to-use scale is intended for application in both research and practice.

  5. Identifying balance and fall risk in community-dwelling older women: the effect of executive function on postural control.

    PubMed

    Muir-Hunter, Susan W; Clark, Jennifer; McLean, Stephanie; Pedlow, Sam; Van Hemmen, Alysia; Montero Odasso, Manuel; Overend, Tom

    2014-01-01

    The mechanisms linking cognition, balance function, and fall risk among older adults are not fully understood. An evaluation of the effect of cognition on balance tests commonly used in clinical practice to assess community-dwelling older adults could enhance the identification of at-risk individuals. The study aimed to determine (1) the association between cognition and clinical tests of balance and (2) the relationship between executive function (EF) and balance under single- and dual-task testing. Participants (24 women, mean age of 76.18 [SD 16.45] years) completed six clinical balance tests, four cognitive tests, and two measures of physical function. Poor balance function was associated with poor performance on cognitive testing of EF. In addition, the association with EF was strongest under the dual-task timed up-and-go (TUG) test and the Fullerton Advanced Balance Scale. Measures of global cognition were associated only with the dual-task performance of the TUG. Postural sway measured with the Standing Balance Test, under single- or dual-task test conditions, was not associated with cognition. Decreased EF was associated with worse performance on functional measures of balance. The relationship between EF and balance was more pronounced with dual-task testing using a complex cognitive task combined with the TUG.

  6. State Testing Standards versus Creativity.

    ERIC Educational Resources Information Center

    Ediger, Marlow

    The balance between conformity to state standards and creativity in providing for individual differences in the classroom is discussed. With the current emphases on accountability and standards, learning opportunities for students are supposed to be aligned with state-mandated objectives. This may lead to a situation in which rote learning,…

  7. New Assessments, New Rigor

    ERIC Educational Resources Information Center

    Joan Herman; Robert Linn

    2014-01-01

    Researching. Synthesizing. Reasoning with evidence. The PARCC and Smarter Balanced assessments are clearly setting their sights on complex thinking skills. Researchers Joan Herman and Robert Linn look at the new assessments to see how they stack up against Norman Webb's depth of knowledge framework as well as against current state tests. The…

  8. Historical Aspects of Inner Ear Anatomy and Biology that Underlie the Design of Hearing and Balance Prosthetic Devices.

    PubMed

    Van De Water, Thomas R

    2012-11-01

    This review presents some of the major historical events that advanced the body of knowledge of the anatomy of the inner ear and its sensory receptors as well as the biology of these receptors that underlies the sensory functions of hearing and balance. This knowledge base of the inner ear's structure/function has been an essential factor for the design and construction of prosthetic devices to aid patients with deficits in their senses of hearing and balance. Prosthetic devices are now available for severely hearing impaired and deaf patients to restore hearing and are known as cochlear implants and auditory brain stem implants. A prosthetic device for patients with balance disorders is being perfected and is in an animal model testing phase with another prosthetic device for controlling intractable dizziness in Meniere's patients currently being evaluated in clinical testing. None of this would have been possible without the pioneering studies and discoveries of the investigators mentioned in this review and with the work of many other talented investigators to numerous to be covered in this review. Copyright © 2012 Wiley Periodicals, Inc.

  9. Calibrating a surface mass-balance model for Austfonna ice cap, Svalbard

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas Vikhamar; Loe, Even; Taurisano, Andrea; Eiken, Trond; Hagen, Jon Ove; Kohler, Jack

    2007-10-01

    Austfonna (8120 km2) is by far the largest ice mass in the Svalbard archipelago. There is considerable uncertainty about its current state of balance and its possible response to climate change. Over the 2004/05 period, we collected continuous meteorological data series from the ice cap, performed mass-balance measurements using a network of stakes distributed across the ice cap and mapped the distribution of snow accumulation using ground-penetrating radar along several profile lines. These data are used to drive and test a model of the surface mass balance. The spatial accumulation pattern was derived from the snow depth profiles using regression techniques, and ablation was calculated using a temperature-index approach. Model parameters were calibrated using the available field data. Parameter calibration was complicated by the fact that different parameter combinations yield equally acceptable matches to the stake data while the resulting calculated net mass balance differs considerably. Testing model results against multiple criteria is an efficient method to cope with non-uniqueness. In doing so, a range of different data and observations was compared to several different aspects of the model results. We find a systematic underestimation of net balance for parameter combinations that predict observed ice ablation, which suggests that refreezing processes play an important role. To represent these effects in the model, a simple PMAX approach was included in its formulation. Used as a diagnostic tool, the model suggests that the surface mass balance for the period 29 April 2004 to 23 April 2005 was negative (-318 mm w.e.).

  10. Sport-Specific Assessment of the Effectiveness of Neuromuscular Training in Young Athletes

    PubMed Central

    Zemková, Erika; Hamar, Dušan

    2018-01-01

    Neuromuscular training in young athletes improves performance and decreases the risk of injuries during sports activities. These effects are primarily ascribed to the enhancement of muscle strength and power but also balance, speed and agility. However, most studies have failed to demonstrate significant improvement in these abilities. This is probably due to the fact that traditional tests do not reflect training methods (e.g., plyometric training vs. isometric or isokinetic strength testing, dynamic balance training vs. static balance testing). The protocols utilized in laboratories only partially fulfill the current needs for testing under sport-specific conditions. Moreover, laboratory testing usually requires skilled staff and a well equipped and costly infrastructure. Nevertheless, experience demonstrates that high-technology and expensive testing is not the only way to proceed. A number of physical fitness field tests are available today. However, the low reliability and limited number of parameters retrieved from simple equipment used also limit their application in competitive sports. Thus, there is a need to develop and validate a functional assessment platform based on portable computerized systems. Variables obtained should be directly linked to specific features of particular sports and capture their complexity. This is essential for revealing weak and strong components of athlete performance and design of individually-tailored exercise programs. Therefore, identifying the drawbacks associated with the assessment of athlete performance under sport-specific conditions would provide a basis for the formation of an innovative approach to their long-term systematic testing. This study aims (i) to review the testing methods used for the evaluation of the effect of neuromuscular training on sport-specific performance in young athletes, (ii) to introduce stages within the Sport Longlife Diagnostic Model, and (iii) to propose future research in this topic. Analysis of the literature identified gaps in the current standard testing methods in terms of their low sensitivity in discriminating between athletes of varied ages and performance levels, insufficent tailoring to athlete performance level and individual needs, a lack of specificity to the requirements of particular sports and also in revealing the effect of training. In order to partly fill in these gaps, the Sport Longlife Diagnostic Model was proposed. PMID:29695970

  11. Sport-Specific Assessment of the Effectiveness of Neuromuscular Training in Young Athletes.

    PubMed

    Zemková, Erika; Hamar, Dušan

    2018-01-01

    Neuromuscular training in young athletes improves performance and decreases the risk of injuries during sports activities. These effects are primarily ascribed to the enhancement of muscle strength and power but also balance, speed and agility. However, most studies have failed to demonstrate significant improvement in these abilities. This is probably due to the fact that traditional tests do not reflect training methods (e.g., plyometric training vs. isometric or isokinetic strength testing, dynamic balance training vs. static balance testing). The protocols utilized in laboratories only partially fulfill the current needs for testing under sport-specific conditions. Moreover, laboratory testing usually requires skilled staff and a well equipped and costly infrastructure. Nevertheless, experience demonstrates that high-technology and expensive testing is not the only way to proceed. A number of physical fitness field tests are available today. However, the low reliability and limited number of parameters retrieved from simple equipment used also limit their application in competitive sports. Thus, there is a need to develop and validate a functional assessment platform based on portable computerized systems. Variables obtained should be directly linked to specific features of particular sports and capture their complexity. This is essential for revealing weak and strong components of athlete performance and design of individually-tailored exercise programs. Therefore, identifying the drawbacks associated with the assessment of athlete performance under sport-specific conditions would provide a basis for the formation of an innovative approach to their long-term systematic testing. This study aims (i) to review the testing methods used for the evaluation of the effect of neuromuscular training on sport-specific performance in young athletes, (ii) to introduce stages within the Sport Longlife Diagnostic Model, and (iii) to propose future research in this topic. Analysis of the literature identified gaps in the current standard testing methods in terms of their low sensitivity in discriminating between athletes of varied ages and performance levels, insufficent tailoring to athlete performance level and individual needs, a lack of specificity to the requirements of particular sports and also in revealing the effect of training. In order to partly fill in these gaps, the Sport Longlife Diagnostic Model was proposed.

  12. Biomechanical assessment of dynamic balance: Specificity of different balance tests.

    PubMed

    Ringhof, Steffen; Stein, Thorsten

    2018-04-01

    Dynamic balance is vitally important for most sports and activities of daily living, so the assessment of dynamic stability has become an important issue. In consequence, a large number of balance tests have been developed. However, it is not yet known whether these tests (i) measure the same construct and (ii) can differentiate between athletes with different balance expertise. We therefore studied three common dynamic balance tests: one-leg jump landings, Posturomed perturbations and simulated forward falls. Participants were 24 healthy young females in regular training in either gymnastics (n = 12) or swimming (n = 12). In each of the tests, the participants were instructed to recover balance as quickly as possible. Dynamic stability was computed by time to stabilization and margin of stability, deduced from force plates and motion capture respectively. Pearson's correlations between the dynamic balance tests found no significant associations between the respective dynamic stability measures. Furthermore, independent t-tests indicated that only jump landings could properly distinguish between both groups of athletes. In essence, the different dynamic balance tests applied did not measure the same construct but rather task-specific skills, each of which depends on multifactorial internal and external constraints. Our study therefore contradicts the traditional view of considering balance as a general ability, and reinforces that dynamic balance measures are not interchangeable. This highlights the importance of selecting appropriate balance tests. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Current physical activity improves balance control during sensory conflicting conditions in older adults.

    PubMed

    Buatois, S; Gauchard, G C; Aubry, C; Benetos, A; Perrin, P

    2007-01-01

    Aging process is characterized by difficulties in ensuring balance control, especially in conditions of reduced or conflicting sensory information, leading to an increased risk of falling. Conversely, the practise of physical activities (PA) has been recognized as a good approach to improve the quality of balance control. This study aimed to investigate the influence of current and/or past PA on balance-related neurosensorial organization in older adults on the maintenance of the upright stance, especially during sensory conflicting situations. Postural control was evaluated by means of the Sensory Organization Test on 130 healthy noninstitutionalized volunteers aged over 65, split into four groups according to the presence or absence of PA before or after retirement. Subjects who practised PA for a long time (Gr1) and subjects who started PA after retirement (Gr2) displayed the best postural performances and better managed sensory conflicting situations compared to subjects who had stopped PA for many years (Gr3) and subjects who had never practised PA (Gr4). Multiple regression analyses revealed that current PA was the major determinant for postural parameters during sensorial conflict compared to age, gender, body mass index and past PA. Regular PA, even when started late in life, allows appropriate reorganization of the different components of postural control during sensory conflicting situations. Indeed, active subjects were more able to compensate for suppressed or perturbed sensory information by an increased usage of another referential and so to correct their posture by adopting a more appropriate balance strategy. Thus, PA counteracts the age-related decline of postural control and could consequently reduce the risk of falling.

  14. Effect of somatosensory and neurofeedback training on balance in older healthy adults: a preliminary investigation.

    PubMed

    Azarpaikan, Atefeh; Taheri Torbati, Hamidreza

    2017-10-23

    The aim of this study was to assess the effectiveness of balance training with somatosensory and neurofeedback training on dynamic and static balance in healthy, elderly adults. The sample group consisted of 45 healthy adults randomly assigned to one of the three test groups: somatosensory, neurofeedback, and a control. Individualization of the balance program started with pre-tests for static and dynamic balances. Each group had 15- and 30-min training sessions. All groups were tested for static (postural stability) and dynamic balances (Berg Balance Scale) in acquisition and transfer tests (fall risk of stability and timed up and go). Improvements in static and dynamic balances were assessed by somatosensory and neurofeedback groups and then compared with the control group. Results indicated significant improvements in static and dynamic balances in both test groups in the acquisition test. Results revealed a significant improvement in the transfer test in the neurofeedback and somatosensory groups, in static and dynamic conditions, respectively. The findings suggest that these methods of balance training had a significant influence on balance. Both the methods are appropriate to prevent falling in adults. Neurofeedback training helped the participants to learn static balance, while somatosensory training was effective on dynamic balance learning. Further research is needed to assess the effects of longer and discontinuous stimulation with somatosensory and neurofeedback training on balance in elderly adults.

  15. 40 CFR 1065.295 - PM inertial balance for field-testing analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false PM inertial balance for field-testing... inertial balance for field-testing analysis. (a) Application. You may use an inertial balance to quantify... balance that meets the specifications in Table 1 of § 1065.205. Note that your balance-based system must...

  16. 40 CFR 1065.295 - PM inertial balance for field-testing analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false PM inertial balance for field-testing... inertial balance for field-testing analysis. (a) Application. You may use an inertial balance to quantify... balance that meets the specifications in Table 1 of § 1065.205. Note that your balance-based system must...

  17. Gymnastic judges benefit from their own motor experience as gymnasts.

    PubMed

    Pizzera, Alexandra

    2012-12-01

    Gymnastic judges have the difficult task of evaluating highly complex skills. My purpose in the current study was to examine evidence that judges use their sensorimotor experiences to enhance their perceptual judgments. In a video test, 58 judges rated 31 gymnasts performing a balance beam skill. I compared decision quality between judges who could perform the skill themselves on the balance beam (specific motor experience = SME) and those who could not. Those with SME showed better performance than those without SME. These data suggest that judges use their personal experiences as information to accurately assess complex gymnastic skills. [corrected].

  18. A novel approach to sports concussion assessment: Computerized multilimb reaction times and balance control testing.

    PubMed

    Vartiainen, Matti V; Holm, Anu; Lukander, Jani; Lukander, Kristian; Koskinen, Sanna; Bornstein, Robert; Hokkanen, Laura

    2016-01-01

    Mild traumatic brain injuries (MTBI) or concussions often result in problems with attention, executive functions, and motor control. For better identification of these diverse problems, novel approaches integrating tests of cognitive and motor functioning are needed. The aim was to characterize minor changes in motor and cognitive performance after sports-related concussions with a novel test battery, including balance tests and a computerized multilimb reaction time test. The cognitive demands of the battery gradually increase from a simple stimulus response to a complex task requiring executive attention. A total of 113 male ice hockey players (mean age = 24.6 years, SD = 5.7) were assessed before a season. During the season, nine concussed players were retested within 36 hours, four to six days after the concussion, and after the season. A control group of seven nonconcussed players from the same pool of players with comparable demographics were retested after the season. Performance was measured using a balance test and the Motor Cognitive Test battery (MotCoTe) with multilimb responses in simple reaction, choice reaction, inhibition, and conflict resolution conditions. The performance of the concussed group declined at the postconcussion assessment compared to both the baseline measurement and the nonconcussed controls. Significant changes were observed in the concussed group for the multilimb choice reaction and inhibition tests. Tapping and balance showed a similar trend, but no statistically significant difference in performance. In sports-related concussions, complex motor tests can be valuable additions in assessing the outcome and recovery. In the current study, using subtasks with varying cognitive demands, it was shown that while simple motor performance was largely unaffected, the more complex tasks induced impaired reaction times for the concussed subjects. The increased reaction times may reflect the disruption of complex and integrative cognitive function in concussions.

  19. Validation of the Balance Board for Clinical Evaluation of Balance During Serious Gaming Rehabilitation Exercises.

    PubMed

    Bonnechère, Bruno; Jansen, Bart; Omelina, Lubos; Sholukha, Victor; Van Sint Jan, Serge

    2016-09-01

    Balance and posture can be affected in various conditions or become decreased with aging. A diminution of balance control induces an increase of fall's risk. The Nintendo Wii Balance Board™ (WBB) is used in rehabilitation to perform balance exercises (using commercial video games). The WBB has also been validated to assess balance and posture in static conditions. However, there is currently no study investigating the use of WBB to assess balance during the realization of balance exercises using this device. The aim of this study was to validate the use of WBB, coupled with specially developed serious games, to assess dynamic balance during rehabilitation exercises. Thirty five subjects participated in this study. Subjects were asked to play two specially developed serious games. Center of pressure (CP) displacements were simultaneously recorded with a WBB and a gold standard force plate (FP). Nine parameters were derived from CP displacement. Bland and Altman plots, paired-sample t tests, intraclass correlation coefficient's, and Pearson's coefficient correlations were computed. Excellent correlation between both devices was found for each parameter for the two games (R = 0.95 and 0.96). Unlike previous work on the WBB, these excellent results were obtained without using any calibration procedure. Despite this, results were highly correlated between the WBB and the FP. The WBB could be used in clinics to assess balance during rehabilitation exercises and, thus, allows a more regular patient follow-up.

  20. The Automated Assessment of Postural Stability: Balance Detection Algorithm.

    PubMed

    Napoli, Alessandro; Glass, Stephen M; Tucker, Carole; Obeid, Iyad

    2017-12-01

    Impaired balance is a common indicator of mild traumatic brain injury, concussion and musculoskeletal injury. Given the clinical relevance of such injuries, especially in military settings, it is paramount to develop more accurate and reliable on-field evaluation tools. This work presents the design and implementation of the automated assessment of postural stability (AAPS) system, for on-field evaluations following concussion. The AAPS is a computer system, based on inexpensive off-the-shelf components and custom software, that aims to automatically and reliably evaluate balance deficits, by replicating a known on-field clinical test, namely, the Balance Error Scoring System (BESS). The AAPS main innovation is its balance error detection algorithm that has been designed to acquire data from a Microsoft Kinect ® sensor and convert them into clinically-relevant BESS scores, using the same detection criteria defined by the original BESS test. In order to assess the AAPS balance evaluation capability, a total of 15 healthy subjects (7 male, 8 female) were required to perform the BESS test, while simultaneously being tracked by a Kinect 2.0 sensor and a professional-grade motion capture system (Qualisys AB, Gothenburg, Sweden). High definition videos with BESS trials were scored off-line by three experienced observers for reference scores. AAPS performance was assessed by comparing the AAPS automated scores to those derived by three experienced observers. Our results show that the AAPS error detection algorithm presented here can accurately and precisely detect balance deficits with performance levels that are comparable to those of experienced medical personnel. Specifically, agreement levels between the AAPS algorithm and the human average BESS scores ranging between 87.9% (single-leg on foam) and 99.8% (double-leg on firm ground) were detected. Moreover, statistically significant differences in balance scores were not detected by an ANOVA test with alpha equal to 0.05. Despite some level of disagreement between human and AAPS-generated scores, the use of an automated system yields important advantages over currently available human-based alternatives. These results underscore the value of using the AAPS, that can be quickly deployed in the field and/or in outdoor settings with minimal set-up time. Finally, the AAPS can record multiple error types and their time course with extremely high temporal resolution. These features are not achievable by humans, who cannot keep track of multiple balance errors with such a high resolution. Together, these results suggest that computerized BESS calculation may provide more accurate and consistent measures of balance than those derived from human experts.

  1. Correlation study of theoretical and experimental results for spin tests of a 1/10 scale radio control model

    NASA Technical Reports Server (NTRS)

    Bihrle, W., Jr.

    1976-01-01

    A correlation study was conducted to determine the ability of current analytical spin prediction techniques to predict the flight motions of a current fighter airplane configuration during the spin entry, the developed spin, and the spin recovery motions. The airplane math model used aerodynamics measured on an exact replica of the flight test model using conventional static and forced-oscillation wind-tunnel test techniques and a recently developed rotation-balance test apparatus capable of measuring aerodynamics under steady spinning conditions. An attempt was made to predict the flight motions measured during stall/spin flight testing of an unpowered, radio-controlled model designed to be a 1/10 scale, dynamically-scaled model of a current fighter configuration. Comparison of the predicted and measured flight motions show that while the post-stall and spin entry motions were not well-predicted, the developed spinning motion (a steady flat spin) and the initial phases of the spin recovery motion are reasonably well predicted.

  2. Validation of a Virtual Reality Balance Module for Use in Clinical Concussion Assessment and Management

    PubMed Central

    Teel, Elizabeth F.; Slobounov, Semyon M.

    2014-01-01

    Objective To determine the criterion and content validity of a virtual reality (VR) balance module for use in clinical practice. Design Retrospective, VR balance module completed by participants during concussion baseline or assessment testing session. Setting A Pennsylvania State University research laboratory Participants A total of 60 control and 28 concussed students and athletes from the Pennsylvania State University Interventions None Main Outcome Measures This study examined: (1) the relationship between VR composite balance scores (final, stationary, yaw, pitch, and roll) and area of the center-of-pressure (eyes open and closed) scores and (2) group differences (normal volunteers and concussed student-athletes) on VR composite balance scores. Results With the exception of the stationary composite score, all other VR balance composite scores were significantly correlated with the center of pressure (COP) data obtained from a force platform. Significant correlations for the eyes open conditions ranged from r= −.273 to −.704 and from r= −.353 to −.876 for the eyes closed condition. When examining group differences on the VR balance composite modules, the concussed group did significantly (p<.01) worse on all measures compared to the control group. Conclusions The VR balance module met or exceeded the criterion and content validity standard set by current balance tools and may be appropriate for use in a clinical concussion setting. PMID:24905539

  3. Gymnastic Judges Benefit from Their Own Motor Experience as Gymnasts

    ERIC Educational Resources Information Center

    Pizzera, Alexandra

    2012-01-01

    Gymnastic judges have the difficult task of evaluating highly complex skills. My purpose in the current study was to examine evidence that judges use their sensorimotor experiences to enhance their perceptual judgments. In a video test, 58 judges rated 31 gymnasts performing a balance beam skill. I compared decision quality between judges who…

  4. 78 FR 19050 - Self-Regulatory Organizations; National Securities Clearing Corporation; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-28

    ... Balance Orders March 22, 2013. Pursuant to Section 19(b)(1) of the Securities Exchange Act of 1934 (``Act... security. Net Balance Order Pricing The uniform settlement price for net Balance Orders is currently established using a rounding methodology.\\11\\ If the current per share price of the Balance Order Security is...

  5. Transcranial direct current stimulation associated with gait training in Parkinson's disease: A pilot randomized clinical trial.

    PubMed

    Costa-Ribeiro, Adriana; Maux, Ariadne; Bosford, Thamyris; Aoki, Yumi; Castro, Rebeca; Baltar, Adriana; Shirahige, Lívia; Moura Filho, Alberto; Nitsche, Michael A; Monte-Silva, Kátia

    2017-04-01

    The aim of this study is to investigate the effects of transcranial direct current stimulation (tDCS) combined with cueing gait training (CGT) on functional mobility in patients with Parkinson´s disease (PD). A pilot double-blind controlled, randomized clinical trial was conducted with 22 patients with PD assigned to the experimental (anodal tDCS plus CGT) and control group (sham tDCS plus CGT). The primary outcome (functional mobility) was assessed by 10-m walk test, cadence, stride length, and Timed Up and Go test. Motor impairment, bradykinesia, balance, and quality of life were analyzed as secondary outcomes. Minimal clinically important differences (MCIDs) were observed when assessing outcome data. Both groups demonstrated similar gains in all outcome measures, except for the stride length. The number of participants who showed MCID was similar between groups. The CGT provided many benefits to functional mobility, motor impairment, bradykinesia, balance, and quality of life. However, these effect magnitudes were not influenced by stimulation, but tDCS seems to prolong the effects of cueing therapy on functional mobility.

  6. Coil-current effect in Kibble balances: analysis, measurement, and optimization

    NASA Astrophysics Data System (ADS)

    Li, S.; Bielsa, F.; Stock, M.; Kiss, A.; Fang, H.

    2018-02-01

    The Kibble balance is expected to become an important instrument in the near future for realizing the unit of mass, the kilogram, in the revised international system of units (SI). The Kibble balance assumes an equality of two magnetic profiles measured in the weighing and velocity phases. A recent study conducted in the Kibble balance group at the Bureau International des Poids et Mesures (BIPM) showed that the coil current could significantly affect the magnetic profile, which should be carefully taken into account in the Kibble balance experiment. This paper gives a deeper understanding and investigation of the effect, and discusses the magnetic profile change due to the coil current, for both the classical two-mode and the one-mode Kibble balances. The coil current effect has been theoretically and experimentally investigated based on a typical magnet design with an air gap. One important conclusion found in the one-mode Kibble balance is that the magnetic profile change measured in the velocity phase is twice the change in the weighing phase. A compensation suggestion, to minimize the profile change due to the coil current in a BIPM-type magnet, is presented.

  7. Study and Analyses on the Structural Performance of a Balance

    NASA Technical Reports Server (NTRS)

    Karkehabadi, R.; Rhew, R. D.; Hope, D. J.

    2004-01-01

    Strain-gauge balances for use in wind tunnels have been designed at Langley Research Center (LaRC) since its inception. Currently Langley has more than 300 balances available for its researchers. A force balance is inherently a critically stressed component due to the requirements of measurement sensitivity. The strain-gauge balances have been used in Langley s wind tunnels for a wide variety of aerodynamic tests, and the designs encompass a large array of sizes, loads, and environmental effects. There are six degrees of freedom that a balance has to measure. The balance s task to measure these six degrees of freedom has introduced challenging work in transducer development technology areas. As the emphasis increases on improving aerodynamic performance of all types of aircraft and spacecraft, the demand for improved balances is at the forefront. Force balance stress analysis and acceptance criteria are under review due to LaRC wind tunnel operational safety requirements. This paper presents some of the analyses and research done at LaRC that influence structural integrity of the balances. The analyses are helpful in understanding the overall behavior of existing balances and can be used in the design of new balances to enhance performance. Initially, a maximum load combination was used for a linear structural analysis. When nonlinear effects were encountered, the analysis was extended to include nonlinearities using MSC.Nastran . Because most of the balances are designed using Pro/Mechanica , it is desirable and efficient to use Pro/Mechanica for stress analysis. However, Pro/Mechanica is limited to linear analysis. Both Pro/Mechanica and MSC.Nastran are used for analyses in the present work. The structural integrity of balances and the possibility of modifying existing balances to enhance structural integrity are investigated.

  8. Eddy current techniques for super duplex stainless steel characterization

    NASA Astrophysics Data System (ADS)

    Camerini, C.; Sacramento, R.; Areiza, M. C.; Rocha, A.; Santos, R.; Rebello, J. M.; Pereira, G.

    2015-08-01

    Super duplex stainless steel (SDSS) is a two-phase material where the microstructure consists of grains of ferrite (δ) and austenite (γ). SDSS exhibit an attractive combination of properties, such as: strength, toughness and stress corrosion cracking resistance. Nevertheless, SDSS attain these properties after a controlled solution heat treatment, leading to a similar volumetric fraction of δ and γ. Any further heat treatment, welding operation for example, can change the balance of the original phases, or may also lead to precipitation of a deleterious phase, such as sigma (σ). For these situations, the material corrosion resistance is severely impaired. In the present study, several SDSS samples with low σ phase content and non-balanced microstructure were intentionally obtained by thermally treating SDSS specimens. Electromagnetic techniques, conventional Eddy Current Testing (ECT) and Saturated Low Frequency Eddy Current (SLOFEC), were employed to characterize the SDSS samples. The results showed that ECT and SLOFEC are reliable techniques to evaluate σ phase presence in SDSS and can provide an estimation of the δ content.

  9. Test-retest reliability and construct validity of the ENERGY-parent questionnaire on parenting practices, energy balance-related behaviours and their potential behavioural determinants: the ENERGY-project.

    PubMed

    Singh, Amika S; Chinapaw, Mai J M; Uijtdewilligen, Léonie; Vik, Froydis N; van Lippevelde, Wendy; Fernández-Alvira, Juan M; Stomfai, Sarolta; Manios, Yannis; van der Sluijs, Maria; Terwee, Caroline; Brug, Johannes

    2012-08-13

    Insight in parental energy balance-related behaviours, their determinants and parenting practices are important to inform childhood obesity prevention. Therefore, reliable and valid tools to measure these variables in large-scale population research are needed. The objective of the current study was to examine the test-retest reliability and construct validity of the parent questionnaire used in the ENERGY-project, assessing parental energy balance-related behaviours, their determinants, and parenting practices among parents of 10-12 year old children. We collected data among parents (n = 316 in the test-retest reliability study; n = 109 in the construct validity study) of 10-12 year-old children in six European countries, i.e. Belgium, Greece, Hungary, the Netherlands, Norway, and Spain. Test-retest reliability was assessed using the intra-class correlation coefficient (ICC) and percentage agreement comparing scores from two measurements, administered one week apart. To assess construct validity, the agreement between questionnaire responses and a subsequent interview was assessed using ICC and percentage agreement.All but one item showed good to excellent test-retest reliability as indicated by ICCs > .60 or percentage agreement ≥ 75%. Construct validity appeared to be good to excellent for 92 out of 121 items, as indicated by ICCs > .60 or percentage agreement ≥ 75%. From the other 29 items, construct validity was moderate for 24 and poor for 5 items. The reliability and construct validity of the items of the ENERGY-parent questionnaire on multiple energy balance-related behaviours, their potential determinants, and parenting practices appears to be good. Based on the results of the validity study, we strongly recommend adapting parts of the ENERGY-parent questionnaire if used in future research.

  10. Clinimetric properties of the Tinetti Mobility Test, Four Square Step Test, Activities-specific Balance Confidence Scale, and spatiotemporal gait measures in individuals with Huntington's disease

    PubMed Central

    Kloos, Anne D.; Fritz, Nora E.; Kostyk, Sandra K.; Young, Gregory S.; Kegelmeyer, Deb A.

    2014-01-01

    Background and purpose Individuals with Huntington's disease (HD) experience balance and gait problems that lead to falls. Clinicians currently have very little information about the reliability and validity of outcome measures to determine the efficacy of interventions that aim to reduce balance and gait impairments in HD. This study examined the reliability and concurrent validity of spatiotemporal gait measures, the Tinetti Mobility Test (TMT), Four Square Step Test (FSST), and Activities-specific Balance Confidence (ABC) Scale in individuals with HD. Methods Participants with HD [n = 20; mean age ± SD = 50.9 ± 13.7; 7 male] were tested on spatiotemporal gait measures the TMT, FSST, and ABC Scale before and after a six week period to determine test–retest reliability and minimal detectable change (MDC) values. Linear relationships between gait and clinical measures were estimated using Pearson's correlation coefficients. Results Spatiotemporal gait measures, the TMT total and the FSST showed good to excellent test–retest reliability (ICC > 0.75). MDC values were 0.30 m/s and 0.17 m/s for velocity in forward and backward walking respectively, four points for the TMT, and 3 s for the FSST. The TMT and FSST were highly correlated with most spatiotemporal measures. The ABC Scale demonstrated lower reliability and less concurrent validity than other measures. Conclusions The high test–retest reliability over a six week period and concurrent validity between the TMT, FSST, and spatiotemporal gait measures suggest that the TMT and FSST may be useful outcome measures for future intervention studies in ambulatory individuals with HD. PMID:25128156

  11. Physical and functional outcomes following multidisciplinary residential rehabilitation for prearthritic hip pain among young active UK military personnel

    PubMed Central

    Coppack, Russell J; Bilzon, James L; Wills, Andrew K; McCurdie, Ian M; Partridge, Laura K; Nicol, Alastair M; Bennett, Alexander N

    2016-01-01

    Background There are no studies describing the clinical outcomes of a residential, multidisciplinary team (MDT) rehabilitation intervention for patients with prearthritic hip pain. The aim of this cohort study was to describe the functional and physical outcomes of multidisciplinary residential rehabilitation for UK military personnel with prearthritic hip pain. Methods Participants (N=40) with a mean age of 33 years referred to a specialist residential rehabilitation centre completed a comprehensive multidisciplinary residential intervention. The main outcome measures were mean pain, physical function (modified shuttle test (MST) and Y-balance test), hip range of motion (HROM) and a patient-reported outcome measure (The Copenhagen Hip and Groin Outcome Score, HAGOS). All scores for symptomatic hips were taken at baseline and post-treatment. Results There were improvements in the Y-balance test and HROM following rehabilitation. There were significant improvements in mean difference (T1-to-T2) for Y-balance scores (15.8 cm, 95% CI 10.7 to 20.9, p<0.001), HROM (6.5° increase in hip flexion, 95% CI 4.6 to 9.4, p<0.001) and hip internal rotation (4.6°, 95% CI 2.7 to 6.6, p<0.001). Scores for HAGOS, pain, MST and functional activity assessment showed no improvement. Conclusions Among UK military personnel with prearthritic hip pain, MDT residential rehabilitation resulted in improvements in a functional Y-balance test, hip flexion and internal rotation. The study suggests short-term benefits across some outcomes for the current UK military approach to MDT residential rehabilitation. PMID:27900174

  12. Physical and functional outcomes following multidisciplinary residential rehabilitation for prearthritic hip pain among young active UK military personnel.

    PubMed

    Coppack, Russell J; Bilzon, James L; Wills, Andrew K; McCurdie, Ian M; Partridge, Laura K; Nicol, Alastair M; Bennett, Alexander N

    2016-01-01

    There are no studies describing the clinical outcomes of a residential, multidisciplinary team (MDT) rehabilitation intervention for patients with prearthritic hip pain. The aim of this cohort study was to describe the functional and physical outcomes of multidisciplinary residential rehabilitation for UK military personnel with prearthritic hip pain. Participants (N=40) with a mean age of 33 years referred to a specialist residential rehabilitation centre completed a comprehensive multidisciplinary residential intervention. The main outcome measures were mean pain, physical function (modified shuttle test (MST) and Y-balance test), hip range of motion (HROM) and a patient-reported outcome measure (The Copenhagen Hip and Groin Outcome Score, HAGOS). All scores for symptomatic hips were taken at baseline and post-treatment. There were improvements in the Y-balance test and HROM following rehabilitation. There were significant improvements in mean difference (T1-to-T2) for Y-balance scores (15.8 cm, 95% CI 10.7 to 20.9, p<0.001), HROM (6.5° increase in hip flexion, 95% CI 4.6 to 9.4, p<0.001) and hip internal rotation (4.6°, 95% CI 2.7 to 6.6, p<0.001). Scores for HAGOS, pain, MST and functional activity assessment showed no improvement. Among UK military personnel with prearthritic hip pain, MDT residential rehabilitation resulted in improvements in a functional Y-balance test, hip flexion and internal rotation. The study suggests short-term benefits across some outcomes for the current UK military approach to MDT residential rehabilitation.

  13. Improving Current Balance In Parallel MOSFET's

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    1992-01-01

    Simple circuit makes currents more nearly equal. Addition of diodes and adjustable-tap resistor increases operating range over which drain currents in two unmatched power MOSFET's brought more nearly into balance.

  14. Development of an interactive game-based rehabilitation tool for dynamic balance training.

    PubMed

    Lange, BeLinda; Flynn, Sheryl; Proffitt, Rachel; Chang, Chien-Yen; Rizzo, Albert Skip

    2010-01-01

    Conventional physical therapy techniques have been shown to improve balance, mobility, and gait following neurological injury. Treatment involves training patients to transfer weight onto the impaired limb to improve weight shift while standing and walking. Visual biofeedback and force plate systems are often used for treatment of balance and mobility disorders. Researchers have also been exploring the use of video game consoles such as the Nintendo Wii Fit as rehabilitation tools. Case studies have demonstrated that the use of video games may have promise for balance rehabilitation. However, initial usability studies and anecdotal evidence suggest that the current commercial games are not compatible with controlled, specific exercise required to meet therapy goals. Based on focus group data and observations with patients, a game has been developed to specifically target weight shift training using an open source game engine and the Nintendo Wii Fit Balance Board. The prototype underwent initial usability testing with a sample of clinicians and with persons with neurological injury. Overall, feedback was positive, and areas for improvement were identified. This preliminary research provides support for the development of a game that caters specifically to the key requirements of balance rehabilitation.

  15. Balance Training with Wii Fit Plus for Community-Dwelling Persons 60 Years and Older.

    PubMed

    Roopchand-Martin, Sharmella; McLean, Roshé; Gordon, Carron; Nelson, Gail

    2015-06-01

    This study sought to determine the effect of 6 weeks of training, using activities from the Nintendo(®) (Kyoto, Japan) "Wii™ Fit Plus" disc, on balance in community-dwelling Jamaicans 60 years and older. A single group pretest/posttest design was used. Thirty-three subjects enrolled and 28 completed the study. Participants completed 30-minute training sessions on the Nintendo "Wii Fit" twice per week for 6 weeks. Activities used included "Obstacle Course," "Penguin Slide," "Soccer Heading," "River Bubble," "Snow Board," "Tilt Table," "Skate Board," and "Yoga Single Tree Pose." Balance was assessed with the Berg Balance Scale, the Multi Directional Reach Test, the Star Excursion Balance Test and the Modified Clinical Test for Sensory Integration in Balance. There was significant improvement in the mean Berg Balance Scale score (P=0.004), Star Excursion Balance Test score (SEBT) (P<0.001 both legs), and Multi Directional Reach Test score (P=0.002). There was no significant change on the Modified Clinical Test for Sensory Integration in Balance. Balance games on the Nintendo "Wii Fit Plus" disc can be used as a tool for balance training in community-dwelling persons 60 years of age and older.

  16. Tai Chi and balance control.

    PubMed

    Wong, Alice M K; Lan, Ching

    2008-01-01

    Balance function begins to decline from middle age on, and poor balance function increases the risk of fall and injury. Suitable exercise training may improve balance function and prevent accidental falls. The coordination of visual, proprioceptive, vestibular and musculoskeletal system is important to maintain balance. Balance function can be evaluated by functional balance testing and sensory organization testing. Tai Chi Chuan (TC) is a popular conditioning exercise in the Chinese community, and recent studies substantiate that TC is effective in balance function enhancement and falls prevention. In studies utilizing functional balance testing, TC may increase the duration of one-leg standing and the distance of functional reach. In studies utilizing sensory organization testing, TC improves static and dynamic balance, especially in more challenging sensory perturbed condition. Therefore, TC may be prescribed as an alternative exercise program for elderly subjects or balance-impaired patients. Participants can choose to perform a complete set of TC or selected movements according to their needs. In conclusion, TC may improve balance function and is appropriate for implementation in the community.

  17. The Great Lakes Water Balance: Data availability and annotated bibliography of selected references

    USGS Publications Warehouse

    Neff, Brian P.; Killian, Jason R.

    2003-01-01

    Water balance calculations for the Great Lakes have been made for several decades and are a key component of Great Lakes water management. Despite the importance of the water balance, little has been done to inventory and describe the data available for use in water balance calculations. This report provides a catalog and brief description of major datasets that are used to calculate the Great Lakes water balance. Several additional datasets are identified that could be used to calculate parts of the water balance but currently are not being used. Individual offices and web pages that are useful for attaining these datasets are included. Four specific data gaps are also identified. An annotated bibliography of important publications dealing with the Great Lakes water balance is included. The findings of this investigation permit resource managers and scientists to access data more easily, assess shortcomings of current datasets, and identify which data are not currently being utilized in water balance calculations.

  18. LOWER EXTREMITY HYPERMOBILITY, BUT NOT CORE MUSCLE ENDURANCE INFLUENCES BALANCE IN FEMALE COLLEGIATE DANCERS.

    PubMed

    Ambegaonkar, Jatin P; Cortes, Nelson; Caswell, Shane V; Ambegaonkar, Gautam P; Wyon, Matthew

    2016-04-01

    Dance is a physically demanding activity, with almost 70% of all injuries in dancers occurring in the lower extremity (LE). Prior researchers report that muscle function (e.g. muscle endurance) and anatomical factors (e.g. hypermobility) affect physical performance (e.g. balance) and can subsequently influence LE injury risk. Specifically, lesser core muscle endurance, balance deficits, and greater hypermobility are related to increased LE injury risk. However, the potentials interrelationships among these factors in dancers remain unclear. The purposes of this study were to examine the relationships among core muscle endurance, balance, and LE hypermobility, and determine the relative contributions of core muscle endurance and LE hypermobility as predictors of balance in female collegiate dancers. Cross-sectional. Core muscle endurance was evaluated using the combined average anterior, left, and right lateral plank test time scores(s). LE hypermobility was measured using the LE-specific Beighton hypermobility measure, defining hypermobility if both legs had greater than 10 ° knee hyperextension. Balance was measured via the composite anterior, posterolateral, and posteromedial Star Excursion Balance Test (SEBT) reach distances (normalized to leg length) in 15 female healthy collegiate dancers (18.3 + 0.5yrs, 165.5 + 6.9cm, 63.7 + 12.1kg). Point-biserial-correlation-coefficients examined relationships and a linear regression examined whether core endurance and hypermobility predicted balance (p<.05). LE hypermobility (Yes; n = 3, No; n = 12) and balance (87.2 + 8.3% leg length) were positively correlated r(14)=.67, (p=.01). However, core endurance (103.9 + 50.6 s) and balance were not correlated r(14)=.32, (p=.26). LE hypermobility status predicted 36.9% of the variance in balance scores (p=.01). LE hypermobility, but not core muscle endurance may be related to balance in female collegiate dancers. While LE hypermobility status influenced balance in the female collegiate dancers, how this LE hypermobility status affects their longitudinal injury risk as their careers progress needs further study. Overall, the current findings suggest that rather than using isolated core endurance-centric training, clinicians may encourage dancers to use training programs that incorporate multiple muscles - in order to improve their balance, and possibly reduce their LE injury risk. 2b.

  19. LOWER EXTREMITY HYPERMOBILITY, BUT NOT CORE MUSCLE ENDURANCE INFLUENCES BALANCE IN FEMALE COLLEGIATE DANCERS

    PubMed Central

    Cortes, Nelson; Caswell, Shane V.; Ambegaonkar, Gautam P.; Wyon, Matthew

    2016-01-01

    Background Dance is a physically demanding activity, with almost 70% of all injuries in dancers occurring in the lower extremity (LE). Prior researchers report that muscle function (e.g. muscle endurance) and anatomical factors (e.g. hypermobility) affect physical performance (e.g. balance) and can subsequently influence LE injury risk. Specifically, lesser core muscle endurance, balance deficits, and greater hypermobility are related to increased LE injury risk. However, the potentials interrelationships among these factors in dancers remain unclear. Purpose The purposes of this study were to examine the relationships among core muscle endurance, balance, and LE hypermobility, and determine the relative contributions of core muscle endurance and LE hypermobility as predictors of balance in female collegiate dancers. Study Design Cross-sectional Methods Core muscle endurance was evaluated using the combined average anterior, left, and right lateral plank test time scores(s). LE hypermobility was measured using the LE-specific Beighton hypermobility measure, defining hypermobility if both legs had greater than 10 ° knee hyperextension. Balance was measured via the composite anterior, posterolateral, and posteromedial Star Excursion Balance Test (SEBT) reach distances (normalized to leg length) in 15 female healthy collegiate dancers (18.3 + 0.5yrs, 165.5 + 6.9cm, 63.7 + 12.1kg). Point-biserial-correlation-coefficients examined relationships and a linear regression examined whether core endurance and hypermobility predicted balance (p<.05). Results LE hypermobility (Yes; n = 3, No; n = 12) and balance (87.2 + 8.3% leg length) were positively correlated r(14)=.67, (p=.01). However, core endurance (103.9 + 50.6 s) and balance were not correlated r(14)=.32, (p=.26). LE hypermobility status predicted 36.9% of the variance in balance scores (p=.01). Conclusion LE hypermobility, but not core muscle endurance may be related to balance in female collegiate dancers. While LE hypermobility status influenced balance in the female collegiate dancers, how this LE hypermobility status affects their longitudinal injury risk as their careers progress needs further study. Overall, the current findings suggest that rather than using isolated core endurance-centric training, clinicians may encourage dancers to use training programs that incorporate multiple muscles - in order to improve their balance, and possibly reduce their LE injury risk. Level of Evidence 2b PMID:27104055

  20. BALANCE

    DOEpatents

    Carmichael, H.

    1953-01-01

    A torsional-type analytical balance designed to arrive at its equilibrium point more quickly than previous balances is described. In order to prevent external heat sources creating air currents inside the balance casing that would reiard the attainment of equilibrium conditions, a relatively thick casing shaped as an inverted U is placed over the load support arms and the balance beam. This casing is of a metal of good thernnal conductivity characteristics, such as copper or aluminum, in order that heat applied to one portion of the balance is quickly conducted to all other sensitive areas, thus effectively preventing the fornnation of air currents caused by unequal heating of the balance.

  1. Systematic Review of Postural Control and Lateral Ankle Instability, Part II: Is Balance Training Clinically Effective

    PubMed Central

    McKeon, Patrick O; Hertel, Jay

    2008-01-01

    Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567

  2. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model

    PubMed Central

    Moxnes, John F; Sandbakk, Øyvind; Hausken, Kjell

    2013-01-01

    The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%–4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing. PMID:24379718

  3. A simulation of cross-country skiing on varying terrain by using a mathematical power balance model.

    PubMed

    Moxnes, John F; Sandbakk, Oyvind; Hausken, Kjell

    2013-01-01

    The current study simulated cross-country skiing on varying terrain by using a power balance model. By applying the hypothetical inductive deductive method, we compared the simulated position along the track with actual skiing on snow, and calculated the theoretical effect of friction and air drag on skiing performance. As input values in the model, air drag and friction were estimated from the literature, whereas the model included relationships between heart rate, metabolic rate, and work rate based on the treadmill roller-ski testing of an elite cross-country skier. We verified this procedure by testing four models of metabolic rate against experimental data on the treadmill. The experimental data corresponded well with the simulations, with the best fit when work rate was increased on uphill and decreased on downhill terrain. The simulations predicted that skiing time increases by 3%-4% when either friction or air drag increases by 10%. In conclusion, the power balance model was found to be a useful tool for predicting how various factors influence racing performance in cross-country skiing.

  4. A Non Linear Scoring Approach for Evaluating Balance: Classification of Elderly as Fallers and Non-Fallers

    PubMed Central

    Audiffren, Julien; Bargiotas, Ioannis; Vayatis, Nicolas; Vidal, Pierre-Paul; Ricard, Damien

    2016-01-01

    Almost one third of population 65 years-old and older faces at least one fall per year. An accurate evaluation of the risk of fall through simple and easy-to-use measurements is an important issue in current clinic. A common way to evaluate balance in posturography is through the recording of the centre-of-pressure (CoP) displacement (statokinesigram) with force platforms. A variety of indices have been proposed to differentiate fallers from non fallers. However, no agreement has been reached whether these analyses alone can explain sufficiently the complex synergies of postural control. In this work, we study the statokinesigrams of 84 elderly subjects (80.3+− 6.4 years old), which had no impairment related to balance control. Each subject was recorded 25 seconds with eyes open and 25 seconds with eyes closed and information pertaining to the presence of problems of balance, such as fall, in the last six months, was collected. Five descriptors of the statokinesigrams were computed for each record, and a Ranking Forest algorithm was used to combine those features in order to evaluate each subject’s balance with a score. A classical train-test split approach was used to evaluate the performance of the method through ROC analysis. ROC analysis showed that the performance of each descriptor separately was close to a random classifier (AUC between 0.49 and 0.54). On the other hand, the score obtained by our method reached an AUC of 0.75 on the test set, consistent over multiple train-test split. This non linear multi-dimensional approach seems appropriate in evaluating complex postural control. PMID:27936060

  5. A Non Linear Scoring Approach for Evaluating Balance: Classification of Elderly as Fallers and Non-Fallers.

    PubMed

    Audiffren, Julien; Bargiotas, Ioannis; Vayatis, Nicolas; Vidal, Pierre-Paul; Ricard, Damien

    2016-01-01

    Almost one third of population 65 years-old and older faces at least one fall per year. An accurate evaluation of the risk of fall through simple and easy-to-use measurements is an important issue in current clinic. A common way to evaluate balance in posturography is through the recording of the centre-of-pressure (CoP) displacement (statokinesigram) with force platforms. A variety of indices have been proposed to differentiate fallers from non fallers. However, no agreement has been reached whether these analyses alone can explain sufficiently the complex synergies of postural control. In this work, we study the statokinesigrams of 84 elderly subjects (80.3+- 6.4 years old), which had no impairment related to balance control. Each subject was recorded 25 seconds with eyes open and 25 seconds with eyes closed and information pertaining to the presence of problems of balance, such as fall, in the last six months, was collected. Five descriptors of the statokinesigrams were computed for each record, and a Ranking Forest algorithm was used to combine those features in order to evaluate each subject's balance with a score. A classical train-test split approach was used to evaluate the performance of the method through ROC analysis. ROC analysis showed that the performance of each descriptor separately was close to a random classifier (AUC between 0.49 and 0.54). On the other hand, the score obtained by our method reached an AUC of 0.75 on the test set, consistent over multiple train-test split. This non linear multi-dimensional approach seems appropriate in evaluating complex postural control.

  6. Self-consistent current sheet structures in the quiet-time magnetotail

    NASA Technical Reports Server (NTRS)

    Holland, Daniel L.; Chen, James

    1993-01-01

    The structure of the quiet-time magnetotail is studied using a test particle simulation. Vlasov equilibria are obtained in the regime where v(D) = E(y) c/B(z) is much less than the ion thermal velocity and are self-consistent in that the current and magnetic field satisfy Ampere's law. Force balance between the plasma and magnetic field is satisfied everywhere. The global structure of the current sheet is found to be critically dependent on the source distribution function. The pressure tensor is nondiagonal in the current sheet with anisotropic temperature. A kinetic mechanism is proposed whereby changes in the source distribution results in a thinning of the current sheet.

  7. Test-retest reliability, smallest real difference and concurrent validity of six different balance tests on young people with mild to moderate intellectual disability.

    PubMed

    Blomqvist, Sven; Wester, Anita; Sundelin, Gunnevi; Rehn, Börje

    2012-12-01

    Some studies have reported that people with intellectual disability may have reduced balance ability compared with the population in general. However, none of these studies involved adolescents, and the reliability and validity of balance tests in this population are not known. The purpose of this study was to examine the reliability of six different balance tests and to investigate their concurrent validity. Test-retest reliability assessment. All subjects were recruited from a special school for people with intellectual disability in Bollnäs, Sweden. Eighty-nine adolescents (35 females and 54 males) with mild to moderate intellectual disability with a mean age of 18 years (range 16 to 20 years). All subjects followed the same test protocol on two occasions within an 11-day period. Balance test performances. Intraclass correlation coefficients greater than 0.80 were achieved for four of the balance tests: Extended Timed Up and Go Test, Modified Functional Reach Test, One-leg Stance Test and Force Platform Test. The smallest real differences ranged from 12% to 40%; less than 20% is considered to be low. Concurrent validity among these balance tests varied between no and low correlation. The results indicate that these tests could be used to evaluate changes in balance ability over time in people with mild to moderate intellectual disability. The low concurrent validity illustrates the importance of knowing more about the influence of various sensory subsystems that are significant for balance among adolescents with intellectual disability. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  8. Inductance analyzer based on auto-balanced circuit for precision measurement of fluxgate impedance

    NASA Astrophysics Data System (ADS)

    Setiadi, Rahmondia N.; Schilling, Meinhard

    2018-05-01

    An instrument for fluxgate sensor impedance measurement based on an auto-balanced circuit has been designed and characterized. The circuit design is adjusted to comply with the fluxgate sensor characteristics which are low impedance and highly saturable core with very high permeability. The system utilizes a NI-DAQ card and LabVIEW to process the signal acquisition and evaluation. Some fixed reference resistances are employed for system calibration using linear regression. A multimeter HP 34401A and impedance analyzer Agilent 4294A are used as calibrator and validator for the resistance and inductance measurements. Here, we realized a fluxgate analyzer instrument based on auto-balanced circuit, which measures the resistance and inductance of the device under test with a small error and much lower excitation current to avoid core saturation compared to the used calibrator.

  9. Balance Performance Is Task Specific in Older Adults.

    PubMed

    Dunsky, Ayelet; Zeev, Aviva; Netz, Yael

    2017-01-01

    Balance ability among the elderly is a key component in the activities of daily living and is divided into two types: static and dynamic. For clinicians who wish to assess the risk of falling among their elderly patients, it is unclear if more than one type of balance test can be used to measure their balance impairment. In this study, we examined the association between static balance measures and two dynamic balance field tests. One hundred and twelve community-dwelling older adults (mean age 74.6) participated in the study. They underwent the Tetrax static postural assessment and then performed the Timed Up and Go (TUG) and the Functional Reach (FR) Test as dynamic balance tests. In general, low-moderate correlations were found between the two types of balance tests. For women, age and static balance parameters explained 28.1-40.4% of the variance of TUG scores and 14.6-24% of the variance of FR scores. For men, age and static balance parameters explained 9.5-31.2% of the variance of TUG scores and 23.9-41.7% of the variance of FR scores. Based on our findings, it is suggested that a combination of both static and dynamic tests be used for assessing postural balance ability.

  10. Developmental programming of energy balance regulation: is physical activity more 'programmable' than food intake?

    PubMed

    Zhu, Shaoyu; Eclarinal, Jesse; Baker, Maria S; Li, Ge; Waterland, Robert A

    2016-02-01

    Extensive human and animal model data show that environmental influences during critical periods of prenatal and early postnatal development can cause persistent alterations in energy balance regulation. Although a potentially important factor in the worldwide obesity epidemic, the fundamental mechanisms underlying such developmental programming of energy balance are poorly understood, limiting our ability to intervene. Most studies of developmental programming of energy balance have focused on persistent alterations in the regulation of energy intake; energy expenditure has been relatively underemphasised. In particular, very few studies have evaluated developmental programming of physical activity. The aim of this review is to summarise recent evidence that early environment may have a profound impact on establishment of individual propensity for physical activity. Recently, we characterised two different mouse models of developmental programming of obesity; one models fetal growth restriction followed by catch-up growth, and the other models early postnatal overnutrition. In both studies, we observed alterations in body-weight regulation that persisted to adulthood, but no group differences in food intake. Rather, in both cases, programming of energy balance appeared to be due to persistent alterations in energy expenditure and spontaneous physical activity (SPA). These effects were stronger in female offspring. We are currently exploring the hypothesis that developmental programming of SPA occurs via induced sex-specific alterations in epigenetic regulation in the hypothalamus and other regions of the central nervous system. We will summarise the current progress towards testing this hypothesis. Early environmental influences on establishment of physical activity are likely an important factor in developmental programming of energy balance. Understanding the fundamental underlying mechanisms in appropriate animal models will help determine whether early life interventions may be a practical approach to promote physical activity in man.

  11. Reliability and Construct Validity of Limits of Stability Test in Adolescents Using a Portable Forceplate System.

    PubMed

    Alsalaheen, Bara; Haines, Jamie; Yorke, Amy; Broglio, Steven P

    2015-12-01

    To examine the reliability, convergent, and discriminant validity of the limits of stability (LOS) test to assess dynamic postural stability in adolescents using a portable forceplate system. Cross-sectional reliability observational study. School setting. Adolescents (N=36) completed all measures during the first session. To examine the reliability of the LOS test, a subset of 15 participants repeated the LOS test after 1 week. Not applicable. Outcome measurements included the LOS test, Balance Error Scoring System, Instrumented Balance Error Scoring System, and Modified Clinical Test for Sensory Interaction on Balance. A significant relation was observed among LOS composite scores (r=.36-.87, P<.05). However, no relation was observed between LOS and static balance outcome measurements. The reliability of the LOS composite scores ranged from moderate to good (intraclass correlation coefficient model 2,1=.73-.96). The results suggest that the LOS composite scores provide unique information about dynamic postural stability, and the LOS test completed at 100% of the theoretical limit appeared to be a reliable test of dynamic postural stability in adolescents. Clinicians should use dynamic balance measurement as part of their balance assessment and should not use static balance testing (eg, Balance Error Scoring System) to make inferences about dynamic balance, especially when balance assessment is used to determine rehabilitation outcomes, or when making return to play decisions after injury. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. The Role of Nongyrotropy in Balancing the Reconnection Diffusion Region

    NASA Astrophysics Data System (ADS)

    Hesse, M.; Liu, Y. H.; Chen, L. J.; Bessho, N.; Wang, S.; Burch, J. L.; Moretto, T.; Genestreti, K.; Phan, T.; Tenfjord, P.

    2017-12-01

    The structure of the reconnection diffusion region is, to a large degree, determined by the requirement to balance both the current flow and its dissipation processes, and the forces exerted onto the current layer by the inflow magnetic pressure. These balances are critical: without resupply processes, the transport of accelerated and current-carrying particles away from the diffusion region would generate a current density depletion, which, in principle, could lead to a mismatch with the curl of the magnetic field. Similarly, without heating processes, the convection of hot plasma away from the diffusion region would generate a force imbalance with the ambient magnetic field. The fact that neither of these imbalances occur is a consequence of the reconnection electric field, which is therefore not only required to facilitate magnetic flux transport, but also to provide the energization required to maintain balance in the diffusion region. In this presentation, we will use particle-in-cell simulations to analyze these balance conditions. We will furthermore show that nongyrotropic particle dynamics plays a key role both as current dissipation mechanism, and as overall heating mechanism in the diffusion region current layer.

  13. Plasma source for spacecraft potential control

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    A stable electrical ground which enables the particle spectrometers to measure the low energy particle populations was investigated and the current required to neutralize the spacecraft was measured. In addition, the plasma source for potential control (PSPO C) prevents high charging events which could affect the spacecraft electrical integrity. The plasma source must be able to emit a plasma current large enough to balance the sum of all other currents to the spacecraft. In ion thrusters, hollow cathodes provide several amperes of electron current to the discharge chamber. The PSPO C is capable of balancing the net negative currents found in eclipse charging events producing 10 to 100 microamps of electron current. The largest current required is the ion current necessary to balance the total photoelectric current.

  14. Redesigning the MCAT exam: balancing multiple perspectives.

    PubMed

    Schwartzstein, Richard M; Rosenfeld, Gary C; Hilborn, Robert; Oyewole, Saundra Herndon; Mitchell, Karen

    2013-05-01

    The authors of this commentary discuss the recently completed review of the current Medical College Admission Test (MCAT), which has been used since 1991, and describe the blueprint for the new test that will be introduced in 2015. The design of the MCAT exam reflects changes in medical education, medical science, health care delivery, and the needs of the populations served by graduates of U.S. and Canadian medical schools. The authors describe how balancing the ambitious goals for the new exam and the varying priorities of the testing program's many stakeholders made blueprint design complex. They discuss the tensions and trade-offs that characterized the design process as well as the deliberations and data that shaped the blueprint.The blueprint for the MCAT exam balances the assessment of a broad range of competencies in the natural, social, and behavioral sciences and critical analysis and reasoning skills that are essential to entering students' success in medical school. The exam will include four sections: Biological and Biochemical Foundations of Living Systems; Chemical and Physical Foundations of Biological Systems; Psychological, Social, and Biological Foundations of Behavior; and Critical Analysis and Reasoning Skills.The authors also offer recommendations for admission committees, advising them to review applicants' test scores, course work, and other academic, personal, and experiential credentials as part of a holistic admission process and in relation to their institutions' educational, scientific, clinical, and service-oriented goals.

  15. Acute effects of warm-up stretch protocols on balance, vertical jump height, and range of motion in dancers.

    PubMed

    Morrin, Niamh; Redding, Emma

    2013-01-01

    The aim of this study was to examine the acute effects of static stretching (SS), dynamic stretching (DS), and a combined (static and dynamic) stretch protocol on vertical jump (VJ) height, balance, and range of motion (ROM) in dancers. A no-stretch (NS) intervention acted as the control condition. It was hypothesized that the DS and combination stretch protocols would have more positive effects on performance indicators than SS and NS, and SS would have negative effects as compared to the NS condition. Ten trained female dancers (27 ± 5 years of age) were tested on four occasions. Each session began with initial measurements of hamstring ROM on the dominant leg. The participants subsequently carried out a cardiovascular (CV) warm-up, which was followed by one of the four randomly selected stretch conditions. Immediately after the stretch intervention the participants were tested on VJ performance, hamstring ROM, and balance. The data showed that DS (p < 0.05) and the combination stretch (p < .05) produced significantly greater VJ height scores as compared to SS, and the combination stretch demonstrated significantly enhanced balance performance as compared to SS (p < 0.05). With regard to ROM, a one-way ANOVA indicated that SS and the combination stretch displayed significantly greater changes in ROM than DS (p < 0.05). From comparison of the stretch protocols used in the current study, it can be concluded that SS does not appear to be detrimental to a dancer's performance, and DS has some benefits but not in all three key area's tested, namely lower body power (VJ height), balance, and range of motion. However, combination stretching showed significantly enhanced balance and vertical jump height scores and significantly improved pre-stretch and post-stretch ROM values. It is therefore suggested that a combined warm-up protocol consisting of SS and DS should be promoted as an effective warm-up for dancers.

  16. Balance ability of 7 and 10 year old children in the population: results from a large UK birth cohort study.

    PubMed

    Humphriss, Rachel; Hall, Amanda; May, Margaret; Macleod, John

    2011-01-01

    The literature contains many reports of balance function in children, but these are often on atypical samples taken from hospital-based clinics and may not be generalisable to the population as a whole. The purpose of the present study is to describe balance test results from a large UK-based birth cohort study. Data from the Avon Longitudinal Study of Parents and Children (ALSPAC) were analysed. A total of 5402 children completed the heel-to-toe walking test at age 7 years. At age 10 years, 6915 children underwent clinical tests of balance including beam-walking, standing heel-to-toe on a beam and standing on one leg. A proportion of the children returned to the clinic for retesting within 3 months allowing test-retest agreement to be measured. Frequency distributions for each of the balance tests are given. Correlations between measures of dynamic balance at ages 7 and 10 years were weak. The static balance of 10 year old children was found to be poorer with eyes closed than with eyes open, and poorer in boys than in girls for all measures. Balance on one leg was poorer than heel-to-toe balance on a beam. A significant learning effect was found when first and second attempts of the tests were compared. Measures of static and dynamic balance appeared independent. Consistent with previous reports in the literature, test-retest reliability was found to be low. This study provides information about the balance ability of children aged 7 and 10 years and provides clinicians with reference data for balance tests commonly used in the paediatric clinic. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Analysis of static and dynamic balance in healthy elderly practitioners of Tai Chi Chuan versus ballroom dancing

    PubMed Central

    Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D′Andréa; Leme, Luiz Eugênio Garcez

    2015-01-01

    OBJECTIVE: To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. METHODS: We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master® force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). RESULTS: In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. CONCLUSION: The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test. PMID:26017644

  18. Analysis of static and dynamic balance in healthy elderly practitioners of Tai Chi Chuan versus ballroom dancing.

    PubMed

    Rahal, Miguel Antônio; Alonso, Angélica Castilho; Andrusaitis, Felix Ricardo; Rodrigues, Thuam Silva; Speciali, Danielli Souza; Greve, Júlia Maria D Andréa; Leme, Luiz Eugênio Garcez

    2015-03-01

    To determine whether Tai Chi Chuan or ballroom dancing promotes better performance with respect to postural balance, gait, and postural transfer among elderly people. We evaluated 76 elderly individuals who were divided into two groups: the Tai Chi Chuan Group and the Dance Group. The subjects were tested using the NeuroCom Balance Master¯ force platform system with the following protocols: static balance tests (the Modified Clinical Tests of Sensory Interaction on Balance and Unilateral Stance) and dynamic balance tests (the Walk Across Test and Sit-to-stand Transfer Test). In the Modified Clinical Test of Sensory Interaction on Balance, the Tai Chi Chuan Group presented a lower sway velocity on a firm surface with open and closed eyes, as well as on a foam surface with closed eyes. In the Modified Clinical Test of Sensory Interaction on Unilateral Stance, the Tai Chi Chuan Group presented a lower sway velocity with open eyes, whereas the Dance Group presented a lower sway velocity with closed eyes. In the Walk Across Test, the Tai Chi Chuan Group presented faster walking speeds than those of the Dance Group. In the Sit-to-stand Transfer Test, the Tai Chi Chuan Group presented shorter transfer times from the sitting to the standing position, with less sway in the final standing position. The elderly individuals who practiced Tai Chi Chuan had better bilateral balance with eyes open on both types of surfaces compared with the Dance Group. The Dance Group had better unilateral postural balance with eyes closed. The Tai Chi Chuan Group had faster walking speeds, shorter transfer times, and better postural balance in the final standing position during the Sit-to-stand Test.

  19. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Markusic, T. E.; Jones, J. E.; Cox, M. D.

    2004-01-01

    An electric propulsion thrust stand capable of supporting thrusters with total mass of up to 125 kg and 1 mN to 1 N thrust levels has been developed and tested. The mechanical design features a conventional hanging pendulum arm attached to a balance mechanism that transforms horizontal motion into amplified vertical motion, with accommodation for variable displacement sensitivity. Unlike conventional hanging pendulum thrust stands, the deflection is independent of the length of the pendulum arm, and no reference structure is required at the end of the pendulum. Displacement is measured using a non-contact, optical linear gap displacement transducer. Mechanical oscillations are attenuated using a passive, eddy current damper. An on-board microprocessor-based level control system, which includes a two axis accelerometer and two linear-displacement stepper motors, continuously maintains the level of the balance mechanism - counteracting mechanical %era drift during thruster testing. A thermal control system, which includes heat exchange panels, thermocouples, and a programmable recirculating water chiller, continuously adjusts to varying thermal loads to maintain the balance mechanism temperature, to counteract thermal drifts. An in-situ calibration rig allows for steady state calibration both prior to and during thruster testing. Thrust measurements were carried out on a well-characterized 1 kW Hall thruster; the thrust stand was shown to produce repeatable results consistent with previously published performance data.

  20. Effects of Corrective Taping on Balance and Gait in Patients With Hallux Valgus.

    PubMed

    Gur, Gozde; Ozkal, Ozden; Dilek, Burcu; Aksoy, Songul; Bek, Nilgun; Yakut, Yavuz

    2017-05-01

    Taping is an effective temporary therapy for improving hallux valgus (HV) in adults. Although HV has been demonstrated to impair postural balance, there is a lack of information about how corrective taping affects balance and gait patterns in adults with HV deformity. Eighteen middle-aged female patients (average age, 53.5 years) with HV were included. Corrective tape was applied to correct HV angulation. A series of balance and gait stability tests were performed before applying tape and 1 hour after the tape was applied with a Balance Master computerized posturography device. The study involved the following tests: modified clinical test of sensory interaction and balance (mCTSIB), unilateral stance (US), limit of stability (LoS), step up/over (SUO), and walk across (WA) tests. No significant difference was found between the no-tape and taped condition in the static balance mCTSIB and US tests ( P > .05). The taping intervention resulted in significant improvement in the dynamic balance measures for the LoS test's backward reaction time and left maximum excursion ( P < .05), a significantly higher impact index bilaterally in the SUO assessment ( P < .05), and an increase in step width mean and variability in the WA test ( P < .05). Taping for correcting HV angulation had negative acute effects on dynamic balance in the SUO and WA tests and positive effects in the LoS test. Corrective taping, although a form of conservative treatment for hallux valgus, has been insufficiently studied in terms of effects on balance. Our results show that taping, as an acute effect, may impair balance in middle-aged adults when walking or ascending and descending stairs.

  1. A Reactive Balance Rating Method that Correlates with Kinematics after Trip-Like Perturbations on a Treadmill and Fall Risk Among Residents of Older Adult Congregate Housing.

    PubMed

    Madigan, Michael L; Aviles, Jessica; Allin, Leigh J; Nussbaum, Maury A; Alexander, Neil B

    2018-04-16

    A growing number of studies are using modified treadmills to train reactive balance after trip-like perturbations that require multiple steps to recover balance. The goal of this study was thus to develop and validate a low-tech reactive balance rating method in the context of trip-like treadmill perturbations to facilitate the implementation of this training outside the research setting. Thirty-five residents of five senior congregate housing facilities participated in the study. Subjects completed a series of reactive balance tests on a modified treadmill from which the reactive balance rating was determined, along with a battery of standard clinical balance and mobility tests that predict fall risk. We investigated the strength of correlation between the reactive balance rating and reactive balance kinematics. We compared the strength of correlation between the reactive balance rating and clinical tests predictive of fall risk, with the strength of correlation between reactive balance kinematics and the same clinical tests. We also compared the reactive balance rating between subjects predicted to be at a high or low risk of falling. The reactive balance rating was correlated with reactive balance kinematics (Spearman's rho squared = .04 - .30), exhibited stronger correlations with clinical tests than most kinematic measures (Spearman's rho squared = .00 - .23), and was 42-60% lower among subjects predicted to be at a high risk for falling. The reactive balance rating method may provide a low-tech, valid measure of reactive balance kinematics, and an indicator of fall risk, after trip-like postural perturbations.

  2. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  3. The effects of augmented visual feedback during balance training in Parkinson's disease: study design of a randomized clinical trial.

    PubMed

    van den Heuvel, Maarten R C; van Wegen, Erwin E H; de Goede, Cees J T; Burgers-Bots, Ingrid A L; Beek, Peter J; Daffertshofer, Andreas; Kwakkel, Gert

    2013-10-04

    Patients with Parkinson's disease often suffer from reduced mobility due to impaired postural control. Balance exercises form an integral part of rehabilitative therapy but the effectiveness of existing interventions is limited. Recent technological advances allow for providing enhanced visual feedback in the context of computer games, which provide an attractive alternative to conventional therapy. The objective of this randomized clinical trial is to investigate whether a training program capitalizing on virtual-reality-based visual feedback is more effective than an equally-dosed conventional training in improving standing balance performance in patients with Parkinson's disease. Patients with idiopathic Parkinson's disease will participate in a five-week balance training program comprising ten treatment sessions of 60 minutes each. Participants will be randomly allocated to (1) an experimental group that will receive balance training using augmented visual feedback, or (2) a control group that will receive balance training in accordance with current physical therapy guidelines for Parkinson's disease patients. Training sessions consist of task-specific exercises that are organized as a series of workstations. Assessments will take place before training, at six weeks, and at twelve weeks follow-up. The functional reach test will serve as the primary outcome measure supplemented by comprehensive assessments of functional balance, posturography, and electroencephalography. We hypothesize that balance training based on visual feedback will show greater improvements on standing balance performance than conventional balance training. In addition, we expect that learning new control strategies will be visible in the co-registered posturographic recordings but also through changes in functional connectivity.

  4. Effects of Nintendo Wii-Fit® video games on balance in children with mild cerebral palsy.

    PubMed

    Tarakci, Devrim; Ersoz Huseyinsinoglu, Burcu; Tarakci, Ela; Razak Ozdincler, Arzu

    2016-10-01

    This study compared the effects of Nintendo Wii-Fit ® balance-based video games and conventional balance training in children with mild cerebral palsy (CP). This randomized controlled trial involved 30 ambulatory pediatric patients (aged 5-18 years) with CP. Participants were randomized to either conventional balance training (control group) or to Wii-Fit balance-based video games training (Wii group). Both group received neuro-developmental treatment (NDT) during 24 sessions. In addition, while the control group received conventional balance training in each session, the Wii group played Nintendo Wii Fit games such as ski slalom, tightrope walk and soccer heading on balance board. Primary outcomes were Functional Reach Test (forward and sideways), Sit-to-Stand Test and Timed Get up and Go Test. Nintendo Wii Fit balance, age and game scores, 10 m walk test, 10-step climbing test and Wee-Functional Independence Measure (Wee FIM) were secondary outcomes. After the treatment, changes in balance scores and independence level in activities of daily living were significant (P < 0.05) in both groups. Statistically significant improvements were found in the Wii-based game group compared with the control group in all balance tests and total Wee FIM score (P < 0.05). Wii-fit balance-based video games are better at improving both static and performance-related balance parameters when combined with NDT treatment in children with mild CP. © 2016 Japan Pediatric Society.

  5. The Influence of Audio-Visual Cueing (Traffic Light) on Dual Task Walking in Healthy Older Adults and Older Adults with Balance Impairments.

    PubMed

    Kaewkaen, Kitchana; Wongsamud, Phongphat; Ngaothanyaphat, Jiratchaya; Supawarapong, Papawarin; Uthama, Suraphong; Ruengsirarak, Worasak; Chanabun, Suthin; Kaewkaen, Pratchaya

    2018-02-01

    The walking gait of older adults with balance impairment is affected by dual tasking. Several studies have shown that external cues can stimulate improvement in older adults' performance. There is, however, no current evidence to support the usefulness of external cues, such as audio-visual cueing, in dual task walking in older adults. Thus, the aim of this study was to investigate the influence of an audio-visual cue (simulated traffic light) on dual task walking in healthy older adults and in older adults with balance impairments. A two-way repeated measures study was conducted on 14 healthy older adults and 14 older adults with balance impairment, who were recruited from the community in Chiang Rai, Thailand. Their walking performance was assessed using a four-metre walking test at their preferred gait speed and while walking under two further gait conditions, in randomised order: dual task walking and dual task walking with a simulated traffic light. Each participant was tested individually, with the testing taking between 15 and 20 minutes to perform, including two-minute rest periods between walking conditions. Two Kinect cameras recorded the spatio-temporal parameters using MFU gait analysis software. Each participant was tested for each condition twice. The mean parameters for each condition were analysed using a two-way repeated measures analysis of variance (ANOVA) with participant group and gait condition as factors. There was no significant between-group effect for walking speed, stride length and cadence. There were also no significant effects between gait condition and stride length or cadence. However, the effect between gait condition and walking speed was found to be significant [F(1.557, 40.485) = 4.568, P = 0.024, [Formula: see text

  6. MODIFIED FUNCTIONAL MOVEMENT SCREENING AS A PREDICTOR OF TACTICAL PERFORMANCE POTENTIAL IN RECREATIONALLY ACTIVE ADULTS.

    PubMed

    Glass, Stephen M; Ross, Scott E

    2015-10-01

    Failure to meet minimum performance standards is a leading cause of attrition from basic combat training. A standardized assessment such as the Functional Movement Screen™ (FMS™) could help identify movement behaviors relevant to physical performance in tactical occupations. Previous work has demonstrated only marginal association between FMS™ tests and performance outcomes, but adding a load challenge to this movement assessment may help highlight performance-limiting behaviors. The purposes of this investigation were to quantify the effect of load on FMS™ tests and determine the extent to which performance outcomes could be predicted using scores from both loaded and unloaded FMS™ conditions. Crossover Trial. Thirteen female and six male recreationally active college students (21 ± 1.37 years, 168 ± 9.8 cm, 66 ± 12.25 kg) completed the FMS™ under (1) a control condition (FMS™C), and (2) an 18.10kg weight vest condition (FMS™W). Balance was assessed using a force plate in double-legged stance and tactical physical performance was evaluated via completion times in a battery of field tests. For each condition, penalized regression was used to select models from the seven FMS™ component tests to predict balance and performance outcomes. Data were collected during a single session lasting approximately three hours per participant. For balance, significant predictors were identified from both conditions but primarily predicted poorer balance with increasing FMS™ scores. For tactical performance, models were retained almost exclusively from FMS™W and generally predicted better performance with higher item scores. The current results suggest that FMS™ screening with an external load could help predict performance relevant to tactical occupations. Sports medicine and fitness professionals interested in performance outcomes may consider assessing movement behaviors under a load. 3.

  7. Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance

    NASA Technical Reports Server (NTRS)

    Ngo, Christina L.; Powell, Jessica M.; Ross, James C.

    2017-01-01

    A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.

  8. Simulation of Assembly Line Balancing in Automotive Component Manufacturing

    NASA Astrophysics Data System (ADS)

    Jamil, Muthanna; Mohd Razali, Noraini

    2016-02-01

    This study focuses on the simulation of assembly line balancing in an automotive component in a vendor manufacturing company. A mixed-model assembly line of charcoal canister product that is used in an engine system as fuel's vapour filter was observed and found that the current production rate of the line does not achieve customer demand even though the company practices buffer stock for two days in advance. This study was carried out by performing detailed process flow and time studies along the line. To set up a model of the line by simulation, real data was taken from a factory floor and tested for distribution fit. The data gathered was then transformed into a simulation model. After verification of the model by comparing it with the actual system, it was found that the current line efficiency is not at its optimum condition due to blockage and idle time. Various what-if analysis were applied to eliminate the cause. Proposed layout shows that the line is balanced by adding buffer to avoid the blockage. Whereas, manpower is added the stations to reduce process time therefore reducing idling time. The simulation study was carried out using ProModel software.

  9. Reliability, Validity, and Ability to Identify Fall Status of the Balance Evaluation Systems Test, Mini-Balance Evaluation Systems Test, and Brief-Balance Evaluation Systems Test in Older People Living in the Community.

    PubMed

    Marques, Alda; Almeida, Sara; Carvalho, Joana; Cruz, Joana; Oliveira, Ana; Jácome, Cristina

    2016-12-01

    To assess the reliability, validity, and ability to identify fall status of the Balance Evaluation Systems Test (BESTest), Mini-BESTest, and Brief-BESTest, compared with the Berg Balance Scale (BBS), in older people living in the community. Cross-sectional. Community centers. Older adults (N=122; mean age ± SD, 76±9y). Not applicable. Participants reported on falls history in the preceding year and completed the Activities-Specific Balance Confidence (ABC) Scale. The BBS, BESTest, and the Five Times Sit-To-Stand Test were administered. Interrater (2 physiotherapists) and test-retest relative (48-72h) and absolute reliabilities were explored with the intraclass correlation coefficient (ICC) equation (2,1) and the Bland and Altman method. Minimal detectable changes at the 95% confidence level (MDC 95 ) were established. Validity was assessed by correlating the balance tests with each other and with the ABC Scale (Spearman correlation coefficients-ρ). Receiver operating characteristics assessed the ability of each balance test to differentiate between people with and without a history of falls. All balance tests presented good to excellent interrater (ICC=.71-.93) and test-retest (ICC=.50-.82) relative reliability, with no evidence of bias. MDC 95 values were 4.6, 9, 3.8, and 4.1 points for the BBS, BESTest, Mini-BESTest, and Brief-BESTest, respectively. All tests were significantly correlated with each other (ρ=.83-.96) and with the ABC Scale (ρ=.46-.61). Acceptable ability to identify fall status (areas under the curve, .71-.78) was found for all tests. Cutoff points were 48.5, 82, 19.5, and 12.5 points for the BBS, BESTest, Mini-BESTest, and Brief-BESTest, respectively. All balance tests are reliable, valid, and able to identify fall status in older people living in the community. Therefore, the choice of which test to use will depend on the level of balance impairment, purpose, and time availability. Copyright © 2016. Published by Elsevier Inc.

  10. Dynamic Test Bed Analysis of Gas Energy Balance for a Diesel Exhaust System Fit with a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal

    2017-05-01

    Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f( t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.

  11. Validity and reliability of wii fit balance board for the assessment of balance of healthy young adults and the elderly.

    PubMed

    Chang, Wen-Dien; Chang, Wan-Yi; Lee, Chia-Lun; Feng, Chi-Yen

    2013-10-01

    [Purpose] Balance is an integral part of human ability. The smart balance master system (SBM) is a balance test instrument with good reliability and validity, but it is expensive. Therefore, we modified a Wii Fit balance board, which is a convenient balance assessment tool, and analyzed its reliability and validity. [Subjects and Methods] We recruited 20 healthy young adults and 20 elderly people, and administered 3 balance tests. The correlation coefficient and intraclass correlation of both instruments were analyzed. [Results] There were no statistically significant differences in the 3 tests between the Wii Fit balance board and the SBM. The Wii Fit balance board had a good intraclass correlation (0.86-0.99) for the elderly people and positive correlations (r = 0.58-0.86) with the SBM. [Conclusions] The Wii Fit balance board is a balance assessment tool with good reliability and high validity for elderly people, and we recommend it as an alternative tool for assessing balance ability.

  12. Effect of coordination movement using the PNF pattern underwater on the balance and gait of stroke patients

    PubMed Central

    Kim, Kyoung; Lee, Dong-Kyu; Jung, Sang-In

    2015-01-01

    [Purpose] To investigate the effect of coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater on the balance and gait of stroke patients. [Subjects and Methods] Twenty stroke patients were randomly assigned to an experimental group that performed coordination movement using the Proprioceptive Neuromuscular Facilitation pattern underwater and a control group (n =10 each). Both the groups underwent neurodevelopmental treatment, and the experimental group performed coordination movement using the Proprioceptive neuromuscular facilitation pattern underwater. Balance was measured using the Berg Balance Scale and Functional Reach Test, and gait was measured using the 10-Meter Walk Test and Timed Up and Go Test. To compare in-group data before and after the intervention, paired t-test was used. Independent t-test was used to compare differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the intervention between the groups. [Results] Comparison within the groups showed significant differences in the results of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test before and after the experimental intervention. On comparison between the groups, there were greater improvements in the scores of the Berg Balance Scale, Functional Reach Test, 10-Meter Walk Test, and Timed Up and Go Test in the experimental group. [Conclusion] The findings demonstrate that coordination movement using the Proprioceptive Neuromuscular Facilitation pattern under water has a significant effect on the balance and gait of stroke patients. PMID:26834335

  13. Effect of aquatic dual-task training on balance and gait in stroke patients

    PubMed Central

    Kim, Kyoung; Lee, Dong-Kyu; Kim, Eun-Kyung

    2016-01-01

    [Purpose] The purpose of this study was to determine the effect of aquatic dual-task training on balance and gait in stroke patients. [Subjects and Methods] Twenty stroke patients were divided into the experimental (n=10) and control (n=10) groups. Both groups underwent neurodevelopmental treatment. The experimental group additionally underwent aquatic dual-task training for 30 minutes a day, 5 days a week, for 6 weeks. Balance was measured using the Berg balance scale, Five Times Sit-to Stand Test, and Functional Reach Test. Gait was measured using the 10-Meter Walk Test, Timed Up and Go Test, and Functional Gait Assessment. [Results] For intragroup comparison, the experimental group showed a significant change after the experiment in all balance and gait assessment tests. For intergroup comparison, the experimental group showed relatively more significant change after the experiment in all balance and gait assessment tests. [Conclusion] Our results showed that aquatic dual-task training has a positive effect on balance and gait in stroke patients. PMID:27512261

  14. Effect of aquatic dual-task training on balance and gait in stroke patients.

    PubMed

    Kim, Kyoung; Lee, Dong-Kyu; Kim, Eun-Kyung

    2016-07-01

    [Purpose] The purpose of this study was to determine the effect of aquatic dual-task training on balance and gait in stroke patients. [Subjects and Methods] Twenty stroke patients were divided into the experimental (n=10) and control (n=10) groups. Both groups underwent neurodevelopmental treatment. The experimental group additionally underwent aquatic dual-task training for 30 minutes a day, 5 days a week, for 6 weeks. Balance was measured using the Berg balance scale, Five Times Sit-to Stand Test, and Functional Reach Test. Gait was measured using the 10-Meter Walk Test, Timed Up and Go Test, and Functional Gait Assessment. [Results] For intragroup comparison, the experimental group showed a significant change after the experiment in all balance and gait assessment tests. For intergroup comparison, the experimental group showed relatively more significant change after the experiment in all balance and gait assessment tests. [Conclusion] Our results showed that aquatic dual-task training has a positive effect on balance and gait in stroke patients.

  15. Some crucial corona and prominence observations

    NASA Technical Reports Server (NTRS)

    Tandberg-Hanssen, E. A.

    1986-01-01

    A number of theories and hypotheses are currently being developed to explain the often complex behavior of corona and prominence plasmas. In order to test the theories and hypotheses certain crucial observations are necessary. Some of these observations are examined and a few conclusions are drawn. Corona mass balance, corona and prominence classifications, prominence formation and stability, and coronal mass ejection are dicussed.

  16. Cervicocephalic kinesthetic sensibility and postural balance in patients with nontraumatic chronic neck pain--a pilot study.

    PubMed

    Palmgren, Per J; Andreasson, Daniel; Eriksson, Magnus; Hägglund, Andreas

    2009-06-30

    Although cervical pain is widespread, most victims are only mildly and occasionally affected. A minority, however, suffer chronic pain and/or functional impairments. Although there is abundant literature regarding nontraumatic neck pain, little focuses on diagnostic criteria. During the last decade, research on neck pain has been designed to evaluate underlying pathophysiological mechanisms, without noteworthy success. Independent researchers have investigated postural balance and cervicocephalic kinesthetic sensibility among patients with chronic neck pain, and have (in most cases) concluded the source of the problem is a reduced ability in the neck's proprioceptive system. Here, we investigated cervicocephalic kinesthetic sensibility and postural balance among patients with nontraumatic chronic neck pain. Ours was a two-group, observational pilot study of patients with complaints of continuous neck pain during the 3 months prior to recruitment. Thirteen patients with chronic neck pain of nontraumatic origin were recruited from an institutional outpatient clinic. Sixteen healthy persons were recruited as a control group. Cervicocephalic kinesthetic sensibility was assessed by exploring head repositioning accuracy and postural balance was measured with computerized static posturography. Parameters of cervicocephalic kinesthetic sensibility were not reduced. However, in one of six test movements (flexion), global repositioning errors were significantly larger in the experimental group than in the control group (p < .05). Measurements did not demonstrate any general impaired postural balance, and varied substantially among participants in both groups. In patients with nontraumatic chronic neck pain, we found statistically significant global repositioning errors in only one of six test movements. In this cohort, we found no evidence of impaired postural balance.Head repositioning accuracy and computerized static posturography are imperfect measures of functional proprioceptive impairments. Validity of (and procedures for using) these instruments demand further investigation. Current Controlled Trials ISRCTN96873990.

  17. [Balance trainability using the Nintendo Wii balance board in sportive people].

    PubMed

    Paukowits, S; Stöggl, T

    2014-03-01

    A multivariable training has a positive impact on balance skills and risk of injury. To date the effect of this training using the Nintendo Wii balance board in sportive people has not yet been investigated. The aim of this study was to investigate whether training with the Nintendo Wii balance board can improve balance skills. 20 people were randomized into a control and an intervention group each with 10 people who performed a unilateral stance test with eyes open and closed as well as the star excursion balance test before and after the intervention. The control group completed their usual sports and the intervention group an adjunct training with the Nintendo Wii balance board for 4 weeks. Adjunct Training using the Nintendo Wii Balance Board did not improve sportive people's balance skills significantly. The intervention group, however, attained better results in the star excursion balance test, whereas the control group did not show any changes. The unilateral stance tests did not provide significant differences before and after training within both groups. The use of the Nintendo Wii balance board should be further investigated by employing individual difficulty levels. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Sequencing Effects of Balance and Plyometric Training on Physical Performance in Youth Soccer Athletes.

    PubMed

    Hammami, Raouf; Granacher, Urs; Makhlouf, Issam; Behm, David G; Chaouachi, Anis

    2016-12-01

    Hammami, R, Granacher, U, Makhlouf, I, Behm, DG, and Chaouachi, A. Sequencing effects of balance and plyometric training on physical performance in youth soccer athletes. J Strength Cond Res 30(12): 3278-3289, 2016-Balance training may have a preconditioning effect on subsequent power training with youth. There are no studies examining whether the sequencing of balance and plyometric training has additional training benefits. The objective was to examine the effect of sequencing balance and plyometric training on the performance of 12- to 13-year-old athletes. Twenty-four young elite soccer players trained twice per week for 8 weeks either with an initial 4 weeks of balance training followed by 4 weeks of plyometric training (BPT) or 4 weeks of plyometric training proceeded by 4 weeks of balance training (PBT). Testing was conducted pre- and posttraining and included medicine ball throw; horizontal and vertical jumps; reactive strength; leg stiffness; agility; 10-, 20-, and 30-m sprints; Standing Stork balance test; and Y-Balance test. Results indicated that BPT provided significantly greater improvements with reactive strength index, absolute and relative leg stiffness, triple hop test, and a trend for the Y-Balance test (p = 0.054) compared with PBT. Although all other measures had similar changes for both groups, the average relative improvement for the BPT was 22.4% (d = 1.5) vs. 15.0% (d = 1.1) for the PBT. BPT effect sizes were greater with 8 of 13 measures. In conclusion, although either sequence of BPT or PBT improved jumping, hopping, sprint acceleration, and Standing Stork and Y-Balance, BPT initiated greater training improvements in reactive strength index, absolute and relative leg stiffness, triple hop test, and the Y-Balance test. BPT may provide either similar or superior performance enhancements compared with PBT.

  19. Poor anaerobic power/capability and static balance predicted prospective musculoskeletal injuries among Soldiers of the 101st Airborne (Air Assault) Division.

    PubMed

    Nagai, Takashi; Lovalekar, Mita; Wohleber, Meleesa F; Perlsweig, Katherine A; Wirt, Michael D; Beals, Kim

    2017-11-01

    Musculoskeletal injuries have negatively impacted tactical readiness. The identification of prospective and modifiable risk factors of preventable musculoskeletal injuries can guide specific injury prevention strategies for Soldiers and health care providers. To analyze physiological and neuromuscular characteristics as predictors of preventable musculoskeletal injuries. Prospective-cohort study. A total of 491 Soldiers were enrolled and participated in the baseline laboratory testing, including body composition, aerobic capacity, anaerobic power/capacity, muscular strength, flexibility, static balance, and landing biomechanics. After reviewing their medical charts, 275 male Soldiers who met the criteria were divided into two groups: with injuries (INJ) and no injuries (NOI). Simple and multiple logistic regression analyses were used to calculate the odds ratio (OR) and significant predictors of musculoskeletal injuries (p<0.05). The final multiple logistic regression model included the static balance with eyes-closed and peak anaerobic power as predictors of future injuries (p<0.001). The current results highlighted the importance of anaerobic power/capacity and static balance. High intensity training and balance exercise should be incorporated in their physical training as countermeasures. Copyright © 2017 Sports Medicine Australia. All rights reserved.

  20. Effects of a 4-Week Biomechanical Ankle Platform System Protocol on Balance in High School Athletes With Chronic Ankle Instability.

    PubMed

    Cain, Mary Spencer; Garceau, Stacy Watt; Linens, Shelley W

    2017-01-01

    Chronic ankle instability (CAI) describes the residual symptoms present after repetitive ankle sprains. Current rehabilitation programs in the high school population focus on a multistation approach or general lower-extremity injury-prevention program. Specific rehabilitation techniques for CAI have not been established. To determine the effectiveness of a 4-wk biomechanical ankle platform system (BAPS) board protocol on the balance of high school athletes with CAI. Randomized control trial. Athletic training facility. Twenty-two high school athletes with "giving way" and a history of ankle sprains (ie, CAI) were randomized into a rehabilitation (REH) (166.23 ± 0.93 cm, 67.0 ± 9.47 kg, 16.45 ± 0.93 y) or control (CON) (173.86 ± 8.88 cm, 84.51 ± 21.28 kg, 16.55 ± 1.29 y) group. After baseline measures, the REH group completed a progressive BAPS rehabilitation program (3 times/wk for 4 wk), whereas the CON group had no intervention. Each session consisted of 5 trials of clockwise/counterclockwise rotations changing direction every 10 s during each 40-s trial. After 4 wk, baseline measurements were repeated. Dependent measures included longest time (time-in-balance test), average number of errors (foot lift test), average reach distance (cm) normalized to leg length for each reach direction (Star Excursion Balance Test [SEBT]), and fastest time (side hop test [SHT]). Significant group-by-time interactions were found for TIB (F 1,20 = 9.89, P = .005), FLT (F 1,20 = 41.18, P < .001), SEBT-anteromedial (F 1,20 = 5.34, P = .032), SEBT-medial (F 1,20 = 7.51, P = .013), SEBT-posteromedial (F 1,20 = 12.84, P = .002), and SHT (F 1,20 = 7.50, P = .013). Post hoc testing showed that the REH group improved performance on all measures at posttest, whereas the CON group did not. A 4-wk BAPS rehabilitation protocol improved balance in high school athletes suffering from CAI. These results can allow clinicians to rehabilitate in a focused manner by using 1 rehabilitation tool that allows benefits to be accomplished in a shorter time.

  1. The Effect of Balance Training by Tetraks Interactive Balance System on Balance and Fall Risk in Parkinson's Patients: A Report of Four Cases.

    PubMed

    Balci, Nilay Çömük; Tonga, Eda; Gülşen, Mustafa

    2013-09-01

    This pilot study aimed to investigate the effect of balance training by Tetraks Interactive Balance System (TIBS) on balance and fall risk in patients with mild to moderate Parkinson's disease. Four patients with Parkinson's disease between the ages of 56 and 70 years (61.25±6.70) were applied balance training for 3 weeks by TIBS. Sociodemographic features and physical properties of the subjects were recorded. Their motor performance was evaluated by the Unified Parkinson's Disease Rating Scale (UPDRS), balance was measured using the Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up and Go Test (TUG), and the Standing on One Leg Balance Test (SOL) and, their fall risks were evaluated by TIBS. Evaluations were performed twice, before and after treatment. Following training, Parkinson's patients showed improvements in UPDRS, TUG, BBS, FRT, SOL and fall risk. Balance training by TIBS has positive effects on balance and decreases fall risk in Parkinson's disease patients.

  2. Large angle magnetic suspension test fixture

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P. (Principal Investigator); Huang, Jen-Kuang (Principal Investigator)

    1996-01-01

    Good progress is being made in several major areas. These include eddy current modelling and analysis, design optimization methods, wind tunnel Magnetic Suspension and Balance Systems (MSBS), payload pointing and vibration isolation systems, and system identification. In addition, another successful International Symposium has been completed, with the Proceedings being printed at the time of writing. These activities continue current work under this Grant and extend previous work on magnetic suspension systems and devices in the Guidance and Control Branch and will permit the demonstration of several new developments in the field of magnetic suspension technology.

  3. A lower-limb training program to improve balance in healthy elderly women using the T-bow device.

    PubMed

    Chulvi-Medrano, Iván; Colado, Juan C; Pablos, Carlos; Naclerio, Fernando; García-Massó, Xavier

    2009-06-01

    Ageing impairs balance, which increases the risk of falls. Fall-related injuries are a serious health problem associated with dependency and disability in the elderly and results in high costs to public health systems. This study aims to determine the effects of a training program to develop balance using a new device called the T-Bow. A total of 28 women > 65 years were randomly assigned to an experimental group (EG) (n = 18; 69.50 [0.99] years), or a control group (CG) (n = 10; 70.70 [2.18] years). A program for lower limbs was applied for 8 weeks using 5 exercises on the T-Bow: squat, lateral and frontal swings, lunges, and plantarflexions. The intensity of the exercises was controlled by time of exposure, support base, and ratings of perceived exertion. Clinical tests were used to evaluate variables of balance. Static balance was measured by a 1-leg balance test (unipedal stance test), dynamic balance was measured by the 8-foot-up-and-go test, and overall balance was measured using the Tinetti test. Results for the EG showed an increase of 35.2% in static balance (P < 0.005), 12.7% in dynamic balance (P < 0.005), and 5.9% in overall balance (P > 0.05). Results for the CG showed a decline of 5.79% in static balance (P > 0.05) but no change in the other balance variables. Thus the data suggest that implementing a training program using the T-Bow could improve balance in healthy older women.

  4. Development of a second generation torsion balance based on a spherical superconducting suspension

    NASA Astrophysics Data System (ADS)

    Hammond, Giles D.; Speake, Clive C.; Matthews, Anthony J.; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within ≈50mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3×10-8rads-2/√Hz and 30nm/√Hz at 100mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles δ are (1.5±2.3)×10-4 and (2.0±2.2)×10-4 at frequencies of 5 and 10mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

  5. Development of a second generation torsion balance based on a spherical superconducting suspension.

    PubMed

    Hammond, Giles D; Speake, Clive C; Matthews, Anthony J; Rocco, Emanuele; Peña-Arellano, Fabian

    2008-02-01

    This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2 K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within approximately 50 mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3x10(-8) rad s(-2)/ squarerootHz and 30 nm/ squarerootHz at 100 mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles delta are (1.5+/-2.3)x10(-4) and (2.0+/-2.2)x10(-4) at frequencies of 5 and 10 mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

  6. Visual-vestibular processing deficits in mild traumatic brain injury.

    PubMed

    Wright, W G; Tierney, R T; McDevitt, J

    2017-01-01

    The search for reliable and valid signs and symptoms of mild traumatic brain injury (mTBI), commonly synonymous with concussion, has lead to a growing body of evidence that individuals with long-lasting, unremitting impairments often experience visual and vestibular symptoms, such as dizziness, postural and gait disturbances. Investigate the role of visual-vestibular processing deficits following concussion. A number of clinically accepted vestibular, oculomotor, and balance assessments as well as a novel virtual reality (VR)-based balance assessment device were used to assess adults with post-acute concussion (n = 14) in comparison to a healthy age-matched cohort (n = 58). Significant between-group differences were found with the VR-based balance device (p = 0.001), with dynamic visual motion emerging as the most discriminating balance condition. The symptom reports collected after performing the oculomotor and vestibular tests: rapid alternating horizontal eye saccades, optokinetic stimulation, and gaze stabilization, were all sensitive to health status (p < 0.05), despite the absence of oculomotor abnormalities being observed, except for near-point convergence. The BESS, King-Devick, and Dynamic Visual Acuity tests did not detect between-group differences. Postural and visual-vestibular tasks most closely linked to spatial and self-motion perception had the greatest discriminatory outcomes. The current findings suggest that mesencephalic and parieto-occipital centers and pathways may be involved in concussion.

  7. Testing Postural Stability: Are the Star Excursion Balance Test and Biodex Balance System Limits of Stability Tests Consistent?

    PubMed

    Glave, A Page; Didier, Jennifer J; Weatherwax, Jacqueline; Browning, Sarah J; Fiaud, Vanessa

    2016-01-01

    There are a variety of options to test postural stability; however many physical tests lack validity information. Two tests of postural stability - the Star Excursion Balance Test (SEBT) and Biodex Balance System Limits of Stability Test (LOS) - were examined to determine if similar components of balance were measured. Healthy adults (n=31) completed the LOS (levels 6 and 12) and SEBT (both legs). SEBT directions were offset by 180° to approximate LOS direction. Correlations and partial correlations controlling for height were analyzed. Correlations were significant for SEBT 45° and LOS back-left (6: r=-0.41; 12: r=-0.42; p<0.05), SEBT 90° and LOS 6 left (r=-0.51, p<0.05), SEBT 135(o) and LOS 6 front-left (r=-0.53, p<0.05), SEBT overall and LOS 6 overall (r=-0.43, p<0.05). Partial correlations were significant for SEBT 90° and LOS 6 left (rSEBT,LOS·H=-0.45, p<0.05) and SEBT 135° and LOS 6 front-left (rSEBT,LOS·H=-0.51, p<0.05), and SEBT overall and LOS 6 overall (rSEBT,LOS·H=-0.37, p<0.05). These findings indicate the tests seem to assess different components of balance. Research is needed to determine and define what specific components of balance are being assessed. Care must be taken when choosing balance tests to best match the test to the purpose of testing (fall risk, athletic performance, etc.). Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Functional outcomes of outpatient balance training following total knee replacement in patients with knee osteoarthritis: a randomized controlled trial.

    PubMed

    Liao, Chun-De; Lin, Li-Fong; Huang, Yi-Ching; Huang, Shih-Wei; Chou, Lin-Chuan; Liou, Tsan-Hon

    2015-09-01

    To evaluate whether balance training after total knee replacement surgery improves functional outcomes and to determine whether postoperative balance is associated with mobility. A prospective intervention study and randomized controlled trial with an intention-to-treat analysis. The rehabilitation center of a university-based teaching hospital. A total of 130 patients with knee osteoarthritis who had undergone total knee replacement surgery were recruited to attend an outpatient rehabilitation program. They were randomly allocated to additional balance rehabilitation and functional rehabilitation groups. During the eight-week outpatient rehabilitation program, both groups received general functional training. Patients in the balance rehabilitation group received an additional balance-based rehabilitation program. The functional reach test, single-leg stance test, 10-m walk test, Timed Up and Go Test, timed chair-stand test, stair-climb test, and Western Ontario and McMaster Universities Osteoarthritis Index were measured at baseline, eight weeks (T(1)), and 32 weeks (T(2)). The balance rehabilitation group patients demonstrated significant improvement in the results of the functional reach test at T(1) (37.6 ±7.8 cm) and T(2) (39.3 ±9.7 cm) compared with the baseline assessment (11.5 ±2.9 cm) and Timed Up and Go Test at T(1) (8.9 ±1.2 seconds) and T(2) (8.0 ±1.9 seconds) compared with the baseline assessment (12.5 ±1.8 seconds). Moreover, the balance rehabilitation group patients exhibited significantly greater improvements in balance and mobility than did the functional rehabilitation group patients (all P < 0.001). Furthermore, improved balance was significantly associated with improved mobility at T(2). Postoperative outpatient rehabilitation with balance training improves the balance, mobility, and functional outcomes in patients with knee osteoarthritis after total knee replacement. © The Author(s) 2014.

  9. Decision theory and the evaluation of risks and benefits of clinical trials.

    PubMed

    Bernabe, Rosemarie D C; van Thiel, Ghislaine J M W; Raaijmakers, Jan A M; van Delden, Johannes J M

    2012-12-01

    Research ethics committees (RECs) are tasked to assess the risks and the benefits of a clinical trial. In previous studies, it was shown that RECs find this task difficult, if not impossible, to do. The current approaches to benefit-risk assessment (i.e. Component Analysis and the Net Risk Test) confound the various risk-benefit tasks, and as such, make balancing impossible. In this article, we show that decision theory, specifically through the expected utility theory and multiattribute utility theory, enable for an explicit and ethically weighted risk-benefit evaluation. This makes a balanced ethical justification possible, and thus a more rationally defensible decision making. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Current balancing for battery strings

    DOEpatents

    Galloway, James H.

    1985-01-01

    A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

  11. Propfan test assessment testbed aircraft flutter model test report

    NASA Technical Reports Server (NTRS)

    Jenness, C. M. J.

    1987-01-01

    The PropFan Test Assessment (PTA) program includes flight tests of a propfan power plant mounted on the left wind of a modified Gulfstream II testbed aircraft. A static balance boom is mounted on the right wing tip for lateral balance. Flutter analyses indicate that these installations reduce the wing flutter stabilizing speed and that torsional stiffening and the installation of a flutter stabilizing tip boom are required on the left wing for adequate flutter safety margins. Wind tunnel tests of a 1/9th scale high speed flutter model of the testbed aircraft were conducted. The test program included the design, fabrication, and testing of the flutter model and the correlation of the flutter test data with analysis results. Excellent correlations with the test data were achieved in posttest flutter analysis using actual model properties. It was concluded that the flutter analysis method used was capable of accurate flutter predictions for both the (symmetric) twin propfan configuration and the (unsymmetric) single propfan configuration. The flutter analysis also revealed that the differences between the tested model configurations and the current aircraft design caused the (scaled) model flutter speed to be significantly higher than that of the aircraft, at least for the single propfan configuration without a flutter boom. Verification of the aircraft final design should, therefore, be based on flutter predictions made with the test validated analysis methods.

  12. Effects of exercise-induced fatigue on postural balance: a comparison of treadmill versus cycle fatiguing protocols.

    PubMed

    Wright, Katherine E; Lyons, Thomas S; Navalta, James W

    2013-05-01

    The authors of this study examined the effects of muscle fatigue on balance indices and recovery time in recreationally trained individuals after incremental tests on a treadmill and a cycle ergometer. Sixteen participants (male N = 11, female N = 5) (mean age = 21.2 ± 2 years) completed this study. Balance measures were performed on a Biodex Balance System via the Dynamic Balance Test. Balance was measured pre-exercise, immediately post-exercise, and at 3-, 6-, 9-, 12-, 15-, 18-, and 21-min post-exercise. Immediately following the fatiguing treadmill test, balance increased significantly in the overall stability index (SI) (from 4.38 ± 2.48 to 6.09 ± 1.80) and the anterior/posterior index (API) (from 3.49 ± 2.18 to 5.28 ± 1.81) (p < 0.01). Immediately following the fatiguing cycle test, balance was not altered significantly in SI or API. Balance was not altered significantly for the medial/lateral index for either exercise test at any time point. Additionally, there were no significant differences in time to recovery. At 12-min post-exercise, all indices were below pre-exercise values, indicating that fatiguing exercise has a positive effect on balance over time. These results are consistent with previous research, suggesting that any effects of fatigue on balance are seen immediately and are diminished as time after exercise increases.

  13. Validity and Reliability of Wii Fit Balance Board for the Assessment of Balance of Healthy Young Adults and the Elderly

    PubMed Central

    Chang, Wen-Dien; Chang, Wan-Yi; Lee, Chia-Lun; Feng, Chi-Yen

    2013-01-01

    [Purpose] Balance is an integral part of human ability. The smart balance master system (SBM) is a balance test instrument with good reliability and validity, but it is expensive. Therefore, we modified a Wii Fit balance board, which is a convenient balance assessment tool, and analyzed its reliability and validity. [Subjects and Methods] We recruited 20 healthy young adults and 20 elderly people, and administered 3 balance tests. The correlation coefficient and intraclass correlation of both instruments were analyzed. [Results] There were no statistically significant differences in the 3 tests between the Wii Fit balance board and the SBM. The Wii Fit balance board had a good intraclass correlation (0.86–0.99) for the elderly people and positive correlations (r = 0.58–0.86) with the SBM. [Conclusions] The Wii Fit balance board is a balance assessment tool with good reliability and high validity for elderly people, and we recommend it as an alternative tool for assessing balance ability. PMID:24259769

  14. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study.

    PubMed

    Bao, Tian; Carender, Wendy J; Kinnaird, Catherine; Barone, Vincent J; Peethambaran, Geeta; Whitney, Susan L; Kabeto, Mohammed; Seidler, Rachael D; Sienko, Kathleen H

    2018-01-18

    Sensory augmentation has been shown to improve postural stability during real-time balance applications. Limited long-term controlled studies have examined retention of balance improvements in healthy older adults after training with sensory augmentation has ceased. This pilot study aimed to assess the efficacy of long-term balance training with and without sensory augmentation among community-dwelling healthy older adults. Twelve participants (four males, eight females; 75.6 ± 4.9 yrs) were randomly assigned to the experimental group (n = 6) or control group (n = 6). Participants trained in their homes for eight weeks, completing three 45-min exercise sessions per week using smart phone balance trainers that provided written, graphic, and video guidance, and monitored trunk sway. During each session, participants performed six repetitions of six exercises selected from five categories (static standing, compliant surface standing, weight shifting, modified center of gravity, and gait). The experimental group received vibrotactile sensory augmentation for four of the six repetitions per exercise via the smart phone balance trainers, while the control group performed exercises without sensory augmentation. The smart phone balance trainers sent exercise performance data to a physical therapist, who recommended exercises on a weekly basis. Balance performance was assessed using a battery of clinical balance tests (Activity Balance Confidence Scale, Sensory Organization Test, Mini Balance Evaluation Systems Test, Five Times Sit to Stand Test, Four Square Step Test, Functional Reach Test, Gait Speed Test, Timed Up and Go, and Timed Up and Go with Cognitive Task) before training, after four weeks of training, and after eight weeks of training. Participants in the experimental group were able to use vibrotactile sensory augmentation independently in their homes. After training, the experimental group had significantly greater improvements in Sensory Organization Test and Mini Balance Evaluation Systems Test scores than the control group. Significant improvement was also observed for Five Times Sit to Stand Test duration within the experimental group, but not in the control group. No significant improvements between the two groups were observed in the remaining clinical outcome measures. The findings of this study support the use of sensory augmentation devices by community-dwelling healthy older adults as balance rehabilitation tools, and indicate feasibility of telerehabilitation therapy with reduced input from clinicians.

  15. Differential roles of two delayed rectifier potassium currents in regulation of ventricular action potential duration and arrhythmia susceptibility.

    PubMed

    Devenyi, Ryan A; Ortega, Francis A; Groenendaal, Willemijn; Krogh-Madsen, Trine; Christini, David J; Sobie, Eric A

    2017-04-01

    Arrhythmias result from disruptions to cardiac electrical activity, although the factors that control cellular action potentials are incompletely understood. We combined mathematical modelling with experiments in heart cells from guinea pigs to determine how cellular electrical activity is regulated. A mismatch between modelling predictions and the experimental results allowed us to construct an improved, more predictive mathematical model. The balance between two particular potassium currents dictates how heart cells respond to perturbations and their susceptibility to arrhythmias. Imbalances of ionic currents can destabilize the cardiac action potential and potentially trigger lethal cardiac arrhythmias. In the present study, we combined mathematical modelling with information-rich dynamic clamp experiments to determine the regulation of action potential morphology in guinea pig ventricular myocytes. Parameter sensitivity analysis was used to predict how changes in ionic currents alter action potential duration, and these were tested experimentally using dynamic clamp, a technique that allows for multiple perturbations to be tested in each cell. Surprisingly, we found that a leading mathematical model, developed with traditional approaches, systematically underestimated experimental responses to dynamic clamp perturbations. We then re-parameterized the model using a genetic algorithm, which allowed us to estimate ionic current levels in each of the cells studied. This unbiased model adjustment consistently predicted an increase in the rapid delayed rectifier K + current and a drastic decrease in the slow delayed rectifier K + current, and this prediction was validated experimentally. Subsequent simulations with the adjusted model generated the clinically relevant prediction that the slow delayed rectifier is better able to stabilize the action potential and suppress pro-arrhythmic events than the rapid delayed rectifier. In summary, iterative coupling of simulations and experiments enabled novel insight into how the balance between cardiac K + currents influences ventricular arrhythmia susceptibility. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  16. Vestibular Stochastic Resonance as a Method to Improve Balance Function: Optimization of Stimulus Characteristics

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Fiedler, Matthew; Kofman, Igor; Peters, Brian; Wood, Scott; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Stochastic resonance (SR) is a mechanism by which noise can assist and enhance the response of neural systems to relevant sensory signals. Application of imperceptible SR noise coupled with sensory input through the proprioceptive, visual, or vestibular sensory systems has been shown to improve motor function. Specifically, studies have shown that that vestibular electrical stimulation by imperceptible stochastic noise, when applied to normal young and elderly subjects, significantly improved their ocular stabilization reflexes in response to whole-body tilt as well as balance performance during postural disturbances. The goal of this study was to optimize the characteristics of the stochastic vestibular signals for balance performance during standing on an unstable surface. Subjects performed a standardized balance task of standing on a block of 10 cm thick medium density foam with their eyes closed for a total of 40 seconds. Stochastic electrical stimulation was applied to the vestibular system through electrodes placed over the mastoid process behind the ears during the last 20 seconds of the test period. A custom built constant current stimulator with subject isolation delivered the stimulus. Stimulation signals were generated with frequencies in the bandwidth of 1-2 Hz and 0.01-30 Hz. Amplitude of the signals were varied in the range of 0- +/-700 micro amperes with the RMS of the signal increased by 30 micro amperes for each 100 micro amperes increase in the current range. Balance performance was measured using a force plate under the foam block and inertial motion sensors placed on the torso and head segments. Preliminary results indicate that balance performance is improved in the range of 10-25% compared to no stimulation conditions. Subjects improved their performance consistently across the blocks of stimulation. Further the signal amplitude at which the performance was maximized was different in the two frequency ranges. Optimization of the frequency and amplitude of the signal characteristics of the stochastic noise signals on maximizing balance performance will have a significant impact in its development as a unique system to aid recovery of function in astronauts after long duration space flight or for people with balance disorders.

  17. 47 CFR 32.4100 - Net current deferred operating income taxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.4100 Net current deferred operating income taxes. (a) This account shall include the balance...

  18. The Influence of Subglacial Hydrology on Ice Stream Velocity in a Physical Model

    NASA Astrophysics Data System (ADS)

    Wagman, B. M.; Catania, G.; Buttles, J. L.

    2011-12-01

    We use a physical model to investigate how changes in subglacial hydrology affect ice motion in ice streams found in the West Antarctic Ice Sheet. Ice streams are modeled using silicone polymer placed over a thin water layer to simulate ice flow dominated by basal sliding. Dynamic similarity between modeled and natural ice streams is achieved through direct comparison of the glacier force balance using the conditions on Whillans Ice Stream (WIS) as our goal.This ice stream has a force balance that has evolved through time due to increased basal resistance. Currently, between 50-90% of the driving stress is supported by the ice stream shear margins [Stearns et al., JGlac 2005]. A similar force balance can be achieved in our model with a surface slope of 0.025. We test two hypotheses; 1) the distribution and thickness of the subglacial water layer influences the ice flow speed and thus the force balance and can reproduce the observed slowdown of WIS and; 2) shear margins are locations where transitions in water layer thickness occur.

  19. Relationship between strength, power and balance performance in seniors.

    PubMed

    Muehlbauer, Thomas; Besemer, Carmen; Wehrle, Anja; Gollhofer, Albert; Granacher, Urs

    2012-01-01

    Deficits in strength, power and balance represent important intrinsic risk factors for falls in seniors. The purpose of this study was to investigate the relationship between variables of lower extremity muscle strength/power and balance, assessed under various task conditions. Twenty-four healthy and physically active older adults (mean age: 70 ± 5 years) were tested for their isometric strength (i.e. maximal isometric force of the leg extensors) and muscle power (i.e. countermovement jump height and power) as well as for their steady-state (i.e. unperturbed standing, 10-meter walk), proactive (i.e. Timed Up & Go test, Functional Reach Test) and reactive (i.e. perturbed standing) balance. Balance tests were conducted under single (i.e. standing or walking alone) and dual task conditions (i.e. standing or walking plus cognitive and motor interference task). Significant positive correlations were found between measures of isometric strength and muscle power of the lower extremities (r values ranged between 0.608 and 0.720, p < 0.01). Hardly any significant associations were found between variables of strength, power and balance (i.e. no significant association in 20 out of 21 cases). Additionally, no significant correlations were found between measures of steady-state, proactive and reactive balance or balance tests performed under single and dual task conditions (all p > 0.05). The predominately nonsignificant correlations between different types of balance imply that balance performance is task specific in healthy and physically active seniors. Further, strength, power and balance as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. Copyright © 2012 S. Karger AG, Basel.

  20. Balance Training With a Dynamometric Platform Following Total Knee Replacement: A Randomized Controlled Trial.

    PubMed

    Roig-Casasús, Sergio; María Blasco, José; López-Bueno, Laura; Blasco-Igual, María Clara

    2017-03-01

    Sensorimotor training has proven to be an efficient approach for recovering balance control following total knee replacement (TKR). The purpose of this trial was to evaluate the influence of specific balance-targeted training using a dynamometric platform on the overall state of balance in older adults undergoing TKR. This was a randomized controlled clinical trial conducted at a university hospital rehabilitation unit. Patients meeting the inclusion criteria were randomly assigned to a control group or an experimental group. Both groups participated in the same 4-week postoperative rehabilitation training protocol. Participants in the experimental group performed additional balance training with a dynamometric platform consisting of tests related to stability challenges, weight-shifting, and moving to the limits of stability. The primary outcome measure was the overall state of balance rated according to the Berg Balance Scale. Secondary outcomes in terms of balance were the Timed Up and Go Test, Functional Reach Test, and Romberg open and closed-eyes tests. Data processing included between-group analysis of covariance, minimal detectable change assessment for the primary outcome measure, and effect size estimation. Confidence intervals (CIs) were set at 95%. Forty-three participants meeting the inclusion criteria and having signed the informed consent were randomly assigned to 2 groups. Thirty-seven completed the training (86.1%). Significant between-group differences in balance performance were found as measured with the Berg Balance Scale (P = .03) and Functional Reach Test (P = .04) with a CI = 95%. Significant differences were not recorded for the Timed Up and Go Test or Romberg open and closed-eyes tests (P > .05). Furthermore, Cohen's effect size resulted in a value of d = 0.97, suggesting a high practical significance of the trial. According to the Berg Balance Scale and Functional Reach Test, participants with TKR who have followed a 4-week training program using a dynamometric platform improved balance performance to a higher extent than a control group training without such a device. The inclusion of this instrument in the functional training protocol may be beneficial for recovering balance following TKR.

  1. Effects of transcranial direct current stimulation over the supplementary motor area body weight-supported treadmill gait training in hemiparetic patients after stroke.

    PubMed

    Manji, Atsushi; Amimoto, Kazu; Matsuda, Tadamitsu; Wada, Yoshiaki; Inaba, Akira; Ko, Sangkyun

    2018-01-01

    Transcranial direct current stimulation (tDCS) is used in a variety of disorders after stroke including upper limb motor dysfunctions, hemispatial neglect, aphasia, and apraxia, and its effectiveness has been demonstrated. Although gait ability is important for daily living, there were few reports of the use of tDCS to improve balance and gait ability. The supplementary motor area (SMA) was reported to play a potentially important role in balance recovery after stroke. We aimed to investigate the effect of combined therapy body weight-supported treadmill training (BWSTT) and tDCS on gait function recovery of stroke patients. Thirty stroke inpatients participated in this study. The two BWSTT periods of 1weeks each, with real tDCS (anode: front of Cz, cathode: inion, 1mA, 20min) on SMA and sham stimulation, were randomized in a double-blind crossover design. We measured the time required for the 10m Walk Test (10MWT) and Timed Up and Go (TUG) test before and after each period. We found that the real tDCS with BWSTT significantly improved gait speed (10MWT) and applicative walking ability (TUG), compared with BWSTT+sham stimulation periods (p<0.05). Our findings demonstrated the feasibility and efficacy of tDCS in gait training after stroke. The facilitative effects of tDCS on SMA possibly improved postural control during BWSTT. The results indicated the implications for the use of tDCS in balance and gait training rehabilitation after stroke. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Validity and reliability of balance assessment software using the Nintendo Wii balance board: usability and validation

    PubMed Central

    2014-01-01

    Background A balance test provides important information such as the standard to judge an individual’s functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Methods Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). Results The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. Conclusion The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment. PMID:24912769

  3. Validity and reliability of balance assessment software using the Nintendo Wii balance board: usability and validation.

    PubMed

    Park, Dae-Sung; Lee, GyuChang

    2014-06-10

    A balance test provides important information such as the standard to judge an individual's functional recovery or make the prediction of falls. The development of a tool for a balance test that is inexpensive and widely available is needed, especially in clinical settings. The Wii Balance Board (WBB) is designed to test balance, but there is little software used in balance tests, and there are few studies on reliability and validity. Thus, we developed a balance assessment software using the Nintendo Wii Balance Board, investigated its reliability and validity, and compared it with a laboratory-grade force platform. Twenty healthy adults participated in our study. The participants participated in the test for inter-rater reliability, intra-rater reliability, and concurrent validity. The tests were performed with balance assessment software using the Nintendo Wii balance board and a laboratory-grade force platform. Data such as Center of Pressure (COP) path length and COP velocity were acquired from the assessment systems. The inter-rater reliability, the intra-rater reliability, and concurrent validity were analyzed by an intraclass correlation coefficient (ICC) value and a standard error of measurement (SEM). The inter-rater reliability (ICC: 0.89-0.79, SEM in path length: 7.14-1.90, SEM in velocity: 0.74-0.07), intra-rater reliability (ICC: 0.92-0.70, SEM in path length: 7.59-2.04, SEM in velocity: 0.80-0.07), and concurrent validity (ICC: 0.87-0.73, SEM in path length: 5.94-0.32, SEM in velocity: 0.62-0.08) were high in terms of COP path length and COP velocity. The balance assessment software incorporating the Nintendo Wii balance board was used in our study and was found to be a reliable assessment device. In clinical settings, the device can be remarkably inexpensive, portable, and convenient for the balance assessment.

  4. Evaluation of the reliability and validity for X16 balance testing scale for the elderly.

    PubMed

    Ju, Jingjuan; Jiang, Yu; Zhou, Peng; Li, Lin; Ye, Xiaolei; Wu, Hongmei; Shen, Bin; Zhang, Jialei; He, Xiaoding; Niu, Chunjin; Xia, Qinghua

    2018-05-10

    Balance performance is considered as an indicator of functional status in the elderly, a large scale population screening and evaluation in the community context followed by proper interventions would be of great significance at public health level. However, there has been no suitable balance testing scale available for large scale studies in the unique community context of urban China. A balance scale named X16 balance testing scale was developed, which was composed of 3 domains and 16 items. A total of 1985 functionally independent and active community-dwelling elderly adults' balance abilities were tested using the X16 scale. The internal consistency, split-half reliability, content validity, construct validity, discriminant validity of X16 balance testing scale were evaluated. Factor analysis was performed to identify alternative factor structure. The Eigenvalues of factors 1, 2, and 3 were 8.53, 1.79, and 1.21, respectively, and their cumulative contribution to the total variance reached 72.0%. These 3 factors mainly represented domains static balance, postural stability, and dynamic balance. The Cronbach alpha coefficient for the scale was 0.933. The Spearman correlation coefficients between items and its corresponding domains were ranged from 0.538 to 0.964. The correlation coefficients between each item and its corresponding domain were higher than the coefficients between this item and other domains. With the increase of age, the scores of balance performance, domains static balance, postural stability, and dynamic balance in the elderly declined gradually (P < 0.001). With the increase of age, the proportion of the elderly with intact balance performance decreased gradually (P < 0.001). The reliability and validity of the X16 balance testing scale is both adequate and acceptable. Due to its simple and quick use features, it is practical to be used repeatedly and routinely especially in community setting and on large scale screening.

  5. Astronaut Scott Carpenter tests balance mechanism performance

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Astronaut M. Scott Carpenter's balance mechanism performance is tested by his walking on a narrow board in his bare feet. He is performing this test at the School of Aviation Medicine, Pensicola, Florida (04570); Carpenter walks a straight line by putting one foot directly in front of the other to test his balance (04571).

  6. 40 CFR 80.176 - Alternative certification test procedures and standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... temperature. At the end of this 48-hour ambient temperature soak, an injector balance test is conducted to... injector balance test. (x) Fuel pressure gauge. A fuel pressure gauge capable of measuring fuel system... conducting the injector balance test. A pressure transducer shall not be used. (xi) Gaskets. The upper intake...

  7. Status of MSBS Study at NAL in 1995

    NASA Technical Reports Server (NTRS)

    Sawada, Hideo; Suenaga, Hisasi; Kunimasu, Tetuya; Kohno, Takashi

    1996-01-01

    Magnetic field intensity and currents passing through the coils of the National Aerospace Laboratory (NAL) 1O cm Magnetic Suspension and Balance System (MSBS) were measured while a cylindrical model was oscillated along x,y,z and also about y and z axes, respectively. The model was made of alnico 5 and was 8 mm in diameter and 60 mm long. Two kinds of tests were carried out. Amplitude of the oscillation was varied at a frequency of 10 Hz. Frequency was varied from 1 to 50 Hz in the other test. Results of the tests show that the relation between coil currents and magnetic force acting on the model is affected by frequency. They also show that the relation between measured magnetic field intensity and the force in vertical direction is independent of the frequency below 30 Hz. Using the measured magnetic field intensity, the vertical force can be evaluated at the MSBS instantaneously when a model moves at frequencies below 30 Hz. A static drag force calibration test was carried out at the 60 cm MSBS. Obtained relationships between measured drag coil currents and loads shows large hysteresis.

  8. The Effect of Balance Training by Tetraks Interactive Balance System on Balance and Fall Risk in Parkinson’s Patients: A Report of Four Cases

    PubMed Central

    BALCI, Nilay Çömük; TONGA, Eda; GÜLŞEN, Mustafa

    2013-01-01

    This pilot study aimed to investigate the effect of balance training by Tetraks Interactive Balance System (TIBS) on balance and fall risk in patients with mild to moderate Parkinson’s disease. Four patients with Parkinson’s disease between the ages of 56 and 70 years (61.25±6.70) were applied balance training for 3 weeks by TIBS. Sociodemographic features and physical properties of the subjects were recorded. Their motor performance was evaluated by the Unified Parkinson’s Disease Rating Scale (UPDRS), balance was measured using the Berg Balance Scale (BBS), Functional Reach Test (FRT), Timed Up and Go Test (TUG), and the Standing on One Leg Balance Test (SOL) and, their fall risks were evaluated by TIBS. Evaluations were performed twice, before and after treatment. Following training, Parkinson’s patients showed improvements in UPDRS, TUG, BBS, FRT, SOL and fall risk. Balance training by TIBS has positive effects on balance and decreases fall risk in Parkinson’s disease patients. PMID:28360557

  9. Effects of Nesting Material on Energy Homeostasis in BALB/cAnNCrl, C57BL/6NCrl, and Crl:CD1(ICR) Mice Housed at 20 °C.

    PubMed

    Johnson, Jay S; Taylor, Daniel J; Green, Angela R; Gaskill, Brianna N

    2017-05-01

    Discrepancies exist between the preferred temperature range for mice (26 to 32 °C) and current recommendations (20 to 26 °C), which may alter metabolism and negatively affect studies using mice. Previous research indicates that nesting material can alleviate cold stress in mice; therefore, we sought to determine the effects of the amount of nesting material provided (0, 6, or 12 g) on heat energy loss and energy balance in 3 mouse strains housed at currently recommended temperatures during the daytime, a period of presumed inactivity. Groups of BALB/cAnNCrl, C57BL/6NCrl, and Crl:CD1(ICR) mice, balanced by strain and sex, were group-housed and provided 0, 6, or 12 g of nesting material. After a 3-d acclimation period, body weight was determined daily at 0800, food intake was determined at 0800 and 2000, and total heat production was evaluated from 0800 to 2000 on 4 consecutive days and used to calculate energy balance and the respiratory quotient. Although the amount of nesting material had no overall effect on food intake or heat production, mice provided 12 g of nesting material had greater weight gain than those given 0 or 6 g. This increase in body weight might have been due to improved energy balance, which was corroborated by an increased respiratory quotient in mice provided 12 g of nesting material. In summary, although heat production did not differ, providing 12 g of nesting material improved energy balance, likely leading to an increase in body weight during the 0800-2000 testing period.

  10. The Alliance of Advanced Process Control and Accountability – A Future Safeguards-By-Design Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumetta, Gregg J.; Bresee, James C.; Paviet, Patricia D.

    For any chemical separation process producing a valuable product, a material balance is an important process control measurement. That is particularly true for the separation of actinides from irradiated nuclear fuel, not only for their intrinsic value but also because an incomplete material balance may indicate diversion for unauthorized use. The DOE Office of Nuclear Energy is currently carrying out at the Pacific Northwest National Laboratory an experimental measurement of how well and with what precision current technologies can implement near real-time actinide material balances. This measurement effort is called the CoDCon project. It involves the separation of a productmore » with a 70/30 uranium/plutonium mass ratio. Initial tests will use dissolved fuel simulants prepared with pure uranium and plutonium nitrates at the same input ratios as irradiated fuel. Subsequent testing with actual irradiated fuel would be done to verify the results obtained with simulants. The experiments will use advanced on-line instrumentation supported by dynamic process models. Since accountability uncertainties could mask diversions, the aim of the project is not only to measure present-day capabilities but also, through sensitivity analyses, to identify those measurements with the greatest potential for overall material-balance improvements. The latter results will help identify priorities for future fuel cycle R&D programs. Advanced separations process control and material accountability technologies thus have a common goal: to provide the best tools available for safeguards-by-design [defined by the International Atomic Energy Agency (IAEA) as the integration of the design of a new nuclear facility through planning, construction, operation and decommissioning]. Since the potential domestic use of CoDCon results may be later than their possible foreign applications, arrangements may be feasible for possible bilateral or multinational cooperation in the CoDCon project.« less

  11. High Speed Balancing Applied to the T700 Engine

    NASA Technical Reports Server (NTRS)

    Walton, J.; Lee, C.; Martin, M.

    1989-01-01

    The work performed under Contracts NAS3-23929 and NAS3-24633 is presented. MTI evaluated the feasibility of high-speed balancing for both the T700 power turbine rotor and the compressor rotor. Modifications were designed for the existing Corpus Christi Army Depot (CCAD) T53/T55 high-speed balancing system for balancing T700 power turbine rotors. Tests conducted under these contracts included a high-speed balancing evaluation for T700 power turbines in the Army/NASA drivetrain facility at MTI. The high-speed balancing tests demonstrated the reduction of vibration amplitudes at operating speed for both low-speed balanced and non-low-speed balanced T700 power turbines. In addition, vibration data from acceptance tests of T53, T55, and T700 engines were analyzed and a vibration diagnostic procedure developed.

  12. Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2016-01-01

    A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.

  13. Virtual Environment TBI Screen (VETS)

    DTIC Science & Technology

    2014-10-01

    balance challenges performed on a modified Wii Balance Board . Implementation of this device will enhance current approaches in TBI and mild TBI (i.e...TBI) screen (VETS) device in measuring standing balance . This system consists of software, a Wii balance board , and a large screen television that...Validate Wii ™ Balance Board relative to NeuroCom forceplate ! Running Wii Balance Board validation protocol. ! Milestone Achieved:

  14. Postural Balance Following Aerobic Fatigue Tests: A Longitudinal Study Among Young Athletes.

    PubMed

    Steinberg, Nili; Eliakim, Alon; Zaav, Aviva; Pantanowitz, Michal; Halumi, Monder; Eisenstein, Tamir; Meckel, Yoav; Nemet, Dan

    2016-01-01

    General fatigue can cause aggravation of postural balance, with increased risk for injuries. The present longitudinal study aimed to evaluate the postural balance of young athletes following field aerobic tests throughout 1 year of training. Thirty children from a sports center in Nazareth, participating in a 3 times/week training program (specific to basketball, soccer, or athletic training), were assessed. Postural balance parameters were taken before, immediately after, and 10 min after a 20 m shuttle-run aerobic test, at 3 time points during 1 training year (Start/Y, Mid/Y, and End/Y). Fitness improved at the Mid/Y and End/Y compared to Start/Y. Postural balance significantly deteriorated immediately after the aerobic test and improved significantly in the 10-min testing in all 3 time points, with significant deterioration in the End/Y compared with the Start/Y. In conclusions, postural balance deteriorates immediately after aerobic exercises, and at the end of the year. To better practice drills related to postural balance and possibly to prevent injuries, it is best for young athletes to properly rest immediately following aerobic exercises and to practice postural balance mainly at the beginning and at the middle of the training year.

  15. Aerodynamic measurements and thermal tests of a strain-gage balance in a cryogenic wind tunnel

    NASA Technical Reports Server (NTRS)

    Boyden, Richmond P.; Ferris, Alice T.; Johnson, William G., Jr.; Dress, David A.; Hill, Acquilla S.

    1987-01-01

    An internal strain-gage balance designed and constructed in Europe for use in cryogenic wind tunnels has been tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. Part of the evaluation was made at equilibrium balance temperatures and it consisted of comparing the data taken at a tunnel stagnation temperature of 300 K with the data taken at 200 K and 110 K while maintaining either the Reynolds number or the stagnation pressure. A sharp-leading-edge delta-wing model was used to provide the aerodynamic loading for these tests. Results obtained with the balance during the force tests were found to be accurate and repeatable both with and without the use of a convection shield on the balance. An additional part of this investigation involved obtaining data on the transient temperature response of the balance during both normal and rapid changes in the tunnel stagnation temperature. The variation of the temperature with time was measured at three locations on the balance near the physical locations of the strain gages. The use of a convection shield significantly increased the time required for the balance to stabilize at a new temperature during the temperature response tests.

  16. Evaluation of Relationship between Trunk Muscle Endurance and Static Balance in Male Students

    PubMed Central

    Barati, Amirhossein; SafarCherati, Afsaneh; Aghayari, Azar; Azizi, Faeze; Abbasi, Hamed

    2013-01-01

    Purpose Fatigue of trunk muscle contributes to spinal instability over strenuous and prolonged physical tasks and therefore may lead to injury, however from a performance perspective, relation between endurance efficient core muscles and optimal balance control has not been well-known. The purpose of this study was to examine the relationship of trunk muscle endurance and static balance. Methods Fifty male students inhabitant of Tehran university dormitory (age 23.9±2.4, height 173.0±4.5 weight 70.7±6.3) took part in the study. Trunk muscle endurance was assessed using Sørensen test of trunk extensor endurance, trunk flexor endurance test, side bridge endurance test and static balance was measured using single-limb stance test. A multiple linear regression analysis was applied to test if the trunk muscle endurance measures significantly predicted the static balance. Results There were positive correlations between static balance level and trunk flexor, extensor and lateral endurance measures (Pearson correlation test, r=0.80 and P<0.001; r=0.71 and P<0.001; r=0.84 and P<0.001, respectively). According to multiple regression analysis for variables predicting static balance, the linear combination of trunk muscle endurance measures was significantly related to the static balance (F (3,46) = 66.60, P<0.001). Endurance of trunk flexor, extensor and lateral muscles were significantly associated with the static balance level. The regression model which included these factors had the sample multiple correlation coefficient of 0.902, indicating that approximately 81% of the variance of the static balance is explained by the model. Conclusion There is a significant relationship between trunk muscle endurance and static balance. PMID:24800004

  17. Whole-body vibration versus proprioceptive training on postural control in post-menopausal osteopenic women.

    PubMed

    Stolzenberg, Nils; Belavý, Daniel L; Rawer, Rainer; Felsenberg, Dieter

    2013-07-01

    To prevent falls in the elderly, especially those with low bone density, is it necessary to maintain muscle coordination and balance. The aim of this study was to examine the effect of classical balance training (BAL) and whole-body vibration training (VIB) on postural control in post-menopausal women with low bone density. Sixty-eight subjects began the study and 57 completed the nine-month intervention program. All subjects performed resistive exercise and were randomized to either the BAL- (N=31) or VIB-group (N=26). The BAL-group performed progressive balance and coordination training and the VIB-group underwent, in total, four minutes of vibration (depending on exercise; 24-26Hz and 4-8mm range) on the Galileo Fitness. Every month, the performance of a single leg stance task on a standard unstable surface (Posturomed) was tested. At baseline and end of the study only, single leg stance, Romberg-stance, semi-tandem-stance and tandem-stance were tested on a ground reaction force platform (Leonardo). The velocity of movement on the Posturomed improved by 28.3 (36.1%) (p<0.001) in the VIB-group and 18.5 (31.5%) (p<0.001) in the BAL-group by the end of the nine-month intervention period, but no differences were seen between the two groups (p=0.45). Balance tests performed on the Leonardo device did not show any significantly different responses between the two groups after nine months (p≥0.09). Strength training combined with either proprioceptive training or whole-body vibration was associated with improvements in some, but not all, measures of postural control in post-menopausal women with low bone density. The current study could not provide evidence for a significantly different impact of whole-body vibration or balance training on postural control. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Assessment of postural balance function.

    PubMed

    Kostiukow, Anna; Rostkowska, Elzbieta; Samborski, Włodzimierz

    2009-01-01

    Postural balance is defined as the ability to stand unassisted without falling. Examination of the patient's postural balance function is a difficult diagnostic task. Most of the balance tests used in medicine provide incomplete information on this coordination ability of the human body. The aim of this study was to review methods of assessment of the patient's postural balance function, including various tests used in medical diagnostics centers.

  19. 45 CFR 1628.5 - Fund balance deficits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Fund balance deficits. 1628.5 Section 1628.5... FUND BALANCES § 1628.5 Fund balance deficits. (a) Sound financial management practices such as those... spending. Use of current year LSC grant funds to liquidate deficit balances in the LSC fund from a...

  20. 45 CFR 1628.5 - Fund balance deficits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Fund balance deficits. 1628.5 Section 1628.5... FUND BALANCES § 1628.5 Fund balance deficits. (a) Sound financial management practices such as those... spending. Use of current year LSC grant funds to liquidate deficit balances in the LSC fund from a...

  1. Clinical measures of balance in people with type two diabetes: A systematic literature review.

    PubMed

    Dixon, C J; Knight, T; Binns, E; Ihaka, B; O'Brien, D

    2017-10-01

    Approximately 422 million people have diabetes mellitus worldwide, with the majority diagnosed with type 2 diabetes mellitus (T2DM). The complications of diabetes mellitus include diabetic peripheral neuropathy (DPN) and retinopathy, both of which can lead to balance impairments. Balance assessment is therefore an integral component of the clinical assessment of a person with T2DM. Although there are a variety of balance measures available, it is uncertain which measures are the most appropriate for this population. Therefore, the aim of this study was to conduct a systematic review on clinical balance measures used with people with T2DM and DPN. Databases searched included: CINAHL plus, MEDLINE, SPORTDiscus, Dentistry and Oral Sciences source, and SCOPUS. Key terms, inclusion and exclusion criteria were used to identify appropriate studies. Identified studies were critiqued using the Downs and Black appraisal tool. Eight studies were included, these studies incorporated a total of ten different clinical balance measures. The balance measures identified included the Dynamic Balance Test, balance walk, tandem and unipedal stance, Functional Reach Test, Clinical Test of Sensory Interaction and Balance, Berg Balance Scale, Tinetti Performance-Oriented Mobility Assessment, Activity-Specific Balance Confidence Scale, Timed Up and Go test, and the Dynamic Gait Index. Numerous clinical balance measures were used for people with T2DM. However, the identified balance measures did not assess all of the systems of balance, and most had not been validated in a T2DM population. Therefore, future research is needed to identify the validity of a balance measure that assesses these systems in people with T2DM. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Active Vibration Reduction of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0 mm, 3.75 mm, and 4.5 mm. Overall, the transmitted force was reduced to 2% of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under one watt. The test results will be used to guide future balancer designs.

  3. Active Vibration Reduction of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Wilson, Scott D.; Metscher, Jonathan F.; Schifer, Nicholas A.

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint compared to the current state of the art. The Stirling Cycle Technology Development (SCTD) Project is funded by the RPS Program to developing Stirling-based subsystems, including convertors and controller maturation efforts that have resulted in high fidelity hardware like the Advanced Stirling Radioisotope Generator (ASRG), Advanced Stirling Convertor (ASC), and ASC Controller Unit (ACU). The SCTD Project also performs research to develop less mature technologies with a wide variety of objectives, including increasing temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Active vibration reduction systems (AVRS), or "balancers", have historically been developed and characterized to provide fault tolerance for generator designs that incorporate dual-opposed Stirling convertors or enable single convertor, or small RPS, missions. Balancers reduce the dynamic disturbance forces created by the power piston and displacer internal moving components of a single operating convertor to meet spacecraft requirements for induced disturbance force. To improve fault tolerance for dual-opposed configurations and enable single convertor configurations, a breadboard AVRS was implemented on the Advanced Stirling Convertor (ASC). The AVRS included a linear motor, a motor mount, and a closed-loop controller able to balance out the transmitted peak dynamic disturbance using acceleration feedback. Test objectives included quantifying power and mass penalty and reduction in transmitted force over a range of ASC operating parameters and mounting conditions. All tests were performed at three different piston amplitudes, 3.0, 3.75, and 4.5 mm. Overall, the transmitted force was reduced to 2 percent of the total unbalanced force by actively balancing out only the first fundamental frequency, with balancer motor power remaining under 1 watt. The test results will be used to guide future balancer designs.

  4. Test-retest reliability of the assessment of postural stability in typically developing children and in hearing impaired children.

    PubMed

    De Kegel, A; Dhooge, I; Cambier, D; Baetens, T; Palmans, T; Van Waelvelde, H

    2011-04-01

    The purpose of this study was to establish test-retest reliability of centre of pressure (COP) measurements obtained by an AccuGait portable forceplate (ACG), mean COG sway velocity measured by a Basic Balance Master (BBM) and clinical balance tests in children with and without balance difficulties. 49 typically developing children and 23 hearing impaired children, with a higher risk for stability problems, between 6 and 12 years of age participated. Each child performed the modified Clinical Test of Sensory Interaction on Balance (mCTSIB), Unilateral Stance (US) and Tandem Stance on ACG, mCTSIB and US on BBM and clinical balance tests: one-leg standing, balance beam walking and one-leg hopping. All subjects completed 2 test sessions on 2 different days in the same week assessed by the same examiner. Among COP measurements obtained by the ACG, mean sway velocity was the most reliable parameter with all ICCs higher than 0.72. The standard deviation (SD) of sway velocity, sway area, SD of anterior-posterior and SD of medio-lateral COP data showed moderate to excellent reliability with ICCs between 0.55 and 0.96 but some caution must be taken into account in some conditions. BBM is less reliable but clinical balance tests are as reliable as ACG. Hearing impaired children exhibited better relative reliability (ICC) and comparable absolute reliability (SEM) for most balance parameters compared to typically developing children. Reliable information regarding postural stability of typically developing children and hearing impaired children may be obtained utilizing COP measurements generated by an AccuGait system and clinical balance tests. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Unitized Regenerative Fuel Cell System Development

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2003-01-01

    Unitized Regenerative Fuel Cells (URFC) have recently been developed by several fuel cell manufacturers. These manufacturers have concentrated their efforts on the development of the cell stack technology itself, and have not up to this point devoted much effort to the design and development of the balance of plant. A fuel cell technology program at the Glenn Research Center (GRC) that has as its goal the definition and feasibility testing of the URFC system balance of plant. Besides testing the feasibility, the program also intends to minimize the system weight, volume, and parasitic power as its goal. The design concept currently being developed uses no pumps to circulate coolant or reactants, and minimizes the ancillary components to only the oxygen and hydrogen gas storage tanks, a water storage tank, a loop heat pipe to control the temperature and two pressure control devices to control the cell stack pressures during operation. The information contained in this paper describes the design and operational concepts employed in this concept. The paper also describes the NASA Glenn research program to develop this concept and test its feasibility.

  6. Does patient-perceived handicap correspond to the modified clinical test for the sensory interaction on balance?

    PubMed

    Loughran, Sean; Gatehouse, Stuart; Kishore, Ameet; Swan, Iain R C

    2006-01-01

    To determine whether patient self-reported handicap correlates with scores obtained from the modified Clinical Test for the Sensory Interaction on Balance as assessed by the Neurocom VSR Balance Master platform. Prospective observational. Balance clinic in tertiary referral center. Patients referred with dizziness or imbalance as their primary complaint. The modified Clinical Test for the Sensory Interaction on Balance scores as assessed by the Neurocom VSR Balance Master platform, the Dizziness Handicap Inventory, and the Health Utilities Index Marks 2 and 3. One hundred fifty-nine patients were entered into the study. The mean age of participants was 54.5 years, with a female-to-male ratio of 2.1:1. The scores for the Dizziness Handicap Inventory and Health Utilities Index are similar between sexes, and although the Dizziness Handicap Inventory score did not correlate with age, Health Utilities Index 2 and 3 scores did show a negative correlation with increasing age. There are weak, positive correlations between the Dizziness Handicap Inventory and the firm surface conditions of the modified Clinical Test for the Sensory Interaction on Balance but no useful correlation with the foam conditions. Similar weak negative correlations were found between the Health Utilities Index 2 and 3 and the modified Clinical Test for the Sensory Interaction on Balance scores. Patient-perceived handicap of imbalance appears to correlate poorly with assessment of postural stability using the modified Clinical Test for the Sensory Interaction on Balance.

  7. Can sensory attention focused exercise facilitate the utilization of proprioception for improved balance control in PD?

    PubMed

    Lefaivre, Shannon C; Almeida, Quincy J

    2015-02-01

    Impaired sensory processing in Parkinson's disease (PD) has been argued to contribute to balance deficits. Exercises aimed at improving sensory feedback and body awareness have the potential to ameliorate balance deficits in PD. Recently, PD SAFEx™, a sensory and attention focused rehabilitation program, has been shown to improve motor deficits in PD, although balance control has never been evaluated. The objective of this study was to measure the effects of PD SAFEx™ on balance control in PD. Twenty-one participants with mild to moderate idiopathic PD completed 12 weeks of PD SAFEx™ training (three times/week) in a group setting. Prior to training, participants completed a pre-assessment evaluating balance in accordance with an objective, computerized test of balance (modified clinical test of sensory integration and balance (m-CTSIB) and postural stability testing (PST)) protocols. The m-CTSIB was our primary outcome measure, which allowed assessment of balance in both eyes open and closed conditions, thus enabling evaluation of specific sensory contributions to balance improvement. At post-test, a significant interaction between time of assessment and vision condition (p=.014) demonstrated that all participants significantly improved balance control, specifically when eyes were closed. Balance control did not change from pre to post with eyes open. These results provide evidence that PD SAFEx™ is effective at improving the ability to utilize proprioceptive information, resulting in improved balance control in the absence of vision. Enhancing the ability to utilize proprioception for individuals with PD is an important intermediary to improving balance deficits. Copyright © 2015. Published by Elsevier B.V.

  8. Small Radioisotope Power System at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.; Fraeman, Martin; Frankford, David P.; Duven, Dennis; Shamkovich, Andrei; Ambrose, Hollis; Meer, David W.

    2012-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer for possible use by the International Lunar Network (ILN) program. The ILN program is studying the feasibility of implementing a multiple node seismometer network to investigate the internal lunar structure. A single ASC produces approximately 80 W(sub e) and could potentially supply sufficient power for that application. The IPT consists of Sunpower, Inc., to provide the single ASC with balancer, The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to design an engineering model Single Convertor Controller (SCC) for an ASC with balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. A controller maintains stable operation of an ASC. It regulates the alternating current produced by the linear alternator of the convertor, provides a specified output voltage, and maintains operation at a steady piston amplitude and hot end temperature. JHU/APL also designed an ASC dynamic engine/alternator simulator to aid in the testing and troubleshooting of the SCC. This paper describes the requirements, design, and development of the SCC, including some of the key challenges and the solutions chosen to overcome those issues. In addition, it describes the plans to analyze the effectiveness of a passive balancer to minimize vibration from the ASC, characterize the effect of ASC vibration on a lunar lander, characterize the performance of the SCC, and integrate the single ASC, SCC, and lunar lander test stand to characterize performance of the overall system.

  9. Postural control as a function of time-of-day: influence of a prior strenuous running exercise or demanding sustained-attention task

    PubMed Central

    2013-01-01

    Background The current experiment investigated the impact of two potential confounding variables on the postural balance in young participants: the induced-experimental activity prior to the static postural measurements and the well-documented time-of-day effects. We mainly hypothesized that an exhaustive exercise and a high attention-demanding task should result in alterations of postural control. Methods Ten participants performed three experimental sessions (differentiated by the activity – none, cognitive or physical – prior of the assessment of postural stability), separated by one day at least. Each session included postural balance assessments around 8 a.m., 12.00 p.m. and 5 p.m. ± 30 min. The physical and cognitive activities were performed only before the 12 o’clock assessment. The postural tests consisted of four conditions of quiet stance: stance on a firm surface with eyes open; stance on a firm surface with eyes closed; stance on a foam surface with eyes open and stance on a foam surface with eyes closed. Postural performance was assessed by various center of pressure (COP) parameters. Results Overall, the COP findings indicated activity-related postural impairment, with an increase in body sway in the most difficult conditions (with foam surface), especially when postural measurements are recorded just after the running exercise (physical session) or the psychomotor vigilance test (cognitive session). Conclusions Even if no specific influence of time-of-day on static postural control is demonstrated, our results clearly suggest that the activities prior to balance tests could be a potential confounding variable to be taken into account and controlled when assessing clinical postural balance. PMID:23452958

  10. Use of clinical movement screening tests to predict injury in sport

    PubMed Central

    Chimera, Nicole J; Warren, Meghan

    2016-01-01

    Clinical movement screening tests are gaining popularity as a means to determine injury risk and to implement training programs to prevent sport injury. While these screens are being used readily in the clinical field, it is only recently that some of these have started to gain attention from a research perspective. This limits applicability and poses questions to the validity, and in some cases the reliability, of the clinical movement tests as they relate to injury prediction, intervention, and prevention. This editorial will review the following clinical movement screening tests: Functional Movement Screen™, Star Excursion Balance Test, Y Balance Test, Drop Jump Screening Test, Landing Error Scoring System, and the Tuck Jump Analysis in regards to test administration, reliability, validity, factors that affect test performance, intervention programs, and usefulness for injury prediction. It is important to review the aforementioned factors for each of these clinical screening tests as this may help clinicians interpret the current body of literature. While each of these screening tests were developed by clinicians based on what appears to be clinical practice, this paper brings to light that this is a need for collaboration between clinicians and researchers to ensure validity of clinically meaningful tests so that they are used appropriately in future clinical practice. Further, this editorial may help to identify where the research is lacking and, thus, drive future research questions in regards to applicability and appropriateness of clinical movement screening tools. PMID:27114928

  11. Measurement of Dietary Restraint: Validity Tests of Four Questionnaires

    PubMed Central

    Williamson, Donald A.; Martin, Corby K.; York-Crowe, Emily; Anton, Stephen D.; Redman, Leanne M.; Han, Hongmei; Ravussin, Eric

    2007-01-01

    This study tested the validity of four measures of dietary restraint: Dutch Eating Behavior Questionnaire, Eating Inventory (EI), Revised Restraint Scale (RS), and the Current Dieting Questionnaire. Dietary restraint has been implicated as a determinant of overeating and binge eating. Conflicting findings have been attributed to different methods for measuring dietary restraint. The validity of four self-report measures of dietary restraint and dieting behavior was tested using: 1) factor analysis, 2) changes in dietary restraint in a randomized controlled trial of different methods to achieve calorie restriction, and 3) correlation of changes in dietary restraint with an objective measure of energy balance, calculated from the changes in fat mass and fat-free mass over a six-month dietary intervention. Scores from all four questionnaires, measured at baseline, formed a dietary restraint factor, but the RS also loaded on a binge eating factor. Based on change scores, the EI Restraint scale was the only measure that correlated significantly with energy balance expressed as a percentage of energy require d for weight maintenance. These findings suggest that that, of the four questionnaires tested, the EI Restraint scale was the most valid measure of the intent to diet and actual caloric restriction. PMID:17101191

  12. Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine

    2016-01-01

    Human missions to Mars may require radical changes in our approach to EVA suit design. A major challenge is the balance of building a suit robust enough to complete 50 EVAs in the dirt under intense UV exposure without losing mechanical strength or compromising its mobility. We conducted ground testing on both current and new space suit materials to determine performance degradation after exposure to 2500 hours of Mars mission equivalent UV. This testing will help mature the material technologies and provide performance data that can be used by not only the space suit development teams but for all Mars inflatable and soft goods derived structures from airlocks to habitats.

  13. Relevance of nerve conduction velocity in the assessment of balance performance in older adults with diabetes mellitus.

    PubMed

    Wang, Ting-Yun; Chen, Shih-Ching; Peng, Chih-Wei; Kang, Chun-Wei; Chen, Yu-Luen; Chen, Chun-Lung; Chou, Yi-Lin; Lai, Chien-Hung

    2017-03-01

    Purpose This study investigated the relationship between peripheral nerve conduction velocity (NCV) and balance performance in older adults with diabetes. Methods Twenty older adults with diabetes were recruited to evaluate the NCV of their lower limbs and balance performance. The balance assessments comprised the timed up and go (TUG) test, Berg balance scale (BBS), unipedal stance test (UST), multidirectional reach test (MDRT), maximum step length (MSL) test and quiet standing with eyes open and closed. The relationship between NCV and balance performance was evaluated by Pearson's correlation coefficients, and the balance performances of the diabetic patients with and without peripheral neuropathy were compared by using Mann-Whitney U tests. Results The NCV in the lower limbs exhibited a moderate to strong correlation with most of the balance tests including the TUG (r = -0.435 to -0.520, p < 0.05), BBS (r = 0.406-0.554, p < 0.05), UST (r = 0.409-0.647, p < 0.05) and MSL (r = 0.399-0.585, P < 0.05). In addition, patients with diabetic peripheral neuropathy had a poorer TUG (p < 0.05), BBS (p < 0.01), UST (p < 0.05) and MSL performance (p < 0.05) compared with those without peripheral neuropathy (p < 0.05). Conclusion Our findings revealed that a decline in peripheral nerve conduction in the lower limb is not only an indication of nerve dysfunction, but may also be related to the impairment of balance performance in patients with diabetes. Implications for Rehabilitation Nerve conduction velocity in the lower limbs of diabetic older adults showed moderate to strong correlations with most of the results of balance tests, which are commonly used in clinics. Decline in nerve conduction velocity of the lower limbs may be related to the impairment of balance control in patients with diabetes. Diabetic older adults with peripheral neuropathy exhibited greater postural instability than those without peripheral neuropathy.

  14. Gait and balance deterioration over a 12-month period in multiple sclerosis patients with EDSS scores ≤ 3.0.

    PubMed

    Galea, Mary P; Cofré Lizama, L Eduardo; Butzkueven, Helmut; Kilpatrick, Trevor J

    2017-01-01

    It is not currently known whether gait and balance measures are responsive to deterioration of motor function in multiple sclerosis (MS) patients with low EDSS scores (≤3.0). The aim of this study was to quantify MS-related gait and balance deterioration over a 12-month period. Thirty-eight participants with MS (33 female, mean age: 41.1 ± 8.3 years), mean time since diagnosis 2.2 ± 4.1 years, EDSS score ≤3.0 and without clinical evidence of gait deterioration, were recruited. Participants performed walking trials and Functional and Lateral Reach Tests. Kinematics of the ankle and knee, and electromyography of the tibialis anterior and medial gastrocnemius muscles were also measured. Three participants reported relapses with worsening EDSS scores and 4 non-relapsing participants had worse EDSS scores at 12 months. There were significant decreases in mean gait speed, stride length and balance scores, and a significant increase in double support. Marked changes in ankle kinematics, with decreased medial gastrocnemius activity were observed. Gait and balance performance of non-disabled RRMS participants may progressively decline, even in the absence of both acute clinical relapse and change in clinical status measured by the EDSS.

  15. Efficacy of ankle control balance training on postural balance and gait ability in community-dwelling older adults: a single-blinded, randomized clinical trial.

    PubMed

    Lee, Kyeongjin; Lee, Yong Woo

    2017-09-01

    [Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults.

  16. Efficacy of ankle control balance training on postural balance and gait ability in community-dwelling older adults: a single-blinded, randomized clinical trial

    PubMed Central

    Lee, Kyeongjin; Lee, Yong Woo

    2017-01-01

    [Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults. PMID:28931994

  17. Sensory-Challenge Balance Exercises Improve Multisensory Reweighting in Fall-Prone Older Adults.

    PubMed

    Allison, Leslie K; Kiemel, Tim; Jeka, John J

    2018-04-01

    Multisensory reweighting (MSR) deficits in older adults contribute to fall risk. Sensory-challenge balance exercises may have value for addressing the MSR deficits in fall-prone older adults. The purpose of this study was to examine the effect of sensory-challenge balance exercises on MSR and clinical balance measures in fall-prone older adults. We used a quasi-experimental, repeated-measures, within-subjects design. Older adults with a history of falls underwent an 8-week baseline (control) period. This was followed by an 8-week intervention period that included 16 sensory-challenge balance exercise sessions performed with computerized balance training equipment. Measurements, taken twice before and once after intervention, included laboratory measures of MSR (center of mass gain and phase, position, and velocity variability) and clinical tests (Activities-specific Balance Confidence Scale, Berg Balance Scale, Sensory Organization Test, Limits of Stability test, and lower extremity strength and range of motion). Twenty adults 70 years of age and older with a history of falls completed all 16 sessions. Significant improvements were observed in laboratory-based MSR measures of touch gain (P = 0.006) and phase (P = 0.05), Berg Balance Scale (P = 0.002), Sensory Organization Test (P = 0.002), Limits of Stability Test (P = 0.001), and lower extremity strength scores (P = 0.005). Mean values of vision gain increased more than those for touch gain, but did not reach significance. A balance exercise program specifically targeting multisensory integration mechanisms improved MSR, balance, and lower extremity strength in this mechanistic study. These valuable findings provide the scientific rationale for sensory-challenge balance exercise to improve perception of body position and motion in space and potential reduction in fall risk.

  18. Standing Balance and Trunk Position Sense in Impaired Glucose Tolerance (IGT)-Related Peripheral Neuropathy

    PubMed Central

    Goldberg, Allon; Russell, James William; Alexander, Neil Burton

    2009-01-01

    Type 2 diabetes mellitus (T2DM) and pre-diabetes or impaired glucose tolerance (IGT) affects a large segment of the population. Peripheral neuropathy (PN) is a common complication of T2DM, leading to sensory and motor deficits. While T2DM-related PN often results in balance- and mobility-related dysfunction which manifests as gait instability and falls, little is known about balance capabilities in patients who have evidence of PN related to IGT (IGT-PN). We evaluated patients with IGT-PN on commonly-used clinical balance and mobility tests as well as a new test of trunk position sense and balance impairment, trunk repositioning errors (TREs). Eight participants aged 50–72 years with IGT-PN, and eight age and gender matched controls underwent balance, mobility and trunk repositioning accuracy tests at a university neurology clinic and mobility research laboratory. Compared to controls, IGT-PN participants had as much as twice the magnitude of TREs and stood approximately half as long on the single leg balance test. People with IGT-PN exhibit deficits in standing balance and trunk position sense. Furthermore, there was a significant association between performance on commonly-used clinical balance and mobility tests, and electrophysiological and clinical measures of neuropathy in IGT-PN participants. Because IGT-related neuropathy represents the earliest stage of diabetic neuropathy, deficits in IGT-PN participants highlights the importance of early screening in the dysglycemic process for neuropathy and associated balance deficits. PMID:18439624

  19. A Smartphone Application Suite for Assessing Mobility.

    PubMed

    Madhushri, Priyanka; Dzhagaryan, Armen A; Jovanov, Emil; Milenkovic, Aleksandar

    2016-08-01

    Modern smartphones integrate a growing number of inertial and environmental sensors that can enable the development of new mobile health applications. In this paper we introduce a suite of smartphone applications for assessing mobility in elderly population. The suite currently includes applications that automate and quantify the following standardized medical tests for assessing mobility: Timed-Up-and-Go (TUG), 30 Seconds Chair Stand Test (30SCS), and a 4-stage Balance Test (4SBT). For each smartphone application we describe its functionality and a list of parameters extracted by processing signals from smartphone's inertial sensors. The paper shows the results from studies conducted on geriatric patients for TUG tests and from studies conducted in the laboratory on healthy subjects for 30SCS and 4SBT tests.

  20. Development of a clinical static and dynamic standing balance measurement tool appropriate for use in adolescents.

    PubMed

    Emery, Carolyn A; Cassidy, J David; Klassen, Terry P; Rosychuk, Rhonda J; Rowe, Brian B

    2005-06-01

    There is a need in sports medicine for a static and dynamic standing balance measure to quantify balance ability in adolescents. The purposes of this study were to determine the test-retest reliability of timed static (eyes open) and dynamic (eyes open and eyes closed) unipedal balance measurements and to examine factors associated with balance. Adolescents (n=123) were randomly selected from 10 Calgary high schools. This study used a repeated-measures design. One rater measured unipedal standing balance, including timed eyes-closed static (ECS), eyes-open dynamic (EOD), and eyes-closed dynamic (ECD) balance at baseline and 1 week later. Dynamic balance was measured on a foam surface. Reliability was examined using both intraclass correlation coefficients (ICCs) and Bland and Altman statistical techniques. Multiple linear regressions were used to examine other potentially influencing factors. Based on ICCs, test-retest reliability was adequate for ECS, EOD, and ECD balance (ICC=.69, .59, and .46, respectively). The results of Bland and Altman methods, however, suggest that caution is required in interpreting reliability based on ICCs alone. Although both ECS balance and ECD balance appear to demonstrate adequate test-retest reliability by ICC, Bland and Altman methods of agreement demonstrate sufficient reliability for ECD balance only. Thirty percent of the subjects reached the 180-second maximum on EOD balance, suggesting that this test is not appropriate for use in this population. Balance ability (ECS and ECD) was better in adolescents with no past history of lower-extremity injury. Timed ECD balance is an appropriate and reliable clinical measurement for use in adolescents and is influenced by previous injury.

  1. Relationships among age, gender, anthropometric characteristics, and dynamic balance in children 5 to 12 years old.

    PubMed

    Butz, Sarah M; Sweeney, Jane K; Roberts, Pamela L; Rauh, Mitchell J

    2015-01-01

    To examine relationships among age, gender, anthropometrics, and dynamic balance. Height, weight, and arm and foot length were measured in 160 children with typical development aged 5 to 12 years. Dynamic balance was assessed using the Timed Up and Go (TUG) test, Pediatric Reach Test (PRT), and Pediatric Balance Scale (PBS). Moderate to good positive relationships (r = 0.61 and r = 0.56) were found between increasing age and PRT and PBS scores. A fair negative relationship (r = -0.49) was observed between age and TUG test. No significant gender-by-age group difference was observed. Age had the strongest influence on TUG and PBS scores; arm length had the strongest influence on PRT scores. Dynamic balance ability is directly related to chronological age. Age and arm length have the strongest relationships with balance scores. These findings may assist pediatric therapists in selecting dynamic balance tests according to age rather than specific diagnosis.

  2. Mechanical design of a rotary balance system for NASA. Langley Research Center's vertical spin tunnel

    NASA Technical Reports Server (NTRS)

    Allred, J. W.; Fleck, V. J.

    1992-01-01

    A new lightweight Rotary Balance System is presently being fabricated and installed as part of a major upgrade to the existing 20 Foot Vertical Spin Tunnel. This upgrade to improve model testing productivity of the only free spinning vertical wind tunnel includes a modern fan/drive and tunnel control system, an updated video recording system, and the new rotary balance system. The rotary balance is a mechanical apparatus which enables the measurement of aerodynamic force and moment data under spinning conditions (100 rpm). This data is used in spin analysis and is vital to the implementation of large amplitude maneuvering simulations required for all new high performance aircraft. The new rotary balance system described in this report will permit greater test efficiency and improved data accuracy. Rotary Balance testing with the model enclosed in a tare bag can also be performed to obtain resulting model forces from the spinning operation. The rotary balance system will be stored against the tunnel sidewall during free flight model testing.

  3. Point-of-care-testing of standing posture with Wii balance board and Microsoft Kinect during transcranial direct current stimulation: a feasibility study.

    PubMed

    Dutta, Arindam; Chugh, Sanjay; Banerjee, Alakananda; Dutta, Anirban

    2014-01-01

    Non-invasive brain stimulation (NIBS) is a promising tool for facilitating motor function. NIBS therapy in conjunction with training using postural feedback may facilitate physical rehabilitation following posture disorders (e.g., Pusher Syndrome). The objectives of this study were, 1) to develop a low-cost point-of-care-testing (POCT) system for standing posture, 2) to investigate the effects of anodal tDCS on functional reach tasks using the POCT system. Ten community-dwelling elderly (age >50 years) subjects evaluated the POCT system for standing posture during functional reach tasks where their balance score on Berg Balance Scale was compared with that from Center-of-Mass (CoM) - Center-of-Pressure (CoP) posturography. Then, in a single-blind, sham-controlled study, five healthy right-leg dominant subjects (age: 26.4 ± 5.3 yrs) were evaluated using the POCT system under two conditions - with anodal tDCS of primary motor representations of right tibialis anterior muscle and with sham tDCS. The maximum CoP-CoM lean-angle was found to be well correlated with the BBS score in the elderly subjects The anodal tDCS strongly (p = 0.0000) affected the maximum CoP excursions but not the return reaction time in healthy. It was concluded that the CoM-CoP lean-line could be used for posture feedback and monitoring during tDCS therapy in conjunction with balance training exercises.

  4. Thrust Stand for Electric Propulsion Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Markusic, Thomas E.; Stanojev, Boris J.; Dehoyos, Amado; Spaun, Benjamin

    2006-01-01

    An electric propulsion thrust stand capable of supporting testing of thrusters having a total mass of up to 125 kg and producing thrust levels between 100 microN to 1 N has been developed and tested. The design features a conventional hanging pendulum arm attached to a balance mechanism that converts horizontal deflections produced by the operating thruster into amplified vertical motion of a secondary arm. The level of amplification is changed through adjustment of the location of one of the pivot points linking the system. Response of the system depends on the relative magnitudes of the restoring moments applied by the displaced thruster mass and the twisting torsional pivots connecting the members of the balance mechanism. Displacement is measured using a non-contact, optical linear gap displacement transducer and balance oscillatory motion is attenuated using a passive, eddy-current damper. The thrust stand employs an automated leveling and thermal control system. Pools of liquid gallium are used to deliver power to the thruster without using solid wire connections, which can exert undesirable time-varying forces on the balance. These systems serve to eliminate sources of zero-drift that can occur as the stand thermally or mechanically shifts during the course of an experiment. An in-situ calibration rig allows for steady-state calibration before, during and after thruster operation. Thrust measurements were carried out on a cylindrical Hall thruster that produces mN-level thrust. The measurements were very repeatable, producing results that compare favorably with previously published performance data, but with considerably smaller uncertainty.

  5. Comparison of Dynamic Balance in Collegiate Field Hockey and Football Players Using Star Excursion Balance Test

    PubMed Central

    Bhat, Rashi; Moiz, Jamal Ali

    2013-01-01

    Purpose The preliminary study aimed to compare dynamic balance between collegiate athletes competing or training in football and hockey using star excursion balance test. Methods A total thirty university level players, football (n = 15) and field hockey (n = 15) were participated in the study. Dynamic balance was assessed by using star excursion balance test. The testing grid consists of 8 lines each 120 cm in length extending from a common point at 45° increments. The subjects were instructed to maintain a stable single leg stance with the test leg with shoes off and to reach for maximal distance with the other leg in each of the 8 directions. A pencil was used to point and read the distance to which each subject's foot reached. The normalized leg reach distances in each direction were summed for both limbs and the total sum of the mean of summed normalized distances of both limbs were calculated. Results There was no significant difference in all the directions of star excursion balance test scores in both the groups. Additionally, composite reach distances of both groups also found non-significant (P=0.5). However, the posterior (P=0.05) and lateral (P=0.03) normalized reach distances were significantly more in field hockey players. Conclusion Field hockey players and football players did not differ in terms of dynamic balance. PMID:24427482

  6. Comparison of dynamic balance in collegiate field hockey and football players using star excursion balance test.

    PubMed

    Bhat, Rashi; Moiz, Jamal Ali

    2013-09-01

    The preliminary study aimed to compare dynamic balance between collegiate athletes competing or training in football and hockey using star excursion balance test. A total thirty university level players, football (n = 15) and field hockey (n = 15) were participated in the study. Dynamic balance was assessed by using star excursion balance test. The testing grid consists of 8 lines each 120 cm in length extending from a common point at 45° increments. The subjects were instructed to maintain a stable single leg stance with the test leg with shoes off and to reach for maximal distance with the other leg in each of the 8 directions. A pencil was used to point and read the distance to which each subject's foot reached. The normalized leg reach distances in each direction were summed for both limbs and the total sum of the mean of summed normalized distances of both limbs were calculated. There was no significant difference in all the directions of star excursion balance test scores in both the groups. Additionally, composite reach distances of both groups also found non-significant (P=0.5). However, the posterior (P=0.05) and lateral (P=0.03) normalized reach distances were significantly more in field hockey players. Field hockey players and football players did not differ in terms of dynamic balance.

  7. Ankle taping does not impair performance in jump or balance tests.

    PubMed

    Abián-Vicén, Javier; Alegre, Luis M; Fernández-Rodríguez, J Manuel; Lara, Amador J; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces.

  8. Ankle Taping Does Not Impair Performance in Jump or Balance Tests

    PubMed Central

    Abián-Vicén, Javier; Alegre, Luis M.; Fernández-Rodríguez, J. Manuel; Lara, Amador J.; Meana, Marta; Aguado, Xavier

    2008-01-01

    This study aimed to investigate the influence of prophylactic ankle taping on two balance tests (static and dynamic balance) and one jump test, in the push off and the landing phase. Fifteen active young subjects (age: 21.0 ± 4.4 years) without previous ankle injuries volunteered for the study. Each participant performed three tests in two different situations: with taping and without taping. The tests were a counter movement jump, static balance, and a dynamic posturography test. The tests and conditions were randomly performed. The path of the center of pressures was measured in the balance tests, and the vertical ground reaction forces were recorded during the push-off and landing phases of the counter movement jump. Ankle taping had no influence on balance performance or in the push off phase of the jump. However, the second peak vertical force value during the landing phase of the jump was 12% greater with ankle taping (0.66 BW, 95% CI -0.64 to 1.96). The use of prophylactic ankle taping had no influence on the balance or jump performance of healthy young subjects. In contrast, the taped ankle increased the second peak vertical force value, which could be related to a greater risk of injury produced by the accumulation of repeated impacts in sports where jumps are frequently performed. Key pointsAnkle taping has no influence on balance performance.Ankle taping does not impair performance during the push-off phase of the jump.Ankle taping could increase the risk of injury during landings by increasing peak forces. PMID:24149902

  9. Analysis Model and Numerical Simulation of Thermoelectric Response of CFRP Composites

    NASA Astrophysics Data System (ADS)

    Lin, Yueguo

    2018-05-01

    An electric current generates Joule heating, and under steady state conditions, a sample exhibits a balance between the strength dissipated by the Joule effect and the heat exchange with the environment by radiation and convection. In the present paper, theoretical model, numerical FEM and experimental methods have been used to analyze the radiation and free convection properties in CFRP composite samples heated by an electric current. The materials employed in these samples have applications in many aeronautic devices. This study addresses two types of composite materials, UD [0]8 and QI [45/90/-45/0]S, which were prepared for thermoelectric experiments. A DC electric current (ranging from 1A to 8A) was injected through the specimen ends to find the coupling effect between the electric current and temperature. An FE model and simplified thermoelectric analysis model are presented in detail to represent the thermoelectric data. These are compared with the experimental results. All of the test equipments used to obtain the experimental data and the numerical simulations are characterized, and we find that the numerical simulations correspond well with the experiments. The temperature of the surface of the specimen is almost proportional to the electric current. The simplified analysis model was used to calculate the balance time of the temperature, which is consistent throughout all of the experimental investigations.

  10. Reference values and equations reference of balance for children of 8 to 12 years.

    PubMed

    Libardoni, Thiele de Cássia; Silveira, Carolina Buzzi da; Sinhorim, Larissa Milani Brognoli; Oliveira, Anamaria Siriani de; Santos, Márcio José Dos; Santos, Gilmar Moraes

    2018-02-01

    There are still no normative data in balance sway for school-age children in Brazil. We aimed to establish the reference ranges for balance scores and to develop prediction equations for estimation of balance scores in children aged 8 to 12 years old. The study included 165 healthy children (83 boys and 82 girls; age, 8-12 years) recruited from a public school in the city of Florianópolis, Santa Catarina, Brazil. We used the Sensory Organization Test to assess the balance scores and both a digital scale and a stadiometer to measure the anthropometric variables. We tested a stepwise multiple-regression model with sex, height, weight, and mid-thigh circumference of the dominant leg as predictors of the balance score. For all experimental conditions, girls' age accounted for over 85% of the variability in balance scores; while, boys' age accounted only 55% of the variability in balance scores. Therefore, balance scores increase with age for boys and girls. This study described the ranges of age- and sex-specific normative values for balance scores in children during 6 different testing conditions established by the sensory organization test. We confirmed that age was the predictor that best explained the variability in balance scores in children between 8 and 12 years old. This study stimulates a new and more comprehensive study to estimate balance scores from prediction equations for overall Brazilian pediatric population. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington's Disease.

    PubMed

    Yhnell, Emma; Dunnett, Stephen B; Brooks, Simon P

    2016-05-31

    Huntington's disease (HD) is a rare, incurable neurodegenerative disorder caused by a CAG trinucleotide expansion with the first exon of the huntingtin gene. Numerous knock-in mouse models are currently available for modelling HD. However, before their use in scientific research, these models must be characterised to determine their face and predictive validity as models of the disease and their reliability in recapitulating HD symptoms. Manifest HD is currently diagnosed upon the onset of motor symptoms, thus we sought to longitudinally characterise the progression and severity of motor signs in the HdhQ111 knock-in mouse model of HD, in heterozygous mice. An extensive battery of motor tests including: rotarod, inverted lid test, balance beam, spontaneous locomotor activity and gait analysis were applied longitudinally to a cohort of HdhQ111 heterozygous mice in order to progressively assess motor function. A progressive failure to gain body weight was demonstrated from 11 months of age and motor problems in all measures of balance beam performance were shown in HdhQ111 heterozygous animals in comparison to wild type control animals from 9 months of age. A decreased latency to fall from the rotarod was demonstrated in HdhQ111 heterozygous animals in comparison to wild type animals, although this was not progressive with time. No genotype specific differences were demonstrated in any of the other motor tests included in the test battery. The HdhQ111 heterozygous mouse demonstrates a subtle and progressive motor phenotype that begins at 9 months of age. This mouse model represents an early disease stage and would be ideal for testing therapeutic strategies that require elongated lead-in times, such as viral gene therapies or striatal transplantation.

  12. The effect of arm sling on balance in patients with hemiplegia.

    PubMed

    Acar, Merve; Karatas, Gulcin Kaymak

    2010-10-01

    The aim of this study was to investigate the effect of an arm sling on balance in patients with, hemiplegia following a stroke. Twenty-six patients with hemiplegia (11 men, 15 women) who had, shoulder subluxation were enrolled in the study. Balance was evaluated by the Berg Balance Scale, the, Functional Reach test, and a static balance index which was measured by the Kinesthetic Ability, Trainer 3000. Balance tests were performed twice, with arm sling and without arm sling use. Results of, this study show that the Berg Balance Scores and static balance index ameliorated with arm sling use (p=0.005 and p=0.004, respectively). Likewise, the Functional Reach test was better when performed with an arm sling (p=0.039). In conclusion, arm slings have a beneficial effect on balance in patients, with hemiplegia. An arm sling may be applied for its possible beneficial effect on balance especially in, the early phases of stroke rehabilitation while the upper extremity is still flaccid and arm swing is, reduced. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Validity, Reliability, and Ability to Identify Fall Status of the Berg Balance Scale, BESTest, Mini-BESTest, and Brief-BESTest in Patients With COPD.

    PubMed

    Jácome, Cristina; Cruz, Joana; Oliveira, Ana; Marques, Alda

    2016-11-01

    The Berg Balance Scale (BBS), Balance Evaluation Systems Test (BESTest), Mini-BESTest, and Brief-BESTest are useful in the assessment of balance. Their psychometric properties, however, have not been tested in patients with chronic obstructive pulmonary disease (COPD). This study aimed to compare the validity, reliability, and ability to identify fall status of the BBS, BESTest, Mini-BESTest, and the Brief-BESTest in patients with COPD. A cross-sectional study was conducted. Forty-six patients (24 men, 22 women; mean age=75.9 years, SD=7.1) were included. Participants were asked to report their falls during the previous 12 months and to fill in the Activity-specific Balance Confidence (ABC) Scale. The BBS and the BESTest were administered. Mini-BESTest and Brief-BESTest scores were computed based on the participants' BESTest performance. Validity was assessed by correlating balance tests with each other and with the ABC Scale. Interrater reliability (2 raters), intrarater reliability (48-72 hours), and minimal detectable changes (MDCs) were established. Receiver operating characteristics assessed the ability of each balance test to differentiate between participants with and without a history of falls. Balance test scores were significantly correlated with each other (Spearman correlation rho=.73-.90) and with the ABC Scale (rho=.53-.75). Balance tests presented high interrater reliability (intraclass correlation coefficient [ICC]=.85-.97) and intrarater reliability (ICC=.52-.88) and acceptable MDCs (MDC=3.3-6.3 points). Although all balance tests were able to identify fall status (area under the curve=0.74-0.84), the BBS (sensitivity=73%, specificity=77%) and the Brief-BESTest (sensitivity=81%, specificity=73%) had the higher ability to identify fall status. Findings are generalizable mainly to older patients with moderate COPD. The 4 balance tests are valid, reliable, and valuable in identifying fall status in patients with COPD. The Brief-BESTest presented slightly higher interrater reliability and ability to differentiate participants' fall status. © 2016 American Physical Therapy Association.

  14. Balance Screening of Vestibular Function in Subjects Aged 4 Years and Older: A Living Laboratory Experience

    PubMed Central

    Bermúdez Rey, María Carolina; Clark, Torin K.; Merfeld, Daniel M.

    2017-01-01

    To better understand the various individual factors that contribute to balance and the relation to fall risk, we performed the modified Romberg Test of Standing Balance on Firm and Compliant Support, with 1,174 participants between 4 and 83 years of age. This research was conducted in the Living Laboratory® at the Museum of Science, Boston. We specifically focus on balance test condition 4, in which individuals stand on memory foam with eyes closed, and must rely on their vestibular system; therefore, performance in this balance test condition provides a proxy for vestibular function. We looked for balance variations associated with sex, race/ethnicity, health factors, and age. We found that balance test performance was stable between 10 and 39 years of age, with a slight increase in the failure rate for participants 4–9 years of age, suggesting a period of balance development in younger children. For participants 40 years and older, the balance test failure rate increased progressively with age. Diabetes and obesity are the two main health factors we found associated with poor balance, with test condition 4 failure rates of 57 and 19%, respectively. An increase in the odds of having fallen in the last year was associated with a decrease in the time to failure; once individuals dropped below a time to failure of 10 s, there was a significant 5.5-fold increase in the odds of having fallen in the last 12 months. These data alert us to screen for poor vestibular function in individuals 40 years and older or suffering from diabetes, in order to undertake the necessary diagnostic and rehabilitation measures, with a focus on reducing the morbidity and mortality of falls. PMID:29234301

  15. Balance Screening of Vestibular Function in Subjects Aged 4 Years and Older: A Living Laboratory Experience.

    PubMed

    Bermúdez Rey, María Carolina; Clark, Torin K; Merfeld, Daniel M

    2017-01-01

    To better understand the various individual factors that contribute to balance and the relation to fall risk, we performed the modified Romberg Test of Standing Balance on Firm and Compliant Support, with 1,174 participants between 4 and 83 years of age. This research was conducted in the Living Laboratory ® at the Museum of Science, Boston. We specifically focus on balance test condition 4, in which individuals stand on memory foam with eyes closed, and must rely on their vestibular system; therefore, performance in this balance test condition provides a proxy for vestibular function. We looked for balance variations associated with sex, race/ethnicity, health factors, and age. We found that balance test performance was stable between 10 and 39 years of age, with a slight increase in the failure rate for participants 4-9 years of age, suggesting a period of balance development in younger children. For participants 40 years and older, the balance test failure rate increased progressively with age. Diabetes and obesity are the two main health factors we found associated with poor balance, with test condition 4 failure rates of 57 and 19%, respectively. An increase in the odds of having fallen in the last year was associated with a decrease in the time to failure; once individuals dropped below a time to failure of 10 s, there was a significant 5.5-fold increase in the odds of having fallen in the last 12 months. These data alert us to screen for poor vestibular function in individuals 40 years and older or suffering from diabetes, in order to undertake the necessary diagnostic and rehabilitation measures, with a focus on reducing the morbidity and mortality of falls.

  16. Mathematical model and metaheuristics for simultaneous balancing and sequencing of a robotic mixed-model assembly line

    NASA Astrophysics Data System (ADS)

    Li, Zixiang; Janardhanan, Mukund Nilakantan; Tang, Qiuhua; Nielsen, Peter

    2018-05-01

    This article presents the first method to simultaneously balance and sequence robotic mixed-model assembly lines (RMALB/S), which involves three sub-problems: task assignment, model sequencing and robot allocation. A new mixed-integer programming model is developed to minimize makespan and, using CPLEX solver, small-size problems are solved for optimality. Two metaheuristics, the restarted simulated annealing algorithm and co-evolutionary algorithm, are developed and improved to address this NP-hard problem. The restarted simulated annealing method replaces the current temperature with a new temperature to restart the search process. The co-evolutionary method uses a restart mechanism to generate a new population by modifying several vectors simultaneously. The proposed algorithms are tested on a set of benchmark problems and compared with five other high-performing metaheuristics. The proposed algorithms outperform their original editions and the benchmarked methods. The proposed algorithms are able to solve the balancing and sequencing problem of a robotic mixed-model assembly line effectively and efficiently.

  17. The Association of Glaucomatous Visual Field Loss and Balance

    PubMed Central

    de Luna, Regina A.; Mihailovic, Aleksandra; Nguyen, Angeline M.; Friedman, David S.; Gitlin, Laura N.; Ramulu, Pradeep Y.

    2017-01-01

    Purpose To relate balance measures to visual field (VF) damage from glaucoma. Methods The OPAL kinematic system measured balance, as root mean square (RMS) sway, on 236 patients with suspect/diagnosed glaucoma. Balance was measured with feet shoulder width apart while standing on a firm/foam surface with eyes opened/closed (Instrumental Clinical Test of Sensory Integration and Balance [ICTSIB] conditions), and eyes open on a firm surface under feet together, semi-tandem, or tandem positions (standing balance conditions). Integrated VF (IVF) sensitivities were calculated by merging right and left eye 24-2 VF data. Results Mean age was 71 years (range, 57–93) and mean IVF sensitivity was 27.1 dB (normal = 31 dB). Lower IVF sensitivity was associated with greater RMS sway during eyes-open foam-surface testing (β = 0.23 z-score units/5 dB IVF sensitivity decrement, P = 0.001), but not during other ICTSIB conditions. Lower IVF sensitivity also was associated with greater RMS sway during feet together standing balance testing (0.10 z-score units/5 dB IVF sensitivity decrement, P = 0.049), but not during other standing balance conditions. Visual dependence of balance was lower in patients with worse IVF sensitivity (β = −21%/5 dB IVF sensitivity decrement, P < 0.001). Neither superior nor inferior IVF sensitivity consistently predicted balance measures better than measures of overall VF sensitivity. Conclusions Balance was worse in glaucoma patients with greater VF damage under foam surface testing (designed to inhibit proprioceptive contributions to balance) as well as feet-together firm-surface conditions when somatosensory inputs were available. Translational Relevance Good balance is essential to avoid unnecessary falls and patients with VF loss from glaucoma may be at higher risk of falls because of poor balance. PMID:28553562

  18. Hand reach star excursion balance test: An alternative test for dynamic postural control and functional mobility.

    PubMed

    Eriksrud, Ola; Federolf, Peter; Anderson, Patrick; Cabri, Jan

    2018-01-01

    Tests of dynamic postural control eliciting full-body three-dimensional joint movements in a systematic manner are scarce. The well-established star excursion balance test (SEBT) elicits primarily three-dimensional lower extremity joint movements with minimal trunk and no upper extremity joint movements. In response to these shortcomings we created the hand reach star excursion balance test (HSEBT) based on the SEBT reach directions. The aims of the current study were to 1) compare HSEBT and SEBT measurements, 2) compare joint movements elicited by the HSEBT to both SEBT joint movements and normative range of motion values published in the literature. Ten SEBT and HSEBT reaches for each foot were obtained while capturing full-body kinematics in twenty recreationally active healthy male subjects. HSEBT and SEBT areas and composite scores (sum of reaches) for total, anterior and posterior subsections and individual reaches were correlated. Total reach score comparisons showed fair to moderate correlations (r = .393 to .606), while anterior and posterior subsections comparisons had fair to good correlations (r = .269 to .823). Individual reach comparisons had no to good correlations (r = -.182 to .822) where lateral and posterior reaches demonstrated the lowest correlations (r = -.182 to .510). The HSEBT elicited more and significantly greater joint movements than the SEBT, except for hip external rotation, knee extension and plantarflexion. Comparisons to normative range of motion values showed that 3 of 18 for the SEBT and 8 of 22 joint movements for the HSEBT were within normative values. The findings suggest that the HSEBT can be used for the assessment of dynamic postural control and is particularly suitable for examining full-body functional mobility.

  19. Effect of cold conditions on manual performance while wearing petroleum industry protective clothing.

    PubMed

    Wiggen, Øystein Nordrum; Heen, Sigri; Færevik, Hilde; Reinertsen, Randi Eidsmo

    2011-01-01

    The purpose of this study was to investigate manual performance and thermal responses during low work intensity in persons wearing standard protective clothing in the petroleum industry when they were exposed to a range of temperatures (5, -5, -15 and -25℃) that are relevant to environmental conditions for petroleum industry personnel in northern regions. Twelve men participated in the study. Protective clothing was adjusted for the given cold exposure according to current practices. The subjects performed manual tests five times under each environmental condition. The manual performance test battery consisted of four different tests: tactile sensation (Semmes-Weinstein monofilaments), finger dexterity (Purdue Pegboard), hand dexterity (Complete Minnesota dexterity test) and grip strength (grip dynamometer). We found that exposure to -5℃ or colder lowered skin and body temperatures and reduced manual performance during low work intensity. In conclusion the current protective clothing at a given cold exposure is not adequate to maintain manual performance and thermal balance for petroleum workers in the high north.

  20. A new fiber-optic non-contact compact laser-ultrasound scanner for fast non-destructive testing and evaluation of aircraft composites

    PubMed Central

    Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O'Donnell, Matthew

    2014-01-01

    Laser ultrasonic (LU) inspection represents an attractive, non-contact method to evaluate composite materials. Current non-contact systems, however, have relatively low sensitivity compared to contact piezoelectric detection. They are also difficult to adjust, very expensive, and strongly influenced by environmental noise. Here, we demonstrate that most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe scheme. In particular, a new type of a balanced fiber-optic Sagnac interferometer is presented as part of an all-optical LU pump-probe system for non-destructive testing and evaluation of aircraft composites. The performance of the LU system is demonstrated on a composite sample with known defects. Wide-band ultrasound probe signals are generated directly at the sample surface with a pulsed fiber laser delivering nanosecond laser pulses at a repetition rate up to 76 kHz rate with a pulse energy of 0.6 mJ. A balanced fiber-optic Sagnac interferometer is employed to detect pressure signals at the same point on the composite surface. A- and B-scans obtained with the Sagnac interferometer are compared to those made with a contact wide-band polyvinylidene fluoride transducer. PMID:24737921

  1. Effect of the Level of Coordinated Motor Abilities on Performance in Junior Judokas

    PubMed Central

    Lech, Grzegorz; Jaworski, Janusz; Lyakh, Vladimir; Krawczyk, Robert

    2011-01-01

    The main focus of this study was to identify coordinated motor abilities that affect fighting methods and performance in junior judokas. Subjects were selected for the study in consideration of their age, competition experience, body mass and prior sports level. Subjects’ competition history was taken into consideration when analysing the effectiveness of current fight actions, and individual sports level was determined with consideration to rank in the analysed competitions. The study sought to determine the level of coordinated motor abilities of competitors. The scope of this analysis covered the following aspects: kinaesthetic differentiation, movement frequency, simple and selective reaction time (evoked by a visual or auditory stimulus), spatial orientation, visual-motor coordination, rhythmization, speed, accuracy and precision of movements and the ability to adapt movements and balance. A set of computer tests was employed for the analysis of all of the coordination abilities, while balance examinations were based on the Flamingo Balance Test. Finally, all relationships were determined based on the Spearman’s rank correlation coefficient. It was observed that the activity of the contestants during the fight correlated with the ability to differentiate movements and speed, accuracy and precision of movement, whereas the achievement level during competition was connected with reaction time. PMID:23486723

  2. 77 FR 31176 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-25

    ... currently requires inspecting the intermediate-pressure (IP) compressor rotor shaft rear balance land for... detect cracking on the IP compressor rotor rear balance land. IP compressor rotor rear balance land...), without sub-headings. Request To Delete the Re-Balance Requirement American Airlines requested that in the...

  3. INTRA-RATER RELIABILITY OF THE MULTIPLE SINGLE-LEG HOP-STABILIZATION TEST AND RELATIONSHIPS WITH AGE, LEG DOMINANCE AND TRAINING.

    PubMed

    Sawle, Leanne; Freeman, Jennifer; Marsden, Jonathan

    2017-04-01

    Balance is a complex construct, affected by multiple components such as strength and co-ordination. However, whilst assessing an athlete's dynamic balance is an important part of clinical examination, there is no gold standard measure. The multiple single-leg hop-stabilization test is a functional test which may offer a method of evaluating the dynamic attributes of balance, but it needs to show adequate intra-tester reliability. The purpose of this study was to assess the intra-rater reliability of a dynamic balance test, the multiple single-leg hop-stabilization test on the dominant and non-dominant legs. Intra-rater reliability study. Fifteen active participants were tested twice with a 10-minute break between tests. The outcome measure was the multiple single-leg hop-stabilization test score, based on a clinically assessed numerical scoring system. Results were analysed using an Intraclass Correlations Coefficient (ICC 2,1 ) and Bland-Altman plots. Regression analyses explored relationships between test scores, leg dominance, age and training (an alpha level of p = 0.05 was selected). ICCs for intra-rater reliability were 0.85 for the dominant and non-dominant legs (confidence intervals = 0.62-0.95 and 0.61-0.95 respectively). Bland-Altman plots showed scores within two standard deviations. A significant correlation was observed between the dominant and non-dominant leg on balance scores (R 2 =0.49, p<0.05), and better balance was associated with younger participants in their non-dominant leg (R 2 =0.28, p<0.05) and their dominant leg (R 2 =0.39, p<0.05), and a higher number of hours spent training for the non-dominant leg R 2 =0.37, p<0.05). The multiple single-leg hop-stabilisation test demonstrated strong intra-tester reliability with active participants. Younger participants who trained more, have better balance scores. This test may be a useful measure for evaluating the dynamic attributes of balance. 3.

  4. Work-life balance of nursing faculty in research- and practice-focused doctoral programs.

    PubMed

    Smeltzer, Suzanne C; Sharts-Hopko, Nancy C; Cantrell, Mary Ann; Heverly, Mary Ann; Jenkinson, Amanda; Nthenge, Serah

    2015-01-01

    The growing shortage of nursing faculty and the need for faculty to teach doctoral students to address the shortage call for examination of factors that may contribute to the shortage, including those that are potentially modifiable, including work-life balance.This descriptive study examined work-life balance of a national sample of nursing faculty teaching in research-focused and practice-focused doctoral programs. Data were collected through an online survey of 554 doctoral program faculty members to identify their perceptions of work-life balance and predictors of work-life balance. Work-life balance scores indicated better work-life balance than expected. Factors associated with good work-life balance included higher academic rank, having tenure, older age, years in education, current faculty position, and no involvement in clinical practice. Current faculty position was the best predictor of work-life balance. Although work-life balance was viewed positively by study participants, efforts are needed to strengthen factors related to positive work/life in view of the increasing workload of doctoral faculty as the numbers of doctoral students increase and the number of seasoned faculty decrease with anticipated waves of retirements. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Background-free balanced optical cross correlator

    DOEpatents

    Nejadmalayeri, Amir Hossein; Kaertner, Franz X

    2014-12-23

    A balanced optical cross correlator includes an optical waveguide, a first photodiode including a first n-type semiconductor and a first p-type semiconductor positioned about the optical waveguide on a first side of the optical waveguide's point of symmetry, and a second photodiode including a second n-type semiconductor and a second p-type semiconductor positioned about the optical waveguide on a second side of the optical waveguide's point of symmetry. A balanced receiver including first and second inputs is configured to produce an output current or voltage that reflects a difference in currents or voltages, originating from the first and the second photodiodes of the balanced cross correlator and fed to the first input and to the second input of the balanced receiver.

  6. Does the addition of virtual reality training to a standard program of inpatient rehabilitation improve sitting balance ability and function after stroke? Protocol for a single-blind randomized controlled trial.

    PubMed

    Sheehy, L; Taillon-Hobson, A; Sveistrup, H; Bilodeau, M; Fergusson, D; Levac, D; Finestone, H

    2016-03-31

    Sitting ability and function are commonly impaired after stroke. Balance training has been shown to be helpful, but abundant repetitions are required for optimal recovery and patients must be motivated to perform rehabilitation exercises repeatedly to maximize treatment intensity. Virtual reality training (VRT), which allows patients to interact with a virtual environment using computer software and hardware, is enjoyable and may encourage greater repetition of therapeutic exercises. However, the potential for VRT to promote sitting balance has not yet been explored. The objective of this study is to determine if supplemental VRT-based sitting balance exercises improve sitting balance ability and function in stroke rehabilitation inpatients. This is a single-site, single-blind, parallel-group randomized control trial. Seventy six stroke rehabilitation inpatients who cannot stand independently for greater than one minute but can sit for at least 20 minutes (including at least one minute without support) are being recruited from a tertiary-care dedicated stroke rehabilitation unit. Participants are randomly allocated to experimental or control groups. Both participate in 10-12 sessions of 30-45 minutes of VRT performed in sitting administered by a single physiotherapist, in addition to their traditional therapy. The experimental group plays five games which challenge sitting balance while the control group plays five games which minimize trunk lean. Outcome measures of sitting balance ability (Function in Sitting Test, Ottawa Sitting Scale, quantitative measures of postural sway) and function (Reaching Performance Scale, Wolf Motor Function Test, quantitative measures of the limits of stability) are administered prior to, immediately following, and one month following the intervention by a second physiotherapist blind to the participant's group allocation. The treatment of sitting balance post-stroke with VRT has not yet been explored. Results from the current study will provide important evidence for the use of low-cost, accessible VRT as an adjunct intervention to increase sitting balance in lower-functioning patients receiving inpatient rehabilitation. The motivating and enjoyable attributes of VRT may increase exercise dosage, leading to improved function and optimal results from rehabilitation. https://clinicaltrials.gov/; Identifier: NCT02285933. Registered 06 November 2014. Funded by the Heart & Stroke Foundation of Canada and a generous donation from Tony & Elizabeth Graham.

  7. Cervicocephalic kinesthetic sensibility and postural balance in patients with nontraumatic chronic neck pain – a pilot study

    PubMed Central

    Palmgren, Per J; Andreasson, Daniel; Eriksson, Magnus; Hägglund, Andreas

    2009-01-01

    Background Although cervical pain is widespread, most victims are only mildly and occasionally affected. A minority, however, suffer chronic pain and/or functional impairments. Although there is abundant literature regarding nontraumatic neck pain, little focuses on diagnostic criteria. During the last decade, research on neck pain has been designed to evaluate underlying pathophysiological mechanisms, without noteworthy success. Independent researchers have investigated postural balance and cervicocephalic kinesthetic sensibility among patients with chronic neck pain, and have (in most cases) concluded the source of the problem is a reduced ability in the neck's proprioceptive system. Here, we investigated cervicocephalic kinesthetic sensibility and postural balance among patients with nontraumatic chronic neck pain. Methods Ours was a two-group, observational pilot study of patients with complaints of continuous neck pain during the 3 months prior to recruitment. Thirteen patients with chronic neck pain of nontraumatic origin were recruited from an institutional outpatient clinic. Sixteen healthy persons were recruited as a control group. Cervicocephalic kinesthetic sensibility was assessed by exploring head repositioning accuracy and postural balance was measured with computerized static posturography. Results Parameters of cervicocephalic kinesthetic sensibility were not reduced. However, in one of six test movements (flexion), global repositioning errors were significantly larger in the experimental group than in the control group (p < .05). Measurements did not demonstrate any general impaired postural balance, and varied substantially among participants in both groups. Conclusion In patients with nontraumatic chronic neck pain, we found statistically significant global repositioning errors in only one of six test movements. In this cohort, we found no evidence of impaired postural balance. Head repositioning accuracy and computerized static posturography are imperfect measures of functional proprioceptive impairments. Validity of (and procedures for using) these instruments demand further investigation. Trial registration Current Controlled Trials ISRCTN96873990 PMID:19566929

  8. The Effects of Class Organization Upon the Balance Performance of Young Children.

    ERIC Educational Resources Information Center

    MacCracken, Mary Jo

    The effects of the presence of others on 120 young children's performance of balancing skills were tested. The boys and girls, aged four, six, and eight, were tested under three different conditions: while acting "alone," in coaction (pairs), and alone before an audience. The tests were divided into simple and complex balance tasks, consisting of…

  9. Balance exercise program reduced falls in people with multiple sclerosis: a single-group, pretest-posttest trial.

    PubMed

    Nilsagård, Ylva Elisabet; von Koch, Lena Kristina; Nilsson, Malin; Forsberg, Anette Susanne

    2014-12-01

    To evaluate the effects of a balance exercise program on falls in people with mild to moderate multiple sclerosis (MS). Multicenter, single-blinded, single-group, pretest-posttest trial. Seven rehabilitation units within 5 county councils. Community-dwelling adults with MS (N=32) able to walk 100m but unable to maintain 30-second tandem stance with arms alongside the body. Seven weeks of twice-weekly, physiotherapist-led 60-minute sessions of group-based balance exercise targeting core stability, dual tasking, and sensory strategies (CoDuSe). Primary outcomes: number of prospectively reported falls and proportion of participants classified as fallers during 7 preintervention weeks, intervention period, and 7 postintervention weeks. Secondary outcomes: balance performance on the Berg Balance Scale, Four Square Step Test, sit-to-stand test, timed Up and Go test (alone and with cognitive component), and Functional Gait Assessment Scale; perceived limitations in walking on the 12-item MS Walking Scale; and balance confidence on the Activities-specific Balance Confidence Scale rated 7 weeks before intervention, directly after intervention, and 7 weeks later. Number of falls (166 to 43; P≤.001) and proportion of fallers (17/32 to 10/32; P≤.039) decreased significantly between the preintervention and postintervention periods. Balance performance improved significantly. No significant differences were detected for perceived limitations in walking, balance confidence, the timed Up and Go test, or sit-to-stand test. The CoDuSe program reduced falls and proportion of fallers and improved balance performance in people with mild to moderate MS but did not significantly alter perceived limitations in walking and balance confidence. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Dynamic balance and stepping versus tai chi training to improve balance and stepping in at-risk older adults.

    PubMed

    Nnodim, Joseph O; Strasburg, Debra; Nabozny, Martina; Nyquist, Linda; Galecki, Andrzej; Chen, Shu; Alexander, Neil B

    2006-12-01

    To compare the effect of two 10-week balance training programs, Combined Balance and Step Training (CBST) versus tai chi (TC), on balance and stepping measures. Prospective intervention trial. Local senior centers and congregate housing facilities. Aged 65 and older with at least mild impairment in the ability to perform unipedal stance and tandem walk. Participants were allocated to TC (n = 107, mean age 78) or CBST, an intervention focused on improving dynamic balance and stepping (n = 106, mean age 78). At baseline and 10 weeks, participants were tested in their static balance (Unipedal Stance and Tandem Stance (TS)), stepping (Maximum Step Length, Rapid Step Test), and Timed Up and Go (TUG). Performance improved more with CBST than TC, ranging from 5% to 10% for the stepping tests (Maximum Step Length and Rapid Step Test) and 9% for TUG. The improvement in TUG represented an improvement of more than 1 second. Greater improvements were also seen in static balance ability (in TS) with CBST than TC. Of the two training programs, in which variants of each program have been proven to reduce falls, CBST results in modest improvements in balance, stepping, and functional mobility versus TC over a 10-week period. Future research should include a prospective comparison of fall rates in response to these two balance training programs.

  11. The Effects of Shoulder Slings on Balance in Patients With Hemiplegic Stroke.

    PubMed

    Sohn, Min Kyun; Jee, Sung Ju; Hwang, Pyoungsik; Jeon, Yumi; Lee, Hyunkeun

    2015-12-01

    To investigate the effects of a shoulder sling on balance in patients with hemiplegia. Twenty-seven hemiplegic stroke patients (right 13, left 14) were enrolled in this study. The subjects' movement in their centers of gravity (COGs) during their static and dynamic balance tests was measured with their eyes open in each sling condition-without a sling, with Bobath's axillary support (Bobath sling), and with a simple arm sling. The percent times in quadrant, overall, anterior/posterior, and medial/lateral stability indexes were measured using a posturography platform (Biodex Balance System SD). Functional balance was evaluated using the Berg Balance Scale and the Trunk Impairment Scale. All balance tests were performed with each sling in random order. The COGs of right hemiplegic stroke patients and all hemiplegic stroke patients shifted to, respectively, the right and posterior quadrants during the static balance test without a sling (p<0.05). This weight asymmetry pattern did not improve with either the Bobath or the simple arm sling. There was no significant improvement in any stability index during either the static or the dynamic balance tests in any sling condition. The right and posterior deviations of the hemiplegic stroke patients' COGs were maintained during the application of the shoulder slings, and there were no significant effects of the shoulder slings on the patients' balance in the standing still position.

  12. The Effects of Shoulder Slings on Balance in Patients With Hemiplegic Stroke

    PubMed Central

    Sohn, Min Kyun; Jee, Sung Ju; Hwang, Pyoungsik; Jeon, Yumi

    2015-01-01

    Objective To investigate the effects of a shoulder sling on balance in patients with hemiplegia. Methods Twenty-seven hemiplegic stroke patients (right 13, left 14) were enrolled in this study. The subjects' movement in their centers of gravity (COGs) during their static and dynamic balance tests was measured with their eyes open in each sling condition-without a sling, with Bobath's axillary support (Bobath sling), and with a simple arm sling. The percent times in quadrant, overall, anterior/posterior, and medial/lateral stability indexes were measured using a posturography platform (Biodex Balance System SD). Functional balance was evaluated using the Berg Balance Scale and the Trunk Impairment Scale. All balance tests were performed with each sling in random order. Results The COGs of right hemiplegic stroke patients and all hemiplegic stroke patients shifted to, respectively, the right and posterior quadrants during the static balance test without a sling (p<0.05). This weight asymmetry pattern did not improve with either the Bobath or the simple arm sling. There was no significant improvement in any stability index during either the static or the dynamic balance tests in any sling condition. Conclusion The right and posterior deviations of the hemiplegic stroke patients' COGs were maintained during the application of the shoulder slings, and there were no significant effects of the shoulder slings on the patients' balance in the standing still position. PMID:26798614

  13. Contributions to lateral balance control in ambulatory older adults.

    PubMed

    Sparto, Patrick J; Newman, A B; Simonsick, E M; Caserotti, P; Strotmeyer, E S; Kritchevsky, S B; Yaffe, K; Rosano, C

    2018-06-01

    In older adults, impaired control of standing balance in the lateral direction is associated with the increased risk of falling. Assessing the factors that contribute to impaired standing balance control may identify areas to address to reduce falls risk. To investigate the contributions of physiological factors to standing lateral balance control. Two hundred twenty-two participants from the Pittsburgh site of the Health, Aging and Body Composition Study had lateral balance control assessed using a clinical sensory integration balance test (standing on level and foam surface with eyes open and closed) and a lateral center of pressure tracking test using visual feedback. The center of pressure was recorded from a force platform. Multiple linear regression models examined contributors of lateral control of balance performance, including concurrently measured tests of lower extremity sensation, knee extensor strength, executive function, and clinical balance tests. Models were adjusted for age, body mass index, and sex. Larger lateral sway during the sensory integration test performed on foam was associated with longer repeated chair stands time. During the lateral center of pressure tracking task, the error in tracking increased at higher frequencies; greater error was associated with worse executive function. The relationship between sway performance and physical and cognitive function differed between women and men. Contributors to control of lateral balance were task-dependent. Lateral standing performance on an unstable surface may be more dependent upon general lower extremity strength, whereas visual tracking performance may be more dependent upon cognitive factors. Lateral balance control in ambulatory older adults is associated with deficits in strength and executive function.

  14. Home-based balance training programme using Wii Fit with balance board for Parkinsons's disease: a pilot study.

    PubMed

    Esculier, Jean-Francois; Vaudrin, Joanie; Bériault, Patrick; Gagnon, Karine; Tremblay, Louis E

    2012-02-01

    To evaluate the effects of a home-based balance training programme using visual feedback (Nintendo Wii Fit game with balance board) on balance and functional abilities in subjects with Parkinson's disease, and to compare the effects with a group of paired healthy subjects. Ten subjects with moderate Parkinson's disease and 8 healthy elderly subjects. Subjects participated in a 6-week home-based balance training programme using Nintendo Wii Fit and balance board. Baseline measures were taken before training for the Sit-to-Stand test (STST), Timed-Up-and-Go (TUG), Tinetti Performance Oriented Mobility Assessment (POMA), 10-m walk test, Community Balance and Mobility assessment (CBM), Activities-specific Balance and Confidence scale (ABC), unipodal stance duration, and a force platform. All measurements were taken again after 3 and 6 weeks of training. The Parkinson's disease group significantly improved their results in TUG, STST, unipodal stance, 10-m walk test, CBM, POMA and force platform at the end of the 6-week training programme. The healthy subjects group significantly improved in TUG, STST, unipodal stance and CBM. This pilot study suggests that a home-based balance programme using Wii Fit with balance board could improve static and dynamic balance, mobility and functional abilities of people affected by Parkinson's disease.

  15. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Gordt, Katharina; Gerhardy, Thomas; Najafi, Bijan; Schwenk, Michael

    2018-01-01

    Wearable sensors (WS) can accurately measure body motion and provide interactive feedback for supporting motor learning. This review aims to summarize current evidence for the effectiveness of WS training for improving balance, gait and functional performance. A systematic literature search was performed in PubMed, Cochrane, Web of Science, and CINAHL. Randomized controlled trials (RCTs) using a WS exercise program were included. Study quality was examined by the PEDro scale. Meta-analyses were conducted to estimate the effects of WS balance training on the most frequently reported outcome parameters. Eight RCTs were included (Parkinson n = 2, stroke n = 1, Parkinson/stroke n = 1, peripheral neuropathy n = 2, frail older adults n = 1, healthy older adults n = 1). The sample size ranged from n = 20 to 40. Three types of training paradigms were used: (1) static steady-state balance training, (2) dynamic steady-state balance training, which includes gait training, and (3) proactive balance training. RCTs either used one type of training paradigm (type 2: n = 1, type 3: n = 3) or combined different types of training paradigms within their intervention (type 1 and 2: n = 2; all types: n = 2). The meta-analyses revealed significant overall effects of WS training on static steady-state balance outcomes including mediolateral (eyes open: Hedges' g = 0.82, CI: 0.43-1.21; eyes closed: g = 0.57, CI: 0.14-0.99) and anterior-posterior sway (eyes open: g = 0.55, CI: 0.01-1.10; eyes closed: g = 0.44, CI: 0.02-0.86). No effects on habitual gait speed were found in the meta-analysis (g = -0.19, CI: -0.68 to 0.29). Two RCTs reported significant improvements for selected gait variables including single support time, and fast gait speed. One study identified effects on proactive balance (Alternate Step Test), but no effects were found for the Timed Up and Go test and the Berg Balance Scale. Two studies reported positive results on feasibility and usability. Only one study was performed in an unsupervised setting. This review provides evidence for a positive effect of WS training on static steady-state balance in studies with usual care controls and studies with conventional balance training controls. Specific gait parameters and proactive balance measures may also be improved by WS training, yet limited evidence is available. Heterogeneous training paradigms, small sample sizes, and short intervention durations limit the validity of our findings. Larger studies are required for estimating the true potential of WS technology. © 2017 S. Karger AG, Basel.

  16. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    NASA Astrophysics Data System (ADS)

    Raz, Oren; Subasi, Yigit; Jarzynski, Christopher

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents: to generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters - also known as a stochastic pump (SP) - reaches a periodic state with non-vanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems we establish a mapping between NESS and SP. Given a NESS characterized by a particular set of stationary probabilities, currents and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: they show that SP are able to mimic the behavior of NESS, and vice-versa, within the theoretical framework of discrete-state stochastic thermodynamics.

  17. Moving forward in fall prevention: an intervention to improve balance among patients in a quasi-experimental study of hospitalized patients.

    PubMed

    Villafañe, Jorge H; Pirali, Caterina; Buraschi, Riccardo; Arienti, Chiara; Corbellini, Camilo; Negrini, Stefano

    2015-12-01

    We investigated the effectiveness of three different rehabilitative programs: group exercise, individual core stability or balance training intervention with a stabilometric platform to improve balance ability in elderly hospitalized patients. We used a prospective quasi-experimental study design. Twenty-eight patients, 39.3% women [age (mean±SD) 72.4±6.5 years], known to have had at least a fall in the last 12 months, were consecutively assigned to one of the following three groups: group exercise intervention, individual core stability or balance training with a stabilometric platform (five sessions a week for 3 weeks in each group). Outcomes were collected at baseline and immediately following the intervention period. In each intervention group, patients showed improvement in balance and mobility, shown as an improvement in the three functional tests score (the Tinetti scale, the Berg Balance Scale, and the Time Up and Go test) (all, P<0.05), whereas, generally, the changes in the score of the test of the stabilometric platform (Postural Stability Test and Fall Risk Test) were not significant for all the interventions. No significant group-by-time interaction was detected for any of the intervention groups, which suggests that the groups improved in the same way. These findings indicate that participation in an exercise program can improve balance and functional mobility, which might contribute toward the reductions of the falls of elderly hospitalized patients and the subsequent fall-related costs. Functional scales might be more appropriate than an instrumental test (Postural Stability Test and Fall Risk Test of the Biodex Balance System) in detecting the functional improvement because of a rehabilitative intervention.

  18. Viewing 3D TV over two months produces no discernible effects on balance, coordination or eyesight

    PubMed Central

    Read, Jenny C.A.; Godfrey, Alan; Bohr, Iwo; Simonotto, Jennifer; Galna, Brook; Smulders, Tom V.

    2016-01-01

    Abstract With the rise in stereoscopic 3D media, there has been concern that viewing stereoscopic 3D (S3D) content could have long-term adverse effects, but little data are available. In the first study to address this, 28 households who did not currently own a 3D TV were given a new TV set, either S3D or 2D. The 116 members of these households all underwent tests of balance, coordination and eyesight, both before they received their new TV set, and after they had owned it for 2 months. We did not detect any changes which appeared to be associated with viewing 3D TV. We conclude that viewing 3D TV does not produce detectable effects on balance, coordination or eyesight over the timescale studied. Practitioner Summary: Concern has been expressed over possible long-term effects of stereoscopic 3D (S3D). We looked for any changes in vision, balance and coordination associated with normal home S3D TV viewing in the 2 months after first acquiring a 3D TV. We find no evidence of any changes over this timescale. PMID:26758965

  19. Balanced Flow Metering and Conditioning: Technology for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R.

    2006-01-01

    Revolutionary new technology that creates balanced conditions across the face of a multi-hole orifice plate has been developed, patented and exclusively licensed for commercialization. This balanced flow technology simultaneously measures mass flow rate, volumetric flow rate, and fluid density with little or no straight pipe run requirements. Initially, the balanced plate was a drop in replacement for a traditional orifice plate, but testing revealed substantially better performance as compared to the orifice plate such as, 10 times better accuracy, 2 times faster (shorter distance) pressure recovery, 15 times less acoustic noise energy generation, and 2.5 times less permanent pressure loss. During 2004 testing at MSFC, testing revealed several configurations of the balanced flow meter that match the accuracy of Venturi meters while having only slightly more permanent pressure loss. However, the balanced meter only requires a 0.25 inch plate and has no upstream or downstream straight pipe requirements. As a fluid conditioning device, the fluid usually reaches fully developed flow within 1 pipe diameter of the balanced conditioning plate. This paper will describe the basic balanced flow metering technology, provide performance details generated by testing to date and provide implementation details along with calculations required for differing degrees of flow metering accuracy.

  20. Prevalence of neurocognitive and balance deficits in collegiate aged football players without clinically diagnosed concussion.

    PubMed

    Mulligan, Ivan; Boland, Mark; Payette, Justin

    2012-07-01

    Prospective cohort. To identify the prevalence of neurocognitive and balance deficits in collegiate football players 48 hours following competition. Neurocognitive testing, balance assessments, and subjective report of symptoms are a commonly used test battery in examining athletes when concussion is suspected. Previous literature suggests many concussions go unreported. Little research exists examining the prevalence of neurocognitive or balance deficits in athletes who do not report concussion-like symptoms to a health care provider. Forty-five Division IA collegiate football players participated in this study. Preseason baseline scores using the Balance Error Scoring System, the Immediate Post-Concussion Assessment and Cognitive Testing, and the Postconcussion Symptom Scale were compared to posttest results obtained 48 hours following a game. Prevalence of symptoms was analyzed and reported. Thirty-two (71%) of the 45 athletes tested demonstrated at least 1 deficit in either the Postconcussion Symptom Scale, Balance Error Scoring System, or at least 1 composite score of the Immediate Post-Concussion Assessment and Cognitive Testing. Nineteen of the 32 subjects demonstrated a change in 2 or more categories of neurocognitive and balance function. In a cohort of football players tested 48 hours following their last game of the season, who did not seek medical attention related to a concussion, a significant number demonstrated limitations in neurocognitive and balance performance, suggesting that further research may need to be performed to improve recognition of an athlete's deficits and to improve the ability to assess concussion. Differential diagnosis/symptom prevalence, level 3b.

  1. Validity and Relative Ability of 4 Balance Tests to Identify Fall Status of Older Adults With Type 2 Diabetes.

    PubMed

    Marques, Alda; Silva, Alexandre; Oliveira, Ana; Cruz, Joana; Machado, Ana; Jácome, Cristina

    The Berg Balance Scale (BBS), the Balance Evaluation Systems Test (BESTest), the Mini-BESTest, and the Brief-BESTest are useful tests to assess balance; however, their clinimetric properties have not been studied well in older adults with type 2 diabetes (T2D). This study compared the validity and relative ability of the BBS, BESTest, Mini-BESTest, and Brief-BESTest to identify fall status in older adults with T2D. This study involved a cross-sectional design. Sixty-six older adults with T2D (75 ± 7.6 years) were included and asked to report the number of falls during the previous 12 months and to complete the Activities-specific Balance Confidence scale. The BBS and the BESTest were administered, and the Mini-BESTest and Brief-BESTest scores were computed based on the BESTest performance. Receiver operating characteristics were used to assess the ability of each balance test to differentiate between participants with and without a history of falls. The 4 balance tests were able to identify fall status (areas under the curve = 0.74-0.76), with similar sensitivity (60%-67%) and specificity (71%-76%). The 4 balance tests were able to differentiate between older adults with T2D with and without a history of falls. As the BBS and the BESTest require longer application time, the Brief-BESTest may be an appropriate choice to use in clinical practice to detect fall risk.

  2. Effects of Muscle Strength and Balance Control on Sit-to-Walk and Turn Durations in the Timed Up and Go Test.

    PubMed

    Chen, Tzurei; Chou, Li-Shan

    2017-12-01

    To examine the association of muscle strength and balance control with the amount of time taken to perform sit-to-walk (STW) or turning components of the Timed Up and Go (TUG) test in older adults. Correlations; multiple regression models. General community. Older adults (N=60) age >70 years recruited from the community. Not applicable. Muscle strength, balance control, and TUG test performance time. Muscle strength was quantified by peak joint moments during the isometric maximal voluntary contraction test for bilateral hip abductors, knee extensors, and ankle plantar flexors. Balance control was assessed with the Berg Balance Scale, Fullerton Advanced Balance Scale, and center of mass and ankle inclination angle derived during the TUG test performance. We found that balance control measures were significantly associated with both STW and turning durations even after controlling for muscle strength and other confounders (STW duration: P<.001, turning duration: P=.001). Adding strength to the regression model was found to significantly improve its prediction of STW duration (F change =5.945, P=.018), but not turning duration (F change =1.03, P=.14). Our findings suggest that poor balance control is an important factor that contributes to longer STW and turning durations on the TUG test. Furthermore, strength has a higher association with STW than turning duration. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  3. The short version of the Activities-specific Balance Confidence (ABC) scale: its validity, reliability, and relationship to balance impairment and falls in older adults.

    PubMed

    Schepens, Stacey; Goldberg, Allon; Wallace, Melissa

    2010-01-01

    A shortened version of the ABC 16-item scale (ABC-16), the ABC-6, has been proposed as an alternative balance confidence measure. We investigated whether the ABC-6 is a valid and reliable measure of balance confidence and examined its relationship to balance impairment and falls in older adults. Thirty-five community-dwelling older adults completed the ABC-16, including the 6 questions of the ABC-6. They also completed the following clinical balance tests: unipedal stance time (UST), functional reach (FR), Timed Up and Go (TUG), and maximum step length (MSL). Participants reported 12-month falls history. Balance confidence on the ABC-6 was significantly lower than on the ABC-16, however scores were highly correlated. Fallers reported lower balance confidence than non-fallers as measured by the ABC-6 scale, but confidence did not differ between the groups with the ABC-16. The ABC-6 significantly correlated with all balance tests assessed and number of falls. The ABC-16 significantly correlated with all balance tests assessed, but not with number of falls. Test-retest reliability for the ABC-16 and ABC-6 was good to excellent. The ABC-6 is a valid and reliable measure of balance confidence in community-dwelling older adults, and shows stronger relationships to falls than does the ABC-16. The ABC-6 may be a more useful balance confidence assessment tool than the ABC-16. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  4. Hydrotherapy vs. conventional land-based exercise for improving walking and balance after stroke: a randomized controlled trial.

    PubMed

    Zhu, Zhizhong; Cui, Liling; Yin, Miaomiao; Yu, Yang; Zhou, Xiaona; Wang, Hongtu; Yan, Hua

    2016-06-01

    To investigate the effects of hydrotherapy on walking ability and balance in patients with chronic stroke. Single-blind, randomized controlled pilot trial. Outpatient rehabilitation clinic at a tertiary neurological hospital in China. A total of 28 participants with impairments in walking and controlling balance more than six months post-stroke. After baseline evaluations, participants were randomly assigned to a land-based therapy (control group, n = 14) or hydrotherapy (study group, n = 14). Participants underwent individual sessions for four weeks, five days a week, for 45 minutes per session. After four weeks of rehabilitation, all participants were evaluated by a blinded assessor. Functional assessments included the Functional Reach Test, Berg Balance Scale, 2-minute walk test, and Timed Up and Go Test. After four weeks of treatment, the Berg Balance Scale, functional reach test, 2-minute walk test, and the Timed Up and Go Test scores had improved significantly in each group (P < 0.05). The mean improvement of the functional reach test and 2-minute walk test were significantly higher in the aquatic group than in the control group (P < 0.01). The differences in the mean values of the improvements in the Berg Balance Scale and the Timed Up and Go Test were not statistically significant. The results of this study suggest that a relatively short programme (four weeks) of hydrotherapy exercise resulted in a large improvement in a small group (n = 14) of individuals with relatively high balance and walking function following a stroke. © The Author(s) 2015.

  5. Effect of acute fatigue of the hip abductors on control of balance in young and older women.

    PubMed

    Bellew, James W; Panwitz, Beth L; Peterson, Laura; Brock, Mary C; Olson, Katie E; Staples, William H

    2009-07-01

    To examine the effects of acute fatigue of the hip abductors on the control of balance in young and older women. Pretest-posttest. University research laboratory. Healthy young women (n=20; age, 23.0+/-1.5y; height, 166.52+/-4.5 cm; mass, 65.33+/-10.5 kg) and community-dwelling older women (n=20; age, 71.65+/-7.2y; height, 162.31+/-3.8 cm; mass, 71.16+/-11.6 kg) without a fall history. Measurements of control of single-limb balance before and after fatiguing the hip abductors of the dominant leg. Performance on 3 clinical assessments of control of balance: the modified Functional Reach Test in the forward, left, and right directions; the Lower-Extremity Reach Test in forward and lateral directions; and the Single-Limb Stance Time Test (SLSTT). Although the younger subjects showed a significantly greater control of balance than the older women in most tests, control of balance after acute fatigue failed to show a significant decline in either age group. The only exception to this was the SLSTT in the younger women in whom a significant 26% decline was noted (P<.05). Acute fatigue of the hip abductors did not result in a decreased control of balance in healthy young or older women without fall history. Despite considerable changes in movement strategies used to complete the postfatigue tests of balance, quantitative measures of balance did not decrease.

  6. Posturography and risk of recurrent falls in healthy non-institutionalized persons aged over 65.

    PubMed

    Buatois, Séverine; Gueguen, René; Gauchard, Gérome C; Benetos, Athanase; Perrin, Philippe P

    2006-01-01

    A poor postural stability in older people is associated with an increased risk of falling. The posturographic tool has widely been used to assess balance control; however, its value in predicting falls remains unclear. The purpose of this prospective study was to determine the predictive value of posturography in the estimation of the risk of recurrent falls, including a comparison with standard clinical balance tests, in healthy non-institutionalized persons aged over 65. Two hundred and six healthy non-institutionalized volunteers aged over 65 were tested. Postural control was evaluated by posturographic tests, performed on static, dynamic and dynamized platforms (static test, slow dynamic test and Sensory Organization Test [SOT]) and clinical balance tests (Timed 'Up & Go' test, One-Leg Balance, Sit-to-Stand-test). Subsequent falls were monitored prospectively with self-questionnaire sent every 4 months for a period of 16 months after the balance testing. Subjects were classified prospectively in three groups of Non-Fallers (0 fall), Single-Fallers (1 fall) and Multi-Fallers (more than 2 falls). Loss of balance during the last trial of the SOT sensory conflicting condition, when visual and somatosensory inputs were distorted, was the best factor to predict the risk of recurrent falls (OR = 3.6, 95% CI = 1.3-10.11). Multi-Fallers showed no postural adaptation during the repetitive trials of this sensory condition, contrary to Non-Fallers and Single-Fallers. The Multi-Fallers showed significantly more sway when visual inputs were occluded. The clinical balance tests, the static test and the slow dynamic test revealed no significant differences between the groups. In a sample of non-institutionalized older persons aged over 65, posturographic evaluation by the SOT, especially with repetition of the same task in sensory conflicting condition, compared to the clinical tests and the static and dynamic posturographic test, appears to be a more sensitive tool to identify those at high-risk of recurrent falls. Copyright (c) 2006 S. Karger AG, Basel.

  7. Motor assessment in Parkinson`s disease.

    PubMed

    Opara, Józef; Małecki, Andrzej; Małecka, Elżbieta; Socha, Teresa

    2017-09-21

    Parkinson's disease (PD) is one of most disabling disorders of the central nervous system. The motor symptoms of Parkinson's disease: shaking, rigidity, slowness of movement, postural instability and difficulty with walking and gait, are difficult to measure. When disease symptoms become more pronounced, the patient experiences difficulties with hand function and walking, and is prone to falls. Baseline motor impairment and cognitive impairment are probable predictors of more rapid motor decline and disability. An additional difficulty is the variability of the symptoms caused by adverse effects of drugs, especially levodopa. Motor assessment of Parkinson`s Disease can be divided into clinimetrics, assessment of balance and posture, arm and hand function, and gait/walking. These are many clinimetric scales used in Parkinson`s Disease, the most popular being the Hoehn and Yahr stages of progression of the disease and Unified Parkinson's Disease Rating Scale. Balance and posture can be assessed by clinimetric scales like the Berg BS, Tinetti, Brunel BA, and Timed Up and Go Test, or measured by posturometric platforms. Among skill tests, the best known are: the Purdue Pegboard Test, Nine-Hole Peg Test, Jebsen and Taylor test, Pig- Tail Test, Frenchay Arm Test, Action Research Arm Test, Wolf FMT and Finger-Tapping Test. Among motricity scales, the most popular are: the Fugl-Meyer Motor Assessment Scale and Södring Motor Evaluation. Gait and walking can also be assessed quantitatively and qualitatively. Recently, the most popular is three-dimensional analysis of movement. This review article presents the current possibilities of motor assessment in Parkinson`s disease.

  8. 47 CFR 32.4110 - Net current deferred nonoperating income taxes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRIER SERVICES UNIFORM SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.4110 Net current deferred nonoperating income taxes. (a) This account shall include the balance of income tax expense resulting from comprehensive interpreted tax allocation which has...

  9. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout.

    PubMed

    Xu, Xiangbo; Chen, Shao

    2015-08-31

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously.

  10. Field Balancing and Harmonic Vibration Suppression in Rigid AMB-Rotor Systems with Rotor Imbalances and Sensor Runout

    PubMed Central

    Xu, Xiangbo; Chen, Shao

    2015-01-01

    Harmonic vibrations of high-speed rotors in momentum exchange devices are primary disturbances for attitude control of spacecraft. Active magnetic bearings (AMBs), offering the ability to control the AMB-rotor dynamic behaviors, are preferred in high-precision and micro-vibration applications, such as high-solution Earth observation satellites. However, undesirable harmonic displacements, currents, and vibrations also occur in the AMB-rotor system owing to the mixed rotor imbalances and sensor runout. To compensate the rotor imbalances and to suppress the harmonic vibrations, two control methods are presented. Firstly, a four degrees-of-freedom AMB-rotor model with the static imbalance, dynamic imbalance, and the sensor runout are described. Next, a synchronous current reduction approach with a variable-phase notch feedback is proposed, so that the rotor imbalances can be identified on-line through the analysis of the synchronous displacement relationships of the geometric, inertial, and rotational axes of the rotor. Then, the identified rotor imbalances, which can be represented at two prescribed balancing planes of the rotor, are compensated by discrete add-on weights whose masses are calculated in the vector form. Finally, a repetitive control algorithm is utilized to suppress the residual harmonic vibrations. The proposed field balancing and harmonic vibration suppression strategies are verified by simulations and experiments performed on a control moment gyro test rig with a rigid AMB-rotor system. Compared with existing methods, the proposed strategies do not require trial weights or an accurate model of the AMB-rotor system. Moreover, the harmonic displacements, currents, and vibrations can be well-attenuated simultaneously. PMID:26334281

  11. Estimation of Optimum Stimulus Amplitude for Balance Training using Electrical Stimulation of the Vestibular System

    NASA Technical Reports Server (NTRS)

    Goel, R.; Rosenberg, M. J.; De Dios, Y. E.; Cohen, H. S.; Bloomberg, J. J.; Mulavara, A. P.

    2016-01-01

    Sensorimotor changes such as posture and gait instabilities can affect the functional performance of astronauts after gravitational transitions. Sensorimotor Adaptability (SA) training can help alleviate decrements on exposure to novel sensorimotor environments based on the concept of 'learning to learn' by exposure to varying sensory challenges during posture and locomotion tasks (Bloomberg 2015). Supra-threshold Stochastic Vestibular Stimulation (SVS) can be used to provide one of many challenges by disrupting vestibular inputs. In this scenario, the central nervous system can be trained to utilize veridical information from other sensory inputs, such as vision and somatosensory inputs, for posture and locomotion control. The minimum amplitude of SVS to simulate the effect of deterioration in vestibular inputs for preflight training or for evaluating vestibular contribution in functional tests in general, however, has not yet been identified. Few studies (MacDougall 2006; Dilda 2014) have used arbitrary but fixed maximum current amplitudes from 3 to 5 mA in the medio-lateral (ML) direction to disrupt balance function in healthy adults. Giving this high level of current amplitude to all the individuals has a risk of invoking side effects such as nausea and discomfort. The goal of this study was to determine the minimum SVS level that yields an equivalently degraded balance performance. Thirteen subjects stood on a compliant foam surface with their eyes closed and were instructed to maintain a stable upright stance. Measures of stability of the head, trunk, and whole body were quantified in the ML direction. Duration of time they could stand on the foam surface was also measured. The minimum SVS dosage was defined to be that level which significantly degraded balance performance such that any further increase in stimulation level did not lead to further balance degradation. The minimum SVS level was determined by performing linear fits on the performance variable at different stimulation levels. Results from the balance task suggest that there are inter-individual differences and the minimum SVS amplitude was found to be in the range of 1 mA to 2.5 mA across subjects. SVS resulted in an average decrement of balance task performance in the range of 62%-73% across different measured variables at the minimum SVS amplitude in comparison to the control trial (no stimulus). Training using supra-threshold SVS stimulation is one of the sensory challenges used for preflight SA training designed to improve adaptability to novel gravitational environments. Inter-individual differences in response to SVS can help customize the SA training paradigms using minimal dosage required. Another application of using SVS is to simulate acute deterioration of vestibular sensory inputs in the evaluation of tests for assessing vestibular function.

  12. Sensitivity to Change and Responsiveness of Four Balance Measures for Community-Dwelling Older Adults

    PubMed Central

    Latham, Nancy K.; Jette, Alan M.; Wagenaar, Robert C.; Ni, Pengsheng; Slavin, Mary D.; Bean, Jonathan F.

    2012-01-01

    Background Impaired balance has a significant negative impact on mobility, functional independence, and fall risk in older adults. Although several, well-respected balance measures are currently in use, there is limited evidence regarding the most appropriate measure to assess change in community-dwelling older adults. Objective The aim of this study was to compare floor and ceiling effects, sensitivity to change, and responsiveness across the following balance measures in community-dwelling elderly people with functional limitations: Berg Balance Scale (BBS), Performance-Oriented Mobility Assessment total scale (POMA-T), POMA balance subscale (POMA-B), and Dynamic Gait Index (DGI). Design Retrospective data from a 16-week exercise trial were used. Secondary analyses were conducted on the total sample and by subgroups of baseline functional limitation or baseline balance scores. Methods Participants were 111 community-dwelling older adults 65 years of age or older, with functional limitations. Sensitivity to change was assessed using effect size, standardized response mean, and paired t tests. Responsiveness was assessed using minimally important difference (MID) estimates. Results No floor effects were noted. Ceiling effects were observed on all measures, including in people with moderate to severe functional limitations. The POMA-T, POMA-B, and DGI showed significantly larger ceiling effects compared with the BBS. All measures had low sensitivity to change in total sample analyses. Subgroup analyses revealed significantly better sensitivity to change in people with lower compared with higher baseline balance scores. Although both the total sample and lower baseline balance subgroups showed statistically significant improvement from baseline to 16 weeks on all measures, only the lower balance subgroup showed change scores that consistently exceeded corresponding MID estimates. Limitations This study was limited to comparing 4 measures of balance, and anchor-based methods for assessing MID could not be reported. Conclusions Important limitations, including ceiling effects and relatively low sensitivity to change and responsiveness, were noted across all balance measures, highlighting their limited utility across the full spectrum of the community-dwelling elderly population. New, more challenging measures are needed for better discrimination of balance ability in community-dwelling elderly people at higher functional levels. PMID:22114200

  13. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia.

    PubMed

    Khurana, Meetika; Walia, Shefali; Noohu, Majumi M

    2017-01-01

    Objective: To determine whether there is any difference between virtual reality game-based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test-post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game-based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure-III (SCIM-III). Results: There was a significant difference for time ( p = .001) and Time × Group effect ( p = .001) in mFRT scores, group effect ( p = .05) in t-shirt test scores, and time effect ( p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game-based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training.

  14. Validation of the Narrowing Beam Walking Test in Lower Limb Prosthesis Users.

    PubMed

    Sawers, Andrew; Hafner, Brian

    2018-04-11

    To evaluate the content, construct, and discriminant validity of the Narrowing Beam Walking Test (NBWT), a performance-based balance test for lower limb prosthesis users. Cross-sectional study. Research laboratory and prosthetics clinic. Unilateral transtibial and transfemoral prosthesis users (N=40). Not applicable. Content validity was examined by quantifying the percentage of participants receiving maximum or minimum scores (ie, ceiling and floor effects). Convergent construct validity was examined using correlations between participants' NBWT scores and scores or times on existing clinical balance tests regularly administered to lower limb prosthesis users. Known-groups construct validity was examined by comparing NBWT scores between groups of participants with different fall histories, amputation levels, amputation etiologies, and functional levels. Discriminant validity was evaluated by analyzing the area under each test's receiver operating characteristic (ROC) curve. No minimum or maximum scores were recorded on the NBWT. NBWT scores demonstrated strong correlations (ρ=.70‒.85) with scores/times on performance-based balance tests (timed Up and Go test, Four Square Step Test, and Berg Balance Scale) and a moderate correlation (ρ=.49) with the self-report Activities-specific Balance Confidence scale. NBWT performance was significantly lower among participants with a history of falls (P=.003), transfemoral amputation (P=.011), and a lower mobility level (P<.001). The NBWT also had the largest area under the ROC curve (.81) and was the only test to exhibit an area that was statistically significantly >.50 (ie, chance). The results provide strong evidence of content, construct, and discriminant validity for the NBWT as a performance-based test of balance ability. The evidence supports its use to assess balance impairments and fall risk in unilateral transtibial and transfemoral prosthesis users. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Initial Flight Tests of the NASA F-15B Propulsion Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nathan; Moes, Timothy R.; Vachon, M. Jake

    2002-01-01

    Flights of the F-15B/Propulsion Flight Test Fixture (PFTF) with a Cone Drag Experiment (CDE) attached have been accomplished at NASA Dryden Flight Research Center. Mounted underneath the fuselage of an F-15B airplane, the PFTF provides volume for experiment systems and attachment points for propulsion experiments. A unique feature of the PFTF is the incorporation of a six-degree-of-freedom force balance. The force balance mounts between the PFTF and experiment and measures three forces and moments. The CDE has been attached to the force balance for envelope expansion flights. This experiment spatially and inertially simulates a large propulsion test article. This report briefly describes the F-15B airplane, the PFTF, and the force balance. A detailed description of the CDE is provided. Force-balance ground testing and stiffness modifications are described. Flight profiles and selected flight data from the envelope expansion flights are provided and discussed, including force-balance data, the internal PFTF thermal and vibration environment, a handling qualities assessment, and performance capabilities of the F-15B airplane with the PFTF installed.

  16. Curved-flow, rolling-flow, and oscillatory pure-yawing wind-tunnel test methods for determination of dynamic stability derivatives

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.; Lutze, F. H.

    1981-01-01

    Dynamic stability derivatives are evaluated on the basis of rolling-flow, curved-flow and snaking tests. Attention is given to the hardware associated with curved-flow, rolling-flow and oscillatory pure-yawing wind-tunnel tests. It is found that the snaking technique, when combined with linear- and forced-oscillation methods, yields an important method for evaluating beta derivatives for current configurations at high angles of attack. Since the rolling flow model is fixed during testing, forced oscillations may be imparted to the model, permitting the measurement of damping and cross-derivatives. These results, when coupled with basic rolling-flow or rotary-balance data, yield a highly accurate mathematical model for studies of incipient spin and spin entry.

  17. Nuclear Weak Rates and Detailed Balance in Stellar Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Misch, G. Wendell, E-mail: wendell@sjtu.edu, E-mail: wendell.misch@gmail.com

    Detailed balance is often invoked in discussions of nuclear weak transitions in astrophysical environments. Satisfaction of detailed balance is rightly touted as a virtue of some methods of computing nuclear transition strengths, but I argue that it need not necessarily be strictly obeyed in astrophysical environments, especially when the environment is far from weak equilibrium. I present the results of shell model calculations of nuclear weak strengths in both charged-current and neutral-current channels at astrophysical temperatures, finding some violation of detailed balance. I show that a slight modification of the technique to strictly obey detailed balance has little effect onmore » the reaction rates associated with these strengths under most conditions, though at high temperature the modified technique in fact misses some important strength. I comment on the relationship between detailed balance and weak equilibrium in astrophysical conditions.« less

  18. Naturalness and interestingness of test images for visual quality evaluation

    NASA Astrophysics Data System (ADS)

    Halonen, Raisa; Westman, Stina; Oittinen, Pirkko

    2011-01-01

    Balanced and representative test images are needed to study perceived visual quality in various application domains. This study investigates naturalness and interestingness as image quality attributes in the context of test images. Taking a top-down approach we aim to find the dimensions which constitute naturalness and interestingness in test images and the relationship between these high-level quality attributes. We compare existing collections of test images (e.g. Sony sRGB images, ISO 12640 images, Kodak images, Nokia images and test images developed within our group) in an experiment combining quality sorting and structured interviews. Based on the data gathered we analyze the viewer-supplied criteria for naturalness and interestingness across image types, quality levels and judges. This study advances our understanding of subjective image quality criteria and enables the validation of current test images, furthering their development.

  19. Body Segment Differences in Surface Area, Skin Temperature and 3D Displacement and the Estimation of Heat Balance during Locomotion in Hominins

    PubMed Central

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-01-01

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached. PMID:18560580

  20. Body segment differences in surface area, skin temperature and 3D displacement and the estimation of heat balance during locomotion in hominins.

    PubMed

    Cross, Alan; Collard, Mark; Nelson, Andrew

    2008-06-18

    The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.

  1. Objective vestibular testing of children with dizziness and balance complaints following sports-related concussions.

    PubMed

    Zhou, Guangwei; Brodsky, Jacob R

    2015-06-01

    To conduct objective assessment of children with balance and vestibular complaints following sports-related concussions and identify the underlying deficits by analyzing laboratory test outcomes. Case series with chart review. Pediatric tertiary care facility. Medical records were reviewed of 42 pediatric patients with balance and/or vestibular complaints following sports-related concussions who underwent comprehensive laboratory testing on their balance and vestibular function. Patients' characteristics were summarized and results analyzed. More than 90% of the children with protracted dizziness or imbalance following sports-related concussion had at least 1 abnormal finding from the comprehensive balance and vestibular evaluation. The most frequent deficit was found in dynamic visual acuity test, followed by Sensory Organization Test and rotational test. Patient's balance problem associated with concussion seemed to be primarily instigated by vestibular dysfunction. Furthermore, semicircular canal dysfunction was involved more often than dysfunction of otolith organs. Yet, <10% of the children experienced a hearing loss following sports-related concussion. Vestibular impairment is common among children with protracted dizziness or imbalance following sports-related concussion. Our study demonstrated that proper and thorough evaluation is imperative to identify these underlying deficits and laboratory tests were helpful in the diagnosis and recommendation of following rehabilitations. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.

  2. Comparison of Static and Dynamic Balance in Female Collegiate Soccer, Basketball, and Gymnastics Athletes

    PubMed Central

    Bressel, Eadric; Yonker, Joshua C; Kras, John; Heath, Edward M

    2007-01-01

    Context: How athletes from different sports perform on balance tests is not well understood. When prescribing balance exercises to athletes in different sports, it may be important to recognize performance variations. Objective: To compare static and dynamic balance among collegiate athletes competing or training in soccer, basketball, and gymnastics. Design: A quasi-experimental, between-groups design. Independent variables included limb (dominant and nondominant) and sport played. Setting: A university athletic training facility. Patients or Other Participants: Thirty-four female volunteers who competed in National Collegiate Athletic Association Division I soccer (n = 11), basketball (n = 11), or gymnastics (n = 12). Intervention(s): To assess static balance, participants performed 3 stance variations (double leg, single leg, and tandem leg) on 2 surfaces (stiff and compliant). For assessment of dynamic balance, participants performed multidirectional maximal single-leg reaches from a unilateral base of support. Main Outcome Measure(s): Errors from the Balance Error Scoring System and normalized leg reach distances from the Star Excursion Balance Test were used to assess static and dynamic balance, respectively. Results: Balance Error Scoring System error scores for the gymnastics group were 55% lower than for the basketball group (P = .01), and Star Excursion Balance Test scores were 7% higher in the soccer group than the basketball group (P = .04). Conclusions: Gymnasts and soccer players did not differ in terms of static and dynamic balance. In contrast, basketball players displayed inferior static balance compared with gymnasts and inferior dynamic balance compared with soccer players. PMID:17597942

  3. THE DYNAMIC LEAP AND BALANCE TEST (DLBT): A TEST-RETEST RELIABILITY STUDY

    PubMed Central

    Newman, Thomas M.; Smith, Brent I.; John Miller, Sayers

    2017-01-01

    Background There is a need for new clinical assessment tools to test dynamic balance during typical functional movements. Common methods for assessing dynamic balance, such as the Star Excursion Balance Test, which requires controlled movement of body segments over an unchanged base of support, may not be an adequate measure for testing typical functional movements that involve controlled movement of body segments along with a change in base of support. Purpose/hypothesis The purpose of this study was to determine the reliability of the Dynamic Leap and Balance Test (DLBT) by assessing its test-retest reliability. It was hypothesized that there would be no statistically significant differences between testing days in time taken to complete the test. Study Design Reliability study Methods Thirty healthy college aged individuals participated in this study. Participants performed a series of leaps in a prescribed sequence, unique to the DLBT test. Time required by the participants to complete the 20-leap task was the dependent variable. Subjects leaped back and forth from peripheral to central targets alternating weight bearing from one leg to the other. Participants landed on the central target with the tested limb and were required to stabilize for two seconds before leaping to the next target. Stability was based upon qualitative measures similar to Balance Error Scoring System. Each assessment was comprised of three trials and performed on two days with a separation of at least six days. Results Two-way mixed ANOVA was used to analyze the differences in time to complete the sequence between the three trial averages of the two testing sessions. Intraclass Correlation Coefficient (ICC3,1) was used to establish between session test-retest reliability of the test trial averages. Significance was set a priori at p ≤ 0.05. No significant differences (p > 0.05) were detected between the two testing sessions. The ICC was 0.93 with a 95% confidence interval from 0.84 to 0.96. Conclusion This test is a cost-effective, easy to administer and clinically relevant novel measure for assessing dynamic balance that has excellent test-retest reliability. Clinical relevance As a new measure of dynamic balance, the DLBT has the potential to be a cost-effective, challenging and functional tool for clinicians. Level of Evidence 2b PMID:28900556

  4. An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability.

    PubMed

    Cruise, Denise R; Chagdes, James R; Liddy, Joshua J; Rietdyk, Shirley; Haddad, Jeffrey M; Zelaznik, Howard N; Raman, Arvind

    2017-07-26

    Increased time-delay in the neuromuscular system caused by neurological disorders, concussions, or advancing age is an important factor contributing to balance loss (Chagdes et al., 2013, 2016a,b). We present the design and fabrication of an active balance board system that allows for a systematic study of stiffness and time-delay induced instabilities in standing posture. Although current commercial balance boards allow for variable stiffness, they do not allow for manipulation of time-delay. Having two controllable parameters can more accurately determine the cause of balance deficiencies, and allows us to induce instabilities even in healthy populations. An inverted pendulum model of human posture on such an active balance board predicts that reduced board rotational stiffness destabilizes upright posture through board tipping, and limit cycle oscillations about the upright position emerge as feedback time-delay is increased. We validate these two mechanisms of instability on the designed balance board, showing that rotational stiffness and board time-delay induced the predicted postural instabilities in healthy, young adults. Although current commercial balance boards utilize control of rotational stiffness, real-time control of both stiffness and time-delay on an active balance board is a novel and innovative manipulation to reveal balance deficiencies and potentially improve individualized balance training by targeting multiple dimensions contributing to standing balance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Automatic load sharing in inverter modules

    NASA Technical Reports Server (NTRS)

    Nagano, S.

    1979-01-01

    Active feedback loads transistor equally with little power loss. Circuit is suitable for balancing modular inverters in spacecraft, computer power supplies, solar-electric power generators, and electric vehicles. Current-balancing circuit senses differences between collector current for power transistor and average value of load currents for all power transistors. Principle is effective not only in fixed duty-cycle inverters but also in converters operating at variable duty cycles.

  6. The case against compulsory casefinding in controlling AIDS--testing, screening and reporting.

    PubMed

    Gostin, L O; Curran, W J; Clark, M E

    1987-01-01

    The spread of acquired immune deficiency syndrome (AIDS) demands a comprehensive and effective public health response. Because no treatment or vaccine is currently available, traditional infection control measures are being considered. Proposals include compulsory testing and screening of selected high risk populations. The fairness and accuracy of compulsory screening programs depend upon the reliability of medical technology and the balancing of public health and individual confidentiality interests. This Article proposes criteria for evaluating compulsory testing and screening programs. It concludes that voluntary identification, education, and counselling of infected persons is the most effective means of encouraging the behavioral changes that are necessary to halt the spread of AIDS.

  7. Effect of Yoga practice on reducing cognitive-motor interference for improving dynamic balance control in healthy adults.

    PubMed

    Subramaniam, Savitha; Bhatt, Tanvi

    2017-02-01

    The purpose of our study was to investigate the effects of Yoga on reducing cognitive-motor interference (CMI) for maintaining balance control during varied balance tasks. Yoga (N=10) and age-similar non-practitioners (N=10) performed three balance tasks including the Limits of Stability test (LOS - Intentional balance), Motor Control test (MCT - Reactive balance), and Sensory Organization Test (SOT -condition 6: inducing both somatosensory and visual conflicts) under single-task (ST) and dual-task (DT, addition of a cognitive working memory task) conditions. The motor performance was assessed by recording the response time (RT) and movement velocity (MV) of the center of pressure (CoP) on LOS test, weight symmetry (WS) of CoP on the MCT test and equilibrium (EQ) of CoP on the SOT test. Cognitive performance was recorded as the number of correct responses enumerated in sitting (ST) and under DT conditions. The Motor cost (MC) and cognitive cost (CC) were computed using the formula ([ST-DT]/ST)*100 for all the variables. Greater cost indicates lower performance under DT versus ST condition. The Yoga group showed a significantly lesser MC for both MCT and SOT tests (p<0.05) in comparison to their counterparts. The CC were significantly lower on LOS and MCT test for the Yoga group (p<0.05). Results suggest that Yoga practice can significantly reduce CMI by improving allocation and utilization of attentional resources for both balance control and executive cognitive functioning; thus resulting in better performance under DT conditions. Copyright © 2016. Published by Elsevier Ltd.

  8. Evaluation of Counter-Based Dynamic Load Balancing Schemes for Massive Contingency Analysis on Over 10,000 Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Huang, Zhenyu; Rice, Mark J.

    Contingency analysis studies are necessary to assess the impact of possible power system component failures. The results of the contingency analysis are used to ensure the grid reliability, and in power market operation for the feasibility test of market solutions. Currently, these studies are performed in real time based on the current operating conditions of the grid with a set of pre-selected contingency list, which might result in overlooking some critical contingencies caused by variable system status. To have a complete picture of a power grid, more contingencies need to be studied to improve grid reliability. High-performance computing techniques holdmore » the promise of being able to perform the analysis for more contingency cases within a much shorter time frame. This paper evaluates the performance of counter-based dynamic load balancing schemes for a massive contingency analysis program on 10,000+ cores. One million N-2 contingency analysis cases with a Western Electricity Coordinating Council power grid model have been used to demonstrate the performance. The speedup of 3964 with 4096 cores and 7877 with 10240 cores are obtained. This paper reports the performance of the load balancing scheme with a single counter and two counters, describes disk I/O issues, and discusses other potential techniques for further improving the performance.« less

  9. Physical Aspects of Healthy Aging: Assessments of Three Measures of Balance for Studies in Middle-Aged and Older Adults

    PubMed Central

    Ceria-Ulep, Clementina D.; Grove, John; Chen, Randi; Masaki, Kamal H.; Rodriguez, Beatriz L.; Donlon, Tim A.; Guralnik, Jack; Willcox, Bradley J.; Willcox, D. Craig; Nigg, Claudio; Curb, J. David

    2010-01-01

    Objectives. To investigate the reliability and correlations with age of the balance components of the EPESE, NHANES, and the Good Balance Platform System (GBPS) in a normal population of adults. Design. Cross-sectional. Setting. Urban Medical Center in the Pacific. Participants. A random sample of 203 healthy offspring of Honolulu Heart Program participants, ages 38–71. Measurements. Subjects were examined twice at visits one week apart using the balance components of the EPESE, NHANES, and the good balance system tests. Results. The EPESE and NHANES batteries of tests were not sufficiently challenging to allow successful discrimination among subjects in good health, even older subjects. The GBPS allowed objective quantitative measurements, but the test-retest correlations generally were not high. The GBPS variables correlated with age only when subjects stood on a foam pad; they also were correlated with anthropometric variables. Conclusion. Both EPESE and NHANES balance tests were too easy for healthy subjects. The GBPS had generally low reliability coefficients except for the most difficult testing condition (foam pad, eyes closed). Both height and body fat were associated with GBPS scores, necessitating adjusting for these variables if using balance as a predictor of future health. PMID:21437003

  10. Test-retest reliability of a balance testing protocol with external perturbations in young healthy adults.

    PubMed

    Robbins, Shawn M; Caplan, Ryan M; Aponte, Daniel I; St-Onge, Nancy

    2017-10-01

    External perturbations are utilized to challenge balance and mimic realistic balance threats in patient populations. The reliability of such protocols has not been established. The purpose was to examine test-retest reliability of balance testing with external perturbations. Healthy adults (n=34; mean age 23 years) underwent balance testing over two visits. Participants completed ten balance conditions in which the following parameters were combined: perturbation or non-perturbation, single or double leg, and eyes open or closed. Three trials were collected for each condition. Data were collected on a force plate and external perturbations were applied by translating the plate. Force plate center of pressure (CoP) data were summarized using 13 different CoP measures. Test-retest reliability was examined using intraclass correlation coefficients (ICC) and Bland-Altman plots. CoP measures of total speed and excursion in both anterior-posterior and medial-lateral directions generally had acceptable ICC values for perturbation conditions (ICC=0.46 to 0.87); however, many other CoP measures (e.g. range, area of ellipse) had unacceptable test-retest reliability (ICC<0.70). Improved CoP measures were present on the second visit indicating a potential learning effect. Non-perturbation conditions generally produced more reliable CoP measures than perturbation conditions during double leg standing, but not single leg standing. Therefore, changes to balance testing protocols that include external perturbations should be made to improve test-retest reliability and diminish learning including more extensive participant training and increasing the number of trials. CoP measures that consider all data points (e.g. total speed) are more reliable than those that only consider a few data points. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Decisional Balance Sheet to Promote Healthy Behavior Among Ethnically Diverse Older Adults

    PubMed Central

    Geller, Karly S.; Mendoza, Ilora D.; Timbobolan, Jasah; Montjoy, Holly L.; Nigg, Claudio R.

    2012-01-01

    Objective The rising health care costs and increasing older adult population in the United States make preventive medicine for this age group especially crucial. Regular physical activity and fruit and vegetable consumption may prevent or delay the onset of many chronic conditions that are common among older adults. The decisional balance sheet is a promotional tool targeting the perceived pros and cons of behavior adoption. The current study tested the efficiency and effectiveness of a single-day decisional balance sheet program, targeting increased physical activity and fruit and vegetable intake among older adults. Design and Sample Participating adults (N = 21, age = 72.2) who represented a diverse population in Hawaii (Japanese = 5, Filipino = 4, Caucasian = 4, Native American = 1, Native Hawaiian = 1, Hispanic = 1, and Others = 5) were recruited from housing communities and randomized to a decisional balance sheet program adapted for physical activity or fruit and vegetable consumption. Measures Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) short form, and daily fruit and vegetable intake with the National Health and Nutrition Examination Survey single item instrument. Baseline and follow-up data were collected. Results Both programs were implemented efficiently, and participants in both groups improved their daily physical activity. The decisional balance sheet for fruit and vegetable consumption appeared less effective. Conclusions Specific suggestions for similar programs are reported. PMID:22512425

  12. 34 CFR 222.18 - What amount does the Secretary forgive?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SECONDARY EDUCATION, DEPARTMENT OF EDUCATION IMPACT AID PROGRAMS General § 222.18 What amount does the... hardship), and the LEA's current expenditure closing balance for the LEA's fiscal year immediately...'s preceding fiscal year's current expenditure closing balance is more than ten percent of its TCE...

  13. Predictors of chronic ankle instability: Analysis of peroneal reaction time, dynamic balance and isokinetic strength.

    PubMed

    Sierra-Guzmán, Rafael; Jiménez, Fernando; Abián-Vicén, Javier

    2018-05-01

    Previous studies have reported the factors contributing to chronic ankle instability, which could lead to more effective treatments. However, factors such as the reflex response and ankle muscle strength have not been taken into account in previous investigations. Fifty recreational athletes with chronic ankle instability and 55 healthy controls were recruited. Peroneal reaction time in response to sudden inversion, isokinetic evertor muscle strength and dynamic balance with the Star Excursion Balance Test and the Biodex Stability System were measured. The relationship between the Cumberland Ankle Instability Tool score and performance on each test was assessed and a backward multiple linear regression analysis was conducted. Participants with chronic ankle instability showed prolonged peroneal reaction time, poor performance in the Biodex Stability System and decreased reach distance in the Star Excursion Balance Test. No significant differences were found in eversion and inversion peak torque. Moderate correlations were found between the Cumberland Ankle Instability Tool score and the peroneal reaction time and performance on the Star Excursion Balance Test. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test accounted for 36% of the variance in the Cumberland Ankle Instability Tool. Dynamic balance deficits and delayed peroneal reaction time are present in participants with chronic ankle instability. Peroneus brevis reaction time and the posteromedial and lateral directions of the Star Excursion Balance Test were the main contributing factors to the Cumberland Ankle Instability Tool score. No clear strength impairments were reported in unstable ankles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Clinical Tests of Standing Balance in the Knee Osteoarthritis Population: Systematic Review and Meta-analysis

    PubMed Central

    Hatfield, Gillian L.; Morrison, Adam; Wenman, Matthew; Hammond, Connor A.

    2016-01-01

    Background People with knee osteoarthritis (OA) have a high prevalence of falls. Poor standing balance is one risk factor, but the extent of standing balance deficits in people with knee OA is unknown. Purpose The primary purpose of this study was to summarize available data on standing balance in people with knee OA compared with people without knee OA. A secondary purpose was to establish the extent of balance impairment across disease severity. Data Sources A literature search of the MEDLINE, EMBASE, CINAHL, and Web of Science databases through November 19, 2014, was conducted. Study Selection Studies on individuals with knee OA containing clinical, quantifiable measures of standing balance were included. Methodological quality was assessed by 2 reviewers using a 16-item quality index developed for nonrandomized studies. Studies scoring >50% on the index were included. Data Extraction Participant characteristics (age, sex, body mass index, OA severity, compartment involvement, unilateral versus bilateral disease) and balance outcomes were extracted by 2 reviewers. Standardized mean differences were pooled using a random-effects model. Data Synthesis The search yielded 2,716 articles; 8 met selection and quality assessment criteria. The median score on the quality index was 13/17. People with knee OA consistently performed worse than healthy controls on the Step Test, Single-Leg Stance Test, Functional Reach Test, Tandem Stance Test, and Community Balance and Mobility Scale. The pooled standardized mean difference was −1.64 (95% confidence interval=−2.58, −0.69). No differences were observed between varying degrees of malalignment, or between unilateral versus bilateral disease. Limitations No studies compared between-knee OA severities. Thus, expected changes in balance as the disease progresses remain unknown. Conclusions Few studies compared people with knee OA and healthy controls, but those that did showed that people with knee OA performed significantly worse. More research is needed to understand the extent of balance impairments in people with knee OA using easy-to-administer, clinically available tests. PMID:26183586

  15. Diurnal changes in postural control in normal children: Computerized static and dynamic assessments.

    PubMed

    Bourelle, Sophie; Taiar, Redha; Berge, Benoit; Gautheron, Vincent; Cottalorda, Jerome

    2014-01-01

    Mild traumatic brain injury (mTBI) causes postural control deficits and accordingly comparison of aberrant postural control against normal postural control may help diagnose mTBI. However, in the current literature, little is known regarding the normal pattern of postural control in young children. This study was therefore conducted as an effort to fill this knowledge gap. Eight normal school-aged children participated. Posture assessment was conducted before (7-8 a.m. in the morning) and after (4-7 p.m. in the afternoon) school on regular school days using the Balance Master® evaluation system composed of 3 static tests and 2 dynamic balance tests. A significant difference in the weight-bearing squats was detected between morning hours and afternoon hours (P < 0.05). By end of afternoon, the body weight was borne mainly on the left side with the knee fully extended and at various degrees of knee flexion. A significantly better directional control of the lateral rhythmic weight shifts was observed at the end of the afternoon than at morning hours (P < 0.05). In summary, most of our findings are inconsistent with results from previous studies in adults, suggesting age-related differences in posture control in humans. On a regular school day, the capacity of postural control and laterality or medio-lateral balance in children varies between morning and afternoon hours. We suggest that posturographic assessment in children, either in normal (e.g., physical education and sports training) or in abnormal conditions (e.g., mTBI-associated balance disorders), be better performed late in the afternoon.

  16. Electrical field imaging as a means to predict the loudness of monopolar and tripolar stimuli in cochlear implant patients.

    PubMed

    Berenstein, Carlo K; Vanpoucke, Filiep J; Mulder, Jef J S; Mens, Lucas H M

    2010-12-01

    Tripolar and other electrode configurations that use simultaneous stimulation inside the cochlea have been tested to reduce channel interactions compared to the monopolar stimulation conventionally used in cochlear implant systems. However, these "focused" configurations require increased current levels to achieve sufficient loudness. In this study, we investigate whether highly accurate recordings of the intracochlear electrical field set up by monopolar and tripolar configurations correlate to their effect on loudness. We related the intra-scalar potential distribution to behavioral loudness, by introducing a free parameter (α) which parameterizes the degree to which the potential field peak set up inside the scala tympani is still present at the location of the targeted neural tissue. Loudness balancing was performed on four levels between behavioral threshold and the most comfortable loudness level in a group of 10 experienced Advanced Bionics cochlear implant users. The effect of the amount of focusing on loudness was well explained by α per subject location along the basilar membrane. We found that α was unaffected by presentation level. Moreover, the ratios between the monopolar and tripolar currents, balanced for equal loudness, were approximately the same for all presentation levels. This suggests a linear loudness growth with increasing current level and that the equal peak hypothesis may predict the loudness of threshold as well as at supra-threshold levels. These results suggest that advanced electrical field imaging, complemented with limited psychophysical testing, more specifically at only one presentation level, enables estimation of the loudness growth of complex electrode configurations. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. T55 power turbine rotor multiplane-multispeed balancing study

    NASA Technical Reports Server (NTRS)

    Martin, M. R.

    1982-01-01

    A rotordynamic analysis of the T55-L-11C engine was used to evaluate the balancing needs of the power turbine and to optimize the balancing procedure. As a result, recommendations were made for implementation of a multiplane-multispeed balancing plan. Precision collars for the attachment of trial weights to a slender rotor were designed enabling demonstration balancing on production hardware. The quality of the balance was then evaluated by installing a high speed balanced power turbine in an engine and running in a test cell at the Corpus Christi Army depot. The engine used had been tested prior to the turbine changeout and showed acceptable overall vibration levels for the engine were significantly reduced, demonstrating the ability of multiplane-multispeed balancing to control engine vibration.

  18. Shake Test Results and Dynamic Calibration Efforts for the Large Rotor Test Apparatus

    NASA Technical Reports Server (NTRS)

    Russell, Carl R.

    2014-01-01

    A shake test of the Large Rotor Test Apparatus (LRTA) was performed in an effort to enhance NASAscapability to measure dynamic hub loads for full-scale rotor tests. This paper documents the results of theshake test as well as efforts to calibrate the LRTA balance system to measure dynamic loads.Dynamic rotor loads are the primary source of vibration in helicopters and other rotorcraft, leading topassenger discomfort and damage due to fatigue of aircraft components. There are novel methods beingdeveloped to reduce rotor vibrations, but measuring the actual vibration reductions on full-scale rotorsremains a challenge. In order to measure rotor forces on the LRTA, a balance system in the non-rotatingframe is used. The forces at the balance can then be translated to the hub reference frame to measure therotor loads. Because the LRTA has its own dynamic response, the balance system must be calibrated toinclude the natural frequencies of the test rig.

  19. Gender-specific influences of balance, speed, and power on agility performance.

    PubMed

    Sekulic, Damir; Spasic, Miodrag; Mirkov, Dragan; Cavar, Mile; Sattler, Tine

    2013-03-01

    The quick change of direction (i.e., agility) is an important athletic ability in numerous sports. Because of the diverse and therefore hardly predictable manifestations of agility in sports, studies noted that the improvement in speed, power, and balance should result in an improvement of agility. However, there is evident lack of data regarding the influence of potential predictors on different agility manifestations. The aim of this study was to determine the gender-specific influence of speed, power, and balance on different agility tests. A total of 32 college-aged male athletes and 31 college-aged female athletes (age 20.02 ± 1.89 years) participated in this study. The subjects were mostly involved in team sports (soccer, team handball, basketball, and volleyball; 80% of men, and 75% of women), martial arts, gymnastics, and dance. Anthropometric variables consisted of body height, body weight, and the body mass index. Five agility tests were used: a t-test (T-TEST), zig-zag test, 20-yard shuttle test, agility test with a 180-degree turn, and forward-backward running agility test (FWDBWD). Other tests included 1 jumping ability power test (squat jump, SQJ), 2 balance tests to determine the overall stability index and an overall limit of stability score (both measured by Biodex Balance System), and 2 running speed tests using a straight sprint for 10 and 20 m (S10 and S20, respectively). A reliability analysis showed that all the agility tests were reliable. Multiple regression and correlation analysis found speed and power (among women), and balance (among men), as most significant predictors of agility. The highest Pearson's correlation in both genders is found between the results of the FWDBWD and S10M tests (0.77 and 0.81 for men and women, respectively; p < 0.05). Power, measured using the SQJ, is significantly (p < 0.05) related to FWDBWD and T-TEST results but only for women (-0.44; -0.41). The balance measures were significantly related to the agility performance for men but not for women. In addition to demonstrating a known relationship between speed and agility in both genders, and a small but statistically significant relationship between power and agility in women, these results indicate that balance should be considered as a potential predictor of agility in trained adult men.

  20. Balance and flexibility.

    PubMed

    2003-12-01

    The 'work-life balance' and flexible working are currently key buzz terms in the NHS. Those looking for more information on these topics should visit Flexibility at www.flexibility.co.uk for a host of resources designed to support new ways of working, including information on flexible workers and flexible rostering, the legal balancing act for work-life balance and home working.

  1. A National Test of Taste and Smell

    MedlinePlus

    ... Javascript on. Feature: Taste, Smell, Hearing, Language, Voice, Balance At Last: A National Test of Taste and ... smell. Read More "Taste, Smell, Hearing, Language, Voice, Balance" Articles At Last: A National Test of Taste ...

  2. Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial.

    PubMed

    Yatar, Gozde Iyigun; Yildirim, Sibel Aksu

    2015-04-01

    [Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke.

  3. Burnout Test of First- and Second-Generation HTS Tapes in Liquid-Nitrogen Bath Cooling

    NASA Astrophysics Data System (ADS)

    Young, M. A.; Demko, J. A.; Duckworth, R. C.; Lue, J. W.; Gouge, M. J.; Pace, M. O.

    2004-06-01

    A series of BSCCO-2223 and YBCO tapes were subjected to burnout tests in a liquid-nitrogen bath to observe operational stability limits when different layers of dielectric tape are added to the sample surface. In this study, the BSCCO tapes were composed of a silver/alloy sheath with nickel/copper plating, while the YBCO tapes had a 50-μm layer of copper attached to the silver surface. After attaching the tapes to a thermally insulated G-10 holder, the stability of the tapes was found by applying current greater than the critical current and holding it constant for up to 1 min. If the sample voltage increased rapidly during this period, the tape was considered unstable at this current. This was repeated at different layers of Cryoflex™, and the results were compared to a numerical simulation of the energy balance equation. This simulation was also utilized to investigate the effect of the layers on the stability limit and estimate the thermal conductivity of the Cryoflex™.

  4. Concussion History and Time Since Concussion Do not Influence Static and Dynamic Balance in Collegiate Athletes.

    PubMed

    Merritt, Eric D; Brown, Cathleen N; Queen, Robin M; Simpson, Kathy J; Schmidt, Julianne D

    2017-11-01

    Dynamic balance deficits exist following a concussion, sometimes years after injury. However, clinicians lack practical tools for assessing dynamic balance. To determine if there are significant differences in static and dynamic balance performance between individuals with and without a history of concussion. Cross sectional. Clinical research laboratory. 45 collegiate student-athletes with a history of concussion (23 males, 22 females; age = 20.0 ± 1.4 y; height = 175.8 ± 11.6 cm; mass = 76.4 ± 19.2 kg) and 45 matched controls with no history of concussion (23 males, 22 females; age = 20.0 ± 1.3 y; height = 178.8 ± 13.2 cm; mass = 75.7 ± 18.2 kg). Participants completed a static (Balance Error Scoring System) and dynamic (Y Balance Test-Lower Quarter) balance assessment. A composite score was calculated from the mean normalized Y Balance Test-Lower Quarter reach distances. Firm, foam, and overall errors were counted during the Balance Error Scoring System by a single reliable rater. One-way ANOVAs were used to compare balance performance between groups. Pearson's correlations were performed to determine the relationship between the time since the most recent concussion and balance performance. A Bonferonni adjusted a priori α < 0.025 was used for all analyses. Static and dynamic balance performance did not significantly differ between groups. No significant correlation was found between the time since the most recent concussion and balance performance. Collegiate athletes with a history of concussion do not present with static or dynamic balance deficits when measured using clinical assessments. More research is needed to determine whether the Y Balance Test-Lower Quarter is sensitive to acute balance deficits following concussion.

  5. Static and Functional Balance in Individuals With COPD: Comparison With Healthy Controls and Differences According to Sex and Disease Severity.

    PubMed

    de Castro, Larissa A; Ribeiro, Laís Rg; Mesquita, Rafael; de Carvalho, Débora R; Felcar, Josiane M; Merli, Myriam F; Fernandes, Karen Bp; da Silva, Rubens A; Teixeira, Denilson C; Spruit, Martijn A; Pitta, Fabio; Probst, Vanessa S

    2016-11-01

    Studies have shown that individuals with COPD have impaired body balance, probably caused by the disease's multisystemic manifestations plus age-related decline in balance, potentially increasing the risk of falling and its consequences. However, little is known about the profile of individuals with COPD who present balance impairments, especially related to sex and disease severity stages. The aim of this work was to compare static and functional balance between subjects with COPD and healthy controls and to check possible differences according to sex and degrees of disease severity. Forty-seven subjects with COPD and 25 healthy controls were included in this study. Their static balance was assessed in one-legged stance using a force platform and functional balance with the Timed Up and Go test. Additionally, participants performed spirometry, the 6-min walk test and isometric quadriceps maximal voluntary contraction assessment. Disease severity was classified according to the Global Initiative for Obstructive Lung Disease stages and BODE (body mass index, air-flow obstruction, dyspnea, and exercise capacity) scores. In comparison with healthy controls, subjects with COPD had worse static (center of pressure displacement area: 9.3 ± 1.9 cm 2 vs 11.6 ± 4.0 cm 2 , respectively, P = .01) and functional balance (Timed Up and Go test: 8.5 ± 1.3 s vs 10.3 ± 1.8 s, respectively, P < .001). In the COPD group, men performed better in the Timed Up and Go test than women (9.8 ± 1.2 s vs 10.9 ± 2.2 s, respectively, P = .03), whereas women presented a better static balance in comparison with men for all parameters related to center of pressure (P < .005 for all). Disease severity did not affect any balance results. Individuals with COPD had worse static and functional balance in comparison with healthy controls. Sex can mediate these results, depending on the type of balance evaluation (force platform or functional test). Balance performance was similar among the groups classified according to disease severity. Copyright © 2016 by Daedalus Enterprises.

  6. Strain Gauge Balance Uncertainty Analysis at NASA Langley: A Technical Review

    NASA Technical Reports Server (NTRS)

    Tripp, John S.

    1999-01-01

    This paper describes a method to determine the uncertainties of measured forces and moments from multi-component force balances used in wind tunnel tests. A multivariate regression technique is first employed to estimate the uncertainties of the six balance sensitivities and 156 interaction coefficients derived from established balance calibration procedures. These uncertainties are then employed to calculate the uncertainties of force-moment values computed from observed balance output readings obtained during tests. Confidence and prediction intervals are obtained for each computed force and moment as functions of the actual measurands. Techniques are discussed for separate estimation of balance bias and precision uncertainties.

  7. Preliminary Development and Testing of a Self-Injecting Gallium MPD Thruster

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Burton, Rodney L.; Polzin, Kurt A.

    2008-01-01

    Discharge current and terminal voltage measurements were performed on a gallium electromagnetic thruster at discharge currents in the range of 20-54 kA. It was found that the arc impedance has a value of 6-7 m(Omega) at peak current. The absence of high-frequency oscillations in the terminal voltage trace indicates lack of the "onset" condition often seen in MPD arcs, suggesting that a sufficient number of charge carriers are present for current conduction. The mass ablated per pulse was not measured experimentally; however the mass flow rate was calculated using an ion current assumption and an anode power balance. Measurement of arc impedance predicts a temperature of 3.5 eV which from Saha equilibrium corresponds to Z = 2.0 - 3.5, and assuming Z = 2 yields an Isp of 3000 s and thrust efficiency of 50%.

  8. An investigation of the concept of balance in children ages 6--9: Logic and protologic identifiable in making mobiles

    NASA Astrophysics Data System (ADS)

    Chun, Seon

    This research was conducted to explore children's construction of protologic (foreshadowing of operations) in the context of experience with balance mobiles in a constructivist setting and to explore the usefulness of making mobiles in promoting children's development of the concept of balance. The statement of the problem is (a) Can constructivist principles of cognitive development be used to understand children's progress in the course of educational activities involving balance? If so, how? What does the progressive construction of notions about balance look like in children's behaviors? and (b) Does children's understanding of balance improve after experimenting with making mobiles? The participants in this study were 10 first grade children and 12 third grade children from a public elementary laboratory school located in Cedar Falls, Iowa. The pretest and posttest used a primary balance scale and a beam balance. Making mobiles was used as the intervention. The research of Piaget, Kamii, and Parrat-Dayan (1974/1980) and Inhelder and Piaget (1955/1958) were used as the basic framework for the pretest and posttest. All interviews and the dialogues during the tests and making mobiles were video-ecorded and transcribed for analysis. Evidence of compensation and reversibility, coherence, coordination, and contradiction were assessed in children's reasoning during intervention activities using operational definitions developed by Jean Piaget. Before the intervention, all children had an idea that weight impacts balance, 13 out of 22 children had the idea that distance from the fulcrum impacts balance, and 6 out of 22 children considered weight and distance at the same time. After the intervention, all children maintained the idea that weight is related to balance but more children, 16 out of 22, had the idea that distance is related to balance; and 6 children among the 16 children considered weight and distance at the same time. Through the three intervention activities, more children showed consistently their belief that the higher side needs more weight to making bars balance and the understanding of the idea that distance is related to make bars balance. Nine children experienced a "Eureka" moment, that is, they had a sudden insight about how to make bars of mobile balance or connected their prior experience to the current situation.

  9. Shake test results of the MDHC test stand in the 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Lau, Benton H.; Peterson, Randall

    1994-01-01

    A shake test was conducted to determine the modal properties of the MDHC (McDonnell Douglas Helicopter Company) test stand installed in the 40- by 80- Foot Wind Tunnel at Ames Research Center. The shake test was conducted for three wind-tunnel balance configurations with and without balance dampers, and with the snubber engagement to lock the balance frame. A hydraulic shaker was used to apply random excitation at the rotor hub in the longitudinal and lateral directions. A GenRad 2515 computer-aided test system computed the frequency response functions at the rotor hub and support struts. From these response functions, the modal properties, including the natural frequency, damping ratio, and mode shape were calculated. The critical modes with low damping ratios are identified as the test-stand second longitudinal mode for the dampers-off configuration, the test-stand yaw mode for the dampers-on configuration, and the test stand first longitudinal mode for the balance-frame locked configuration.

  10. Change in functional balance after an exercise program with Nintendo Wii in Latino patients with cerebral palsy: a case series.

    PubMed

    Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Olave-Godoy, Felipe; Villalobos-Rebolledo, David

    2016-08-01

    [Purpose] This study aimed to explore the possibility of improving functional balance using an exercise program with Nintendo and the Balance Board peripheral in subjects with cerebral palsy. [Subjects and Methods] This study included 4 male outpatients of a neurological center. All participants received an exercise program based on the use of Nintendo with the Balance Board peripheral. Training consisted of three 25-min sessions per week for 6 weeks. Each session was guided by a physical therapist. Timed up-and-go and one-leg standing tests were conducted before and after the intervention. [Results] All subjects showed significant improvements in the results of the timed up-and-go test. However, there were no significant changes in the results of the one-leg standing test. [Conclusion] The exercise protocol involving Nintendo with the Balance Board peripheral appears to improve functional dynamic balance in patients with cerebral palsy. However, static functional balance does not improve after 6 weeks of training.

  11. Improvements in Dynamic Balance Using an Adaptive Snowboard with the Nintendo Wii.

    PubMed

    Sullivan, Brendan; Harding, Alexandra G; Dingley, John; Gras, Laura Z

    2012-08-01

    The purpose of this case report is to see if a novel balance board could improve balance and gait of a subject with dynamic balance impairments and enjoyment of virtual rehabilitation training. A novel Adaptive Snowboard™ (developed by two of the authors, B.S. and J.D.) was used in conjunction with the Nintendo(®) (Redmond, WA) Wii™ snowboarding and wakeboarding games with a participant in a physical therapy outpatient clinic. Baseline measurements were taken for gait velocity and stride length, Four Square Step Test, Star Balance Excursion Test, Sensory Organization Test, and the Intrinsic Motivation Inventory. Two 60-90-minute sessions per week for 5 weeks included seven to nine trials of Wii snowboarding or wakeboarding games. Improvements were seen in every outcome measure. This study had comparable results to studies performed using a wobble board in that improvements in balance were made. Use of virtual snowboard simulation improved the subject's balance, gait speed, and stride length, as well as being an enjoyable activity.

  12. Change in functional balance after an exercise program with Nintendo Wii in Latino patients with cerebral palsy: a case series

    PubMed Central

    Gatica-Rojas, Valeska; Cartes-Velásquez, Ricardo; Méndez-Rebolledo, Guillermo; Olave-Godoy, Felipe; Villalobos-Rebolledo, David

    2016-01-01

    [Purpose] This study aimed to explore the possibility of improving functional balance using an exercise program with Nintendo and the Balance Board peripheral in subjects with cerebral palsy. [Subjects and Methods] This study included 4 male outpatients of a neurological center. All participants received an exercise program based on the use of Nintendo with the Balance Board peripheral. Training consisted of three 25-min sessions per week for 6 weeks. Each session was guided by a physical therapist. Timed up-and-go and one-leg standing tests were conducted before and after the intervention. [Results] All subjects showed significant improvements in the results of the timed up-and-go test. However, there were no significant changes in the results of the one-leg standing test. [Conclusion] The exercise protocol involving Nintendo with the Balance Board peripheral appears to improve functional dynamic balance in patients with cerebral palsy. However, static functional balance does not improve after 6 weeks of training. PMID:27630446

  13. Explosion protection for vehicles intended for the transport of flammable gases and liquids--an investigation into technical and operational basics.

    PubMed

    Förster, Hans; Günther, Werner

    2009-05-30

    In Europe, the transport of flammable gases and liquids in tanks has been impacted by new developments: for example, the introduction of the vapour-balancing technique on a broad scale and the steady increase in the application of electronic components with their own power sources; furthermore, new regulatory policies like the ATEX Directives are being enforced in the European Union. With this background in mind, the present investigation aims to provide a basis for future developments of the relevant explosion protection regulations in the safety codes for the transport of dangerous goods (RID/ADR). Specifically, the concentration of gas in the air was measured under various practical conditions while tank vehicles were being loaded with flammable gases or liquids. These spot-test data were supplemented by systematic investigations at a road tanker placed in our test field. With respect to non-electrical ignition sources, a closer investigation of the effect of hot surfaces was carried out. With regard to improving the current regulations, the results of our investigation show that it would be reasonable to implement a stronger differentiation of the characteristics of the dangerous goods (gaseous/liquid, flashpoint) on the one hand and of the techniques applied (loading with and without vapour-balancing system) on the other hand. Conclusions for the further development of the current international regulations are proposed.

  14. Relationships between balance and cognition in patients with subjective cognitive impairment, mild cognitive impairment, and Alzheimer disease.

    PubMed

    Tangen, Gro Gujord; Engedal, Knut; Bergland, Astrid; Moger, Tron Anders; Mengshoel, Anne Marit

    2014-08-01

    Balance impairments are common in patients with Alzheimer disease (AD), but which aspects of balance are affected, at which stage of cognitive impairment, and their associations with cognitive domains remain unexplored. The aims of this study were: (1) to explore differences in balance abilities among patients with subjective cognitive impairment (SCI) or mild cognitive impairment (MCI), mild AD, and moderate AD and (2) to examine the relationship between the various aspects of balance and cognitive domains. This was a cross-sectional study. Home-dwelling patients with SCI or MCI (n=33), mild AD (n=99), and moderate AD (n=38) participated in this study. The Balance Evaluation Systems Test (BESTest), comprising 6 subscales-"Biomechanical Constraints," "Stability Limits/Verticality," "Anticipatory Postural Adjustments," "Postural Responses," "Sensory Orientation," and "Stability in Gait"-was used to assess balance. Cognitive domains were assessed using the following measures: Mini-Mental Status Examination, Word-List Learning Test from the Consortium to Establish a Registry for Alzheimer's Disease (CERAD), Verbal Fluency Test, Clock Drawing Test, and Trail Making Test, parts A and B (TMT-A and TMT-B, respectively). Two-way between-group analyses of variance, adjusted for age, were used to analyze differences among the groups. Multiple linear regression analysis was used to explore the associations between balance and cognition. Differences were found between the groups on all BESTest subscales; the moderate AD group had the worst scores. The TMT-B (measuring executive function) was associated with all of the BESTest subscales after controlling for demographic factors. The cross-sectional design hampered interpretation of the development of balance impairments. The study findings indicate that all aspects of balance control deteriorate with increasing severity of cognitive impairment and that executive function plays an important role in balance control. Physical therapists should pay attention to these findings both in clinical practice and in future research. © 2014 American Physical Therapy Association.

  15. Effectiveness of balance training programme in reducing the frequency of falling in established osteoporotic women: a randomized controlled trial.

    PubMed

    Mikó, Ibolya; Szerb, Imre; Szerb, Anna; Poor, Gyula

    2017-02-01

    To investigate the effect of a 12-month sensomotor balance exercise programme on postural control and the frequency of falling in women with established osteoporosis. Randomized controlled trial where the intervention group was assigned the 12-month Balance Training Programme and the control group did not undertake any intervention beyond regular osteoporosis treatment. A total of 100 osteoporotic women - at least with one osteoporotic fracture - aged 65 years old and above. Balance was assessed in static and dynamic posture both with performance-based measures of balance, such as the Berg Balance Scale and the Timed Up and Go Test, and with a stabilometric computerized platform. Patients in the intervention group completed the 12-month sensomotor Balance Training Programme in an outpatient setting, guided by physical therapists, three times a week, for 30 minutes. The Berg Balance Scale and the Timed Up and Go Test showed a statistically significant improvement of balance in the intervention group ( p = 0.001 and p = 0.005, respectively). Balance tests using the stabilometer also showed a statistically significant improvement in static and dynamic postural balance for osteoporotic women after the completion of the Balance Training Programme. As a consequence, the one-year exercise programme significantly decreased the number of falls in the exercise group compared with the control group. The Balance Training Programme significantly improved the balance parameters and reduced the number of falls in postmenopausal women who have already had at least one fracture in the past.

  16. Assessment of renal function and electrolytes in patients with thyroid dysfunction in Addis Ababa, Ethiopia: a cross sectional study.

    PubMed

    Abebe, Nardos; Kebede, Tedla; Wolde, Mistire

    2016-01-01

    Studies demonstrated that abnormal thyroid functions may result in decreased or increased kidney size, kidney weight, and affect renal functions. In this regard, studies on the association of abnormal thyroid functions and renal function tests are scarcely found in Ethiopia. To assess renal function and electrolytes in patients with thyroid dysfunction, in Addis Ababa, Ethiopia. Cross sectional study was conducted from March 21/2015-May 27/2015 at Arsho Advanced Medical Laboratory. During the study period, 71 patients with thyroid dysfunction were eligible, and socio demographic data collected by structured questionnaire. Then blood sample was collected for thyroid function tests, renal function and blood electrolyte analysis. The collected data was analyzed by SPSS version 20. ANOVA and binary logistic regression were employed to evaluate the mean deference and associations of thyroid hormone with renal function and electrolyte balances. Among the renal function tests, serum uric acid, and creatinine mean values were significantly decreased in hyperthyroid patients; whereas, eGFR mean value was significantly increased in hyperthyroid study patients (P<0.05). Meanwhile, from the electrolyte measurements made, only the mean serum sodium value was significantly increased in hyperthyroid study participants. Binary logistic regression analysis on the association of thyroid dysfunction with electrolyte balance and renal function tests indicated that serum sodium, creatinine, eGFR values and hyperthyroidism have a statistical significant association at AOR 95% CI of 0.141(0.033-0.593, P=0.008); 16.236(3.481-75.739, P=0.001), and 13.797(3.261-58.67, P=0.001) respectively. The current study reveals, thyroid abnormalities may lead to renal function alterations and also may disturb electrolyte balance. Knowledge of this significant association has worthwhile value for clinicians, to manage their patients' optimally.

  17. 76 FR 47430 - Airworthiness Directives; Airbus Model A300 B4-600, A300 B4-600R, and A300 F4-600R Series...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ...], reported the failure during a wind tunnel test of a balance weight fastening screw on the RAT turbine cover... balance weight fastening screw on the RAT turbine cover during a wind tunnel test. After investigation, it... during a wind tunnel test of a balance weight fastening screw on the RAT turbine cover. After...

  18. Functional Performance and Balance in the Oldest-Old.

    PubMed

    Kafri, Michal; Hutzler, Yeshayahu; Korsensky, Olga; Laufer, Yocheved

    2017-06-01

    The group of individuals 85 years and over (termed oldest-old) is the fastest-growing population in the Western world. Although daily functional abilities and balance capabilities are known to decrease as an individual grows older, little is known about the balance and functional characteristics of the oldest-old population. The aims of this study were to characterize balance control, functional abilities, and balance self-efficacy in the oldest-old, to test the correlations between these constructs, and to explore differences between fallers and nonfallers in this age group. Forty-five individuals living in an assisted living facility who ambulated independently participated in the study. The mean age was 90.3 (3.7) years. Function was tested using the Late-Life Function and Disability Instrument (LLFDI). Balance was tested with the mini-Balance Evaluation System Test (mini-BESTest) and the Timed Up and Go (TUG) test. Balance self-efficacy was tested with the Activities-Specific Balance Confidence (ABC) scale. The mean total function LLFDI score was 63.2 (11.4). The mean mini-BESTest score was 69.8% (18.6%) and the mean TUG time was 12.6 (6.9) seconds. The mean ABC score was 80.2% (14.2%). Good correlation (r > 0.7) was observed between the ABC and the function component of the LLFDI, as well as with the lower extremity domains. Correlations between the mini-BESTest scores and the LLFDI were fair to moderate (r's range: 0.38-0.62). Age and ABC scores were significant independent explanators of LLFDI score (P = .0141 and P = .0009, respectively). Fallers and nonfallers differed significantly across all outcome measures scores, except for TUG and for the "Reactive Postural Control" and "Sensory Orientation" domains of the mini-BESTest. The results of this study provide normative data regarding the balance and functional abilities of the oldest-old, and indicate a strong association between self-efficacy and function. These results emphasize the importance of incorporating strategies that maintain and improve balance self-efficacy in interventions aimed at enhancing the functional level of this cohort.

  19. Visual feedback training using WII Fit improves balance in Parkinson's disease.

    PubMed

    Zalecki, Tomasz; Gorecka-Mazur, Agnieszka; Pietraszko, Wojciech; Surowka, Artur D; Novak, Pawel; Moskala, Marek; Krygowska-Wajs, Anna

    2013-01-01

    Postural instability including imbalance is the most disabling long term problem in Parkinson's disease (PD) that does not respond to pharmacotherapy. This study aimed at investigating the effectiveness of a novel visual-feedback training method, using Wii Fit balance board in improving balance in patients with PD. Twenty four patients with moderate PD were included in the study which comprised of a 6-week home-based balance training program using Nintendo Wii Fit and balance board. The PD patients significantly improved their results in Berg Balance Scale, Tinnet's Performance-Oriented Mobility Assessment, Timed Up-and-Go, Sit-to-stand test, 10-Meter Walk test and Activities-specific Balance Confidence scale at the end of the programme. This study suggests that visual feedback training using Wii-Fit with balance board could improve dynamic and functional balance as well as motor disability in PD patients.

  20. How Should Equation Balancing Be Taught?

    ERIC Educational Resources Information Center

    Porter, Spencer K.

    1985-01-01

    Matrix methods and oxidation-number methods are currently advocated and used for balancing equations. This article shows how balancing equations can be introduced by a third method which is related to a fundamental principle, is easy to learn, and is powerful in its application. (JN)

  1. Effect of Wii-intervention on balance of children with poor motor performance.

    PubMed

    Mombarg, Remo; Jelsma, Dorothee; Hartman, Esther

    2013-09-01

    The purpose of this study was to investigate the effects of training with the Wii-balance board on balance and balance-related skills of children with poor motor performance. Twenty-nine children (23 boys, 6 girls; aged 7-12 years) participated in this study and were randomly assigned to an experimental and control group. All children scored below the 16th percentile on a standardized test of motor ability and balance skills (Movement Assessment Battery for children (M-ABC-2)). Before and after a six-week Wii-intervention (M=8h, 22 min, SD=53 min), the balance skills of the experimental group and control group were measured with the M-ABC-2 and the Bruininks-Oseretsky test of motor proficiency (BOT-2). Both groups improved on all tests. The M-ABC-2 and the BOT-2 total balance-scores of the experimental group improved significantly from pre to post intervention, whereas those of the control group showed no significant progress. This resulted in significant interaction-effects, favoring the experimental children. No transfer-effects of the intervention on balance-related skills were demonstrated. Our findings showed that the Wii-balance board is an effective intervention for children with poor balance control. Further development and investigation of the intervention could be directed toward the implementation of the newly acquired balance-skills in daily life. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Effect of bed rest and exercise on body balance

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1974-01-01

    A battery of 11 body balance tests was administered to 7 men before and after 14 days of bedrest. Seven men who had not undergone bed rest served as controls. During bed rest, each subject underwent daily either isotonic, isometric, or no leg exercise. The results showed that, for the bed-rested no exercise, isotonic exercise, and isometric exercise groups, 2 weeks of bed rest produces significant body balance decrements on 3, 4, and 5 of the 11 tests, respectively. Daily leg exercise did not prevent the debilitating effects of bed rest on body balance. After bed rest, balance skill was relearned rapidly so that in most tests, performance had reached prebed-rest levels by the third recovery day. These data suggest that balance impairment is not due to loss of muscular strength in the legs but, perhaps, to a bed-rest-related change in the neurally coded information to postural control centers.

  3. The effects of dance training program on the postural stability of middle aged women.

    PubMed

    Kostić, Radmila; Uzunović, Slavoljub; Purenović-Ivanović, Tijana; Miletić, Đurđica; Katsora, Georgija; Pantelić, Saša; Milanović, Zoran

    2015-11-01

    The aim of the study was to determine the effects of Greek folk dancing on postural stability in middle age women. Sixty-three women aged from 47-53 participated in this study. All participants were randomly divided into the experimental group - 33 participants (mean ± SD; body height=160.13 ± 12.07 cm, body mass=63.81 ± 10.56 kg), and the control group - 30 participants (mean ± SD; body height=160.63 ± 6.22 cm, body mass=64.79 ± 8.19 kg). The following tests were used to evaluate the motor balance and posture stability of participants; the double-leg stance along the length of a balance beam (eyes open), the double-leg stance along the width of a balance beam (eyes open), the single-leg stance (eyes open) and the double-leg stance on one's toes (eyes closed). The Functional Reach Test for balance and the Star Excursion Balance Test were used to evaluate dynamic balance. The multivariate analysis of covariance of static and dynamic balance between participants of the experimental and control group at the final measuring, with neutralized differences at the initial measuring (Wilks' λ=0.45), revealed a significant difference (p<0.05). The intergroup difference at the final measuring was also found to be significant (p<0.05) for the following variables; the double-leg stance on one's toes, the Functional Reach Test, balance of the right anterolateral, balance of the right posterolateral and balance of the left posteromedial. An organized dance activity programme does lead to the improvement of static and dynamic balance in middle aged women. Copyright© by the National Institute of Public Health, Prague 2015.

  4. Verifying Magnetic Force on a Conductor

    ERIC Educational Resources Information Center

    Ganci, Salvatore

    2011-01-01

    The laboratory measurement of the magnetic force acting on a straight wire of length "l" carrying a current of intensity "i" in a magnetic field "B" is usually made using current balances, which are offered by various physics apparatus suppliers' catalogues. These balances require an adequate magnet and commonly allow only the measurement of the…

  5. The relationship between balance performance, lumbar extension strength, trunk extension endurance, and pain in participants with chronic low back pain, and those without.

    PubMed

    Behennah, Jessica; Conway, Rebecca; Fisher, James; Osborne, Neil; Steele, James

    2018-03-01

    Chronic low back pain is associated with lumbar extensor deconditioning. This may contribute to decreased neuromuscular control and balance. However, balance is also influenced by the hip musculature. Thus, the purpose of this study was to examine balance in both asymptomatic participants and those with chronic low back pain, and to examine the relationships among balance, lumbar extension strength, trunk extension endurance, and pain. Forty three asymptomatic participants and 21 participants with non-specific chronic low back pain underwent balance testing using the Star Excursion Balance Test, lumbar extension strength, trunk extension endurance, and pain using a visual analogue scale. Significant correlations were found between lumbar extension strength and Star Excursion Balance Test scores in the chronic low back pain group (r = 0.439-0.615) and in the asymptomatic group (r = 0.309-0.411). Correlations in the chronic low back pain group were consistently found in posterior directions. Lumbar extension strength explained ~19.3% to ~37.8% of the variance in Star Excursion Balance Test scores for the chronic low back pain group and ~9.5% to ~16.9% for the asymptomatic group. These results suggest that the lumbar extensors may be an important factor in determining the motor control dysfunctions, such as limited balance, that arise in chronic low back pain. As such, specific strengthening of this musculature may be an approach to aid in reversing these dysfunctions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effects of circular gait training on balance, balance confidence in patients with stroke: a pilot study.

    PubMed

    Park, Shin-Kyu; Kim, Sung-Jin; Yoon, Tak Yong; Lee, Suk-Min

    2018-05-01

    [Purpose] This study aimed to investigate the effects of circular gait training on balance and balance confidence in patients with stroke. [Subjects and Methods] Fifteen patients with stroke were randomly divided into either the circular gait training (CGT) group (n=8) or the straight gait training (SGT) group (n=7). Both groups had conventional therapy that adhered to the neurodevelopmental treatment (NDT) approach, for 30 min. In addition, the CGT group performed circular gait training, and the SGT group practiced straight gait training for 30 min. Each intervention was applied for 1 h, 5 days a week, for 2 weeks. Berg Balance Scale (BBS), Timed Up and Go (TUG) test, and Activities-specific Balance Confidence (ABC) scale were used to test balance and balance confidence. [Results] After the intervention, both groups showed significant increases in balance and balance confidence. Significant improvements in the balance of the CGT group compared with the SGT group were observed at post-assessment. [Conclusion] This study showed that circular gait training significantly improves balance in patients with stroke.

  7. Field Balancing of Magnetically Levitated Rotors without Trial Weights

    PubMed Central

    Fang, Jiancheng; Wang, Yingguang; Han, Bangcheng; Zheng, Shiqiang

    2013-01-01

    Unbalance in magnetically levitated rotor (MLR) can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor's unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR's rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC) method, using a general band-pass filter (GPF) to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.

  8. A Study of The Effect of Preschool Children's Participation in Sensorimotor Activities on Their Understanding of the Mechanical Equilibrium of a Balance Beam

    NASA Astrophysics Data System (ADS)

    Hadzigeorgiou, Yannis; Anastasiou, Leonidas; Konsolas, Manos; Prevezanou, Barbara

    2009-01-01

    The purpose of this study was to investigate whether participation in sensorimotor activities by preschool children involving their own bodily balance while walking on a beam over the floor has an effect on their understanding of the mechanical equilibrium of a balance beam. The balance beam consisted of a horizontal stick balancing around its center of mass (middle point), while carrying equal-weight objects on either side of it. The study utilized a two-group design, and was conducted in three phases (pre-test, treatment and post-test). The results of the study provide evidence that there was such an effect, since the children (who participated in the sensorimotor activities) could select out of a number of objects those two with the same weight regardless of their shape, size or colour, in order to balance the stick. This effect also can be seen when a comparison is made with a second group of children, which had previously participated in a hands-on activity regarding the equilibrium of a similar balance beam, and which (children), therefore, had a definite advantage over the other children who had participated in the sensorimotor activity. A Chi Square Test showed no significant differences between the two groups on both an immediate and a delayed post-test, while the McNemar Test for the Significance of Change showed a statistically significant difference (that is, a negative change in performance between the first and the second post-test) only within the hands-on group. This difference represents evidence that the children from the sensorimotor group remembered better the rule they were applying (i.e., selecting equal-weight objects) in order to balance the beam.

  9. NONDESTRUCTIVE EDDY CURRENT TESTING

    DOEpatents

    Renken, C.J. Jr.

    1961-05-23

    An eddy current testing device is described for measuring metal continuity independent of probe-to-sample spacing. An inductance would test probe is made a leg of a variable impedance bridge and the bridge is balanced with the probe away from the sample. An a-c signal is applied across the input terminals of the bridge circuit. As the probe is brought into proximity with the metal sample, the resulting impedance change in the probe gives an output signal from the bridge whose phase angle is proportional to the sample continuity and amplitude is proportional to the probe-tosample spacing. The output signal from the bridge is applied to a compensating network where, responsive to amplitude changes from the bridge output signal, a constant phased voltage output is maintained when the sample is continuous regardless of probe-to-sample spacing. A phase meter calibrated to read changes in resistivity of the metal sample measures the phase shift between the output of the compensating network and the original a-c signal applied to the bridge.

  10. Balance and postural skills in normal-weight and overweight prepubertal boys.

    PubMed

    Deforche, Benedicte I; Hills, Andrew P; Worringham, Charles J; Davies, Peter S W; Murphy, Alexia J; Bouckaert, Jacques J; De Bourdeaudhuij, Ilse M

    2009-01-01

    This study investigated differences in balance and postural skills in normal-weight versus overweight prepubertal boys. Fifty-seven 8-10-year-old boys were categorized overweight (N = 25) or normal-weight (N = 32) according to the International Obesity Task Force cut-off points for overweight in children. The Balance Master, a computerized pressure plate system, was used to objectively measure six balance skills: sit-to-stand, walk, step up/over, tandem walk (walking on a line), unilateral stance and limits of stability. In addition, three standardized field tests were employed: standing on one leg on a balance beam, walking heel-to-toe along the beam and the multiple sit-to-stand test. Overweight boys showed poorer performances on several items assessed on the Balance Master. Overweight boys had slower weight transfer (p < 0.05), lower rising index (p < 0.05) and greater sway velocity (p < 0.001) in the sit-to-stand test, greater step width while walking (p < 0.05) and lower speed when walking on a line (p < 0.01) compared with normal-weight counterparts. Performance on the step up/over test, the unilateral stance and the limits of stability were comparable between both groups. On the balance beam, overweight boys could not hold their balance on one leg as long (p < 0.001) and had fewer correct steps in the heel-to-toe test (p < 0.001) than normal-weight boys. Finally, overweight boys were slower in standing up and sitting down five times in the multiple sit-to-stand task (p < 0.01). This study demonstrates that when categorised by body mass index (BMI) level, overweight prepubertal boys displayed lower capacity on several static and dynamic balance and postural skills.

  11. Balance and gait in older electroconvulsive therapy recipients: a pilot study

    PubMed Central

    Plakiotis, Chris; Barson, Fay; Vengadasalam, Bharathi; Haines, Terry P; O’Connor, Daniel W

    2013-01-01

    Background Electroconvulsive therapy (ECT) is commonly used to treat depression in older adults. Despite its efficacy in this regard, an associated increase in the risk of falls in this population is a downside of treatment. ECT research has focused on the incidence of falls, but its effect on balance and gait – intrinsic factors in instability and falls – has not been studied. Our aim was to examine changes in balance and gait among older adults before and after a single ECT session and explore the effect of patient-related and treatment factors on any changes found. Methods Participants were 21 older adults requiring ECT for depression in public psychiatric services. Patients with clinically overt mobility problems (impairing test participation or increasing the risk of falls) were excluded. Balance and gait testing 1 hour pre-ECT and 1, 2 and 3 hours post-ECT included: (1) steady standing test; (2) perturbation of standing balance by self-initiated movements; (3) perturbation of standing balance by an external perturbation; and (4) timed up and go test. Results No deterioration in test performance was found, using one-way repeated measures analysis of variance. Conclusion Balance and gait did not deteriorate immediately after ECT. Exclusion of participants with clinically overt mobility problems and falls being better attributable to factors unrelated to balance and gait (such as post-ECT confusion) may account for our findings. This research does not repudiate the occurrence of ECT-related falls but calls into question the utility of introducing routine balance and gait assessment among older ECT recipients without pre-existing mobility problems as a means of preventing them. PMID:23766650

  12. Ice skating promotes postural control in children.

    PubMed

    Keller, M; Röttger, K; Taube, W

    2014-12-01

    High fall rates causing injury and enormous financial costs are reported for children. However, only few studies investigated the effects of balance training in children and these studies did not find enhanced balance performance in postural (transfer) tests. Consequently, it was previously speculated that classical balance training might not be stimulating enough for children to adequately perform these exercises. Therefore, the aim of this study is to evaluate the influence of ice skating as an alternative form of balance training. Volunteers of an intervention (n = 17; INT: 13.1 ± 0.4 years) and a control group (n = 13; CON: 13.2 ± 0.3 years) were tested before and after training in static and dynamic postural transfer tests. INT participated in eight sessions of ice skating during education lessons, whereas CON participated in normal physical education. Enhanced balance performance was observed in INT but not in CON when tested on an unstable free-swinging platform (P < 0.05) or when performing a functional reach test (P < 0.001). This is the first study showing significantly enhanced balance performance after ice skating in children. More importantly, participating children improved static and dynamic balance control in postural tasks that were not part of the training. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Examination of Body Composition, Flexibility, Balance, and Concentration Related to Dance Exercise

    ERIC Educational Resources Information Center

    Bastug, Gulsum

    2018-01-01

    In this study was to examine the body composition, flexibility, balance and concentration characteristics of dance exercise. Total of 268 university students whose average age was 20.59 ± 1.59 years were included. Height measurements, body weight measurements, flexibility measurements, balance test, concentration test of the students who had dance…

  14. Using the Power Balance Wristband to Improve Students' Research-Design Skills

    ERIC Educational Resources Information Center

    Lawson, Timothy J.; Blackhart, Ginette C.; Gialopsos, Brooke M.

    2016-01-01

    We describe an exercise involving the power balance wristband (PBW) designed to enhance students' ability to design scientific tests. An instructor demonstrated that the PBW improved a student's balance, strength, and flexibility and invited students to design and conduct a brief scientific test of the PBW. Research methods students who…

  15. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury

    PubMed Central

    2011-01-01

    Background Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo® Wii Balance Board® (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance. Methods In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n = 9) versus standard rehabilitation (n = 8). Effectiveness was evaluated by means of traditional static and dynamic balance scales. Results The final sample consisted of 11 men and 6 women. Mean ± SD age was 47.3 ± 17.8 and mean ± SD chronicity was 570.9 ± 313.2 days. Patients using eBaViR had a significant improvement in static balance (p = 0.011 in Berg Balance Scale and p = 0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group. Conclusions The results suggest that eBaViR represents a safe and effective alternative to traditional treatment to improve static balance in the ABI population. These results have encouraged us to reinforce the virtual treatment with new exercises, so an evolution of the system is currently being developed. PMID:21600066

  16. Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury.

    PubMed

    Gil-Gómez, José-Antonio; Lloréns, Roberto; Alcañiz, Mariano; Colomer, Carolina

    2011-05-23

    Acquired brain injury (ABI) is the main cause of death and disability among young adults. In most cases, survivors can experience balance instability, resulting in functional impairments that are associated with diminished health-related quality of life. Traditional rehabilitation therapy may be tedious. This can reduce motivation and adherence to the treatment and thus provide a limited benefit to patients with balance disorders. We present eBaViR (easy Balance Virtual Rehabilitation), a system based on the Nintendo® Wii Balance Board® (WBB), which has been designed by clinical therapists to improve standing balance in patients with ABI through motivational and adaptative exercises. We hypothesize that eBaViR, is feasible, safe and potentially effective in enhancing standing balance. In this contribution, we present a randomized and controlled single blinded study to assess the influence of a WBB-based virtual rehabilitation system on balance rehabilitation with ABI hemiparetic patients. This study describes the eBaViR system and evaluates its effectiveness considering 20 one-hour-sessions of virtual reality rehabilitation (n = 9) versus standard rehabilitation (n = 8). Effectiveness was evaluated by means of traditional static and dynamic balance scales. The final sample consisted of 11 men and 6 women. Mean ± SD age was 47.3 ± 17.8 and mean ± SD chronicity was 570.9 ± 313.2 days. Patients using eBaViR had a significant improvement in static balance (p = 0.011 in Berg Balance Scale and p = 0.011 in Anterior Reaches Test) compared to patients who underwent traditional therapy. Regarding dynamic balance, the results showed significant improvement over time in all these measures, but no significant group effect or group-by-time interaction was detected for any of them, which suggests that both groups improved in the same way. There were no serious adverse events during treatment in either group. The results suggest that eBaViR represents a safe and effective alternative to traditional treatment to improve static balance in the ABI population. These results have encouraged us to reinforce the virtual treatment with new exercises, so an evolution of the system is currently being developed.

  17. Kinematic effect of Nintendo WiiTM sports program exercise on obstacle gait in elderly women with falling risk

    PubMed Central

    Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae

    2015-01-01

    [Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo WiiTM Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls. PMID:26157228

  18. Kinematic effect of Nintendo Wii(TM) sports program exercise on obstacle gait in elderly women with falling risk.

    PubMed

    Jung, Dae-In; Ko, Dae-Sik; Jeong, Mi-Ae

    2015-05-01

    [Purpose] This study evaluated the changes in balance ability and obstacle gait after lumbar stabilization exercise and Nintendo Wii(TM) Sports in elderly at risk for falls. [Subjects and Methods] Twenty-four elderly women with at risk for falls were randomly divided into the control, lumbar stabilization exercise, and Nintendo Wii Sports groups. Static balance was measured by the Berg Balance Scale and functional reach test, dynamic balance by the timed up-and-go test, and obstacle negotiation function by crossing velocity and maximum vertical heel clearance. [Results] Both the lumbar stabilization exercise and Nintendo Wii Sports groups showed significant improvements in obstacle negotiation function after the exercise compared to the control group. Berg Balance Scale and functional reach test scores were greater in the lumbar stabilization exercise group, while the timed up-and-go test time was significantly better in the Nintendo Wii Sports groups. [Conclusion] Lumbar stabilization exercises and Nintendo Wii Sports improve falling related balance and obstacle negotiation function in elderly women at risk for falls.

  19. 76 FR 25259 - Airworthiness Directives; Airbus Model A300 B4-600, A300 B4-600R, and A300 F4-600R Series...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ...], reported the failure during a wind tunnel test of a balance weight fastening screw on the RAT turbine cover... balance weight fastening screw on the RAT turbine cover during a wind tunnel test. After investigation, it... failure during a wind tunnel test of a balance weight fastening screw on the RAT turbine cover. After...

  20. The effect of dance therapy on the balance of women over 60 years of age: The influence of dance therapy for the elderly.

    PubMed

    Filar-Mierzwa, Katarzyna; Długosz, Małgorzata; Marchewka, Anna; Dąbrowski, Zbigniew; Poznańska, Anna

    2017-01-01

    Dance therapy is a physical activity that can lead to balance improvement in older adults. The aim of the study was to evaluate the effects of dance therapy on balance and risk of falls in older women. Twenty-four older women (mean age 66.4 years old) attended dance sessions for three months. Pretest/posttests were completed using the Postural Stability Test, the Limits of Stability Test, and the Fall Risk Test M-CTSIB. Results showed the Limits of Stability Test was significantly higher (17.5%) after dance classes. Regular use of dance therapy shows promise in improving balance by increasing the limits of stability.

  1. Force instrumentation for cryogenic wind tunnels using one-piece strain-gage balances

    NASA Technical Reports Server (NTRS)

    Ferris, A. T.

    1980-01-01

    The use of cryogenic temperatures in wind tunnels to achieve high Reynolds numbers has imposed a harsh operating environment on the force balance. Laboratory tests were conducted to study the effect cryogenic temperatures have on balance materials, gages, wiring, solder, adhesives, and moisture proofing. Wind tunnel tests were conducted using a one piece three component balance to verify laboratory results. These initial studies indicate that satisfactory force data can be obtained under steady state conditions.

  2. Balance Evaluation Systems

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NeuroCom's Balance Master is a system to assess and then retrain patients with balance and mobility problems and is used in several medical centers. NeuroCom received assistance in research and funding from NASA, and incorporated technology from testing mechanisms for astronauts after shuttle flights. The EquiTest and Balance Master Systems are computerized posturography machines that measure patient responses to movement of a platform on which the subject is standing or sitting, then provide assessments of the patient's postural alignment and stability.

  3. Iterative procedures for space shuttle main engine performance models

    NASA Technical Reports Server (NTRS)

    Santi, L. Michael

    1989-01-01

    Performance models of the Space Shuttle Main Engine (SSME) contain iterative strategies for determining approximate solutions to nonlinear equations reflecting fundamental mass, energy, and pressure balances within engine flow systems. Both univariate and multivariate Newton-Raphson algorithms are employed in the current version of the engine Test Information Program (TIP). Computational efficiency and reliability of these procedures is examined. A modified trust region form of the multivariate Newton-Raphson method is implemented and shown to be superior for off nominal engine performance predictions. A heuristic form of Broyden's Rank One method is also tested and favorable results based on this algorithm are presented.

  4. Study on the Effectiveness of Virtual Reality Game-Based Training on Balance and Functional Performance in Individuals with Paraplegia

    PubMed Central

    Khurana, Meetika; Walia, Shefali

    2017-01-01

    Objective: To determine whether there is any difference between virtual reality game–based balance training and real-world task-specific balance training in improving sitting balance and functional performance in individuals with paraplegia. Methods: The study was a pre test–post test experimental design. There were 30 participants (28 males, 2 females) with traumatic spinal cord injury randomly assigned to 2 groups (group A and B). The levels of spinal injury of the participants were between T6 and T12. The virtual reality game–based balance training and real-world task-specific balance training were used as interventions in groups A and B, respectively. The total duration of the intervention was 4 weeks, with a frequency of 5 times a week; each training session lasted 45 minutes. The outcome measures were modified Functional Reach Test (mFRT), t-shirt test, and the self-care component of the Spinal Cord Independence Measure–III (SCIM-III). Results: There was a significant difference for time (p = .001) and Time × Group effect (p = .001) in mFRT scores, group effect (p = .05) in t-shirt test scores, and time effect (p = .001) in the self-care component of SCIM-III. Conclusions: Virtual reality game–based training is better in improving balance and functional performance in individuals with paraplegia than real-world task-specific balance training. PMID:29339902

  5. Association between vestibular function and motor performance in hearing-impaired children.

    PubMed

    Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg

    2014-12-01

    The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p < 0.001 for balance beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.

  6. Assessment of a flow-through balance for hypersonic wind tunnel models with scramjet exhaust flow simulation

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Kniskern, Marc W.; Monta, William J.

    1993-01-01

    The purpose of this investigation were twofold: first, to determine whether accurate force and moment data could be obtained during hypersonic wind tunnel tests of a model with a scramjet exhaust flow simulation that uses a representative nonwatercooled, flow-through balance; second, to analyze temperature time histories on various parts of the balance to address thermal effects on force and moment data. The tests were conducted in the NASA Langley Research Center 20-Inch Mach 6 Wind Tunnel at free-stream Reynolds numbers ranging from 0.5 to 7.4 x 10(exp 6)/ft and nominal angles of attack of -3.5 deg, 0 deg, and 5 deg. The simulant exhaust gases were cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon by volume, which reached stagnation temperatures within the balance of 111, 214, and 283 F, respectively. All force and moment values were unaffected by the balance thermal response from exhaust gas simulation and external aerodynamic heating except for axial-force measurements, which were significantly affected by balance heating. This investigation showed that for this model at the conditions tested, a nonwatercooled, flow-through balance is not suitable for axial-force measurements during scramjet exhaust flow simulation tests at hypersonic speeds. In general, heated exhaust gas may produce unacceptable force and moment uncertainties when used with thermally sensitive balances.

  7. Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial

    PubMed Central

    Yatar, Gozde Iyigun; Yildirim, Sibel Aksu

    2015-01-01

    [Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke. PMID:25995576

  8. Analysis of a six-component, flow-through, strain-gage, force balance used for hypersonic wind tunnel models with scramjet exhaust flow simulation. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Kniskern, Marc W.

    1990-01-01

    The thermal effects of simulant gas injection and aerodynamic heating at the model's surface on the measurements of a non-watercooled, flow through balance were investigated. A stainless steel model of a hypersonic air breathing propulsion cruise missile concept (HAPCM-50) was used to evaluate this balance. The tests were conducted in the 20-inch Mach 6 wind tunnel at NASA-Langley. The balance thermal effects were evaluated at freestream Reynolds numbers ranging from .5 to 7 x 10(exp 6) ft and angles of attack between -3.5 to 5 deg at Mach 6. The injection gases considered included cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon-12. The stagnation temperatures of the cold air, hot air, and Ar-Fr(12) reached 111, 214, and 283 F, respectively within the balance. A bakelite sleeve was inserted into the inner tube of the balance to minimize the thermal effects of these injection gases. Throughout the tests, the normal force, side force, yaw moment, roll moment, and pitching moment balance measurements were unaffected by the balance thermal effects of the injection gases and the wind tunnel flow. However, the axial force (AF) measurement was significantly affected by balance heating. The average zero shifts in the AF measurements were 1.9, 3.8, and 5.9 percent for cold air, hot air, and Ar-Fr(12) injection, respectively. The AF measurements decreased throughout these tests which lasted from 70 to 110 seconds. During the cold air injection tests, the AF measurements were accurate up to at least ten seconds after the model was injected into the wind tunnel test section. For the hot air and Ar-Fr(12) tests, the AF measurements were accurate up to at least five seconds after model injection.

  9. Evaluation of alternative model-data fusion approaches in water balance estimation across Australia

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Renzullo, L. J.

    2009-04-01

    Australia's national agencies are developing a continental modelling system to provide a range of water information services. It will include rolling water balance estimation to underpin national water accounts, water resources assessments that interpret current water resources availability and trends in a historical context, and water resources predictions coupled to climate and weather forecasting. The nation-wide coverage, currency, accuracy, and consistency required means that remote sensing will need to play an important role along with in-situ observations. Different approaches to blending models and observations can be considered. Integration of on-ground and remote sensing data into land surface models in atmospheric applications often involves state updating through model-data assimilation techniques. By comparison, retrospective water balance estimation and hydrological scenario modelling to date has mostly relied on static parameter fitting against observations and has made little use of earth observation. The model-data fusion approach most appropriate for a continental water balance estimation system will need to consider the trade-off between computational overhead and the accuracy gains achieved when using more sophisticated synthesis techniques and additional observations. This trade-off was investigated using a landscape hydrological model and satellite-based estimates of soil moisture and vegetation properties for aseveral gauged test catchments in southeast Australia.

  10. The effect of programed physical activity measured with levels of body balance maintenance.

    PubMed

    Mańko, Grzegorz; Kruczkowski, Dariusz; Niźnikowski, Tomasz; Perliński, Jacek; Chantsoulis, Marzena; Pokorska, Joanna; Łukaszewska, Beata; Ziółkowski, Artur; Graczyk, Marek; Starczyńska, Małgorzata; Jaszczur-Nowicki, Jarosław

    2014-10-06

    Background The aim of the research was an evaluation of 2 training programs covering the same standard physical activity in the initial stage (warm-up) and the main (motor exercises) as well as a separate end part in Program A of stretching and in Programme B of vibration training designed to improve the level of body balance. Material and Methods We tested 40 randomly chosen students of the Academy of Physical Education and Sport in Gdansk, subsequently divided into two 20-person groups: C (average age 21.3±1.2), and E (average age 21.8±1.1). The training of body balance was conducted for 8 weeks: we used in Group C Program A and in group E Program B. The evaluation of body balance was done 3 times: at the beginning, at midway point, and at the end of the experiment. The stabilographic tests with posture-graphical method and the task of 1-leg balance standing with eyes closed was used. Results It was found that in the first examination both groups did not significantly differ in terms of the tested parameters of balance. During the training process we obtained increased time of maintaining balance on 1 leg. This difference was significant between tests 1 and 2 both for Group C (p=0.0002) and for E (p=0.0034), while between the tests 2 and 3 in Group E (p=0.0213) only. Conclusions The training Program B is more effective to maintain balance on 1 leg when compared to Program A.

  11. Wii Fit exer-game training improves sensory weighting and dynamic balance in healthy young adults.

    PubMed

    Cone, Brian L; Levy, Susan S; Goble, Daniel J

    2015-02-01

    The Nintendo Wii Fit is a balance training tool that is growing in popularity due to its ease of access and cost-effectiveness. While considerable evidence now exists demonstrating the efficacy of the Wii Fit, no study to date has determined the specific mechanism underlying Wii Fit balance improvement. This paucity of knowledge was addressed in the present study using the NeuroCom Balance Manager's Sensory Organization Test (SOT) and Limits of Stability (LOS) test. These well-recognized posturography assessments, respectively, measure sensory weighting and dynamic stability mechanisms of balance. Forty healthy, young participants were recruited into two groups: Wii Fit Balance Intervention (WFBI) (n=20) and Control (CON) (n=20). Balance training consisted of seven Wii Fit exer-games played over the course of six consecutive weeks (2-4×/week, 30-45min/day). The WFBI group performed Neurocom testing before and after the intervention, while the CON group was tested along a similar timeline with no intervention. Mixed-design ANOVAs found significant interactions for testing time point and condition 5 of the SOT (p<0.02), endpoint excursion (p<0.01), movement velocity (p<0.02), and response time (p<0.01). These effects were such that greater improvements were seen for the WFBI group following Wii Fit training. These findings suggest that individuals with known issues regarding the processing of multiple sources of sensory information and/or who have limited functional bases of support may benefit most from Wii Fit balance training. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Design of experiments enhanced statistical process control for wind tunnel check standard testing

    NASA Astrophysics Data System (ADS)

    Phillips, Ben D.

    The current wind tunnel check standard testing program at NASA Langley Research Center is focused on increasing data quality, uncertainty quantification and overall control and improvement of wind tunnel measurement processes. The statistical process control (SPC) methodology employed in the check standard testing program allows for the tracking of variations in measurements over time as well as an overall assessment of facility health. While the SPC approach can and does provide researchers with valuable information, it has certain limitations in the areas of process improvement and uncertainty quantification. It is thought by utilizing design of experiments methodology in conjunction with the current SPC practices that one can efficiently and more robustly characterize uncertainties and develop enhanced process improvement procedures. In this research, methodologies were developed to generate regression models for wind tunnel calibration coefficients, balance force coefficients and wind tunnel flow angularities. The coefficients of these regression models were then tracked in statistical process control charts, giving a higher level of understanding of the processes. The methodology outlined is sufficiently generic such that this research can be applicable to any wind tunnel check standard testing program.

  13. Balance and Risk of Fall in Individuals with Bilateral Mild and Moderate Knee Osteoarthritis

    PubMed Central

    Khalaj, Nafiseh; Abu Osman, Noor Azuan; Mokhtar, Abdul Halim; Mehdikhani, Mahboobeh; Wan Abas, Wan Abu Bakar

    2014-01-01

    Balance is essential for mobility and performing activities of daily living. People with knee osteoarthritis display impairment in knee joint proprioception. Thus, the aim of this study was to evaluate balance and risk of fall in individuals with bilateral mild and moderate knee osteoarthritis. Sixty subjects aged between 50 and 70 years volunteered in this study. They were categorized into three groups which were healthy (n = 20), mild (n = 20) and moderate (n = 20) bilateral knee osteoarthritis groups. Dynamic and static balance and risk of fall were assessed using Biodex Stability System. In addition, Timed Up and Go test was used as a clinical test for balance. Results of this study illustrated that there were significant differences in balance (dynamic and static) and risk of fall between three groups. In addition, the main (most significant) difference was found to be between healthy group and moderate group. Furthermore, on clinical scoring of balance, the “Timed Up and Go” test, all three groups showed significant difference. In conclusion, bilateral knee osteoarthritis impaired the balance and increased the risk of fall, particularly in people with moderate knee osteoarthritis. PMID:24642715

  14. Balance and risk of fall in individuals with bilateral mild and moderate knee osteoarthritis.

    PubMed

    Khalaj, Nafiseh; Abu Osman, Noor Azuan; Mokhtar, Abdul Halim; Mehdikhani, Mahboobeh; Wan Abas, Wan Abu Bakar

    2014-01-01

    Balance is essential for mobility and performing activities of daily living. People with knee osteoarthritis display impairment in knee joint proprioception. Thus, the aim of this study was to evaluate balance and risk of fall in individuals with bilateral mild and moderate knee osteoarthritis. Sixty subjects aged between 50 and 70 years volunteered in this study. They were categorized into three groups which were healthy (n = 20), mild (n = 20) and moderate (n = 20) bilateral knee osteoarthritis groups. Dynamic and static balance and risk of fall were assessed using Biodex Stability System. In addition, Timed Up and Go test was used as a clinical test for balance. Results of this study illustrated that there were significant differences in balance (dynamic and static) and risk of fall between three groups. In addition, the main (most significant) difference was found to be between healthy group and moderate group. Furthermore, on clinical scoring of balance, the "Timed Up and Go" test, all three groups showed significant difference. In conclusion, bilateral knee osteoarthritis impaired the balance and increased the risk of fall, particularly in people with moderate knee osteoarthritis.

  15. Effect of Ice Shape Fidelity on Swept-Wing Aerodynamic Performance

    NASA Technical Reports Server (NTRS)

    Camello, Stephanie C.; Bragg, Michael B.; Broeren, Andy P.; Lum, Christopher W.; Woodard, Brian S.; Lee, Sam

    2017-01-01

    Low-Reynolds number testing was conducted at the 7 ft. x 10 ft. Walter H. Beech Memorial Wind Tunnel at Wichita State University to study the aerodynamic effects of ice shapes on a swept wing. A total of 17 ice shape configurations of varying geometric detail were tested. Simplified versions of an ice shape may help improve current ice accretion simulation methods and therefore aircraft design, certification, and testing. For each configuration, surface pressure, force balance, and fluorescent mini-tuft data were collected and for a selected subset of configurations oil-flow visualization and wake survey data were collected. A comparison of two ice shape geometries and two configurations with simplified geometric detail for each ice shape geometry is presented in this paper.

  16. Effect of yoga training on one leg standing and functional reach tests in obese individuals with poor postural control

    PubMed Central

    Jorrakate, Chaiyong; Kongsuk, Jutaluk; Pongduang, Chiraprapa; Sadsee, Boontiwa; Chanthorn, Phatchari

    2015-01-01

    [Purpose] The aim of the present study was to investigate the effect of yoga training on static and dynamic standing balance in obese individuals with poor standing balance. [Subjects and Methods] Sixteen obese volunteers were randomly assigned into yoga and control groups. The yoga training program was performed for 45 minutes per day, 3 times per week, for 4 weeks. Static and dynamic balance were assessed in volunteers with one leg standing and functional reach tests. Outcome measures were tested before training and after a single week of training. Two-way repeated measure analysis of variance with Tukey’s honestly significant difference post hoc statistics was used to analyze the data. [Results] Obese individuals showed significantly increased static standing balance in the yoga training group, but there was no significant improvement of static or dynamic standing balance in the control group after 4 weeks. In the yoga group, significant increases in static standing balance was found after the 2nd, 3rd, and 4th weeks. Compared with the control group, static standing balance in the yoga group was significantly different after the 2nd week, and dynamic standing balance was significantly different after the 4th week. [Conclusion] Yoga training would be beneficial for improving standing balance in obese individuals with poor standing balance. PMID:25642038

  17. Effects of two exercise protocols on postural balance of elderly women: a randomized controlled trial.

    PubMed

    Mesquita, Laiana Sepúlveda de Andrade; de Carvalho, Fabiana Texeira; Freire, Lara Sepúlveda de Andrade; Neto, Osmar Pinto; Zângaro, Renato Amaro

    2015-06-02

    The aging process reduces both sensory capabilities and the capabilities of the motor systems responsible for postural control, resulting in a high number of falls among the elderly. Some therapeutic interventions can directly interrupt this process, including physical exercise. This study compares and examines the effects of two exercise protocols on the balance of elderly women. Elderly women who participated in a local church project (n = 63) were randomly divided into three groups: the proprioceptive neuromuscular facilitation group (PNFG), Pilates group (PG), and control group (CG). Of the 63 women, 58 completed the program. A training program involving 50-min sessions was performed in the PNFG and PG three times a week for 4 weeks. The elderly women in the CG received no intervention and continued with their daily activities. Stabilometric parameters, the Berg Balance Scale score, functional reach test, and timed up and go test (TUG test) were assessed before and 1 month after participation. In the comparison among groups, the women in the PNFG showed a significant reduction in most of the stabilometric parameters evaluated and better Berg Balance Scale score, functional reach test result, and TUG test result than did women in the CG (p < 0.05). Women in the PG showed significantly better performance on the functional reach test and TUG test than did women in the CG (p < 0.05). Women in the PNFG showed significantly better static and dynamic balance than did women in the CG. Women in the PG also showed better dynamic balance than did women in the CG. However, no significant differences were observed in any of the balance variables assessed between the PNFG and PG. clinicaltrials.gov, number NCT02278731.

  18. Application of Magnetic Suspension and Balance Systems to Ultra-High Reynolds Number Facilities

    NASA Technical Reports Server (NTRS)

    Britcher, Colin P.

    1996-01-01

    The current status of wind tunnel magnetic suspension and balance system development is briefly reviewed. Technical work currently underway at NASA Langley Research Center is detailed, where it relates to the ultra-high Reynolds number application. The application itself is addressed, concluded to be quite feasible, and broad design recommendations given.

  19. A Measurement of the Force between Two Current-Carrying Wires

    ERIC Educational Resources Information Center

    Straulino, S.; Cartacci, A.

    2014-01-01

    The measurement of the force acting between two parallel, current-carrying wires is known as Ampère's experiment. A mechanical balance was historically employed to measure that force. We report a simple experiment based on an electronic precision balance that is useful in clearly showing students the existence of this interaction and how to…

  20. Balance and Gait Training With Augmented Feedback Improves Balance Confidence in People With Parkinson's Disease: A Randomized Controlled Trial.

    PubMed

    Shen, Xia; Mak, Margaret K Y

    2014-07-01

    Background Fear of falling has been identified as an important and independent fall-risk predictor in patients with Parkinson's disease (PD). However, there are inconsistent findings on the effects of balance and gait training on balance confidence. Objective To explore whether balance and gait training with augmented feedback can enhance balance confidence in PD patients immediately after treatment and at 3- and 12-month follow-ups. Methods A total of 51 PD patients were randomly assigned to a balance and gait training (BAL) group or to an active control (CON) group. The BAL group received balance and gait training with augmented feedback, whereas CON participants received lower-limb strength training for 12 weeks. Outcome measures included Activities-Specific Balance Confidence (ABC) Scale, limits-of-stability test, single-leg-stance test, and spatiotemporal gait characteristics. All tests were administered before intervention (Pre), immediately after training (Post), and at 3 months (Post3m) and 12 months (Post12m) after treatment completion. Results The ABC score improved marginally at Post and significantly at Post3m and Post12m only in the BAL group (P < .017). Both participant groups increased their end point excursion at Post, but only the BAL group maintained the improvement at Post3m. The BAL group maintained significantly longer time-to-loss-of-balance during the single-leg stance test than the CON group at Post3m and Post12m (P < .05). For gait characteristics, both participant groups increased gait velocity, but only the BAL group increased stride length at Post, Post3m, and Post12m (P < .017). Conclusions Positive findings from this study provide evidence that BAL with augmented feedback could enhance balance confidence and balance and gait performance in patients with PD. © The Author(s) 2014.

  1. 40 CFR 1065.290 - PM gravimetric balance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false PM gravimetric balance. 1065.290... balance. (a) Application. Use a balance to weigh net PM on a sample medium for laboratory testing. (b) Component requirements. We recommend that you use a balance that meets the specifications in Table 1 of...

  2. 40 CFR 1065.290 - PM gravimetric balance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false PM gravimetric balance. 1065.290... balance. (a) Application. Use a balance to weigh net PM on a sample medium for laboratory testing. (b) Component requirements. We recommend that you use a balance that meets the specifications in Table 1 of...

  3. Assessment and Rehabilitation of Central Sensory Impairments for Balance in mTBI

    DTIC Science & Technology

    2016-10-01

    place; 95% complete. ● Purchasing and testing software of Opals ; awaiting release of newer, updated sensor from APDM to determine need for more sensors...2016. ● Develop new algorithm to automatically quantify head movements from Opal sensor; 100% complete 23-Sep-2016. ● Set up and test gait paradigm...Interaction in Balance (mCTSIB), Modified Balance Error Scoring System (mBESS) and walking tests, subjects wear five Opal inertial sensors (APDM, Inc

  4. Characterization and Modeling of a Control Moment Gyroscope

    DTIC Science & Technology

    2015-03-26

    parallel, and angular directions [16]. The rotor is powered by a brushless DC motor rated to 557.9 mN-m (4.938 in-lbf) [4]. The motor has Hall effect ...mass balance installed on rotor housing Gimbal Balancing Test Procedures. To evaluate the effectiveness of the mass balance, the gimbal was tested...in which the rotor is running The vehicle-level model test (Section 4.9) predicts the effects of CMG gear lash on overall vehicle performance. Gear

  5. Validity and reliability of the Nintendo Wii Balance Board to assess standing balance and sensory integration in highly functional older adults.

    PubMed

    Scaglioni-Solano, Pietro; Aragón-Vargas, Luis F

    2014-06-01

    Standing balance is an important motor task. Postural instability associated with age typically arises from deterioration of peripheral sensory systems. The modified Clinical Test of Sensory Integration for Balance and the Tandem test have been used to screen for balance. Timed tests present some limitations, whereas quantification of the motions of the center of pressure (CoP) with portable and inexpensive equipment may help to improve the sensitivity of these tests and give the possibility of widespread use. This study determines the validity and reliability of the Wii Balance Board (Wii BB) to quantify CoP motions during the mentioned tests. Thirty-seven older adults completed three repetitions of five balance conditions: eyes open, eyes closed, eyes open on a compliant surface, eyes closed on a compliant surface, and tandem stance, all performed on a force plate and a Wii BB simultaneously. Twenty participants repeated the trials for reliability purposes. CoP displacement was the main outcome measure. Regression analysis indicated that the Wii BB has excellent concurrent validity, and Bland-Altman plots showed good agreement between devices with small mean differences and no relationship between the difference and the mean. Intraclass correlation coefficients (ICCs) indicated modest-to-excellent test-retest reliability (ICC=0.64-0.85). Standard error of measurement and minimal detectable change were similar for both devices, except the 'eyes closed' condition, with greater standard error of measurement for the Wii BB. In conclusion, the Wii BB is shown to be a valid and reliable method to quantify CoP displacement in older adults.

  6. Dizziness

    MedlinePlus

    ... help walking when you have a loss of balance during a vertigo attack. Avoid bright lights, TV, ... include: Blood pressure reading Electrocardiogram ( ECG ) Hearing tests Balance testing ( ENG ) Magnetic Resonance Imaging (MRI) Your provider ...

  7. Influence of spasticity on mobility and balance in persons with multiple sclerosis.

    PubMed

    Sosnoff, Jacob J; Gappmaier, Eduard; Frame, Amy; Motl, Robert W

    2011-09-01

    Spasticity is a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes that presumably affects mobility and balance. This investigation examined the hypothesis that persons with multiple sclerosis (MS) who have spasticity of the lower legs would have more impairment of mobility and balance compared to those without spasticity. Participants were 34 ambulatory persons with a definite diagnosis of MS. The expanded disability status scale (EDSS) was used to characterize disability in the study sample. All participants underwent measurements of spasticity in the gastroc-soleus muscles of both legs (modified Ashworth scale), walking speed (timed 25-foot walk), mobility (Timed Up and Go), walking endurance (6-minute walk test), self-reported impact of MS on walking ability (Multiple Sclerosis Walking Scale-12), and balance (Berg Balance Test and Activities-specific Balance Confidence Scale). Fifteen participants had spasticity of the gastroc-soleus muscles based on modified Ashworth scale scores. The spasticity group had lower median EDSS scores indicating greater disability (P=0.03). Mobility and balance were significantly more impaired in the group with spasticity compared to the group without spasticity: timed 25-foot walk (P = 0.02, d = -0.74), Timed Up and Go (P = 0.01, d = -0.84), 6-minute walk test (P < 0.01, d = 1.03), Multiple Sclerosis Walking Scale-12 (P = 0.04, d = -0.76), Berg Balance Test (P = 0.02, d = -0.84) and Activities-specific Balance Confidence Scale (P = 0.04, d = -0.59). Spasticity in the gastroc-soleus muscles appears to have negative effect on mobility and balance in persons with MS. The relationship between spasticity and disability in persons with MS requires further exploration.

  8. Measurement instruments to assess posture, gait, and balance in Parkinson's disease: Critique and recommendations.

    PubMed

    Bloem, Bastiaan R; Marinus, Johan; Almeida, Quincy; Dibble, Lee; Nieuwboer, Alice; Post, Bart; Ruzicka, Evzen; Goetz, Christopher; Stebbins, Glenn; Martinez-Martin, Pablo; Schrag, Anette

    2016-09-01

    Disorders of posture, gait, and balance in Parkinson's disease (PD) are common and debilitating. This MDS-commissioned task force assessed clinimetric properties of existing rating scales, questionnaires, and timed tests that assess these features in PD. A literature review was conducted. Identified instruments were evaluated systematically and classified as "recommended," "suggested," or "listed." Inclusion of rating scales was restricted to those that could be used readily in clinical research and practice. One rating scale was classified as "recommended" (UPDRS-derived Postural Instability and Gait Difficulty score) and 2 as "suggested" (Tinetti Balance Scale, Rating Scale for Gait Evaluation). Three scales requiring equipment (Berg Balance Scale, Mini-BESTest, Dynamic Gait Index) also fulfilled criteria for "recommended" and 2 for "suggested" (FOG score, Gait and Balance Scale). Four questionnaires were "recommended" (Freezing of Gait Questionnaire, Activities-specific Balance Confidence Scale, Falls Efficacy Scale, Survey of Activities, and Fear of Falling in the Elderly-Modified). Four tests were classified as "recommended" (6-minute and 10-m walk tests, Timed Up-and-Go, Functional Reach). We identified several questionnaires that adequately assess freezing of gait and balance confidence in PD and a number of useful clinical tests. However, most clinical rating scales for gait, balance, and posture perform suboptimally or have been evaluated insufficiently. No instrument comprehensively and separately evaluates all relevant PD-specific gait characteristics with good clinimetric properties, and none provides separate balance and gait scores with adequate content validity for PD. We therefore recommend the development of such a PD-specific, easily administered, comprehensive gait and balance scale that separately assesses all relevant constructs. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  9. Home-based virtual reality balance training and conventional balance training in Parkinson's disease: A randomized controlled trial.

    PubMed

    Yang, Wen-Chieh; Wang, Hsing-Kuo; Wu, Ruey-Meei; Lo, Chien-Shun; Lin, Kwan-Hwa

    2016-09-01

    Virtual reality has the advantage to provide rich sensory feedbacks for training balance function. This study tested if the home-based virtual reality balance training is more effective than the conventional home balance training in improving balance, walking, and quality of life in patients with Parkinson's disease (PD). Twenty-three patients with idiopathic PD were recruited and underwent twelve 50-minute training sessions during the 6-week training period. The experimental group (n = 11) was trained with a custom-made virtual reality balance training system, and the control group (n = 12) was trained by a licensed physical therapist. Outcomes were measured at Week 0 (pretest), Week 6 (posttest), and Week 8 (follow-up). The primary outcome was the Berg Balance Scale. The secondary outcomes included the Dynamic Gait Index, timed Up-and-Go test, Parkinson's Disease Questionnaire, and the motor score of the Unified Parkinson's Disease Rating Scale. The experimental and control groups were comparable at pretest. After training, both groups performed better in the Berg Balance Scale, Dynamic Gait Index, timed Up-and-Go test, and Parkinson's Disease Questionnaire at posttest and follow-up than at pretest. However, no significant differences were found between these two groups at posttest and follow-up. This study did not find any difference between the effects of the home-based virtual reality balance training and conventional home balance training. The two training options were equally effective in improving balance, walking, and quality of life among community-dwelling patients with PD. Copyright © 2015. Published by Elsevier B.V.

  10. Work–Life Balance: History, Costs, and Budgeting for Balance

    PubMed Central

    Raja, Siva; Stein, Sharon L.

    2014-01-01

    The concept and difficulties of work–life balance are not unique to surgeons, but professional responsibilities make maintaining a work–life balance difficult. Consequences of being exclusively career focused include burn out, physical, and mental ailments. In addition, physician burn out may hinder optimal patient care and incur significant costs on health care in general. Assessing current uses of time, allocating goals catered to an individual surgeon, and continual self-assessment may help balance time, and ideally will help prevent burn out. PMID:25067921

  11. Work-life balance: history, costs, and budgeting for balance.

    PubMed

    Raja, Siva; Stein, Sharon L

    2014-06-01

    The concept and difficulties of work-life balance are not unique to surgeons, but professional responsibilities make maintaining a work-life balance difficult. Consequences of being exclusively career focused include burn out, physical, and mental ailments. In addition, physician burn out may hinder optimal patient care and incur significant costs on health care in general. Assessing current uses of time, allocating goals catered to an individual surgeon, and continual self-assessment may help balance time, and ideally will help prevent burn out.

  12. Effects of a Supervised versus an Unsupervised Combined Balance and Strength Training Program on Balance and Muscle Power in Healthy Older Adults: A Randomized Controlled Trial.

    PubMed

    Lacroix, André; Kressig, Reto W; Muehlbauer, Thomas; Gschwind, Yves J; Pfenninger, Barbara; Bruegger, Othmar; Granacher, Urs

    2016-01-01

    Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Sixty-six older adults (men: 25, women: 41; age 73 ± 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group × time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. © 2015 The Author(s) Published by S. Karger AG, Basel.

  13. Work-Life Balance: Beyond the Rhetoric. IES Report.

    ERIC Educational Resources Information Center

    Kodz, J.; Harper, H.; Dench, S.

    The current status of British policy and practice related to work-life balance was examined through case studies of six organizations identified as having well-developed work-life balance and flexible working practices. Interviews were conducted with human resource (HR) managers at all six organizations, and interviews and focus group discussions…

  14. A Balanced Scorecard Approach to Public Relations Management Assessment.

    ERIC Educational Resources Information Center

    Fleisher, Craig S.; Mahaffy, Darren

    1997-01-01

    Describes a new managerial approach to assessing public relations/communications (PR/C) performance using a "balanced scorecard." Reviews the current state of PR/C management assessment; illustrates the balanced scorecard framework; highlights its strengths and weaknesses; describes the process of applying the scorecard to PR/C units;…

  15. 77 FR 33332 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... AD currently requires removing the actuator from the fuel-balance transfer-valve (FBTV) and... the position indicator of the FBTV is in the closed position and deactivating the fuel-balance... Mark 0100 (Fokker 100) aeroplanes were delivered from the production line with a Fuel-Balance Transfer...

  16. 77 FR 59726 - Airworthiness Directives; Fokker Services B.V. Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... existing AD currently requires removing the actuator from the fuel-balance transfer-valve (FBTV) and... the position indicator of the FBTV is in the closed position and deactivating the fuel-balance... production line with a Fuel-Balance Transfer-System (FBTS) installed. Other Fokker 100 aeroplanes were...

  17. 75 FR 58505 - Regulation Z; Truth in Lending

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... requirement applicable to higher-priced mortgage loans, for loans that exceed the maximum principal balance.... 1639D). For loans that exceed the Freddie Mac maximum principal balance, TILA Section 129D provides that...)). The current maximum principal balance for a mortgage loan to be eligible for purchase by Freddie Mac...

  18. 47 CFR 32.4130 - Other current liabilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SYSTEM OF ACCOUNTS FOR TELECOMMUNICATIONS COMPANIES Instructions for Balance Sheet Accounts § 32.4130... separately the amount and nature of the items accrued to the date of the balance sheet. (e) Matured rents... indebtedness of the company, dividends on capital stock, and rents accrued to the date for which the balance...

  19. Self-reported balance status is not a reliable indicator of balance performance in adolescents at one-month post-concussion.

    PubMed

    Rochefort, Coralie; Walters-Stewart, Coren; Aglipay, Mary; Barrowman, Nick; Zemek, Roger; Sveistrup, Heidi

    2017-11-01

    To determine if self-reported balance symptoms can be used as a proxy for measures of the center of pressure (COP) to identify balance deficits in a group of concussed adolescents. Case-control. Thirteen adolescents 1-month post-concussion who reported ongoing balance problems (Balance+), 20 adolescent 1-month post-concussion who reported no balance problems (Balance-), and 30 non-injured adolescents (control) completed a series of balance tests. Participants completed two 2-min trials standing on a Nintendo Wii Balance Board™ during which the COP under their feet was recorded: i) double-leg stance, eyes open; ii) double-leg stance, eyes closed. Participants also completed a dual-task condition combining a double-leg stance and a Stroop Colour-word test. Participants in both the Balance+ and Balance- group swayed over a larger ellipse area compared to the control group while completing the Eyes Closed (Balance+, p=0.002; Balance-, p=0.002) and Dual-Task (Balance+, p=0.001; Balance-, p=0.004) conditions and performed the Dual-Task condition with faster medio-lateral velocity (Balance+, p=0.003; Balance-, p=0.009). The participants in the Balance- group also swayed over a larger ellipse area compared to the control group while completing the Eyes Open condition (p=0.005). No significant differences were identified between the Balance+ and Balance- groups. At 1-month post-concussion, adolescents demonstrated balance deficits compared to non-injured adolescents regardless of whether they reported balance problems. These results suggest that self-reported balance status might not be an accurate reflection of balance performance following a concussion in adolescents. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Effects of exercise continued until anaerobic threshold on balance performance in male basketball players.

    PubMed

    Erkmen, Nurtekin; Suveren, Sibel; Göktepe, Ahmet Salim

    2012-06-01

    The objective of the present study was to determine the effects of exercise continued until the anaerobic threshold on balance performance in basketball players. Twelve male basketball players (age = 20.92 ± 2.81 years, body height = 192.72 ± 7.61 cm, body mass = 88.09 ± 8.41 kg, training experience = 7.17 ± 3.10 years) volunteered to participate in this study. A Kinesthetic Ability Trainer (KAT 2000 stabilometer) was used to measure the balance performance. Balance tests consisted of static tests on dominant, nondominant and double leg stance. The Bruce Protocol was performed by means of a treadmill. The exercise protocol was terminated when the subject passed the anaerobic threshold. After the exercise protocol, balance measurements were immediately repeated. Statistical differences between pre and post-exercise for dominant, nondominant and double leg stance were determined by the paired samples t-test according to the results of the test of normality. The post-exercise balance score on the dominant leg was significantly higher than pre-exercise (t = -2.758, p < 0.05). No differences existed between pre- and post-exercise in the balance scores of the nondominant leg after the exercise protocol (t = 0.428, p > 0.05). A significant difference was found between pre and post-exercise balance scores in the double leg stance (t = -2.354, p < 0.05). The main finding of this study was that an incremental exercise continued until the anaerobic threshold decreased balance performance on the dominant leg in basketball players, but did not alter it in the nondominant leg.

  1. Effects of Inspired CO2 and Breathing Resistance on Neurocognitive and Postural Stability in U.S. Navy Divers

    DTIC Science & Technology

    2015-08-01

    Wii Balance Board . Amplitude and sample entropy...of the subtests. Balance testing Alterations in postural stability (i.e., balance ) were assessed using a Nintendo Wii Balance Board (Nintendo...29. P. Scaglioni-Solano, L. F. Aragón-Vargas, "Validity and Reliability of the Nintendo Wii Balance Board to Assess Standing Balance and

  2. Self-Nulling Eddy Current Probe for Surface and Subsurface Flaw Detection

    NASA Technical Reports Server (NTRS)

    Wincheski, B.; Fulton, J. P.; Nath, S.; Namkung, M.; Simpson, J. W.

    1994-01-01

    An eddy current probe which provides a null-signal in the presence of unflawed material without the need for any balancing circuitry has been developed at NASA Langley Research Center. Such a unique capability of the probe reduces set-up time, eliminates tester configuration errors, and decreases instrumentation requirements. The probe is highly sensitive to surface breaking fatigue cracks, and shows excellent resolution for the measurement of material thickness, including material loss due to corrosion damage. The presence of flaws in the material under test causes an increase in the extremely stable and reproducible output voltage of the probe. The design of the probe and some examples illustrating its flaw detection capabilities are presented.

  3. Acute effects of rearfoot manipulation on dynamic standing balance in healthy individuals.

    PubMed

    Wassinger, Craig A; Rockett, Ariel; Pitman, Lucas; Murphy, Matthew Matt; Peters, Charles

    2014-06-01

    Dynamic standing balance is essential to perform functional activities and is included in the treatment of many lower extremity injuries. Physiotherapists utilize many methods to restore standing balance including stability exercises, functional retraining, and manual therapy. The purpose of this study was to investigate the effects of a rearfoot distraction manipulation on dynamic standing balance. Twenty healthy participants (age: 24.4 ± 2.8 years; height: 162.9 ± 37.7 cm; mass: 68.0 ± 4.8 kg; right leg dominant = 20) completed this study. Following familiarization, dynamic standing balance was assessed during: (1) an experimental condition immediately following a rearfoot distraction manipulation, and (2) a control condition. Dominant leg balance was quantified using the Y-balance test which measures lower extremity reach distances. Reach distances were normalized to leg length and measured in the anterior, posteromedial and posterolateral directions. Overall balance was calculated through the summing of all normalized directions. Paired t-tests and Wilcoxon rank tests were used to compare balance scores for parametric and non-parametric data as appropriate. Significance was set at 0.05 a priori. Effect size (ES) was calculated to determine the clinical impact of the manipulation. Increased reach distances (indicating improved balance) were noted following manipulation for overall balance (p = 0.03, ES = 0.26) and in the posteromedial direction (p = 0.01, ES = 0.42). Reach distances did not differ for the anterior (p = 0.11, ES = 0.16) or posterolateral (p = 0.11, ES = 0.25) components. Dynamic standing balance improved after a rearfoot distraction manipulation in healthy participants. It is hypothesized that manual therapy applied to the foot and ankle may be beneficial to augment other therapeutic modalities when working with patients to improve dynamic standing balance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Immediate effects of cryotherapy on static and dynamic balance.

    PubMed

    Douglas, Matthew; Bivens, Serena; Pesterfield, Jennifer; Clemson, Nathan; Castle, Whitney; Sole, Gisela; Wassinger, Craig A

    2013-02-01

    Cryotherapy is commonly used in physical therapy with many known benefits; however several investigations have reported decreased functional performance following therapeutic application thereof. The purpose of this study was to determine the effect of cryotherapy applied to the ankle on static and dynamic standing balance. It was hypothesized that balance would be decreased after cryotherapy application. Twenty individuals (aged 18 to 40 years) participated in this research project. Each participant was tested under two conditions: an experimental condition where subjects received ice water immersion of the foot and ankle for 15 minutes immediately before balance testing and a control condition completed at room temperature. A Biodex® Balance System was used to quantify balance using anterior/posterior (AP), medial/lateral (ML), and overall balance indices. Paired t-tests were used to compare the balance indices for the two conditions with alpha set at 0.05 a priori. Effect size was also calculated to account for the multiple comparisons made. The static balance indices did not display statistically significant differences between the post-cryotherapy and the control conditions with low effect sizes. Dynamic ML indices significantly increased following the cryotherapy application compared to the control exhibiting a moderate effect size indicating decreased balance following cryotherapy application. No differences were noted between experimental and control conditions for the dynamic AP or overall balance indices while a small effect size was noted for both. The results suggest that cryotherapy to the ankle has a negative effect on the ML component of dynamic balance following ice water immersion. Immediate return to play following cryotherapy application is cautioned given the decreased dynamic ML balance and potential for increased injury risk. 3b Case-control study.

  5. Whole-body vibration training improves balance, muscle strength and glycosylated hemoglobin in elderly patients with diabetic neuropathy.

    PubMed

    Lee, Kyoungjin; Lee, Seungwon; Song, Changho

    2013-12-01

    Elderly patients with diabetes and peripheral neuropathy are more likely to experience falls. However, the information available on how such falls can be prevented is scarce. We investigated the effects of whole-body vibration (WBV) combined with a balance exercise program on balance, muscle strength, and glycosylated hemoglobin (HbA1c) in elderly patients with diabetic peripheral neuropathy. Fifty-five elderly patients with diabetic neuropathy were randomly assigned to WBV with balance exercise group, balance exercise (BE) group, and control group. The WBV and BE groups performed the balance exercise program for 60 min per day, 2 times per week, for 6 weeks. Further, the WBV group performed WBV training (up to 3 × 3 min, 3 times per week, for 6 weeks). The control group did not participate in any training. The main outcome measures were assessed at baseline and after 6 weeks of training; namely, we assessed the postural sway and one leg stance (OLS) for static balance; Berg balance scale (BBS), timed up-and-go (TUG) test, and functional reach test (FRT) for dynamic balance; five-times-sit-to-stand (FTSTS) test for muscle strength; and HbA1c for predicting the progression of diabetes. Significant improvements were noted in the static balance, dynamic balance, muscle strength, and HbA1c in the WBV group, compared to the BE and control groups (P < 0.05). Thus, in combination with the balance exercise program, the short-term WBV therapy is beneficial in improving balance, muscle strength and HbA1c, in elderly patients with diabetic neuropathy who are at high risk for suffering falls.

  6. Effect of Lower Limb Strength on Falls and Balance of the Elderly

    PubMed Central

    Cho, Kang Hee; Bok, Soo Kyung; Hwang, Seon Lyul

    2012-01-01

    Objective To assess the effect of lower limb strength on falls and balance in community-dwelling elderly persons by a health status questionnaire, evaluation of lower limb strength and balance. Method A total of 86 subjects (age 69.8±5.3) were categorized into one of two groups, "Fallers" and "Non-fallers". Thirty one participants who had reported the experience of having fallen unexpectedly at least once in the past year were assigned into the group "Fallers", and the remaining 55 subjects having no fall history in the past year, "Non-fallers". A self-assessment questionnaire was taken. Lower limb strength was measured by a "Chair stand test". Balance was measured by the stability index of the fall risk test protocol of Balance System SD® (Biodex, New York, USA). The differences between the two groups were compared and the correlation between lower limb strength and balance were analyzed. Results The questionnaire demonstrated no significant differences between two groups. The "Chair stand test" showed a significantly less for the "Fallers" (p<0.05). The stability index was significantly greater in the "Fallers" group (p<0.05). There was a moderate negative correlation between the "Chair stand test" and the "Stability index" (R=-0.576, p<0.01). Conclusion This study suggests that the "Chair stand test" is a useful screening process for lower limb strength which correlates to risk for falls and balance in the elderly. PMID:22837975

  7. The decisional balance sheet to promote healthy behavior among ethnically diverse older adults.

    PubMed

    Geller, Karly S; Mendoza, Ilora D; Timbobolan, Jasah; Montjoy, Holly L; Nigg, Claudio R

    2012-01-01

    The rising health care costs and increasing older adult population in the United States make preventive medicine for this age group especially crucial. Regular physical activity and fruit and vegetable consumption may prevent or delay the onset of many chronic conditions that are common among older adults. The decisional balance sheet is a promotional tool targeting the perceived pros and cons of behavior adoption. The current study tested the efficiency and effectiveness of a single-day decisional balance sheet program, targeting increased physical activity and fruit and vegetable intake among older adults. Participating adults (N = 21, age = 72.2) who represented a diverse population in Hawaii (Japanese = 5, Filipino = 4, Caucasian = 4, Native American = 1, Native Hawaiian = 1, Hispanic = 1, and Others = 5) were recruited from housing communities and randomized to a decisional balance sheet program adapted for physical activity or fruit and vegetable consumption. Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ) short form, and daily fruit and vegetable intake with the National Health and Nutrition Examination Survey single item instrument. Baseline and follow-up data were collected. Both programs were implemented efficiently, and participants in both groups improved their daily physical activity. The decisional balance sheet for fruit and vegetable consumption appeared less effective. Specific suggestions for similar programs are reported. © 2011 Wiley Periodicals, Inc.

  8. Reliability, Validity, and Minimal Detectable Change of Balance Evaluation Systems Test and Its Short Versions in Older Cancer Survivors: A Pilot Study.

    PubMed

    Huang, Min H; Miller, Kara; Smith, Kristin; Fredrickson, Kayle; Shilling, Tracy

    2016-01-01

    Cancer is primarily a disease of older adults. About 77% of all cancers are diagnosed in persons aged 55 years and older. Cancer and its treatment can cause diverse sequelae impacting body systems underlying balance control. No study has examined the psychometric properties of balance assessment tools in older cancer survivors, presenting a significant challenge in the selection of outcome measures for clinicians treating this fast-growing population. This study aimed to determine the reliability, validity, and minimal detectable change (MDC) of the Balance Evaluation System Test (BESTest), Mini-Balance Evaluation Systems Test (Mini-BESTest), and Brief-Balance Evaluation Systems Test (Brief-BESTest) in community-dwelling older cancer survivors. This study was a cross-sectional design. Twenty breast and 8 prostate cancer survivors participated [age (SD) = 68.4 (8.13) years]. The BESTest and Activity-specific Balance Confidence (ABC) Scale were administered during the first session. Scores of Mini-BESTest and Brief-BESTest were extracted on the basis of the scores of BESTest. The BESTest was repeated within 1 to 2 weeks by the same rater to determine the test-retest reliability. For the analysis of the inter-rater reliability, 21 participants were randomly selected to be evaluated by 2 raters. A primary rater administered the test. The 2 raters independently and concurrently scored the performance of the participants. Each rater recorded the ratings separately on the scoring sheet. No discussion among the raters was allowed throughout the testing. Intraclass correlation coefficients (ICCs), standard error of measurement, minimal detectable change (MDC), and Bland-Altman plots were calculated. Concurrent validity of these balance tests with the ABC Scale was examined using the Spearman correlation. The BESTest, Mini-BESTest, and Brief-BESTest had high test-retest (ICC = 0.90-0.94) and interrater reliability (ICC = 0.86-0.96), small standard error of measurement (0.86-2.47 points), and MDC (2.39-6.86 points). The Bland-Altman plot revealed no systematic errors. The scores of BESTest, Mini-BEST, and Brief-BEST were correlated significantly with those of ABC Scale (P < .01), supporting their concurrent validity. The BESTest, Mini-BESTest, and Brief-BESTest showed high interrater and test-retest reliability, and excellent concurrent validity with the ABC Scale for community-dwelling cancer survivors aged 55 years and older who had completed cancer treatments for at least 3 months. Future studies are necessary to determine the predictive values for determining fall risks using balance assessment tools in older cancer survivors. Clinicians can utilize the BESTest and its short versions to evaluate balance problems in community-dwelling older cancer survivors and apply the established MDC to assess the intervention outcomes.

  9. Development of a 5-Component Balance for Water Tunnel Applications

    NASA Technical Reports Server (NTRS)

    Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.

    1999-01-01

    The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a wider range of quantitative and qualitative experiments, especially during the preliminary phase of aircraft design.

  10. Lower limb muscle strength is associated with poor balance in middle-aged women: linear and nonlinear analyses.

    PubMed

    Wu, F; Callisaya, M; Laslett, L L; Wills, K; Zhou, Y; Jones, G; Winzenberg, T

    2016-07-01

    This was the first study investigating both linear associations between lower limb muscle strength and balance in middle-aged women and the potential for thresholds for the associations. There was strong evidence that even in middle-aged women, poorer LMS was associated with reduced balance. However, no evidence was found for thresholds. Decline in balance begins in middle age, yet, the role of muscle strength in balance is rarely examined in this age group. We aimed to determine the association between lower limb muscle strength (LMS) and balance in middle-aged women and investigate whether cut-points of LMS exist that might identify women at risk of poorer balance. Cross-sectional analysis of 345 women aged 36-57 years was done. Associations between LMS and balance tests (timed up and go (TUG), step test (ST), functional reach test (FRT), and lateral reach test (LRT)) were assessed using linear regression. Nonlinear associations were explored using locally weighted regression smoothing (LOWESS) and potential cut-points identified using nonlinear least-squares estimation. Segmented regression was used to estimate associations above and below the identified cut-points. Weaker LMS was associated with poorer performance on the TUG (β -0.008 (95 % CI: -0.010, -0.005) second/kg), ST (β 0.031 (0.011, 0.051) step/kg), FRT (β 0.071 (0.047, 0.096) cm/kg), and LRT (β 0.028 (0.011, 0.044) cm/kg), independent of confounders. Potential nonlinear associations were evident from LOWESS results; significant cut-points of LMS were identified for all balance tests (29-50 kg). However, excepting ST, cut-points did not persist after excluding potentially influential data points. In middle-aged women, poorer LMS is associated with reduced balance. Therefore, improving muscle strength in middle-age may be a useful strategy to improve balance and reduce falls risk in later life. Middle-aged women with low muscle strength may be an effective target group for future randomized controlled trials. Australian New Zealand Clinical Trials Registry (ANZCTR) NCT00273260.

  11. History of cannabis use is associated with altered gait.

    PubMed

    Pearson-Dennett, Verity; Todd, Gabrielle; Wilcox, Robert A; Vogel, Adam P; White, Jason M; Thewlis, Dominic

    2017-09-01

    Despite evidence that cannabinoid receptors are located in movement-related brain regions (e.g., basal ganglia, cerebral cortex, and cerebellum), and that chronic cannabis use is associated with structural and functional brain changes, little is known about the long-term effect of cannabis use on human movement. The aim of the current study was to investigate balance and walking gait in adults with a history of cannabis use. We hypothesised that cannabis use is associated with subtle changes in gait and balance that are insufficient in magnitude for detection in a clinical setting. Cannabis users (n=22, 24±6years) and non-drug using controls (n=22, 25±8years) completed screening tests, a gait and balance test (with a motion capture system and in-built force platforms), and a clinical neurological examination of movement. Compared to controls, cannabis users exhibited significantly greater peak angular velocity of the knee (396±30 versus 426±50°/second, P=0.039), greater peak elbow flexion (53±12 versus 57±7°, P=0.038) and elbow range of motion (33±13 versus 36±10°, P=0.044), and reduced shoulder flexion (41±19 versus 26±16°, P=0.007) during walking gait. However, balance and neurological parameters did not significantly differ between the groups. The results suggest that history of cannabis use is associated with long-lasting changes in open-chain elements of walking gait, but the magnitude of change is not clinically detectable. Further research is required to investigate if the subtle gait changes observed in this population become more apparent with aging and increased cannabis use. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Assessment of postural balance in community-dwelling older adults - methodological aspects and effects of biofeedback-based Nintendo Wii training.

    PubMed

    Jørgensen, Martin Grønbech

    2014-01-01

    The overall purpose of this thesis was to examine selected methodological aspects and novel approaches for measuring postural balance older adults, and to examine the effects of biofeedback-based Nintendo Wii training on selected physiological, psychological and functional outcome variables in community-dwelling older adults. In Study I balance control was investigated using force plate analysis of Centre of Pressure (COP) excursion during static bilateral standing in 32 community-dwelling older adults at three different time-points (09:00, 12:30, and 16:00) throughout the day. An overall significant time-of-day effect was observed for all selected COP variables. The greatest change in all COP variables was observed (on average ~15%) between midday (12:30) and the afternoon (16:00), indicating that a systematic time-of-day influence on static postural balance exists in community-dwelling older adults. Consequently, longitudinal (i.e. pre-to-post training) comparisons of postural balance in in older adults with repeated assessments should be conducted at the same time-of-day. In Study II a novel approach for measuring postural balance (using the Nintendo Wii Stillness and Agility tests) was examined for reproducibility and concurrent validity in 30 community-dwelling older adults. While the Nintendo Wii Stillness test showed a high reproducibility, a systematic learning effect between successive sessions was observed for the Agility test. Moderate-to-excellent concurrent validity was seen for the Stillness test. In contrast, the Agility test revealed a poor concurrent validity. In conclusion, the Wii Stillness test seems to represent a low-cost objective reproducible test of postural balance in community-dwelling older adults and appears feasible in various clinical settings. A habituation (familiarization) period is necessary for the Wii Agility test to avoid a systematic learning effect between successive test sessions. Study III investigated the effect of ten weeks of biofeedback-based Nintendo Wii training on static postural balance, mechanical lower limb muscle function, and functional performance in 58 community-dwelling older adults. Additionally, the study investigated the participant motivation for this type of training (Exergaming). Marked improvements in maximal leg muscle strength, rapid force capacity and functional performance were observed following the period of biofeedback-based Nintendo Wii training. Unexpectedly, static bilateral postural balance remained unaltered following the period of intervention. The study participants perceived the Nintendo Wii training as enjoyable and highly motivating, which suggests that this type of exercise may be successfully implemented at senior citizens' centers and/or in the home of the elderly. The results presented in this thesis suggest that strict control of time-of-day is an important methodological aspect when evaluating postural balance in older adults, and an assessment protocol using the Nintendo Wii-Balance Board is reproducible and valid. Biofeedback-based Nintendo Wii exercise intervention appeared unsuccessful in improving static bilateral postural balance, most likely due to a test ceiling effect in the selected outcome measures, but the intervention elicited marked positive changes in various key risk factors associated to fall accidents. Notably, Wii based biofeedback exercise was perceived by the older adults as a highly motivating type of training.

  13. Detailed Drawings for the Force Balance Test Apparatus

    EPA Pesticide Factsheets

    The American Society of Mechanical Engineers (ASME)/Canadian Standards Association (CSA) Joint Harmonization Task Force on water-efficient showerheads used the force balance test apparatus shown in these drawings.

  14. Detecting Behavioral Deficits in Rats After Traumatic Brain Injury

    PubMed Central

    Parsley, Margaret A.; Guptarak, Jutatip; Spratt, Heidi; Sell, Stacy L.

    2018-01-01

    With the increasing incidence of traumatic brain injury (TBI) in both civilian and military populations, TBI is now considered a chronic disease; however, few studies have investigated the long-term effects of injury in rodent models of TBI. Shown here are behavioral measures that are well-established in TBI research for times early after injury, such as two weeks, until two months. Some of these methods have previously been used at later times after injury, up to one year, but by very few laboratories. The methods demonstrated here are a short neurological assessment to test reflexes, a Beam-Balance to test balance, a Beam-Walk to test balance and motor coordination, and a working memory version of the Morris water maze that can be sensitive to deficits in reference memory. Male rats were handled and pre-trained to neurological, balance, and motor coordination tests prior to receiving parasagittal fluid percussion injury (FPI) or sham injury. Rats can be tested on the short neurological assessment (neuroscore), the beam-balance, and the Beam-Walk multiple times, while testing on the water maze can only be done once. This difference is because rats can remember the task, thus confounding the results if repeated testing is attempted in the same animal. When testing from one to three days after injury, significant differences are detected in all three non-cognitive tasks. However, differences in the Beam-Walk task were not detectable at later time points (after 3 months). Deficits were detected at 3 months in the Beam-Balance and at 6 months in the neuroscore. Deficits in working memory were detected out to 12 months after injury, and a deficit in a reference memory first appeared at 12 months. Thus, standard behavioral tests can be useful measures of persistent behavioral deficits after FPI. PMID:29443022

  15. An Efficiency Balanced Information Criterion for Item Selection in Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Han, Kyung T.

    2012-01-01

    Successful administration of computerized adaptive testing (CAT) programs in educational settings requires that test security and item exposure control issues be taken seriously. Developing an item selection algorithm that strikes the right balance between test precision and level of item pool utilization is the key to successful implementation…

  16. Cryogenic Balance Technology at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Parker, P. A.

    2001-01-01

    This paper provides an overview of force measurement at the National Transonic Facility (NTF). The NTF has unique force measurement requirements that dictate an integration of all aspects of balance design, production, and calibration. An overview of current force measurement capabilities is provided along with new balance development efforts. Research activities in the areas of thermal compensation and balance calibration are presented. Also, areas of future research are detailed.

  17. Effects of Flexibility and Balance on Driving Distance and Club Head Speed in Collegiate Golfers.

    PubMed

    Marshall, Kelsey J; Llewellyn, Tamra L

    2017-01-01

    Good balance, flexibility, and strength are all required to maintain a steady stance during the kinematic chain to produce successful golf shots. When the body can produce more power, more club head speed is generated. This formation of power translates into greater distance and accuracy. Athletes today are seeking exercise programs to enhance these qualities of their golf swing. The purpose of this study is to investigate the correlations between flexibility and balance with club head speed and driving distance in the golf swing of male and female collegiate golfers. Five male and five female collegiate golfers participated in the study. They completed multiple range of motion tests, the Balance Error System Test, and multiple flexibility tests. Subjects then participated in a short hitting session. Ten shots were hit with the subject's own driver. The Optishot simulator measured distance and club head speed generated. There was a significant negative correlation between the BESS test score and average distance for male subjects (r=-0.850, p=0.034). There were also a few trends between the balance, flexibility, and club head speed findings of both male and female subjects. This data shows there is a significant relationship between better balance and driving the ball farther. Other trends show better balance and flexibility will result in greater driving distance and club head speed. Balance and flexibility exercises should be incorporated into a golfer's practice or workout regiment.

  18. The Impact of a Submaximal Level of Exercise on Balance Performance in Older Persons

    PubMed Central

    2014-01-01

    Objective. The purpose of this study was to determine the impact of a submaximal level of exercise on balance performance under a variety of conditions. Material and Method. Thirteen community-dwelling older persons with intact foot sensation (age = 66.69 ± 8.17 years, BMI = 24.65 ± 4.08 kg/m2, female, n = 6) volunteered to participate. Subjects' balance performances were measured using the Modified Clinical Test of Sensory Integration of Balance (mCTSIB) at baseline and after test, under four conditions of stance: (1) eyes-opened firm-surface (EOF), (2) eyes-closed firm-surface (ECF), (3) eyes-opened soft-surface (EOS), and (4) eyes-closed soft-surface (ECS). The 6-minute walk test (6MWT) protocol was used to induce the submaximal level of exercise. Data was analyzed using the Wilcoxon Signed-Rank Test. Results. Balance changes during EOF (z = 0.00, P = 1.00) and ECF (z = −1.342, P = 0.180) were not significant. However, balance changes during EOS (z = −2.314, P = 0.021) and ECS (z = −3.089, P = 0.02) were significantly dropped after the 6MWT. Conclusion. A submaximal level of exercise may influence sensory integration that in turn affects balance performance, particularly on an unstable surface. Rehabilitation should focus on designing intervention that may improve sensory integration among older individuals with balance deterioration in order to encourage functional activities. PMID:25383386

  19. Calibration Designs for Non-Monolithic Wind Tunnel Force Balances

    NASA Technical Reports Server (NTRS)

    Johnson, Thomas H.; Parker, Peter A.; Landman, Drew

    2010-01-01

    This research paper investigates current experimental designs and regression models for calibrating internal wind tunnel force balances of non-monolithic design. Such calibration methods are necessary for this class of balance because it has an electrical response that is dependent upon the sign of the applied forces and moments. This dependency gives rise to discontinuities in the response surfaces that are not easily modeled using traditional response surface methodologies. An analysis of current recommended calibration models is shown to lead to correlated response model terms. Alternative modeling methods are explored which feature orthogonal or near-orthogonal terms.

  20. Injury incidence and balance in rugby players.

    PubMed

    M, Jaco Ras; Puckree, Threethambal

    2014-01-01

    Objective : This study determined and correlated injury incidence and balance in rugby players. A prospective survey with balance testing was conducted on first year rugby academy players (N= 114). Injury incidence, static and dynamic balance were tested pre and post-season using a Biosway portable balance system. The data was analysed using paired and independent samples t-tests at p<0.05, Odds ratios, and Spearman's correlation coefficients. 75.50% participated, 71.40% were 18 years old, and 71.40% were White. Injury was sustained by 83% of players with the knee (25%) most commonly injured. Injury incidence was 1.52 per player with an injury rate of 5.95 injuries per 1000 match playing hours. The Stability Index increased significantly (p=0.03) by 15% in the medial/lateral direction post-season compared to pre-season. Significant differences in post-test anterior posterior and overall static and front and front right dynamic stability between injured and uninjured players were noted. Risk factors for injury included the scrum-half (14.80%) playing position, injuries in the 2nd half of the match (57%), and during contact (67%). Conclusion : Injury incidence was related to static and dynamic balance in forward right direction only.

  1. Injury incidence and balance in rugby players

    PubMed Central

    M, Jaco Ras; Puckree, Threethambal

    2014-01-01

    Objective : This study determined and correlated injury incidence and balance in rugby players. Methods: A prospective survey with balance testing was conducted on first year rugby academy players (N= 114). Injury incidence, static and dynamic balance were tested pre and post-season using a Biosway portable balance system. The data was analysed using paired and independent samples t-tests at p<0.05, Odds ratios, and Spearman’s correlation coefficients. Results: 75.50% participated, 71.40% were 18 years old, and 71.40% were White. Injury was sustained by 83% of players with the knee (25%) most commonly injured. Injury incidence was 1.52 per player with an injury rate of 5.95 injuries per 1000 match playing hours. The Stability Index increased significantly (p=0.03) by 15% in the medial/lateral direction post-season compared to pre-season. Significant differences in post-test anterior posterior and overall static and front and front right dynamic stability between injured and uninjured players were noted. Risk factors for injury included the scrum-half (14.80%) playing position, injuries in the 2nd half of the match (57%), and during contact (67%). Conclusion : Injury incidence was related to static and dynamic balance in forward right direction only. PMID:25674136

  2. Specificity of Balance Training in Healthy Individuals: A Systematic Review and Meta-Analysis.

    PubMed

    Kümmel, Jakob; Kramer, Andreas; Giboin, Louis-Solal; Gruber, Markus

    2016-09-01

    It has become common practice to incorporate balance tasks into the training program for athletes who want to improve performance and prevent injuries, in rehabilitation programs, and in fall prevention programs for the elderly. However, it is still unclear whether incorporating balance tasks into a training program increases performance only in these specific tasks or if it affects balance in a more general way. The objective of this systematic literature review and meta-analysis was to determine to what extent the training of balance tasks can improve performance in non-trained balance tasks. A systematic literature search was performed in the online databases EMBASE, PubMed, SPORTDiscus and Web of Science. Articles related to balance training and testing in healthy populations published between January 1985 and March 2015 were considered. A total of 3093 articles were systematically evaluated. Randomized controlled trials were included that (i) used only balance tasks during the training, (ii) used at least two balance tests before and after training, and (iii) tested performance in the trained balance tasks and at least one non-trained balance task. Six studies with a total of 102 subjects met these criteria and were included into the meta-analysis. The quality of the studies was evaluated by means of the Physiotherapy Evidence Database (PEDro) scale. A random effect model was used to calculate the between-subject standardized mean differences (SMDbs) in order to quantify the effect of balance training on various kinds of balance measures relative to controls. The tested balance tasks in each study were classified into tasks that had been trained and tasks that had not been trained. For further analyses, the non-trained balance tasks were subdivided into tasks with similar or non-similar body position and similar or non-similar balance perturbation direction compared to the trained task. The effect of balance training on the performance of the trained balance tasks reached an SMDbs of 0.79 [95 % confidence interval (CI) 0.48-1.10], indicating a high effect in favor for the trained task, with no notable heterogeneity (I (2) = 0 %). The SMDbs in non-trained categories reached values between -0.07 (95 % CI -0.53 to 0.38) and 0.18 (95 % CI -0.27 to 0.64), with non-notable to moderate heterogeneity (I (2) = 0-32 %), indicating no effect of the balance training on the respective non-trained balance tasks. With six studies, the number of studies included in this meta-analysis is rather low. It remains unclear how the limited number of studies with considerable methodological diversity affects the outcome of the SMD calculations and thus the general outcome of the meta-analysis. In healthy populations, balance training can improve the performance in trained tasks, but may have only minor or no effects on non-trained tasks. Consequently, therapists and coaches should identify exactly those tasks that need improvement, and use these tasks in the training program and as a part of the test battery that evaluates the efficacy of the training program. Generic balance tasks-such as one-leg stance-may have little value as overall balance measures or when assessing the efficacy of specific training interventions.

  3. A preliminary study of static and dynamic balance in sedentary obese young adults: the relationship between BMI, posture and postural balance.

    PubMed

    do Nascimento, J A; Silva, C C; Dos Santos, H H; de Almeida Ferreira, J J; de Andrade, P R

    2017-12-01

    The aim of this study was to evaluate the postural control of obese young adults with normal body mass index during different static (bipedic and unipedic support) and dynamic postural conditions (gait velocity and limits of stability) in order to compare the static and dynamic balance of these individuals. A cross-sectional quantitative study was carried out to evaluate static and dynamic balance in 25 sedentary individuals. The sample was divided into two groups, 10 in the normal-weight group (24.70 ± 3.89 years and 21.5 ± 1.66 kg m -2 ) and 15 in the obese group (26.80 ± 5.16 years and 35.66 ± 4.29 kg m -2 ). Postural evaluation was performed through visual inspection, and balance analyses were performed using the Timed Up & Go test (TUGT) and Balance System (Biodex). Descriptive analyses, Fisher's exact test and Mann Whitney U-tests were performed using the Statistical Package for Social Sciences (SPSS - 20.0, Armonk, NY) software. Most of the obese volunteers presented postural alterations, such as head protrusion (47.6%), hyperkyphosis (46.7%) and hyperlordosis (26.7%). Medial-lateral dynamic displacement, risk of falls and mean time to perform the limits of stability test and TUGT were higher for obese subjects (P < 0.05), while there were no significant differences between the groups (P > 0.05) for static balance tests for either bipedal or unipedal tasks. The disadvantage presented by the young obese subjects occurs in dynamic activities, representing worse balance and an increase in time needed to accomplish these activities. © 2017 World Obesity Federation.

  4. Strength, Multijoint Coordination, and Sensorimotor Processing Are Independent Contributors to Overall Balance Ability

    PubMed Central

    Lawrence, Emily L.; Cesar, Guilherme M.; Bromfield, Martha R.; Peterson, Richard; Valero-Cuevas, Francisco J.; Sigward, Susan M.

    2015-01-01

    For young adults, balance is essential for participation in physical activities but is often disrupted following lower extremity injury. Clinical outcome measures such as single limb balance (SLB), Y-balance (YBT), and the single limb hop and balance (SLHB) tests are commonly used to quantify balance ability following injury. Given the varying demands across tasks, it is likely that such outcome measures provide useful, although task-specific, information. But the extent to which they are independent and contribute to understanding the multiple contributors to balance is not clear. Therefore, the purpose of this study was to investigate the associations among these measures as they relate to the different contributors to balance. Thirty-seven recreationally active young adults completed measures including Vertical Jump, YBT, SLB, SLHB, and the new Lower Extremity Dexterity test. Principal components analysis revealed that these outcome measures could be thought of as quantifying the strength, multijoint coordination, and sensorimotor processing contributors to balance. Our results challenge the practice of using a single outcome measure to quantify the naturally multidimensional mechanisms for everyday functions such as balance. This multidimensional approach to, and interpretation of, multiple contributors to balance may lead to more effective, specialized training and rehabilitation regimens. PMID:26665007

  5. Motor assessment using the NIH Toolbox

    PubMed Central

    Magasi, Susan; McCreath, Heather E.; Bohannon, Richard W.; Wang, Ying-Chih; Bubela, Deborah J.; Rymer, William Z.; Beaumont, Jennifer; Rine, Rose Marie; Lai, Jin-Shei; Gershon, Richard C.

    2013-01-01

    Motor function involves complex physiologic processes and requires the integration of multiple systems, including neuromuscular, musculoskeletal, and cardiopulmonary, and neural motor and sensory-perceptual systems. Motor-functional status is indicative of current physical health status, burden of disease, and long-term health outcomes, and is integrally related to daily functioning and quality of life. Given its importance to overall neurologic health and function, motor function was identified as a key domain for inclusion in the NIH Toolbox for Assessment of Neurological and Behavioral Function (NIH Toolbox). We engaged in a 3-stage developmental process to: 1) identify key subdomains and candidate measures for inclusion in the NIH Toolbox, 2) pretest candidate measures for feasibility across the age span of people aged 3 to 85 years, and 3) validate candidate measures against criterion measures in a sample of healthy individuals aged 3 to 85 years (n = 340). Based on extensive literature review and input from content experts, the 5 subdomains of dexterity, strength, balance, locomotion, and endurance were recommended for inclusion in the NIH Toolbox motor battery. Based on our validation testing, valid and reliable measures that are simultaneously low-cost and portable have been recommended to assess each subdomain, including the 9-hole peg board for dexterity, grip dynamometry for upper-extremity strength, standing balance test, 4-m walk test for gait speed, and a 2-minute walk test for endurance. PMID:23479547

  6. 77 FR 2932 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ...-pressure (IP) compressor rotor shaft rear balance land for cracks, which could lead to engine failure. This... and when in the shop, repetitive eddy current inspections (ECIs) for cracks on the rear balance land... for cracks on the rear balance land. That NPRM also proposed certain optional terminating actions...

  7. The effects of balance and postural stability exercises on spa based rehabilitation programme in patients with ankylosing spondylitis.

    PubMed

    Gunay, Selim M; Keser, Ilke; Bicer, Zemzem T

    2018-01-01

    Ankylosing spondylitis (AS) can cause severe functional disorders that lead to loss of balance. The aim of this study was to investigate the effects of balance and postural stability exercises on spa based rehabilitation programme in AS subjects. Twenty-one participants were randomized to the study (n= 11) and control groups (n= 10). Patients balance and stability were assessed with the Berg Balance Scale (BBS), Timed Up and Go (TUG) Test, Single Leg Stance Test (SLST) and Functional Reach Test (FRT). AS spesicied measures were used for assessing to other parameters. The treatment plan for both groups consisted of conventional transcutaneous electrical nerve stimulation (TENS), spa and land-based exercises 5 days per week for 3 weeks. The study group performed exercises based on postural stability and balance with routine physiotherapy practice in thermal water and in exercise room. The TUG, SLST and FUT scores were significantly increased in the study group. In both groups, the BASMI, BASFI, BASDAI and ASQoL scores decreased significantly by the end of the treatment period (p< 0.05). In AS rehabilitation, performing balance and stability exercises in addition to spa based routine approaches can increase the duration of maintaining balance and can improve the benefits of physiotherapy.

  8. Astronaut John Glenn tests balance mechanism performance

    NASA Image and Video Library

    1962-02-01

    S64-14849 (1962) --- Astronaut John H. Glenn Jr.'s balance mechanism (semi-circular-canals) is tested by running cool water into his ear and measuring effect on eye motions (nystagmus). Photo credit: NASA

  9. Metrics of Balance Control for Use in Screening Tests of Vestibular Function

    NASA Technical Reports Server (NTRS)

    Fiedler, Matthew; Cohen, Helen; Mulavara, Ajitkumar; Peters, Brian; Miller, Chris; Bloomberg, Jacob

    2011-01-01

    Decrements in balance control have been documented in astronauts after space flight. Reliable measures of balance control are needed for use in postflight field tests at remote landing sites. Diffusion analysis (DA) is a statistical mechanical tool that shows the average difference of the dependent variable on varying time scales. These techniques have been shown to measure differences in open-loop and closed-loop postural control in astronauts and elderly subjects. The goal of this study was to investigate the reliability of these measures of balance control. Eleven subjects were tested using the Clinical Test of Sensory Interaction on Balance: the subject stood with feet together and arms crossed on a stable or compliant surface, with eyes open or closed and with or without head movements in the pitch or yaw plane. Subjects were instrumented with inertial motion sensors attached to their trunk segment. The DA curves for linear acceleration measures were characterized by linear fits measuring open- (Ds) and closed-loop (Dl) control, and their intersection point (X-int, Y-int). Ds and Y-int showed significant differences between the test conditions. Additionally, Ds was correlated with the root mean square (RMS) of the signal, indicating that RMS was dominated by open-loop events (< 0.5 seconds). The Y-int was found to be correlated with the average linear velocity of trunk movements. Thus DA measures could be applied to derive reliable metrics of balance stability during field tests.

  10. A reliable unipedal stance test for the assessment of balance using a force platform.

    PubMed

    Ponce-González, J G; Sanchis-Moysi, J; González-Henriquez, J J; Arteaga-Ortiz, R; Calbet, J A L; Dorado, C

    2014-02-01

    The aim was to develop a unipedal stance test for the assessment of balance using a force platform. A single-leg balance test was conducted in 23 students (mean ± SD) age: 23 ± 3 years) in a standard position limiting the movement of the arms and non-supporting leg. Six attempts, with both the jumping (JL) and the contralateral leg (CL), were performed under 3 conditions: 1) eyes opened; 2) eyes closed; 3) eyes opened and executing a precision task. The same protocol was repeated two-week apart. The mean and the best result of the six attempts performed each day were taken as representative of balance. The speed of the centre of pressure (CP-Speed) showed excellent reliability for the "best result" analysis in all tests (ICCs 0.87-0.97), except in the test with the eyes closed performed on the CL (ICC<0.4). The CP-Speed had better reliability with the "best result" than with the "mean result" analysis (P<0.05), whilst no significant differences were observed between the JL and the CL (P=0.71 and P=0.96 for mean and best results analysis, respectively). A lower dispersion in the Bland and Altman graph was observed with the eyes opened than closed, and the dynamic test. The single-leg stance balance test proposed is a reliable method to assess balance, especially when performed in a static position, with the eyes opened and using the best result of six attempts as reference, independently of the stance leg.

  11. Inline skating for balance and strength promotion in children during physical education.

    PubMed

    Muehlbauer, Thomas; Kuehnen, Matthias; Granacher, Urs

    2013-12-01

    Deficiencies in balance and strength are common in children and they may lead to injuries. This study investigated the effects of inline skating exercise on balance and strength performance in healthy children. Twenty 11-12-year-old children (8 girls, 12 boys) were assigned to an intervention (n = 10) or a control (n = 10) group. Participants in the intervention group underwent a 4-week inline skating program (2 times/week, 90 min. each) integrated in their physical education lessons. Balance and strength were measured using the Star Excursion Balance test and the countermovement jump test. As compared to the control group, the intervention group significantly improved balance (17-48%, Cohen's d = 0.00-1.49) and jump height (8%, Cohen's d = 0.48). In children, inline skating is a safe, feasible (90% adherence rate), and effective program that can be integrated in physical education lessons to promote balance and strength.

  12. Effect of Lower Extremity Stretching Exercises on Balance in Geriatric Population.

    PubMed

    Reddy, Ravi Shankar; Alahmari, Khalid A

    2016-07-01

    The purpose of this study was to find "Effect of lower extremity stretching exercises on balance in the geriatric population. 60 subjects (30 male and 30 female) participated in the study. The subjects underwent 10 weeks of lower limb stretching exercise program. Pre and post 10 weeks stretching exercise program, the subjects were assessed for balance, using single limb stance time in seconds and berg balance score. These outcome measures were analyzed. Pre and post lower extremity stretching on balance was analyzed using paired t test. Of 60 subjects 50 subjects completed the stretching exercise program. Paired sample t test analysis showed a significant improvement in single limb stance time (eyes open and eyes closed) (p<0.001) and berg balance score (p<0.001). Lower extremity stretching exercises enhances balance in the geriatric population and thereby reduction in the number of falls.

  13. The effect of virtual reality gaming on dynamic balance in older adults.

    PubMed

    Rendon, Abel Angel; Lohman, Everett B; Thorpe, Donna; Johnson, Eric G; Medina, Ernie; Bradley, Bruce

    2012-07-01

    physical therapy interventions that increase functional strength and balance have been shown to reduce falls in older adults. this study compared a virtual reality group (VRG) and a control group (CG). randomised controlled 6-week intervention with pre- and post-test evaluations. outpatient geriatric orthopaedic and balance physical therapy clinic. forty participants were randomised into two groups. the VRG received three different Nintendo® Wii FIT balance interventions three times per week for 6 weeks and the CG received no intervention. compared with the CG, post-intervention measurements showed significant improvements for the VRG in the 8-foot Up & Go test [median decrease of 1.0 versus -0.2 s, (P=0.038) and the Activities-specific Balance Confidence Scale (6.9 versus 1.3%) (P=0.038)]. virtual reality gaming provides clinicians with a useful tool for improving dynamic balance and balance confidence in older adults.

  14. Reliability of Single-Leg Balance and Landing Tests in Rugby Union; Prospect of Using Postural Control to Monitor Fatigue

    PubMed Central

    Troester, Jordan C.; Jasmin, Jason G.; Duffield, Rob

    2018-01-01

    The present study examined the inter-trial (within test) and inter-test (between test) reliability of single-leg balance and single-leg landing measures performed on a force plate in professional rugby union players using commercially available software (SpartaMARS, Menlo Park, USA). Twenty-four players undertook test – re-test measures on two occasions (7 days apart) on the first training day of two respective pre-season weeks following 48h rest and similar weekly training loads. Two 20s single-leg balance trials were performed on a force plate with eyes closed. Three single-leg landing trials were performed by jumping off two feet and landing on one foot in the middle of a force plate 1m from the starting position. Single-leg balance results demonstrated acceptable inter-trial reliability (ICC = 0.60-0.81, CV = 11-13%) for sway velocity, anterior-posterior sway velocity, and mediolateral sway velocity variables. Acceptable inter-test reliability (ICC = 0.61-0.89, CV = 7-13%) was evident for all variables except mediolateral sway velocity on the dominant leg (ICC = 0.41, CV = 15%). Single-leg landing results only demonstrated acceptable inter-trial reliability for force based measures of relative peak landing force and impulse (ICC = 0.54-0.72, CV = 9-15%). Inter-test results indicate improved reliability through the averaging of three trials with force based measures again demonstrating acceptable reliability (ICC = 0.58-0.71, CV = 7-14%). Of the variables investigated here, total sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing performance, respectively. These measures should be considered for monitoring potential changes in postural control in professional rugby union. Key points Single-leg balance demonstrated acceptable inter-trial and inter-test reliability. Single-leg landing demonstrated good inter-trial and inter-test reliability for measures of relative peak landing force and relative impulse, but not time to stabilization. Of the variables investigated, sway velocity and relative landing impulse are the most reliable measures of single-leg balance and landing respectively, and should considered for monitoring changes in postural control. PMID:29769817

  15. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1981-03-05

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  16. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, B.M.; Miyano, K.; Ketterson, J.B.

    1983-11-08

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed. 5 figs.

  17. Horizontal film balance having wide range and high sensitivity

    DOEpatents

    Abraham, Bernard M.; Miyano, Kenjiro; Ketterson, John B.

    1983-01-01

    A thin-film, horizontal balance instrument is provided for measuring surface tension (surface energy) of thin films suspended on a liquid substrate. The balance includes a support bearing and an optical feedback arrangement for wide-range, high sensitivity measurements. The force on the instrument is balanced by an electromagnet, the current through the magnet providing a measure of the force applied to the instrument. A novel float construction is also disclosed.

  18. Long-term follow-up of a randomized controlled trial on additional core stability exercises training for improving dynamic sitting balance and trunk control in stroke patients.

    PubMed

    Cabanas-Valdés, Rosa; Bagur-Calafat, Caritat; Girabent-Farrés, Montserrat; Caballero-Gómez, Fernanda Mª; du Port de Pontcharra-Serra, Helena; German-Romero, Ana; Urrútia, Gerard

    2017-11-01

    Analyse the effect of core stability exercises in addition to conventional physiotherapy training three months after the intervention ended. A randomized controlled trial. Outpatient services. Seventy-nine stroke survivors. In the intervention period, both groups underwent conventional physiotherapy performed five days/week for five weeks, and in addition the experimental group performed core stability exercises for 15 minutes/day. Afterwards, during a three-month follow-up period, both groups underwent usual care that could eventually include conventional physiotherapy or physical exercise but not in a controlled condition. Primary outcome was trunk control and dynamic sitting balance assessed by the Spanish-Version of Trunk Impairment Scale 2.0 and Function in Sitting Test. Secondary outcomes were standing balance and gait evaluated by the Berg Balance Scale, Tinetti Test, Brunel Balance Assessment, Spanish-Version of Postural Assessment Scale for Stroke and activities of daily living using the Barthel Index. A total of 68 subjects out of 79 completed the three-month follow-up period. The mean difference (SD) between groups was 0.78 (1.51) points ( p = 0.003) for total score on the Spanish-Version of Trunk Impairment Scale 2.0, 2.52 (6.46) points ( p = 0.009) for Function in Sitting Test, dynamic standing balance was 3.30 (9.21) points ( p= 0.009) on the Berg Balance Scale, gait was 0.82 (1.88) points ( p = 0.002) by Brunel Balance Assessment (stepping), and 1.11 (2.94) points ( p = 0.044) by Tinetti Test (gait), all in favour of core stability exercises. Core stability exercises plus conventional physiotherapy have a positive long-term effect on improving dynamic sitting and standing balance and gait in post-stroke patients.

  19. Detection of Acute and Long-Term Effects of Concussion: Dual-Task Gait Balance Control Versus Computerized Neurocognitive Test.

    PubMed

    Howell, David R; Osternig, Louis R; Chou, Li-Shan

    2018-02-16

    To examine the acute (within 72h of injury) and long-term (2mo postinjury) independent associations between objective dual-task gait balance and neurocognitive measurements among adolescents and young adults with a concussion and matched controls. Longitudinal case-control. Motion analysis laboratory. A total of 95 participants completed the study: 51 who sustained a concussion (mean age, 17.5±3.3y; 71% men) and 44 controls (mean age, 17.7±2.9y; 72% men). Participants who sustained a concussion underwent a dual-task gait analysis and computerized neurocognitive testing within 72 hours of injury and again 2 months later. Uninjured controls also completed the same test protocol in similar time increments. Not applicable. We compared dual-task gait balance control and computerized neurocognitive test performance between groups using independent samples t tests. Multivariable binary logistic regression models were then constructed for each testing time to determine the association between group membership (concussion vs control), dual-task gait balance control, and neurocognitive function. Medial-lateral center-of-mass displacement during dual-task gait was independently associated with group membership at the initial test (adjusted odds ratio [aOR], 2.432; 95% confidence interval [CI], 1.269-4.661) and 2-month follow-up test (aOR, 1.817; 95% CI, 1.014-3.256) tests. Visual memory composite scores were significantly associated with group membership at the initial hour postinjury time point (aOR, .953; 95% CI, .833-.998). However, the combination of computerized neurocognitive test variables did not predict dual-task gait balance control for participants with concussion, and no single neurocognitive variable was associated with dual-task gait balance control at either testing time. Dual-task assessments concurrently evaluating gait and cognitive performance may allow for the detection of persistent deficits beyond those detected by computerized neurocognitive deficits alone. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Reliability of the Berg Balance Scale as a Clinical Measure of Balance in Community-Dwelling Older Adults with Mild to Moderate Alzheimer Disease: A Pilot Study.

    PubMed

    Muir-Hunter, Susan W; Graham, Laura; Montero Odasso, Manuel

    2015-08-01

    To measure test-retest and interrater reliability of the Berg Balance Scale (BBS) in community-dwelling adults with mild to moderate Alzheimer disease (AD). Method : A sample of 15 adults (mean age 80.20 [SD 5.03] years) with AD performed three balance tests: the BBS, timed up-and-go test (TUG), and Functional Reach Test (FRT). Both relative reliability, using the intra-class correlation coefficient (ICC), and absolute reliability, using standard error of measurement (SEM) and minimal detectable change (MDC95) values, were calculated; Bland-Altman plots were constructed to evaluate inter-tester agreement. The test-retest interval was 1 week. Results : For the BBS, relative reliability values were 0.95 (95% CI, 0.85-0.98) for test-retest reliability and 0.72 (95% CI, 0.31-0.91) for interrater reliability; SEM was 6.01 points and MDC95 was 16.66 points; and interrater agreement was 16.62 points. The BBS performed better in test-retest reliability than the TUG and FRT, tests with established reliability in AD. Between 33% and 50% of participants required cueing beyond standardized instructions because they were unable to remember test instructions. Conclusions : The BBS achieved relative reliability values that support its clinical utility, but MDC95 and agreement values indicate the scale has performance limitations in AD. Further research to optimize balance assessment for people with AD is required.

  1. Intra-Rater and Inter-Rater Reliability of the Balance Error Scoring System in Pre-Adolescent School Children

    ERIC Educational Resources Information Center

    Sheehan, Dwayne P.; Lafave, Mark R.; Katz, Larry

    2011-01-01

    This study was designed to test the intra- and inter-rater reliability of the University of North Carolina's Balance Error Scoring System in 9- and 10-year-old children. Additionally, a modified version of the Balance Error Scoring System was tested to determine if it was more sensitive in this population ("raw scores"). Forty-six…

  2. Instrumented Static and Dynamic Balance Assessment after Stroke Using Wii Balance Boards: Reliability and Association with Clinical Tests

    PubMed Central

    Bower, Kelly J.; McGinley, Jennifer L.; Miller, Kimberly J.; Clark, Ross A.

    2014-01-01

    Background and Objectives The Wii Balance Board (WBB) is a globally accessible device that shows promise as a clinically useful balance assessment tool. Although the WBB has been found to be comparable to a laboratory-grade force platform for obtaining centre of pressure data, it has not been comprehensively studied in clinical populations. The aim of this study was to investigate the measurement properties of tests utilising the WBB in people after stroke. Methods Thirty individuals who were more than three months post-stroke and able to stand unsupported were recruited from a single outpatient rehabilitation facility. Participants performed standardised assessments incorporating the WBB and customised software (static stance with eyes open and closed, static weight-bearing asymmetry, dynamic mediolateral weight shifting and dynamic sit-to-stand) in addition to commonly employed clinical tests (10 Metre Walk Test, Timed Up and Go, Step Test and Functional Reach) on two testing occasions one week apart. Test-retest reliability and construct validity of the WBB tests were investigated. Results All WBB-based outcomes were found to be highly reliable between testing occasions (ICC  = 0.82 to 0.98). Correlations were poor to moderate between WBB variables and clinical tests, with the strongest associations observed between task-related activities, such as WBB mediolateral weight shifting and the Step Test. Conclusions The WBB, used with customised software, is a reliable and potentially useful tool for the assessment of balance and weight-bearing asymmetry following stroke. Future research is recommended to further investigate validity and responsiveness. PMID:25541939

  3. Instrumented static and dynamic balance assessment after stroke using Wii Balance Boards: reliability and association with clinical tests.

    PubMed

    Bower, Kelly J; McGinley, Jennifer L; Miller, Kimberly J; Clark, Ross A

    2014-01-01

    The Wii Balance Board (WBB) is a globally accessible device that shows promise as a clinically useful balance assessment tool. Although the WBB has been found to be comparable to a laboratory-grade force platform for obtaining centre of pressure data, it has not been comprehensively studied in clinical populations. The aim of this study was to investigate the measurement properties of tests utilising the WBB in people after stroke. Thirty individuals who were more than three months post-stroke and able to stand unsupported were recruited from a single outpatient rehabilitation facility. Participants performed standardised assessments incorporating the WBB and customised software (static stance with eyes open and closed, static weight-bearing asymmetry, dynamic mediolateral weight shifting and dynamic sit-to-stand) in addition to commonly employed clinical tests (10 Metre Walk Test, Timed Up and Go, Step Test and Functional Reach) on two testing occasions one week apart. Test-retest reliability and construct validity of the WBB tests were investigated. All WBB-based outcomes were found to be highly reliable between testing occasions (ICC  = 0.82 to 0.98). Correlations were poor to moderate between WBB variables and clinical tests, with the strongest associations observed between task-related activities, such as WBB mediolateral weight shifting and the Step Test. The WBB, used with customised software, is a reliable and potentially useful tool for the assessment of balance and weight-bearing asymmetry following stroke. Future research is recommended to further investigate validity and responsiveness.

  4. Effect of footwear on standing balance in healthy young adult males.

    PubMed

    Alghadir, Ahmad H; Zafar, Hamayun; Anwer, Shahnawaz

    2018-03-01

    The present study aimed to evaluate the effect of footwear on standing balance in healthy young adult males. Thirty healthy male participants aged 20-30 years were tested for standing balance on the Balance Master on three occasions, including wearing a sandal, standard shoe, or no footwear (barefoot). The tests of postural stability include; "Modified Clinical Test of Sensory Interaction on Balance" (mCTSIB), "Unilateral Stance" (US), and the "Limits of Stability" (LOS). The balance scores (mCTSIB, US, and LOS) was analyzed. There was a significant effect between footwear conditions for mCTIB with eye closed on a firm surface (p=0.002). There was a significant effect between footwear conditions for the US with eye open and closed (p⟨0.05). There was a significant effect between footwear conditions for LOS reaction time during forward movement (p=0.02). Similarly, there was a significant effect between footwear conditions for LOS reaction time during left side movement (p=0.01). Wearing sandals compared to bare feet significantly increased postural sway and reduced stability in healthy young adult males. However, wearing a standard shoe compared to bare feet did not significantly affect balance scores in standing.

  5. Canonical Statistical Model for Maximum Expected Immission of Wire Conductor in an Aperture Enclosure

    NASA Technical Reports Server (NTRS)

    Bremner, Paul G.; Vazquez, Gabriel; Christiano, Daniel J.; Trout, Dawn H.

    2016-01-01

    Prediction of the maximum expected electromagnetic pick-up of conductors inside a realistic shielding enclosure is an important canonical problem for system-level EMC design of space craft, launch vehicles, aircraft and automobiles. This paper introduces a simple statistical power balance model for prediction of the maximum expected current in a wire conductor inside an aperture enclosure. It calculates both the statistical mean and variance of the immission from the physical design parameters of the problem. Familiar probability density functions can then be used to predict the maximum expected immission for deign purposes. The statistical power balance model requires minimal EMC design information and solves orders of magnitude faster than existing numerical models, making it ultimately viable for scaled-up, full system-level modeling. Both experimental test results and full wave simulation results are used to validate the foundational model.

  6. Differential sensitivity between a virtual reality (VR) balance module and clinically used concussion balance modalities

    PubMed Central

    Teel, Elizabeth F; Gay, Michael R; Arnett, Peter A; Slobounov, Semyon M

    2015-01-01

    Objective Balance assessments are part of the recommended clinical concussion evaluation, along with computerized neuropsychological testing and self-reported symptoms checklists. New technology has allowed for the creation of virtual reality (VR) balance assessments to be used in concussion care, but there is little information on the sensitivity and specificity of these evaluations. The purpose of this study is to establish the sensitivity and specificity of a VR balance module for detecting lingering balance deficits clinical concussion care. Design Retrospective, case-control study Setting Institutional research laboratory Participants Normal controls (n=94) and concussed participants (n=27) Interventions All participants completed a VR balance assessment paradigm. Concussed participants were diagnosed by a Certified Athletic Trainer or physician (with 48 hours post-injury) and tested in the lab between 7-10 days post-injury. ROC curves were performed in order to establish the VR module’s sensitivity and specificity for detecting lingering balance deficits. Main Outcome Measures Final balance score Results For the VR balance module, a cutoff score of 8.25 was established to maximize sensitivity at 85.7% and specificity at 87.8%. Conclusions The VR balance module has high sensitivity and specificity for detecting sub-acute balance deficits after concussive injury. PMID:26505696

  7. MEDIATORS OF THE RELATIONSHIP BETWEEN NICOTINE REPLACEMENT THERAPY AND SMOKING ABSTINENCE AMONG PEOPLE LIVING WITH HIV/AIDS

    PubMed Central

    Stanton, Cassandra A.; Lloyd-Richardson, Elizabeth E.; Papandonatos, George D.; de Dios, Marcel A.; Niaura, Raymond

    2012-01-01

    Cigarette smoking is highly prevalent among people living with HIV/AIDS and poses unique health risks. Smoking cessation programs tailored to this population have documented improved smoking outcomes with nicotine replacement therapy (NRT). The current study examined 6-month abstinence rates from a randomized clinical trial targeting 412 HIV-positive adult current smokers (51% European American, 19% African American, and 17% Hispanic American) and tested whether psychosocial variables, such as self-efficacy and decisional balance, mediated the relationship between NRT and long-term abstinence. Meeting criteria for complete mediation, 6-month smoking abstinence rates improved significantly with increases in these mediators, and the association of NRT and smoking abstinence was no longer significant once changes in self-efficacy and decisional balance were taken into account. Failure to translate gains in self-efficacy among African Americans into improved abstinence rates accounted for racial/ ethnic differences among participants. Specific psychosocial factors, such as self-efficacy, may be particularly amenable to change in cessation interventions and should be addressed with greater awareness of how cultural and social contextual factors impact treatment response among people living with HIV/AIDS. PMID:19537955

  8. Tracing a roadmap for vitamin B₁₂ testing using the health technology assessment approach.

    PubMed

    Ferraro, Simona; Mozzi, Roberta; Panteghini, Mauro

    2014-06-01

    In our hospital, we are currently working to manage the appropriateness of vitamin B₁₂ (B12) testing. Unfortunately, the classic evidence-based approach is unhelpful in this process and meta-analyzing data on the accuracy of this marker for cobalamin deficiency detection is misleading due to the lack of reference diagnostic methods. The approach currently proposed by the Health Technology Assessment (HTA) enables us to tackle the issue of B₁₂ requests as a "healthcare" problem by considering the position of stakeholders involved in ordering, performing, interpreting the test, and receiving its results. Clinical expectations, methodological issues, and ethical aspects concerning the performance of the test can aid us in providing more guidance on the use of this marker. By building such structured information, hemodialysis patients and pregnant women have emerged as those groups preferentially requiring B₁₂ testing, as it may potentially improve the clinical outcome. To avoid misinterpretation of B₁₂ results more care should be taken in considering its biochemical and biological features, as well as the analytical issues. Spurious values obtained by current automated immunoassays may reflect suboptimal pre-analytical steps as well as known interfering conditions. Furthermore, the harmonization of results by available methods is still a far-reaching goal and the approach to interpret an individual's results should be improved. Tracing a roadmap for B₁₂ testing by exploiting the HTA model to balance the stakeholders' claims and maximizing the patient's outcome may help to manage the marker demand.

  9. Validity and reliability of Nintendo Wii Fit balance scores.

    PubMed

    Wikstrom, Erik A

    2012-01-01

    Interactive gaming systems have the potential to help rehabilitate patients with musculoskeletal conditions. The Nintendo Wii Balance Board, which is part of the Wii Fit game, could be an effective tool to monitor progress during rehabilitation because the board and game can provide objective measures of balance. However, the validity and reliability of Wii Fit balance scores remain unknown. To determine the concurrent validity of balance scores produced by the Wii Fit game and the intrasession and intersession reliability of Wii Fit balance scores. Descriptive laboratory study. Sports medicine research laboratory. Forty-five recreationally active participants (age = 27.0 ± 9.8 years, height = 170.9 ± 9.2 cm, mass = 72.4 ± 11.8 kg) with a heterogeneous history of lower extremity injury. Participants completed a single-limb-stance task on a force plate and the Star Excursion Balance Test (SEBT) during the first test session. Twelve Wii Fit balance activities were completed during 2 test sessions separated by 1 week. Postural sway in the anteroposterior (AP) and mediolateral (ML) directions and the AP, ML, and resultant center-of-pressure (COP) excursions were calculated from the single-limb stance. The normalized reach distance was recorded for the anterior, posteromedial, and posterolateral directions of the SEBT. Wii Fit balance scores that the game software generated also were recorded. All 96 of the calculated correlation coefficients among Wii Fit activity outcomes and established balance outcomes were interpreted as poor (r < 0.50). Intrasession reliability for Wii Fit balance activity scores ranged from good (intraclass correlation coefficient [ICC] = 0.80) to poor (ICC = 0.39), with 8 activities having poor intrasession reliability. Similarly, 11 of the 12 Wii Fit balance activity scores demonstrated poor intersession reliability, with scores ranging from fair (ICC = 0.74) to poor (ICC = 0.29). Wii Fit balance activity scores had poor concurrent validity relative to COP outcomes and SEBT reach distances. In addition, the included Wii Fit balance activity scores generally had poor intrasession and intersession reliability.

  10. Effects of ballates, step aerobics, and walking on balance in women aged 50-75 years.

    PubMed

    Clary, Sarah; Barnes, Cathleen; Bemben, Debra; Knehans, Allen; Bemben, Michael

    2006-01-01

    This study examined the effectiveness of Ballates training (strengthening of the central core musculature by the inception of balance techniques) compared to more traditional exercise programs, such as step aerobics and walking, on balance in women aged 50- 75 years. Participants were randomly assigned to one of three supervised training groups (1 hour/day, 3 days/week, 13 weeks), Ballates (n = 12), step aerobics (n = 17), or walking (n =15). Balance was measured by four different methods (modified Clinical Test for the Sensory Interaction on Balance - mCTSIB; Unilateral Stance with Eyes Open - US-EO or Eyes Closed - US-EC; Tandem Walk - TW; Step Quick Turn - SQT) using the NeuroCom Balance Master. A 2-way (Group and Trial) repeated measures ANOVA and post-hoc Bonferroni Pair-wise Comparisons were used to evaluate changes in the dependent variables used to describe stability and balance (sway velocity, turn sway, speed, and turn time). Measures of static postural stability and dynamic balance were similar for the three groups prior to training. Following the different exercise interventions, sway velocity on firm and foam surfaces (mCTSIB) with eyes closed (p < 0.05) increased for the Ballates group while the other two exercise groups either maintained or decreased their sway velocity following the training, therefore suggesting that these two groups either maintained or improved their balance. There were significant improvements in speed during the TW test (p < 0.01), and turn time (p < 0.01) and sway (p < 0.05) during the SQT test for each of the three groups. In general, all three training programs improved dynamic balance, however, step aerobics and walking programs resulted in be better improvements in postural stability or static balance when compared to the Ballates program. Key PointsExercise training can improve balanceNeed to consider both static and dynamic aspects of balance individuallyImproved balance can reduce the risk of fall.

  11. Effects of aquatic PNF lower extremity patterns on balance and ADL of stroke patients.

    PubMed

    Kim, Eun-Kyung; Lee, Dong-Kyu; Kim, Young-Mi

    2015-01-01

    [Purpose] This study investigated the effect of aquatic proprioceptive neuromuscular facilitation (PNF) patterns in the lower extremity on balance and activities of daily living (ADL) in stroke patients. [Subjects] Twenty poststroke participants were randomly assigned to an experimental group (n = 10) or a control group (n = 10). The experimental group performed lower extremity patterns in an aquatic environment, and the control group performed lower extremity patterns on the ground. Both exercises were conducted for 30 minutes/day, 5 days/week for 6 weeks. Balance was measured with the Berg Balance Scale (BBS), Timed Up and Go Test (TUGT), Functional Reach Test (FRT), and One Leg Stand Test (OLST). Activities of daily living were measured with the Functional Independence Measure (FIM). A paired t-test was used to measure pre- and post-experiment differences, and an independent t-test was used to measure between-group differences. [Results] The experimental and control groups showed significant differences for all pre- and post-experiment variables. In the between-group comparison, the experimental group was significantly difference from the control group. [Conclusion] These results indicate that performing aquatic proprioceptive neuromuscular facilitation patterns in the lower extremity enhances balance and ADL in stroke patients.

  12. Effects of aquatic PNF lower extremity patterns on balance and ADL of stroke patients

    PubMed Central

    Kim, Eun-Kyung; Lee, Dong-Kyu; Kim, Young-Mi

    2015-01-01

    [Purpose] This study investigated the effect of aquatic proprioceptive neuromuscular facilitation (PNF) patterns in the lower extremity on balance and activities of daily living (ADL) in stroke patients. [Subjects] Twenty poststroke participants were randomly assigned to an experimental group (n = 10) or a control group (n = 10). The experimental group performed lower extremity patterns in an aquatic environment, and the control group performed lower extremity patterns on the ground. Both exercises were conducted for 30 minutes/day, 5 days/week for 6 weeks. Balance was measured with the Berg Balance Scale (BBS), Timed Up and Go Test (TUGT), Functional Reach Test (FRT), and One Leg Stand Test (OLST). Activities of daily living were measured with the Functional Independence Measure (FIM). A paired t-test was used to measure pre- and post-experiment differences, and an independent t-test was used to measure between-group differences. [Results] The experimental and control groups showed significant differences for all pre- and post-experiment variables. In the between-group comparison, the experimental group was significantly difference from the control group. [Conclusion] These results indicate that performing aquatic proprioceptive neuromuscular facilitation patterns in the lower extremity enhances balance and ADL in stroke patients. PMID:25642076

  13. Cognitive predictors of balance in Parkinson's disease.

    PubMed

    Fernandes, Ângela; Mendes, Andreia; Rocha, Nuno; Tavares, João Manuel R S

    2016-06-01

    Postural instability is one of the most incapacitating symptoms of Parkinson's disease (PD) and appears to be related to cognitive deficits. This study aims to determine the cognitive factors that can predict deficits in static and dynamic balance in individuals with PD. A sociodemographic questionnaire characterized 52 individuals with PD for this work. The Trail Making Test, Rule Shift Cards Test, and Digit Span Test assessed the executive functions. The static balance was assessed using a plantar pressure platform, and dynamic balance was based on the Timed Up and Go Test. The results were statistically analysed using SPSS Statistics software through linear regression analysis. The results show that a statistically significant model based on cognitive outcomes was able to explain the variance of motor variables. Also, the explanatory value of the model tended to increase with the addition of individual and clinical variables, although the resulting model was not statistically significant The model explained 25-29% of the variability of the Timed Up and Go Test, while for the anteroposterior displacement it was 23-34%, and for the mediolateral displacement it was 24-39%. From the findings, we conclude that the cognitive performance, especially the executive functions, is a predictor of balance deficit in individuals with PD.

  14. Benefits of exercise training and the correlation between aerobic capacity and functional outcomes and quality of life in elderly patients with coronary artery disease.

    PubMed

    Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long

    2014-10-01

    Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.

  15. Clinician-friendly lower extremity physical performance tests in athletes: a systematic review of measurement properties and correlation with injury. Part 2--the tests for the hip, thigh, foot and ankle including the star excursion balance test.

    PubMed

    Hegedus, Eric J; McDonough, Suzanne M; Bleakley, Chris; Baxter, David; Cook, Chad E

    2015-05-01

    To review the quality of literature and measurement properties of physical performance tests (PPTs) of the lower extremity in athletes. Using the PICOS method we established our research question as to whether individual PPTs of the lower extremity have any relationship to injury in competitive athletes ages 12 years to adult (no limit). A search strategy was constructed by combining the terms 'lower extremity' and synonyms for 'performance test' and names of performance tests with variants of the term 'athlete'. After examining the knee in part 1 of this 2 part series, the current report focuses on findings in the rest of the lower extremity. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed and the Consensus-based Standards for the selection of health Measurement Instruments (COSMIN) checklist was used to critique the methodological quality of each paper. A second measure was used to analyse the quality of the measurement properties of each test. Thirty-one articles examined the measurement properties of 14 PPTs pertaining to the lower extremity. The terminology used to name and describe the tests and methodology by which the tests were conducted was inconsistent. The star excursion balance test performed in three directions (anterior, posteromedial, and posterolateral) appears to be the only test to be associated with increased injury risk. There is moderate evidence that the one leg hop for distance and the hexagon hop can distinguish between normal and unstable ankles. There is also moderate evidence that the medial hop can distinguish between painful and normal hips in dancers. Currently, there is relatively limited research-backed information on PPTs of the lower extremity in athletes. We would suggest convening an international consortium comprised of experts in sports to standardise the descriptions and methodologies, and to set forth a research agenda to establish definitively the measurement properties of the most common PPTs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  16. The Association of Flexibility, Balance, and Lumbar Strength with Balance Ability: Risk of Falls in Older Adults

    PubMed Central

    Emilio, Emilio J. Martínez-López; Hita-Contreras, Fidel; Jiménez-Lara, Pilar M.; Latorre-Román, Pedro; Martínez-Amat, Antonio

    2014-01-01

    The purpose of the present study was to determine the effects of a proprioceptive training program on older adults, as well as to analyze the association between flexibility, balance and lumbar strength (physical fitness test) with balance ability and fall risk (functional balance tests). This study was a controlled, longitudinal trial with a 12-week follow-up period. Subjects from a population of older adults were allocated to the intervention group (n = 28) or to the usual care (control) group (n = 26). Subjects performed proprioceptive training twice weekly (6 specific exercises with Swiss ball and BOSU). Each session included 50 minutes (10 minutes of warm-up with slow walk, 10 minutes of mobility and stretching exercises, 30 minutes of proprioceptive exercises). The outcome variables were physical fitness (lower-body flexibility, hip-joint mobility, dynamic balance, static balance, and lumbar strength) and functional balance (Berg scale and Tinetti test). The experimental group obtained significantly higher values than the control group in lower-body flexibility, dynamic balance, and lumbar strength (p = 0.019, p < 0.001, and p = 0.034 respectively). Hip-joint mobility, dynamic balance, and lumbar strength were positively associated with balance ability (p < 0.001, p < 0.001, and p = 0.014, respectively) and the prevention of falls (p = 0.001, p < 0.001, and p = 0.017 respectively). These findings suggest that a 12-week proprioception program intervention (twice a week) significantly improves flexibility, balance, and lumbar strength in older adults. Hip-joint mobility, dynamic balance and lumbar strength are positively associated to balance ability and the risk of falls in older adults. This proprioceptive training does not show a significant improvement in hip-joint mobility or static balance. Key points A 12-week proprioceptive intervention program (two times per week) significantly improves flexibility, balance, and lumbar strength in older adults. The risk of falls and balance ability are significantly improved after a training program with Bosu and Swiss ball in older adults. An improvement in joint mobility, dynamic balance and lumbar strength is positively associated with balance ability and improved fall risk in older adults. A 12-week proprioceptive intervention program (two times per week) does not show a significant improvement in hip-joint mobility and static balance. PMID:24790489

  17. Case report: a balance training program using the Nintendo Wii Fit to reduce fall risk in an older adult with bilateral peripheral neuropathy.

    PubMed

    Hakim, Renée Marie; Salvo, Charles J; Balent, Anthony; Keyasko, Michael; McGlynn, Deidre

    2015-02-01

    A recent systematic review supported the use of strength and balance training for older adults at risk for falls, and provided preliminary evidence for those with peripheral neuropathy (PN). However, the role of gaming systems in fall risk reduction was not explored. The purpose of this case report was to describe the use of the Nintendo® Wii™ Fit gaming system to train standing balance in a community-dwelling older adult with PN and a history of recurrent near falls. A 76-year-old patient with bilateral PN participated in 1 h of Nintendo® Wii™ Fit balance training, two times a week for 6 weeks. Examination was conducted using a Computerized Dynamic Posturography system (i.e. Sensory Organization Test (SOT), Limits of Stability (LOS), Adaptation Test (ADT) and Motor Control Test (MCT) and clinical testing with the Berg Balance Scale (BBS), Timed Up and Go (TUG), Activities-specific Balance Confidence (ABC) scale and 30-s Chair Stand. Following training, sensory integration scores on the SOT were unchanged. Maximum excursion abilities improved by a range of 37-86% on the LOS test. MCT scores improved for amplitude with forward translations and ADT scores improved for downward platform rotations. Clinical scores improved on the BBS (28/56-34/56), ABC (57.5-70.6%) and TUG (14.9-10.9 s) which indicated reduced fall risk. Balance training with a gaming system showed promise as a feasible, objective and enjoyable method to improve physical performance and reduce fall risk in an individual with PN.

  18. Operationally Responsive Space Standard Bus Battery Thermal Balance Testing and Heat Dissipation Analysis

    NASA Technical Reports Server (NTRS)

    Marley, Mike

    2008-01-01

    The focus of this paper will be on the thermal balance testing for the Operationally Responsive Space Standard Bus Battery. The Standard Bus thermal design required that the battery be isolated from the bus itself. This required the battery to have its own thermal control, including heaters and a radiator surface. Since the battery was not ready for testing during the overall bus thermal balance testing, a separate test was conducted to verify the thermal design for the battery. This paper will discuss in detail, the test set up, test procedure, and results from this test. Additionally this paper will consider the methods taken to determine the heat dissipation of the battery during charge and discharge. It seems that the heat dissipation for Lithium Ion batteries is relatively unknown and hard to quantify. The methods used during test and the post test analysis to estimate the heat dissipation of the battery will be discussed.

  19. Balances for the measurement of multiple components of force in flows of a millisecond duration

    NASA Technical Reports Server (NTRS)

    Mee, D. J.; Daniel, W. J.; Tuttle, S. L.; Simmons, J. M.

    1995-01-01

    This paper reports a new balance for the measurement of three components of force - lift, drag and pitching moment - in impulsively starting flows which have a duration of about one millisecond. The basics of the design of the balance are presented and results of tests on a 15 deg semi-angle cone set at incidence in the T4 shock tunnel are compared with predictions. These results indicate that the prototype balance performs well for a 1.9 kg, 220 mm long model. Also presented are results from initial bench tests of another application of the deconvolution force balance to the measurement of thrust produced by a 2D scramjet nozzle.

  20. 40 CFR 1065.295 - PM inertial balance for field-testing analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false PM inertial balance for field-testing analysis. 1065.295 Section 1065.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Pm Measurements § 1065.295 PM...

  1. 40 CFR 1065.295 - PM inertial balance for field-testing analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false PM inertial balance for field-testing analysis. 1065.295 Section 1065.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Pm Measurements § 1065.295 PM...

  2. 40 CFR 1065.295 - PM inertial balance for field-testing analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false PM inertial balance for field-testing analysis. 1065.295 Section 1065.295 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Pm Measurements § 1065.295 PM...

  3. Three-Dimensional Finite-Element Simulation for a Thermoelectric Generator Module

    NASA Astrophysics Data System (ADS)

    Hu, Xiaokai; Takazawa, Hiroyuki; Nagase, Kazuo; Ohta, Michihiro; Yamamoto, Atsushi

    2015-10-01

    A three-dimensional closed-circuit numerical model of a thermoelectric generator (TEG) module has been constructed with COMSOL® Multiphysics to verify a module test system. The Seebeck, Peltier, and Thomson effects and Joule heating are included in the thermoelectric conversion model. The TEG model is employed to simulate the operation of a 16-leg TEG module based on bismuth telluride with temperature-dependent material properties. The module is mounted on a test platform, and simulated by combining the heat conduction process and thermoelectric conversion process. Simulation results are obtained for the terminal voltage, output power, heat flow, and efficiency as functions of the electric current; the results are compared with measurement data. The Joule and Thomson heats in all the thermoelectric legs, as functions of the electric current, are calculated by finite-element volume integration over the entire legs. The Peltier heat being pumped at the hot side and released at the cold side of the module are also presented in relation to the electric current. The energy balance relations between heat and electricity are verified to support the simulation.

  4. [Functional assessment of patients with vertigo and dizziness in occupational medicine].

    PubMed

    Zamysłowska-Szmytke, Ewa; Szostek-Rogula, Sylwia; Śliwińska-Kowalska, Mariola

    2018-03-09

    Balance assessment relies on symptoms, clinical examination and functional assessment and their verification in objective tests. Our study was aimed at calculating the assessment compatibility between questionnaires, functional scales and objective vestibular and balance examinations. A group of 131 patients (including 101 women; mean age: 59±14 years) of the audiology outpatient clinic was examined. Benign paroxysmal positional vertigo, phobic vertigo and central dizziness were the most common diseases observed in the study group. Patients' symptoms were tested using the questionnaire on Cawthworne-Cooksey exercises (CC), Dizziness Handicap Inventory (DHI) and Duke Anxiety-Depression Scale. Berg Balance Scale (BBS), Dynamic Gait Index (DGI), the Tinetti test, Timed Up and Go test (TUG), and Dynamic Visual Acuity (DVA) were used for the functional balance assessment. Objective evaluation included: videonystagmography caloric test and static posturography. The study results revealed statistically significant but moderate compatibility between functional tests BBS, DGI, TUG, DVA and caloric results (Kendall's W = 0.29) and higher for posturography (W = 0.33). The agreement between questionnaires and objective tests were very low (W = 0.08-0.11).The positive predictive values of BBS were 42% for caloric and 62% for posturography tests, of DGI - 46% and 57%, respectively. The results of functional tests (BBS, DGI, TUG, DVA) revealed statistically significant correlations with objective balance tests but low predictive values did not allow to use these tests in vestibular damage screening. Only half of the patients with functional disturbances revealed abnormal caloric or posturography tests. The qualification to work based on objective tests ignore functional state of the worker, which may influence the ability to work. Med Pr 2018;69(2):179-189. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  5. Tests of stepping as indicators of mobility, balance, and fall risk in balance-impaired older adults.

    PubMed

    Cho, Be-long; Scarpace, Diane; Alexander, Neil B

    2004-07-01

    To determine the relationships between two tests of stepping ability (the maximal step length (MSL) and rapid step test (RST)) and standard tests of standing balance, gait, mobility, and functional impairment in a group of at-risk older adults. Cross-sectional study. University-based laboratory. One hundred sixty-seven mildly balance-impaired older adults recruited for a balance-training and fall-reduction program (mean age 78, range 65-90). Measures of stepping maximally (MSL, the ability to maximally step out and return to the initial position) and rapidly (RST, the time taken to step out and return in multiple directions as fast as possible); standard measures of balance, gait, and mobility including timed tandem stance (TS), tandem walk (TW, both timing and errors), timed unipedal stance (US), timed up and go (TUG), performance oriented mobility assessment (POMA), and 6-minute walk (SMW); measures of leg strength (peak knee and ankle torque and power at slow and fast speeds); self-report measures of frequent falls (>2 per 12 months), disability (Established Population for Epidemiologic Studies of the Elderly (EPESE) physical function), and confidence to avoid falls (Activity-specific Balance Confidence (ABC) Scale). Spearman and Pearson correlation, intraclass correlation coefficient, logistic regression, and linear regression were used for data analysis. MSL consistently predicted a number of self-report and performance measures at least as well as other standard balance measures. MSL correlations with EPESE physical function, ABC, TUG, and POMA scores; SMW; and peak maximum knee and ankle torque and power were at least as high as those correlations seen with TS, TW, or US. MSL score was associated with the risk of being a frequent faller. In addition, the six MSL directions were highly correlated (up to 0.96), and any one of the leg directions yielded similar relationships with functional measures and a history of falls. Relationships between RST and these measures were relatively modest. MSL is as good a predictor of mobility performance, frequent falls, self-reported function, and balance confidence as standard stance tests such as US. MSL simplified to one direction may be a useful clinical indicator of mobility, balance, and fall risk in older adults.

  6. Effects of interactive video-game based system exercise on the balance of the elderly.

    PubMed

    Lai, Chien-Hung; Peng, Chih-Wei; Chen, Yu-Luen; Huang, Ching-Ping; Hsiao, Yu-Ling; Chen, Shih-Ching

    2013-04-01

    This study evaluated the effects of interactive video-game based (IVGB) training on the balance of older adults. The participants of the study included 30 community-living persons over the age of 65. The participants were divided into 2 groups. Group A underwent IVGB training for 6 weeks and received no intervention in the following 6 weeks. Group B received no intervention during the first 6 weeks and then participated in training in the following 6 weeks. After IVGB intervention, both groups showed improved balance based on the results from the following tests: the Berg Balance Scale (BBS), Modified Falls Efficacy Scale (MFES), Timed Up and Go (TUG) test, and the Sway Velocity (SV) test (assessing bipedal stance center pressure with eyes open and closed). Results from the Sway Area (SA) test (assessing bipedal stance center pressure with eyes open and closed) revealed a significant improvement in Group B after IVGB training. Group A retained some training effects after 6 weeks without IVGB intervention. Additionally, a moderate association emerged between the Xavix measured step system stepping tests and BBS, MFES, Unipedal Stance test, and TUG test measurements. In conclusion, IVGB training improves balance after 6 weeks of implementation, and the beneficial effects partially remain after training is complete. Further investigation is required to determine if this training is superior to traditional physical therapy. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Wind-Tunnel Development of Ailerons for the Curtiss XP-60 Airplanem Special Report

    NASA Technical Reports Server (NTRS)

    Rogallo, F. M.; Lowry, John G.

    1942-01-01

    An investigation was made in the LWAL 7- by 10-foot tunnel of internally balanced, sealed ailerons for the Curtiss XP-60 airplane. Ailerons with tabs and. with various amounts of balance were tested. Stick forces were estimated for several aileron arrangements including an arrangement recommended for the airplane. Flight tests of the recommended arrangement are discussed briefly in an appendix, The results of the wind-tunnel and flight tests indicate that the ailerons of large or fast airplanes may be satisfactorily balanced by the method developed.

  8. In-Situ Load System for Calibrating and Validating Aerodynamic Properties of Scaled Aircraft in Ground-Based Aerospace Testing Applications

    NASA Technical Reports Server (NTRS)

    Lynn, Keith C. (Inventor); Acheson, Michael J. (Inventor); Commo, Sean A. (Inventor); Landman, Drew (Inventor)

    2016-01-01

    An In-Situ Load System for calibrating and validating aerodynamic properties of scaled aircraft in ground-based aerospace testing applications includes an assembly having upper and lower components that are pivotably interconnected. A test weight can be connected to the lower component to apply a known force to a force balance. The orientation of the force balance can be varied, and the measured forces from the force balance can be compared to applied loads at various orientations to thereby develop calibration factors.

  9. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  10. Using nonesterified fatty acids and β-hydroxybutyrate concentrations during the transition period for herd-level monitoring of increased risk of disease and decreased reproductive and milking performance.

    PubMed

    Ospina, Paula A; McArt, Jessica A; Overton, Thomas R; Stokol, Tracy; Nydam, Daryl V

    2013-07-01

    Dairy cows visit a state of negative energy balance (NEB) as they transition from late gestation to early lactation. At the individual level, there are several metabolic adaptations to manage NEB, including mobilization of nonesterified fatty acids (NEFA) from body fat reserves and glucose sparing for lactogenesis. Based on current pen-level feeding and management practices, strategies to minimize excessive NEB in both the individual and herd should focus on herd-level testing and management. This article reviews strategies for testing and monitoring of excessive NEB at the herd level through individual testing of 2 energy markers: NEFA and β-hydroxybutyrate. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effect of Tai Chi Exercise Combined with Mental Imagery Theory in Improving Balance in a Diabetic and Elderly Population.

    PubMed

    Alsubiheen, Abdulrahman; Petrofsky, Jerrold; Daher, Noha; Lohman, Everett; Balbas, Edward

    2015-10-10

    One of the effects of diabetes mellitus (DM), peripheral neuropathy, affects the sensation in the feet and can increase the chance of falling. The purpose of the study was to investigate the effect of 8 weeks of Tai Chi (TC) training combined with mental imagery (MI) on improving balance in people with diabetes and an age matched control group. Seventeen healthy subjects and 12 diabetic sedentary subjects ranging from 40-80 years of age were recruited. All subjects in both groups attended a Yang style of TC class using MI strategies, 2 sessions a week for 8 weeks. Each session was one hour long. Measures were taken using a balance platform test, an Activities-specific Balance Confidence (ABC) Scale, a one leg standing test (OLS), functional reach test (FRT) and hemoglobin A1C. These measures were taken twice, pre and post-study, for both groups. Both groups experienced significant improvements in ABC, OLS, FRT (P<0.01) after completing 8 weeks of TC exercise with no significant improvement between groups. Subjects using the balance platform test demonstrated improvement in balance in all different tasks with no significant change between groups. There was no significant change in HbA1C for the diabetic group. All results showed an improvement in balance in the diabetic and the control groups; however, no significant difference between the groups was observed. Since the DM group had more problems with balance impairment at baseline than the control, the diabetic group showed the most benefit from the TC exercise.

  12. The Effect of a Virtual Reality Game Intervention on Balance for Patients with Stroke: A Randomized Controlled Trial.

    PubMed

    Lee, Hsin-Chieh; Huang, Chia-Lin; Ho, Sui-Hua; Sung, Wen-Hsu

    2017-10-01

    The aim of this study was to investigate the effects of virtual reality (VR) balance training conducted using Kinect for Xbox® games on patients with chronic stroke. Fifty patients with mild to moderate motor deficits were recruited and randomly assigned to two groups: VR plus standard treatment group and standard treatment (ST) group. In total, 12 training sessions (90 minutes a session, twice a week) were conducted in both groups, and performance was assessed at three time points (pretest, post-test, and follow-up) by a blinded assessor. The outcome measures were the Berg Balance Scale (BBS), Functional Reach Test, and Timed Up and Go Test (cognitive; TUG-cog) for balance evaluations; Modified Barthel Index for activities of daily living ability; Activities-specific Balance Confidence Scale for balance confidence; and Stroke Impact Scale for quality of life. The pleasure scale and adverse events were also recorded after each training session. Both groups exhibited significant improvement over time in the BBS (P = 0.000) and TUG-cog test (P = 0.005). The VR group rated the experience as more pleasurable than the ST group during the intervention (P = 0.027). However, no significant difference was observed in other outcome measures within or between the groups. No serious adverse events were observed during the treatment in either group. VR balance training by using Kinect for Xbox games plus the traditional method had positive effects on the balance ability of patients with chronic stroke. The VR group experienced higher pleasure than the ST group during the intervention.

  13. A novel video-based paradigm to study the mechanisms underlying age- and falls risk-related differences in gaze behaviour during walking.

    PubMed

    Stanley, Jennifer; Hollands, Mark

    2014-07-01

    The current study aimed to quantitatively assess differences in gaze behaviour between participants grouped on the basis of their age and measures of functional mobility during a virtual walking paradigm. The gaze behaviour of nine young adults, seven older adults with a relatively low risk of falling and seven older adults with a relatively higher risk of falling was measured while they watched five first-person perspective movies representing the viewpoint of a pedestrian walking through various environments. Participants also completed a number of cognitive tests: Stroop task, visual search, trail making task, Mini Mental Status Examination, and reaction time, visual tests (visual acuity and contrast sensitivity) and assessments of balance (Activities Balance Confidence Scale and Berg Balance Scale) to aid in the interpretation of differences in gaze behaviour. The high risk older adult group spent significantly more time fixating aspects of the travel path than the low risk and young adult groups. High risk older adults were also significantly slower in performing a number of the cognitive tasks than young adults. Correlations were conducted to compare the extent to which travel path fixation durations co-varied with scores on the tests of visual search, motor, and cognitive function. A positive significant correlation was found between the speed of response to the incongruent Stroop task and travel path fixation duration r21  = 0.44, p < 0.05. The results indicate that our movie-viewing paradigm can identify differences in gaze behaviour between participants grouped on the basis of their age and measures of functional mobility and that these differences are associated with cognitive decline. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.

  14. Dynamically balanced absolute sea level of the global ocean derived from near-surface velocity observations

    NASA Astrophysics Data System (ADS)

    Niiler, Pearn P.; Maximenko, Nikolai A.; McWilliams, James C.

    2003-11-01

    The 1992-2002 time-mean absolute sea level distribution of the global ocean is computed for the first time from observations of near-surface velocity. For this computation, we use the near-surface horizontal momentum balance. The velocity observed by drifters is used to compute the Coriolis force and the force due to acceleration of water parcels. The anomaly of horizontal pressure gradient is derived from satellite altimetry and corrects the temporal bias in drifter data distribution. NCEP reanalysis winds are used to compute the force due to Ekman currents. The mean sea level gradient force, which closes the momentum balance, is integrated for mean sea level. We find that our computation agrees, within uncertainties, with the sea level computed from the geostrophic, hydrostatic momentum balance using historical mean density, except in the Antarctic Circumpolar Current. A consistent horizontally and vertically dynamically balanced, near-surface, global pressure field has now been derived from observations.

  15. [Effects of community-based comprehensive fall prevention program on muscle strength, postural balance and fall efficacy in elderly people].

    PubMed

    Bae, Jeongyee; Cho, Seong Il

    2014-12-01

    The purposes of this study was to develop a comprehensive community-based fall prevention program and to test the effects of the program on the muscle strength, postural balance and fall efficacy for elderly people. The design of this study was a nonequivalent control group pretest-posttest design. There were 28 participants in the experimental group and 29 in the control group. The program consisted of balance exercises, elastic resistance exercises and prevention education. The program was provided five times a week for 8 weeks and each session lasted 90 minutes. Data were analyzed using χ²-test, independent t-test and paired t-test using the SPSS program. Muscle strength of the lower extremities, postural balance and fall efficacy scores significantly improved in the experimental group compared to the control group. These results suggest that this program can improve lower extremity muscle strength, postural balance and fall efficacy in elders. Therefore, this program is recommended for use in fall prevention programs for elders living in the community.

  16. Balance models for equatorial planetary-scale dynamics

    NASA Astrophysics Data System (ADS)

    Chan, Ian Hiu-Fung

    This thesis aims at advancing our understanding of large-scale dynamics in the tropics, specifically the characterization of slow planetary-scale motions through a balance theory; current balance theories in the tropics are unsatisfactory as they filter out Kelvin waves, which are an important component of variability, along with fast inertia-gravity (IG) waves. (Abstract shortened by UMI.).

  17. On the Road to Assessing Deeper Learning: The Status of Smarter Balanced and PARCC Assessment Consortia. CRESST Report 823

    ERIC Educational Resources Information Center

    Herman, Joan; Linn, Robert

    2013-01-01

    Two consortia, the Smarter Balanced Assessment Consortium (Smarter Balanced) and the Partnership for Assessment of Readiness for College and Careers (PARCC), are currently developing comprehensive, technology-based assessment systems to measure students' attainment of the Common Core State Standards (CCSS). The consequences of the consortia…

  18. 24 CFR 3500.17 - Escrow accounts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... means an amount by which a current escrow account balance falls short of the target balance at the time...). Deficiency is the amount of a negative balance in an escrow account. As noted in § 3500.17(f), if a servicer... escrow account. Escrow account means any account that a servicer establishes or controls on behalf of a...

  19. A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison

    NASA Technical Reports Server (NTRS)

    Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.

    2017-01-01

    This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.

  20. The effectiveness of a single session of Whole-Body Vibration in improving the balance and the strength in type 2 diabetic patients with mild to moderate degree of peripheral neuropathy: a pilot study.

    PubMed

    Kordi Yoosefinejad, Amin; Shadmehr, Azadeh; Olyaei, Ghloamreza; Talebian, Saeed; Bagheri, Hossein

    2014-01-01

    Peripheral neuropathy is a common complication of diabetes mellitus. Muscle strength and the balance deficits are seen in these patients. Whole-Body Vibration (WBV) is a time-efficient method which may be beneficial for them. The immediate effects of WBV on muscle strength and balance have not been studied yet. The aim of this study was to investigate the effects of one session of WBV on muscle strength and the balance of diabetic patients. Ten diabetic patients with peripheral neuropathy took part in this study. Outcome measurements were total strength, strength of tibialis anterior and quadriceps femoris muscles and the balance parameters including Unilateral Stance Test and Timed Up and Go Test. Tibialis anterior muscle strength and Timed Up and GO Test parameters showed significant differences post-exercise in comparison to baseline. A session of WBV had positive effects on muscle strength and the balance in patients with type-2 diabetes associated with neuropathy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Using K-12 Lessons Learned about How to Balance Accessibility and Test Security to Inform Licensure, Credentialing, and Certification Exam Policies

    ERIC Educational Resources Information Center

    Lazarus, Sheryl S.; van den Heuvel, Jill R.; Thurlow, Martha L.

    2017-01-01

    This paper explores how to balance test security and accessibility on licensure, credentialing, and certification exams. It examines K-12 test security policies related to educational assessments across states to discover lessons learned about how to meet accessibility needs of individuals with disabilities while minimizing test security risks. It…

  2. Assessment of motor balance and coordination in mice using the balance beam.

    PubMed

    Luong, Tinh N; Carlisle, Holly J; Southwell, Amber; Patterson, Paul H

    2011-03-10

    Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod.

  3. Assessment of Motor Balance and Coordination in Mice using the Balance Beam

    PubMed Central

    Southwell, Amber; Patterson, Paul H.

    2011-01-01

    Brain injury, genetic manipulations, and pharmacological treatments can result in alterations of motor skills in mice. Fine motor coordination and balance can be assessed by the beam walking assay. The goal of this test is for the mouse to stay upright and walk across an elevated narrow beam to a safe platform. This test takes place over 3 consecutive days: 2 days of training and 1 day of testing. Performance on the beam is quantified by measuring the time it takes for the mouse to traverse the beam and the number of paw slips that occur in the process. Here we report the protocol used in our laboratory, and representative results from a cohort of C57BL/6 mice. This task is particularly useful for detecting subtle deficits in motor skills and balance that may not be detected by other motor tests, such as the Rotarod. PMID:21445033

  4. Testing for detailed balance in a financial market

    NASA Astrophysics Data System (ADS)

    Fiebig, H. R.; Musgrove, D. P.

    2015-06-01

    We test a historical price-time series in a financial market (the NASDAQ 100 index) for a statistical property known as detailed balance. The presence of detailed balance would imply that the market can be modeled by a stochastic process based on a Markov chain, thus leading to equilibrium. In economic terms, a positive outcome of the test would support the efficient market hypothesis, a cornerstone of neo-classical economic theory. In contrast to the usage in prevalent economic theory the term equilibrium here is tied to the returns, rather than the price-time series. The test is based on an action functional S constructed from the elements of the detailed balance condition and the historical data set, and then analyzing S by means of simulated annealing. Checks are performed to verify the validity of the analysis method. We discuss the outcome of this analysis.

  5. A novel free floating accelerometer force balance system for shock tunnel applications

    NASA Astrophysics Data System (ADS)

    Joarder, R.; Mahaptra, D. R.; Jagadeesh, G.

    In order to overcome the interference of the model mounting system with the external aerodynamics of the body during shock tunnel testing, a new free floating internally mountable balance system that ensures unrestrained model motion during testing has been designed, fabricated and tested. Minimal friction ball bearings are used for ensuring the free floating condition of the model during tunnel testing. The drag force acting on a blunt leading edge flat plate at hypersonic Mach number has been measured using the new balance system. Finite element model (FEM) and CFD are exhaustively used in the design as well as for calibrating the new balance system. The experimentally measured drag force on the blunt leading edge flat plate at stagnation enthalpy of 0.7 and 1.2 MJ/kg and nominal Mach number of 5.75 matches well with FEM results. The concept can also be extended for measuring all the three fundamental aerodynamic forces in short duration test facilities like free piston driven shock tunnels.

  6. Functional measures show improvements after a home exercise program following supervised balance training in older adults with elevated fall risk.

    PubMed

    Tisher, Kristen; Mann, Kimberly; VanDyke, Sarah; Johansson, Charity; Vallabhajosula, Srikant

    2018-03-05

    Supervised balance training shows immediate benefit for older adults at fall risk. The long-term effectiveness of such training can be enhanced by implementing a safe and simple home exercise program (HEP). We investigated the effects of a12-week unsupervised HEP following supervised clinic-based balance training on functional mobility, balance, fall risk, and gait. Six older adults with an elevated fall risk obtained an HEP and comprised the HEP group (HEPG) and five older adults who were not given an HEP comprised the no HEP group (NoHEPG). The HEP consisted of three static balance exercises: feet-together, single-leg stance, and tandem. Each exercise was to be performed twice for 30-60 s, once per day, 3 days per week for 12 weeks. Participants were educated on proper form, safety, and progression of exercises. Pre- and post-HEP testing included Berg Balance Scale (BBS), Timed Up and Go, Short Physical Performance Battery (SPPB) assessments, Activities-Balance Confidence, Late-Life Functional Disability Instrument and instrumented assessments of balance and gait (Limits of Stability, modified Clinical Test of Sensory Interaction on Balance, Gait). A healthy control group (HCG; n = 11) was also tested. For most of the measures, the HEPG improved to the level of HCG. Though task-specific improvements like BBS and SPPB components were seen, the results did not carry over to more dynamic assessments. Results provide proof of concept that a simple HEP can be independently implemented and effective for sustaining and/or improving balance in older adults at elevated fall-risk after they have undergone a clinic-based balance intervention.

  7. The combination of plyometric and balance training improves sprint and shuttle run performances more often than plyometric-only training with children.

    PubMed

    Chaouachi, Anis; Othman, Aymen Ben; Hammami, Raouf; Drinkwater, Eric J; Behm, David G

    2014-02-01

    Because balance is not fully developed in children and studies have shown functional improvements with balance only training studies, a combination of plyometric and balance activities might enhance static balance, dynamic balance, and power. The objective of this study was to compare the effectiveness of plyometric only (PLYO) with balance and plyometric (COMBINED) training on balance and power measures in children. Before and after an 8-week training period, testing assessed lower-body strength (1 repetition maximum leg press), power (horizontal and vertical jumps, triple hop for distance, reactive strength, and leg stiffness), running speed (10-m and 30-m sprint), static and dynamic balance (Standing Stork Test and Star Excursion Balance Test), and agility (shuttle run). Subjects were randomly divided into 2 training groups (PLYO [n = 14] and COMBINED [n = 14]) and a control group (n = 12). Results based on magnitude-based inferences and precision of estimation indicated that the COMBINED training group was considered likely to be superior to the PLYO group in leg stiffness (d = 0.69, 91% likely), 10-m sprint (d = 0.57, 84% likely), and shuttle run (d = 0.52, 80% likely). The difference between the groups was unclear in 8 of the 11 dependent variables. COMBINED training enhanced activities such as 10-m sprints and shuttle runs to a greater degree. COMBINED training could be an important consideration for reducing the high velocity impacts of PLYO training. This reduction in stretch-shortening cycle stress on neuromuscular system with the replacement of balance and landing exercises might help to alleviate the overtraining effects of excessive repetitive high load activities.

  8. Comprehensive, blinded assessment of balance in orthostatic tremor.

    PubMed

    Bhatti, Danish; Thompson, Rebecca; Xia, Yiwen; Hellman, Amy; Schmaderer, Lorene; Suing, Katie; McKune, Jennifer; Penke, Cynthia; Iske, Regan; Roeder, Bobbi Jo; Siu, Ka-Chun; Bertoni, John M; Torres-Russotto, Diego

    2018-02-01

    Orthostatic Tremor (OT) is a movement disorder characterized by a sensation of unsteadiness and tremors in the 13-18 Hz range present upon standing. The pathophysiology of OT is not well understood but there is a relationship between the sensation of instability and leg tremors. Despite the sensation of unsteadiness, OT patients do not fall often and balance in OT has not been formally assessed. We present a prospective blinded study comparing balance assessment in patients with OT versus healthy controls. We prospectively enrolled 34 surface Electromyography (EMG)-confirmed primary OT subjects and 21 healthy controls. Participants underwent evaluations of balance by blinded physical therapists (PT) with standardized, validated, commonly used balance scales and tasks. OT subjects were mostly female (30/34, 88%) and controls were majority males (13/20, 65%). The average age of OT subjects was 68.5 years (range 54-87) and for controls was 69.4 (range 32-86). The average duration of OT symptoms was 18 years. OT subjects did significantly worse on all the balance scales and on most balance tasks including Berg Balance Scale, Functional Gait Assessment, Dynamic Gait Index, Unipedal Stance Test, Functional Reach Test and pull test. Gait speed and five times sit to stand were normal in OT. Common validated balance scales are significantly abnormal in primary OT. Despite the objective finding of impaired balance, OT patients do not commonly have falls. The reported sensation of unsteadiness in this patient population seems to be out of proportion to the number of actual falls. Further studies are needed to determine which components of commonly used balance scales are affected by a sensation of unsteadiness and fear of falling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The relationships of eccentric strength and power with dynamic balance in male footballers.

    PubMed

    Booysen, Marc Jon; Gradidge, Philippe Jean-Luc; Watson, Estelle

    2015-01-01

    Unilateral balance is critical to kicking accuracy in football. In order to design interventions to improve dynamic balance, knowledge of the relationships between dynamic balance and specific neuromuscular factors such as eccentric strength and power is essential. Therefore, the aim was to determine the relationships of eccentric strength and power with dynamic balance in male footballers. The Y-balance test, eccentric isokinetic strength testing (knee extensors and flexors) and the countermovement jump were assessed in fifty male footballers (university (n = 27, mean age = 20.7 ± 1.84 years) and professional (n = 23, mean age = 23.0 ± 3.08 years). Spearman Rank Order correlations were used to determine the relationships of eccentric strength and power with dynamic balance. Multiple linear regression, adjusting for age, mass, stature, playing experience and competitive level was performed on significant relationships. Normalised reach score in the Y-balance test using the non-dominant leg for stance correlated with (1) eccentric strength of the non-dominant leg knee extensors in the university group (r = 0.50, P = 0.008) and (2) countermovement jump height in the university (r = 0.40, P = 0.04) and professional (r = 0.56, P = 0.006) football groups, respectively. No relationships were observed between eccentric strength (knee flexors) and normalised reach scores. Despite the addition of potential confounders, the relationship of power and dynamic balance was significant (r = 0.52, P < 0.0002). The ability to generate power correlates moderately with dynamic balance on the non-dominant leg in male footballers.

  10. Analysis of the internal temperature of the cells in a battery pack during SOC balancing

    NASA Astrophysics Data System (ADS)

    Mizanur, R.; Rashid, M. M.; Rahman, A.; Zahirul Alam, A. H. M.; Ihsan, S.; Mollik, M. S.

    2017-03-01

    Lithium-ion batteries are more suitable for the application of electric vehicle due to high energy and power density compared to other rechargeable batteries. However, the battery pack temperature has a great impact on the overall performance, cycle life, normal charging-discharging behaviour and even safety. During rapid charge transferring process, the internal temperature may exceed its allowable limit (460C). In this paper, an analysis of internal temperature during charge balancing and discharging conditions is presented. Specific interest is paid to the effects of temperature on the different rate of ambient temperature and discharging current. Matlab/Simulink Li-ion battery model and quasi-resonant converter base balancing system are used to study the temperature effect. Rising internal temperature depends on the rate of balancing current and ambient temperature found in the simulation results.

  11. Modeling level change in Lake Urmia using hybrid artificial intelligence approaches

    NASA Astrophysics Data System (ADS)

    Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali

    2017-06-01

    The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.

  12. High-optical-power handling InGaAs photodiodes and balanced receivers for high-spurious free dynamic range (SFDR) analog photonic links

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay M.; Wang, Xinde; Mohr, Dan; Becker, Donald; Patil, Ravikiran

    2004-08-01

    We have developed 20 mA or higher photocurrent handling InGaAs photodiodes with 20 GHz bandwidth, and 10 mA or higher photocurrent handling InGaAs photodiodes with >40 GHz bandwidth. These photodiodes have been thoroughly tested for reliability including Bellcore GR 468 standard and are built to ISO 9001:2000 Quality Management System. These Dual-depletion InGaAs/InP photodiodes are surface illuminated and yet handle such large photocurrent due to advanced band-gap engineering. They have broad wavelength coverage from 800 nm to 1700 nm, and thus can be used at several wavelengths such as 850 nm, 1064 nm, 1310 nm, 1550 nm, and 1620 nm. Furthermore, they exhibit very low Polarization Dependence Loss of 0.05dB typical to 0.1dB maximum. Using above high current handling photodiodes, we have developed classical Push-Pull pair balanced photoreceivers for the 2 to 18 GHz EW system. These balanced photoreceivers boost the Spurious Free Dynamic Range (SFDR) by almost 3 dB by eliminating the laser RIN noise. Future research calls for designing an Avalanche Photodiode Balanced Pair to boost the SFDR even further by additional 3 dB. These devices are a key enabling technology in meeting the SFDR requirements for several DoD systems.

  13. Changes in balance in older adults based on use of physical therapy vs the Wii Fit gaming system: a preliminary study.

    PubMed

    Bateni, Hamid

    2012-09-01

    To determine the effectiveness of Wii Fit training on balance control in older adults compared with physical therapy training. Quasi-experimental design. Eight males and nine females aged 53 to 91 years. Participants were divided into three groups: one group received both physical therapy training and Wii Fit training (PW group), one group received Wii Fit training alone (WI group), and one group received physical therapy training alone (PT group). Training consisted of three sessions per week for 4 weeks. Berg Balance Scale (all groups) and Bubble Test (PW and WI groups) scores. Descriptive statistics, medians, interquartile ranges and 95% confidence intervals are reported to identify trends in balance control as a result of different types of training. All subjects showed improvement in the Berg Balance Scale and Bubble Test scores. The PT and PW groups tended to perform better than the WI group on the Berg Balance Scale following treatment. Although the differences in the Bubble Test score were not substantial between the PW and WI groups, the PW group performed slightly better than the WI group on the Berg Balance Scale. Wii Fit training appears to improve balance. However, physical therapy training on its own or in addition to Wii Fit training appears to improve balance to a greater extent than Wii Fit training alone. Copyright © 2011 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  14. Increased fall risk is associated with elevated co-contraction about the ankle during static balance challenges in older adults.

    PubMed

    Nelson-Wong, Erika; Appell, Ryan; McKay, Mike; Nawaz, Hannah; Roth, Joanna; Sigler, Robert; Third, Jacqueline; Walker, Mark

    2012-04-01

    Falls are a leading contributor to disability in older adults. Increased muscle co-contraction in the lower extremities during static and dynamic balance challenges has been associated with aging, and also with a history of falling. Co-contraction during static balance challenges has not been previously linked with performance on clinical tests designed to ascertain fall risk. The purpose of this study was to investigate the relationship between co-contraction about the ankle during static balance challenges with fall risk on a commonly used dynamic balance assessment, the Four Square Step Test (FSST). Twenty-three volunteers (mean age 73 years) performed a series of five static balance challenges (Romberg eyes open/closed, Sharpened Romberg eyes open/closed, and Single Leg Standing) with continuous electromyography (EMG) of bilateral tibialis anterior and gastrocnemius muscles. Participants then completed the FSST and were categorized as 'at-risk' or 'not-at-risk' to fall based on a cutoff time of 12 s. Co-contraction was quantified with co-contraction index (CCI). CCI during narrow base conditions was positively correlated with time to complete FSST. High CCIs during all static balance challenges with the exception of Romberg stance with eyes closed were predictive of being at-risk to fall based on FSST time, odds ratio 19.3. The authors conclude that co-contraction about the ankle during static balance challenges can be predictive of performance on a dynamic balance test.

  15. Reliability and Validity of Computerized Force Platform Measures of Balance Function in Healthy Older Adults.

    PubMed

    Harro, Cathy C; Garascia, Chelsea

    2018-01-10

    Postural control declines with aging and is an independent risk factor for falls in older adults. Objective examination of balance function is warranted to direct fall prevention strategies. Force platform (FP) systems provide quantitative measures of postural control and analysis of different aspects of balance. The purpose of this study was to examine the reliability and validity of FP measures in healthy older adults. This study enrolled 46 healthy elderly adults, mean age 67.67 (5.1) years, who had no history of falls. They were assessed on 3 standardized tests on the NeuroCom Equitest FP system: limits of stability (LOS), motor control test (MCT), and sensory organization test (SOT). The test battery was administered twice within a 10-day period for test-retest reliability; intraclass correlation coefficients (ICCs), standard error of measurement (SEM), and minimal detectable change based on a 95% confidence interval (MDC95) were calculated. FP measures were compared with criterion clinical balance (Mini-BESTest and Functional Gait Assessment) and gait (10-m walk and 6-minute walk) measures to examine concurrent validity using Pearson correlation coefficients. Multiple linear regression analysis examined whether age and activity level were associated with FP performance. The α level was set at P < .05. SOT composite equilibrium scores, MCT average latency, and LOS end point excursion measures all demonstrated excellent test-retest reliability (ICC = 0.90, 0.85, and 0.77, respectively), whereas moderate to good reliability was found for SOT vestibular ratio score (ICC = 0.71). There was large variability in performance in this healthy elderly cohort, resulting in relatively large MDC95 for these measures, especially for the LOS test. Fair correlations were found between LOS end point excursion and clinical balance and gait measures (r = 0.31-0.49), and between MCT average latency and gait measures only (r = -0.32). No correlations were found between SOT measures and clinical balance and gait measures. Age was only marginally significantly (P = .055) associated with LOS end point excursion but was not associated with SOT or MCT measures, and activity level was not associated with any of the FP measures. FP measures provided reliable information on balance function in healthy older adults; however, small learning effects were evident, particularly for the SOT. The SEM and MDC95 for the LOS and SOT measures were relatively large for this healthy elderly cohort. A relationship between FP measures, which assess underlying balance mechanisms, and clinical balance and gait measures was not strongly supported in this study. Further research is needed to justify the value of adding FP measures to a test battery for balance assessment in older adults without a history of falls.

  16. Functional gait assessment and balance evaluation system test: reliability, validity, sensitivity, and specificity for identifying individuals with Parkinson disease who fall.

    PubMed

    Leddy, Abigail L; Crowner, Beth E; Earhart, Gammon M

    2011-01-01

    Gait impairments, balance impairments, and falls are prevalent in individuals with Parkinson disease (PD). Although the Berg Balance Scale (BBS) can be considered the reference standard for the determination of fall risk, it has a noted ceiling effect. Development of ceiling-free measures that can assess balance and are good at discriminating "fallers" from "nonfallers" is needed. The purpose of this study was to compare the Functional Gait Assessment (FGA) and the Balance Evaluation Systems Test (BESTest) with the BBS among individuals with PD and evaluate the tests' reliability, validity, and discriminatory sensitivity and specificity for fallers versus nonfallers. This was an observational study of community-dwelling individuals with idiopathic PD. The BBS, FGA, and BESTest were administered to 80 individuals with PD. Interrater reliability (n=15) was assessed by 3 raters. Test-retest reliability was based on 2 tests of participants (n=24), 2 weeks apart. Intraclass correlation coefficients (2,1) were used to calculate reliability, and Spearman correlation coefficients were used to assess validity. Cutoff points, sensitivity, and specificity were based on receiver operating characteristic plots. Test-retest reliability was .80 for the BBS, .91 for the FGA, and .88 for the BESTest. Interrater reliability was greater than .93 for all 3 tests. The FGA and BESTest were correlated with the BBS (r=.78 and r=.87, respectively). Cutoff scores to identify fallers were 47/56 for the BBS, 15/30 for the FGA, and 69% for the BESTest. The overall accuracy (area under the curve) for the BBS, FGA, and BESTest was .79, .80, and .85, respectively. Fall reports were retrospective. Both the FGA and the BESTest have reliability and validity for assessing balance in individuals with PD. The BESTest is most sensitive for identifying fallers.

  17. Postural balance and falls in elderly nursing home residents enrolled in a ballroom dancing program.

    PubMed

    da Silva Borges, Eliane Gomes; de Souza Vale, Rodrigo Gomes; Cader, Samária Ali; Leal, Silvania; Miguel, Francisco; Pernambuco, Carlos Soares; Dantas, Estélio H M

    2014-01-01

    The aim of this study was to investigate the influence of a ballroom dancing program on the postural balance of institutionalized elderly residents. The sample consisted of 59 sedentary elderly residents of long-stay institutions who were randomly assigned to a ballroom dancing experimental group (EG, n=30) or a control group (CG, n=29). The ballroom dancing program consisted of three 50-min sessions each week on alternate days over a 12-week period. The dances included the foxtrot, waltz, rumba, swing, samba and bolero. The medical records of the subjects were reviewed to determine the number of falls they experienced in the three months prior to the intervention. Postural static balance was assessed using a Lizard (Med. EU., Italy, 2010) stabilometric and posturometric platform. Only patients in the EG lost a significant amount of weight (Δ=-2.85 kg) when comparing the pre- and post-test postural balance assessments. The intergroup comparison revealed a reduced lower limb weight distribution difference in the EG post-test compared to the CG post-test (p=0.012). In the intragroup comparison, the EG patients experienced significantly fewer falls post-test relative to pre-test (p<0.0001). This improvement was not observed for patients in the CG. In the intergroup analysis, we observed fewer falls in the EG post-test compared to the CG post-test (p<0.0001). Therefore it was conclude that sedentary elderly people living in long-term institutions can improve their balance via a ballroom dancing program. This activity improved balance and reduced the number of falls in this elderly population. Copyright © 2014. Published by Elsevier Ireland Ltd.

  18. Static and dynamic balance of children and adolescents with sensorineural hearing loss.

    PubMed

    Melo, Renato de Souza; Marinho, Sônia Elvira Dos Santos; Freire, Maryelly Evelly Araújo; Souza, Robson Arruda; Damasceno, Hélio Anderson Melo; Raposo, Maria Cristina Falcão

    2017-01-01

    To assess the static and dynamic balance performance of students with normal hearing and with sensorineural hearing loss. A cross-sectional study assessing 96 students, 48 with normal hearing and 48 with sensorineural hearing loss of both sexes, aged 7 and 18 years. To evaluate static balance, Romberg, Romberg-Barré and Fournier tests were used; and for the dynamic balance, we applied the Unterberger test. Hearing loss students showed more changes in static and dynamic balance as compared to normal hearing, in all tests used (p<0.001). The same difference was found when subjects were grouped by sex. For females, Romberg, Romberg-Barré, Fournier and Unterberger test p values were, respectively, p=0.004, p<0.001, p<0.001 and p=0.023; for males, the p values were p=0.009, p<0.001, p<0.001 and p=0.002, respectively. The same difference was observed when students were classified by age. For 7 to 10 years old students, the p values for Romberg, Romberg-Barré and Fournier tests were, respectively, p=0.007, p<0.001 and p=0.001; for those aged 11 and 14 years, the p values for Romberg, Romberg-Barré, Fournier and Unterberger tests were p=0.002, p<0.001, p<0.001 and p=0.015, respectively; and for those aged 15 and 18 years, the p values for Romberg-Barré, Fournier and Unterberger tests were, respectively, p=0.037, p<0.001 and p=0.037. Hearing-loss students showed more changes in static and dynamic balance comparing to normal hearing of same sex and age groups.

  19. Construction of a new watt balance with the goal to realize the kilogram in the US

    NASA Astrophysics Data System (ADS)

    Schlamminger, Stephan; Haddad, Darine; Seifert, Frank; Chao, Leon; Newell, David; Pratt, Jon

    2015-04-01

    A watt balance is a mechanical device that compares mechanical power to electrical power. Since electrical power is measured using quantum physics by employing the Josephson effect and the Quantum Hall effect, electrical power can be measured as a product of a known factor, two frequencies, and the Planck constant h. Mechanical power is given by mgv , where m is the mass of a weight, g the local acceleration, and v the velocity. Hence, the watt balance provides a link between mass and Planck's constant. Currently several watt balances worldwide are employed to measure h. A redefinition of the international system of units (SI) is currently in discussion and may become reality as early as 2018. In the new SI, the numerical value of the Planck constant will be fixed and the watt balance is a means to realize the unit of mass. Researchers at NIST are preparing for a new SI and we have started in 2011 with plans to design a new watt balance capable of realizing the kilogram with relative uncertainties of a few parts in 108. Construction of the new watt balance has started in 2014. In my talk, I will show some of the latest results achieved with this apparatus.

  20. DNS load balancing in the CERN cloud

    NASA Astrophysics Data System (ADS)

    Reguero Naredo, Ignacio; Lobato Pardavila, Lorena

    2017-10-01

    Load Balancing is one of the technologies enabling deployment of large-scale applications on cloud resources. A DNS Load Balancer Daemon (LBD) has been developed at CERN as a cost-effective way to balance applications accepting DNS timing dynamics and not requiring persistence. It currently serves over 450 load-balanced aliases with two small VMs acting as master and slave. The aliases are mapped to DNS subdomains. These subdomains are managed with DDNS according to a load metric, which is collected from the alias member nodes with SNMP. During the last years, several improvements were brought to the software, for instance: support for IPv6, parallelization of the status requests, implementing the client in Python to allow for multiple aliases with differentiated states on the same machine or support for application state. The configuration of the Load Balancer is currently managed by a Puppet type. It discovers the alias member nodes and gets the alias definitions from the Ermis REST service. The Aiermis self-service GUI for the management of the LB aliases has been produced and is based on the Ermis service above that implements a form of Load Balancing as a Service (LBaaS). The Ermis REST API has authorisation based in Foreman hostgroups. The CERN DNS LBD is Open Software with Apache 2 license.

  1. Dynamic Calibration of the NASA Ames Rotor Test Apparatus Steady/Dynamic Rotor Balance

    NASA Technical Reports Server (NTRS)

    Peterson, Randall L.; vanAken, Johannes M.

    1996-01-01

    The NASA Ames Rotor Test Apparatus was modified to include a Steady/Dynamic Rotor Balance. The dynamic calibration procedures and configurations are discussed. Random excitation was applied at the rotor hub, and vibratory force and moment responses were measured on the steady/dynamic rotor balance. Transfer functions were computed using the load cell data and the vibratory force and moment responses from the rotor balance. Calibration results showing the influence of frequency bandwidth, hub mass, rotor RPM, thrust preload, and dynamic loads through the stationary push rods are presented and discussed.

  2. Virtual reality stimuli for force platform posturography.

    PubMed

    Tossavainen, Timo; Juhola, Martti; Ilmari, Pyykö; Aalto, Heikki; Toppila, Esko

    2002-01-01

    People relying much on vision in the control of posture are known to have an elevated risk of falling. Dependence on visual control is an important parameter in the diagnosis of balance disorders. We have previously shown that virtual reality methods can be used to produce visual stimuli that affect balance, but suitable stimuli need to be found. In this study the effect of six different virtual reality stimuli on the balance of 22 healthy test subjects was evaluated using force platform posturography. According to the tests two of the stimuli have a significant effect on balance.

  3. SOFIA 2 model telescope wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Keas, Paul

    1995-01-01

    This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.

  4. Test Group Rethinks Questions

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2012-01-01

    A group that is developing tests for half the states in the nation has dramatically reduced the length of its assessment in a bid to balance the desire for a more meaningful and useful exam with concerns about the amount of time spent on testing. The decision by the Smarter Balanced Assessment Consortium reflects months of conversation among its…

  5. The effects of visual control whole body vibration exercise on balance and gait function of stroke patients.

    PubMed

    Choi, Eon-Tak; Kim, Yong-Nam; Cho, Woon-Soo; Lee, Dong-Kyu

    2016-11-01

    [Purpose] This study aims to verify the effects of visual control whole body vibration exercise on balance and gait function of stroke patients. [Subjects and Methods] A total of 22 stroke patients were randomly assigned to two groups; 11 to the experimental group and 11 to the control group. Both groups received 30 minutes of Neuro-developmental treatment 5 times per week for 4 weeks. The experimental group additionally performed 10 minutes of visual control whole body vibration exercise 5 times per week during the 4 weeks. Balance was measured using the Functional Reach Test. Gait was measured using the Timed Up and Go Test. [Results] An in-group comparison in the experimental group showed significant differences in the Functional Reach Test and Timed Up and Go Test. In comparing the groups, the Functional Reach Test and Timed Up and Go Test of the experimental group were more significantly different compared to the control group. [Conclusion] These results suggest that visual control whole body vibration exercise has a positive effect on the balance and gait function of stroke patients.

  6. Comparison the effects of two types of therapeutic exercises Frenkele vs. Swiss ball on the clinical balance measures in patients with type II diabetic neuropathy.

    PubMed

    Rojhani-Shirazi, Zahra; Barzintaj, Fatemeh; Salimifard, Mohamad Reza

    2017-11-01

    The number of diabetic patients is increasing in the world. Peripheral neuropathy is the most important problem of diabetes. Neuropathy eventually leads to balance impairment which is the main cause of falling down in these patients However, not sufficient evidences available to compare different protocols for improving balance in diabetic patients. This study aimed to compare the effects of two therapeutic exercises on clinical balance measures in patients with type II diabetic peripheral neuropathy. The study was performed on 60 patients with diabetes categorized randomly into three groups: an intervention group (N=20) that received ball training exercise, another intervention group (N=20) that received Frenkel exercise and a control group (N=20) that received no interventions. Exercise training session was performed for 3 weeks. Then, clinical balance measures were computed in the three groups. Paired t-test and one-way ANOVA were used to analyze the collected data. Both types of therapeutic exercise programs significantly improved balance in single leg stance, star excursion test, and Berg balance scale test (P˂0.05) compared to the control group. Besides, this was more significant in the ball training group (P˂0.05). To improve balance in diabetic neuropathy, Swiss ball exercise is preferred compared to Frenkel training. Copyright © 2016. Published by Elsevier Ltd.

  7. [The Freiburg speech intelligibility test : A pillar of speech audiometry in German-speaking countries].

    PubMed

    Hoth, S

    2016-08-01

    The Freiburg speech intelligibility test according to DIN 45621 was introduced around 60 years ago. For decades, and still today, the Freiburg test has been a standard whose relevance extends far beyond pure audiometry. It is used primarily to determine the speech perception threshold (based on two-digit numbers) and the ability to discriminate speech at suprathreshold presentation levels (based on monosyllabic nouns). Moreover, it is a measure of the degree of disability, the requirement for and success of technical hearing aids (auxiliaries directives), and the compensation for disability and handicap (Königstein recommendation). In differential audiological diagnostics, the Freiburg test contributes to the distinction between low- and high-frequency hearing loss, as well as to identification of conductive, sensory, neural, and central disorders. Currently, the phonemic and perceptual balance of the monosyllabic test lists is subject to critical discussions. Obvious deficiencies exist for testing speech recognition in noise. In this respect, alternatives such as sentence or rhyme tests in closed-answer inventories are discussed.

  8. Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and Tinetti balance measures in community-dwelling older people.

    PubMed

    Lin, Mau-Roung; Hwang, Hei-Fen; Hu, Ming-Hsia; Wu, Hong-Dar Isaac; Wang, Yi-Wei; Huang, Fu-Chao

    2004-08-01

    To compare the practicality, reliability, validity, and responsiveness of the timed up and go (TUG), one-leg stand (OLS), functional reach (FR), and Tinetti balance (TB) performance measures in people aged 65 and older. A prospective study. Shin-Sher Township of Taichung County, west-central Taiwan. Twelve hundred community-dwelling older people. During an initial assessment at their residences, participants were interviewed for demographics, cognition, fall history, use of a walking aid, and activities of daily living (ADLs), in addition to completing the four balance tests. Falls were ascertained by telephone every 3 months for a 1-year follow-up; the four balance measures and ADLs were also reassessed at the end of the follow-up year. Of the four balance measures, the OLS had the lowest participation rate, and participation of people who were cognitively impaired had fallen in the previous year, used a walking aid, or suffered from an ADL disability was lower than for their counterparts. The time to complete the tests ranged from 58 seconds for OLS, to 160 seconds for the TB. All four balance measures exhibited excellent test-retest reliability and discriminant validity but poor responsiveness to fall status. The TB showed better discriminant, convergent, and predictive validities and responsiveness to ADL changes than the other three tests. According to psychometric properties, the most suitable performance measure for evaluating balance in community-dwelling older people was the TB, followed by the TUG.

  9. Validating a dance-specific screening test for balance: preliminary results from multisite testing.

    PubMed

    Batson, Glenna

    2010-09-01

    Few dance-specific screening tools adequately capture balance. The aim of this study was to administer and modify the Star Excursion Balance Test (oSEBT) to examine its utility as a balance screen for dancers. The oSEBT involves standing on one leg while lightly targeting with the opposite foot to the farthest distance along eight spokes of a star-shaped grid. This task simulates dance in the spatial pattern and movement quality of the gesturing limb. The oSEBT was validated for distance on athletes with history of ankle sprain. Thirty-three dancers (age 20.1 +/- 1.4 yrs) participated from two contemporary dance conservatories (UK and US), with or without a history of lower extremity injury. Dancers were verbally instructed (without physical demonstration) to execute the oSEBT and four modifications (mSEBT): timed (speed), timed with cognitive interference (answering questions aloud), and sensory disadvantaging (foam mat). Stepping strategies were tracked and performance strategies video-recorded. Unlike the oSEBT results, distances reached were not significant statistically (p = 0.05) or descriptively (i.e., shorter) for either group. Performance styles varied widely, despite sample homogeneity and instructions to control for strategy. Descriptive analysis of mSEBT showed an increased number of near-falls and decreased timing on the injured limb. Dancers appeared to employ variable strategies to keep balance during this test. Quantitative analysis is warranted to define balance strategies for further validation of SEBT modifications to determine its utility as a balance screening tool.

  10. Identifying and Evaluating the Relationships that Control a Land Surface Model's Hydrological Behavior

    NASA Technical Reports Server (NTRS)

    Koster, Randal D.; Mahanama, Sarith P.

    2012-01-01

    The inherent soil moisture-evaporation relationships used in today 's land surface models (LSMs) arguably reflect a lot of guesswork given the lack of contemporaneous evaporation and soil moisture observations at the spatial scales represented by regional and global models. The inherent soil moisture-runoff relationships used in the LSMs are also of uncertain accuracy. Evaluating these relationships is difficult but crucial given that they have a major impact on how the land component contributes to hydrological and meteorological variability within the climate system. The relationships, it turns out, can be examined efficiently and effectively with a simple water balance model framework. The simple water balance model, driven with multi-decadal observations covering the conterminous United States, shows how different prescribed relationships lead to different manifestations of hydrological variability, some of which can be compared directly to observations. Through the testing of a wide suite of relationships, the simple model provides estimates for the underlying relationships that operate in nature and that should be operating in LSMs. We examine the relationships currently used in a number of different LSMs in the context of the simple water balance model results and make recommendations for potential first-order improvements to these LSMs.

  11. Ion energy balance in enhanced-confinement reversed-field pinch plasmas

    NASA Astrophysics Data System (ADS)

    Xing, Z. A.; Nornberg, M. D.; Boguski, J.; Craig, D.; den Hartog, D. J.; McCollam, K.

    2017-10-01

    Testing the applicability of collisional ion transport theory using tearing suppressed RFP plasma in MST achieved through Pulsed Poloidal Current Drive (PPCD), we find that the ion temperature dynamics in the core to be well-predicted by classical and collisional terms. Prior work demonstrated that impurity ion particle transport in PPCD plasmas is classical. Neoclassical effects on ions in the RFP are small and the stochastic transport is greatly suppressed during PPCD. Recent neutral modelling with DEGAS2 suggests higher core neutral temperatures than expected due to the preferential penetration of higher temperature neutrals generated by charge exchange. Further, investigations through equilibrium reconstruction point to the existence of an inward pinch flow associated with ExB drift. The heat balance model pulls together a wide range of diagnostic data to forward model Ti evolution in PPCD, which is then compared to charge exchange spectroscopy measurements of Ti. Ion power balance is mostly driven by classical effects including compressional heating, electron collisional heating, and charge exchange transport. This understanding provides a good baseline for investigations of anomalous heating in plasmas with tearing mode activity. This work is supported by US DOE.

  12. Effects of balance Vestibular Rehabilitation Therapy in elderly with Benign Paroxysmal Positional Vertigo: a randomized controlled trial.

    PubMed

    Ribeiro, Karyna Myrelly Oliveira Bezerra de Figueiredo; Freitas, Raysa Vanessa de Medeiros; Ferreira, Lidiane Maria de Brito Macedo; Deshpande, Nandini; Guerra, Ricardo Oliveira

    2017-06-01

    To evaluate short-term effects of balance Vestibular Rehabilitation Therapy (VRT) on balance, dizziness symptoms and quality of life of the elderly with chronic Benign Paroxysmal Positional Vertigo (BPPV). In this randomized, single-blind and controlled trial, older adults with chronic BPPV were randomized into two groups, the experimental group (n = 7, age: 69 (65-78) years) and the control group (n = 7, age: 73 (65-76) years). Patients in the experimental group underwent balance VRT (50 min per session, two times a week) and Canalith Repositioning Maneuver (CRM) as required, for 13 weeks. The control group was treated using only CRM as required. Standing and dynamic balance, dizziness symptoms and quality of life were measured at the baseline, and at one, five, nine and thirteen weeks. There were no between-group differences in dizziness, quality of life and standing balance over the 13 weeks. Significant differences were observed in dynamic balance measures between groups (p <  0.05 for most tests) through assessments. In intragroup analysis, both groups showed improvements in all measurements except no improvement was found in majority of the dynamic balance tests in the control group. The patients who received additional balance VRT demonstrated better results in dynamic balance than those who received only CRM. Implications for Rehabilitation The findings that balance VRT in addition to CRM improves dynamic balance in elderly people with BPPV should be useful in guiding rehabilitation professionals' clinical decision making to design interventions for seniors suffering from BPPV; Improvements in tests of dynamic balance suggest that the risk of adverse consequences of BPPV in the elderly such as falls and fractures can be potentially reduced through implementation of CRM in conjunction with balance VRT; Lack of additional improvement in Visual Analogue Scale of dizziness and Dizziness Handicap Index suggests that addition of balance VRT does not influence dizziness symptomatology, per se, and CRM alone is effective to ameliorate vertiginous symptoms and potentially improve quality of life.

  13. Develop and test fuel cell powered on-site integrated total energy systems: Phase 3, full-scale power plant development

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1985-01-01

    A 25 cell stack of the 13 inch x 23 inch cell size (about 4kW) remains on test after 6000 hours, using simulated reformate fuel. A similar stack was previously shut down after 7000 hours on load. These tests were carried out for the purpose of assessing the durability of fuel cell stack components developed through the end of 1983. In light of the favorable results obtained, a 25kW stack that will contain 175 cells of the same size is being constructed using the same technology base. The components for the 25kW stack have been completed. A methanol steam reformer with a design output equivalent to 50kW has been constructed to serve as a hydrogen generator for the 25kW stack. This reformer and the balance of the fuel processing sub system are currently being tested and debugged. The stack technology development program focused on cost reduction in bipolar plates, nonmetallic cooling plates, and current collecting plates; more stable cathode catalyst support materials; more corrosion resistant metal hardware; and shutdown/start up tolerance.

  14. Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis.

    PubMed

    Le Berre, Morgane; Guyot, Marc-Alexandre; Agnani, Olivier; Bourdeauducq, Isabelle; Versyp, Marie-Christine; Donze, Cécile; Thévenon, André; Catanzariti, Jean-Francois

    2017-06-01

    Adolescent idiopathic scoliosis (AIS) is a three-dimensional deformity of the spinal column of unknown etiology. Multiple factors could be involved, including neurosensory pathways and, potentially, an elective disorder of dynamic proprioception. The purpose of this study was to determine whether routine balance tests could be used to demonstrate an elective alteration of dynamic proprioception in AIS. This was a multicentre case-control study based on prospectively collected clinical data, in three hospitals pediatric, with spine consultation, from January 2013 through April 2015. From an original population of 547 adolescents, inclusion and non-inclusion criteria indentified 114 adolescents with right thoracic AIS (mean age 14.5 ± 1.9 years, Cobb angle 35.7 ± 15.3°) and 81 matched adolescents without scoliosis (mean age 14.1 ± 1.9 years). Participants performed three routine clinical balance tests to assess the static and dynamic proprioception: the Fukuda-Utenberger stepping test (angle of rotation in degrees and distance of displacement in cm) to assess dynamic balance; the sharpened Romberg test and the unipedal stance test (eyes closed) to assess static balance. There was no significant difference between AIS subjects and controls for the static tests, but there was a significant difference for the dynamic test for both measures: distance of displacement (p < 0.01) and angle of rotation (p < 0.0001). This result confirms our initial these: the dynamic proprioception is altered electively in AIS. These findings confirm recent AIS studies. Our results might be related to immature central integration of dynamic proprioceptive input leading to a poorly adapted motor response, particularly for postural control of the, in AIS. These balance tests can be performed in routine practice. Their validity as a biomarker for screening and monitoring purposes should be assessed.

  15. Leg strength or velocity of movement: which is more influential on the balance of mobility limited elders?

    PubMed

    Mayson, Douglas J; Kiely, Dan K; LaRose, Sharon I; Bean, Jonathan F

    2008-12-01

    To determine which component of leg power (maximal limb strength or limb velocity) is more influential on balance performance in mobility limited elders. In this cross-sectional analysis we evaluated 138 community-dwelling older adults with mobility limitation. Balance was measured using the Unipedal Stance Test, the Berg Balance Test (BERG), the Dynamic Gait Index, and the performance-oriented mobility assessment. We measured one repetition maximum strength and power at 40% one repetition maximum strength, from which velocity was calculated. The associations between maximal estimated leg strength and velocity with balance performance were examined using separate multivariate logistic regression models. Strength was found to be associated [odds ratio of 1.06 (95% confidence interval, 1.01-1.11)] with performance on the Unipedal Stance Test, whereas velocity showed no statistically significant association. In contrast, velocity was consistently associated with performance on all composite measures of balance (BERG 14.23 [1.84-109.72], performance-oriented mobility assessment 33.92 [3.69-312.03], and Dynamic Gait Index 35.80 [4.77-268.71]). Strength was only associated with the BERG 1.08 (1.01-1.14). Higher leg press velocity is associated with better performance on the BERG, performance-oriented mobility assessment, and Dynamic Gait Index, whereas greater leg strength is associated with better performance on the Unipedal Stance Test and the BERG. These findings are likely related to the intrinsic qualities of each test and emphasize the relevance of limb velocity.

  16. Y balance test has no correlation with the Stability Index of the Biodex Balance System.

    PubMed

    Almeida, Gabriel Peixoto Leão; Monteiro, Isabel Oliveira; Marizeiro, Débora Fortes; Maia, Laísa Braga; de Paula Lima, Pedro Olavo

    2017-02-01

    A cross-sectional study design. The Stability Index of the Biodex Balance System (SI-BBS) and Y Balance Test (YBT) has been used in studies assessing postural stability but no studies have verified the association of the YBT with the SI-BBS. To analyze the association of the Y Balance Test (YBT) with the Stability Index of the Biodex Balance System (SI-BBS) to evaluate postural stability. Forty participants who engaged in recreational physical activities, 12 of whom had a history of injury to the lower limbs. Was used the SI-BBS and the anterior, posterolateral, posteromedial, and composite measures of the YBT. The order of execution of the tests and of the lower limbs evaluated was randomized and blind tested by two evaluators. Pearson's correlation coefficient was used to check the strength of the relationship between the distances achieved on the YBT and the SI-BBS. The YBT showed excellent reliability in the anterior, posteromedial, and posterolateral directions. However, the YBT showed no statistically significant correlation with any variables in the SI-BBS, indicating poor validity between YBT and SI-BBS assessments of postural stability in people with and without history of lower limb injuries. The results of this study showed the YBT is not correlated with the SI-BBS as an assessment of postural stability. This finding has implications for researchers and clinicians using YBT results as the only measure of postural stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The effects of cognitive activity combined with active extremity exercise on balance, walking activity, memory level and quality of life of an older adult sample with dementia.

    PubMed

    Yoon, Jung Eun; Lee, Suk Min; Lim, Hee Sung; Kim, Tae Hoon; Jeon, Ji Kyeng; Mun, Mee Hyang

    2013-12-01

    [Purpose] The purpose of this study was to compare the effectiveness of cognitive activity combined with active physical exercise for a sample of older adults with dementia. [Subjects] A convenience sample of 30 patients with dementia (Mini-Mental State Examination score between 16 and 23) was used. Participants were randomly allocated to one of two groups: cognitive activity combined with physical exercise CAE, n=11), and only cognitive activity CA, n=9). [Methods] Both groups participated in a therapeutic exercise program for 30 minutes, three days a week for 12 weeks. The CAE group performed an additional exercise for 30 minutes a day, three days a week for 12 weeks. A Wii Balance Board (WBB, Nintendo, Japan) was used to evaluate postural sway as an assessment of balance. The Berg Balance Scale (BBS) and Modified Falls Efficacy Scale (MFES) were used to assess dynamic balance abilities. The Timed Up-and-Go test (TUG) was used to assess gait, and the Digit Span Test (DST) and 7 Minute Screening Test (7MST) were used to measure memory performance. The Mini-Mental Status Exam-Korean version (MMSE-K), Kenny Self-Care Evaluation (KSCE), and Short Geriatric Depression Scale (GDS) were used to assess quality of life (QOL). [Results] There were significant beneficial effects of the therapeutic program on balance (velocity in EOWB, path length in ECNB, BBS, and MMFE), QOL (MMSE-KC, GDS, KSCE), and memory performance (DSB) in the CAE group compared to CA group, and between pre-test and post-test. [Conclusion] A 12-week CAE program resulted in improvements in balance, memory and QOL. Therefore, some older adults with dementia have the ability to acquire effective skills relevant to daily living.

  18. The effects of unstable surface balance training on postural sway, stability, functional ability and flexibility in women.

    PubMed

    Nepocatych, Svetlana; Ketcham, Caroline J; Vallabhajosula, Srikant; Balilionis, Gytis

    2018-01-01

    This study examined the effects of balance training routine, using both sides utilized balance trainer (BOSU) and aerobic step (STEP) on postural sway and functional ability in middle-aged women. Twenty-seven females participated in the study, age 40.6±12.0 years, body mass 72.0±14.0 kg, height 164.0±7.7 cm, BMI 26.5±4.5 kg/m2, and relative body fat 33.1±7.4%. Participants were divided into two groups and performed progressive exercise routine on either STEP or BOSU for three weeks. Pre- and post-test consisted of Postural Sway Test performed on the Biodex Balance System, Functional Ability Test, Sit and Reach Test and Plank. A significant time effect was observed for both groups for sway index(P=0.029) and center of pressure antero-posterior (AP) displacement (P=0.038) but not for sway area or medio-lateral (ML) displacement (P>0.05). In addition, BOSU group had significantly lower Sway Index(P=0.048) and ML range (P=0.035) scores when vision and surface was altered compared to STEP group. A significant time effect was observed in walking-up the stairs (P=0.020), sit and reach test (P=0.035), and plank (P<0.001), but not for walking down the stairs. However, no other significant interactions were observed. Programs that incorporate multisensory balance training have a potential to induce adaptive responses in neuromuscular system that enhances postural control, balance and functional ability of women. The training using BOSU may help improve static balance and functional ability in women.

  19. Instance Analysis for the Error of Three-pivot Pressure Transducer Static Balancing Method for Hydraulic Turbine Runner

    NASA Astrophysics Data System (ADS)

    Weng, Hanli; Li, Youping

    2017-04-01

    The working principle, process device and test procedure of runner static balancing test method by weighting with three-pivot pressure transducers are introduced in this paper. Based on an actual instance of a V hydraulic turbine runner, the error and sensitivity of the three-pivot pressure transducer static balancing method are analysed. Suggestions about improving the accuracy and the application of the method are also proposed.

  20. Experimental Aerodynamic Facilities of the Aerodynamics Research and Concepts Assistance Section

    DTIC Science & Technology

    1983-02-01

    experimental data desired. Internal strain gage balances covering a range of sizes and load capabilities are available for static force and moment tests...tunnel. Both sting and side wall model mounts are available which can be adapted to a variety of internal strain gage balance systems for force and...model components or liquids in the test section. A selection of internal and external strain gage balances and associated mounting fixtures are

Top