Sample records for current baseline configuration

  1. Operational Dynamic Configuration Analysis

    NASA Technical Reports Server (NTRS)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified schedule containing k configurations based on stability score of the sector combinations among the raw operational configurations. In addition, the number of the selected configurations is determined based on balance between accuracy and assessment complexity.

  2. A framework for determining improved placement of current energy converters subject to environmental constraints

    DOE PAGES

    Nelson, Kurt; James, Scott C.; Roberts, Jesse D.; ...

    2017-06-05

    A modelling framework identifies deployment locations for current-energy-capture devices that maximise power output while minimising potential environmental impacts. The framework, based on the Environmental Fluid Dynamics Code, can incorporate site-specific environmental constraints. Over a 29-day period, energy outputs from three array layouts were estimated for: (1) the preliminary configuration (baseline), (2) an updated configuration that accounted for environmental constraints, (3) and an improved configuration subject to no environmental constraints. Of these layouts, array placement that did not consider environmental constraints extracted the most energy from flow (4.38 MW-hr/day), 19% higher than output from the baseline configuration (3.69 MW-hr/day). Array placementmore » that considered environmental constraints removed 4.27 MW-hr/day of energy (16% more than baseline). In conclusion, this analysis framework accounts for bathymetry and flow-pattern variations that typical experimental studies cannot, demonstrating that it is a valuable tool for identifying improved array layouts for field deployments.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Kurt; James, Scott C.; Roberts, Jesse D.

    A modelling framework identifies deployment locations for current-energy-capture devices that maximise power output while minimising potential environmental impacts. The framework, based on the Environmental Fluid Dynamics Code, can incorporate site-specific environmental constraints. Over a 29-day period, energy outputs from three array layouts were estimated for: (1) the preliminary configuration (baseline), (2) an updated configuration that accounted for environmental constraints, (3) and an improved configuration subject to no environmental constraints. Of these layouts, array placement that did not consider environmental constraints extracted the most energy from flow (4.38 MW-hr/day), 19% higher than output from the baseline configuration (3.69 MW-hr/day). Array placementmore » that considered environmental constraints removed 4.27 MW-hr/day of energy (16% more than baseline). In conclusion, this analysis framework accounts for bathymetry and flow-pattern variations that typical experimental studies cannot, demonstrating that it is a valuable tool for identifying improved array layouts for field deployments.« less

  4. JWST ISIM Primary Structure and Kinematic Mount Configuration

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Carnahan, Tim; Hendricks, Steve; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz

    2004-01-01

    In this presentation we will review the evolution of the ISIM primary structure tube topology and kinematic mount configuration to the current baseline concept. We will also show optimization procedures used and challenges resulting from complex joints under launch loads. Two additional key ISIM structure challenges of meeting thermal distortion and stability requirements and metal-composite bonded joint survivability at cryogenic temperatures are covered in other presentations.

  5. An Air Revitalization Model (ARM) for Regenerative Life Support Systems (RLSS)

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1990-01-01

    The primary objective of the air revitalization model (ARM) is to determine the minimum buffer capacities that would be necessary for long duration space missions. Several observations are supported by the current configuration sizes: the baseline values for each gas and the day to day or month to month fluctuations that are allowed. The baseline values depend on the minimum safety tolerances and the quantities of life support consumables necessary to survive the worst case scenarios within those tolerances. Most, it not all, of these quantities can easily be determined by ARM once these tolerances are set. The day to day fluctuations also require a command decision. It is already apparent from the current configuration of ARM that the tighter these fluctuations are controlled, the more energy used, the more nonregenerable hydrazine consumed, and the larger the required capacities for the various gas generators. All of these relationships could clearly be quantified by one operational ARM.

  6. Comparing Methods for Dynamic Airspace Configuration

    NASA Technical Reports Server (NTRS)

    Zelinski, Shannon; Lai, Chok Fung

    2011-01-01

    This paper compares airspace design solutions for dynamically reconfiguring airspace in response to nominal daily traffic volume fluctuation. Airspace designs from seven algorithmic methods and a representation of current day operations in Kansas City Center were simulated with two times today's demand traffic. A three-configuration scenario was used to represent current day operations. Algorithms used projected unimpeded flight tracks to design initial 24-hour plans to switch between three configurations at predetermined reconfiguration times. At each reconfiguration time, algorithms used updated projected flight tracks to update the subsequent planned configurations. Compared to the baseline, most airspace design methods reduced delay and increased reconfiguration complexity, with similar traffic pattern complexity results. Design updates enabled several methods to as much as half the delay from their original designs. Freeform design methods reduced delay and increased reconfiguration complexity the most.

  7. System and method for bearing fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Habetler, Thomas G.; Harley, Ronald G.; Theisen, Peter J.

    2010-08-17

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to repeatedly receive real-time operating current data from the operating motor and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  8. The Southwest Configuration for the Next Generation Very Large Array

    NASA Astrophysics Data System (ADS)

    Irwin Kellermann, Kenneth; Carilli, Chris; Condon, James; Cotton, William; Murphy, Eric Joseph; Nyland, Kristina

    2018-01-01

    We discuss the planned array configuration for the Next Generation Very Large Array (ngVLA). The configuration, termed the "Southwest Array," consists of 214 antennas each 18 m in diameter, distributed over the Southwest United States and Northern Mexico. The antenna locations have been set applying rough real-world constraints, such as road, fiber, and power access. The antenna locations will be fixed, with roughly 50% of the antennas in a "core" of 2 km diameter, located at the site of the JVLA. Another 30% of the antennas will be distributed over the Plains of San Augustin to a diameter of 30 km, possibly along, or near, the current JVLA arms. The remaining 20% of the antennas will be distributed in a rough two-arm spiral pattern to the South and East, out to a maximum distance of 500 km, into Texas, Arizona, and Chihuahua. Years of experience with the VLA up to 50 GHz, plus intensive antenna testing up to 250 GHz for the ALMA prototype antennas, verify the VLA site as having very good observing conditions (opacity, phase stability), up to 115 GHz (ngVLA Memo No. 1). Using a suite of tools implemented in CASA, we have made extensive imaging simulations with this configuration. We find that good imaging performance can be obtained through appropriate weighting of the visibilities, for resolutions ranging from that of the core of the array (1" at 30 GHz), out to the longest baselines (10 mas at 30 GHz), with a loss of roughly a factor of two in sensitivity relative to natural weighting (ngVLA Memo No. 16). The off-set core, located on the northern edge of the long baseline configuration, provides excellent sensitivity even on the longest baselines. We are considering, in addition, a compact configuration of 16 close-packed 6 m antennas to obtain uv-coverage down to baselines ~ 10 m for imaging large scale structure, as well as a configuration including 9 stations distributed to continental scales.

  9. Final Report - Testing of Optimized Bubbler Configuration for HLW Melter VSL-13R2950-1, Rev. 0, dated 6/12/2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Pegg, I. L.; Callow, R. A.

    2013-11-13

    The principal objective of this work was to determine the glass production rate increase and ancillary effects of adding more bubbler outlets to the current WTP HLW melter baseline. This was accomplished through testing on the HLW Pilot Melter (DM1200) at VSL. The DM1200 unit was selected for these tests since it was used previously with several HLW waste streams including the four tank wastes proposed for initial processing at Hanford. This melter system was also used for the development and optimization of the present baseline WTP HLW bubbler configuration for the WTP HLW melter, as well as for MACTmore » testing for both HLW and LAW. Specific objectives of these tests were to: Conduct DM1200 melter testing with the baseline WTP bubbling configuration and as augmented with additional bubblers. Conduct DM1200 melter testing to differentiate the effects of total bubbler air flow and bubbler distribution on glass production rate and cold cap formation. Collect melter operating data including processing rate, temperatures at a variety of locations within the melter plenum space, melt pool temperature, glass melt density, and melter pressure with the baseline WTP bubbling configuration and as augmented with additional bubblers. Collect melter exhaust samples to compare particulate carryover for different bubbler configurations. Analyze all collected data to determine the effects of adding more bubblers to the WTP HLW melter to inform decisions regarding future lid re-designs. The work used a high aluminum HLW stream composition defined by ORP, for which an appropriate simulant and high waste loading glass formulation were developed and have been previously processed on the DM1200.« less

  10. Study of an ATC baseline for the evaluation of team configurations : information requirements.

    DOT National Transportation Integrated Search

    2002-01-01

    This study investigated the information needs of Air Traffic Control Specialists (ATCSs) relative to their working position. The working positions used in this study included the current radar ATCS position and the concept airspace coordinator positi...

  11. A Computational/Experimental Study of Two Optimized Supersonic Transport Designs and the Reference H Baseline

    NASA Technical Reports Server (NTRS)

    Cliff, Susan E.; Baker, Timothy J.; Hicks, Raymond M.; Reuther, James J.

    1999-01-01

    Two supersonic transport configurations designed by use of non-linear aerodynamic optimization methods are compared with a linearly designed baseline configuration. One optimized configuration, designated Ames 7-04, was designed at NASA Ames Research Center using an Euler flow solver, and the other, designated Boeing W27, was designed at Boeing using a full-potential method. The two optimized configurations and the baseline were tested in the NASA Langley Unitary Plan Supersonic Wind Tunnel to evaluate the non-linear design optimization methodologies. In addition, the experimental results are compared with computational predictions for each of the three configurations from the Enter flow solver, AIRPLANE. The computational and experimental results both indicate moderate to substantial performance gains for the optimized configurations over the baseline configuration. The computed performance changes with and without diverters and nacelles were in excellent agreement with experiment for all three models. Comparisons of the computational and experimental cruise drag increments for the optimized configurations relative to the baseline show excellent agreement for the model designed by the Euler method, but poorer comparisons were found for the configuration designed by the full-potential code.

  12. Formation and sustainment of internal transport barriers in the International Thermonuclear Experimental Reactor with the baseline heating mixa)

    NASA Astrophysics Data System (ADS)

    Poli, Francesca M.; Kessel, Charles E.

    2013-05-01

    Plasmas with internal transport barriers (ITBs) are a potential and attractive route to steady-state operation in ITER. These plasmas exhibit radially localized regions of improved confinement with steep pressure gradients in the plasma core, which drive large bootstrap current and generate hollow current profiles and negative magnetic shear. This work examines the formation and sustainment of ITBs in ITER with electron cyclotron heating and current drive. The time-dependent transport simulations indicate that, with a trade-off of the power delivered to the equatorial and to the upper launcher, the sustainment of steady-state ITBs can be demonstrated in ITER with the baseline heating configuration.

  13. System and method for motor fault detection using stator current noise cancellation

    DOEpatents

    Zhou, Wei; Lu, Bin; Nowak, Michael P.; Dimino, Steven A.

    2010-12-07

    A system and method for detecting incipient mechanical motor faults by way of current noise cancellation is disclosed. The system includes a controller configured to detect indicia of incipient mechanical motor faults. The controller further includes a processor programmed to receive a baseline set of current data from an operating motor and define a noise component in the baseline set of current data. The processor is also programmed to acquire at least on additional set of real-time operating current data from the motor during operation, redefine the noise component present in each additional set of real-time operating current data, and remove the noise component from the operating current data in real-time to isolate any fault components present in the operating current data. The processor is then programmed to generate a fault index for the operating current data based on any isolated fault components.

  14. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 3: Effects of configuration variations from baseline

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The aerodynamic characteristics of the components of the baseline E205 configuration is presented. Geometric variations from the baseline E205 configuration are also given including a matrix of conrad longitudinal locations and strake shapes.

  15. Evaluation of CASL boiling model for DNB performance in full scale 5x5 fuel bundle with spacer grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seung Jun

    As one of main tasks for FY17 CASL-THM activity, Evaluation study on applicability of the CASL baseline boiling model for 5x5 DNB application is conducted and the predictive capability of the DNB analysis is reported here. While the baseline CASL-boiling model (GEN- 1A) approach has been successfully implemented and validated with a single pipe application in the previous year’s task, the extended DNB validation for realistic sub-channels with detailed spacer grid configurations are tasked in FY17. The focus area of the current study is to demonstrate the robustness and feasibility of the CASL baseline boiling model for DNB performance inmore » a full 5x5 fuel bundle application. A quantitative evaluation of the DNB predictive capability is performed by comparing with corresponding experimental measurements (i.e. reference for the model validation). The reference data are provided from the Westinghouse Electricity Company (WEC). Two different grid configurations tested here include Non-Mixing Vane Grid (NMVG), and Mixing Vane Grid (MVG). Thorough validation studies with two sub-channel configurations are performed at a wide range of realistic PWR operational conditions.« less

  16. Space Shuttle aerothermodynamic data report, phase C

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration are included. An up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program is provided. Tables are designed to provide suvery information to the various space shuttle managerial and technical levels.

  17. Aerothermodynamic data base. Data file contents report, phase C

    NASA Technical Reports Server (NTRS)

    Lutz, G. R.

    1983-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. Documentation of DMS processed data arranged sequentially and by space shuttle configuration is listed to provide an up-to-date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables provide survey information to the various space shuttle managerial and technical levels.

  18. Aerothermodynamic Data Base

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Space shuttle aerothermodynamic data, collected from a continuing series of wind tunnel tests, are permanently stored with the Data Management Services (DMS) system. Information pertaining to current baseline configuration definition is also stored. A list of documentation of DMS processed data arranged sequentially and by space shuttle configuration is presented. The listing provides an up to date record of all applicable aerothermodynamic data collected, processed, or summarized during the space shuttle program. Tables are designed to provide survey information to the various space shuttle managerial and technical levels.

  19. Exploring the potential of short-baseline physics at Fermilab

    NASA Astrophysics Data System (ADS)

    Miranda, O. G.; Pasquini, Pedro; Tórtola, M.; Valle, J. W. F.

    2018-05-01

    We study the capabilities of the short-baseline neutrino program at Fermilab to probe the unitarity of the lepton mixing matrix. We find the sensitivity to be slightly better than the current one. Motivated by the future DUNE experiment, we have also analyzed the potential of an extra liquid Argon near detector in the LBNF beamline. Adding such a near detector to the DUNE setup will substantially improve the current sensitivity on nonunitarity. This would help to remove C P degeneracies due to the new complex phase present in the neutrino mixing matrix. We also study the sensitivity of our proposed setup to light sterile neutrinos for various configurations.

  20. Avionics test bed development plan

    NASA Technical Reports Server (NTRS)

    Harris, L. H.; Parks, J. M.; Murdock, C. R.

    1981-01-01

    A development plan for a proposed avionics test bed facility for the early investigation and evaluation of new concepts for the control of large space structures, orbiter attached flex body experiments, and orbiter enhancements is presented. A distributed data processing facility that utilizes the current laboratory resources for the test bed development is outlined. Future studies required for implementation, the management system for project control, and the baseline system configuration are defined. A background analysis of the specific hardware system for the preliminary baseline avionics test bed system is included.

  1. Promising Properties and System Demonstration of an Environmentally Benign Yellow Smoke Formulation for Hand-Held Signals

    DTIC Science & Technology

    2014-04-18

    differences between the current specification and this new baseline configuration: (1) The tube is now composed of cardboard instead of stainless steel ...version of this previously reported composition, one without fumed silica hereafter referred to as formulation A. This formulation consists of Solvent

  2. Configuration Management Plan for the Tank Farm Contractor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WEIR, W.R.

    The Configuration Management Plan for the Tank Farm Contractor describes configuration management the contractor uses to manage and integrate its technical baseline with the programmatic and functional operations to perform work. The Configuration Management Plan for the Tank Farm Contractor supports the management of the project baseline by providing the mechanisms to identify, document, and control the technical characteristics of the products, processes, and structures, systems, and components (SSC). This plan is one of the tools used to identify and provide controls for the technical baseline of the Tank Farm Contractor (TFC). The configuration management plan is listed in themore » management process documents for TFC as depicted in Attachment 1, TFC Document Structure. The configuration management plan is an integrated approach for control of technical, schedule, cost, and administrative processes necessary to manage the mission of the TFC. Configuration management encompasses the five functional elements of: (1) configuration management administration, (2) configuration identification, (3) configuration status accounting, (4) change control, and (5 ) configuration management assessments.« less

  3. The role of the deep space network's frequency and timing system in the detection of gravitational waves

    NASA Technical Reports Server (NTRS)

    Mankins, J. C.

    1982-01-01

    A review of the Deep Space Network's (DSN) use of precision Doppler-tracking of deep space vehicles is presented. The review emphasizes operational and configurational aspects and considers: the projected configuration of the DSN's frequency and timing system; the environment within the DSN provided by the precision atomic standards within the frequency and timing system--both current and projected; and the general requirements placed on the DSN and the frequency and timing system for both the baseline and the nominal gravitational wave experiments. A comment is made concerning the current probability that such an experiment will be carried out in the foreseeable future.

  4. TWRS Configuration management program plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    The TWRS Configuration Management Program Plan (CMPP) integrates technical and administrative controls to establish and maintain consistency among requirements, product configuration, and product information for TWRS products during all life cycle phases. This CMPP will be used by TWRS management and configuration management personnel to establish and manage the technical and integrated baselines and controls and status changes to those baselines.

  5. High Misalignment Carbon Seals for the Fan Drive Gear System Technologies

    NASA Technical Reports Server (NTRS)

    Shaughnessy, Dennis; Dobek, Lou

    2006-01-01

    Aircraft engines of the future will require capability bearing compartment seals than found in current engines. Geared systems driving the fan will be subjected to inertia and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt & Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate to operate at highly misaligned conditions. Initial seal tests established the misalignment limits of the current technology circumferential seal. From these results a more compliant seal configuration was conceived, designed, fabricated, and tested. Further improvements to the design are underway and plans are to conduct a durability test of the next phase configuration. A technical approach is presented, including design modification to a "baseline"seal, carbon grade selection, test rig configuration, test plan and results of analysis of seal testing.

  6. Systems integration studies for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1975-01-01

    Technical progress in each of the disciplinary research areas affecting the design of supersonic cruise aircraft is discussed. The NASA AST/SCAR Program supported the integration of these technical advances into supersonic cruise aircraft configuration concepts. While the baseline concepts reflect differing design philosophy, all reflect a level of economic performance considerably above the current foreign aircraft as well as the former U.S. SST. Range-payload characteristics of the study configurating show significant improvement, while meeting environmental goals such as takeoff and landing noise and upper atmospheric pollution.

  7. Effect of reduced aft diameter and increased blade number of high-speed counterrotation propeller performance

    NASA Technical Reports Server (NTRS)

    Gayle, E. Rose; Jeracki, Robert J.

    1989-01-01

    Performance data of 0.17-scale model counterrotation pusher propeller configurations were taken in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel at Mach numbers of 0.66, 0.71, 0.75, and 0.79. These tests investigated the aerodynamic performance of the unducted fan (UDF) demonstrator propeller engine developed in a joint program by General Electric and NASA. Data were recorded to show the effect on counterrotation propeller cruise efficiency of two takeoff noise-reduction concepts. These two concepts are reduced aft blade diameter and increased forward blade number. The four configurations tested were a baseline (F1/A1 8/8) configuration, a reduced aft diameter (F1/A3 8/8) configuration, an increase forward blade number (F1/A1 9/8) configuration, and a combination of the latter two (F1/A3 9/8) configurations. Data were collected with a complex counterrotation propeller test rig via rotating thrust and torque balances and pressure instrumentation. Data comparisons documented the power differences between the baseline and the reduced aft diameter concepts. Performance comparisons to the baseline configuration showed that reducing the aft blade diameter reduced the net efficiency, and adding a blade to the front rotor increased the net efficiency. The combination of the two concepts showed only slightly lower net efficiency than the baseline configuration. It was also found that the counterrotation demonstrator propeller model (F7/A7 8/8) configuration outperformed the baseline (F1/A1 8/8) configuration.

  8. Effect of reduced aft diameter and increased blade number on high-speed counterrotation propeller performance

    NASA Technical Reports Server (NTRS)

    Rose, Gayle E.; Jeracki, Robert J.

    1989-01-01

    Performance data of 0.17-scale model counterrotation pusher propeller configurations were taken in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel at Mach numbers of 0.66, 0.71, 0.75, and 0.79. These tests investigated the aerodynamic performance of the unducted fan (UDF) demonstrator propeller engine developed in a joint program by General Electric and NASA. Data were recorded to show the effect on counterrotation propeller cruise efficiency of two takeoff noise-reduction concepts. These two concepts are reduced aft blade diameter and increased forward blade number. The four configurations tested were a baseline (F1/A1 8/8) configuration, a reduced aft diameter (F1/A3 8/8) configuration, an increase forward blade number (F1/A1 9/8) configuration, and a combination of the latter two (F1/A3 9/8) configurations. Data were collected with a complex counterrotation propeller test rig via rotating thrust and torque balances and pressure instrumentation. Data comparisons documented the power differences between the baseline and the reduced aft diameter concepts. Performance comparisons to the baseline configuration showed that reducing the aft blade diameter reduced the net efficiency, and adding a blade to the front rotor increased the net efficiency. The combination of the two concepts showed only slightly lower net efficiency than the baseline configuration. It was also found that the counterrotation demonstrator propeller model (F7/A7 8/8) configuration outperformed the baseline (F1/A1 8/8) configuration.

  9. Preliminary survey of 21st century civil mission applications of space nuclear power

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Olivieri, J.; Hepenstal, A.

    1987-01-01

    The purpose was to collect and categorize a forecast of civilian space missions and their power requirements, and to assess the suitability of an SP-100 class space reactor power system to those missions. A wide variety of missions were selected for examination. The applicability of an SP-100 type of nuclear power system was assessed for each of the selected missions; a strawman nuclear power system configuration was drawn up for each mission. The main conclusions are as follows: (1) Space nuclear power in the 50 kW sub e plus range can enhance or enable a wide variety of ambitious civil space mission; (2) Safety issues require additional analyses for some applications; (3) Safe space nuclear reactor disposal is an issue for some applications; (4) The current baseline SP-100 conical radiator configuration is not applicable in all cases; (5) Several applications will require shielding greater than that provided by the baseline shadow-shield; and (6) Long duration, continuous operation, high reliability missions may exceed the currently designed SP-100 lifetime capabilities.

  10. Sonic Boom Minimization Efforts on Boeing HSCT Baseline

    NASA Technical Reports Server (NTRS)

    Cheung, Samson H.; Fouladi, Kamran; Haglund, George; Tu, Eugene

    1999-01-01

    A team was formed to tackle the sonic boom softening issues of the current Boeing HSCT design. The team consisted of personnel from NASA Ames, NASA Langley, and Boeing company. The work described in this paper was done when the first author was at NASA Ames Research Center. This paper presents the sonic boom softening work on two Boeing High Speed Civil Transport (HSCT) baseline configurations, Reference-H and Boeing-1122. This presentation can be divided into two parts: parametric studies and sonic boom minimization by CFD optimization routines.

  11. Passive control of discrete-frequency tones generated by coupled detuned cascades

    NASA Astrophysics Data System (ADS)

    Sawyer, S.; Fleeter, S.

    2003-07-01

    Discrete-frequency tones generated by rotor-stator interactions are of particular concern in the design of fans and compressors. Classical theory considers an isolated flat-plate cascade of identical uniformly spaced airfoils. The current analysis extends this tuned isolated cascade theory to consider coupled aerodynamically detuned cascades where aerodynamic detuning is accomplished by changing the chord of alternate rotor blades and stator vanes. In a coupled cascade analysis, the configuration of the rotor influences the downstream acoustic response of the stator, and the stator configuration influences the upstream acoustic response of the rotor. This coupled detuned cascade unsteady aerodynamic model is first applied to a baseline tuned stage. This baseline stage is then aerodynamically detuned by replacing alternate rotor blades and stator vanes with decreased chord airfoils. The nominal aerodynamically detuned stage configuration is then optimized, with the stage acoustic response decreased 13 dB upstream and 1 dB downstream at the design operating condition. A reduction in the acoustic response of the optimized aerodynamically detuned stage is then demonstrated over a range of operating conditions.

  12. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Wing planform study and final configuration selection

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The Wing Planform Study and Final Configuration Selection Task of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program is documented. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology, takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 44% reduction in horizontal tail size), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3589 km 1938 nmi), this amounts to 10% block-fuel reduction. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation, and begin the required control system development and test.

  13. Commercial Cargo Derivative Study of the Advanced Hybrid Wing Body Configuration with Over-Wing Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Hooker, John R.; Wick, Andrew T.; Hardin, Christopher J.

    2017-01-01

    LM has leveraged our partnership with the Air Force Research Laboratory (AFRL) and NASA on the advanced hybrid wing body (HWB) concept to develop a commercial freighter which addresses the NASA Advanced Air Transport Technology (AATT) Project goals for improved efficiency beyond 2025. The current Air Force Research Laboratory (AFRL) Revolutionary Configurations for Energy Efficiency (RCEE) program established the HWB configuration and technologies needed for military transports to achieve aerodynamic and fuel efficiencies well beyond the commercial industry's most modern designs. This study builds upon that effort to develop a baseline commercial cargo aircraft and two HWB derivative commercial cargo aircraft to quanitify the benefit of the HWB and establish a technology roadmap for further development.

  14. Low-speed static and dynamic force tests of a generic supersonic cruise fighter configuration

    NASA Technical Reports Server (NTRS)

    Hahne, David E.

    1989-01-01

    Static and dynamic force tests of a generic fighter configuration designed for sustained supersonic flight were conducted in the Langley 30- by 60-foot tunnel. The baseline configuration had a 65 deg arrow wing, twin wing mounted vertical tails and a canard. Results showed that control was available up to C sub L,max (maximum lift coefficient) from aerodynamic controls about all axes but control in the pitch and yaw axes decreased rapidly in the post-stall angle-of-attack region. The baseline configuration showed stable lateral-directional characteristics at low angles of attack but directional stability occurred near alpha = 25 deg as the wing shielded the vertical tails. The configuration showed positive effective dihedral throughout the test angle-of-attack range. Forced oscillation tests indicated that the baseline configuration had stable damping characteristics about the lateral-directional axes.

  15. Building energy analysis tool

    DOEpatents

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  16. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Wing planform study and final configuration selection

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This report summarizes the Wing Planform Study Task and Final Configuration Selection of the Integrated Application of Active Controls (IAAC) Technology Project within the Energy Efficient Transport Program. Application of Active Controls Technology (ACT) in combination with increased wing span resulted in significant improvements over the Conventional Baseline Configuration (Baseline) and the Initial ACT Configuration previously established. The configurations use the same levels of technology (except for ACT), takeoff gross weight, and payload as the Baseline. The Final ACT Configuration (Model 768-107) incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail sizes), lateral/directional-augmented stability, an angle-of-attack limiter, and wing-load alleviation. Flutter-mode control was not beneficial for this configuration. This resulted in an 890 kg (1960 lb) reduction in airplane takeoff gross weight and a 9.8% improvement in cruise lift/drag. At the Baseline mission range (3590 km) (1938 nmi), this amounts to 10% block fuel reduction. Good takeoff performance at high-altitude airports on a hot day was also achieved. Results of this task strongly indicate that the IAAC Project should proceed with the Final ACT evaluation and begin the required control system development and testing.

  17. Opto-mechanical architecture of the LISA instrument

    NASA Astrophysics Data System (ADS)

    Weise, Dennis; Marenaci, Pierangelo; Weimer, Peter; Berger, Marcel; Schulte, Hans R.; Gath, Peter; Johann, Ulrich

    2017-11-01

    We report on the latest iteration of the baseline opto-mechanical architecture of the LISA instru- ment, which has been developed within the current LISA Mission Formulation study under ESA con- tract. The collective features of the current architec- ture have been consolidated in an extensive trade of various alternative payload configurations, including variants with only one active proof mass per space- craft and the application of "In-Field Pointing" for accommodation of constellation breathing. With respect to the original configuration [1], the newly established architecture most notably distin- guishes itself by the use of an off-axis telescope and a "non-frequency-swap" science interferometer for stray light mitigation, as well as the implementa- tion of ancillary pathlength metrology in terms of an "Optical Truss" and Point Ahead Angle sensing.

  18. Aerodynamic design and analysis of the AST-204, AST-205, and AST-206 blended wing-fuse large supersonic transport configuration concepts

    NASA Technical Reports Server (NTRS)

    Martin, G. L.; Walkley, K. B.

    1980-01-01

    The aerodynamic design and analysis of three blended wing-fuselage supersonic cruise configurations providing four, five, and six abreast seating was conducted using a previously designed supersonic cruise configuration as the baseline. The five abreast configuration was optimized for wave drag at a Mach number of 2.7. The four and six abreast configurations were also optimized at Mach 2.7, but with the added constraint that the majority of their structure be common with the five abreast configuration. Analysis of the three configurations indicated an improvement of 6.0, 7.5, and 7.7 percent in cruise lift-to-drag ratio over the baseline configuration for the four, five, and six abreast configurations, respectively.

  19. Aircraft conceptual design - an adaptable parametric sizing methodology

    NASA Astrophysics Data System (ADS)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to meet current aerospace challenges. Overarching goal is to avoid the reoccurring situation of optimizing an already ill-fated solution.

  20. Simplified liquid oxygen propellant conditioning concepts

    NASA Technical Reports Server (NTRS)

    Cleary, N. L.; Holt, K. A.; Flachbart, R. H.

    1995-01-01

    Current liquid oxygen feed systems waste propellant and use hardware, unnecessary during flight, to condition the propellant at the engine turbopumps prior to launch. Simplified liquid oxygen propellant conditioning concepts are being sought for future launch vehicles. During a joint program, four alternative propellant conditioning options were studied: (1) passive recirculation; (2) low bleed through the engine; (3) recirculation lines; and (4) helium bubbling. The test configuration for this program was based on a vehicle design which used a main recirculation loop that was insulated on the downcomer and uninsulated on the upcomer. This produces a natural convection recirculation flow. The test article for this program simulated a feedline which ran from the main recirculation loop to the turbopump. The objective was to measure the temperature profile of this test article. Several parameters were varied from the baseline case to determine their effects on the temperature profile. These parameters included: flow configuration, feedline slope, heat flux, main recirculation loop velocity, pressure, bleed rate, helium bubbling, and recirculation lines. The heat flux, bleed rate, and recirculation configurations produced the greatest changes from the baseline temperature profile. However, the temperatures in the feedline remained subcooled. Any of the options studied could be used in future vehicles.

  1. Integrated application of active controls (IAAC) technology to an advanced subsonic transport project. Initial ACT configuration design study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The initial ACT configuration design task of the integrated application of active controls (IAAC) technology project within the Energy Efficient Transport Program is summarized. A constrained application of active controls technology (ACT) resulted in significant improvements over a conventional baseline configuration previously established. The configuration uses the same levels of technology, takeoff gross weight, payload, and design requirements/objectives as the baseline, except for flying qualities, flutter, and ACT. The baseline wing is moved forward 1.68 m. The configuration incorporates pitch-augmented stability (which enabled an approximately 10% aft shift in cruise center of gravity and a 45% reduction in horizontal tail size), lateral/directional-augmented stability, an angle of attack limiter, wing load alleviation, and flutter mode control. This resulted in a 930 kg reduction in airplane operating empty weight and a 3.6% improvement in cruise efficiency, yielding a 13% range increase. Adjusted to the 3590 km baseline mission range, this amounts to 6% block fuel reduction and a 15.7% higher incremental return on investment, using 1978 dollars and fuel cost.

  2. Honeycomb vs. Foam: Evaluating Potential Upgrades to ISS Module Shielding

    NASA Technical Reports Server (NTRS)

    Ryan, Shannon J.; Christiansen, Eric L.

    2009-01-01

    The presence of honeycomb cells in a dual-wall structure is advantageous for mechanical performance and low weight in spacecraft primary structures but detrimental for shielding against impact of micrometeoroid and orbital debris particles (MMOD). The presence of honeycomb cell walls acts to restrict the expansion of projectile and bumper fragments, resulting in the impact of a more concentrated (and thus lethal) fragment cloud upon the shield rear wall. The Multipurpose Laboratory Module (MLM) is a Russian research module scheduled for launch and ISS assembly in 2011 (currently under review). Baseline shielding of the MLM is expected to be predominantly similar to that of the existing Functional Energy Block (FGB), utilizing a baseline triple wall configuration with honeycomb sandwich panels for the dual bumpers and a thick monolithic aluminum pressure wall. The MLM module is to be docked to the nadir port of the Zvezda service module and, as such, is subject to higher debris flux than the FGB module (which is aligned along the ISS flight vector). Without upgrades to inherited shielding, the MLM penetration risk is expected to be significantly higher than that of the FGB module. Open-cell foam represents a promising alternative to honeycomb as a sandwich panel core material in spacecraft primary structures as it provides comparable mechanical performance with a minimal increase in weight while avoiding structural features (i.e. channeling cells) detrimental to MMOD shielding performance. In this study, the effect of replacing honeycomb sandwich panel structures with metallic open-cell foam structures on MMOD shielding performance is assessed for an MLM-representative configuration. A number of hypervelocity impact tests have been performed on both the baseline honeycomb configuration and upgraded foam configuration, and differences in target damage, failure limits, and derived ballistic limit equations are discussed.

  3. Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.

  4. Configuration management program plan for Hanford site systems engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, A.G.

    This plan establishes the integrated configuration management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford site technical baseline.

  5. Computational Fluid Dynamics (CFD) Analyses in Support of Space Shuttle Main Engine (SSME) Heat Exchanger (HX) Vane Cracking Investigation

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Benjamin, Theodore G.; Cornelison, J.; Fredmonski, A. J.

    1993-01-01

    Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem.

  6. 40 CFR 1042.825 - Baseline determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... a used engine to be the emission-data engine for the engine family for testing. Using good engineering judgment, select the engine configuration expected to represent the most common configuration in... adjust it differently, consistent with good engineering judgment. (d) Test the baseline engine four times...

  7. 40 CFR 1042.825 - Baseline determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a used engine to be the emission-data engine for the engine family for testing. Using good engineering judgment, select the engine configuration expected to represent the most common configuration in... adjust it differently, consistent with good engineering judgment. (d) Test the baseline engine four times...

  8. Potential for Sonic Boom Reduction of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Haglund, George T.

    1999-01-01

    The HSR sonic boom technology program includes a goal of reducing the objectionable aspects of sonic boom. Earlier HSCT sonic boom studies considered achieving significant sonic boom reduction by the use of arrow-wing planforms and detailed shaping of the airplane to produce shaped waveforms (non N-waves) at the ground. While these design efforts were largely successful, the added risk and cost of the airplanes were judged to be unacceptable. The objective of the current work is to explore smaller configuration refinements that could lead to reduced sonic boom impact, within design and operational constraints. A somewhat modest target of 10% reduction in sonic boom maximum overpressure was selected to minimize the effect on the configuration performance. This work was a joint NASA/Industry effort, utilizing the respective strengths of team members at Boeing, NASA Langley, and NASA Ames. The approach used was to first explore a wide range of modifications and airplane characteristics for their effects on sonic boom and drag, using classical Modified Linear Theory (MLT) methods. CFD methods were then used to verify promising, modifications and to analyze modifications for which the MLT methods were not appropriate. The tea m produced a list of configuration changes with their effects on sonic boom and, in some cases, an estimate of the drag penalty. The most promising modifications were applied to produce a boom-softened derivative of the baseline Boeing High Speed Civil Transport (HSCT) configuration. This boom-softened configuration was analyzed in detail for the reduce sonic boom impact and also for the effect of the configuration modifications on drag, weight, and overall performance relative to the baseline.

  9. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented.

  10. The effect of perceptual grouping on haptic numerosity perception.

    PubMed

    Verlaers, K; Wagemans, J; Overvliet, K E

    2015-01-01

    We used a haptic enumeration task to investigate whether enumeration can be facilitated by perceptual grouping in the haptic modality. Eight participants were asked to count tangible dots as quickly and accurately as possible, while moving their finger pad over a tactile display. In Experiment 1, we manipulated the number and organization of the dots, while keeping the total exploration area constant. The dots were either evenly distributed on a horizontal line (baseline condition) or organized into groups based on either proximity (dots placed in closer proximity to each other) or configural cues (dots placed in a geometric configuration). In Experiment 2, we varied the distance between the subsets of dots. We hypothesized that when subsets of dots can be grouped together, the enumeration time will be shorter and accuracy will be higher than in the baseline condition. The results of both experiments showed faster enumeration for the configural condition than for the baseline condition, indicating that configural grouping also facilitates haptic enumeration. In Experiment 2, faster enumeration was also observed for the proximity condition than for the baseline condition. Thus, perceptual grouping speeds up haptic enumeration by both configural and proximity cues, suggesting that similar mechanisms underlie perceptual grouping in both visual and haptic enumeration.

  11. Critical Propulsion and Noise reduction Technologies for Future Commercial Subsonic Engines. Area of Interest 14.3: Separate Flow Exhaust System Noise

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Brausch, J. F.; Gliebe, P. R.; Coffin, R. S.; Martens, S.; Delaney, B. R.; Dalton, W. N.; Mengle, V. G.

    2000-01-01

    This presentation discusses: Project Objectives, Approach and Goal; Baseline Nozzles and Test Cycle Definition; Repeatability and Baseline Nozzle Results; Noise Reduction Concepts; Noise Reduction Tests Configurations of BPR=5 Internal Plug Nozzle adn Acoustic Results; Noise Reduction Test Configurations of BPR=5 External Plug Nozzle and Acoustic Results; and Noise Reduction Tests Configurations of BPR=8 External Plug Nozzle and Acoustic Results.

  12. Integrated Advanced Sounding Unit-A (AMSU-A). Configuration Management Plan

    NASA Technical Reports Server (NTRS)

    Cavanaugh, J.

    1996-01-01

    The purpose of this plan is to identify the baseline to be established during the development life cycle of the integrated AMSU-A, and define the methods and procedures which Aerojet will follow in the implementation of configuration control for each established baseline. Also this plan establishes the Configuration Management process to be used for the deliverable hardware, software, and firmware of the Integrated AMSU-A during development, design, fabrication, test, and delivery.

  13. VizieR Online Data Catalog: Study of protostars in the Perseus molecular cloud (Tobin+, 2016)

    NASA Astrophysics Data System (ADS)

    Tobin, J. J.; Looney, L. W.; Li, Z.-Y.; Chandler, C. J.; Dunham, M. M.; Segura-Cox, D.; Sadavoy, S. I.; Melis, C.; Harris, R. J.; Kratter, K.; Perez, L.

    2018-01-01

    We conducted observations with the VLA in B-configuration between 2013 September 28 and 2013 November 20 and in A-configuration during 2014 February 24 to 2014 May 31 and 2015 June 19 to 2015 September 21. The B-configuration (also referred to as B-array) has a maximum baseline (antenna separation) of 11.1 km and at 8 mm provides a resolution of ~0.2" (46 au). The A-configuration (A-array) has a maximum baseline of 36.4 km, providing a resolution of ~0.065" (15 au). (2 data files).

  14. Aeropropulsion facilities configuration control: Procedures manual

    NASA Technical Reports Server (NTRS)

    Lavelle, James J.

    1990-01-01

    Lewis Research Center senior management directed that the aeropropulsion facilities be put under configuration control. A Configuration Management (CM) program was established by the Facilities Management Branch of the Aeropropulsion Facilities and Experiments Division. Under the CM program, a support service contractor was engaged to staff and implement the program. The Aeronautics Directorate has over 30 facilities at Lewis of various sizes and complexities. Under the program, a Facility Baseline List (FBL) was established for each facility, listing which systems and their documents were to be placed under configuration control. A Change Control System (CCS) was established requiring that any proposed changes to FBL systems or their documents were to be processed as per the CCS. Limited access control of the FBL master drawings was implemented and an audit system established to ensure all facility changes are properly processed. This procedures manual sets forth the policy and responsibilities to ensure all key documents constituting a facilities configuration are kept current, modified as needed, and verified to reflect any proposed change. This is the essence of the CM program.

  15. Small Launch Vehicle Concept Development for Affordable Multi-Stage Inline Configurations

    NASA Technical Reports Server (NTRS)

    Beers, Benjamin R.; Waters, Eric D.; Philips, Alan D.; Threet, Grady E., Jr.

    2014-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and rocket propellant grade kerosene on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 configuration investigated potential impacts to affordability due to changes in gross liftoff weight and/or vehicle complexity. Results are discussed at a high level to understand the severity of certain sensitivities and how those trade studies conducted can either affect cost, performance or both.

  16. An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO)

    NASA Astrophysics Data System (ADS)

    Hogan, Jason M.; Johnson, David M. S.; Dickerson, Susannah; Kovachy, Tim; Sugarbaker, Alex; Chiow, Sheng-Wey; Graham, Peter W.; Kasevich, Mark A.; Saif, Babak; Rajendran, Surjeet; Bouyer, Philippe; Seery, Bernard D.; Feinberg, Lee; Keski-Kuha, Ritva

    2011-07-01

    We propose an atom interferometer gravitational wave detector in low Earth orbit (AGIS-LEO). Gravitational waves can be observed by comparing a pair of atom interferometers separated by a 30 km baseline. In the proposed configuration, one or three of these interferometer pairs are simultaneously operated through the use of two or three satellites in formation flight. The three satellite configuration allows for the increased suppression of multiple noise sources and for the detection of stochastic gravitational wave signals. The mission will offer a strain sensitivity of {<10^{-18}/sqrt{Hz}} in the 50mHz-10Hz frequency range, providing access to a rich scientific region with substantial discovery potential. This band is not currently addressed with the LIGO, VIRGO, or LISA instruments. We analyze systematic backgrounds that are relevant to the mission and discuss how they can be mitigated at the required levels. Some of these effects do not appear to have been considered previously in the context of atom interferometry, and we therefore expect that our analysis will be broadly relevant to atom interferometric precision measurements. Finally, we present a brief conceptual overview of shorter-baseline ({lesssim100 m}) atom interferometer configurations that could be deployed as proof-of-principle instruments on the International Space Station (AGIS-ISS) or an independent satellite.

  17. CryoSat SAR/SARin Level1b products: assessment of BaselineC and improvements towards BaselineD

    NASA Astrophysics Data System (ADS)

    Scagliola, Michele; Fornari, Marco; Bouffard, Jerome; Parrinello, Tommaso

    2017-04-01

    CryoSat was launched on the 8th April 2010 and is the first European ice mission dedicated to the monitoring of precise changes in the thickness of polar ice sheets and floating sea ice. Cryosat carries an innovative radar altimeter called the Synthetic Aperture Interferometric Altimeter (SIRAL), that transmits pulses at a high pulse repetition frequency thus making the received echoes phase coherent and suitable for azimuth processing. This allows to reach a significantly improved along track resolution with respect to traditional pulse-width limited altimeters. CryoSat is the first altimetry mission operating in SAR mode and continuous improvements in the Level1 Instrument Processing Facility (IPF1) are being identified, tested and validated in order to improve the quality of the Level1b products. The current IPF, Baseline C, was released in operation in April 2015 and the second CryoSat reprocessing campaign was jointly initiated, taking benefit of the upgrade implemented in the IPF1 processing chain but also of some specific configurations for the calibration corrections. In particular, the CryoSat Level1b BaselineC products generated in the framework of the second reprocessing campaign include refined information for what concerns the mispointing angles and the calibration corrections. This poster will thus detail thus the evolutions that are currently planned for the CryoSat BaselineD SAR/SARin Level1b products and the corresponding quality improvements that are expected.

  18. Aerodynamic Comparison of Hyper-Elliptic Cambered Span (HECS) Wings with Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Lazos, Barry S.; Visser, Kenneth D.

    2006-01-01

    An experimental study was conducted to examine the aerodynamic and flow field characteristics of hyper-elliptic cambered span (HECS) wings and compare results with more conventional configurations used for induced drag reduction. Previous preliminary studies, indicating improved L/D characteristics when compared to an elliptical planform prompted this more detailed experimental investigation. Balance data were acquired on a series of swept and un-swept HECS wings, a baseline elliptic planform, two winglet designs and a raked tip configuration. Seven-hole probe wake surveys were also conducted downstream of a number of the configurations. Wind tunnel results indicated aerodynamic performance levels of all but one of the HECS wings exceeded that of the other configurations. The flow field data surveys indicate the HECS configurations displaced the tip vortex farther outboard of the wing than the Baseline configuration. Minimum drag was observed on the raked tip configuration and it was noted that the winglet wake lacked the cohesive vortex structure present in the wakes of the other configurations.

  19. Preliminary studies of a spinning tether-connected TRIO concept

    NASA Astrophysics Data System (ADS)

    Crellin, E. B.

    1985-04-01

    Use of a slowly spinning interferometer configuration with the telescopes attached to the central station using tethers of equal length, including tether configuration, mass and storage is discussed. Slow rotation allows measurements of each source at different baseline angles. When the maximum baseline length is reached, the tethers can be retracted (stopping at intermediate lengths for further measurements, if required) and the telescopes recaptured by the central station. The attitude change to another source can be performed with the rigid configuration.

  20. Subsonic static and dynamic stability characteristics of the test technique demonstrator NASP configuration

    NASA Technical Reports Server (NTRS)

    Boyden, Richmond P.; Dress, David A.; Fox, Charles H., Jr.; Huffman, Jarrett K.; Cruz, Christopher I.

    1993-01-01

    The paper describes the procedure used for and the results obtained of wind-tunnel tests of the National Aerospace Plane (NASP) configuration, which were conducted in the NASA Langley Research Center High Speed Tunnel using a blended body NASP configuration designed by the research center. Static and dynamic stability characteristics were measured at Mach numbers 0.3, 0.6, and 0.8. In addition to tests of the baseline configuration, component buildup tests with a canard surface and with a body flap were carried out. Results demonstrated a positive static stability of the baseline configuration, except at the higher angles of attack at Mach 0.8. A good agreement was found between the inphase dynamic parameters and the corresponding static data.

  1. Development and Sizing of the JWST Integrated Science Instrument Module (ISIM) Metering Structure

    NASA Technical Reports Server (NTRS)

    Johnston, John; Kunt, Cengiz; Bartoszyk, Andrew; Hendricks, Steve; Cofie, Emmanuel

    2006-01-01

    The JWST Integrated Science Instrument Module (ISIM) includes a large metering structure (approx. 2m x 2m x 1.5m) that houses the science instruments and guider. Stringent dimensional stability and repeatability requirements combined with mass limitations led to the selection of a composite bonded frame design comprised of biased laminate tubes. Even with the superb material specific stiffness, achieving the required frequency for the given mass allocations in conjunction with severe spatial limitations imposed by the instrument complement has proven challenging. In response to the challenge, the ISIM structure team considered literally over 100 primary structure topology and kinematic mount configurations, and settled on a concept comprised of over 70 m of tubes, over 50 bonded joint assemblies, and a "split bi-pod" kinematic mount configuration. In this paper, we review the evolution of the ISIM primary structure topology and kinematic mount configuration to the current baseline concept.

  2. Modeling Analysis for NASA GRC Vacuum Facility 5 Upgrade

    NASA Technical Reports Server (NTRS)

    Yim, J. T.; Herman, D. A.; Burt, J. M.

    2013-01-01

    A model of the VF5 test facility at NASA Glenn Research Center was developed using the direct simulation Monte Carlo Hypersonic Aerothermodynamics Particle (HAP) code. The model results were compared to several cold flow and thruster hot fire cases. The main uncertainty in the model is the determination of the effective sticking coefficient -- which sets the pumping effectiveness of the cryopanels and oil diffusion pumps including baffle transmission. An effective sticking coefficient of 0.25 was found to provide generally good agreement with the experimental chamber pressure data. The model, which assumes a cold diffuse inflow, also fared satisfactorily in predicting the pressure distribution during thruster operation. The model was used to assess other chamber configurations to improve the local effective pumping speed near the thruster. A new configuration of the existing cryopumps is found to show more than 2x improvement over the current baseline configuration.

  3. Integrative application of active controls (IAAC) technology to an advanced subsonic transport project. Initial act configuration design study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The performance and economic benefits of a constrained application of Active Controls Technology (ACT) are identified, and the approach to airplane design is established for subsequent steps leading to the development of a less constrained final ACT configuration. The active controls configurations are measured against a conventional baseline configuration, a state-of-the-art transport, to determine whether the performance and economic changes resulting from ACT merit proceeding with the project. The technology established by the conventional baseline configuration was held constant except for the addition of ACT. The wing, with the same planform, was moved forward on the initial ACT configuration to move the loading range aft relative to the wing mean aerodynamic chord. Wing trailing-edge surfaces and surface controls also were reconfigured for load alleviation and structural stabilization.

  4. Gallium arsenide solar array subsystem study

    NASA Technical Reports Server (NTRS)

    Miller, F. Q.

    1982-01-01

    The effects on life cycle costs of a number of technology areas are examined for a gallium arsenide space solar array. Four specific configurations were addressed: (1) a 250 KWe LEO mission - planer array; (2) a 250 KWe LEO mission - with concentration; (3) a 50 KWe GEO mission planer array; (4) a 50 KWe GEO mission - with concentration. For each configuration, a baseline system conceptual design was developed and the life cycle costs estimated in detail. The baseline system requirements and design technologies were then varied and their relationships to life cycle costs quantified. For example, the thermal characteristics of the baseline design are determined by the array materials and masses. The thermal characteristics in turn determine configuration, performance, and hence life cycle costs.

  5. A Second Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Chang, Clarence T.; He, Zhuohui Joe; Lee, Phil; Dam, Bidhan; Mongia, Hukam

    2014-01-01

    A low-NO (sub x) aircraft gas turbine engine combustion concept was developed and tested. The concept is a second generation swirl-venturi lean direct injection (SV-LDI) concept. LDI is a lean-burn combustion concept in which the fuel is injected directly into the flame zone. Three second generation SV-LDI configurations were developed. All three were based on the baseline 9-point SV-LDI configuration reported previously. These second generation configurations had better low power operability than the baseline 9-point configuration. Two of these second generation configurations were tested in a NASA Glenn Research Center flametube; these two configurations are called the at dome and 5-recess configurations. Results show that the 5-recess configuration generally had lower NO (sub x) emissions than the flat dome configuration. Correlation equations were developed for the flat dome configuration so that the landing-takeoff NO (sub x) emissions could be estimated. The flat dome landing-takeoff NO (sub x) is estimated to be 87-88 percent below the CAEP/6 standards, exceeding the ERA project goal of 75 percent reduction.

  6. One vs two primary LOX feedline configuration study for the National Launch System

    NASA Technical Reports Server (NTRS)

    Dill, K.; Davis, D.; Bates, R.; Tarwater, R.

    1992-01-01

    Six single LOX feedline designs were evaluated for use on the National Launch Vehicle. A single feedline design, designated the 'Spider', was chosen and compared to the baseline system. The baseline configuration employs two 20-inch I.D. lines, each supplying LOX to three 650,000 lbf thrust Space Transportation Main Engines. Five single feedline diameters were examined for the spider configuration; 22, 24, 26, 28, and 30-inch I.D. System dry weights and LOX residuals were estimated. These parameters, along with calculated staged mass for the different single line and baseline configurations, were used to calculate the payload mass to orbit. For the cases where LOX is drained to minimum NPSP conditions, none of the single lines performed as well as the dual line system, although the 22-inch diameter single line compared well. However, for the cases where LOX is drained to operating levels (LOX level at the booster and spider manifolds for the dual and single line configurations, respectively), the 22 - 26-inch I.D. single line systems show a greater payload capability.

  7. Baseline Evaluations to Support Control Room Modernization at Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boring, Ronald L.; Joe, Jeffrey C.

    2015-02-01

    For any major control room modernization activity at a commercial nuclear power plant (NPP) in the U.S., a utility should carefully follow the four phases prescribed by the U.S. Nuclear Regulatory Commission in NUREG-0711, Human Factors Engineering Program Review Model. These four phases include Planning and Analysis, Design, Verification and Validation, and Implementation and Operation. While NUREG-0711 is a useful guideline, it is written primarily from the perspective of regulatory review, and it therefore does not provide a nuanced account of many of the steps the utility might undertake as part of control room modernization. The guideline is largely summative—intendedmore » to catalog final products—rather than formative—intended to guide the overall modernization process. In this paper, we highlight two crucial formative sub-elements of the Planning and Analysis phase specific to control room modernization that are not covered in NUREG-0711. These two sub-elements are the usability and ergonomics baseline evaluations. A baseline evaluation entails evaluating the system as-built and currently in use. The usability baseline evaluation provides key insights into operator performance using the control system currently in place. The ergonomics baseline evaluation identifies possible deficiencies in the physical configuration of the control system. Both baseline evaluations feed into the design of the replacement system and subsequent summative benchmarking activities that help ensure that control room modernization represents a successful evolution of the control system.« less

  8. Evaluation of bearing configurations using the single bearing tester in liquid nitrogen

    NASA Technical Reports Server (NTRS)

    Jett, T.; Hall, P.; Thom, R.

    1991-01-01

    Various bearing configurations were tested using the Marshall Space Flight Center single bearing tester with LN2 as the cryogenic coolant. The baseline was one Rocketdyne phase one high pressure oxidizer turbopump (HPOTP) pump end 45-mm bore bearing. The bearing configurations that were tested included a Salox/M cage configuration, a silicon nitride ball configuration, an elongated cage configuration, and a Bray 601 grease configuration.

  9. Initial Investigation of the Acoustics of a Counter-Rotating Open Rotor Model with Historical Baseline Blades in a Low-Speed Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Elliott, David M.

    2012-01-01

    A counter-rotating open rotor scale model was tested in the NASA Glenn Research Center 9- by 15-Foot Low-Speed Wind Tunnel (LSWT). This model used a historical baseline blade set with which modern blade designs will be compared against on an acoustic and aerodynamic performance basis. Different blade pitch angles simulating approach and takeoff conditions were tested, along with angle-of-attack configurations. A configuration was also tested in order to determine the acoustic effects of a pylon. The shaft speed was varied for each configuration in order to get data over a range of operability. The freestream Mach number was also varied for some configurations. Sideline acoustic data were taken for each of these test configurations.

  10. Ultrasonic Device for Assessing the Quality of a Wire Crimp

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Perey, Daniel F. (Inventor); Cramer, Karl E. (Inventor)

    2015-01-01

    A system for determining the quality of an electrical wire crimp between a wire and ferrule includes an ultrasonically equipped crimp tool (UECT) configured to transmit an ultrasonic acoustic wave through a wire and ferrule, and a signal processor in communication with the UECT. The signal processor includes a signal transmitting module configured to transmit the ultrasonic acoustic wave via an ultrasonic transducer, signal receiving module configured to receive the ultrasonic acoustic wave after it passes through the wire and ferrule, and a signal analysis module configured to identify signal differences between the ultrasonic waves. The signal analysis module is then configured to compare the signal differences attributable to the wire crimp to a baseline, and to provide an output signal if the signal differences deviate from the baseline.

  11. Configuration management program plan for Hanford site systems engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellie, C.L.

    This plan establishes the integrated management program for the evolving technical baseline developed through the systems engineering process. This configuration management program aligns with the criteria identified in the DOE Standard, DOE-STD-1073-93. Included are specific requirements for control of the systems engineering RDD-100 database, and electronic data incorporated in the database that establishes the Hanford Site Technical Baseline.

  12. Method, system, and computer-readable medium for determining performance characteristics of an object undergoing one or more arbitrary aging conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gering, Kevin L.

    A method, system, and computer-readable medium are described for characterizing performance loss of an object undergoing an arbitrary aging condition. Baseline aging data may be collected from the object for at least one known baseline aging condition over time, determining baseline multiple sigmoid model parameters from the baseline data, and performance loss of the object may be determined over time through multiple sigmoid model parameters associated with the object undergoing the arbitrary aging condition using a differential deviation-from-baseline approach from the baseline multiple sigmoid model parameters. The system may include an object, monitoring hardware configured to sample performance characteristics ofmore » the object, and a processor coupled to the monitoring hardware. The processor is configured to determine performance loss for the arbitrary aging condition from a comparison of the performance characteristics of the object deviating from baseline performance characteristics associated with a baseline aging condition.« less

  13. Small Launch Vehicle Concept Development for Affordable Multi-Stage Inline Configurations

    NASA Technical Reports Server (NTRS)

    Beers, Benjamin R.; Waters, Eric D.; Philips, Alan D.; Threet, Grady E. Jr.

    2013-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three-stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and RP-1 on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 concept investigated potential impacts to affordability due to changes in gross liftoff weight and/or vehicle complexity. Results are discussed at a high level to understand the impact severity of certain sensitivities and how those trade studies conducted can either affect cost, performance, or both.

  14. Two-stage, low noise advanced technology fan. 4: Aerodynamic final report

    NASA Technical Reports Server (NTRS)

    Harley, K. G.; Keenan, M. J.

    1975-01-01

    A two-stage research fan was tested to provide technology for designing a turbofan engine for an advanced, long range commercial transport having a cruise Mach number of 0.85 -0.9 and a noise level 20 EPNdB below current requirements. The fan design tip speed was 365.8m/sec (1200ft/sec);the hub/tip ratio was 0.4; the design pressure ratio was 1.9; and the design specific flow was 209.2 kg/sec/sq m(42.85lbm/sec/sq ft). Two fan-versions were tested: a baseline configuration, and an acoustically treated configuration with a sonic inlet device. The baseline version was tested with uniform inlet flow and with tip-radial and hub-radial inlet flow distortions. The baseline fan with uniform inlet flow attained an efficiency of 86.4% at design speed, but the stall margin was low. Tip-radial distortion increased stall margin 4 percentage points at design speed and reduced peak efficiency one percentage point. Hub-radial distortion decreased stall margin 4 percentage points at all speeds and reduced peak efficiency at design speed 8 percentage points. At design speed, the sonic inlet in the cruise position reduced stall margin one percentage point and efficiency 1.5 to 4.5 percentage points. The sonic inlet in the approach position reduced stall margin 2 percentage points.

  15. The ALADIN System and its canonical model configurations AROME CY41T1 and ALARO CY40T1

    NASA Astrophysics Data System (ADS)

    Termonia, Piet; Fischer, Claude; Bazile, Eric; Bouyssel, François; Brožková, Radmila; Bénard, Pierre; Bochenek, Bogdan; Degrauwe, Daan; Derková, Mariá; El Khatib, Ryad; Hamdi, Rafiq; Mašek, Ján; Pottier, Patricia; Pristov, Neva; Seity, Yann; Smolíková, Petra; Španiel, Oldřich; Tudor, Martina; Wang, Yong; Wittmann, Christoph; Joly, Alain

    2018-01-01

    The ALADIN System is a numerical weather prediction (NWP) system developed by the international ALADIN consortium for operational weather forecasting and research purposes. It is based on a code that is shared with the global model IFS of the ECMWF and the ARPEGE model of Météo-France. Today, this system can be used to provide a multitude of high-resolution limited-area model (LAM) configurations. A few configurations are thoroughly validated and prepared to be used for the operational weather forecasting in the 16 partner institutes of this consortium. These configurations are called the ALADIN canonical model configurations (CMCs). There are currently three CMCs: the ALADIN baseline CMC, the AROME CMC and the ALARO CMC. Other configurations are possible for research, such as process studies and climate simulations. The purpose of this paper is (i) to define the ALADIN System in relation to the global counterparts IFS and ARPEGE, (ii) to explain the notion of the CMCs, (iii) to document their most recent versions, and (iv) to illustrate the process of the validation and the porting of these configurations to the operational forecast suites of the partner institutes of the ALADIN consortium. This paper is restricted to the forecast model only; data assimilation techniques and postprocessing techniques are part of the ALADIN System but they are not discussed here.

  16. Imaging with New Classic and Vision at the NPOI

    NASA Astrophysics Data System (ADS)

    Jorgensen, Anders

    2018-04-01

    The Navy Precision Optical Interferometer (NPOI) is unique among interferometric observatories for its ability to position telescopes in an equally-spaced array configuration. This configuration is optimal for interferometric imaging because it allows the use of bootstrapping to track fringes on long baselines with signal-to-noise ratio less than one. When combined with coherent integration techniques this can produce visibilities with acceptable SNR on baselines long enough to resolve features on the surfaces of stars. The stellar surface imaging project at NPOI combines the bootstrapping array configuration of the NPOI array, real-time fringe tracking, baseline- and wavelength bootstrapping with Earth rotation to provide dense coverage in the UV plane at a wide range of spatial frequencies. In this presentation, we provide an overview of the project and an update of the latest status and results from the project.

  17. Solid polymer electrolyte (SPE) fuel cell technology program, phase 2/2A. [testing and evaluations

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Test evaluations were performed on a fabricated single solid polymer electrolyte cell unit. The cell operated at increased current density and at higher performance levels. This improved performance was obtained through a combination of increased temperature, increased reactant pressures, improved activation techniques and improved thermal control over the baseline cell configuration. The cell demonstrated a higher acid content membrane which resulted in increased performance. Reduced catalyst loading and low cost membrane development showed encouraging results.

  18. Turbulent Flow Field Measurements of Separate Flow Round and Chevron Nozzles with Pylon Interaction Using Particle Image Velocimetry

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Henerson, Brenda S.; Kinzie, Kevin W.

    2004-01-01

    Particle Image Velocimetry (PIV) measurements for six separate flow bypass ratio five nozzle configurations have recently been obtained in the NASA Langley Jet Noise Laboratory. The six configurations include a baseline configuration with round core and fan nozzles, an eight-chevron core nozzle at two different clocking positions, and repeats of these configurations with a pylon included. One run condition representative of takeoff was investigated for all cases with the core nozzle pressure ratio set to 1.56 and the total temperature to 828 K. The fan nozzle pressure ratio was set to 1.75 with a total temperature of 350 K, and the freestream Mach number was M = 0.28. The unsteady flow field measurements provided by PIV complement recent computational, acoustic, and mean flow field studies performed at NASA Langley for the same nozzle configurations and run condition. The PIV baseline configuration measurements show good agreement with mean flow field data as well as existing PIV data acquired at NASA Glenn. Nonetheless, the baseline configuration turbulence profile indicates an asymmetric flow field, despite careful attention to concentricity. The presence of the pylon increases the upper shear layer turbulence levels while simultaneously decreasing the turbulence levels in the lower shear layer. In addition, a slightly shorter potential core length is observed with the addition of the pylon. Finally, comparisons of computational results with PIV measurements are favorable for mean flow, slightly over-predicted for Reynolds shear stress, and underpredicted for Reynolds normal stress components.

  19. Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam

    2004-01-01

    Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.

  20. Application of an optimized winglet configuration to an advanced commercial transport

    NASA Technical Reports Server (NTRS)

    Shollenberger, C. A.

    1979-01-01

    The design is presented of an aircraft which employs an integrated wing and winglet lift system. Comparison was made with a conventional baseline configuration employing a high-aspect-ratio supercritical wing. An optimized wing-winglet combination was selected from four proposed configurations for which aerodynamic, structural, and weight characteristics were evaluated. Each candidate wing-winglet configuration was constrained to the same induced drag coefficient as the baseline aircraft. The selected wing-winglet configuration was resized for a specific medium-range mission requirement, and operating costs were estimated for a typical mission. Study results indicated that the wing-winglet aircraft was lighter and could complete the specified mission at less cost than the conventional wing aircraft. These indications were sensitive to the impact of flutter characteristics and, to a lesser extent, to the performance of the high-lift system. Further study in these areas is recommended to reduce uncertainty in future development.

  1. Space shuttle configuration accounting functional design specification

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis is presented of the requirements for an on-line automated system which must be capable of tracking the status of requirements and engineering changes and of providing accurate and timely records. The functional design specification provides the definition, description, and character length of the required data elements and the interrelationship of data elements to adequately track, display, and report the status of active configuration changes. As changes to the space shuttle program levels II and III configuration are proposed, evaluated, and dispositioned, it is the function of the configuration management office to maintain records regarding changes to the baseline and to track and report the status of those changes. The configuration accounting system will consist of a combination of computers, computer terminals, software, and procedures, all of which are designed to store, retrieve, display, and process information required to track proposed and proved engineering changes to maintain baseline documentation of the space shuttle program levels II and III.

  2. Supersonic dynamic stability characteristics of the test technique demonstrator NASP configuration

    NASA Technical Reports Server (NTRS)

    Dress, David A.; Boyden, Richmond P.; Cruz, Christopher I.

    1992-01-01

    Wind tunnel tests of a National Aero-Space Plane (NASP) configuration were conducted in both test sections of the Langley Unitary Plan Wind Tunnel. The model used is a Langley designed blended body NASP configuration. Dynamic stability characteristics were measured on this configuration at Mach numbers of 2.0, 2.5, 3.5, and 4.5. In addition to tests of the baseline configuration, component buildup tests were conducted. The test results show that the baseline configuration generally has positive damping about all three axes with only isolated exceptions. In addition, there was generally good agreement between the in-pulse dynamic parameters and the corresponding static data which were measured during another series of tests in the Unitary Plan Wind Tunnel. Also included are comparisons of the experimental damping parameters with results from the engineering predictive code APAS (Aerodynamic Preliminary Analysis System). These comparisons show good agreement at low angles of attack; however, the comparisons are generally not as good at the higher angles of attack.

  3. Alternate space station freedom configuration considerations to accommodate solar dynamic power

    NASA Technical Reports Server (NTRS)

    Deryder, L. J.; Cruz, J. N.; Heck, M. L.; Robertson, B. P.; Troutman, P. A.

    1989-01-01

    The results of a technical audit of the Space Station Freedom Program conducted by the Program Director was announced in early 1989 and included a proposal to use solar dynamic power generation systems to provide primary electrical energy for orbital flight operations rather than photovoltaic solar array systems. To generate the current program baseline power of 75 kW, two or more solar concentrators approximately 50 feet in diameter would be required to replace four pairs of solar arrays whose rectangular blanket size is approximately 200 feet by 30 feet. The photovoltaic power system concept uses solar arrays to generate electricity that is stored in nickel-hydrogen batteries. The proposed concept uses the solar concentrator dishes to reflect and focus the Sun's energy to heat helium-xenon gas to drive electricity generating turbines. The purpose here is to consider the station configuration issues for incorporation of solar dynamic power system components. Key flight dynamic configuration geometry issues are addressed and an assembly sequence scenario is developed.

  4. A Comparison of Three Second-generation Swirl-Venturi Lean Direct Injection Combustor Concepts

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Podboy, Derek P.; He, Zhuohui Joe; Lee, Phil; Dam, Bidhan; Mongia, Hukam

    2016-01-01

    Three variations of a low emissions aircraft gas turbine engine combustion concept were developed and tested. The concept is a second generation swirl-venturi lean direct injection (SV-LDI) concept. LDI is a lean-burn combustion concept in which the fuel is injected directly into the flame zone. All three variations were based on the baseline 9- point SV-LDI configuration reported previously. The three second generation SV-LDI variations are called the 5-recess configuration, the flat dome configuration, and the 9- recess configuration. These three configurations were tested in a NASA Glenn Research Center medium pressure flametube. All three second generation variations had better low power operability than the baseline 9-point configuration. All three configurations had low NO(sub x) emissions, with the 5-recess configuration generally having slightly lower NO(x) than the flat dome or 9-recess configurations. Due to the limitations of the flametube that prevented testing at pressures above 20 atm, correlation equations were developed for the at dome and 9-recess configurations so that the landing-takeoff NO(sub x) emissions could be estimated. The flat dome and 9-recess landing-takeoff NO(x) emissions are estimated to be 81-88% below the CAEP/6 standards, exceeding the project goal of 75% reduction.

  5. Demonstration of catalytic combustion with residual fuel

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1981-01-01

    An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

  6. Two-dimensional converging-diverging rippled nozzles at transonic speeds. [performed in the Langley 16-Foot Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Carlson, John R.; Asbury, Scott C.

    1994-01-01

    An experimental investigation was performed in the Langley 16-Foot Transonic tunnel to determine the effects of external and internal flap rippling on the aerodynamics of a nonaxisymmetric nozzle. Data were obtained at several Mach numbers from static conditions to 1.2 over a range of nozzle pressure ratios. Nozzles with chordal boattail angles of 10, 20, and 30 degrees, with and without surface rippling, were tested. No effect on discharge coefficient due to surface rippling was observed. Internal thrust losses due to surface rippling were measured and attributed to a combination of additional internal skin friction and shock losses. External nozzle drag for the baseline configurations were generally less than that for the rippled configurations at all free-stream Mach numbers tested. The difference between the baseline and rippled nozzle drag levels generally increased with increasing boat tail angle. The thrust-minus-drag level for each rippled nozzle configuration was less than the equivalent baseline configuration for each Mach number at the design nozzle pressure ratio.

  7. Establishing a Product Baseline for Global Positioning System Satellites through Functional and Physical Configuration Audits

    DTIC Science & Technology

    2011-09-01

    PBL may see changes as the design is actually implemented . Such changes are typically for practical reasons of adapting to either specific...shall use a configuration management approach to establish and control product attributes and the product baseline across the total system life cycle... practice that helps prevent government interference in subcontracts, holds the prime contractor accountable for their end product (s), limits the potential

  8. GPS baseline configuration design based on robustness analysis

    NASA Astrophysics Data System (ADS)

    Yetkin, M.; Berber, M.

    2012-11-01

    The robustness analysis results obtained from a Global Positioning System (GPS) network are dramatically influenced by the configurationof the observed baselines. The selection of optimal GPS baselines may allow for a cost effective survey campaign and a sufficiently robustnetwork. Furthermore, using the approach described in this paper, the required number of sessions, the baselines to be observed, and thesignificance levels for statistical testing and robustness analysis can be determined even before the GPS campaign starts. In this study, wepropose a robustness criterion for the optimal design of geodetic networks, and present a very simple and efficient algorithm based on thiscriterion for the selection of optimal GPS baselines. We also show the relationship between the number of sessions and the non-centralityparameter. Finally, a numerical example is given to verify the efficacy of the proposed approach.

  9. Concept Development of a Mach 1.6 High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Shields, Elwood W.; Fenbert, James W.; Ozoroski, Lori P.; Geiselhart, Karl A.

    1999-01-01

    A high-speed civil transport configuration with a Mach number of 1.6 was developed as part of the NASA High-Speed Research Program to serve as a baseline for assessing advanced technologies required for an aircraft with a service entry date of 2005. This configuration offered more favorable solutions to environmental concerns than configurations with higher Mach numbers. The Mach 1.6 configuration was designed for a 6500 n.mi. mission with a 250-passenger payload. The baseline configuration has a wing area of 8732 square feet a takeoff gross weight of 591570 lb, and four 41000-lb advanced turbine bypass engines defined by NASA. These engines have axisymmetric mixer-ejector nozzles that are assumed to yield 20 dB of noise suppression during takeoff, which is assumed to satisfy, the FAR Stage III noise requirements. Any substantial reduction in this assumed level of suppression would require oversizing the engines to meet community noise regulations and would severly impact the gross weight of the aircraft at takeoff. These engines yield a ratio of takeoff thrust to weight of 0.277 and a takeoff wing loading of 67.8 lb/square feet that results in a rotation speed of 169 knots. The approach velocity of the sized configuration at the end of the mission is 131 knots. The baseline configuration was resized with an engine having a projected life of 9000 hr for hot rotating parts and 18000 hr for the rest of the engine, as required for commercial use on an aircraft with a service entry date of 2005. Results show an increase in vehicle takeoff gross weight of approximately 58700 lb. This report presents the details of the configuration development, mass properties, aerodynamic design, propulsion system and integration, mission performance, and sizing.

  10. Design optimization of high-speed proprotor aircraft

    NASA Technical Reports Server (NTRS)

    Schleicher, David R.; Phillips, James D.; Carbajal, Kevin B.

    1993-01-01

    NASA's high-speed rotorcraft (HSRC) studies have the objective of investigating technology for vehicles that have both low downwash velocities and forward flight speed capability of up to 450 knots. This paper investigates a tilt rotor, a tilt wing, and a folding tilt rotor designed for a civil transport mission. Baseline aircraft models using current technology are developed for each configuration using a vertical/short takeoff and landing (V/STOL) aircraft design synthesis computer program to generate converged vehicle designs. Sensitivity studies and numerical optimization are used to illustrate each configuration's key design tradeoffs and constraints. Minimization of the gross takeoff weight is used as the optimization objective function. Several advanced technologies are chosen, and their relative impact on future configurational development is discussed. Finally, the impact of maximum cruise speed on vehicle figures of merit (gross weight, productivity, and direct operating cost) is analyzed. The three most important conclusions from the study are payload ratios for these aircraft will be commensurate with current fixed-wing commuter aircraft; future tilt rotors and tilt wings will be significantly lighter, more productive, and cheaper than competing folding tilt rotors; and the most promising technologies are an advanced-technology proprotor for both tilt rotor and tilt wing and advanced structural materials for the folding tilt rotor.

  11. Long duct nacelle aerodynamic development for DC-10 derivatives

    NASA Technical Reports Server (NTRS)

    Patel, S. P.; Donelson, J. E.

    1980-01-01

    The results are presented of a wind tunnel test utilizing a 4.7-percent-scale semispan model of the DC-10 in the Calspan 8-foot transonic wind tunnel. The effect of a revised long-duct nacelle shape on the channel velocities, the incremental drag relative to the baseline long-duct nacelle, and channel velocities for the baseline long-duct nacelle were determined and compared with data obtained at Ames. The baseline and the revised long-duct nacelles are representative of a CF6-50 mixed-flow configuration and were evaluated on a model of a proposed DC-10 stretched-fuselage configuration. The results showed that the revised long-duct nacelle has an appreciable effect on the inboard channel velocities, resulting in an increased channel Mach number. However, the pressure recovery on the nacelle afterbody was about the same for both nacelles. The lift curves for both long-duct nacelle configurations were the same. The channel pressures measured at Calspan were in good agreement with those measured at Ames for the baseline long-duct nacelle. The incremental drag for the revised nacelle was measured as two to four counts (three counts is approximately equal to one percent of the airplane drag) higher than that of the baseline long-duct nacelle.

  12. Small Launch Vehicle Concept Development for Affordable Multi-Stage Inline Configurations

    NASA Technical Reports Server (NTRS)

    Beers, Benjamin R.; Waters, Eric D.; Philips, Alan D.; Threet, Grady E., Jr.

    2014-01-01

    The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three-stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current and future industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and rocket propellant grade kerosene on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 concept investigated potential impacts to affordability due to changes in gross liftoff mass and/or vehicle complexity. Results are discussed at a high level to understand the impact severity of certain sensitivities and how those trade studies conducted can either affect cost, performance, or both.

  13. Generalized EC&LSS computer program configuration control

    NASA Technical Reports Server (NTRS)

    Blakely, R. L.

    1976-01-01

    The generalized environmental control and life support system (ECLSS) computer program (G189A) simulation of the shuttle orbiter ECLSS was upgraded. The G189A component model configuration was changed to represent the current PV102 and subsequent vehicle ECLSS configurations as defined by baseline ARS and ATCS schematics. The diagrammatic output schematics of the gas, water, and freon loops were also revised to agree with the new ECLSS configuration. The accuracy of the transient analysis was enhanced by incorporating the thermal mass effects of the equipment, structure, and fluid in the ARS gas and water loops and in the ATCS freon loops. The sources of the data used to upgrade the simulation are: (1) ATCS freon loop line sizes and lengths; (2) ARS water loop line sizes and lengths; (3) ARS water loop and ATCS freon loop component and equipment weights; and (4) ARS cabin and avionics bay thermal capacitance and conductance values. A single G189A combination master program library tape was generated which contains all of the master program library versions which were previously maintained on separate tapes. A new component subroutine, PIPETL, was developed and incorporated into the G189A master program library.

  14. The Design of a Primary Flight Trainer using Concurrent Engineering Concepts

    NASA Technical Reports Server (NTRS)

    Ladesic, James G.; Eastlake, Charles N.; Kietzmann, Nicholas H.

    1993-01-01

    Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.

  15. Study of structural design concepts for an arrow wing supersonic transport configuration, volume 1. Tasks 1 and 2

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A structural design study was made, based on a 1975 level of technology, to assess the relative merits of structural concepts and materials for an advanced supersonic transport cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, to integrate the propulsion system with the airframe, to select structural concepts and materials, and to define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology and for use in future studies of aerostructural trades, and application of advanced technology. Criteria, analysis methods, and results are presented.

  16. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  17. Status of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Lineberry, John T.

    2007-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems, The baseline configuration for this high-power experimental facility utilizes a 1,5-MW, multi-gas arc-heater as a thermal driver for a 2-MW, MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable beat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  18. Supersonic Aerodynamic Characteristics of Proposed Mars '07 Smart Lander Configurations

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Horvath, Thomas J.; Erickson, Gary E.; Green, Joseph M.

    2002-01-01

    Supersonic aerodynamic data were obtained for proposed Mars '07 Smart Lander configurations in NASA Langley Research Center's Unitary Plan Wind Tunnel. The primary objective of this test program was to assess the supersonic aerodynamic characteristics of the baseline Smart Lander configuration with and without fixed shelf/tab control surfaces. Data were obtained over a Mach number range of 2.3 to 4.5, at a free stream Reynolds Number of 1 x 10(exp 6) based on body diameter. All configurations were run at angles of attack from -5 to 20 degrees and angles of sideslip of -5 to 5 degrees. These results were complemented with computational fluid dynamic (CFD) predictions to enhance the understanding of experimentally observed aerodynamic trends. Inviscid and viscous full model CFD solutions compared well with experimental results for the baseline and 3 shelf/tab configurations. Over the range tested, Mach number effects were shown to be small on vehicle aerodynamic characteristics. Based on the results from 3 different shelf/tab configurations, a fixed control surface appears to be a feasible concept for meeting aerodynamic performance metrics necessary to satisfy mission requirements.

  19. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    NASA Technical Reports Server (NTRS)

    Laberge, Kelsen E.; Handschuh, Robert F.; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program, allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite) configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp (2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Further studies are planned to determine the cause of this behavior.

  20. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    NASA Technical Reports Server (NTRS)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  1. Minimum-Time and Vibration Avoidance Attitude Maneuver for Spacecraft with Torque and Momentum Limit Constraints in Redundant Reaction Wheel Configuration

    NASA Technical Reports Server (NTRS)

    Ha, Kong Q.; Femiano, Michael D.; Mosier, Gary E.

    2004-01-01

    This viewgraph presentation presents an algorithm for trajectory control of a spacecraft that minimizes the time to perform slews, including settling, by avoiding reaction wheel torque and momentum limits that would excite flexible structural modes. This algorithm was validated by simulation during the design of the NGST 'Yardstick' (precursor to JWST). Performance verification of a reduced form for single-axis slews was carried out using the MIT Origins Testbed. It is currently baselined for use by TPF-Coronagraph.

  2. Simulation Study of Flap Effects on a Commercial Transport Airplane in Upset Conditions

    NASA Technical Reports Server (NTRS)

    Cunningham, Kevin; Foster, John V.; Shah, Gautam H.; Stewart, Eric C.; Ventura, Robin N.; Rivers, Robert A.; Wilborn, James E.; Gato, William

    2005-01-01

    As part of NASA's Aviation Safety and Security Program, a simulation study of a twinjet transport airplane crew training simulation was conducted to address fidelity for upset or loss of control conditions and to study the effect of flap configuration in those regimes. Piloted and desktop simulations were used to compare the baseline crew training simulation model with an enhanced aerodynamic model that was developed for high-angle-of-attack conditions. These studies were conducted with various flap configurations and addressed the approach-to-stall, stall, and post-stall flight regimes. The enhanced simulation model showed that flap configuration had a significant effect on the character of departures that occurred during post-stall flight. Preliminary comparisons with flight test data indicate that the enhanced model is a significant improvement over the baseline. Some of the unrepresentative characteristics that are predicted by the baseline crew training simulation for flight in the post-stall regime have been identified. This paper presents preliminary results of this simulation study and discusses key issues regarding predicted flight dynamics characteristics during extreme upset and loss-of-control flight conditions with different flap configurations.

  3. Highly Reusable Space Transportation (HRST) Baseline Concepts and Analysis: Rocket/RBCC Options. Part 2; A Comparative Study

    NASA Technical Reports Server (NTRS)

    Woodcock, Gordon

    1997-01-01

    This study is an extension of a previous effort by the Principal Investigator to develop baseline data to support comparative analysis of Highly Reusable Space Transportation (HRST) concepts. The analyses presented herin develop baseline data bases for two two-stage-to-orbit (TSTO) concepts: (1) Assisted horizontal take-off all rocket (assisted HTOHL); and (2) Assisted vertical take-off rocket based combined cycle (RBCC). The study objectives were to: (1) Provide configuration definitions and illustrations for assisted HTOHL and assisted RBCC; (2) Develop a rationalization approach and compare these concepts with the HRST reference; and (3) Analyze TSTO configurations which try to maintain SSTO benefits while reducing inert weight sensitivity.

  4. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan systems, the aerodynamic effectiveness of blade morphing is demonstrated by the configurations analyzed. In particular, for the Advanced Ducted Propulsor fan it is demonstrated that the performance levels of the original variable-pitch baseline design can be achieved using blade morphing instead of variable pitch, and for the Source Diagnostic Test fan the performance at important off-design operating points is substantially increased with blade morphing.

  5. SEPAC software configuration control plan and procedures, revision 1

    NASA Technical Reports Server (NTRS)

    1981-01-01

    SEPAC Software Configuration Control Plan and Procedures are presented. The objective of the software configuration control is to establish the process for maintaining configuration control of the SEPAC software beginning with the baselining of SEPAC Flight Software Version 1 and encompass the integration and verification tests through Spacelab Level IV Integration. They are designed to provide a simplified but complete configuration control process. The intent is to require a minimum amount of paperwork but provide total traceability of SEPAC software.

  6. Modular space station phase B extension program cost and schedules. Volume 1: Cost and schedule estimating process and results

    NASA Technical Reports Server (NTRS)

    Frassinelli, G. J.

    1972-01-01

    Cost estimates and funding schedules are presented for a given configuration and costing ground rules. Cost methodology is described and the cost evolution from a baseline configuration to a selected configuration is given, emphasizing cases in which cost was a design driver. Programmatic cost avoidance techniques are discussed.

  7. Aeroacoustic effects of reduced aft tip speed at constant thrust for a model counterrotation turboprop at takeoff conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    1990-01-01

    A model high-speed, advanced counterrotation propeller, F7/A7, was tested in the anechoic wind tunnel at simulated takeoff and approach conditions of Mach 0.2. The propeller was operated in a baseline configuration with the forward and aft rotor blade setting angles and forward and aft rotational speeds essentially equal. Two additional configurations were tested with the aft rotor at increased blade setting angles and the rotational speed reduced to achieve overall performance similar to that of the baseline configuration. Acoustic data were taken with an axially translating microphone probe that was attached to the tunnel floor. Concurrent aerodynamic data were taken to define propeller operating conditions.

  8. Unlocking Sensitivity for Visibility-based Estimators of the 21 cm Reionization Power Spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfan Gerry; Liu, Adrian; Parsons, Aaron R.

    2018-01-01

    Radio interferometers designed to measure the cosmological 21 cm power spectrum require high sensitivity. Several modern low-frequency interferometers feature drift-scan antennas placed on a regular grid to maximize the number of instantaneously coherent (redundant) measurements. However, even for such maximum-redundancy arrays, significant sensitivity comes through partial coherence between baselines. Current visibility-based power-spectrum pipelines, though shown to ease control of systematics, lack the ability to make use of this partial redundancy. We introduce a method to leverage partial redundancy in such power-spectrum pipelines for drift-scan arrays. Our method cross-multiplies baseline pairs at a time lag and quantifies the sensitivity contributions of each pair of baselines. Using the configurations and beams of the 128-element Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-128) and staged deployments of the Hydrogen Epoch of Reionization Array, we illustrate how our method applies to different arrays and predict the sensitivity improvements associated with pairing partially coherent baselines. As the number of antennas increases, we find partial redundancy to be of increasing importance in unlocking the full sensitivity of upcoming arrays.

  9. Optimization of the Carbon Dioxide Removal Assembly (CDRA-4EU) in Support of the International Space System and Advanced Exploration Systems

    NASA Technical Reports Server (NTRS)

    Knox, James C.; Stanley, Christine M.

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The Carbon Dioxide (CO2) removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort utilizes a virtual Carbon Dioxide Removal Assembly, revision 4 (CDRA-4) test bed to test a large number of potential operational configurations with independent variations in flow rate, cycle time, heater ramp rate, and set point. Initial ground testing will provide prerequisite source data and provide baseline data in support of the virtual CDRA. Once the configurations with the highest performance and lowest power requirements are determined by the virtual CDRA, the results will be confirmed by testing these configurations with the CDRA-4EU ground test hardware. This paper describes the initial ground testing of select configurations. The development of the virtual CDRA under the AES-LSS Project will be discussed in a companion paper.

  10. Concentrator enhanced solar arrays design study

    NASA Technical Reports Server (NTRS)

    Lott, D. R.

    1978-01-01

    The analysis and preliminary design of a 25 kW concentrator enhanced lightweight flexible solar array are presented. The study was organized into five major tasks: (1) assessment and specification of design requirements; (2) mechanical design; (3) electric design; (4) concentrator design; and (5) cost projection. The tasks were conducted in an iterative manner so as to best derive a baseline design selection. The objectives of the study are discussed and comparative configurations and mass data on the SEP (Solar Electric Propulsion) array design, concentrator design options and configuration/mass data on the selected concentrator enhanced solar array baseline design are presented. Design requirements supporting design analysis and detailed baseline design data are discussed. The results of the cost projection analysis and new technology are also discussed.

  11. Space-based solar power conversion and delivery systems study. Volume 2: Engineering analysis

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The technical and economic feasibility of Satellite Solar Power Systems was studied with emphasis on the analysis and definition of an integrated strawman configuration concept, from which credible cost data could be estimated. Specifically, system concepts for each of the major subprogram areas were formulated, analyzed, and iterated to the degree necessary for establishing an overall, workable baseline system design. Cost data were estimated for the baseline and used to conduct economic analyses. The baseline concept selected was a 5-GW crystal silicon truss-type photovoltaic configuration, which represented the most mature concept available. The overall results and major findings, and the results of technical analyses performed during the final phase of the study efforts are reported.

  12. Laser-ranging long-baseline differential atom interferometers for space

    NASA Astrophysics Data System (ADS)

    Chiow, Sheng-wey; Williams, Jason; Yu, Nan

    2015-12-01

    High-sensitivity differential atom interferometers (AIs) are promising for precision measurements in science frontiers in space, including gravity-field mapping for Earth science studies and gravitational wave detection. Difficulties associated with implementing long-baseline differential AIs have previously included the need for a high optical power, large differential Doppler shifts, and narrow dynamic range. We propose a configuration of twin AIs connected by a laser-ranging interferometer (LRI-AI) to provide precise information of the displacements between the two AI reference mirrors and also to phase-lock the two independent interferometer lasers over long distances, thereby drastically improving the practical feasibility of long-baseline differential AI measurements. We show that a properly implemented LRI-AI can achieve equivalent functionality to the conventional differential AI measurement configuration.

  13. Study of metallic structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1977-01-01

    A structural design study was made, to assess the relative merits of various metallic structural concepts and materials for an advanced supersonic aircraft cruising at Mach 2.7. Preliminary studies were made to ensure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, select structural concepts and materials, and define an efficient structural arrangement. An advanced computerized structural design system was used, in conjunction with a relatively large, complex finite element model, for detailed analysis and sizing of structural members to satisfy strength and flutter criteria. A baseline aircraft design was developed for assessment of current technology. Criteria, analysis methods, and results are presented. The effect on design methods of using the computerized structural design system was appraised, and recommendations are presented concerning further development of design tools, development of materials and structural concepts, and research on basic technology.

  14. Inlet Acoustic Data from a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.

    2017-01-01

    In February 2017, aerodynamic and acoustic testing was completed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. The objective of testing was to determine the aerodynamic and acoustic impact of fan casing treatments designed to reduce noise. The baseline configuration consisted of the R4 rotor with a hardwall fan case. Data are presented for a baseline acoustic run with fan exit instrumentation removed to give a clean acoustic configuration.

  15. Exploratory Investigation of Aerodynamic Characteristics of Helicopter Tail Boom Cross-Section Models with Passive Venting

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Kelley, Henry L.

    2000-01-01

    Two large-scale, two-dimensional helicopter tail boom models were used to determine the effects of passive venting on boom down loads and side forces in hovering crosswind conditions. The models were oval shaped and trapezoidal shaped. Completely porous and solid configurations, partial venting in various symmetric and asymmetric configurations, and strakes were tested. Calculations were made to evaluate the trends of venting and strakes on power required when applied to a UH-60 class helicopter. Compared with the UH-60 baseline, passive venting reduced side force but increased down load at flow conditions representing right sideward flight. Selective asymmetric venting resulted in side force benefits close to the fully porous case. Calculated trends on the effects of venting on power required indicated that the high asymmetric oval configuration was the most effective venting configuration for side force reduction, and the high asymmetric with a single strake was the most effective for overall power reduction. Also, curves of side force versus flow angle were noticeable smoother for the vented configurations compared with the solid baseline configuration; this indicated a potential for smoother flight in low-speed crosswind conditions.

  16. Aeroacoustic effects of reduced aft tip speed at constant thrust for a model counterrotation turboprop at takeoff conditions

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Hughes, Christopher E.

    1990-01-01

    A model high-speed, advanced counterrotation propeller, F7/A7, was tested in the NASA Lewis Research Center's 9- by 15-foot anechoic wind tunnel at simulated takeoff and approach conditions of Mach 0.2. The propeller was operated in a baseline configuration with the forward and aft rotor blade setting angles (36.2deg and 35.4 deg) and forward and aft rotational speeds essentially equal. Two additional configurations were tested with the aft rotor at increased blade setting angles and the rotational speed reduced to achieve overall performance similar to that of the baseline configuration. The aft rotor blade angles were adjusted such that the thrust and power absorption for each rotor remained the same as for the baseline configuration. Acoustic data were taken with an axially translating microphone probe that was attached to the tunnel floor. Concurrent aerodynamic data were taken to define propeller operating conditions. The aft rotor fundamental tone was about 6 dB lower with the 36.2 deg and 38.4 deg blade setting angles, and about 9 dB lower with the 36.2 and 41.4 deg blade setting angles. Predicted noise reductions based on tip speed considerations were 5 and 9.5 dB, respectively, for the two altered blade setting angles.

  17. Effects of Convoluted Divergent Flap Contouring on the Performance of a Fixed-Geometry Nonaxisymmetric Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the effects of convoluted divergent-flap contouring on the internal performance of a fixed-geometry, nonaxisymmetric, convergent-divergent exhaust nozzle. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and four convoluted configurations. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at overexpanded conditions. Convoluted configurations were found to significantly reduce, and in some cases totally alleviate separation at overexpanded conditions. This result was attributed to the ability of convoluted contouring to energize and improve the condition of the nozzle boundary layer. Separation alleviation offers potential for installed nozzle aeropropulsive (thrust-minus-drag) performance benefits by reducing drag at forward flight speeds, even though this may reduce nozzle thrust ratio as much as 6.4% at off-design conditions. At on-design conditions, nozzle thrust ratio for the convoluted configurations ranged from 1% to 2.9% below the baseline configuration; this was a result of increased skin friction and oblique shock losses inside the nozzle.

  18. Unsteady Flow Simulations in Support of the SSME HEX Turning Vane Cracking Investigation with the ATD HPOTP

    NASA Technical Reports Server (NTRS)

    Dougherty, N. S.; Burnette, D. W.; Holt, J. B.; Nesman, T.

    1993-01-01

    Unsteady flow computations are being performed with the P&W (ATD) and the Rocketdyne baseline configurations of the SSME LO2 turbine turnaround duct (TAD) and heat exchanger (HEX). The work is in support of the HEX inner turning vane cracking investigation. Fatigue cracking has occurred during hot firings with the P&W configuration on the HEX inner vane, and it appears the fix will involve changes to the TAD splitter vane position and to the TAD inner wall curvature to reduce the dynamic loading on the inner vane. Unsteady flow computations on the P&W baseline and fix and on the Rocketdyne baseline reference follow steady-flow screening computations done by MSFC/ED32 on several trial configurations arriving at the fix. The P&W TAD inlet velocity profile has a strong radial velocity component that directs the flow toward the inner wall and raises the local velocity a factor of two and the dynamic pressure a factor, of four. The fix is intended to redistribute the flow more evenly across the HEX inner and outer vanes like the Rocketdyne baseline reference. Vane buffeting at frequencies around 4,000 Hz is the leading suspected cause of the problem. Our simulations (work in progress) are being done with the USA 2D axisymmetric code approximating the flow as axisymmetric u+v 2D (axial, u, and radial, v, components only). The HEX coils are included in the model to make sure the fix does not adversely affect the HEX environment. Turbulent kinetic energy, k, levels where k = 1/2 v' rms2 are locally as high as 10,000 ft2/sec2 for the P&W baseline at the engine interface (between the TAD and HEX) at the HEX inner vane location. However, k is less than 8,000 on the HEX outer vane and only about 4,500 on the HEX inner vane for the Rocketdyne baseline. Unsteady turbulence intensity, v'rms/v, and pressure, p', are being computed in the present computations to compare with steady-flow Reynolds-averaged computations where p'rms = const (pk) for overall rms random turbulence from 0.1 to 12,000 Hz frequency. Random overall static, p'rms fluctuations as large as 1.7 psi are estimated from k on the HEX inner vane for the P&W baseline configuration but only about 0.7 psi for the Rocketdyne configuration.

  19. In-flight lift and drag measurements on a first generation jet transport equipped with winglets

    NASA Technical Reports Server (NTRS)

    Lux, D. P.

    1982-01-01

    A KC-135A aircraft equipped with wing tip winglets was flight tested to demonstrate and validate the potential performance gain of the winglet concept as predicted from analytical and wind tunnel data. Flight data were obtained at cruise conditions for Mach numbers of 0.70, 0.75, and 0.80 at a nominal altitude of 36,000 ft. and winglet configurations of 15 deg cant/-4 deg incidence, 0 deg cant/-4 deg incidence, and baseline. For the Mach numbers tested the data show that the addition of winglets did not affect the lifting characteristics of the wing. However, both winglet configurations showed a drag reduction over the baseline configuration, with the best winglet configuration being the 15 deg cant/-4 deg incidence configuration. This drag reduction due to winglets also increased with increasing lift coefficient. It was also shown that a small difference exists between the 15 deg cant/-4 deg incidence flight and wind tunnel predicted data. This difference was attributed to the pillowing of the winglet skins in flight which would decrease the winglet performance.

  20. Method and apparatus for reliable inter-antenna baseline determination

    NASA Technical Reports Server (NTRS)

    Wilson, John M. (Inventor)

    2001-01-01

    Disclosed is a method for inter-antenna baseline determination that uses an antenna configuration comprising a pair of relatively closely spaced antennas and other pairs of distant antennas. The closely spaced pair provides a short baseline having an integer ambiguity that may be searched exhaustively to identify the correct set of integers. This baseline is then used as a priori information to aid the determination of longer baselines that, once determined, may be used for accurate run time attitude determination.

  1. Statistical error model for a solar electric propulsion thrust subsystem

    NASA Technical Reports Server (NTRS)

    Bantell, M. H.

    1973-01-01

    The solar electric propulsion thrust subsystem statistical error model was developed as a tool for investigating the effects of thrust subsystem parameter uncertainties on navigation accuracy. The model is currently being used to evaluate the impact of electric engine parameter uncertainties on navigation system performance for a baseline mission to Encke's Comet in the 1980s. The data given represent the next generation in statistical error modeling for low-thrust applications. Principal improvements include the representation of thrust uncertainties and random process modeling in terms of random parametric variations in the thrust vector process for a multi-engine configuration.

  2. Status of the LBNF Cryogenic System

    DOE PAGES

    Montanari, D.; Adamowski, M.; Bremer, J.; ...

    2017-12-30

    We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less

  3. Status of the LBNF Cryogenic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, D.; Adamowski, M.; Bremer, J.

    We present that the Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An internationalmore » engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. Lastly, the expected performance, the functional requirements and the status of the design are also highlighted.« less

  4. Status of the LBNF Cryogenic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montanari, D.; Adamowski, M.; Bremer, J.

    2017-01-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 ton of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team willmore » design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the models of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.« less

  5. Status of the LBNF Cryogenic System

    NASA Astrophysics Data System (ADS)

    Montanari, D.; Adamowski, M.; Bremer, J.; Delaney, M.; Diaz, A.; Doubnik, R.; Haaf, K.; Hentschel, S.; Norris, B.; Voirin, E.

    2017-12-01

    The Sanford Underground Research Facility (SURF) will host the Deep Underground Neutrino Experiment (DUNE), an international multi-kiloton Long-Baseline neutrino experiment that will be installed about a mile underground in Lead, SD. In the current configuration four cryostats will contain a modular detector and a total of 68,400 tons of ultrapure liquid argon, with a level of impurities lower than 100 parts per trillion of oxygen equivalent contamination. The Long-Baseline Neutrino Facility (LBNF) provides the conventional facilities and the cryogenic infrastructure to support DUNE. The system is comprised of three sub-systems: External/Infrastructure, Proximity and Internal cryogenics. An international engineering team will design, manufacture, commission, and qualify the LBNF cryogenic system. This contribution presents the modes of operations, layout and main features of the LBNF cryogenic system. The expected performance, the functional requirements and the status of the design are also highlighted.

  6. Advanced System Design Requirements for Large and Small Fixed-wing Aerial Application Systems for Agriculture

    NASA Technical Reports Server (NTRS)

    Hinely, J. T., Jr.; Boyles, R. Q., Jr.

    1979-01-01

    Several candidate aircraft configurations were defined over the range of 1000 to 10,000 pounds payload and evaluated over a broad spectrum of agricultural missions. From these studies, baseline design points were selected at 3200 pounds payload for the small aircraft and 7500 pounds for the large aircraft. The small baseline aircraft utilizes a single turboprop powerplant while the large aircraft utilizes two turboprop powerplants. These configurations were optimized for wing loading, aspect ratio, and power loading to provide the best mission economics in representative missions. Wing loading of 20 lb/sq ft was selected for the small aircraft and 25 lb/sq ft for the large aircraft. Aspect ratio of 8 was selected for both aircraft. It was found that a 10% reduction in engine power from the original configurations provided improved mission economics for both aircraft by reducing the cost of the turboprop. Refined configurations incorporate a 675 HP engine in the small aircraft and two 688 HP engines in the large aircraft.

  7. Orion Orbit Control Design and Analysis

    NASA Technical Reports Server (NTRS)

    Jackson, Mark; Gonzalez, Rodolfo; Sims, Christopher

    2007-01-01

    The analysis of candidate thruster configurations for the Crew Exploration Vehicle (CEV) is presented. Six candidate configurations were considered for the prime contractor baseline design. The analysis included analytical assessments of control authority, control precision, efficiency and robustness, as well as simulation assessments of control performance. The principles used in the analytic assessments of controllability, robustness and fuel performance are covered and results provided for the configurations assessed. Simulation analysis was conducted using a pulse width modulated, 6 DOF reaction system control law with a simplex-based thruster selection algorithm. Control laws were automatically derived from hardware configuration parameters including thruster locations, directions, magnitude and specific impulse, as well as vehicle mass properties. This parameterized controller allowed rapid assessment of multiple candidate layouts. Simulation results are presented for final phase rendezvous and docking, as well as low lunar orbit attitude hold. Finally, on-going analysis to consider alternate Service Module designs and to assess the pilot-ability of the baseline design are discussed to provide a status of orbit control design work to date.

  8. The X-IFU end-to-end simulations performed for the TES array optimization exercise

    NASA Astrophysics Data System (ADS)

    Peille, Philippe; Wilms, J.; Brand, T.; Cobo, B.; Ceballos, M. T.; Dauser, T.; Smith, S. J.; Barret, D.; den Herder, J. W.; Piro, L.; Barcons, X.; Pointecouteau, E.; Bandler, S.; den Hartog, R.; de Plaa, J.

    2015-09-01

    The focal plane assembly of the Athena X-ray Integral Field Unit (X-IFU) includes as the baseline an array of ~4000 single size calorimeters based on Transition Edge Sensors (TES). Other sensor array configurations could however be considered, combining TES of different properties (e.g. size). In attempting to improve the X-IFU performance in terms of field of view, count rate performance, and even spectral resolution, two alternative TES array configurations to the baseline have been simulated, each combining a small and a large pixel array. With the X-IFU end-to-end simulator, a sub-sample of the Athena core science goals, selected by the X-IFU science team as potentially driving the optimal TES array configuration, has been simulated for the results to be scientifically assessed and compared. In this contribution, we will describe the simulation set-up for the various array configurations, and highlight some of the results of the test cases simulated.

  9. Feasibility Study of a Pressure-fed Engine for a Water Recoverable Space Shuttle Booster

    NASA Technical Reports Server (NTRS)

    Gerstl, E.

    1972-01-01

    Detailed mass properties are presented for a gimbaled, fixed thrust, regeneratively cooled engine having a coaxial pintle injector. The baseline design parameters for this engine are tabulated. Mass properties are also summarized for several other engine configurations i.e., a hinge nozzle using a Techroll seal, a gimbaled duct cooled engine and a regeneratively cooled engine using liquid injection thrust vector control (LITVC). Detailed engine analysis and design trade studies leading to the selection of a regeneratively cooled gimbaled engine and pertaining to the selection of the baseline design configuration are also given.

  10. Orbiter utilization as an ACRV

    NASA Technical Reports Server (NTRS)

    Cruz, Jonathan N.; Heck, Michael L.; Kumar, Renjith R.; Mazanek, Daniel D.; Troutman, Patrick A.

    1990-01-01

    Assuming that a Shuttle Orbiter could be qualified to serve long duration missions attached to Space Station Freedom in the capacity as an Assured Crew Return Vehicle (ACRV), a study was conducted to identify and examine candidate attach locations. Baseline, modified hardware, and new hardware design configurations were considered. Dual simultaneous Orbiter docking accommodation were required. Resulting flight characteristics analyzed included torque equilibrium attitude (TEA), microgravity environment, attitude controllability, and reboost fuel requirements. The baseline Station could not accommodate two Orbiters. Modified hardware configurations analyzed had large TEA's. The utilization of an oblique docking mechanism best accommodated an Orbiter as an ACRV.

  11. Multiplexed EFPI sensors with ultra-high resolution

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    An investigation of performance of multiplexed displacement sensors based on extrinsic Fabry-Perot interferometers has been carried out. We have considered serial and parallel configurations and analyzed the issues and advantages of the both. We have also extended the previously developed baseline demodulation algorithm for the case of a system of multiplexed sensors. Serial and parallel multiplexing schemes have been experimentally implemented with 3 and 4 sensing elements, respectively. For both configurations the achieved baseline standard deviations were between 30 and 200 pm, which is, to the best of our knowledge, more than an order less than any other multiplexed EFPI resolution ever reported.

  12. A Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Geiselhart, Karl A.

    2010-01-01

    This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft as a viable approach for designing a practical low-boom supersonic configuration. A low-boom configuration that is based on low-fidelity analysis is used as the baseline. Tail lift is included to help tailor the aft portion of the ground signature. A comparison of low- and high-fidelity analysis results demonstrates the necessity of using computational fluid dynamics (CFD) analysis in a low-boom supersonic configuration design process. The fuselage shape is modified iteratively to obtain a configuration with a CFD equivalent-area distribution that matches a predetermined low-boom target distribution. The mixed-fidelity approach can easily refine the low-fidelity low-boom baseline into a low-boom configuration with the use of CFD equivalent-area analysis. The ground signature of the final configuration is calculated by using a state-of-the-art CFD-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the CFD equivalent-area distribution. This result confirms the validity of the low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target.

  13. UNIX programmer`s environment and configuration control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, T.R.; Wyatt, P.W.

    1993-12-31

    A package of UNIX utilities has been developed which unities the advantages of the public domain utility ``imake`` and a configuration control system. The ``imake`` utility is portable It allows a user to make Makefiles on a wide variety of platforms without worrying about the machine-dependent idiosyncracies of the UNIX utility ``make.`` Makefiles are a labor-saving device for compiling and linking complicated programs, and ``imake`` is a labor-saving device for making Makefiles, as well as other useful software (like a program`s internal dependencies on included files). This ``Environment,`` which has been developed around ``imake,`` allows a programmer to manage amore » complicated project consisting of multiple executables which may each link with multiple user-created libraries. The configuration control aspect consists of a directory hierarchy (a baseline) which is mirrored in a developer`s workspace. The workspace includes a minimum of files copied from the baseline; it employs soft links into the baseline wherever possible. The utilities are a multi-tiered suite of Bourne shells to copy or check out sources, check them back in, import new sources (sources which are not in the baseline) and link them appropriately, create new low-level directories and link them, compare with the baseline, update Makefiles with minimal effort, and handle dependencies. The directory hierarchy utilizes a single source repository, which is mirrored in the baseline and in a workspace for a several platform architectures. The system was originally written to support C code on Sun-4`s and RS6000`s. It has now been extended to support FORTRAN as well as C on SGI and Cray YMP platforms as well as Sun-4`s and RS6000`s.« less

  14. Far-Field Acoustic Characteristics of Multiple Blade-Vane Configurations for a High Tip Speed Fan

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Gazzaniga, John A.; Hughes, Christopher

    2004-01-01

    The acoustic characteristics of a model high-speed fan stage were measured in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel at takeoff and approach flight conditions. The fan was designed for a corrected rotor tip speed of 442 m/s (1450 ft/s), and had a powered core, or booster stage, giving the model a nominal bypass ratio of 5. A simulated engine pylon and nozzle bifurcation was contained within the bypass duct. The fan stage consisted of all combinations of 3 possible rotors, and 3 stator vane sets. The 3 rotors were (1) wide chord, (2) forward swept, and (3) shrouded. The 3 stator sets were (1) baseline, moderately swept, (2) swept and leaned, and (3) swept integral vane/frame which incorporated some of the swept and leaned features as well as eliminated the downstream support structure. The baseline configuration is considered to be the wide chord rotor with the radial vane stator. A flyover Effective Perceived Noise Level (EPNL) code was used to generate relative EPNL values for the various configurations. The swept and leaned stator showed a 3 EPNdB reduction at lower fan speeds relative to the baseline stator; while the swept integral vane/frame stator showed lowest noise levels at high fan speeds. The baseline, wide chord rotor was typically the quietest of the three rotors. A tone removal study was performed to assess the acoustic benefits of removing the fundamental rotor interaction tone and its harmonics. Reprocessing the acoustic results with the bypass tone removed had the most impact on reducing fan noise at transonic rotor speeds. Removal of the bypass rotor interaction tones (BPF and nBPF) showed up to a 6 EPNdB noise reduction at transonic rotor speeds relative to noise levels for the baseline (wide chord rotor and radial stator; all tones present) configuration.

  15. SAN/CXFS test report to LLNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruwart, T M; Eldel, A

    2000-01-01

    The primary objectives of this project were to evaluate the performance of the SGI CXFS File System in a Storage Area Network (SAN) and compare/contrast it to the performance of a locally attached XFS file system on the same computer and storage subsystems. The University of Minnesota participants were asked to verify that the performance of the SAN/CXFS configuration did not fall below 85% of the performance of the XFS local configuration. There were two basic hardware test configurations constructed from the following equipment: Two Onyx 2 computer systems each with two Qlogic-based Fibre Channel/XIO Host Bus Adapter (HBA); Onemore » 8-Port Brocade Silkworm 2400 Fibre Channel Switch; and Four Ciprico RF7000 RAID Disk Arrays populated Seagate Barracuda 50GB disk drives. The Operating System on each of the ONYX 2 computer systems was IRIX 6.5.6. The first hardware configuration consisted of directly connecting the Ciprico arrays to the Qlogic controllers without the Brocade switch. The purpose for this configuration was to establish baseline performance data on the Qlogic controllers / Ciprico disk raw subsystem. This baseline performance data would then be used to demonstrate any performance differences arising from the addition of the Brocade Fibre Channel Switch. Furthermore, the performance of the Qlogic controllers could be compared to that of the older, Adaptec-based XIO dual-channel Fibre Channel adapters previously used on these systems. It should be noted that only raw device tests were performed on this configuration. No file system testing was performed on this configuration. The second hardware configuration introduced the Brocade Fibre Channel Switch. Two FC ports from each of the ONYX2 computer systems were attached to four ports of the switch and the four Ciprico arrays were attached to the remaining four. Raw disk subsystem tests were performed on the SAN configuration in order to demonstrate the performance differences between the direct-connect and the switched configurations. After this testing was completed, the Ciprico arrays were formatted with an XFS file system and performance numbers were gathered to establish a File System Performance Baseline. Finally, the disks were formatted with CXFS and further tests were run to demonstrate the performance of the CXFS file system. A summary of the results of these tests is given.« less

  16. Aerodynamic static stability and control effectiveness of a parametric shuttle launch configuration

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1972-01-01

    Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel on a 0.004-scale model of the NR ATP baseline Shuttle launch configuration. The test model consisted of the NR ATP baseline orbiter, external tank, and SRB's with nozzles. Six component aerodynamic force and moment data were recorded over an angle of attack range from minus 10 deg to 10 deg at zero degrees sideslip and angle of sideslip range of minus 10 deg to 10 deg at zero angle of attack for a Mach range of 0.6 to 4.96. Rudder flare was constant at 10 deg during the entire test. The purpose of the test was to define the performance, stability, and control characteristics of the launch configuration as well as to investigate the buildup effect of two geometrical parameters.

  17. Summary of engine design and analytical studies to mature the 1137400E engine baseline

    NASA Technical Reports Server (NTRS)

    Kleinert, D. E.; Lester, W. A.

    1972-01-01

    Activities in packaging components into integral module arrangements compatible with engine design requirements for the 1137400E flight engine baseline are summarized along with the applied mechanics and thermal analysis. Revisions to drawings, configurations, and support structures are discussed.

  18. Hazardous material transportation safety and security field operational test beta test and baseline data report : executive summary

    DOT National Transportation Integrated Search

    2003-10-29

    The Beta Test and Baseline Data Collection efforts ensured that the test technologies would successfully operate during the field operational test (FOT) in the designed scenario configurations. These efforts also ensured that FOT systems would succes...

  19. Space Geodesy Project Information and Configuration Management Procedure

    NASA Technical Reports Server (NTRS)

    Merkowitz, Stephen M.

    2016-01-01

    This plan defines the Space Geodesy Project (SGP) policies, procedures, and requirements for Information and Configuration Management (CM). This procedure describes a process that is intended to ensure that all proposed and approved technical and programmatic baselines and changes to the SGP hardware, software, support systems, and equipment are documented.

  20. Tank waste remediation system configuration management implementation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    1998-03-31

    The Tank Waste Remediation System (TWRS) Configuration Management Implementation Plan describes the actions that will be taken by Project Hanford Management Contract Team to implement the TWRS Configuration Management program defined in HNF 1900, TWRS Configuration Management Plan. Over the next 25 years, the TWRS Project will transition from a safe storage mission to an aggressive retrieval, storage, and disposal mission in which substantial Engineering, Construction, and Operations activities must be performed. This mission, as defined, will require a consolidated configuration management approach to engineering, design, construction, as-building, and operating in accordance with the technical baselines that emerge from themore » life cycles. This Configuration Management Implementation Plan addresses the actions that will be taken to strengthen the TWRS Configuration Management program.« less

  1. Magnetic field configurations on thruster performance in accordance with ion beam characteristics in cylindrical Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo

    2017-03-01

    Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.

  2. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolutions. Volume 3: Cost estimates

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Cost data generated for the evolutionary power module concepts selected are reported. The initial acquisition costs (design, development, and protoflight unit test costs) were defined and modeled for the baseline 25 kW power module configurations. By building a parametric model of this initial building block, the cost of the 50 kW and the 100 kW power modules were derived by defining only their configuration and programmatic differences from the 25 kW baseline module. Variations in cost for the quantities needed to fulfill the mission scenarios were derived by applying appropriate learning curves.

  3. Integrated application of active controls (IAAC) technology to an advanced subsonic transport project. Conventional baseline configuration study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Characteristics of the U.S. domestic fleet were evaluated to determine the mission characteristics that would have the most impact on U. S. transport fuel use in the future. This resulted in selection of a 197-passenger (plus cargo), about 3710-km (2000 nmi) mission. The existing data base was reviewed and additional analysis was conducted as necessary to complete the technical descriptions. The resulting baseline configuration utilizes a double-lobe, but nearly circular, body with seven-abreast seating. External characteristics feature an 8.71 aspect ratio, 31.5-degree sweep wing, a T-tail empennage, and a dual CF6-6D2, wing-mounted engine arrangement. It provides for 22 LD-2 or 11 LD-3 containers plus bulk cargo in the lower lobe. Passenger/cargo loading, servicing provisions, taxi/takeoff speeds, and field length characteristics are all compatible with accepted airline operations and regulatory provisions. The baseline configuration construction uses conventional aluminum structure except for advanced aluminum alloys and a limited amount of graphite epoxy secondary structure. Modern systems are used, including advanced guidance, navigation, and controls which emphasize application of digital electronics and advanced displays.

  4. Finite Element Development of Honeycomb Panel Configurations with Improved Transmission Loss

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Palumbo, Daniel L.; Klos, Jacob; Castle, William D.

    2006-01-01

    The higher stiffness-to-mass ratio of a honeycomb panel compared to a homogeneous panel results in a lower acoustic critical frequency. Above the critical frequency the panel flexural wave speed is acoustically fast and the structure becomes a more efficient radiator with associated lower sound transmission loss. Finite element models of honeycomb sandwich structures are presented featuring areas where the core is removed from the radiating face sheet disrupting the supersonic flexural and shear wave speeds that exist in the baseline honeycomb panel. These modified honeycomb panel structures exhibit improved transmission loss for a pre-defined diffuse field sound excitation. The models were validated by the sound transmission loss of honeycomb panels measured in the Structural Acoustic Loads and Transmission (SALT) facility at the NASA Langley Research Center. A honeycomb core panel configuration is presented exhibiting a transmission loss improvement of 3-11 dB compared to a honeycomb baseline panel over a frequency range from 170 Hz to 1000 Hz. The improved transmission loss panel configuration had a 5.1% increase in mass over the baseline honeycomb panel, and approximately twice the deflection when excited by a static force.

  5. An Inviscid Computational Study of Three '07 Mars Lander Aeroshell Configurations Over a Mach Number Range of 2.3 to 4.5

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.; Sutton, Kenneth (Technical Monitor)

    2001-01-01

    This report documents the results of a study conducted to compute the inviscid longitudinal aerodynamic characteristics of three aeroshell configurations of the proposed '07 Mars lander. This was done in support of the activity to design a smart lander for the proposed '07 Mars mission. In addition to the three configurations with tabs designated as the shelf, the canted, and the Ames, the baseline configuration (without tab) was also studied. The unstructured grid inviscid CFD software FELISA was used, and the longitudinal aerodynamic characteristics of the four configurations were computed for Mach number of 2.3, 2.7, 3.5, and 4.5, and for an angle of attack range of -4 to 20 degrees. Wind tunnel tests had been conducted on scale models of these four configurations in the Unitary Plan Wind Tunnel, NASA Langley Research Center. Present computational results are compared with the data from these tests. Some differences are noticed between the two results, particularly at the lower Mach numbers. These differences are attributed to the pressures acting on the aft body. Most of the present computations were done on the forebody only. Additional computations were done on the full body (forebody and afterbody) for the baseline and the Shelf configurations. Results of some computations done (to simulate flight conditions) with the Mars gas option and with an effective gamma are also included.

  6. Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Alff, W. H.

    1980-01-01

    The feasibility and costs were determined for a 1 m to 30 m diameter ambient temperature, infrared to submillimeter orbiting astronomical telescope which is to be shuttle-deployed, free-flying, and have a 10 year orbital life. Baseline concepts, constraints on delivery and deployment, and the sunshield required are examined. Reflector concepts, the optical configuration, alignment and pointing, and materials are also discussed. Technology studies show that a 10 m to 30 m diameter system which is background and diffraction limited at 30 micron m is feasible within the stated time frame. A 10 m system is feasible with current mirror technology, while a 30 m system requires technology still in development.

  7. Concept Development of a Mach 2.4 High-Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Fenbert, James W.; Ozoroski, Lori P.; Geiselhart, Karl A.; Shields, Elwood W.; McElroy, Marcus O.

    1999-01-01

    In support of the NASA High-Speed Research Program, a Mach 2.4 high-speed civil transport concept was developed to serve as a baseline for studies to assess advanced technologies required for a feasible year 2005 entry-into-service vehicle. The configuration was designed to carry 251 passengers at Mach 2.4 cruise with a 6500-n.mi. range and operate in the existing world airport structure. The details of the configuration development, aerodynamic design, propulsion system and integration, mass properties, sizing, and mission performance are presented. The baseline configuration has a wing area of 9l00 sq ft and a takeoff gross weight of 614300 lb. The four advanced turbine bypass engines have 39 000 lb thrust with a weight of 9950 lb each, yielding a vehicle takeoff thrust-to-weight ratio of 0.254 and a takeoff wing loading of 67.5 lb/sq ft. The configuration was sized by the 11000-ft takeoff field length requirement and the usable fuel volume limit, which results in a rotation speed of 179 knots and an end-of-mission landing approach velocity of 134 knots.

  8. Alternative stripper configurations for CO{sub 2} capture by aqueous amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyenekan, B.A.; Rochelle, G.T.

    2007-12-15

    Aqueous absorption/stripping is a promising technology for the capture of CO{sub 2} from existing or new coal-fired power plants. Four new stripper configurations (matrix, internal exchange, flashing feed, and multipressure with split feed) have been evaluated with seven model solvents that approximate the thermodynamic and rate properties of 7m (30 wt %) monoethanolamine (MEA), potassium carbonate promoted bypiperazine (PZ), promoted MEA, methyldiethanolamine (MDEA) promoted by PZ, and hindered amines. The results show that solvents with high heats of absorption (MEA, MEA/PZ) favor operation at normal pressure. The relative performance of the alternative configurations is matrix > internal exchange > multipressuremore » with split feed > flashing feed. MEA/PZ and MDEA/PZ are attractive alternatives to 7m MEA. The best solvent and process configuration, matrix with MDEA/PZ, offers 22 and 15% energy savings over the baseline and improved baseline, respectively,with stripping and compression to 10 MPa. The energy requirement for stripping and compression to 10 MPa is about 20% of the power output from a 500 MW power plant with 90% CO{sub 2} removal.« less

  9. An Inviscid Computational Study of the Space Shuttle Orbiter and Several Damaged Configurations

    NASA Technical Reports Server (NTRS)

    Prabhu, Ramadas K.; Merski, N. Ronald (Technical Monitor)

    2004-01-01

    Inviscid aerodynamic characteristics of the Space Shuttle Orbiter were computed in support of the Columbia Accident Investigation. The unstructured grid software FELISA was used and computations were done using freestream conditions corresponding to those in the NASA Langley 20-Inch Mach 6 CF4 tunnel test section. The angle of attack was held constant at 40 degrees. The baseline (undamaged) configuration and a large number of damaged configurations of the Orbiter were studied. Most of the computations were done on a half model. However, one set of computations was done using the full-model to study the effect of sideslip. The differences in the aerodynamic coefficients for the damaged and the baseline configurations were computed. Simultaneously with the computation reported here, tests were being done on a scale model of the Orbiter in the 20-Inch Mach 6 CF4 tunnel to measure the deltas . The present computations complemented the CF4 tunnel test, and provided aerodynamic coefficients of the Orbiter as well as its components. Further, they also provided details of the flow field.

  10. Baseline Optimization for the Measurement of CP Violation, Mass Hierarchy, and $$\\theta_{23}$$ Octant in a Long-Baseline Neutrino Oscillation Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bass, M.; Bishai, M.; Cherdack, D.

    2015-03-19

    Next-generation long-baseline electron neutrino appearance experiments will seek to discover C P violation, determine the mass hierarchy and resolve the θ 23 octant. In light of the recent precision measurements of θ 13 , we consider the sensitivity of these measurements in a study to determine the optimal baseline, including practical considerations regarding beam and detector performance. We conclude that a detector at a baseline of at least 1000 km in a wide-band muon neutrino beam is themore » optimal configuration.« less

  11. Advanced Liquid Cooling for a Traction Drive Inverter Using Jet Impingement and Microfinned Enhanced Surfaces: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waye, S. K.; Narumanchi, S.; Mihalic, M.

    2014-08-01

    Jet impingement on plain and micro-finned enhanced surfaces was compared to a traditional channel flow configuration. The jets provide localized cooling to areas heated by the insulated-gate bipolar transistor and diode devices. Enhanced microfinned surfaces increase surface area and thermal performance. Using lighter materials and designing the fluid path to manage pressure losses increases overall performance while reducing weight, volume, and cost. Powering four diodes in the center power module of the inverter and computational fluid dynamics (CFD) modeling was used to characterize the baseline as well as jet-impingement-based heat exchangers. CFD modeling showed the thermal performance improvements should holdmore » for a fully powered inverter. Increased thermal performance was observed for the jet-impingement configurations when tested at full inverter power (40 to 100 kW output power) on a dynamometer. The reliability of the jets and enhanced surfaces over time was also investigated. Experimentally, the junction-to- coolant thermal resistance was reduced by up to 12.5% for jet impingement on enhanced surfaces s compared to the baseline channel flow configuration. Base plate-to-coolant (convective) resistance was reduced by up to 37.0% for the jet-based configuration compared to the baseline, suggesting that while improvements to the cooling side reduce overall resistance, reducing the passive stack resistance may contribute to lowering overall junction-to-coolant resistance. Full inverter power testing showed reduced thermal resistance from the middle of the module baseplate to coolant of up to 16.5%. Between the improvement in thermal performance and pumping power, the coefficient of performance improved by up to 13% for the jet-based configuration.« less

  12. Advanced rotorcraft transmission program

    NASA Technical Reports Server (NTRS)

    Bill, Robert C.

    1990-01-01

    The Advanced Rotorcraft Transmission (ART) program is an Army-funded, joint Army/NASA program to develop and demonstrate lightweight, quiet, durable drivetrain systems for next generation rotorcraft. ART addresses the drivetrain requirements of two distinct next generation aircraft classes: Future Air Attack Vehicle, a 10,000 to 20,000 lb. aircraft capable of undertaking tactical support and air-to-air missions; and Advanced Cargo Aircraft, a 60,000 to 80,000 lb. aircraft capable of heavy life field support operations. Both tiltrotor and more conventional helicopter configurations are included in the ART program. Specific objectives of ART include reduction of drivetrain weight by 25 percent compared to baseline state-of-the-art drive systems configured and sized for the next generation aircraft, reduction of noise level at the transmission source by 10 dB relative to a suitably sized and configured baseline, and attainment of at least a 5000 hr mean-time-between-removal. The technical approach for achieving the ART goals includes application of the latest available component, material, and lubrication technology to advanced concept drivetrains that utilize new ideas in gear configuration, transmission layout, and airframe/drivetrain integration. To date, candidate drivetrain systems were carried to a conceptual design stage, and tradeoff studies were conducted resulting in selection of an ART transmission configuration for each of the four contractors. The final selection was based on comparative weight, noise, and reliability studies. A description of each of the selected ART designs is included. Preliminary design of each of the four selected ART transmission was completed, as have mission impact studies wherein comparisons of aircraft mission performance and life cycle costs are undertaken for the next generation aircraft with ART and with the baseline transmission.

  13. Method for controlling powertrain pumps

    DOEpatents

    Sime, Karl Andrew; Spohn, Brian L; Demirovic, Besim; Martini, Ryan D; Miller, Jean Marie

    2013-10-22

    A method of controlling a pump supplying a fluid to a transmission includes sensing a requested power and an excess power for a powertrain. The requested power substantially meets the needs of the powertrain, while the excess power is not part of the requested power. The method includes sensing a triggering condition in response to the ability to convert the excess power into heat in the transmission, and determining that an operating temperature of the transmission is below a maximum. The method also includes determining a calibrated baseline and a dissipation command for the pump. The calibrated baseline command is configured to supply the fluid based upon the requested power, and the dissipation command is configured to supply additional fluid and consume the excess power with the pump. The method operates the pump at a combined command, which is equal to the calibrated baseline command plus the dissipation command.

  14. Satellite Power Systems (SPS) concept definition study, exhibit C. Volume 5: Special emphasis studies

    NASA Technical Reports Server (NTRS)

    Hanley, G.

    1979-01-01

    Specific areas were analyzed and identified as high priority for more in-depth analysis. These areas were: (1) rectenna constructability; (2) satellite constructability; (3) support systems constructability; (4) space environmental analysis, and (5) special end-to-end analyses. Baseline requirements specified coplanar solar blankets and an end mounted antenna, utilizing either GaAlAs solar cells and employing a CR of 2, or Si cells. Several configurations were analyzed. Utilizing the preferred configuration as a baseline, a satellite construction base was defined, precursor operations incident to establishment of orbital support facilities identified, and the satellite construction sequence and procedures developed. Since the baseline specifies sixty instead of one hundred and twenty satellites to be constructed in a thirty year period, mass flow to orbit requirements were revised and new traffic models established. Launch site requirements (exclusive of actual launch operations) in terms of manpower and building space were defined.

  15. Ultrafine PM emissions from natural gas, oxidation-catalyst diesel, and particle-trap diesel heavy-duty transit buses.

    PubMed

    Holmén, Britt A; Ayala, Alberto

    2002-12-01

    This paper addresses how current technologies effective for reducing PM emissions of heavy-duty engines may affect the physical characteristics of the particles emitted. Three in-use transit bus configurations were compared in terms of submicron particle size distributions using simultaneous SMPS measurements under two dilution conditions, a minidiluter and the legislated constant volume sampler (CVS). The compressed natural gas (CNG)-fueled and diesel particulate filter (DPF)-equipped diesel configurations are two "green" alternatives to conventional diesel engines. The CNG bus in this study did not have an oxidation catalyst whereas the diesel configurations (with and without particulate filter) employed catalysts. The DPF was a continuously regenerating trap (CRT). Particle size distributions were collected between 6 and 237 nm using 2-minute SMPS scans during idle and 55 mph steady-state cruise operation. Average particle size distributions collected during idle operation of the diesel baseline bus operating on ultralow sulfur fuel showed evidence for nanoparticle growth under CVS dilution conditions relative to the minidiluter. The CRT effectively reduced both accumulation and nuclei mode concentrations by factors of 10-100 except under CVS dilution conditions where nuclei mode concentrations were measured during 55 mph steady-state cruise that exceeded baseline diesel concentrations. The CVS data suggest some variability in trap performance. The CNG bus had accumulation mode concentrations 10-100x lower than the diesel baseline but often displayed large nuclei modes, especially under CVS dilution conditions. Partly this may be explained by the lack of an oxidation catalyst on the CNG, but differences between the minidiluter and CVS size distributions suggest that dilution ratio, temperature-related wall interactions, and differences in tunnel background between the diluters contributed to creating nanoparticle concentrations that sometimes exceeded diesel baseline concentrations when driving under load. The results do not support use of CVS dilution methodology for ultrafine particle sampling, and, despite attention to collection of tunnel blanks in this study, results indicate that a protocol needs to be determined and prescribed for taking into account tunnel blank "emissions" to obtain meaningful comparisons between different technologies. Of critical importance is determining how temperature differences between tunnel blank and test cycle sampling compare in terms of background particle numbers. Total particle number concentrations for the minidiluter sampling point were not significantly different for the two alternative technologies when considering all the steady-cycle data collected. Concentrations ranged from 0.8 to 3 x 10(6) for the baseline bus operating on ultralow sulfur fuel, from 0.5 to 9 x 10(4) for the diesel bus equipped with the CRT filter, and from 1 to 8 x 10(4) particles/cc for the CNG bus.

  16. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Holak; Lim, Youbong; Choe, Wonho, E-mail: wchoe@kaist.ac.kr

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effectmore » in the co-current magnetic field configuration.« less

  17. Capabilities and prospects of the East Asia Very Long Baseline Interferometry Network

    NASA Astrophysics Data System (ADS)

    An, T.; Sohn, B. W.; Imai, H.

    2018-02-01

    The very long baseline interferometry (VLBI) technique offers angular resolutions superior to any other instruments at other wavelengths, enabling unique science applications of high-resolution imaging of radio sources and high-precision astrometry. The East Asia VLBI Network (EAVN) is a collaborative effort in the East Asian region. The EAVN currently consists of 21 telescopes with diverse equipment configurations and frequency setups, allowing flexible subarrays for specific science projects. The EAVN provides the highest resolution of 0.5 mas at 22 GHz, allowing the fine imaging of jets in active galactic nuclei, high-accuracy astrometry of masers and pulsars, and precise spacecraft positioning. The soon-to-be-operational Five-hundred-meter Aperture Spherical radio Telescope (FAST) will open a new era for the EAVN. This state-of-the-art VLBI array also provides easy access to and crucial training for the burgeoning Asian astronomical community. This Perspective summarizes the status, capabilities and prospects of the EAVN.

  18. Configuring the Long-Baseline Neutrino Experiment

    NASA Astrophysics Data System (ADS)

    Barger, Vernon; Bhattacharya, Atri; Chatterjee, Animesh; Gandhi, Raj; Marfatia, Danny; Masud, Mehedi

    2014-01-01

    We study the neutrino oscillation physics performance of the Long-Baseline Neutrino Experiment in various configurations. In particular, we compare the case of a surface detector at the far site augmented by a near detector, to that with the far site detector placed deep underground but no near detector. In the latter case, information from atmospheric neutrino events is also utilized. For values of θ13 favored by reactor experiments and a 100 kt-yr exposure, we find roughly equivalent sensitivities to the neutrino mass hierarchy, the octant of θ23, and to CP violation. We also find that as the exposure is increased, the near detector helps increase the sensitivity to CP violation substantially more than atmospheric neutrinos.

  19. Langley's Computational Efforts in Sonic-Boom Softening of the Boeing HSCT

    NASA Technical Reports Server (NTRS)

    Fouladi, Kamran

    1999-01-01

    NASA Langley's computational efforts in the sonic-boom softening of the Boeing high-speed civil transport are discussed in this paper. In these efforts, an optimization process using a higher order Euler method for analysis was employed to reduce the sonic boom of a baseline configuration through fuselage camber and wing dihedral modifications. Fuselage modifications did not provide any improvements, but the dihedral modifications were shown to be an important tool for the softening process. The study also included aerodynamic and sonic-boom analyses of the baseline and some of the proposed "softened" configurations. Comparisons of two Euler methodologies and two propagation programs for sonic-boom predictions are also discussed in the present paper.

  20. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    PubMed

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  1. Link monitor and control operator assistant: A prototype demonstrating semiautomated monitor and control

    NASA Technical Reports Server (NTRS)

    Lee, L. F.; Cooper, L. P.

    1993-01-01

    This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.

  2. Development and analysis of a leak-based blast attenuator and scaling laws for primary blast peak overpressure for a large caliber muzzleloaded cannon

    NASA Astrophysics Data System (ADS)

    Carson, Robert Andrew

    One of the primary aspects of the research and development work carried out at Benet Laboratories is the Soldier. Maintenance of their health in the field is the first priority while the second priority is the enhancement of their performance. Therefore, a new concept for a weapon system that targets these two priorities is highly desirable. This is the case with a new concept that can reduce the peak overpressure without the use of a muzzle device for a muzzle loaded cannon system. Such a novel concept was developed in this thesis through the application of propellant leak into the precursor region, i.e., when the projectile is still in the bore. A 3D hydrocode (ALE3D) was employed to predict the blast overpressure for the baseline and propellant leak configurations. However, a 3D hydrocode is computationally very expensive to predict peak overpressure in the far-field and an efficient method to predict peak overpressure in the far-field is of significance. Therefore, scaling laws for primary blast peak overpressure were also developed in this thesis. Initially, two propellant leak concepts were examined. A bulge leak method and a channel leak method, which were compared to the baseline configuration. The initial channel leak configuration (referred to as CLM-1) significantly reduced the exit pressure ratio during projectile ejection, and thereby, resulted in a weaker blast. This in-turn substantially attenuated the peak overpressure to the rear of the muzzle without the aid of a muzzle device while having a marginal loss in the projectile exit velocity. For CLM-1, at one monitored location with the largest peak overpressure, a reduction of about 38% in peak overpressure was observed as compared to the baseline case. In order to compare different leak configurations, a performance metric was defined by comparing the ratio of peak overpressure and projectile exit velocity for a leak configuration to that for the baseline configuration. This metric was referred to as the Figure of Merit (FoM) and defined for any probe location. An average FoM was also defined based on the average of local FoM over different locations/probes. The greater the FoM is above zero, the better the configuration. The average FoM for the CLM-1 configuration was 0.221. In addition to FoM, shock structure and strength were also analyzed for the bulge and channel configurations at both the precursor and blast stages. With the success of the CLM-1 configuration, we then performed a parametric study of the channel leak geometry and examined the effect of different geometric parameters on peak overpressure attenuation. The idea was to further improve the performance of the channel leak method. We divided our parametric study into five groups (i.e., A through E), referred to as CLM-A through CLM-E configurations. The focus in these five groups was on geometric parameters that were expected to be the most influential or relevant. Three relevant geometric parameters were considered in this work. In groups A and B, we focused on channel leak volume. Group C analyzed the effect of channel length while groups D and E investigated the effect of aspect ratio. The five groups were ordered in this way because we anticipated the total leak volume to be the most influential parameter, then the channel length which was followed by the aspect ratio. The total leak volume of 7.5% resulted in a relatively high average FoM. On the other hand, the use of channels with a shorter length was found to be detrimental while a lower value of aspect ratio was beneficial. Three leak configurations of CLM-A1, CLM-E1 and CLM-E2 provided excellent peak overpressure attenuation (i.e., above 45% and up to 63%). Each led to an average FoM above 0.5 while CLM-E configurations resulted in lower local FoM for probes near the muzzle and higher FoM for probes farther from the muzzle, and thus, a higher variation of FoM over the probes. The average FoM based on the far-field probes was about 0.575 and 0.560 for CLM-E1 and CLM-E2, respectively, and 0.520 for CLM-A1. Blast structure and strength were also analyzed for these three configurations. In the last part of this thesis, we focused on the baseline and CLM-A1 configurations in order to develop scaling laws for the primary blast peak overpressure. Two different power-law scaling techniques were considered. In the first power-law, scaling parameters were defined from the muzzle center. The second power-law scaling was defined based on the blast center. The muzzle center based power-law has been used in the past while the blast center based power-law is a newly developed scaling law in this thesis. For the baseline configuration, both scaling laws performed well and for many locations absolute difference was below 10%. For the CLM-A1 configuration, blast center based power-law predictions were better than those from the muzzle center based power-law and showed a better overall correlation with the ALE3D predictions.

  3. Rotating Detonation Engine Research at NRL

    DTIC Science & Technology

    2013-07-01

    Bykovskii, Wolanski, Falempin, Hayashi, Schauer, Yi, Wang, Brophy, Wu, Clafin, Smith, Tsuboi, Frolov, et al.) Recant RDE Studies at NRL Flow-field...Symposium) Injection/inflow effects (JPC 2011~044; ASM 2012-0617, ASM 2013-1178) the expansion region change RDE performance. Can this model be...Efficient Complex Configuration Simulation Capability 158 BASELINE SOLUTION • Basetine configUration Stoichiometric hydrogen-air RDE of Wolanski

  4. Acoustic Measurements of a Large Civil Transport Main Landing Gear Model

    NASA Technical Reports Server (NTRS)

    Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.

    2016-01-01

    Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.

  5. Airfoil modification effects on subsonic and transonic pressure distributions and performance for the EA-6B airplane

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Sewall, William G.

    1995-01-01

    Longitudinal characteristics and wing-section pressure distributions are compared for the EA-6B airplane with and without airfoil modifications. The airfoil modifications were designed to increase low-speed maximum lift for maneuvering, while having a minimal effect on transonic performance. Section contour changes were confined to the leading-edge slat and trailing-edge flap regions of the wing. Experimental data are analyzed from tests in the Langley 16-Foot Transonic Tunnel on the baseline and two modified wing-fuselage configurations with the slats and flaps in their retracted positions. Wing modification effects on subsonic and transonic performance are seen in wing-section pressure distributions of the various configurations at similar lift coefficients. The modified-wing configurations produced maximum lift coefficients which exceeded those of the baseline configuration at low-speed Mach numbers (0.300 and 0.400). This benefit was related to the behavior of the wing upper surface leading-edge suction peak and the behavior of the trailing-edge pressure. At transonic Mach numbers (0.725 to 0.900), the wing modifications produced a somewhat stronger nose-down pitching moment, a slightly higher drag at low-lift levels, and a lower drag at higher lift levels.

  6. Average-passage simulation of counter-rotating propfan propulsion systems as applied to cruise missiles

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Schneider, Jon C.; Adamczyk, John J.

    1989-01-01

    Counter-rotating propfan (CRP) propulsion technologies are currently being evaluated as cruise missile propulsion systems. The aerodynamic integration concerns associated with this application are being addressed through the computational modeling of the missile body-propfan flowfield interactions. The work described in this paper consists of a detailed analysis of the aerodynamic interactions between the control surfaces and the propfan blades through the solution of the average-passage equation system. Two baseline configurations were studied, the control fins mounted forward of the counter-rotating propeller and the control fins mounted aft of the counter-rotating propeller. In both cases, control fin-propfan separation distance and control fin deflection angle were varied.

  7. Static Internal Performance of a Two-Dimensional Convergent-Divergent Nozzle with External Shelf

    NASA Technical Reports Server (NTRS)

    Lamb, Milton; Taylor, John G.; Frassinelli, Mark C.

    1996-01-01

    An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a two-dimensional convergent-divergent nozzle. The nozzle design was tested with dry and afterburning throat areas, which represent different power settings and three expansion ratios. For each of these configurations, three trailing-edge geometries were tested. The baseline geometry had a straight trailing edge. Two different shaping techniques were applied to the baseline nozzle design to reduce radar observables: the scarfed design and the sawtooth design. A flat plate extended downstream of the lower divergent flap trailing edge parallel to the model centerline to form a shelf-like expansion surface. This shelf was designed to shield the plume from ground observation (infrared radiation (IR) signature suppression). The shelf represents the part of the aircraft structure that might be present in an installed configuration. These configurations were tested at nozzle pressure ratios from 2.0 to 12.0.

  8. Conceptual approach study of a 200 watt per kilogram solar array

    NASA Technical Reports Server (NTRS)

    Stanhouse, R. W.; Fox, D.; Wilson, W.

    1976-01-01

    Solar array candidate configurations (flexible rollup, flexible flat-pact, semi-rigid panel, semi-rigid flat-pack) were analyzed with particular attention to the specific power (W/kg) requirement. Two of these configurations (flexible rollup and flexible flat-pack) are capable of delivering specific powers equal to or exceeding the baseline requirement of 200 W/kg. Only the flexible rollup is capable of in-flight retraction and subsequent redeployment. The wrap-around contact photovoltaic cell configuration has been chosen over the conventional cell. The demand for ultra high specific power forces the selection of ultra-thin cells and cover material. Based on density and mass range considerations, it was concluded that 13 micrometers of FEP Teflon is sufficient to protect the cell from a total proton fluency of 2(10 to the 12th power) particles/sq cm over a three-year interplanetary mission. The V-stiffened, lattice boom deployed, flexible substrate rollup array holds the greatest promise of meeting the baseline requirements set for this study.

  9. Shuttle mission simulator baseline definition report, volume 1

    NASA Technical Reports Server (NTRS)

    Burke, J. F.; Small, D. E.

    1973-01-01

    A baseline definition of the space shuttle mission simulator is presented. The subjects discussed are: (1) physical arrangement of the complete simulator system in the appropriate facility, with a definition of the required facility modifications, (2) functional descriptions of all hardware units, including the operational features, data demands, and facility interfaces, (3) hardware features necessary to integrate the items into a baseline simulator system to include the rationale for selecting the chosen implementation, and (4) operating, maintenance, and configuration updating characteristics of the simulator hardware.

  10. Life test of a xenon hollow cathode for a space plasma contractor

    NASA Technical Reports Server (NTRS)

    Sarver-Verhey, Timothy R.

    1994-01-01

    A plasma contacting device using a hollow cathode for plasma production has been baselined for use on the Space Station. This application will require reliable, continuous operation of the cathode at electron emission currents of between 0.75 and 10 A for two years (17,500 hours). In order to validate life-time capability, a hollow cathode, operated in a diode configuration, has been tested for more than 8600 hours of stable discharge operation as of March 30, 1994. This cathode is operated at a steady-state emission current of 12.0 and a fixed xenon flow rate of 4.5 sccm. Discharge voltage and cathode temperature have remained relatively stable at approximately 12.9 V and 1260 C during the test. The test has experienced 7 shutdowns to date. In all instances, the cathode was reignited at about 42 V and resumed stable operation. This test represents the longest demonstration of stable operation of high current (greater than 1A) xenon hollow cathodes reported to date.

  11. Analysis of antenna position measurements and weather station network data during the ALMA long baseline campaign of 2015

    NASA Astrophysics Data System (ADS)

    Hunter, Todd R.; Lucas, Robert; Broguière, Dominique; Fomalont, Ed B.; Dent, William R. F.; Phillips, Neil; Rabanus, David; Vlahakis, Catherine

    2016-07-01

    In a radio interferometer, the geometrical antenna positions are determined from measurements of the observed delay to each antenna from observations across the sky of many point sources whose positions are known to high accuracy. The determination of accurate antenna positions relies on accurate calibration of the dry and wet delay of the atmosphere above each antenna. For the Atacama Large Millimeter/Submillimeter Array (ALMA), with baseline lengths up to 15 kilometers, the geography of the site forces the height above mean sea level of the more distant antenna pads to be significantly lower than the central array. Thus, both the ground level meteorological values and the total water column can be quite different between antennas in the extended configurations. During 2015, a network of six additional weather stations was installed to monitor pressure, temperature, relative humidity and wind velocity, in order to test whether inclusion of these parameters could improve the repeatability of antenna position determinations in these configurations. We present an analysis of the data obtained during the ALMA Long Baseline Campaign of October through November 2015. The repeatability of antenna position measurements typically degrades as a function of antenna distance. Also, the scatter is more than three times worse in the vertical direction than in the local tangent plane, suggesting that a systematic effect is limiting the measurements. So far we have explored correcting the delay model for deviations from hydrostatic equilibrium in the measured air pressure and separating the partial pressure of water from the total pressure using water vapor radiometer (WVR) data. Correcting for these combined effects still does not provide a good match to the residual position errors in the vertical direction. One hypothesis is that the current model of water vapor may be too simple to fully remove the day-to-day variations in the wet delay. We describe possible new avenues of improvement, which include recalibrating the baseline measurement datasets using the contemporaneous measurements of the water vapor scale height and temperature lapse rate from the oxygen sounder, and applying more accurate measurements of the sky coupling of the WVRs.

  12. A comparison of arrow, trapezoidal and M wing concepts using a Mach 2 supersonic cruise transport mission

    NASA Technical Reports Server (NTRS)

    Martin, Glenn L.; Tice, David C.; Marcum, Don C., Jr.; Seidel, Jonathan A.

    1991-01-01

    The present analytic study of the potential performance of SST configurations radically differing from arrow-winged designs in lifting surface planform geometry gives attention to trapezoidal-wing and M-wing configurations; the trapezoidal wing is used as the baseline in the performance comparisons. The design mission was all-supersonic (Mach 2), carrying 248 passengers over a 5500 nautical-mile range. Design constraints encompassed approach speed, TO&L field length, and engine-out second-segment climb and missed-approach performance. Techniques for improving these configurations are discussed.

  13. Systems study for an Integrated Digital-Electric Aircraft (IDEA)

    NASA Technical Reports Server (NTRS)

    Tagge, G. E.; Irish, L. A.; Bailey, A. R.

    1985-01-01

    The results of the Integrated Digital/Electric Aircraft (IDEA) Study are presented. Airplanes with advanced systems were, defined and evaluated, as a means of identifying potential high payoff research tasks. A baseline airplane was defined for comparison, typical of a 1990's airplane with advanced active controls, propulsion, aerodynamics, and structures technology. Trade studies led to definition of an IDEA airplane, with extensive digital systems and electric secondary power distribution. This airplane showed an improvement of 3% in fuel use and 1.8% in DOC relative to the baseline configuration. An alternate configuration, an advanced technology turboprop, was also evaluated, with greater improvement supported by digital electric systems. Recommended research programs were defined for high risk, high payoff areas appropriate for implementation under NASA leadership.

  14. Astronomical observatories on the Moon

    NASA Astrophysics Data System (ADS)

    Swanson, Paul N.; Cutts, James A.

    1994-06-01

    The Space Exploration Initiative presents an opportunity to construct astronomical telescopes on the Moon using the infrastructure provided by the lunar outpost. Small automatically deployed telescopes can be carried on the survey missions, be deployed on the lunar surface and be operated remotely from the Earth. Possibilities for early, small optical telescopes are a zenith pointed transit telescope, a student telescope, and a 0.5 to 1 meter automatic, fully steerable telescope. After the lunar outpost is established the lunar interferometers will be constructed in an evolutionary fashion. There are three lunar interferometers which have been studied. The most ambitious is the optical interferometer with a 1 to 2 -km baseline and seven 1.5 aperture elements arranged in a 'Y' configuration with a central beam combiner. The Submillimeter interferometer would use seven, 5-m reflectors in a 'Y' or circular configuration with a 1-km baseline. The Very Low Frequency (VLF) array would operate below 30 mHz with as many as 100 elements and a 200-km baseline.

  15. Parametric performance analysis of steam-injected gas turbine with a thermionic-energy-converter-lined combustor

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Burns, R. K.

    1982-01-01

    The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.

  16. Extended Performance 8-cm Mercury Ion Thruster

    NASA Technical Reports Server (NTRS)

    Mantenieks, M. A.

    1981-01-01

    A slightly modified 8-cm Hg ion thruster demonstrated significant increase in performance. Thrust was increased by almost a factor of five over that of the baseline thruster. Thruster operation with various three grid ion optics configurations; thruster performance as a function of accelerator grid open area, cathode baffle, and cathode orifice size; and a life test of 614 hours at a beam current of 250 mA (17.5 mN thrust) are discussed. Highest thruster efficiency was obtained with the smallest open area accelerator grid. The benefits in efficiency from the low neutral loss grids were mitigated, however, by the limitation such grids place on attainable ion beam current densities. The thruster components suffered negligible weight losses during a life test, which indicated that operation of the 8-cm thruster at extended levels of thrust and power is possible with no significant loss of lifetime.

  17. Arcjet nozzle design impacts

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.

    1989-01-01

    The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.

  18. Arcjet Nozzle Design Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.

    1989-01-01

    The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.

  19. Liner cooling research at NASA Lewis Research Center. [for gas turbine combustion chambers

    NASA Technical Reports Server (NTRS)

    Acosta, Waldo A.

    1987-01-01

    Described are recently completed and current advanced liner research applicable to advanced small gas turbine engines. Research relating to the evolution of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently under way at NASA Lewis Research Center. As part of this research, a reverse-flow combustor geometry was maintained while different advanced liner wall cooling techniques were investigated and compared to a baseline combustor. The performance of the combustors featuring counterflow film-cooled (CFFC) panels, transpiration cooled liner walls (TRANS), and compliant metal/ceramic (CMC) walls was obtained over a range of simulated flight conditions of a 16:1 pressure ratio gas turbine engine and fuel/air ratios up to 0.034. All the combustors featured an identical fuel injection system, identical geometric configuration outline, and similar designed internal aerothermodynamics.

  20. Analysis of NASA communications (Nascom) II network protocols and performance

    NASA Technical Reports Server (NTRS)

    Omidyar, Guy C.; Butler, Thomas E.

    1991-01-01

    The NASA Communications (Nascom) Division of the Mission Operations and Data Systems Directorate is to undertake a major initiative to develop the Nascom II (NII) network to achieve its long-range service objectives for operational data transport to support the Space Station Freedom Program, the Earth Observing System, and other projects. NII is the Nascom ground communications network being developed to accommodate the operational traffic of the mid-1990s and beyond. The authors describe various baseline protocol architectures based on current and evolving technologies. They address the internetworking issues suggested for reliable transfer of data over heterogeneous segments. They also describe the NII architecture, topology, system components, and services. A comparative evaluation of the current and evolving technologies was made, and suggestions for further study are described. It is shown that the direction of the NII configuration and the subsystem component design will clearly depend on the advances made in the area of broadband integrated services.

  1. Image Reconstruction from Sparse Irregular Intensity Interferometry Measurements of Fourier Magnitude

    DTIC Science & Technology

    2013-09-01

    of baselines than would a pattern with equal spacing . Nevertheless, many of the telescope pairs have equivalent baselines resulting in...magnitude to a spatial domain representation of the object, sparse and irregular spacing of the measurements in the Fourier plane, and low SNR...any particular geometry of the telescope array configuration. Its inputs are a list of measurements, each

  2. Orbit transfer vehicle advanced expander cycle engine point design study. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    Diem, H. G.

    1980-01-01

    The design characteristics of the baseline engine configuration of the advanced expander cycle engine are described. Several aspects of engine optimization are considered which directly impact the design of the baseline thrust chamber. Four major areas of the power cycle optimization are emphasized: main turbine arrangement; cycle engine source; high pressure pump design; and boost pump drive.

  3. Shuttle mission simulator baseline definition report, volume 2

    NASA Technical Reports Server (NTRS)

    Dahlberg, A. W.; Small, D. E.

    1973-01-01

    The baseline definition report for the space shuttle mission simulator is presented. The subjects discussed are: (1) the general configurations, (2) motion base crew station, (3) instructor operator station complex, (4) display devices, (5) electromagnetic compatibility, (6) external interface equipment, (7) data conversion equipment, (8) fixed base crew station equipment, and (9) computer complex. Block diagrams of the supporting subsystems are provided.

  4. Effect of Geometric Parameters on the Performance of Second Throat Annular Steam Ejectors

    DTIC Science & Technology

    1991-07-01

    Cell Pressure versus Rake Average Exit Pitot Pressure . . . . . . . . . . . 42 15. Baseline Wall Pressure Profiles...diffuser exit plane pitot pressure rake . 2.5.2 Alternate Configurations Six alternate ejector diffuser configurations were tested. A summary of...along the walls of the diffusers to help characterize the flow. The ejector diffuser exit pitot pressure was measured with a 6-probe pitot pressure rake

  5. Detailed requirements document for Stowage List and Hardware Tracking System (SLAHTS). [computer based information management system in support of space shuttle orbiter stowage configuration

    NASA Technical Reports Server (NTRS)

    Keltner, D. J.

    1975-01-01

    The stowage list and hardware tracking system, a computer based information management system, used in support of the space shuttle orbiter stowage configuration and the Johnson Space Center hardware tracking is described. The input, processing, and output requirements that serve as a baseline for system development are defined.

  6. Hearing thresholds in patients with drug-resistant tuberculosis: baseline audiogram configurations and associations

    PubMed Central

    Sogebi, Olusola Ayodele; Fadeyi, Muse Olatunbosun; Adefuye, Bolanle Olufunlola; Soyinka, Festus Olukayode

    2017-01-01

    ABSTRACT Objective: To use baseline audiogram parameters in order to ascertain whether drug-resistant tuberculosis (DR-TB) has effects on hearing, as well as to describe the configurations of the audiograms and to determine whether there are parameters that can be associated with those configurations. Methods: This was a prospective study involving patients diagnosed with DR-TB at a tuberculosis treatment center in the state of Ogun, in Nigeria. The patients included in the study were submitted to pure tone audiometry at baseline (within two weeks after treatment initiation). For comparative analyses, data regarding demographic and clinical characteristics were collected from the medical records of the patients. Results: The final sample comprised 132 patients. The mean age of the patients was 34.5 ± 12.6 years (range, 8-82 years), and the male:female ratio was 2:1. Of the 132 patients, 103 (78.0%) resided in neighboring states, 125 (94.7%) had previously experienced antituberculosis treatment failure, and 18 (13.6%) were retroviral-positive. Normal audiograms were found in 12 patients (9.1%), whereas sensorineural hearing loss was identified in 104 (78.8%), the two most common configurations being ascending, in 54 (40.9%), and sloping, in 26 (19.7%). Pure-tone averages at low frequencies (0.25-1.0 kHz) and high frequencies (2.0-8.0 kHz) were 33.0 dB and 40.0 dB, respectively. Regarding the degree of hearing loss in the better ear, 36 patients (27.3%) were classified as having normal hearing and 67 (50.8%) were classified as having mild hearing loss (26-40 dB), whereas 29 (21.9%) showed moderate or severe hearing loss. Among the variables studied (age, gender, retroviral status, previous treatment outcome, and weight at admission), only male gender was associated with audiometric configurations. Conclusions: In this sample of patients with DR-TB, most presented with bilateral, mild, suboptimal sensorineural hearing loss, and ascending/sloping audiometric configurations were associated with male gender. PMID:28746530

  7. Microwave window breakdown experiments and simulations on the UM/L-3 relativistic magnetron

    NASA Astrophysics Data System (ADS)

    Hoff, B. W.; Mardahl, P. J.; Gilgenbach, R. M.; Haworth, M. D.; French, D. M.; Lau, Y. Y.; Franzi, M.

    2009-09-01

    Experiments have been performed on the UM/L-3 (6-vane, L-band) relativistic magnetron to test a new microwave window configuration designed to limit vacuum side breakdown. In the baseline case, acrylic microwave windows were mounted between three of the waveguide coupling cavities in the anode block vacuum housing and the output waveguides. Each of the six 3 cm deep coupling cavities is separated from its corresponding anode cavity by a 1.75 cm wide aperture. In the baseline case, vacuum side window breakdown was observed to initiate at single waveguide output powers close to 20 MW. In the new window configuration, three Air Force Research Laboratory-designed, vacuum-rated directional coupler waveguide segments were mounted between the coupling cavities and the microwave windows. The inclusion of the vacuum side power couplers moved the microwave windows an additional 30 cm away from the anode apertures. Additionally, the Lucite microwave windows were replaced with polycarbonate windows and the microwave window mounts were redesigned to better maintain waveguide continuity in the region around the microwave windows. No vacuum side window breakdown was observed in the new window configuration at single waveguide output powers of 120+MW (a factor of 3 increase in measured microwave pulse duration and factor of 3 increase in measured peak power over the baseline case). Simulations were performed to investigate likely causes for the window breakdown in the original configuration. Results from these simulations have shown that in the original configuration, at typical operating voltage and magnetic field ranges, electrons emitted from the anode block microwave apertures strike the windows with a mean kinetic energy of 33 keV with a standard deviation of 14 keV. Calculations performed using electron impact angle and energy data predict a first generation secondary electron yield of 65% of the primary electron population. The effects of the primary aperture electron impacts, combined with multiplication of the secondary populations, were determined to be the likely causes of the poor microwave window performance in the original configuration.

  8. Role of the parahippocampal cortex in memory for the configuration but not the identity of objects: converging evidence from patients with selective thermal lesions and fMRI.

    PubMed

    Bohbot, Véronique D; Allen, John J B; Dagher, Alain; Dumoulin, Serge O; Evans, Alan C; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn

    2015-01-01

    The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus.

  9. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    NASA Technical Reports Server (NTRS)

    Vilnrotter, V.; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent uplink array consisting of up to three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R-4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  10. Planetary Radar Imaging with the Deep-Space Network's 34 Meter Uplink Array

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor; Tsao, P.; Lee, D.; Cornish, T.; Jao, J.; Slade, M.

    2011-01-01

    A coherent Uplink Array consisting of two or three 34-meter antennas of NASA's Deep Space Network has been developed for the primary purpose of increasing EIRP at the spacecraft. Greater EIRP ensures greater reach, higher uplink data rates for command and configuration control, as well as improved search and recovery capabilities during spacecraft emergencies. It has been conjectured that Doppler-delay radar imaging of lunar targets can be extended to planetary imaging, where the long baseline of the uplink array can provide greater resolution than a single antenna, as well as potentially higher EIRP. However, due to the well known R4 loss in radar links, imaging of distant planets is a very challenging endeavor, requiring accurate phasing of the Uplink Array antennas, cryogenically cooled low-noise receiver amplifiers, and sophisticated processing of the received data to extract the weak echoes characteristic of planetary radar. This article describes experiments currently under way to image the planets Mercury and Venus, highlights improvements in equipment and techniques, and presents planetary images obtained to date with two 34 meter antennas configured as a coherently phased Uplink Array.

  11. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  12. Technology insertion of a COTS RAID server as an image buffer in the image chain of the Defense Mapping Agency's Digital Production System

    NASA Astrophysics Data System (ADS)

    Mehring, James W.; Thomas, Scott D.

    1995-11-01

    The Data Services Segment of the Defense Mapping Agency's Digital Production System provides a digital archive of imagery source data for use by DMA's cartographic user's. This system was developed in the mid-1980's and is currently undergoing modernization. This paper addresses the modernization of the imagery buffer function that was performed by custom hardware in the baseline system and is being replaced by a RAID Server based on commercial off the shelf (COTS) hardware. The paper briefly describes the baseline DMA image system and the modernization program, that is currently under way. Throughput benchmark measurements were made to make design configuration decisions for a commercial off the shelf (COTS) RAID Server to perform as system image buffer. The test program began with performance measurements of the RAID read and write operations between the RAID arrays and the server CPU for RAID levels 0, 5 and 0+1. Interface throughput measurements were made for the HiPPI interface between the RAID Server and the image archive and processing system as well as the client side interface between a custom interface board that provides the interface between the internal bus of the RAID Server and the Input- Output Processor (IOP) external wideband network currently in place in the DMA system to service client workstations. End to end measurements were taken from the HiPPI interface through the RAID write and read operations to the IOP output interface.

  13. Ergonomic assessment of enhanced protection under body armour combat shirt neck collars.

    PubMed

    Breeze, John; Granger, C J; Pearkes, T D; Clasper, J C

    2014-03-01

    Combat neck injury due to explosively propelled fragments is a significant cause of mortality and long-term morbidity in UK soldiers deployed on current operations. Reinforcing the collar of the existing under body armour combat shirt (UBACS) has been suggested as a potential method for reducing the incidence of combat neck injury. 20 soldiers serving in Afghanistan objectively compared three designs of enhanced protection UBACS (EP-UBACS) using 10 representative military tasks against a baseline of a standard UBACS. Each EP-UBACS design was trialled using three constituent materials: two layers of para-aramid felt, one layer of ultra high molecule weight polyethylene (UHMWPE) felt or two layers of a silk fabric. Subjective assessment of these nine configurations in terms of comfort, heat dissipation and overall acceptability were compared with the standard UBACS using a χ² test. All military tasks could be performed with all nine configurations of EP-UBACS. Although silk was the most comfortable material, it was not functionally practical in any of the three designs. Crossover collars incorporating UHMWPE or para-aramid were the only two of the nine configurations to demonstrate similar user acceptability to a standard UBACS. The EP-UBACS has the potential to provide neck protection without reducing performance incorporating materials analogous to either of the felts assessed in this study. The collar should provide stand-off from the skin to improve heat dissipation and comfort, which can be maximised by changing the current UBACS collar shape to one that crosses over at the front. Should a zip be desired, it should be moved to one side of the midline to reduce rubbing on the chin and be covered with ballistic protective material. Additional semi-circles of silk beneath the collar at the front and back would improve protection without affecting comfort.

  14. James Webb Space Telescope (JWST) Integrated Sciene Instrument Module (ISIM) Cryo-Vac 3 (CV3) Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Packard, Ed

    2016-01-01

    This presentation describes the test objectives, test summary, test configuration and test performance of the James Webb Space Telescope Integrated Science Instrument Module CryoVac 3 Thermal Vacuum Test. Verify the ISIM System in its final configuration after environmental exposure and provide a post-environmental performance baseline, including critical ground calibrations needed for science data processing in flight.

  15. Free jet feasibility study of a thermal acoustic shield concept for AST/VCE application-dual flow. Comprehensive data report. Volume 1: Test nozzles and acoustic data

    NASA Technical Reports Server (NTRS)

    Janardan, B. A.; Brausch, J. F.; Price, A. O.

    1984-01-01

    Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles The tested nozzles included baseline (unshielded), 180 deg shielded, and 360 deg shielded dual flow coannular plug configurations. The baseline configurations include a high radius ratio unsuppressed coannular plug nozzle and a coanuular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor. The tests were conducted at nozzle temperatures and pressure typical of operating conditions of variable cycle engine.

  16. IUS/TUG orbital operations and mission support study. Volume 2: Interim upper stage operations

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Background data and study results are presented for the interim upper stage (IUS) operations phase of the IUS/tug orbital operations study. The study was conducted to develop IUS operational concepts and an IUS baseline operations plan, and to provide cost estimates for IUS operations. The approach used was to compile and evaluate baseline concepts, definitions, and system, and to use that data as a basis for the IUS operations phase definition, analysis, and costing analysis. Both expendable and reusable IUS configurations were analyzed and two autonomy levels were specified for each configuration. Topics discussed include on-orbit operations and interfaces with the orbiter, the tracking and data relay satellites and ground station support capability analysis, and flight control center sizing to support the IUS operations.

  17. Navier-Stokes Analysis of a High Wing Transport High-Lift Configuration with Externally Blown Flaps

    NASA Technical Reports Server (NTRS)

    Slotnick, Jeffrey P.; An, Michael Y.; Mysko, Stephen J.; Yeh, David T.; Rogers, Stuart E.; Roth, Karlin; Baker, M.David; Nash, S.

    2000-01-01

    Insights and lessons learned from the aerodynamic analysis of the High Wing Transport (HWT) high-lift configuration are presented. Three-dimensional Navier-Stokes CFD simulations using the OVERFLOW flow solver are compared with high Reynolds test data obtained in the NASA Ames 12 Foot Pressure Wind Tunnel (PWT) facility. Computational analysis of the baseline HWT high-lift configuration with and without Externally Blown Flap (EBF) jet effects is highlighted. Several additional aerodynamic investigations, such as nacelle strake effectiveness and wake vortex studies, are presented. Technical capabilities and shortcomings of the computational method are discussed and summarized.

  18. Use of constrained optimization in the conceptual design of a medium-range subsonic transport

    NASA Technical Reports Server (NTRS)

    Sliwa, S. M.

    1980-01-01

    Constrained parameter optimization was used to perform the optimal conceptual design of a medium range transport configuration. The impact of choosing a given performance index was studied, and the required income for a 15 percent return on investment was proposed as a figure of merit. A number of design constants and constraint functions were systematically varied to document the sensitivities of the optimal design to a variety of economic and technological assumptions. A comparison was made for each of the parameter variations between the baseline configuration and the optimally redesigned configuration.

  19. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transport project: Final ACT configuration evaluation

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Final ACT Configuration Evaluation Task of the Integrated Application of Active Controls (IAAC) technology project within the energy efficient transport program is summarized. The Final ACT Configuration, through application of Active Controls Technology (ACT) in combination with increased wing span, exhibits significant performance improvements over the conventional baseline configuration. At the design range for these configurations, 3590 km, the block fuel used is 10% less for the Final ACT Configuration, with significant reductions in fuel usage at all operational ranges. Results of this improved fuel usage and additional system and airframe costs and the complexity required to achieve it were analyzed to determine its economic effects. For a 926 km mission, the incremental return on investment is nearly 25% at 1980 fuel prices. For longer range missions or increased fuel prices, the return is greater. The technical risks encountered in the Final ACT Configuration design and the research and development effort required to reduce these risks to levels acceptable for commercial airplane design are identified.

  20. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  1. Coaxial Compound Helicopter for Confined Urban Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Elmore, Joshua F.; Keen, Ernest B.; Gallaher, Andrew T.; Nunez, Gerardo F.

    2016-01-01

    A rotorcraft was designed for military operations in a confined urban environment. The specifications included major increases in useful load, range, and speed relative current aircraft capabilities, with a size constraint based on the dimensions of urban streets and intersections. Analysis showed that this combination of requirements is best satisfied by a coaxial main-rotor configuration, with lift compounding to off-load the rotors at high speed, and ducted fans under the rotor disk for propulsion. The baseline design is described, and the aircraft performance is summarized for utility, attack, MEDEVAC, and cargo delivery missions. The impact on size and performance is examined for a number of excursions, including lift-offset main rotors. Technology development required to achieve this advance in capability is recommended.

  2. Investigation of Bandwidth-Efficient Coding and Modulation Techniques

    NASA Technical Reports Server (NTRS)

    Osborne, William P.

    1992-01-01

    The necessary technology was studied to improve the bandwidth efficiency of the space-to-ground communications network using the current capabilities of that network as a baseline. The study was aimed at making space payloads, for example the Hubble Space Telescope, more capable without the need to completely redesign the link. Particular emphasis was placed on the following concepts: (1) what the requirements are which are necessary to convert an existing standard 4-ary phase shift keying communications link to one that can support, as a minimum, 8-ary phase shift keying with error corrections applied; and (2) to determine the feasibility of using the existing equipment configurations with additional signal processing equipment to realize the higher order modulation and coding schemes.

  3. Methods for data reduction and loads analysis of Space Shuttle Solid Rocket Booster model water impact tests

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The methodology used to predict full scale space shuttle solid rocket booster (SRB) water impact loads from scale model test data is described. Tests conducted included 12.5 inch and 120 inch diameter models of the SRB. Geometry and mass characteristics of the models were varied in each test series to reflect the current SRB baseline configuration. Nose first and tail first water entry modes were investigated with full-scale initial impact vertical velocities of 40 to 120 ft/sec, horizontal velocities of 0 to 60 ft/sec., and off-vertical angles of 0 to plus or minus 30 degrees. The test program included a series of tests with scaled atmospheric pressure.

  4. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; hide

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  5. Long baseline planar superconducting gradiometer for biomagnetic imaging

    NASA Astrophysics Data System (ADS)

    Granata, C.; Vettoliere, A.; Nappi, C.; Lisitskiy, M.; Russo, M.

    2009-07-01

    A niobium based dc-superconducting quantum interference device (SQUID) planar gradiometer with a long baseline (50 mm) for biomagnetic applications has been developed. The pickup antenna consists of two integrated rectangular coils connected in series and magnetically coupled to a dc-SQUID in a double parallel washer configuration by two series multiturn input coils. Due to a high intrinsic responsivity, the sensors have shown at T =4.2 K a white magnetic flux noise spectral density as low as 3 μΦ0/Hz1/2. The spectral density of the magnetic field noise referred to one sensing coil, is 3.0 fT/Hz1/2 resulting in a gradient spectral noise of 0.6 fT/(cm Hz1/2). In order to verify the effectiveness of such sensors for biomagnetic applications, the magnetic response to a current dipole has been calculated and the results have been compared with those of an analogous axial gradiometer. The results show that there is no significant difference. Due to their high intrinsic balance and good performances, planar gradiometers may be the elective sensors for biomagnetic application in a soft shielded environment.

  6. Evaluation of helicopter noise due to b blade-vortex interaction for five tip configurations. [conducted in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1979-01-01

    The effect of tip shape modification on blade vortex interaction induced helicopter blade slap noise was investigated. Simulated flight and descent velocities which have been shown to produce blade slap were tested. Aerodynamic performance parameters of the rotor system were monitored to ensure properly matched flight conditions among the tip shapes. The tunnel was operated in the open throat configuration with treatment to improve the acoustic characteristics of the test chamber. Four promising tips were used along with a standard square tip as a baseline configuration. A detailed acoustic evaluation on the same rotor system of the relative applicability of the various tip configurations for blade slap noise reduction is provided.

  7. Tank waste remediation system configuration management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vann, J.M.

    The configuration management program for the Tank Waste Remediation System (TWRS) Project Mission supports management of the project baseline by providing the mechanisms to identify, document, and control the functional and physical characteristics of the products. This document is one of the tools used to develop and control the mission and work. It is an integrated approach for control of technical, cost, schedule, and administrative information necessary to manage the configurations for the TWRS Project Mission. Configuration management focuses on five principal activities: configuration management system management, configuration identification, configuration status accounting, change control, and configuration management assessments. TWRS Projectmore » personnel must execute work in a controlled fashion. Work must be performed by verbatim use of authorized and released technical information and documentation. Application of configuration management will be consistently applied across all TWRS Project activities and assessed accordingly. The Project Hanford Management Contract (PHMC) configuration management requirements are prescribed in HNF-MP-013, Configuration Management Plan (FDH 1997a). This TWRS Configuration Management Plan (CMP) implements those requirements and supersedes the Tank Waste Remediation System Configuration Management Program Plan described in Vann, 1996. HNF-SD-WM-CM-014, Tank Waste Remediation System Configuration Management Implementation Plan (Vann, 1997) will be revised to implement the requirements of this plan. This plan provides the responsibilities, actions and tools necessary to implement the requirements as defined in the above referenced documents.« less

  8. Virtual Flight Demonstration of the Stratospheric Dual-Aircraft Platform

    NASA Technical Reports Server (NTRS)

    Engblom, W. A.; Decker, R. K.

    2016-01-01

    A baseline configuration for the dual-aircraft platform (DAP) concept is described and evaluated in a physics-based flight dynamics simulations for two month-long missions as a communications relay in the lower stratosphere above central Florida. The DAP features two unmanned aerial vehicles connected via a long adjustable cable which effectively sail back-and-forth using wind velocity gradients and solar energy. Detailed atmospheric profiles in the vicinity of 60,000-ft derived from archived data measured by the 50-Mhz Doppler Radar Wind Profiler at Cape Canaveral are used in the flight simulations. An overview of the novel guidance and flight control strategies are provided. The energy-usage of the baseline configuration during month-long stationkeeping missions (i.e., within 150-mile radius of downtown Orlando) is characterized and compared to that of a pure solar aircraft.

  9. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    NASA Technical Reports Server (NTRS)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  10. The effect of tracking network configuration on GPS baseline estimates for the CASA Uno experiment

    NASA Technical Reports Server (NTRS)

    Wolf, S. Kornreich; Dixon, T. H.; Freymueller, J. T.

    1990-01-01

    The effect of the tracking network on long (greater than 100 km) GPS baseline estimates was estimated using various subsets of the global tracking network initiated by the first Central and South America (CASA Uno) experiment. It was found that best results could be obtained with a global tacking network consisting of three U.S. stations, two sites in the southwestern Pacific, and two sites in Europe. In comparison with smaller subsets, this global network improved the baseline repeatability, the resolution of carrier phase cycle ambiguities, and formal errors of the orbit estimates.

  11. Alternate avionics system study and phase B extension

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Results of alternate avionics system studies for the space shuttle are presented that reduce the cost of vehicle avionics without incurring major off-setting costs on the ground. A comprehensive summary is provided of all configurations defined since the completion of the basic Phase B contract and a complete description of the optimized avionics baseline is given. In the new baseline, inflight redundancy management is performed onboard without ground support; utilization of off-the-shelf hardware reduces the cost figure substantially less than for the Phase B baseline. The only functional capability sacrificed in the new approach is automatic landing.

  12. Environmental control/life support system for Space Station

    NASA Technical Reports Server (NTRS)

    Miller, C. W.; Heppner, D. B.; Schubert, F. H.; Dahlhausen, M. J.

    1986-01-01

    The functional, operational, and design load requirements for the Environmental Control/Life Support System (ECLSS) are described. The ECLSS is divided into two groups: (1) an atmosphere management group and (2) a water and waste management group. The interaction between the ECLSS and the Space Station Habitability System is examined. The cruciform baseline station design, the delta and big T module configuration, and the reference Space Station configuration are evaluated in terms of ECLSS requirements. The distribution of ECLSS equipment in a reference Space Station configuration is studied as a function of initial operating conditions and growth orbit capabilities. The benefits of water electrolysis as a Space Station utility are considered.

  13. Earth Observing System (EOS)/Advanced Microwave Sounding Unit A (AMSU-A) configuration management plan

    NASA Technical Reports Server (NTRS)

    Cavanaugh, J.

    1994-01-01

    This plan describes methods and procedures Aerojet will follow in the implementation of configuration control for each established baseline. The plan is written in response to the GSFC EOS CM Plan 420-02-02, dated January 1990, and also meets he requirements specified in DOD-STD-480, DOD-D 1000B, MIL-STD-483A, and MIL-STD-490B. The plan establishes the configuration management process to be used for the deliverable hardware, software, and firmware of the EOS/AMSU-A during development, design, fabrication, test, and delivery. This revision includes minor updates to reflect Aerojet's CM policies.

  14. Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks

    PubMed Central

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed. PMID:22346584

  15. Self-configuration and self-optimization process in heterogeneous wireless networks.

    PubMed

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network's scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed.

  16. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 1; Stringer-Feet Imperfections and Assembly

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.

  17. Autonomous Mission Operations

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy; Spirkovska, Lilijana; McCann, Rob; Wang, Lui; Pohlkamp, Kara; Morin, Lee

    2012-01-01

    NASA's Advanced Exploration Systems Autonomous Mission Operations (AMO) project conducted an empirical investigation of the impact of time-delay on todays mission operations, and of the effect of processes and mission support tools designed to mitigate time-delay related impacts. Mission operation scenarios were designed for NASA's Deep Space Habitat (DSH), an analog spacecraft habitat, covering a range of activities including nominal objectives, DSH system failures, and crew medical emergencies. The scenarios were simulated at time-delay values representative of Lunar (1.2-5 sec), Near Earth Object (NEO) (50 sec) and Mars (300 sec) missions. Each combination of operational scenario and time-delay was tested in a Baseline configuration, designed to reflect present-day operations of the International Space Station, and a Mitigation configuration in which a variety of software tools, information displays, and crew-ground communications protocols were employed to assist both crews and Flight Control Team (FCT) members with the long-delay conditions. Preliminary findings indicate: 1) Workload of both crew members and FCT members generally increased along with increasing time delay. 2) Advanced procedure execution viewers, caution and warning tools, and communications protocols such as text messaging decreased the workload of both flight controllers and crew, and decreased the difficulty of coordinating activities. 3) Whereas crew workload ratings increased between 50 sec and 300 sec of time-delay in the Baseline configuration, workload ratings decreased (or remained flat) in the Mitigation configuration.

  18. Search for muon neutrino disappearance due to sterile neutrino oscillations with the MINOS/MINOS+ experiment

    NASA Astrophysics Data System (ADS)

    Todd, J.; Chen, R.; Huang, J.; ">MINOS, Apparatuses and method for converting electromagnetic radiation to direct current

    DOEpatents

    Kotter, Dale K; Novack, Steven D

    2014-09-30

    An energy conversion device may include a first antenna and a second antenna configured to generate an AC current responsive to incident radiation, at least one stripline, and a rectifier coupled with the at least one stripline along a length of the at least one stripline. An energy conversion device may also include an array of nanoantennas configured to generate an AC current in response to receiving incident radiation. Each nanoantenna of the array includes a pair of resonant elements, and a shared rectifier operably coupled to the pair of resonant elements, the shared rectifier configured to convert the AC current to a DC current. The energy conversion device may further include a bus structure operably coupled with the array of nanoantennas and configured to receive the DC current from the array of nanoantennas and transmit the DC current away from the array of nanoantennas.

  19. HARDI: A high angular resolution deployable interferometer for space

    NASA Technical Reports Server (NTRS)

    Bely, Pierre Y.; Burrows, Christopher; Roddier, Francois; Weigelt, Gerd

    1992-01-01

    We describe here a proposed orbiting interferometer covering the UV, visible, and near-IR spectral ranges. With a 6-m baseline and a collecting area equivalent to about a 1.4 m diameter full aperture, this instrument will offer significant improvements in resolution over the Hubble Space Telescope, and complement the new generation of ground-based interferometers with much better limiting magnitude and spectral coverage. On the other hand, it has been designed as a considerably less ambitious project (one launch) than other current proposals. We believe that this concept is feasible given current technological capabilities, yet would serve to prove the concepts necessary for the much larger systems that must eventually be flown. The interferometer is of the Fizeau type. It therefore has a much larger field (for guiding) better UV throughout (only 4 surfaces) than phased arrays. Optimize aperture configurations and ideas for the cophasing and coalignment system are presented. The interferometer would be placed in a geosynchronous or sunsynchronous orbit to minimize thermal and mechanical disturbances and to maximize observing efficiency.

  1. UWB Tracking Algorithms: AOA and TDOA

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun David; Arndt, D.; Ngo, P.; Gross, J.; Refford, Melinda

    2006-01-01

    Ultra-Wideband (UWB) tracking prototype systems are currently under development at NASA Johnson Space Center for various applications on space exploration. For long range applications, a two-cluster Angle of Arrival (AOA) tracking method is employed for implementation of the tracking system; for close-in applications, a Time Difference of Arrival (TDOA) positioning methodology is exploited. Both AOA and TDOA are chosen to utilize the achievable fine time resolution of UWB signals. This talk presents a brief introduction to AOA and TDOA methodologies. The theoretical analysis of these two algorithms reveal the affecting parameters impact on the tracking resolution. For the AOA algorithm, simulations show that a tracking resolution less than 0.5% of the range can be achieved with the current achievable time resolution of UWB signals. For the TDOA algorithm used in close-in applications, simulations show that the (sub-inch) high tracking resolution is achieved with a chosen tracking baseline configuration. The analytical and simulated results provide insightful guidance for the UWB tracking system design.

  2. Invited article: advanced drag-free concepts for future space-based interferometers: acceleration noise performance.

    PubMed

    Gerardi, D; Allen, G; Conklin, J W; Sun, K-X; DeBra, D; Buchman, S; Gath, P; Fichter, W; Byer, R L; Johann, U

    2014-01-01

    Future drag-free missions for space-based experiments in gravitational physics require a Gravitational Reference Sensor with extremely demanding sensing and disturbance reduction requirements. A configuration with two cubical sensors is the current baseline for the Laser Interferometer Space Antenna (LISA) and has reached a high level of maturity. Nevertheless, several promising concepts have been proposed with potential applications beyond LISA and are currently investigated at HEPL, Stanford, and EADS Astrium, Germany. The general motivation is to exploit the possibility of achieving improved disturbance reduction, and ultimately understand how low acceleration noise can be pushed with a realistic design for future mission. In this paper, we discuss disturbance reduction requirements for LISA and beyond, describe four different payload concepts, compare expected strain sensitivities in the "low-frequency" region of the frequency spectrum, dominated by acceleration noise, and ultimately discuss advantages and disadvantages of each of those concepts in achieving disturbance reduction for space-based detectors beyond LISA.

  3. REVEAL: Software Documentation and Platform Migration

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Veibell, Victoir T.

    2011-01-01

    The Research Environment for Vehicle Embedded Analysis on Linux (REVEAL) is reconfigurable data acquisition software designed for network-distributed test and measurement applications. In development since 2001, it has been successfully demonstrated in support of a number of actual missions within NASA's Suborbital Science Program. Improvements to software configuration control were needed to properly support both an ongoing transition to operational status and continued evolution of REVEAL capabilities. For this reason the project described in this report targets REVEAL software source documentation and deployment of the software on a small set of hardware platforms different from what is currently used in the baseline system implementation. This presentation specifically describes the actions taken over a ten week period by two undergraduate student interns and serves as an overview of the content of the final report for that internship.

  4. Rocket-Based Combined Cycle Engine Concept Development

    NASA Technical Reports Server (NTRS)

    Ratekin, G.; Goldman, Allen; Ortwerth, P.; Weisberg, S.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The development of rocket-based combined cycle (RBCC) propulsion systems is part of a 12 year effort under both company funding and contract work. The concept is a fixed geometry integrated rocket, ramjet, scramjet, which is hydrogen fueled and uses hydrogen regenerative cooling. The baseline engine structural configuration uses an integral structure that eliminates panel seals, seal purge gas, and closeout side attachments. Engine A5 is the current configuration for NASA Marshall Space Flight Center (MSFC) for the ART program. Engine A5 models the complete flight engine flowpath of inlet, isolator, airbreathing combustor, and nozzle. High-performance rocket thrusters are integrated into the engine enabling both low speed air-augmented rocket (AAR) and high speed pure rocket operation. Engine A5 was tested in GASL's new Flight Acceleration Simulation Test (FAST) facility in all four operating modes, AAR, RAM, SCRAM, and Rocket. Additionally, transition from AAR to RAM and RAM to SCRAM was also demonstrated. Measured performance demonstrated vision vehicle performance levels for Mach 3 AAR operation and ramjet operation from Mach 3 to 4. SCRAM and rocket mode performance was above predictions. For the first time, testing also demonstrated transition between operating modes.

  5. Background noise measurements from jet exit vanes designed to reduced flow pulsations in an open-jet wind tunnel

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Martin, R. M.

    1985-01-01

    Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.

  6. Helmet Exhalation Capture System (HECS) Sizing Evaluation for an Advanced Space Suit Portable Life Support System

    NASA Technical Reports Server (NTRS)

    Paul, Heather L.; Waguespack, Glenn M.; Paul, Thomas H.; Conger, Bruce C.

    2008-01-01

    As part of NASA s initiative to develop an advanced portable life support system (PLSS), a baseline schematic has been chosen that includes gaseous oxygen in a closed circuit ventilation configuration. Supply oxygen enters the suit at the back of the helmet and return gases pass over the astronaut s body to be extracted at the astronaut s wrists and ankles through the liquid cooling and ventilation garment (LCVG). The extracted gases are then treated using a rapid cycling amine (RCA) system for carbon dioxide and water removal and activated carbon for trace gas removal before being mixed with makeup oxygen and reintroduced into the helmet. Thermal control is provided by a suit water membrane evaporator (SWME). As an extension of the original schematic development, NASA evaluated several Helmet Exhalation Capture System (HECS) configurations as alternatives to the baseline. The HECS configurations incorporate the use of full contact masks or non-contact masks to reduce flow requirements within the PLSS ventilation subsystem. The primary scope of this study was to compare the alternatives based on mass and volume considerations; however other design issues were also briefly investigated. This paper summarizes the results of this sizing analysis task.

  7. Static Performance of a Fixed-Geometry Exhaust Nozzle Incorporating Porous Cavities for Shock-Boundary Layer Interaction Control

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Hunter, Craig A.

    1999-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to determine the internal performance of a fixed-geometry exhaust nozzle incorporating porous cavities for shock-boundary layer interaction control. Testing was conducted at static conditions using a sub-scale nozzle model with one baseline and 27 porous configurations. For the porous configurations, the effects of percent open porosity, hole diameter, and cavity depth were determined. All tests were conducted with no external flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. Porous configurations were capable of controlling off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. The ability of the porous nozzle concept to alternately alleviate separation or encourage stable separation of exhaust flow through shock-boundary layer interaction control offers tremendous off-design performance benefits for fixed-geometry nozzle installations. In addition, the ability to encourage separation on one divergent flap while alleviating it on the other makes it possible to generate thrust vectoring using a fixed-geometry nozzle.

  8. Motion simulator study of longitudinal stability requirements for large delta wing transport airplanes during approach and landing with stability augmentation systems failed

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.; Fry, E. B.; Drinkwater, F. J., III; Forrest, R. D.; Scott, B. C.; Benefield, T. D.

    1972-01-01

    A ground-based simulator investigation was conducted in preparation for and correlation with an-flight simulator program. The objective of these studies was to define minimum acceptable levels of static longitudinal stability for landing approach following stability augmentation systems failures. The airworthiness authorities are presently attempting to establish the requirements for civil transports with only the backup flight control system operating. Using a baseline configuration representative of a large delta wing transport, 20 different configurations, many representing negative static margins, were assessed by three research test pilots in 33 hours of piloted operation. Verification of the baseline model to be used in the TIFS experiment was provided by computed and piloted comparisons with a well-validated reference airplane simulation. Pilot comments and ratings are included, as well as preliminary tracking performance and workload data.

  9. Hover performance tests of baseline metal and Advanced Technology Blade (ATB) rotor systems for the XV-15 tilt rotor aircraft

    NASA Technical Reports Server (NTRS)

    Bartie, K.; Alexander, H.; Mcveigh, M.; Lamon, S.; Bishop, H.

    1986-01-01

    Rotor hover performance data were obtained for two full-scale rotor systems designed for the XV-15 Tilt Rotor Research Aircraft. One rotor employed the rectangular planform metal blades (rotor solidity = 0.089) which were used on the initial flight configuration of the XV-15. The second rotor configuration examined the nonlinear taper, composite-construction, Advanced Technology Blade (ATB), (rotor solidity = 0.10) designed to replace the metal blades on the XV-15. Variations of the baseline ATB tip and cuff shapes were also tested. A new six-component rotor force and moment balance designed to obtain highly accurate data over a broad range of thrust and torque conditions is described. The test data are presented in nondimensional coefficient form for the performance results, and in dimensional form for the steady and alternating loads. Some wake and acoustic data are also shown.

  10. The effect of winglets on the static aerodynamic stability characteristics of a representative second generation jet transport model

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.; Flechner, S. G.

    1976-01-01

    A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.

  11. Aerodynamic investigations on a 0.004 scale model MCR 0074 baseline space shuttle launch vehicle at Mach numbers between 0.6 and 4.96

    NASA Technical Reports Server (NTRS)

    Ramsey, P.; Robertson, M. K.

    1973-01-01

    A test of a 0.004-scale MCR 0074 Baseline Launch Configuration Space Shuttle model was conducted in the NASA-MSFC 14 x 14-inch Trisonic Wind Tunnel (MSFC TWT 566). The objective of the test was to determine the effects of model parametric variations on aerodynamic static stability characteristics over a Mach number range from 0.6 to 4.96. Angles-of-attack from minus 10 deg to plus 10 deg at 0 deg sideslip and angles-of-sideslip from minus 10 deg to plus 10 deg at minus 5 deg, 0 deg, and plus 5 deg angle-of-attack were investigated. The basic configuration investigated was the integrated vehicle consisting of the orbiter, and external tank, and two solid rocket boosters. It was designated 03T9S3.

  12. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  13. Manned orbital facility: A user's guide

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The salient conceptual features and expected evolution of the facility are discussed; the baseline design is offered as a model against which the reader can compare his needs. The overall program is discussed, supporting services and resources are described, and examples of typical payload applications are given. The general design features and configurations representing the baseline MOF developed and derived with due consideration given to applicable designs and subsystems such as those available in the Skylab, orbiter, and space lab vehicles.

  14. Computational Fluid Dynamics (CFD) investigation onto passenger car disk brake design

    NASA Astrophysics Data System (ADS)

    Munisamy, Kannan M.; Kanasan Moorthy, Shangkari K.

    2013-06-01

    The aim of this study is to investigate the flow and heat transfer in ventilated disc brakes using Computational Fluid Dynamics (CFD). NACA Series blade is designed for ventilated disc brake and the cooling characteristic is compared to the baseline design. The ventilated disc brakes are simulated using commercial CFD software FLUENTTM using simulation configuration that was obtained from experiment data. The NACA Series blade design shows improvements in Nusselt number compared to baseline design.

  15. System design of the Pioneer Venus spacecraft. Volume 4: Probe bus and orbiter spacecraft vehicle studies

    NASA Technical Reports Server (NTRS)

    Bozajian, J. M.

    1973-01-01

    The requirements, trades, and design descriptions for the probe bus and orbiter spacecraft configurations, structure, thermal control, and harness are defined. Designs are developed for Thor/Delta and Atlas/Centaur launch vehicles with the latter selected as the final baseline. The major issues examined in achieving the baseline design are tabulated. The importance of spin axis orientation because of the effect on science experiments and earth communications is stressed.

  16. Analysis of Expandability and Modifiability of Computer Configuration Concepts for ATC. Volume I. Distributed Concept.

    DTIC Science & Technology

    1979-11-01

    C-9 TRANSITION CONFIGURATION ........................... C-29 i r Fvii LIST OF TABLES Table Page 2.1-1 PARAMETERS DESCRIBING ATC OPERATION - BASELINE...buffer load from each sensor. Medium Storage (Buffer space for data in and out is largest factor .) II P=K +KR Processing. Where R is the number of... factors to the data from the next scan VII Provides support service Operational Role VIII Dependence Requires data from Preliminary Processing and Target

  17. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 1

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R. D.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of commercial rotary wing transport aircraft for the 1985 time period are presented. Two aircraft configurations, a tandem helicopter and a tilt rotor, were designed for a 200 nautical mile short haul mission with an upper limit of 100 passengers. In addition to the baseline aircraft two further designs of each configuration are included to assess the impact of external noise design criteria on the aircraft size, weight, and cost.

  18. Role of the parahippocampal cortex in memory for the configuration but not the identity of objects: converging evidence from patients with selective thermal lesions and fMRI

    PubMed Central

    Bohbot, Véronique D.; Allen, John J. B.; Dagher, Alain; Dumoulin, Serge O.; Evans, Alan C.; Petrides, Michael; Kalina, Miroslav; Stepankova, Katerina; Nadel, Lynn

    2015-01-01

    The parahippocampal cortex and hippocampus are brain structures known to be involved in memory. However, the unique contribution of the parahippocampal cortex remains unclear. The current study investigates memory for object identity and memory of the configuration of objects in patients with small thermo-coagulation lesions to the hippocampus or the parahippocampal cortex. Results showed that in contrast to control participants and patients with damage to the hippocampus leaving the parahippocampal cortex intact, patients with lesions that included the right parahippocampal cortex (RPH) were severely impaired on a task that required learning the spatial configuration of objects on a computer screen; these patients, however, were not impaired at learning the identity of objects. Conversely, we found that patients with lesions to the right hippocampus (RH) or left hippocampus (LH), sparing the parahippocampal cortex, performed just as well as the control participants. Furthermore, they were not impaired on the object identity task. In the functional Magnetic Resonance Imaging (fMRI) experiment, healthy young adults performed the same tasks. Consistent with the findings of the lesion study, the fMRI results showed significant activity in the RPH in the memory for the spatial configuration condition, but not memory for object identity. Furthermore, the pattern of fMRI activity measured in the baseline control conditions decreased specifically in the parahippocampal cortex as a result of the experimental task, providing evidence for task specific repetition suppression. In summary, while our previous studies demonstrated that the hippocampus is critical to the construction of a cognitive map, both the lesion and fMRI studies have shown an involvement of the RPH for learning spatial configurations of objects but not object identity, and that this takes place independent of the hippocampus. PMID:26283949

  19. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression.

    PubMed

    Zhang, Mingji; Or, Siu Wing

    2018-02-14

    A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65-12.55 mV/A in the frequency range of 10 Hz-170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0-20 A, and a high common-mode noise rejection rate of 17-28 dB from multisource noises.

  20. Gradient-Type Magnetoelectric Current Sensor with Strong Multisource Noise Suppression

    PubMed Central

    2018-01-01

    A novel gradient-type magnetoelectric (ME) current sensor operating in magnetic field gradient (MFG) detection and conversion mode is developed based on a pair of ME composites that have a back-to-back capacitor configuration under a baseline separation and a magnetic biasing in an electrically-shielded and mechanically-enclosed housing. The physics behind the current sensing process is the product effect of the current-induced MFG effect associated with vortex magnetic fields of current-carrying cables (i.e., MFG detection) and the MFG-induced ME effect in the ME composite pair (i.e., MFG conversion). The sensor output voltage is directly obtained from the gradient ME voltage of the ME composite pair and is calibrated against cable current to give the current sensitivity. The current sensing performance of the sensor is evaluated, both theoretically and experimentally, under multisource noises of electric fields, magnetic fields, vibrations, and thermals. The sensor combines the merits of small nonlinearity in the current-induced MFG effect with those of high sensitivity and high common-mode noise rejection rate in the MFG-induced ME effect to achieve a high current sensitivity of 0.65–12.55 mV/A in the frequency range of 10 Hz–170 kHz, a small input-output nonlinearity of <500 ppm, a small thermal drift of <0.2%/℃ in the current range of 0–20 A, and a high common-mode noise rejection rate of 17–28 dB from multisource noises. PMID:29443920

  1. NASA Ares I Launch Vehicle Roll and Reaction Control Systems Design Status

    NASA Technical Reports Server (NTRS)

    Butt, Adam; Popp, Chris G.; Pitts, Hank M.; Sharp, David J.

    2009-01-01

    This paper provides an update of design status following the preliminary design review of NASA s Ares I first stage roll and upper stage reaction control systems. The Ares I launch vehicle has been chosen to return humans to the moon, mars, and beyond. It consists of a first stage five segment solid rocket booster and an upper stage liquid bi-propellant J-2X engine. Similar to many launch vehicles, the Ares I has reaction control systems used to provide the vehicle with three degrees of freedom stabilization during the mission. During launch, the first stage roll control system will provide the Ares I with the ability to counteract induced roll torque. After first stage booster separation, the upper stage reaction control system will provide the upper stage element with three degrees of freedom control as needed. Trade studies and design assessments conducted on the roll and reaction control systems include: propellant selection, thruster arrangement, pressurization system configuration, and system component trades. Since successful completion of the preliminary design review, work has progressed towards the critical design review with accomplishments made in the following areas: pressurant / propellant tank, thruster assembly, and other component configurations, as well as thruster module design, and waterhammer mitigation approach. Also, results from early development testing are discussed along with plans for upcoming system testing. This paper concludes by summarizing the process of down selecting to the current baseline configuration for the Ares I roll and reaction control systems.

  2. Heating and current drive requirements towards steady state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.

    2014-02-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  3. Eddy Current Pulsed Thermography with Different Excitation Configurations for Metallic Material and Defect Characterization.

    PubMed

    Tian, Gui Yun; Gao, Yunlai; Li, Kongjing; Wang, Yizhe; Gao, Bin; He, Yunze

    2016-06-08

    This paper reviews recent developments of eddy current pulsed thermography (ECPT) for material characterization and nondestructive evaluation (NDE). Due to the fact that line-coil-based ECPT, with the limitation of non-uniform heating and a restricted view, is not suitable for complex geometry structures evaluation, Helmholtz coils and ferrite-yoke-based excitation configurations of ECPT are proposed and compared. Simulations and experiments of new ECPT configurations considering the multi-physical-phenomenon of hysteresis losses, stray losses, and eddy current heating in conjunction with uniform induction magnetic field have been conducted and implemented for ferromagnetic and non-ferromagnetic materials. These configurations of ECPT for metallic material and defect characterization are discussed and compared with conventional line-coil configuration. The results indicate that the proposed ECPT excitation configurations can be applied for different shapes of samples such as turbine blade edges and rail tracks.

  4. Comparison of Multiple Beam Coverage to Earth Coverage for a Maritime Satellite System

    DOT National Transportation Integrated Search

    1973-12-01

    Preliminary tradeoff comparisons were analyzed for a possible baseline L-band maritime communications satellite system. Primary emphasis was given to major shipping routes with secondary coverage elsewhere. A low cost satellite configuration was post...

  5. Subsonic Ultra Green Aircraft Research. Phase II - Volume I; Truss Braced Wing Design Exploration

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.; Allen, Timothy J.

    2015-01-01

    This report summarizes the Truss Braced Wing (TBW) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, consisting of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, Georgia Tech, Virginia Tech, NextGen Aeronautics, and Microcraft. A multi-disciplinary optimization (MDO) environment defined the geometry that was further refined for the updated SUGAR High TBW configuration. Airfoil shapes were tested in the NASA TCT facility, and an aeroelastic model was tested in the NASA TDT facility. Flutter suppression was successfully demonstrated using control laws derived from test system ID data and analysis models. Aeroelastic impacts for the TBW design are manageable and smaller than assumed in Phase I. Flutter analysis of TBW designs need to include pre-load and large displacement non-linear effects to obtain a reasonable match to test data. With the updated performance and sizing, fuel burn and energy use is reduced by 54% compared to the SUGAR Free current technology Baseline (Goal 60%). Use of the unducted fan version of the engine reduces fuel burn and energy by 56% compared to the Baseline. Technology development roadmaps were updated, and an airport compatibility analysis established feasibility of a folding wing aircraft at existing airports.

  6. International VLBI Service for Geodesy and Astrometry. Delivering high-quality products and embarking on observations of the next generation

    NASA Astrophysics Data System (ADS)

    Nothnagel, A.; Artz, T.; Behrend, D.; Malkin, Z.

    2017-07-01

    The International VLBI Service for Geodesy and Astrometry (IVS) regularly produces high-quality Earth orientation parameters from observing sessions employing extensive networks or individual baselines. The master schedule is designed according to the telescope days committed by the stations and by the need for dense sampling of the Earth orientation parameters (EOP). In the pre-2011 era, the network constellations with their number of telescopes participating were limited by the playback and baseline capabilities of the hardware (Mark4) correlators. This limitation was overcome by the advent of software correlators, which can now accommodate many more playback units in a flexible configuration. In this paper, we describe the current operations of the IVS with special emphasis on the quality of the polar motion results since these are the only EOP components which can be validated against independent benchmarks. The polar motion results provided by the IVS have improved continuously over the years, now providing an agreement with IGS results at the level of 20-25 μas in a WRMS sense. At the end of the paper, an outlook is given for the realization of the VLBI Global Observing System.

  7. The current ability to test theories of gravity with black hole shadows

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Younsi, Ziri; Fromm, Christian M.; Porth, Oliver; De Laurentis, Mariafelicia; Olivares, Hector; Falcke, Heino; Kramer, Michael; Rezzolla, Luciano

    2018-04-01

    Our Galactic Centre, Sagittarius A*, is believed to harbour a supermassive black hole, as suggested by observations tracking individual orbiting stars1,2. Upcoming submillimetre very-long baseline interferometry images of Sagittarius A* carried out by the Event Horizon Telescope collaboration (EHTC)3,4 are expected to provide critical evidence for the existence of this supermassive black hole5,6. We assess our present ability to use EHTC images to determine whether they correspond to a Kerr black hole as predicted by Einstein's theory of general relativity or to a black hole in alternative theories of gravity. To this end, we perform general-relativistic magnetohydrodynamical simulations and use general-relativistic radiative-transfer calculations to generate synthetic shadow images of a magnetized accretion flow onto a Kerr black hole. In addition, we perform these simulations and calculations for a dilaton black hole, which we take as a representative solution of an alternative theory of gravity. Adopting the very-long baseline interferometry configuration from the 2017 EHTC campaign, we find that it could be extremely difficult to distinguish between black holes from different theories of gravity, thus highlighting that great caution is needed when interpreting black hole images as tests of general relativity.

  8. Spectrometer Baseline Control Via Spatial Filtering

    NASA Technical Reports Server (NTRS)

    Burleigh, M. R.; Richey, C. R.; Rinehart, S. A.; Quijada, M. A.; Wollack, E. J.

    2016-01-01

    An absorptive half-moon aperture mask is experimentally explored as a broad-bandwidth means of eliminating spurious spectral features arising from reprocessed radiation in an infrared Fourier transform spectrometer. In the presence of the spatial filter, an order of magnitude improvement in the fidelity of the spectrometer baseline is observed. The method is readily accommodated within the context of commonly employed instrument configurations and leads to a factor of two reduction in optical throughput. A detailed discussion of the underlying mechanism and limitations of the method are provided.

  9. Study of turbine and guide vanes integration to enhance the performance of cross flow vertical axis wind turbine

    NASA Astrophysics Data System (ADS)

    Wibowo, Andreas; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi; Situmorang, Marcelinus Risky Clinton

    2018-02-01

    The main purpose of this study is to investigate the best configuration between guide vanes and cross flow vertical axis wind turbine with variation of several parameters including guide vanes tilt angle and the number of turbine and guide vane blades. The experimental test were conducted under various wind speed and directions for testing cross flow wind turbine, consisted of 8, 12 and 16 blades. Two types of guide vane were developed in this study, employing 20° and 60° tilt angle. Both of the two types of guide vane had three variations of blade numbers which had same blade numbers variations as the turbines. The result showed that the configurations between 60° guide vane with 16 blade numbers and turbine with 16 blade numbers had the best configurations. The result also showed that for certain configuration, guide vane was able to increase the power generated by the turbine significantly by 271.39% compared to the baseline configuration without using of guide vane.

  10. Investigation of scale effects in the TRF determined by VLBI

    NASA Astrophysics Data System (ADS)

    Wahl, Daniel; Heinkelmann, Robert; Schuh, Harald

    2017-04-01

    The improvement of the International Terrestrial Reference Frame (ITRF) is of great significance for Earth sciences and one of the major tasks in geodesy. The translation, rotation and the scale-factor, as well as their linear rates, are solved in a 14-parameter transformation between individual frames of each space geodetic technique and the combined frame. In ITRF2008, as well as in the current release ITRF2014, the scale-factor is provided by Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) in equal shares. Since VLBI measures extremely precise group delays that are transformed to baseline lengths by the velocity of light, a natural constant, VLBI is the most suitable method for providing the scale. The aim of the current work is to identify possible shortcomings in the VLBI scale contribution to ITRF2008. For developing recommendations for an enhanced estimation, scale effects in the Terrestrial Reference Frame (TRF) determined with VLBI are considered in detail and compared to ITRF2008. In contrast to station coordinates, where the scale is defined by a geocentric position vector, pointing from the origin of the reference frame to the station, baselines are not related to the origin. They are describing the absolute scale independently from the datum. The more accurate a baseline length, and consequently the scale, is estimated by VLBI, the better the scale contribution to the ITRF. Considering time series of baseline length between different stations, a non-linear periodic signal can clearly be recognized, caused by seasonal effects at observation sites. Modeling these seasonal effects and subtracting them from the original data enhances the repeatability of single baselines significantly. Other effects influencing the scale strongly, are jumps in the time series of baseline length, mainly evoked by major earthquakes. Co- and post-seismic effects can be identified in the data, having a non-linear character likewise. Modeling the non-linear motion or completely excluding affected stations is another important step for an improved scale determination. In addition to the investigation of single baseline repeatabilities also the spatial transformation, which is performed for determining parameters of the ITRF2008, are considered. Since the reliability of the resulting transformation parameters is higher the more identical points are used in the transformation, an approach where all possible stations are used as control points is comprehensible. Experiments that examine the scale-factor and its spatial behavior between control points in ITRF2008 and coordinates determined by VLBI only showed that the network geometry has a large influence on the outcome as well. Introducing an unequally distributed network for the datum configuration, the correlations between translation parameters and the scale-factor can become remarkably high. Only a homogeneous spatial distribution of participating stations yields a maximally uncorrelated scale-factor that can be interpreted independent from other parameters. In the current release of the ITRF, the ITRF2014, for the first time, non-linear effects in the time series of station coordinates are taken into account. The present work shows the importance and the right direction of the modification of the ITRF calculation. But also further improvements were found which lead to an enhanced scale determination.

  11. Noise Reduction Retrofit for a "New Look" Flexible Transit Bus Service Bulletin

    DOT National Transportation Integrated Search

    1980-09-01

    This document presents instructions on how to apply a noise treatment to a contemporary city transit bus without extensive structural alteration. Baseline bus configuration, noise ratings, and performance benchmarks are presented for a Flexible 111DC...

  12. Compensation of the long-range beam-beam interactions as a path towards new configurations for the high luminosity LHC

    DOE PAGES

    Fartoukh, Stéphane; Valishev, Alexander; Papaphilippou, Yannis; ...

    2015-12-01

    Colliding bunch trains in a circular collider demands a certain crossing angle in order to separate the two beams transversely after the collision. The magnitude of this crossing angle is a complicated function of the bunch charge, the number of long-range beam-beam interactions, of β* and type of optics (flat or round), and possible compensation or additive effects between several low-β insertions in the ring depending on the orientation of the crossing plane at each interaction point. About 15 years ago, the use of current bearing wires was proposed at CERN in order to mitigate the long-range beam-beam effects [J.P. Koutchouk,more » CERN Report No. LHC-Project-Note 223, 2000], therefore offering the possibility to minimize the crossing angle with all the beneficial effects this might have: on the luminosity performance by reducing the need for crab-cavities or lowering their voltage, on the required aperture of the final focus magnets, on the strength of the orbit corrector involved in the crossing bumps, and finally on the heat load and radiation dose deposited in the final focus quadrupoles. In this paper, a semianalytical approach is developed for the compensation of the long-range beam-beam interactions with current wires. This reveals the possibility of achieving optimal correction through a careful adjustment of the aspect ratio of the β functions at the wire position. We consider the baseline luminosity upgrade plan of the Large Hadron Collider (HL-LHC project), and compare it to alternative scenarios, or so-called ''configurations,'' where modifications are applied to optics, crossing angle, or orientation of the crossing plane in the two low-β insertions of the ring. Furthermore, for all these configurations, the beneficial impact of beam-beam compensation devices is then demonstrated on the tune footprint, the dynamical aperture, and/or the frequency map analysis of the nonlinear beam dynamics as the main figures of merit.« less

  13. Heating and current drive requirements towards steady state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, Francesca; Kessel, Charles; Bonoli, Paul; Batchelor, Donald; Harvey, Bob

    2013-10-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) to reach adequate fusion gain at typical currents of 9 MA. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of external sources that maintain weakly reversed shear profiles and ρ (qmin >= 0 . 5 are the focus of this work. Simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of ITBs could be demonstrated with the baseline configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current (6.2MA) are below the target. Upgrades of the heating and current drive system, like the use of Lower Hybrid current drive, could overcome these limitations. With 30MW of coupled LH in the flattop and operating at the Greenwald density, plasmas can sustain ~ 9 MA and achieve Q ~ 4 . Work supported by the US Department of Energy under DE-AC02-CH0911466.

  14. Viscous Design of TCA Configuration

    NASA Technical Reports Server (NTRS)

    Krist, Steven E.; Bauer, Steven X. S.; Campbell, Richard L.

    1999-01-01

    The goal in this effort is to redesign the baseline TCA configuration for improved performance at both supersonic and transonic cruise. Viscous analyses are conducted with OVERFLOW, a Navier-Stokes code for overset grids, using PEGSUS to compute the interpolations between overset grids. Viscous designs are conducted with OVERDISC, a script which couples OVERFLOW with the Constrained Direct Iterative Surface Curvature (CDISC) inverse design method. The successful execution of any computational fluid dynamics (CFD) based aerodynamic design method for complex configurations requires an efficient method for regenerating the computational grids to account for modifications to the configuration shape. The first section of this presentation deals with the automated regridding procedure used to generate overset grids for the fuselage/wing/diverter/nacelle configurations analysed in this effort. The second section outlines the procedures utilized to conduct OVERDISC inverse designs. The third section briefly covers the work conducted by Dick Campbell, in which a dual-point design at Mach 2.4 and 0.9 was attempted using OVERDISC; the initial configuration from which this design effort was started is an early version of the optimized shape for the TCA configuration developed by the Boeing Commercial Airplane Group (BCAG), which eventually evolved into the NCV design. The final section presents results from application of the Natural Flow Wing design philosophy to the TCA configuration.

  15. Vehicle integration effects on hypersonic waveriders. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles Edward, Jr.

    1994-01-01

    The integration of a class of hypersonic high-lift configurations known as waveriders into hypersonic cruise vehicles was evaluated. Waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional hypersonic shapes. A wind-tunnel model was developed which integrates realistic vehicle components with two waverider shapes, referred to as the 'straight-wing' and 'cranked-wing' shapes. Both shapes were conical-flow-derived waveriders at a design Mach number of 4.0. The cranked-wing shape was designed to provide advantages in subsonic performance and directional stability over conventional waveriders. Experimental data and limited computational fluid dynamics (CFD) predictions were obtained over a Mach number range of 2.3 to 4.63 at a Reynolds number of 2.0x10(exp 6) per foot. The CFD predictions and flow visualization data confirmed the shock attachment characteristics of the baseline waverider shapes and illustrated the waverider flow-field properties. Both CFD predictions and experimental data showed that no significant performance degradations occur at off-design Mach numbers for the waverider shapes and the integrated configurations. The experimental data showed that the effects of adding a realistic canopy were minimal. The effects of adding engine components were to increase the drag and thus degrade the aerodynamic performance of the configuration. A significant degradation in aerodynamic performance was observed when 0 degree control surfaces were added to close the blunt base of the waverider to a sharp trailing edge. A comparison of the fully-integrated waverider models to the baseline shapes showed that the performance was significantly degraded when all of the components were added to the waveriders. The fully-integrated configurations studied here do not offer significant performance advantages over conventional hypersonic vehicles, but still offer advantages in air-breathing propulsion integration. Additionally, areas are identified in this study where improvements could be made to enhance the performance. Both fully-integrated configurations are longitudinally unstable over the Mach number range studied for unpowered conditions. The cranked-wing fully-integrated configuration provided significantly better lateral-directional stability characteristics than the straight-wing configuration.

  16. Earth Observatory Satellite system definition study. Report no. 3: Design/cost tradeoff studies. Appendix D: EOS configuration design data. Part 1: Spacecraft configuration

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of structural studies of the Earth Observatory Satellite (EOS) which define the member sizes to meet the vehicle design requirements are presented. The most significant requirements in sizing the members are the stiffness required to meet the launch vehicle design frequencies both in the late al and in the longitudinal directions. The selected configurations, both baseline and preferred, for the Delta and Titan launch vehicles were evaluated for stiffness requirements. The structural idealization used to estimate the stiffness of each structural arrangement, was based on an evaluation of primary loads paths, effectivity of structural members, and estimated sizes for the preferred configurations. The study included an evaluation of the following structural materials: (1) aluminum alloys, (2) titanium alloys, (3) beryllium, (4) beryllium/aluminum alloy, and (5) composite materials.

  17. Acoustic Benefits of Stator Sweep and Lean for a High Tip Speed Fan

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Gazzaniga, John A.; Bartos, Linda J.; Hughes, Christopher E.

    2002-01-01

    A model high-speed fan stage was acoustically tested in the NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel at takeoff/approach flight conditions. The fan was designed for a corrected rotor tip speed of 442 m/s (1450 ft/s), and had a powered core, or booster stage, giving the model a nominal bypass ratio of 5. The model also had a simulated engine pylon and nozzle bifurcation contained within the bypass duct. The fan was tested with three stator sets to evaluate acoustic benefits associated with a swept and leaned stator and with a swept integral vane/frame stator which incorporated some of the swept and leaned features as well as eliminated some of the downstream support structure. The baseline fan with the wide chord rotor and baseline stator approximated a current GEAE CF6 engine. A flyover effective perceived noise level (EPNL) code was used to generate relative EPNL values for the various configurations. Flyover effective perceived noise levels (EPNL) were computed from the model data to help project noise benefits. A tone removal study was also performed. The swept and leaned stator showed a 3 EPNdB reduction at lower fan speeds relative to the baseline stator; while the swept integral vane/frame stator showed lowest noise levels at intermediate fan speeds. Removal of the bypass blade passage frequency rotor tone (BPF) showed a 4 EPNdB reduction for the baseline and swept and leaned stators, and a 6 EPNdB reduction for the swept integral vane/ frame stator. Therefore, selective tone removal techniques such as active noise control and/or tuned liner could be particularly effective in reducing noise levels for certain fan speeds.

  18. Effects of Compression, Staging, and Braid Angle on Braided Rope Seal Performance

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Adams, Michael L.

    1997-01-01

    Future turbine engines and industrial systems will be operating at increased temperatures to achieve more demanding efficiency and performance goals. In the highest temperature sections of the engine new material systems such as ceramics and intermetallics are being considered to withstand the harsh thermal environment. Components constructed of these low expansion-rate materials experience thermal strains and a resulting reduction of life when rigidly attached to high expansion-rate, superalloy support structures. Seals are being designed to both seal and to serve as compliant mounts allowing for relative thermal growths between high temperature but brittle primary structures and the surrounding support structures. Previous seal research yielded several braided rope seal designs which demonstrated the ability to both seal and serve as a compliant mount. The hybrid seal was constructed of an all-ceramic (alumina-silica) core overbraided with a superalloy wire sheath (cobalt based superalloy). The all ceramic seal was constructed of an all-ceramic (alumina-silica) core overbraided with multiple ceramic (alumina-silica) sheath layers. Program goals for braided rope seals are to improve flow resistance and/or seal resilience. To that end, the current report studies the test results of: baseline and modified hybrid seals; two stage hybrid and two stage all-ceramic seal configurations; and single stage hybrid and single stage all-ceramic seal configurations for a range of seal crush conditions. Hybrid seal modifications include increasing the sheath braid angle and core coverage. For the same percent seal cross-sectional crush, results show that increasing the hybrid seal braid angle increased seal stiffness and seal unit load, resulting in flows approximately one third of the baseline hybrid seal flows. For both hybrid and all-ceramic seals, two stage seal configurations significantly outperformed single stage configurations. Two stage seal flows were at least 30% less than the single stage seal flows for the same seal crush. Furthermore, test results of single stage seals indicate that for both all-ceramic and hybrid seals, a specific seal crush condition exists at which minimum flows are achieved (i.e. increasing seal crush beyond a certain point does not result in better flow performance). Flow results are presented for a range of pressures and temperatures from ambient to 1300 F, before and after scrubbing. Compression tests results show that for both all-ceramic and hybrid seals, seal preload and stiffness increase with seal crush, but residual seal interference remains constant.

  19. Solar dynamic heat receiver thermal characteristics in low earth orbit

    NASA Technical Reports Server (NTRS)

    Wu, Y. C.; Roschke, E. J.; Birur, G. C.

    1988-01-01

    A simplified system model is under development for evaluating the thermal characteristics and thermal performance of a solar dynamic spacecraft energy system's heat receiver. Results based on baseline orbit, power system configuration, and operational conditions, are generated for three basic receiver concepts and three concentrator surface slope errors. Receiver thermal characteristics and thermal behavior in LEO conditions are presented. The configuration in which heat is directly transferred to the working fluid is noted to generate the best system and thermal characteristics. as well as the lowest performance degradation with increasing slope error.

  20. Preliminary evaluation of a compound cycle engine for shipboard gensets

    NASA Technical Reports Server (NTRS)

    Castor, J. G.; Wintucky, W. T.

    1986-01-01

    The results of a thermodynamic cycle (SFC) and weight analysis performed to establish engine configuration, size, weight and performance are reported. Baseline design configuration was a 2,000 hour MTBO Compound Cycle Engine (CCE) for a helicopter application. The CCE configuration was extrapolated out to a 10,000 MTBO for a shipboard genset application. The study showed that an advanced diesel engine design (CCE) could be substantially lighter and smaller (79% and 82% respectively) than todays contemporary genset diesel engine. Although the CCE was not optimized, it had about a 7% reduction in mission fuel consumption over today's genset diesels. The CCE is a turbocharged, power-compounded, high power density, low-compression ratio diesel engine. Major technology development areas are presented.

  1. Study of Technological Improvements to Optimize Truck Configurations for Fuel Economy

    DOT National Transportation Integrated Search

    1975-09-01

    The truck types that accounted for most of the fuel consumed were identified and modeled by computer analysis. Baseline fuel consumption was calculated for the major truck types over specific duty cycles. Design improvements in the truck were then mo...

  2. 40 CFR 610.62 - Driveability tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Driveability tests. 610.62 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.62 Driveability tests. Driveability assessment (at normal ambient temperatures) of the baseline configuration, of the...

  3. 40 CFR 610.62 - Driveability tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Driveability tests. 610.62 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.62 Driveability tests. Driveability assessment (at normal ambient temperatures) of the baseline configuration, of the...

  4. 40 CFR 610.62 - Driveability tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Driveability tests. 610.62 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.62 Driveability tests. Driveability assessment (at normal ambient temperatures) of the baseline configuration, of the...

  5. 40 CFR 610.62 - Driveability tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Driveability tests. 610.62 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.62 Driveability tests. Driveability assessment (at normal ambient temperatures) of the baseline configuration, of the...

  6. Simulation-Based Airframe Noise Prediction of a Full-Scale, Full Aircraft

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Fares, Ehab

    2016-01-01

    A previously validated computational approach applied to an 18%-scale, semi-span Gulfstream aircraft model was extended to the full-scale, full-span aircraft in the present investigation. The full-scale flap and main landing gear geometries used in the simulations are nearly identical to those flown on the actual aircraft. The lattice Boltzmann solver PowerFLOW® was used to perform time-accurate predictions of the flow field associated with this aircraft. The simulations were performed at a Mach number of 0.2 with the flap deflected 39 deg. and main landing gear deployed (landing configuration). Special attention was paid to the accurate prediction of major sources of flap tip and main landing gear noise. Computed farfield noise spectra for three selected baseline configurations (flap deflected 39 deg. with and without main gear extended, and flap deflected 0 deg. with gear deployed) are presented. The flap brackets are shown to be important contributors to the farfield noise spectra in the mid- to high-frequency range. Simulated farfield noise spectra for the baseline configurations, obtained using a Ffowcs Williams and Hawkings acoustic analogy approach, were found to be in close agreement with acoustic measurements acquired during the 2006 NASA-Gulfstream joint flight test of the same aircraft.

  7. Thermal Performance of Orion Active Thermal Control System With Seven-Panel Reduced-Curvature Radiator

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James R.

    2010-01-01

    The active thermal control system (ATCS) of the crew exploration vehicle (Orion) uses radiator panels with fluid loops as the primary system to reject heat from spacecraft. The Lockheed Martin (LM) baseline Orion ATCS uses eight-panel radiator coated with silver Teflon coating (STC) for International Space Station (ISS) missions, and uses seven-panel radiator coated with AZ 93 white paint for lunar missions. As an option to increase the radiator area with minimal impact on other component locations and interfaces, the reduced-curvature (RC) radiator concept was introduced and investigated here for the thermal perspective. Each RC radiator panel has 15 percent more area than each Lockheed Martin (LM) baseline radiator panel. The objective was to determine if the RC seven-panel radiator concept could be used in the ATCS for both ISS and lunar missions. Three radiator configurations the LM baseline, an RC seven-panel radiator with STC, and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for ISS missions. Two radiator configurations the LM baseline and an RC seven-panel radiator with AZ 93 coating were considered in the ATCS for lunar missions. A Simulink/MATLAB model of the ATCS was used to compute the ATCS performance. Some major hot phases on the thermal timeline were selected because of concern about the large amount of water sublimated for thermal topping. It was concluded that an ATCS with an RC seven-panel radiator could be used for both ISS and lunar missions, but with two different coatings STC for ISS missions and AZ 93 for lunar missions to provide performance similar to or better than that of the LM baseline ATCS.

  8. Transverse tripolar stimulation of peripheral nerve: a modelling study of spatial selectivity.

    PubMed

    Deurloo, K E; Holsheimer, J; Boom, H B

    1998-01-01

    Various anode-cathode configurations in a nerve cuff are modelled to predict their spatial selectivity characteristics for functional nerve stimulation. A 3D volume conductor model of a monofascicular nerve is used for the computation of stimulation-induced field potentials, whereas a cable model of myelinated nerve fibre is used for the calculation of the excitation thresholds of fibres. As well as the usual configurations (monopole, bipole, longitudinal tripole, 'steering' anode), a transverse tripolar configuration (central cathode) is examined. It is found that the transverse tripole is the only configuration giving convex recruitment contours and therefore maximises activation selectivity for a small (cylindrical) bundle of fibres in the periphery of a monofascicular nerve trunk. As the electrode configuration is changed to achieve greater selectivity, the threshold current increases. Therefore threshold currents for fibre excitation with a transverse tripole are relatively high. Inverse recruitment is less extreme than for the other configurations. The influences of several geometrical parameters and model conductivities of the transverse tripole on selectivity and threshold current are analysed. In chronic implantation, when electrodes are encapsulated by a layer of fibrous tissue, threshold currents are low, whereas the shape of the recruitment contours in transverse tripolar stimulation does not change.

  9. Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis

    NASA Astrophysics Data System (ADS)

    Datta, Abhishek; Elwassif, Maged; Battaglia, Fortunato; Bikson, Marom

    2008-06-01

    We calculated the electric fields induced in the brain during transcranial current stimulation (TCS) using a finite-element concentric spheres human head model. A range of disc electrode configurations were simulated: (1) distant-bipolar; (2) adjacent-bipolar; (3) tripolar; and three ring designs, (4) belt, (5) concentric ring, and (6) double concentric ring. We compared the focality of each configuration targeting cortical structures oriented normal to the surface ('surface-radial' and 'cross-section radial'), cortical structures oriented along the brain surface ('surface-tangential' and 'cross-section tangential') and non-oriented cortical surface structures ('surface-magnitude' and 'cross-section magnitude'). For surface-radial fields, we further considered the 'polarity' of modulation (e.g. superficial cortical neuron soma hyper/depolarizing). The distant-bipolar configuration, which is comparable with commonly used TCS protocols, resulted in diffuse (un-focal) modulation with bi-directional radial modulation under each electrode and tangential modulation between electrodes. Increasing the proximity of the two electrodes (adjacent-bipolar electrode configuration) increased focality, at the cost of more surface current. At similar electrode distances, the tripolar-electrodes configuration produced comparable peak focality, but reduced radial bi-directionality. The concentric-ring configuration resulted in the highest spatial focality and uni-directional radial modulation, at the expense of increased total surface current. Changing ring dimensions, or use of two concentric rings, allow titration of this balance. The concentric-ring design may thus provide an optimized configuration for targeted modulation of superficial cortical neurons.

  10. Control System for Bearingless Motor-generator

    NASA Technical Reports Server (NTRS)

    Kascak, Peter E. (Inventor); Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor)

    2008-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  11. Control system for bearingless motor-generator

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H. (Inventor); Dever, Timothy P. (Inventor); Kascak, Peter E. (Inventor)

    2010-01-01

    A control system for an electromagnetic rotary drive for bearingless motor-generators comprises a winding configuration comprising a plurality of individual pole pairs through which phase current flows, each phase current producing both a lateral force and a torque. A motor-generator comprises a stator, a rotor supported for movement relative to the stator, and a control system. The motor-generator comprises a winding configuration supported by the stator. The winding configuration comprises at least three pole pairs through which phase current flows resulting in three three-phase systems. Each phase system has a first rotor reference frame axis current that produces a levitating force with no average torque and a second rotor reference frame axis current that produces torque.

  12. A routine quality assurance test for CT automatic exposure control systems.

    PubMed

    Iball, Gareth R; Moore, Alexis C; Crawford, Elizabeth J

    2016-07-08

    The study purpose was to develop and validate a quality assurance test for CT automatic exposure control (AEC) systems based on a set of nested polymethylmethacrylate CTDI phantoms. The test phantom was created by offsetting the 16 cm head phantom within the 32 cm body annulus, thus creating a three part phantom. This was scanned at all acceptance, routine, and some nonroutine quality assurance visits over a period of 45 months, resulting in 115 separate AEC tests on scanners from four manufacturers. For each scan the longitudinal mA modulation pattern was generated and measurements of image noise were made in two annular regions of interest. The scanner displayed CTDIvol and DLP were also recorded. The impact of a range of AEC configurations on dose and image quality were assessed at acceptance testing. For systems that were tested more than once, the percentage of CTDIvol values exceeding 5%, 10%, and 15% deviation from baseline was 23.4%, 12.6%, and 8.1% respectively. Similarly, for the image noise data, deviations greater than 2%, 5%, and 10% from baseline were 26.5%, 5.9%, and 2%, respectively. The majority of CTDIvol and noise deviations greater than 15% and 5%, respectively, could be explained by incorrect phantom setup or protocol selection. Barring these results, CTDIvol deviations of greater than 15% from baseline were found in 0.9% of tests and noise deviations greater than 5% from baseline were found in 1% of tests. The phantom was shown to be sensitive to changes in AEC setup, including the use of 3D, longitudinal or rotational tube current modulation. This test methodology allows for continuing performance assessment of CT AEC systems, and we recommend that this test should become part of routine CT quality assurance programs. Tolerances of ± 15% for CTDIvol and ± 5% for image noise relative to baseline values should be used. © 2016 The Authors

  13. Flight Simulator Evaluation of Synthetic Vision Display Concepts to Prevent Controlled Flight Into Terrain (CFIT)

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.

    2004-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.

  14. Low eddy current RF shielding enclosure designs for 3T MR applications.

    PubMed

    Lee, Brian J; Watkins, Ronald D; Chang, Chen-Ming; Levin, Craig S

    2018-03-01

    Magnetic resonance-compatible medical devices operate within the MR environment while benefitting from the superior anatomic information of MRI. Avoiding electromagnetic interference between such instrumentation and the MR system is crucial. In this work, various shielding configurations for positron emission tomography (PET) detectors were studied and analyzed regarding radiofrequency (RF) shielding effectiveness and gradient-induced eddy current performances. However, the results of this work apply to shielding considerations for any MR-compatible devices. Six shielding enclosure configurations with various thicknesses, patterns, and materials were designed: solid and segmented copper, phosphor bronze mesh (PBM), and carbon fiber composite (CFC). A series of tests was performed on RF shielding effectiveness and the gradient-induced eddy current. For the shielding effectiveness, the solid copper with various thickness and PBM configurations yield significantly better shielding effectiveness (>15 dB) compared with CFC and segmented configurations. For the gradient-induced eddy current performance, the solid copper shielding configurations with different thicknesses showed significantly worse results, up to a factor of 3.89 dB, compared with the segmented copper, PBM, and the CFC configurations. We evaluated the RF shielding effectiveness and the gradient-induced eddy current artifacts of several shielding designs, and only the PBM showed positive outcomes for both aspects. Magn Reson Med 79:1745-1752, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  15. Focusing high-squint and large-baseline one-stationary bistatic SAR data using keystone transform and enhanced nonlinear chirp scaling based on an ellipse model

    NASA Astrophysics Data System (ADS)

    Zhong, Hua; Zhang, Song; Hu, Jian; Sun, Minhong

    2017-12-01

    This paper deals with the imaging problem for one-stationary bistatic synthetic aperture radar (BiSAR) with high-squint, large-baseline configuration. In this bistatic configuration, accurate focusing of BiSAR data is a difficult issue due to the relatively large range cell migration (RCM), severe range-azimuth coupling, and inherent azimuth-geometric variance. To circumvent these issues, an enhanced azimuth nonlinear chirp scaling (NLCS) algorithm based on an ellipse model is investigated in this paper. In the range processing, a method combining deramp operation and keystone transform (KT) is adopted to remove linear RCM completely and mitigate range-azimuth cross-coupling. In the azimuth focusing, an ellipse model is established to analyze and depict the characteristic of azimuth-variant Doppler phase. Based on the new model, an enhanced azimuth NLCS algorithm is derived to focus one-stationary BiSAR data. Simulating results exhibited at the end of this paper validate the effectiveness of the proposed algorithm.

  16. Cryogenics Testbed Laboratory Flange Baseline Configuration

    NASA Technical Reports Server (NTRS)

    Acuna, Marie Lei Ysabel D.

    2013-01-01

    As an intern at Kennedy Space Center (KSC), I was involved in research for the Fluids and Propulsion Division of the NASA Engineering (NE) Directorate. I was immersed in the Integrated Ground Operations Demonstration Units (IGODU) project for the majority of my time at KSC, primarily with the Ground Operations Demonstration Unit Liquid Oxygen (GODU L02) branch of IGODU. This project was established to develop advancements in cryogenic systems as a part of KSC's Advanced Exploration Systems (AES) program. The vision of AES is to develop new approaches for human exploration, and operations in and beyond low Earth orbit. Advanced cryogenic systems are crucial to minimize the consumable losses of cryogenic propellants, develop higher performance launch vehicles, and decrease operations cost for future launch programs. During my internship, I conducted a flange torque tracking study that established a baseline configuration for the flanges in the Simulated Propellant Loading System (SPLS) at the KSC Cryogenics Test Laboratory (CTL) - the testing environment for GODU L02.

  17. LDR structural experiment definition

    NASA Technical Reports Server (NTRS)

    Russell, Richard A.; Gates, Richard M.

    1988-01-01

    A study was performed to develop the definition of a structural flight experiment for a large precision segmented reflector that would utilize the Space Station. The objective of the study was to use the Large Deployable Reflector (LDR) baseline configuration for focusing on experiment definition activity which would identify the Space Station accommodation requirements and interface constraints. Results of the study defined three Space Station based experiments to demonstrate the technologies needed for an LDR type structure. The basic experiment configurations are the same as the JPL baseline except that the primary mirror truss is 10 meters in diameter instead of 20. The primary objectives of the first experiment are to construct the primary mirror support truss and to determine its structural and thermal characteristics. Addition of the optical bench, thermal shield and primary mirror segments and alignment of the optical components occur on the second experiment. The structure will then be moved to the payload pointing system for pointing, optical control and scientific optical measurement for the third experiment.

  18. Subsonic Ultra Green Aircraft Research

    NASA Technical Reports Server (NTRS)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  19. Representative Stall Model of Regional Aircraft for Simulator Training Using a Spline Shape Prescriptive Modeling Approach

    NASA Astrophysics Data System (ADS)

    Zhang, Tony S.

    Loss-of-control following aerodynamic stall remains the largest contributor to fatal civil aviation accidents. Aerodynamic models past stall are required to train pilots on stall recovery techniques using ground-based simulators, which are safe, inexpensive, and accessible. A methodology for creating representative stall models, which capture essential stall characteristics, is being developed for classes of twin-turboprop commuter and twin-engine regional jet aircraft. Despite having lower fidelity than type specific stall models generated from wind tunnel, flight test, and/or CFD studies data, these models are configuration adjustable and significantly cheaper to construct for high angle-of-attack regimes. Baseline specific stall models are modified to capture changes in aerodynamic coefficients due to configuration variations from a baseline to a target aircraft. A Shape Prescriptive Modeling approach combining existing theory and data using least-squares splines is used to make coefficient change predictions. Initial results are satisfactory and suggest that representative models are suitable for stall training.

  20. Numerical analysis of a variable camber rotor blade as a lift control device

    NASA Technical Reports Server (NTRS)

    Awani, A. O.; Stroub, R. H.

    1984-01-01

    A new rotor configuration called the variable camber rotor was numerically investigated as a lift control device. This rotor differs from a conventional (baseline) rotor only in the blade aft section. In this configuration, the aft section or flap is attached to the forward section by pin joint arrangement, and also connected to the rotor control system for the control of rotor thrust level and vectoring. Pilot action to the flap deflection controls rotor lift and tip path plane tilt. The drag due to flaps is presented and the theoretical result correlated with test data. The assessment of payoff for the variable camber rotor in comparison with conventional (baseline) rotor was examined in hover. The variable camber rotor is shown to increase hover power required by 1.35%, but such a minimal power penalty is not significant enough to be considered a negative result. In forward flight, the control needs of the variable camber rotor were evaluated.

  1. Noise levels from a model turbofan engine with simulated noise control measures applied

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Woodward, Richard P.

    1993-01-01

    A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.

  2. Comparison of thruster configurations in attitude control systems. M.S. Thesis. Progress Report

    NASA Technical Reports Server (NTRS)

    Boland, J. S., III; Drinkard, D. M., Jr.; White, L. R.; Chakravarthi, K. R.

    1973-01-01

    Several aspects concerning reaction control jet systems as used to govern the attitude of a spacecraft were considered. A thruster configuration currently in use was compared to several new configurations developed in this study. The method of determining the error signals which control the firing of the thrusters was also investigated. The current error determination procedure is explained and a new method is presented. Both of these procedures are applied to each of the thruster configurations which are developed and comparisons of the two methods are made.

  3. Expanding the Natural Laminar Flow Boundary for Supersonic Transports

    NASA Technical Reports Server (NTRS)

    Lynde, Michelle N.; Campbell, Richard L.

    2016-01-01

    A computational design and analysis methodology is being developed to design a vehicle that can support significant regions of natural laminar flow (NLF) at supersonic flight conditions. The methodology is built in the CDISC design module to be used in this paper with the flow solvers Cart3D and USM3D, and the transition prediction modules BLSTA3D and LASTRAC. The NLF design technique prescribes a target pressure distribution for an existing geometry based on relationships between modal instability wave growth and pressure gradients. The modal instability wave growths (both on- and off-axes crossflow and Tollmien-Schlichting) are balanced to produce a pressure distribution that will have a theoretical maximum NLF region for a given streamwise wing station. An example application is presented showing the methodology on a generic supersonic transport wingbody configuration. The configuration has been successfully redesigned to support significant regions of NLF (approximately 40% of the wing upper surface by surface area). Computational analysis predicts NLF with transition Reynolds numbers (ReT) as high as 36 million with 72 degrees of leading-edge sweep (?LE), significantly expanding the current boundary of ReT - ?LE combinations for NLF. This NLF geometry provides a total drag savings of 4.3 counts compared to the baseline wing-body configuration (approximately 5% of total drag). Off-design evaluations at near-cruise and low-speed, high-lift conditions are discussed, as well as attachment line contamination/transition concerns. This computational NLF design effort is a part of an ongoing cooperative agreement between NASA and JAXA researchers.

  4. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 2: Appendix A - D

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    Recommended conceptual designs for the baseline solar concentrator and electrical subsystems are defined, and trade offs that were evaluated to arrive at the baseline systems are presented. In addition, the developmental history of the Stirling engine is reviewed, the U4 configuration is described, and a Stirling engine heat pipe system is evaluated for solar application where sodium vapor is used as the heat source. An organic Rankine cycle engine is also evaluated for solar small power system application.

  5. Aluminum 2195 T8 Gore Development for Space Launch System Core and Upper Stage

    NASA Technical Reports Server (NTRS)

    Volz, Martin

    2015-01-01

    Gores are pie-shaped panels that are welded together to form the dome ends of rocket fuel tanks as shown in figure 1. Replacing aluminum alloy 2219 with aluminum (Al)-lithium (Li) alloy 2195 as the Space Launch System (SLS) cryogenic tank material would save enormous amounts of weight. In fact, it has been calculated that simply replacing Al 2219 gores with Al 2195 gores on the SLS core stage domes could save approximately 3,800 pound-mass. This is because the Al-Li 2195 alloy exhibits both higher mechanical properties and lower density than the SLS baseline Al 2219 alloy. Indeed, the known advantages of Al 2195 led to its use as a replacement for Al 2219 in the shuttle external tank program. The required thicknesses of Al 2195 gores for either SLS core stage tanks or upper stage tanks will depend on the specific design configurations. The required thicknesses or widths may exceed the current experience base in the manufacture of such gores by the stretch-forming process. Accordingly, the primary objective of this project was to enhance the formability of Al 2195 by optimizing the heat treatment and stretch-forming process for gore thicknesses up to 0.75 inches, which envelop the maximum expected gore thicknesses for SLS tank configurations.

  6. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    NASA Astrophysics Data System (ADS)

    Koppenjan, S.,; Martinez, M.

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a 'chirped' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site.

  7. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koppenjan, S,; Martinez, M.

    1994-06-01

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteriamore » for the development of geophysical technologies and techniques. The US DOE`s Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ``chirped`` FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site.« less

  8. Search for sterile neutrino oscillations in muon neutrino disappearance at MINOS/MINOS+

    NASA Astrophysics Data System (ADS)

    Todd, Jacob; Minos+ Collaboration

    2017-01-01

    A wide variety of neutrino oscillation phenomena are well-described by the standard three-flavour neutrino model, but some anomalies exist. The LSND and MiniBooNE experiments have measured electron antineutrino appearance in excess of standard oscillation predictions, which points to the possibility of a sterile neutrino with higher mass than the presently known states. MINOS, a two-detector, long-baseline neutrino oscillation experiment, was optimized for the measurement of muon neutrino disappearance in the NuMI neutrino beam. A sterile neutrino responsible for the LSND and MiniBooNE excesses would cause distortions in the charged current and neutral current MINOS spectra, which permits the search for sterile neutrinos at MINOS. In close collaboration with the Daya Bay reactor neutrino experiment, MINOS has placed strong constraints on the sterile neutrino parameter space for a model with one additional sterile neutrino. Further, the extension of data collection with MINOS+, which samples the NuMI beam in a medium energy configuration, markedly increases the sensitivity of the combined MINOS and MINOS+ sample to a 3+1-flavour sterile neutrino model.

  9. Verification System: First System-Wide Performance Test

    NASA Astrophysics Data System (ADS)

    Chernobay, I.; Zerbo, L.

    2006-05-01

    System-wide performance tests are essential for the development, testing and evaluation of individual components of the verification system. In addition to evaluating global readiness it helps establishing the practical and financial requirements for eventual operations. The first system-wide performance test (SPT1) was conducted in three phases: - A preparatory phase in May-June 2004 - A performance testing phase in April-June 2005 - An evaluation phase in the last half of 2005. The preparatory phase was developmental in nature. The main objectives for the performance testing phase included establishment of performance baseline under current provisional mode of operation (CTBT/PC- 19/1/Annex II, CTBT/WGB-21/1), examination of established requirements and procedures for operation and maintenance. To establish a system-wide performance baseline the system configuration was fixed for April-May 2005. The third month (June 2005) was used for implementation of 21 test case scenarios to examine either particular operational procedures or the response of the system components to the failures simulated under controlled conditions. A total of 163 stations and 5 certified radionuclide laboratories of International Monitoring System (IMS) participated in the performance testing phase - about 50% of the eventual IMS network. 156 IMS facilities and 40 National Data Centres (NDCs) were connected to the International Data Centre (IDC) via Global Communication Infrastructure (GCI) communication links. In addition, 12 legacy stations in the auxiliary seismic network sent data to the IDC over the Internet. During the performance testing phase, the IDC produced all required products, analysed more than 6100 seismic events and 1700 radionuclide spectra. Performance of all system elements was documented and analysed. IDC products were compared with results of data processing at the NDCs. On the basis of statistics and information collected during the SPT1 a system-wide performance baseline under current guidelines for provisional Operation and Maintenance was established. The test provided feedback for further development of the draft IMS and IDC Operational Manuals and identified priority areas for further system development.

  10. Wind Tunnel Evaluation of a Model Helicopter Main-Rotor Blade With Slotted Airfoils at the Tip

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.; Yeager, William T., Jr.; Singleton, Jeffrey D.; Wilbur, Matthew L.; Mirick, Paul H.

    2001-01-01

    Data for rotors using unconventional airfoils are of interest to permit an evaluation of this technology's capability to meet the U.S. Army's need for increased helicopter mission effectiveness and improved safety and survivability. Thus, an experimental investigation was conducted in the Langley Transonic Dynamics Tunnel (TDT) to evaluate the effect of using slotted airfoils in the rotor blade tip region (85 to 100 percent radius) on rotor aerodynamic performance and loads. Four rotor configurations were tested in forward flight at advance ratios from 0.15 to 0.45 and in hover in-ground effect. The hover tip Mach number was 0.627, which is representative of a design point of 4000-ft geometric altitude and a temperature of 95 F. The baseline rotor configuration had a conventional single-element airfoil in the tip region. A second rotor configuration had a forward-slotted airfoil with a -6 deg slat, a third configuration had a forward-slotted airfoil with a -10 slat, and a fourth configuration had an aft-slotted airfoil with a 3 deg flap (trailing edge down). The results of this investigation indicate that the -6 deg slat configuration offers some performance and loads benefits over the other three configurations.

  11. 49 CFR 665.5 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... used in public transportation service in the United States before October 1, 1988; or (2) Has been used... corresponding baseline bus configuration. Public transportation service means the operation of a vehicle that... 49 Transportation 7 2010-10-01 2010-10-01 false Definitions. 665.5 Section 665.5 Transportation...

  12. Spaceborne computer executive routine functional design specification. Volume 2: Computer executive design for space station/base

    NASA Technical Reports Server (NTRS)

    Kennedy, J. R.; Fitzpatrick, W. S.

    1971-01-01

    The computer executive functional system design concepts derived from study of the Space Station/Base are presented. Information Management System hardware configuration as directly influencing the executive design is reviewed. The hardware configuration and generic executive design requirements are considered in detail in a previous report (System Configuration and Executive Requirements Specifications for Reusable Shuttle and Space Station/Base, 9/25/70). This report defines basic system primitives and delineates processes and process control. Supervisor states are considered for describing basic multiprogramming and multiprocessing systems. A high-level computer executive including control of scheduling, allocation of resources, system interactions, and real-time supervisory functions is defined. The description is oriented to provide a baseline for a functional simulation of the computer executive system.

  13. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically Coupled Configuration

    NASA Technical Reports Server (NTRS)

    Geng, Steven M.; Briggs, Maxwell H.; Hervol, David S.

    2011-01-01

    A pair of 1-kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12-kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measureable difference in performance from the baseline data collected when the engines were separate, and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  14. Investigation of safe-life fail-safe criteria for the space shuttle

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An investigation was made to determine the effects of a safe-life design approach and a fail-safe design approach on the space shuttle booster vehicle structure, and to recommend any changes to the structural design criteria. Two configurations of the booster vehicle were considered, one incorporating a delta wing (B-9U configuration) and the other a swept wing (B-16B configuration). Several major structural components of the booster were studied to determine the fatigue life, safe-life, and fail-safe capabilities of the baseline design. Each component was investigated to determine the practicability of applying a safe-life or fail-safe design philosophy, the changes such design approaches might require, and the impact of these changes on weight, cost, development plans, and performance.

  15. Investigations of High Pressure Acoustic Waves in Resonators with Seal-like Features

    NASA Technical Reports Server (NTRS)

    Daniels, Christopher; Steinetz, Bruce; Finkbeiner, Joshua

    2003-01-01

    A conical resonator (having a dissonant acoustic design) was tested in four configurations: (1) baseline resonator with closed ends and no blockage, (2) closed resonator with internal blockage, (3) ventilated resonator with no blockage, and (4) ventilated resonator with an applied pressure differential. These tests were conducted to investigate the effects of blockage and ventilation holes on dynamic pressurization. Additionally, the investigation was to determine the ability of acoustic pressurization to impede flow through the resonator. In each of the configurations studied, the entire resonator was oscillated at the gas resonant frequency while dynamic pressure, static pressure, and temperature of the fluid were measured. In the final configuration, flow through the resonator was recorded for three oscillation conditions. Ambient condition air was used as the working fluid.

  16. Performance of a Kilowatt-Class Stirling Power Conversion System in a Thermodynamically-Coupled Configuration

    NASA Astrophysics Data System (ADS)

    Geng, S. M.; Briggs, M. H.; Hervol, D. S.

    A pair of 1kWe free-piston Stirling power convertors has been modified into a thermodynamically coupled configuration, and performance map testing has been completed. This is the same configuration planned for the full-scale 12 kWe power conversion unit (PCU) that will be used in the Fission Power System Technology Demonstration Unit (TDU). The 1-kWe convertors were operated over a range of conditions to evaluate the effects of thermodynamic coupling on convertor performance and to identify any possible control challenges. The thermodynamically coupled convertor showed no measurable difference in performance from the baseline data collected when the engines were separate and no major control issues were encountered during operation. The results of this test are guiding controller development and instrumentation selection for the TDU.

  17. Viking '79 Rover study. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The results of a study to define a roving vehicle suitable for inclusion in a 1979 Viking mission to Mars are presented. The study focused exclusively on the 1979 mission incorporating a rover that would be stowed on and deployed from a modified Viking lander. The overall objective of the study was to define a baseline rover, the lander/rover interfaces, a mission operations concept, and a rover development program compatible with the 1979 launch opportunity. During the study, numerous options at the rover system and subsystem levels were examined and a baseline configuration was selected. Launch vehicle, orbiter, and lander performance capabilities were examined to ensure that the baseline rover could be transported to Mars using minimum-modified Viking '75 hardware and designs.

  18. Small Engine Component Technology (SECT) study

    NASA Technical Reports Server (NTRS)

    Singh, B.

    1986-01-01

    Small advanced (450 to 850 pounds thrust, 2002 to 3781 N) gas turbine engines were studied for a subsonic strategic cruise missile application, using projected year 2000 technology. An aircraft, mission characteristics, and baseline (state-of-the-art) engine were defined to evaluate technology benefits. Engine performance and configuration analyses were performed for two and three spool turbofan and propfan engine concepts. Mission and Life Cycle Cost (LCC) analyses were performed in which the candidate engines were compared to the baseline engines over a prescribed mission. The advanced technology engines reduced system LCC up to 41 percent relative to the baseline engine. Critical aerodynamic, materials, and mechanical systems turbine engine technologies were identified and program plans were defined for each identified critical technology.

  19. Supersonic Aerodynamic Design Improvements of an Arrow-Wing HSCT Configuration Using Nonlinear Point Design Methods

    NASA Technical Reports Server (NTRS)

    Unger, Eric R.; Hager, James O.; Agrawal, Shreekant

    1999-01-01

    This paper is a discussion of the supersonic nonlinear point design optimization efforts at McDonnell Douglas Aerospace under the High-Speed Research (HSR) program. The baseline for these optimization efforts has been the M2.4-7A configuration which represents an arrow-wing technology for the High-Speed Civil Transport (HSCT). Optimization work on this configuration began in early 1994 and continued into 1996. Initial work focused on optimization of the wing camber and twist on a wing/body configuration and reductions of 3.5 drag counts (Euler) were realized. The next phase of the optimization effort included fuselage camber along with the wing and a drag reduction of 5.0 counts was achieved. Including the effects of the nacelles and diverters into the optimization problem became the next focus where a reduction of 6.6 counts (Euler W/B/N/D) was eventually realized. The final two phases of the effort included a large set of constraints designed to make the final optimized configuration more realistic and they were successful albeit with a loss of performance.

  20. Orbital transfer vehicle launch operations study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The purpose was to use the operational experience at the launch site to identify, describe and quantify the operational impacts of the various configurations on the Kennedy Space Center (KSC) and/or space station launch sites. Orbital Transfer Vehicle (OTV) configurations are being developed/defined by contractor teams. Lacking an approved configuration, the KSC Study Team defined a Reference Configuration to be used for this study. This configuration then become the baseline for the identification of the facilities, personnel and crew skills required for processing the OTV in a realistic manner that would help NASA achieve the lowest possible OTV life cycle costs. As the study progressed, researchers' initial apraisal that the vehicle, when delivered, would be a sophisticated, state-of-the-art vehicle was reinforced. It would be recovered and reused many times so the primary savings to be gained would be in the recurring-cycle of the vehicle operations--even to the point where it would be beneficial to break from tradition and make a significant expenditure in the development of processing facilities at the beginning of the program.

  1. Aerodynamic-structural model of offwind yacht sails

    NASA Astrophysics Data System (ADS)

    Mairs, Christopher M.

    An aerodynamic-structural model of offwind yacht sails was created that is useful in predicting sail forces. Two sails were examined experimentally and computationally at several wind angles to explore a variety of flow regimes. The accuracy of the numerical solutions was measured by comparing to experimental results. The two sails examined were a Code 0 and a reaching asymmetric spinnaker. During experiment, balance, wake, and sail shape data were recorded for both sails in various configurations. Two computational steps were used to evaluate the computational model. First, an aerodynamic flow model that includes viscosity effects was used to examine the experimental flying shapes that were recorded. Second, the aerodynamic model was combined with a nonlinear, structural, finite element analysis (FEA) model. The aerodynamic and structural models were used iteratively to predict final flying shapes of offwind sails, starting with the design shapes. The Code 0 has relatively low camber and is used at small angles of attack. It was examined experimentally and computationally at a single angle of attack in two trim configurations, a baseline and overtrimmed setting. Experimentally, the Code 0 was stable and maintained large flow attachment regions. The digitized flying shapes from experiment were examined in the aerodynamic model. Force area predictions matched experimental results well. When the aerodynamic-structural tool was employed, the predictive capability was slightly worse. The reaching asymmetric spinnaker has higher camber and operates at higher angles of attack than the Code 0. Experimentally and computationally, it was examined at two angles of attack. Like the Code 0, at each wind angle, baseline and overtrimmed settings were examined. Experimentally, sail oscillations and large flow detachment regions were encountered. The computational analysis began by examining the experimental flying shapes in the aerodynamic model. In the baseline setting, the computational force predictions were fair at both wind angles examined. Force predictions were much improved in the overtrimmed setting when the sail was highly stalled and more stable. The same trends in force prediction were seen when employing the aerodynamic-structural model. Predictions were good to fair in the baseline setting but improved in the overtrimmed configuration.

  2. Study of aerodynamic technology for single-cruise engine V/STOL fighter/attack aircraft

    NASA Technical Reports Server (NTRS)

    Driggers, H. H.; Powers, S. A.; Roush, R. T.

    1982-01-01

    A conceptual design analysis is performed on a single engine V/STOL supersonic fighter/attack concept powered by a series flow tandem fan propulsion system. Forward and aft mounted fans have independent flow paths for V/STOL operation and series flow in high speed flight. Mission, combat and V/STOL performance is calculated. Detailed aerodynamic estimates are made and aerodynamic uncertainties associated with the configuration and estimation methods identified. A wind tunnel research program is developed to resolve principal uncertainties and establish a data base for the baseline configuration and parametric variations.

  3. Comparative performance tests on the Mod-2, 2.5-mW wind turbine with and without vortex generators

    NASA Technical Reports Server (NTRS)

    Miller, G. E.

    1995-01-01

    A test program was conducted on the third Mod-2 unit at Goldendale, Washington, to systematically study the effect of vortex generators (VG's) on power performance. The subject unit was first tested without VG's to obtain baseline data. Vortex generators were then installed on the mid-blade assemblies, and the resulting 70% VG configuration was tested. Finally, vortex generators were mounted on the tip assemblies, and data was recorded for the 100% VG configuration. This test program and its results are discussed in this paper. The development of vortex generators is also presented.

  4. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  5. Low-Speed Stability-and-Control and Ground-Effects Measurements on the Industry Reference High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Kemmerly, Guy T.; Campbell, Bryan A.; Banks, Daniel W.; Yaros, Steven F.

    1999-01-01

    As a part of a national effort to develop an economically feasible High Speed Civil Transport (HSCT), a single configuration has been accepted as the testing baseline by the organizations working in the High Speed Research (HSR) program. The configuration is based on a design developed by the Boeing Company and is referred to as the Reference H (Ref H). The data contained in this report are low-speed stability-and-control and ground-effect measurements obtained on a 0.06 scale model of the Ref H in a subsonic tunnel.

  6. System data communication structures for active-control transport aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    The application of communication structures to advanced transport aircraft are addressed. First, a set of avionic functional requirements is established, and a baseline set of avionics equipment is defined that will meet the requirements. Three alternative configurations for this equipment are then identified that represent the evolution toward more dispersed systems. Candidate communication structures are proposed for each system configuration, and these are compared using trade off analyses; these analyses emphasize reliability but also address complexity. Multiplex buses are recognized as the likely near term choice with mesh networks being desirable for advanced, highly dispersed systems.

  7. Configuration Management (CM) Support for KM Processes at NASA/Johnson Space Center (JSC)

    NASA Technical Reports Server (NTRS)

    Cioletti, Louis

    2010-01-01

    Collection and processing of information are critical aspects of every business activity from raw data to information to an executable decision. Configuration Management (CM) supports KM practices through its automated business practices and its integrated operations within the organization. This presentation delivers an overview of JSC/Space Life Sciences Directorate (SLSD) and its methods to encourage innovation through collaboration and participation. Specifically, this presentation will illustrate how SLSD CM creates an embedded KM activity with an established IT platform to control and update baselines, requirements, documents, schedules, budgets, while tracking changes essentially managing critical knowledge elements.

  8. Rotary-wing aerodynamics. Volume 2: Performance prediction of helicopters

    NASA Technical Reports Server (NTRS)

    Keys, C. N.; Stephniewski, W. Z. (Editor)

    1979-01-01

    Application of theories, as well as, special methods of procedures applicable to performance prediction are illustrated first, on an example of the conventional helicopter and then, winged and tandem configurations. Performance prediction of conventional helicopters in hover and vertical ascent are investigated. Various approaches to performance prediction in forward translation are presented. Performance problems are discussed only this time, a wing is added to the baseline configuration, and both aircraft are compared with respect to their performance. This comparison is extended to a tandem. Appendices on methods for estimating performance guarantees and growth of aircraft concludes this volume.

  9. Drag reduction obtained by modifying a standard truck

    NASA Technical Reports Server (NTRS)

    Sheridan, A. E.; Grier, S. J.

    1978-01-01

    A standard two-axle truck with a box-shaped cargo compartment was tested to determine whether significant reductions in aerodynamic drag could be obtained by modifying the front of the cargo compartment. The coastdown method was used to determine the total drag of the baseline vehicle, which had a square-cornered cargo box, and of several modified configurations. Test velocities ranged from 56.3 to 94.6 kilometers per hour (35 to 60 miles per hour). At 88.5 kilometers per hour (55 miles per hour), the aerodynamic drag reductions obtained with the modified configurations ranged from 8 to 30 percent.

  10. Systems and methods for providing power to a load based upon a control strategy

    DOEpatents

    Perisic, Milun; Lawrence, Christopher P; Ransom, Ray M; Kajouke, Lateef A

    2014-11-04

    Systems and methods are provided for an electrical system. The electrical system, for example, includes a first load, an interface configured to receive a voltage from a voltage source, and a controller configured to receive the voltage through the interface and to provide a voltage and current to the first load. The controller may be further configured to, receive information on a second load electrically connected to the voltage source, determine an amount of reactive current to return to the voltage source such that a current drawn by the electrical system and the second load from the voltage source is substantially real, and provide the determined reactive current to the voltage source.

  11. Photovoltaic power converter system with a controller configured to actively compensate load harmonics

    DOEpatents

    de Rooij, Michael Andrew; Steigerwald, Robert Louis; Delgado, Eladio Clemente

    2008-12-16

    Photovoltaic power converter system including a controller configured to reduce load harmonics is provided. The system comprises a photovoltaic array and an inverter electrically coupled to the array to generate an output current for energizing a load connected to the inverter and to a mains grid supply voltage. The system further comprises a controller including a first circuit coupled to receive a load current to measure a harmonic current in the load current. The controller includes a second circuit to generate a fundamental reference drawn by the load. The controller further includes a third circuit for combining the measured harmonic current and the fundamental reference to generate a command output signal for generating the output current for energizing the load connected to the inverter. The photovoltaic system may be configured to compensate harmonic currents that may be drawn by the load.

  12. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  13. Gen 2.0 Mixer/Ejector Nozzle Test at LSAF June 1995 to July 1996

    NASA Technical Reports Server (NTRS)

    Arney, L. D.; Sandquist, D. L.; Forsyth, D. W.; Lidstone, G. L.; Long-Davis, Mary Jo (Technical Monitor)

    2005-01-01

    Testing of the HSCT Generation 2.0 nozzle model hardware was conducted at the Boeing Low Speed Aeroacoustic Facility, LSAF. Concurrent measurements of noise and thrust were made at critical takeoff design conditions for a variety of mixer/ejector model hardware. Design variables such as suppressor area ratio, mixer area ratio, liner type and thickness, ejector length, lobe penetration, and mixer chute shape were tested. Parallel testing was conducted at G.E.'s Cell 41 acoustic free jet facility to augment the LSAF test. The results from the Gen 2.0 testing are being used to help shape the current nozzle baseline configuration and guide the efforts in the upcoming Generation 2.5 and 3.0 nozzle tests. The Gen 2.0 results have been included in the total airplane system studies conducted at MDC and Boeing to provide updated noise and thrust performance estimates.

  14. The Athena X-ray Integral Field Unit

    NASA Astrophysics Data System (ADS)

    Barret, D.

    2017-10-01

    The Athena X-ray Integral Field Unit (X-IFU) is a high-resolution X-ray spectrometer, providing 2.5 eV spectral resolution, over a 5' (equivalent diameter) field of view, and count rate capabilities up to 1 Crab in the 0.2-12 keV range. Approaching the end of its feasibility study (scheduled around the end of 2017), I will briefly recall the scientific objectives of Athena driving the X-IFU specifications and will describe its current baseline configuration and the expected performances. I will outline the on-going technology developments that will enable the X-IFU. The X-IFU will be developed by an international consortium led by France (IRAP/CNES), the Netherlands (SRON), Italy (IAPS), with ESA member state contributions from Belgium, Finland, Germany, Poland, Spain and Switzerland, and international partner contributions from Japan and the United States. This talk is given on behalf of the X-IFU Consortium.

  15. Design consideration for a nuclear electric propulsion system

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Pawlik, E. V.

    1978-01-01

    A study is currently underway to design a nuclear electric propulsion vehicle capable of performing detailed exploration of the outer-planets. Primary emphasis is on the power subsystem. Secondary emphasis includes integration into a spacecraft, and integration with the thrust subsystem and science package or payload. The results of several design iterations indicate an all-heat-pipe system offers greater reliability, elimination of many technology development areas and a specific weight of under 20 kg/kWe at the 400 kWe power level. The system is compatible with a single Shuttle launch and provides greater safety than could be obtained with designs using pumped liquid metal cooling. Two configurations, one with the reactor and power conversion forward on the spacecraft with the ion engines aft and the other with reactor, power conversion and ion engines aft were selected as dual baseline designs based on minimum weight, minimum required technology development and maximum growth potential and flexibility.

  16. REVEAL: Software Documentation and Platform Migration

    NASA Technical Reports Server (NTRS)

    Wilson, Michael A.; Veibell, Victoir T.; Freudinger, Lawrence C.

    2008-01-01

    The Research Environment for Vehicle Embedded Analysis on Linux (REVEAL) is reconfigurable data acquisition software designed for network-distributed test and measurement applications. In development since 2001, it has been successfully demonstrated in support of a number of actual missions within NASA s Suborbital Science Program. Improvements to software configuration control were needed to properly support both an ongoing transition to operational status and continued evolution of REVEAL capabilities. For this reason the project described in this report targets REVEAL software source documentation and deployment of the software on a small set of hardware platforms different from what is currently used in the baseline system implementation. This report specifically describes the actions taken over a ten week period by two undergraduate student interns and serves as a final report for that internship. The topics discussed include: the documentation of REVEAL source code; the migration of REVEAL to other platforms; and an end-to-end field test that successfully validates the efforts.

  17. Status of ADRIANO R&D in T1015 Collaboration

    DOE PAGES

    Gatto, Corrado; Di Benedetto, V.; Mazzacane, A.

    2015-02-13

    The physics program for future High Energy and High Intensity experiments requires an energy resolution of the calorimetric component of detectors at limits of traditional techniques and an excellent particle identification. The novel ADRIANO technology (A Dualreadout Integrally Active Non-segmented Option), currently under development at Fermilab, is showing excellent performance on those respects. Results from detailed Monte Carlo studies on the performance with respect to energy resolution, linear response and transverse containment and a preliminary optimization of the layout are presented. A baseline configuration is chosen with an estimated energy resolution of σ(E)/E ≈ 30%/√E , to support an extensivemore » R&D program recently started by T1015 Collaboration at Fermilab. Furthermore, preliminary results from several test beams at the Fermilab Test Beam Facility (FTBF) of a ~ 1λI prototype are presented. Future prospects with ultra-heavy glass are, also, summarized.« less

  18. LEACHATE MIGRATION FROM A SOLID WASTE DISPOSAL FACILITY NEAR BISCAYNE NATIONAL PARK, SOUTH FLORIDA.

    USGS Publications Warehouse

    Waller, Bradley G.; Labowski, James L.

    1987-01-01

    Leachate from the Dade County Solid Waste Disposal Facility (SWDF) is migrating to the east (seaward) and to the south from the currently active disposal cell. Water levels and ground-water flow directions are strongly influenced by water-management practices. The SWDF is constructed over the salt-intruded part of the highly transmissive Biscayne aquifer and because of this, chloride ion concentrations and specific conductance levels could not be used as indicators of leachate concentrations. Leachate was detected in multi-depth wells located 75 meters to the south and 20 meters to the east of the active cell. Concentrations of water-quality indicators had mean concentrations generally 2 to 10 times higher than baseline conditions. Primary controls over leachate movement in the SWDF are water-management practices in the Black Creek and Gould Canals, configuration and integrity of the liner beneath the active cell, and low hydraulic gradients in the landfill area.

  19. Effects of Motion Cues on the Training of Multi-Axis Manual Control Skills

    NASA Technical Reports Server (NTRS)

    Zaal, Peter M. T.; Mobertz, Xander R. I.

    2017-01-01

    The study described in this paper investigated the effects of two different hexapod motion configurations on the training and transfer of training of a simultaneous roll and pitch control task. Pilots were divided between two groups which trained either under a baseline hexapod motion condition, with motion typically provided by current training simulators, or an optimized hexapod motion condition, with increased fidelity of the motion cues most relevant for the task. All pilots transferred to the same full-motion condition, representing motion experienced in flight. A cybernetic approach was used that gave insights into the development of pilots use of visual and motion cues over the course of training and after transfer. Based on the current results, neither of the hexapod motion conditions can unambiguously be chosen as providing the best motion for training and transfer of training of the used multi-axis control task. However, the optimized hexapod motion condition did allow pilots to generate less visual lead, control with higher gains, and have better disturbance-rejection performance at the end of the training session compared to the baseline hexapod motion condition. Significant adaptations in control behavior still occurred in the transfer phase under the full-motion condition for both groups. Pilots behaved less linearly compared to previous single-axis control-task experiments; however, this did not result in smaller motion or learning effects. Motion and learning effects were more pronounced in pitch compared to roll. Finally, valuable lessons were learned that allow us to improve the adopted approach for future transfer-of-training studies.

  20. TOSCA calculations and measurements for the SLAC SLC damping ring dipole magnet

    NASA Astrophysics Data System (ADS)

    Early, R. A.; Cobb, J. K.

    1985-04-01

    The SLAC damping ring dipole magnet was originally designed with removable nose pieces at the ends. Recently, a set of magnetic measurements was taken of the vertical component of induction along the center of the magnet for four different pole-end configurations and several current settings. The three dimensional computer code TOSCA, which is currently installed on the National Magnetic Fusion Energy Computer Center's Cray X-MP, was used to compute field values for the four configurations at current settings near saturation. Comparisons were made for magnetic induction as well as effective magnetic lengths for the different configurations.

  1. Internal erosion rates of a 10-kW xenon ion thruster

    NASA Technical Reports Server (NTRS)

    Rawlin, Vincent K.

    1988-01-01

    A 30 cm diameter divergent magnetic field ion thruster, developed for mercury operation at 2.7 kW, was modified and operated with xenon propellant at a power level of 10 kW for 567 h to evaluate thruster performance and lifetime. The major differences between this thruster and its baseline configuration were elimination of the three mercury vaporizers, use of a main discharge cathode with a larger orifice, reduction in discharge baffle diameter, and use of an ion accelerating system with larger acceleration grid holes. Grid thickness measurement uncertainties, combined with estimates of the effects of reactive residual facility background gases gave a minimum screen grid lifetime of 7000 h. Discharge cathode orifice erosion rates were measured with three different cathodes with different initial orifice diameters. Three potential problems were identified during the wear test: the upstream side of the discharge baffle eroded at an unacceptable rate; two of the main cathode tubes experienced oxidation, deformation, and failure; and the accelerator grid impingement current was more than an order of magnitude higher than that of the baseline mercury thruster. The charge exchange ion erosion was not quantified in this test. There were no measurable changes in the accelerator grid thickness or the accelerator grid hole diameters.

  2. Search for muon antineutrino disappearance due to sterile antineutrino oscillations with the MINOS experiment

    NASA Astrophysics Data System (ADS)

    Chen, R.; Todd, J.; Poonthottathil, N.; Sousa, A.; Evans, J.; MINOS/MINOS+ Collaboration

    2017-09-01

    Three-flavour neutrino mixing has successfully explained a wide range of neutrino oscillation data. However, results such as the electron antineutrino appearance excesses seen by LSND and MiniBooNE can be explained in terms of neutrino oscillations adding a sterile neutrino at a larger mass scale than the existing three flavour mass states. MINOS is a two-detector, long-baseline neutrino oscillation experiment that uses magnetized tracker-calorimeter detectors to measure the energy and composition of the NuMI neutrino beam. These magnetized detectors give MINOS a unique ability to be able to separate muon neutrino and antineutrino interactions. Using data taken with the NuMI beam configured in antineutrino mode, MINOS is able to search for sterile antineutrinos by looking for the disappearance of muon antineutrinos over its 734 km baseline. The sterile antineutrino signature would be seen as modulations at high energy in the charged-current muon antineutrino spectrum. We present the first MINOS results constraining 3+1 sterile antineutrino oscillations, using a combination of 3.36×1020 protons-on-target (POT) of antineutrino-enhanced beam data, and 10.56×1020 protons-on-target (POT) of neutrino-dominated beam data. These results are compared with existing constraints and future improvements to the searches are discussed.

  3. Analysis of Expandability and Modifiability of Computer Configuration Concepts for ATC : Volume I, Distributed Concept

    DOT National Transportation Integrated Search

    1979-11-01

    The questions of expandability and modifiability of a 1990-era Air Traffic Control (ATC) system are addressed. Two strawman systems are described at the functional level: a Baseline System, which represents the ATC system as it might be just after th...

  4. Effects of the second X-point on hot VDE in HL-2M

    NASA Astrophysics Data System (ADS)

    Xue, L.; Duan, X. R.; Zheng, G. Y.; Liu, Y. Q.; Dokuka, V. N.; Lukash, V. E.; Khayrutdinov, R. R.

    2017-05-01

    Study of the hot-plasma vertical displacement event (VDE) in advanced divertor configurations is of significant importance for ITER and for future fusion reactors. The newly designed, medium-sized copper-conductor machine HL-2M has the capability of generating the second X-point for various advanced divertor configurations. In this paper, effects of the second X-point on the hot VDE in HL-2M are numerically investigated by utilizing the non-linear time-dependent DINA code. The simulation results show that the existence of the second X-point at certain special locations appears to have a better stability in the vertical direction, compared to the standard configuration with the same main plasma parameters. Meanwhile, the peak halo current during the current quench tends to increase as the second X-point changes in the horizontal direction. The same quantity decreases as the second X-point changes in the vertical direction away from the dominant X-point. From the view point of minimizing the halo current, the tripod is better than the standard configuration, followed by the snowflake-plus and the exact snowflake (SF) configuration. The SF-minus is the worst scenario. On the other hand, the tripod configuration, as well as the SF minus configurations, results in relatively higher peak electromagnetic force acting on the vacuum vessel, when compared to other aforementioned configurations.

  5. System and method of adjusting the equilibrium temperature of an inductively-heated susceptor

    DOEpatents

    Matsen, Marc R; Negley, Mark A; Geren, William Preston

    2015-02-24

    A system for inductively heating a workpiece may include an induction coil, at least one susceptor face sheet, and a current controller coupled. The induction coil may be configured to conduct an alternating current and generate a magnetic field in response to the alternating current. The susceptor face sheet may be configured to have a workpiece positioned therewith. The susceptor face sheet may be formed of a ferromagnetic alloy having a Curie temperature and being inductively heatable to an equilibrium temperature approaching the Curie temperature in response to the magnetic field. The current controller may be coupled to the induction coil and may be configured to adjust the alternating current in a manner causing a change in at least one heating parameter of the susceptor face sheet.

  6. Geostationary Operational Environmental Satellites (GOES): R series hyperspectral environmental suite (HES) overview

    NASA Astrophysics Data System (ADS)

    Martin, Gene; Criscione, Joseph C.; Cauffman, Sandra A.; Davis, Martin A.

    2004-11-01

    The Hyperspectral Environmental Suite (HES) instrument is currently under development by the NASA GOES-R Project team within the framework of the GOES Program to fulfill the future needs and requirements of the National Environmental Satellite, Data, and Information Service (NESDIS) Office. As part of the GOES-R instrument complement, HES will provide measurements of the traditional temperature and water vapor vertical profiles with higher accuracy and vertical resolution than obtained through current sounder technologies. HES will provide measurements of the properties of the shelf and coastal waters and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). The HES team is forging the future of remote environmental monitoring with the development of an operational instrument with high temporal, spatial and spectral-resolution and broad hemispheric coverage. The HES development vision includes threshold and goal requirements that encompass potential system solutions. The HES team has defined tasks for the instrument(s) that include a threshold functional complement of Disk Sounding (DS), Severe Weather/Mesoscale Sounding (SW/M), and Shelf and Coastal Waters imaging (CW) and a goal functional complement of Open Ocean (OO) imaging, and back up imaging (at in-situ resolution) for the GOES-R Advanced Baseline Imager (ABI). To achieve the best-value procurement, the GOES-R Project has base-lined a two-phase procurement approach to the HES design and development; a Formulation/study phase and an instrument Implementation phase. During Formulation, currently slated for the FY04-05 timeframe, the developing team(s) will perform Systems Requirements Analysis and evaluation, System Trade and Requirements Baseline Studies, Risk Assessment and Mitigation Strategy and complete a Preliminary Conceptual Design of the HES instrument. The results of the formulation phase will be leveraged to achieve an effective and efficient system solution during the Implementation Phase scheduled to begin FY05 for a resultant FY12 launch. The magnitude of complexity of the HES development requires an appreciation of the technologies required to achieve the functional objectives. To this end, the GOES-R project team is making available all NASA developed technologies to potential HES vendors, including, the NASA New Millennium Program"s (NMP) Earth Observing-3, Geostationary Imaging Fourier Transform Spectrometer (GIFTS) instrument developed technologies, as applicable. It is anticipated that the instrument(s) meeting the HES requirements will be either a dispersive spectrometer or an interferometric spectrometer or perhaps a combination. No instrument configuration is preferred or favored by the Government. This paper outlines the HES development plan; including an overview of current requirements, existing partnerships and the GOES-R project methodologies to achieve the advanced functional objectives of the GOES Program partnership.

  7. International Space Station Program Phase 3 Integrated Atmosphere Revitalization Subsystem Test

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Franks, G. D.; Knox, J. C.

    1997-01-01

    Testing of the International Space Station (ISS) U.S. Segment baseline configuration of the Atmosphere Revitalization Subsystem (ARS) by NASA's Marshall Space Flight Center (MSFC) was conducted as part of the Environmental Control and Life Support System (ECLSS) design and development program. This testing was designed to answer specific questions regarding the control and performance of the baseline ARS subassemblies in the ISS U.S. Segment configuration. These questions resulted from the continued maturation of the ISS ECLSS configuration and design requirement changes since 1992. The test used pressurized oxygen injection, a mass spectrometric major constituent analyzer, a Four-Bed Molecular Sieve Carbon Dioxide Removal Assembly, and a Trace Contaminant Control Subassembly to maintain the atmospheric composition in a sealed chamber at ISS specifications for 30 days. Human metabolic processes for a crew of four were simulated according to projected ISS mission time lines. The performance of a static feed water electrolysis Oxygen Generator Assembly was investigated during the test preparation phases; however, technical difficulties prevented its use during the integrated test. The Integrated ARS Test (IART) program built upon previous closed-door and open-door integrated testing conducted at MSFC between 1987 and 1992. It is the most advanced test of an integrated ARS conducted by NASA to demonstrate its end-to-end control and overall performance. IART test objectives, facility design, pretest analyses, test and control requirements, and test results are presented.

  8. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim

    2007-01-01

    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  9. Self Assembling Mars Transfer Vehicles: The Preferred Concept of the Space Transfer Concepts and Analysis for Explorations Missions Study

    NASA Technical Reports Server (NTRS)

    Donahue, Benjamin

    1994-01-01

    Recently, one of the most comprehensive design studies of conceptual manned Mars vehicles, conducted since the Apollo era Mars mission studies of the 1960's, was completed. One of the tasks of the study involved the analysis of nuclear thermal propulsion spacecraft for Manned Mars exploration missions. This paper describes the specific effort aimed at vehicle configuration design. Over the course of the four year study, three configuration baselines were developed, each reflecting trade study cycle results of sequential phases of the study. Favorable attributes incorporated into the final concept, including a capability for on-orbit self-assembly and ease of launch vehicle packability, represent design solutions to configuration deficiencies plaguing nuclear propulsion Mars spacecraft design since the vehicle archetype originated in the 1950's. This paper contains a narrative summary of significant milestones in the effort, describes the evolution to the preferred configuration, and set forth the benefits derived from its utilization.

  10. Nose-to-tail analysis of an airbreathing hypersonic vehicle using an in-house simplified tool

    NASA Astrophysics Data System (ADS)

    Piscitelli, Filomena; Cutrone, Luigi; Pezzella, Giuseppe; Roncioni, Pietro; Marini, Marco

    2017-07-01

    SPREAD (Scramjet PREliminary Aerothermodynamic Design) is a simplified, in-house method developed by CIRA (Italian Aerospace Research Centre), able to provide a preliminary estimation of the performance of engine/aeroshape for airbreathing configurations. It is especially useful for scramjet engines, for which the strong coupling between the aerothermodynamic (external) and propulsive (internal) flow fields requires real-time screening of several engine/aeroshape configurations and the identification of the most promising one/s with respect to user-defined constraints and requirements. The outcome of this tool defines the base-line configuration for further design analyses with more accurate tools, e.g., CFD simulations and wind tunnel testing. SPREAD tool has been used to perform the nose-to-tail analysis of the LAPCAT-II Mach 8 MR2.4 vehicle configuration. The numerical results demonstrate SPREAD capability to quickly predict reliable values of aero-propulsive balance (i.e., net-thrust) and aerodynamic efficiency in a pre-design phase.

  11. A printed, dry electrode Frank configuration vest for ambulatory vectorcardiographic monitoring

    NASA Astrophysics Data System (ADS)

    Paul, Gordon; Torah, Russel; Beeby, Steve; Tudor, John

    2017-02-01

    This paper describes the design and fabrication of a screen printed network of bio-potential measurement electrodes on a garment, in this case a vest. The electrodes are placed according to the Frank configuration, which allows monitoring of the electrical behavior of the heart in three spatial orientations. The vest is designed to provide stable contact pressure on the electrodes. The electrodes are fabricated from stencil printed carbon loaded rubber and are connected by screen printed silver polymer conductive tracks to an array of vias, which form an electrical connection to the other side of the textile. The vest is tested and compared to Frank configuration recordings that were obtained using standard self-adhesive ECG electrodes. The vest was successfully used to obtain Frank configuration recordings with minimal baseline drift. The vest is fabricated using only technologies found in standard textile production lines and can be used with a reduced setup effort compared to clinical 12-lead examinations.

  12. Effect of contacts configuration and location on selective stimulation of cuff electrode.

    PubMed

    Taghipour-Farshi, Hamed; Frounchi, Javad; Ahmadiasl, Nasser; Shahabi, Parviz; Salekzamani, Yaghoub

    2015-01-01

    Cuff electrodes have been widely used chronically in different clinical applications. Advancements have been made in selective stimulation by using multi-contact cuff electrodes. Steering anodic current is a strategy to increase selectivity by reshaping and localizing electric fields. There are two configurations for contacts to be implemented in cuff, monopolar and tripolar. A cuff electrode with tripolar configuration can restrict the activation to a more localized region within a nerve trunk compared to a cuff with monopolar configuration and improve the selectivity. Anode contacts in tripolar configuration can be made in two structures, "ring" and "dot". In this study, the stimulation capabilities of these two structures were evaluated. The recruitment properties and the selectivity of stimulation were examined by measuring the electric potential produced by stimulation currents. The results of the present study indicated that using dot configuration, the current needed to stimulate fascicles in tripolar topologies would be reduced by 10%. It was also shown that stimulation threshold was increased by moving anode contacts inward the cuff. On the other hand, stimulation threshold was decreased by moving the anode contacts outward the cuff which would decrease selectivity, too. We conclude that dot configuration is a better choice for stimulation. Also, a cuff inward placement of 10% relative to the cuff length was near optimal.

  13. Unwrapping eddy current compensation: improved compensation of eddy current induced baseline shifts in high-resolution phase-contrast MRI at 9.4 Tesla.

    PubMed

    Espe, Emil K S; Zhang, Lili; Sjaastad, Ivar

    2014-10-01

    Phase-contrast MRI (PC-MRI) is a versatile tool allowing evaluation of in vivo motion, but is sensitive to eddy current induced phase offsets, causing errors in the measured velocities. In high-resolution PC-MRI, these offsets can be sufficiently large to cause wrapping in the baseline phase, rendering conventional eddy current compensation (ECC) inadequate. The purpose of this study was to develop an improved ECC technique (unwrapping ECC) able to handle baseline phase discontinuities. Baseline phase discontinuities are unwrapped by minimizing the spatiotemporal standard deviation of the static-tissue phase. Computer simulations were used for demonstrating the theoretical foundation of the proposed technique. The presence of baseline wrapping was confirmed in high-resolution myocardial PC-MRI of a normal rat heart at 9.4 Tesla (T), and the performance of unwrapping ECC was compared with conventional ECC. Areas of phase wrapping in static regions were clearly evident in high-resolution PC-MRI. The proposed technique successfully eliminated discontinuities in the baseline, and resulted in significantly better ECC than the conventional approach. We report the occurrence of baseline phase wrapping in PC-MRI, and provide an improved ECC technique capable of handling its presence. Unwrapping ECC offers improved correction of eddy current induced baseline shifts in high-resolution PC-MRI. Copyright © 2013 Wiley Periodicals, Inc.

  14. Validation of Community Models: 2. Development of a Baseline, Using the Wang-Sheeley-Arge Model

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter

    2009-01-01

    This paper is the second in a series providing independent validation of community models of the outer corona and inner heliosphere. Here I present a comprehensive validation of the Wang-Sheeley-Arge (WSA) model. These results will serve as a baseline against which to compare the next generation of comparable forecasting models. The WSA model is used by a number of agencies to predict Solar wind conditions at Earth up to 4 days into the future. Given its importance to both the research and forecasting communities, it is essential that its performance be measured systematically and independently. I offer just such an independent and systematic validation. I report skill scores for the model's predictions of wind speed and interplanetary magnetic field (IMF) polarity for a large set of Carrington rotations. The model was run in all its routinely used configurations. It ingests synoptic line of sight magnetograms. For this study I generated model results for monthly magnetograms from multiple observatories, spanning the Carrington rotation range from 1650 to 2074. I compare the influence of the different magnetogram sources and performance at quiet and active times. I also consider the ability of the WSA model to forecast both sharp transitions in wind speed from slow to fast wind and reversals in the polarity of the radial component of the IMF. These results will serve as a baseline against which to compare future versions of the model as well as the current and future generation of magnetohydrodynamic models under development for forecasting use.

  15. Measurements of monopolar and bipolar current spreads using forward-masking with a fixed probe.

    PubMed

    Bingabr, Mohamed G; Espinoza-Varas, Blas; Sigdel, Saroj

    2014-05-01

    This research employed a forward-masking paradigm to estimate the current spread of monopolar (MP) and bipolar (BP) maskers, with current amplitudes adjusted to elicit the same loudness. Since the spatial separation between active and return electrodes is smaller in BP than in MP configurations, the BP current spread is more localized and presumably superior in terms of speech intelligibility. Because matching the loudness requires higher current in BP than in MP stimulation, previous forward-masking studies show that BP current spread is not consistently narrower across subjects or electrodes within a subject. The present forward-masking measures of current spread differ from those of previous studies by using the same BP probe electrode configuration for both MP and BP masker configurations, and adjusting the current levels of the MP and BP maskers so as to match them in loudness. With this method, the estimate of masker current spread would not be contaminated by differences in probe current spread. Forward masking was studied in four cochlear implant patients, two females and two males, with speech recognition scores higher than 50%; that is, their auditory-nerve survival status was more than adequate to carry out the experiments. The data showed that MP and BP masker configurations produce equivalent masking patterns (and current spreads) in three participants. A fourth participant displayed asymmetrical patterns with enhancement rather than masking in some cases, especially when the probe and masker were at the same location. This study showed equivalent masking patterns for MP and BP maskers when the BP masker current amplitude was increased to match the loudness of the MP masker, and the same BP probe configuration is used with both maskers. This finding could help to explain why cochlear implant users often fail to accrue higher speech intelligibility benefit from BP stimulation.

  16. Contribution of transition metals in the reactive oxygen species activity of PM emissions from retrofitted heavy-duty vehicles

    NASA Astrophysics Data System (ADS)

    Verma, Vishal; Shafer, Martin M.; Schauer, James J.; Sioutas, Constantinos

    2010-12-01

    We assessed the contribution of water-soluble transition metals to the reactive oxygen species (ROS) activity of diesel exhaust particles (DEPs) from four heavy-duty vehicles in five retrofitted configurations (V-SCRT, Z-SCRT, DPX, hybrid, and school bus). A heavy-duty truck without any control device served as the baseline vehicle. Particles were collected from all vehicle-configurations on a chassis dynamometer under three driving conditions: cruise (80 km h -1), transient UDDS, and idle. A sensitive macrophage-based in vitro assay was used to determine the ROS activity of collected particles. The contribution of water-soluble transition metals in the measured activity was quantified by their removal using a Chelex ® complexation method. The study demonstrates that despite an increase in the intrinsic ROS activity (per mass basis) of exhaust PM with use of most control technologies, the overall ROS activity (expressed per km or per h) was substantially reduced for retrofitted configurations compared to the baseline vehicle. Chelex treatment of DEPs water extracts removed a substantial (≥70%) and fairly consistent fraction of the ROS activity, which ascertains the dominant role of water-soluble metals in PM-induced cellular oxidative stress. However, relatively lower removal of the activity in few vehicle-configurations (V-SCRT, DPX and school bus idle), despite a large aggregate metals removal, indicated that not all species were associated with the measured activity. A univariate regression analysis identified several transition metals (Fe, Cr, Co and Mn) as significantly correlated ( R > 0.60; p < 0.05) with the ROS activity. Multivariate linear regression model incorporating Fe, Cr and Co explained 90% of variability in ROS levels, with Fe accounting for the highest (84%) fraction of the variance.

  17. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    NASA Technical Reports Server (NTRS)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  18. A study of flight control requirements for advanced, winged, earth-to-orbit vehicles with far-aft center-of-gravity locations

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.

    1982-01-01

    Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.

  19. Instabilities of the force-free current configurations

    NASA Astrophysics Data System (ADS)

    Berseth, V.; Indenbom, M. V.; van der Beek, C. J.; Erb, A.; Walker, E.; Flükiger, R.; Benoit, W.

    1996-03-01

    Using the magneto-optic technique, it is shown that inductively induced force-free current configurations in high purity YBa2Cu3O7-δ single crystals become unstable above a certain well-defined amplitude and frequency of the variation of the applied perpendicular field.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuura, Yukihito, E-mail: matsuura@chem.nara-k.ac.jp

    The tunneling magnetoresistance (TMR) of a silicon chain sandwiched between nickel electrodes was examined by using first-principles density functional theory. The relative orientation of the magnetization in a parallel-alignment (PA) configuration of two nickel electrodes enhanced the current with a bias less than 0.4 V compared with that in an antiparallel-alignment configuration. Consequently, the silicon chain-nickel electrodes yielded good TMR characteristics. In addition, there was polarized spin current in the PA configuration. The spin polarization of sulfur atoms functioning as a linking bridge between the chain and nickel electrode played an important role in the magnetic effects of the electric current.more » Moreover, the hybridization of the sulfur 3p orbital and σ-conjugated silicon 3p orbital contributed to increasing the total current.« less

  1. Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle

    NASA Technical Reports Server (NTRS)

    Gingrich, P. B.; Child, R. D.; Panageas, G. N.

    1977-01-01

    The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data.

  2. Block-structured grids for complex aerodynamic configurations: Current status

    NASA Technical Reports Server (NTRS)

    Vatsa, Veer N.; Sanetrik, Mark D.; Parlette, Edward B.

    1995-01-01

    The status of CFD methods based on the use of block-structured grids for analyzing viscous flows over complex configurations is examined. The objective of the present study is to make a realistic assessment of the usability of such grids for routine computations typically encountered in the aerospace industry. It is recognized at the very outset that the total turnaround time, from the moment the configuration is identified until the computational results have been obtained and postprocessed, is more important than just the computational time. Pertinent examples will be cited to demonstrate the feasibility of solving flow over practical configurations of current interest on block-structured grids.

  3. Effect of at-the-source noise reduction on performance and weights of a tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Gibs, J.; Stepniewski, W. Z.; Spencer, R.

    1975-01-01

    Reduction of far-field acoustic signature through modification of basic design parameters (tip speed, number of blades, disc loading and rotor blade area) was examined, using a tilt-rotor flight research aircraft as a baseline configuration. Of those design parameters, tip speed appeared as the most important. Next, preliminary design of two aircraft was performed, postulating the following reduction of noise level from that of the baseline machine, at 500 feet from the spot of OGE hover. In one aircraft, the PNL was lowered by 10 PNdB and in the other, OASPL decreased by 10 dB. The resulting weight and performance penalties were examined. Then, PNL and EPNL aspects of terminal operation were compared for the baseline and quieter aircraft.

  4. Search for a Light Sterile Neutrino at Daya Bay

    NASA Astrophysics Data System (ADS)

    Wong, H. L. H.; Daya Bay Collaboration

    2017-09-01

    The Daya Bay reactor neutrino experiment’s unique configuration of multiple baselines from six 2.9 GW th nuclear reactors to eight antineutrino detectors deployed in two near (effective baselines ∼500 m and ∼600 m) and one far (effective baseline ∼1600 m) underground experimental halls makes it possible to look for oscillations with a fourth (sterile) neutrino in the {10}-3{{{ eV}}}2≲ |Δ {m}412|≲ 0.3{{{ eV}}}2 range. The relative spectral distortion due to the disappearance of electron antineutrinos was found to be consistent with that of the three-flavor oscillation model. The resulting limits on sin22θ 14 constitute the world’s best for the |Δ {m}412|≲ 0.2{{{ eV}}}2 region.

  5. Advanced solar receivers for space power

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Coombs, M. G.; Lacy, D. E.

    1988-01-01

    A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability and, when implemented, will be lighter, smaller, and/or more efficient than baseline systems such as the configuration used for the Brayton solar receiver under development by Garrett AiResearch for the NASA Space Station. In addition to the baseline designs, four other receiver concepts were designed and evaluated with respect to Brayton and Stirling engines. These concepts include a higher temperature version of the baseline receiver, a packed bed receiver, a plate-fin receiver, and a heat pipe receiver. The thermal storage for all designs is provided by the melting and freezing of a salt.

  6. Reusable Agena study. Volume 1: Executive summary. [space shuttle Agena upper stage tug concept

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The shuttle Agena upper stage interim tug concept is based on a building block approach. These building block concepts are extensions of existing ascent Agena configurations. Several current improvements, have been used in developing the shuttle/Agena upper stage concepts. High-density acid is used as the Agena upper stage oxidizer. The baffled injector is used in the main engine. The DF-224 is a fourth generation computer currently in development and will be flight proven in the near future. The Agena upper stage building block concept uses the current Agena as a baseline, adds an 8.5-inch (21.6 cm) extension to the fuel tank for optimum mixture ratio, uses monomethyl hydrazine as fuel, exchanges a 150:1 nozzle extension for the existing 45:1, exchanges an Autonetics DF-224 for the existing Honeywell computer, and adds a star sensor for guidance update. These modifications to the current Agena provide a 5-foot (1.52m) diameter shuttle/Agena upper stage that will fly all Vandenberg Air Force Base missions in the reusable mode without resorting to a kick motor. The delta V velocity of the Agena is increased by use of a strap-on propellant tank option. This option provides a shuttle/Agena upper stage with the capability to place almost 3900 pounds (1769 kg) into geosynchronous orbit (24 hour period) without the aid of kick motors.

  7. Supporting Tablet Configuration, Tracking, and Infection Control Practices in Digital Health Interventions: Study Protocol.

    PubMed

    Furberg, Robert D; Ortiz, Alexa M; Zulkiewicz, Brittany A; Hudson, Jordan P; Taylor, Olivia M; Lewis, Megan A

    2016-06-27

    Tablet-based health care interventions have the potential to encourage patient care in a timelier manner, allow physicians convenient access to patient records, and provide an improved method for patient education. However, along with the continued adoption of tablet technologies, there is a concomitant need to develop protocols focusing on the configuration, management, and maintenance of these devices within the health care setting to support the conduct of clinical research. Develop three protocols to support tablet configuration, tablet management, and tablet maintenance. The Configurator software, Tile technology, and current infection control recommendations were employed to develop three distinct protocols for tablet-based digital health interventions. Configurator is a mobile device management software specifically for iPhone operating system (iOS) devices. The capabilities and current applications of Configurator were reviewed and used to develop the protocol to support device configuration. Tile is a tracking tag associated with a free mobile app available for iOS and Android devices. The features associated with Tile were evaluated and used to develop the Tile protocol to support tablet management. Furthermore, current recommendations on preventing health care-related infections were reviewed to develop the infection control protocol to support tablet maintenance. This article provides three protocols: the Configurator protocol, the Tile protocol, and the infection control protocol. These protocols can help to ensure consistent implementation of tablet-based interventions, enhance fidelity when employing tablets for research purposes, and serve as a guide for tablet deployments within clinical settings.

  8. A Novel and Generalized Lithium-Ion-Battery Configuration utilizing Al Foil as Both Anode and Current Collector for Enhanced Energy Density.

    PubMed

    Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing

    2017-02-01

    A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CBETA Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffstaetter, G.; Trbojevic, D.; Mayes, C.

    This Design Report describes the baseline design of the Cornell-BNL ERL Test Accelerator, as it exists on the date of its publication in June 2017. The Design Report will not change frequently in the future. In contrast, the parameter sheets that summarize the CBETA design will respond as quickly and as thoroughly as necessary to maintain configuration control.

  10. Strand Burner Results of AFP-001 Propellant with Inert Coating for Temperature Compensation

    DTIC Science & Technology

    2015-10-01

    there were 4 different configurations: baseline, a C-100 coated, an SC-11 coated, and a urethane acrylate (UA) coated. C-100 is a polyurea based...phenomena associated with coated AFP-001 propellant. Three different coating polymers were chosen for the experiments: an epoxy (SC-11), polyurea (C-100

  11. Combustion Power Unit--400: CPU-400.

    ERIC Educational Resources Information Center

    Combustion Power Co., Palo Alto, CA.

    Aerospace technology may have led to a unique basic unit for processing solid wastes and controlling pollution. The Combustion Power Unit--400 (CPU-400) is designed as a turboelectric generator plant that will use municipal solid wastes as fuel. The baseline configuration is a modular unit that is designed to utilize 400 tons of refuse per day…

  12. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  13. Space Station-Baseline Configuration With Callouts

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  14. Device specific analysis of neonatal aortic outflow cannula jet flows for improved cardiopulmonary bypass hemodynamics

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad; Sotiropoulos, Fotis; Undar, Akif; Pekkan, Kerem

    2011-11-01

    Hemodynamically efficient aortic outflow cannulae can provide high blood volume flow rates at low exit force during extracorporeal circulation in pediatric or neonatal cardiopulmonary bypass repairs. Furthermore, optimal hemolytic aortic insertion configurations can significantly reduce risk of post-surgical neurological complications and developmental defects in the young patient. The methodology and results presented in this study serve as a baseline for design of superior aortic outflow cannulae based on a novel paradigm of characterizing jet-flows at different flow regimes. In-silico evaluations of multiple cannula tips were used to delineate baseline hemodynamic performance of the popular pediatric cannula tips in an experimental cuboidal test-rig, using PIV. High resolution CFD jet-flow simulations performed for various cannula tips in the cuboidal test-rig as well as in-vivo insertion configurations have suggested the existence of optimal surgically relevant characteristics such as cannula outflow angle and insertion depth for improved hemodynamic performance during surgery. Improved cannula tips were designed with internal flow-control features for decreased blood damage and increased permissible flow rates.

  15. Flight effects on noise generated by the JT8D-17 engine in a quiet nacelle and a conventional nacelle as measured in the NASA-Ames 40- by 80-foot wind tunnel

    NASA Technical Reports Server (NTRS)

    Strout, F. G.

    1976-01-01

    A JT8D-17 turbofan engine was tested in the NASA-Ames 40- by 80-foot wind tunnel to determine flight effects on jet and fan noise. Baseline, quiet nacelle with 20-lobe ejector/suppressor, and internal mixer configurations were tested over a range of engine power settings and tunnel velocities. Flight effects derived from the 40- by 80-foot wind tunnel test are compared with 727/JT8D flight test data and with model data obtained in a smaller wind tunnel. Procedures are defined for measuring noise data in a wind tunnel relatively near the sources and analyzing the results to obtain far-field flight effects. Wind tunnel and 727 flight test noise results compare favorably for both the baseline and quiet nacelle configurations. Two reports are provided, including a comprehensive version with extensive test results and analysis and the subject summary version that emphasizes data analysis and program finding.

  16. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  17. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  18. Performance of high-altitude, long-endurance, turboprop airplanes using conventional or cryogenic fuels

    NASA Technical Reports Server (NTRS)

    Liu, G. C.; Morris, C. E. K., Jr.; Koenig, R. W.

    1983-01-01

    An analytical study has been conducted to evaluate the potential endurance of remotely piloted, low speed, high altitude, long endurance airplanes designed with 1990 technology. The baseline configuration was a propeller driven, sailplane like airplane powered by turbine engines that used JP-7, liquid methane, or liquid hydrogen as fuel. Endurance was measured as the time spent between 60,000 feet and an engine limited maximum altitude of 70,000 feet. Performance was calculated for a baseline vehicle and for configurations derived by varying aerodynamic, structural or propulsion parameters. Endurance is maximized by reducing wing loading and engine size. The level of maximum endurance for a given wing loading is virtually the same for all three fuels. Constraints due to winds aloft and propulsion system scaling produce maximum endurance values of 71 hours for JP-7 fuel, 70 hours for liquid methane, and 65 hours for liquid hydrogen. Endurance is shown to be strongly effected by structural weight fraction, specific fuel consumption, and fuel load. Listings of the computer program used in this study and sample cases are included in the report.

  19. Multifunctional Inflatable Structure Being Developed for the PowerSphere Concept

    NASA Technical Reports Server (NTRS)

    Peterson, Todd T.

    2004-01-01

    NASA has funded a collaborative team of The Aerospace Corporation, ILC Dover, Lockheed Martin, and NASA Glenn Research Center to develop the Multifunctional Inflatable Structure (MIS) for a "PowerSphere" concept through a NASA Research Announcement. This power system concept has several advantages, including a high collection area, low weight and stowage volume, and the elimination of all solar array pointing mechanisms. The current 3-year effort will culminate with the fabrication and testing of a fully functional engineering development unit. The baseline design of the Power-Sphere consists of two opposing semispherical domes connected to a central spacecraft. Each semispherical dome consists of hexagonal and pentagonal solar cell panels that together form a geodetic sphere. Inflatable ultraviolet (UV) rigidizable tubular hinges between the solar cell panels and UV rigidizable isogrid center columns with imbedded flex circuitry form the MIS. The reference configuration for the PowerSphere is a 0.6-m-diameter (fully deployed) spacecraft with a total mass budget of 4 kg (1 kg for PowerSphere, 3 kg for spacecraft) capable of producing 29 W of electricity with 10-percent-efficient thin-film solar cells. In a stowed configuration, the solar cell panels will be folded sequentially to the outside of the instrument decks. The center column will be z-folded between the instrument decks and the spacecraft housing for packaging. The instrument panel will secure the z-folded stack with launch ties. After launch, once the release tie is triggered, the center column and hinge tubes will inflate and be rigidized in their final configurations by ultraviolet radiation. The overall PowerSphere deployment sequence is shown pictorially in the following illustration.

  20. Evaluation of insulation materials and composites for use in a nuclear radiation environment, phase 2

    NASA Technical Reports Server (NTRS)

    Westerheide, D. E.; Carter, H. G.; Erickson, R. C.; Kerlin, E. E.

    1972-01-01

    The nuclear heating of the propellant in all of the four baseline RNS configurations studied was much lower than that of the nuclear flight module configuration with the 5000-MW NERVA analyzed previously. Although the nuclear heating has been reduced, the effect of nuclear heating on the propellant as well as the effect of nuclear heating on internal structures such as antivortex baffles, screens, and sump components cannot be neglected. In addition, it was found that the present analytical precedures were not able to predict boundary layer initiation and breakoff points with the accuracy necessary to predict propellant thermodynamic nonequilibrium (stratification) and/or mixing.

  1. The relationship between musculoskeletal symptoms, postures and the fit between workers' anthropometrics and their computer workstation configuration.

    PubMed

    Baker, Nancy A; Moehling, Krissy

    2013-01-01

    Awkward postures during computer use are assumed to be related to the fit between the worker and the workstation configuration, with greater mismatches leading to higher levels of musculoskeletal symptoms (MSS). The objective of this study was to examine if chronic MSS of the neck/shoulder, back, and wrist/hands was associated with 1) discrepancies between workstation setups and worker anthropometrics and 2) workers' postures. Secondary analysis on data collected from a randomized controlled cross-over design trial (N=74). Subjects' workstation configurations, baseline levels of MSS, working postures, and anthropometrics were measured. Correlations were completed to determine the association between postures and discrepancies between the worker anthropometrics and workstation configuration. Associations were examined between postures, workstation discrepancies and worker MSS. There were only 3 significant associations between worker posture and MSS, and 3 significant associations between discrepancies in worker/workstation set-up and MSS. The relationship between chronic MSS and the workers computer workstation configuration is multifactorial. While postures and the fit between the worker and workstation may be associated with MSS, other variables need to be explored to better understand the phenomenon.

  2. Core compressor exit stage study, volume 6

    NASA Technical Reports Server (NTRS)

    Wisler, D. C.

    1981-01-01

    Rear stage blading designs that have lower losses in their endwall boundary layer regions were studied. A baseline Stage A was designed as a low-speed model of stage 7 of a 10-stage compressor. Candidate rotors and stators were designed which have the potential of reducing endwall losses relative to the baseline. Rotor B uses a type of meanline in the tip region that unloads the leading edge and loads the trailing edge relative to the baseline rotor A designs. Rotor C incorporates a more skewed (hub strong) radial distribution of total pressure and smoother distribution of static pressure on the rotor tip than those of rotor B. Candidate stator B embodies twist gradients in the endwall region. Stator C embodies airfoil sections near the endwalls that have reduced trailing edge loading relative to stator A. The baseline and candidate bladings were tested using four identical stages to produce a true multistage environment. Single-stage tests were also conducted. The test data were analyzed and performances were compared. Several of the candidate configurations showed a performance improvement relative to the baseline.

  3. Influence of the gas-liquid flow configuration in the absorption column on photosynthetic biogas upgrading in algal-bacterial photobioreactors.

    PubMed

    Toledo-Cervantes, Alma; Madrid-Chirinos, Cindy; Cantera, Sara; Lebrero, Raquel; Muñoz, Raúl

    2017-02-01

    The potential of an algal-bacterial system consisting of a high rate algal pond (HRAP) interconnected to an absorption column (AC) via recirculation of the cultivation broth for the upgrading of biogas and digestate was investigated. The influence of the gas-liquid flow configuration in the AC on the photosynthetic biogas upgrading process was assessed. AC operation in a co-current configuration enabled to maintain a biomass productivity of 15gm -2 d -1 , while during counter-current operation biomass productivity decreased to 8.7±0.5gm -2 d -1 as a result of trace metal limitation. A bio-methane composition complying with most international regulatory limits for injection into natural gas grids was obtained regardless of the gas-liquid flow configuration. Furthermore, the influence of the recycling liquid to biogas flowrate (L/G) ratio on bio-methane quality was assessed under both operational configurations obtaining the best composition at an L/G ratio of 0.5 and co-current flow operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. NASTRAN Modeling of Flight Test Components for UH-60A Airloads Program Test Configuration

    NASA Technical Reports Server (NTRS)

    Idosor, Florentino R.; Seible, Frieder

    1993-01-01

    Based upon the recommendations of the UH-60A Airloads Program Review Committee, work towards a NASTRAN remodeling effort has been conducted. This effort modeled and added the necessary structural/mass components to the existing UH-60A baseline NASTRAN model to reflect the addition of flight test components currently in place on the UH-60A Airloads Program Test Configuration used in NASA-Ames Research Center's Modern Technology Rotor Airloads Program. These components include necessary flight hardware such as instrument booms, movable ballast cart, equipment mounting racks, etc. Recent modeling revisions have also been included in the analyses to reflect the inclusion of new and updated primary and secondary structural components (i.e., tail rotor shaft service cover, tail rotor pylon) and improvements to the existing finite element mesh (i.e., revisions of material property estimates). Mode frequency and shape results have shown that components such as the Trimmable Ballast System baseplate and its respective payload ballast have caused a significant frequency change in a limited number of modes while only small percent changes in mode frequency are brought about with the addition of the other MTRAP flight components. With the addition of the MTRAP flight components, update of the primary and secondary structural model, and imposition of the final MTRAP weight distribution, modal results are computed representative of the 'best' model presently available.

  5. Evaluation of background radiation dose contributions in the United Arab Emirates.

    PubMed

    Goddard, Braden; Bosc, Emmanuel; Al Hasani, Sarra; Lloyd, Cody

    2018-09-01

    The natural background radiation consists of three main components; cosmic, terrestrial, and skyshine. Although there are currently methods available to measure the total dose rate from background radiation, no established methods exist that allow for the measurement of each component the background radiation. This analysis consists of a unique methodology in which the dose rate contribution from each component of the natural background radiation is measured and calculated. This project evaluates the natural background dose rate in the Abu Dhabi City region from all three of these components using the developed methodology. Evaluating and understanding the different components of background radiation provides a baseline allowing for the detection, and possibly attribution, of elevated radiation levels. Measurements using a high-pressure ion chamber with different shielding configurations and two offshore measurements provided dose rate information that were attributed to the different components of the background radiation. Additional spectral information was obtained using an HPGe detector to verify and quantify the presence of terrestrial radionuclides. By evaluating the dose rates of the different shielding configurations the comic, terrestrial, and skyshine contribution in the Abu Dhabi City region were determined to be 33.0 ± 1.7, 15.7 ± 2.5, and 2.4 ± 2.1 nSv/h, respectively. Copyright © 2018. Published by Elsevier Ltd.

  6. Experimental investigation of plasma sheaths in magnetic mirror and cusp configurations

    NASA Astrophysics Data System (ADS)

    Jiang, Zhengqi; Wei, Zi-an; Ma, J. X.

    2017-11-01

    Sheath structures near a metal plate in a magnetized plasma were experimentally investigated in magnetic mirror and cusp configurations. Plasma parameters and the sheath potential distributions were probed by a planar and an emissive probe, respectively. The measured sheath profiles in the mirror configuration show that the sheath thickness first decreases and then increases when the magnetic strength is raised. A magnetic flux-tube model was used to explain this result. In the cusp configuration, the measured sheath thickness decreases with the increase of the coil current creating the magnetic cusp. However, when normalized by the electron Debye length, the dependence of the sheath thickness on the coil current is reversed.

  7. System and method for sub-sea cable termination

    DOEpatents

    Chen, Qin; Yin, Weijun; Zhang, Lili

    2016-04-05

    An electrical connector includes a first cable termination chamber configured to receive a first power cable having at least a first conductor sheathed at least in part by a first insulating layer and a first insulation screen layer. Also, the electrical connector includes a first non-linear resistive layer configured to be coupled to a portion of the first conductor unsheathed by at least the first insulation screen layer and configured to control a direct current electric field generated in the first cable termination chamber. In addition, the electrical connector includes a first deflector configured to be coupled to the first power cable and control an alternating current electric field generated in the first cable termination chamber.

  8. An exploration of advanced X-divertor scenarios on ITER

    NASA Astrophysics Data System (ADS)

    Covele, B.; Valanju, P.; Kotschenreuther, M.; Mahajan, S.

    2014-07-01

    It is found that the X-divertor (XD) configuration (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA), CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502) can be made with the conventional poloidal field (PF) coil set on ITER (Tomabechi et al and Team 1991 Nucl. Fusion 31 1135), where all PF coils are outside the TF coils. Starting from the standard divertor, a sequence of desirable XD configurations are possible where the PF currents are below the present maximum design limits on ITER, and where the baseline divertor cassette is used. This opens the possibility that the XD could be tested and used to assist in high-power operation on ITER, but some further issues need examination. Note that the increased major radius of the super-X-divertor (Kotschenreuther et al 2007 Bull. Am. Phys. Soc. 53 11, Valanju et al 2009 Phys. Plasmas 16 5, Kotschenreuther et al 2010 Nucl. Fusion 50 035003, Valanju et al 2010 Fusion Eng. Des. 85 46) is not a feature of the XD geometry. In addition, we present an XD configuration for K-DEMO (Kim et al 2013 Fusion Eng. Des. 88 123) to demonstrate that it is also possible to attain the XD configuration in advanced tokamak reactors with all PF coils outside the TF coils. The results given here for the XD are far more encouraging than recent calculations by Lackner and Zohm (2012 Fusion Sci. Technol. 63 43) for the Snowflake (Ryutov 2007 Phys. Plasmas 14 064502, Ryutov et al 2008 Phys. Plasmas 15 092501), where the required high PF currents represent a major technological challenge. The magnetic field structure in the outboard divertor SOL (Kotschenreuther 2013 Phys. Plasmas 20 102507) in the recently created XD configurations reproduces what was presented in the earlier XD papers (Kotschenreuther et al 2004 Proc. 20th Int. Conf. on Fusion Energy (Vilamoura, Portugal, 2004) (Vienna: IAEA) CD-ROM file [IC/P6-43] www-naweb.iaea.org/napc/physics/fec/fec2004/datasets/index.html, Kotschenreuther et al 2006 Proc. 21st Int. Conf. on Fusion Energy 2006 (Chengdu, China, 2006) (Vienna: IAEA) CD-ROM file [IC/P7-12] www-naweb.iaea.org/napc/physics/FEC/FEC2006/html/index.htm, Kotschenreuther et al 2007 Phys. Plasmas 14 072502). Consequently, the same advantages accrue, but no close-in PF coils are employed.

  9. Temporal variation in bed configuration and one-dimensional bottom roughness at the mid-shelf STRESS site

    NASA Astrophysics Data System (ADS)

    Wheatcroft, Robert A.

    1994-08-01

    Time-lapse stereophotographs were taken over a 90-day period from mid-November 1990 to late-February 1991 at a 90-m silt-bottom site on the central California shelf as part of the STRESS (Sediment Transport Events on Shelves and Slopes) project. Five distinct bed configurations were observed, in order of decreasing abundance, these are: (1) bioturbated bed; (2) smoothed bed; (3) current-rippled bed; (4) scour-pitted bed; and (5) wave-rippled bed. Concurrent measurements of the flow field implicate along-shelf currents, rather than waves, as the primary agent forming the physical bed configurations. The presence of a wave-induced cross-shelf gradient in near-bottom suspended sediment during storm events and the redistribution of this sediment by upwelling or downwelling currents is postulated to control the appearance of depositional current-ripples (northwest poleward flow, downwelling) and erosional scour-pits (southeast equatorward flow, upwelling). All physical bed forms are destroyed by bioturbation processes in periods of hours to days. Analytical photogrammetric techniques were used to extract high-resolution sea floor height data from the stereophotographs. Results indicate maximal relief over a 0.25-m 2 area at this site never exceeded 5 cm. Root-mean-square (rms) height varied by a factor of 3 (3.2-9.2 mm) and is a weak function of bed configuration. Current ripples have the largest rms-height, smoothed and scour-pitted beds the smallest. Rms-heights of bioturbated beds are variable and appear to depend on the previously produced physical bed configuration. Changes in rms-height can be abrupt with factor of 2 changes observed over a 12-h period. Horizontal descriptors of roughness such as peak spacing or peak width cannot separate bed configurations. Results from surface slope distributions are broadly coherent with the rms-height data, in that surfaces with large rms-heights have broad slope distributions and vice versa. Slope distribution data also indicate that all bed configurations except the current-rippled bed are isotropic. These preliminary data suggest that time series information is needed to adequately resolve both the micro-scale roughness of the sea floor on continental shelves and the presence of short lived, but potentially flow-diagnostic bed configurations.

  10. Cathode power distribution system and method of using the same for power distribution

    DOEpatents

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  11. Wide baseline stereo matching based on double topological relationship consistency

    NASA Astrophysics Data System (ADS)

    Zou, Xiaohong; Liu, Bin; Song, Xiaoxue; Liu, Yang

    2009-07-01

    Stereo matching is one of the most important branches in computer vision. In this paper, an algorithm is proposed for wide-baseline stereo vision matching. Here, a novel scheme is presented called double topological relationship consistency (DCTR). The combination of double topological configuration includes the consistency of first topological relationship (CFTR) and the consistency of second topological relationship (CSTR). It not only sets up a more advanced model on matching, but discards mismatches by iteratively computing the fitness of the feature matches and overcomes many problems of traditional methods depending on the powerful invariance to changes in the scale, rotation or illumination across large view changes and even occlusions. Experimental examples are shown where the two cameras have been located in very different orientations. Also, epipolar geometry can be recovered using RANSAC by far the most widely method adopted possibly. By the method, we can obtain correspondences with high precision on wide baseline matching problems. Finally, the effectiveness and reliability of this method are demonstrated in wide-baseline experiments on the image pairs.

  12. Participation in the Analysis of the Far-Infrared/Submillmeter Interferometer

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.

    2005-01-01

    We have contributed to the development of the Submillimiter Probe of the Evolution of Cosmic Structure (SPECS) by analyzing various aspects related to the tethers that connect the spacecraft of this space interferometer. We have focused our analysis on key topics as follows: (a) helping in the configuration selection; (b) computing the system eigenfrequencies as a function of baseline length; (c) developing techniques and conceptual design of devices for damping the tether oscillations; (d) carrying out numerical simulations of tethered formation to assess the effects of environmental perturbations upon the baseline length variation; (e) developing control laws for reconfiguring the baseline length; (f) devising control laws for fast retargeting of the interferometer at moderate baseline lengths; (g) estimating the survivability to micrometeoroid impacts of a tether at L2; and (h) developing a conceptual design of a high- strength and survivable tether. The work was conducted for NASA Goddard Space Flight Center under Grant NNG04GQ21G with William Danchi as technical monitor.

  13. Computational fluid dynamics (CFD) in the design of a water-jet-drive system

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto

    1994-01-01

    NASA/Marshall Space Flight Center (MSFC) has an ongoing effort to transfer to industry the technologies developed at MSFC for rocket propulsion systems. The Technology Utilization (TU) Office at MSFC promotes these efforts and accepts requests for assistance from industry. One such solicitation involves a request from North American Marine Jet, Inc. (NAMJ) for assistance in the design of a water-jet-drive system to fill a gap in NAMJ's product line. NAMJ provided MSFC with a baseline axial flow impeller design as well as the relevant working parameters (rpm, flow rate, etc.). This baseline design was analyzed using CFD, and significant deficiencies identified. Four additional analyses were performed involving MSFC changes to the geometric and operational parameters of the baseline case. Subsequently, the impeller was redesigned by NAMJ and analyzed by MSFC. This new configuration performs significantly better than the baseline design. Similar cooperative activities are planned for the design of the jet-drive inlet.

  14. Development of carbon slurry fuels for transportation (hybrid fuels, phase 2)

    NASA Technical Reports Server (NTRS)

    Ryan, T. W., III; Dodge, L. G.

    1984-01-01

    Slurry fuels of various forms of solids in diesel fuel are developed and evaluated for their relative potential as fuel for diesel engines. Thirteen test fuels with different solids concentrations are formulated using eight different materials. A variety of properties are examined including ash content, sulfur content, particle size distribution, and rheological properties. Attempts are made to determine the effects of these variations on these fuel properties on injection, atomization, and combustion processes. The slurries are also tested in a single cylinder CLR engine in both direct injection and prechamber configurations. The data includes the normal performance parameters as well as heat release rates and emissions. The slurries perform very much like the baseline fuel. The combustion data indicate that a large fraction (90 percent or more) of the solids are burning in the engine. It appears that the prechamber engine configuration is more tolerant of the slurries than the direct injection configuration.

  15. Integrated digital/electric aircraft concepts study

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.; Hays, A. P.; Green, F. B.; Radovcich, N. A.; Helsley, C. W.; Rutchik, W. L.

    1985-01-01

    The integrated digital/electrical aircraft (IDEA) is an aircraft concept which employs all electric secondary power systems and advanced digital flight control systems. After trade analysis, preferred systems were applied to the baseline configuration. An additional configuration, the alternate IDEA, was also considered. For this concept the design ground rules were relaxed in order to quantify additional synergistic benefits. It was proposed that an IDEA configuration and technical risks associated with the IDEA systems concepts be defined and the research and development required activities to reduce these risks be identified. The selected subsystems include: power generation, power distribution, actuators, environmental control system and flight controls systems. When the aircraft was resized, block fuel was predicted to decrease by 11.3 percent, with 7.9 percent decrease in direct operating cost. The alternate IDEA shows a further 3.4 percent reduction in block fuel and 3.1 percent reduction in direct operating cost.

  16. Electric Power System for High Altitude UAV Technology Survey

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Electric powertrain technologies with application to high altitude Unmanned Aerial Vehicles (UAV) are assessed. One hundred twenty five solar electric UAV configurations and missions were simulated. Synergistic design opportunities were investigated with the premise that specific benefits may be realized, for example, if a single component can serve multiple functions, such as a battery being used for energy storage as well as for a structural component of the aircraft. For each UAV mission simulation, the airframe structure, powertrain configuration (type of solar cells, energy storage options) and performance baseline (1997 or 2001) were specified. It has been found that the use of the high efficiency (multijunction) solar cells or the use of the synergistic amorphous silicon solar cell configuration yields aircraft that can accomplish the majority of the missions of interest for any latitude between 0 deg and 55 deg, hence, a single versatile aircraft can be constructed and implemented to accomplish these missions.

  17. Space shuttle orbiter trimmed center-of-gravity extension study. Volume 5: Effects of configuration modifications on the aerodynamic characteristics of the 140A/B orbiter at Mach numbers of 2.5, 3.95 and 4.6

    NASA Technical Reports Server (NTRS)

    Phillips, W. P.; Fournier, R. H.

    1979-01-01

    Supersonic aerodynamic characteristics are presented for the 140A/B space shuttle orbiter configuration (0.010 scale) and for the configuration modified to incorporate geometry changes in the wing planform fillet region. The modifications designed to extend the orbiter's longitudinal trim capability to more forward center-of-gravity locations, included reshaping of the baseline wing planform fillet and adding canards. The investigation was made in the high Mach number test section of the Langley Unitary Plan Wind Tunnel at a Reynolds number of approximately 2.2 million based on fuselage reference length. The angle-of-attack range for the investigation extended from -1 deg to 31 deg. Data were obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.

  18. Stress and efficiency studies

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Optical and electrical characterization of defects has been started in EFG ribbon grown in a system that will be used to test the stress model. Temperature and stress field modeling aimed at defining low stress growth configuration is also in progress, and results will be used to guide development of the experimental system. The baseline defect configuration for ribbon grown at speeds of approx. 1 cm/min consists of dislocation densities of the order of 10 to the 5th power to 10 to the 6th power/sq cm, as well as saucer type etch pits and line defects. All these defects are inhomogeneously distributed. EBIC measurements indicate that diffusion lengths are in the range 20 to 60 microns, and significant spatial inhomogeneities occur through the ribbon thickness. Growth speed changes in the range 0.7-1.0 cm/min do not produce significant variations in ribbon defect configurations.

  19. Development of flat-plate solar collectors for the heating and cooling of buildings

    NASA Technical Reports Server (NTRS)

    Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.

    1975-01-01

    The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.

  20. T-Cap Pull-Off and Bending Behavior for Stitched Structure

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  1. Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  2. TWRS authorization basis configuration control summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendoza, D.P.

    This document was developed to define the Authorization Basis management functional requirements for configuration control, to evaluate the management control systems currently in place, and identify any additional controls that may be required until the TWRS [Tank Waste Remediation System] Configuration Management system is fully in place.

  3. Wireless Sensor Networks Approach

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  4. OTEC platform configuration and integration study. Volume I. Systems engineering and integration. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1978-04-01

    The economic success of an Ocean Thermal Energy Conversion (OTEC) system is highly dependent on a platform which provides adequate support for the power system, accommodates reliably the cold water pipe, and is most cost effective. The results of a study conducted for the Department of Energy to assess six generic types of platforms to determine the most satisfactory platform for severl potential sites are presented. The six platform configurations are ship, circular barge, semi-submersible, Tuned Sphere, submersible, and spar. These represent directional and symmetric types of platforms which operate on the surface, at the interface, and submerged. The fivemore » sites for this study were primarily New Orleans, Keahole Point (Hawaii), Brazil, and secondarily Key West and Puerto Rico. Electrical transmission of energy by submarine cable is the planned form of energy transmission for all sites except Brazil, where chemical conversion is to be the method of transmission. This study is devoted to the platform (or ocean systems) of the OTEC plant which is chiefly comprised of the hull and structure, the seawater system, the position control system, and miscellaneous support/assembly systems. The principal elements in the work breakdown structure for the commercial plants are presented. The assessment of the six platform configurations was conducted utilizing a baseline plan (100-MW(e) (Net)) and site (New Orleans) with variations from the baseline to cover the range of interested platforms and sites.« less

  5. Evolution of the Busbar Structure in Large-Scale Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Zhang, Hongliang; Liang, Jinding; Li, Jie; Sun, Kena; Xiao, Jin

    2017-02-01

    Studies of magnetic field and magneto-hydro-dynamics are regarded as the foundation for the development of large-scale aluminum reduction cells, while due to the direct relationship between the busbar configuration and magnetic compensation, the actual key content is the configuration of the busbar. As the line current has been increased from 160 kA to 600 kA, the configuration of the busbar was becoming more complex. To summarize and explore the evolution of busbar configuration in aluminum reduction cells, this paper has reviewed various representative large-scale pre-baked aluminum reduction cell busbar structures, such as end-to-end potlines, side-by-side potlines and external compensation current. The advantages and disadvantages in the magnetic distribution or technical specifications have also been introduced separately, especially for the configurations of the mainstream 400-kA potlines. In the end, the development trends of the bus structure configuration were prospected, based on the recent successful applications of super-scale cell busbar structures in China (500-600 kA).

  6. Improvements to Wire Bundle Thermal Modeling for Ampacity Determination

    NASA Technical Reports Server (NTRS)

    Rickman, Steve L.; Iannello, Christopher J.; Shariff, Khadijah

    2017-01-01

    Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented.

  7. Supporting Tablet Configuration, Tracking, and Infection Control Practices in Digital Health Interventions: Study Protocol

    PubMed Central

    Furberg, Robert D; Zulkiewicz, Brittany A; Hudson, Jordan P; Taylor, Olivia M; Lewis, Megan A

    2016-01-01

    Background Tablet-based health care interventions have the potential to encourage patient care in a timelier manner, allow physicians convenient access to patient records, and provide an improved method for patient education. However, along with the continued adoption of tablet technologies, there is a concomitant need to develop protocols focusing on the configuration, management, and maintenance of these devices within the health care setting to support the conduct of clinical research. Objective Develop three protocols to support tablet configuration, tablet management, and tablet maintenance. Methods The Configurator software, Tile technology, and current infection control recommendations were employed to develop three distinct protocols for tablet-based digital health interventions. Configurator is a mobile device management software specifically for iPhone operating system (iOS) devices. The capabilities and current applications of Configurator were reviewed and used to develop the protocol to support device configuration. Tile is a tracking tag associated with a free mobile app available for iOS and Android devices. The features associated with Tile were evaluated and used to develop the Tile protocol to support tablet management. Furthermore, current recommendations on preventing health care–related infections were reviewed to develop the infection control protocol to support tablet maintenance. Results This article provides three protocols: the Configurator protocol, the Tile protocol, and the infection control protocol. Conclusions These protocols can help to ensure consistent implementation of tablet-based interventions, enhance fidelity when employing tablets for research purposes, and serve as a guide for tablet deployments within clinical settings. PMID:27350013

  8. Control of Formation-Flying Multi-Element Space Interferometers with Direct Interferometer-Output Feedback

    NASA Technical Reports Server (NTRS)

    Lu, Hui-Ling; Cheng, H. L.; Lyon, Richard G.; Carpenter, Kenneth G.

    2007-01-01

    The long-baseline space interferometer concept involving formation flying of multiple spacecraft holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.

  9. Control of Formation-Flying Multi-Element Space Interferometers with Direct Interferometer-Output Feedback

    NASA Technical Reports Server (NTRS)

    Lu, Hui-Ling; Cheng, Victor H. L.; Lyon, Richard G.; Carpenter, Kenneth G.

    2007-01-01

    The long-baseline space interferometer concept involving formation flying of multiple spacecrafts holds great promise as future space missions for high-resolution imagery. A major challenge of obtaining high-quality interferometric synthesized images from long-baseline space interferometers is to accurately control these spacecraft and their optics payloads in the specified configuration. Our research focuses on the determination of the optical errors to achieve fine control of long-baseline space interferometers without resorting to additional sensing equipment. We present a suite of estimation tools that can effectively extract from the raw interferometric image relative x/y, piston translational and tip/tilt deviations at the exit pupil aperture. The use of these error estimates in achieving control of the interferometer elements is demonstrated using simulated as well as laboratory-collected interferometric stellar images.

  10. Performance improvements of single-engine business airplanes by the integration of advanced technologies

    NASA Technical Reports Server (NTRS)

    Kohlman, D. L.

    1982-01-01

    An assessment is presented of the performance gains and economic impact of the integration in general aviation aircraft of advanced technologies, relating to such aspects of design as propulsion, natural laminar flow, lift augmentation, unconventional configurations, and advanced aluminum and composite structures. All considerations are with reference to a baseline mission of 1300 nm range and 300-knot cruise speed with a 1300-lb payload, and a baseline aircraft with a 40 lb/sq ft wing loading and an aspect ratio of 8. Extensive analytical results are presented from the NASA-sponsored General Aviation Synthesis Program. Attention is given to the relative performance gains to be expected from the single-engined baseline aircraft's use of a low cost general aviation turbine engine, a spark-ignited reciprocating engine, a diesel engine, and a Wankel rotary engine.

  11. Cost model relationships between textile manufacturing processes and design details for transport fuselage elements

    NASA Technical Reports Server (NTRS)

    Metschan, Stephen L.; Wilden, Kurtis S.; Sharpless, Garrett C.; Andelman, Rich M.

    1993-01-01

    Textile manufacturing processes offer potential cost and weight advantages over traditional composite materials and processes for transport fuselage elements. In the current study, design cost modeling relationships between textile processes and element design details were developed. Such relationships are expected to help future aircraft designers to make timely decisions on the effect of design details and overall configurations on textile fabrication costs. The fundamental advantage of a design cost model is to insure that the element design is cost effective for the intended process. Trade studies on the effects of processing parameters also help to optimize the manufacturing steps for a particular structural element. Two methods of analyzing design detail/process cost relationships developed for the design cost model were pursued in the current study. The first makes use of existing databases and alternative cost modeling methods (e.g. detailed estimating). The second compares design cost model predictions with data collected during the fabrication of seven foot circumferential frames for ATCAS crown test panels. The process used in this case involves 2D dry braiding and resin transfer molding of curved 'J' cross section frame members having design details characteristic of the baseline ATCAS crown design.

  12. Nitric oxide decreases the excitability of interstitial cells of Cajal through activation of the BK channel

    PubMed Central

    Zhu, Yaohui; Huizinga, Jan D

    2008-01-01

    Abstract Nitrergic nerves are structurally and functionally associated with ICC. To further understand mechanisms of communication, the hypothesis was investigated that NO might affect large conductance K channels. To that end, we searched for IbTX-sensitive currents in ICC obtained through explant cultures from the mouse small intestine and studied effects of the NOS inhibitor omega N-nitro-L-arginine (LNNA) and the NO donor sodium nitroprusside (SNP). IbTX-sensitive currents acquired in the whole-cell configuration through nystatin perforated patches exhibited high noise levels but relatively low amplitude, whereas currents obtained in the conventional whole-cell configuration exhibited less noise and higher amplitudes; depolarization from −80 to + 40 mV evoked 357 ± 159 pA current in the nystatin perforated patch configuration and 1075 ± 597 pA using the conventional whole-cell configuration. Immunohistochemistry showed that ICC associated with ganglia and Auerbach's plexus nerve fibers were immunoreactive to BK antibodies. The IbTX-sensitive currents were increased by SNP and inhibited by LNNA. BK blockers suppressed spontaneous transit outward currents in ICC. After block of BK currents, or before these currents became prominent, calcium currents were activated by depolarization in the same cells. Their peak amplitude occurred at −25 mV and the currents were increased with increasing extracellular calcium and inhibited by cobalt. The hypothesis is warranted that nitrergic innervation inhibits ICC excitability in part through activation of BK channels. In addition, NO is an intracellular regulator of ICC excitability. PMID:18194464

  13. Modular space station, phase B extension. Information management advanced development. Volume 4: Data processing assembly

    NASA Technical Reports Server (NTRS)

    Gerber, C. R.

    1972-01-01

    The computation and logical functions which are performed by the data processing assembly of the modular space station are defined. The subjects discussed are: (1) requirements analysis, (2) baseline data processing assembly configuration, (3) information flow study, (4) throughput simulation, (5) redundancy study, (6) memory studies, and (7) design requirements specification.

  14. ISE structural dynamic experiments

    NASA Technical Reports Server (NTRS)

    Lock, Malcolm H.; Clark, S. Y.

    1988-01-01

    The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.

  15. Comparative Assessment of Torso and Seat Mounted Restraint Systems using Manikins on the Vertical Deceleration Tower

    DTIC Science & Technology

    2017-03-01

    experimental effort involving a series of +z-axis impact tests was conducted on the 711th Human Performance Wing’s Vertical Deceleration Tower (VDT...parameters) and a JSF-styled ejection seat configuration (combined non -baseline test parameters) produced similar biodynamic response parameters for the LOIS...Photography .............................................................................. 12 6.0 EXPERIMENTAL DESIGN

  16. AFC-Enabled Vertical Tail System Integration Study

    NASA Technical Reports Server (NTRS)

    Mooney, Helen P.; Brandt, John B.; Lacy, Douglas S.; Whalen, Edward A.

    2014-01-01

    This document serves as the final report for the SMAAART AFC-Enabled Vertical Tail System Integration Study. Included are the ground rule assumptions which have gone into the study, layouts of the baseline and AFC-enabled configurations, critical sizing information, system requirements and architectures, and assumed system properties that result in an NPV assessment of the two candidate AFC technologies.

  17. Historical forest baselines reveal potential for continued carbon sequestration

    Treesearch

    Jeanine M. Rhemtulla; David J. Mladenoff; Murray K. Clayton

    2009-01-01

    One-third of net CO2 emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using...

  18. Phase 1 of the First Solar Small Power System Experiment (experimental System No. 1). Volume 3: Appendix E - N

    NASA Technical Reports Server (NTRS)

    Clark, T. B. (Editor)

    1979-01-01

    The design of a solar electric power plant for a small community is reported. Topics covered include: (1) control configurations and interface requirements for the baseline power system; (2) annual small power system output; (3) energy requirements for operation of the collectors and control building; (4) life cycle costs and reliability predictions; (5) thermal conductivities and costs of receiver insulation materials; (6) transient thermal modelling for the baseline receiver/thermal transport system under normal and inclement operating conditions; (7) high temperature use of sodium; (8) shading in a field of parabolic collectors; and (9) buffer storage materials.

  19. DSN 63 64-meter antenna S- and X-band efficiency and system noise temperature calibrations, July 1986

    NASA Technical Reports Server (NTRS)

    Slobin, S. D.

    1987-01-01

    The Deep Space Network (DSN) 64-meter antenna in Spain (DSN 63) has been calibrated prior to its upgrading to a 70-meter high efficiency configuration in preparation for the Voyager Neptune encounter in August 1989. The S-band (2285 MHz) and X-band (8420 MHz) effective area efficiency and system noise temperature calibrations were carried out during July 1986 to establish a baseline system performance for this station. It is expected that the 70-meter will result in at least a 1.9 dB G/T improvement at X-band relative to the 64-meter baseline reference.

  20. Experimental investigation of non-planar sheared outboard wing planforms

    NASA Technical Reports Server (NTRS)

    Naik, D. A.; Ostowari, C.

    1988-01-01

    The outboard planforms of wings have been found to be of prime importance in studies of induced drag reduction. This conclusion is based on an experimental and theoretical study of the aerodynamic characteristics of planar and nonplanar outboard wing forms. Six different configurations; baseline rectangular, planar sheared, sheared with dihedral, sheared with anhedral, rising arc, and drooping arc were investigated for two different spans. Span efficiencies as much as 20 percent greater than baseline can be realized with nonplanar wing forms. Optimization studies show that this advantage can be achieved along with a bending moment benefit. Parasite drag and lateral stability estimations were not included in the analysis.

  1. Low bias negative differential conductance and reversal of current in coupled quantum dots in different topological configurations

    NASA Astrophysics Data System (ADS)

    Devi, Sushila; Brogi, B. B.; Ahluwalia, P. K.; Chand, S.

    2018-06-01

    Electronic transport through asymmetric parallel coupled quantum dot system hybridized between normal leads has been investigated theoretically in the Coulomb blockade regime by using Non-Equilibrium Green Function formalism. A new decoupling scheme proposed by Rabani and his co-workers has been adopted to close the chain of higher order Green's functions appearing in the equations of motion. For resonant tunneling case; the calculations of current and differential conductance have been presented during transition of coupled quantum dot system from series to symmetric parallel configuration. It has been found that during this transition, increase in current and differential conductance of the system occurs. Furthermore, clear signatures of negative differential conductance and negative current appear in series case, both of which disappear when topology of system is tuned to asymmetric parallel configuration.

  2. Application of the generalized reduced gradient method to conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Gabriele, G. A.

    1984-01-01

    The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.

  3. Navier-Stokes Computations of a Wing-Flap Model With Blowing Normal to the Flap Surface

    NASA Technical Reports Server (NTRS)

    Boyd, D. Douglas, Jr.

    2005-01-01

    A computational study of a generic wing with a half span flap shows the mean flow effects of several blown flap configurations. The effort compares and contrasts the thin-layer, Reynolds averaged, Navier-Stokes solutions of a baseline wing-flap configuration with configurations that have blowing normal to the flap surface through small slits near the flap side edge. Vorticity contours reveal a dual vortex structure at the flap side edge for all cases. The dual vortex merges into a single vortex at approximately the mid-flap chord location. Upper surface blowing reduces the strength of the merged vortex and moves the vortex away from the upper edge. Lower surface blowing thickens the lower shear layer and weakens the merged vortex, but not as much as upper surface blowing. Side surface blowing forces the lower surface vortex farther outboard of the flap edge by effectively increasing the aerodynamic span of the flap. It is seen that there is no global aerodynamic penalty or benefit from the particular blowing configurations examined.

  4. Mixed-Fidelity Approach for Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Shields, Elwood; Geiselhart, Karl

    2011-01-01

    This paper documents a mixed-fidelity approach for the design of low-boom supersonic aircraft with a focus on fuselage shaping.A low-boom configuration that is based on low-fidelity analysis is used as the baseline. The fuselage shape is modified iteratively to obtain a configuration with an equivalent-area distribution derived from computational fluid dynamics analysis that attempts to match a predetermined low-boom target area distribution and also yields a low-boom ground signature. The ground signature of the final configuration is calculated by using a state-of-the-art computational-fluid-dynamics-based boom analysis method that generates accurate midfield pressure distributions for propagation to the ground with ray tracing. The ground signature that is propagated from a midfield pressure distribution has a shaped ramp front, which is similar to the ground signature that is propagated from the computational fluid dynamics equivalent-area distribution. This result supports the validity of low-boom supersonic configuration design by matching a low-boom equivalent-area target, which is easier to accomplish than matching a low-boom midfield pressure target.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mittal, Sparsh; Zhang, Zhao

    With each CMOS technology generation, leakage energy consumption has been dramatically increasing and hence, managing leakage power consumption of large last-level caches (LLCs) has become a critical issue in modern processor design. In this paper, we present EnCache, a novel software-based technique which uses dynamic profiling-based cache reconfiguration for saving cache leakage energy. EnCache uses a simple hardware component called profiling cache, which dynamically predicts energy efficiency of an application for 32 possible cache configurations. Using these estimates, system software reconfigures the cache to the most energy efficient configuration. EnCache uses dynamic cache reconfiguration and hence, it does not requiremore » offline profiling or tuning the parameter for each application. Furthermore, EnCache optimizes directly for the overall memory subsystem (LLC and main memory) energy efficiency instead of the LLC energy efficiency alone. The experiments performed with an x86-64 simulator and workloads from SPEC2006 suite confirm that EnCache provides larger energy saving than a conventional energy saving scheme. For single core and dual-core system configurations, the average savings in memory subsystem energy over a shared baseline configuration are 30.0% and 27.3%, respectively.« less

  6. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  7. Small Engine Component Technology (SECT) studies

    NASA Technical Reports Server (NTRS)

    Meyer, P. K.; Harbour, L.

    1986-01-01

    A study was conducted to identify component technology requirements for small, expendable gas turbine engines that would result in substantial improvements in performance and cost by the year 2000. A subsonic, 2600 nautical mile (4815 km) strategic cruise missile mission was selected for study. A baseline (state-of-the-art) engine and missile configuration were defined to evaluate the advanced technology engines. Two advanced technology engines were configured and evaluated using advanced component efficiencies and ceramic composite materials; a 22:1 overall pressure ratio, 3.85 bypass ratio twin-spool turbofan; and an 8:1 overall pressure, 3.66 bypass ratio, single-spool recuperated turbofan with 0.85 recuperator effectiveness. Results of mission analysis indicated a reduction in fuel burn of 38 and 47 percent compared to the baseline engine when using the advanced turbofan and recuperated turbofan, respectively. While use of either advanced engine resulted in approximately a 25 percent reduction in missile size, the unit life cycle (LCC) cost reduction of 56 percent for the advanced turbofan relative to the baseline engine gave it a decisive advantage over the recuperated turbofan with 47 percent LCC reduction. An additional range improvement of 10 percent results when using a 56 percent loaded carbon slurry fuel with either engine. These results can be realized only if significant progress is attained in the fields of solid lubricated bearings, small aerodynamic component performance, composite ceramic materials and integration of slurry fuels. A technology plan outlining prospective programs in these fields is presented.

  8. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 2, Part 2; Space Station Freedom Advanced Development Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems. This publication consists of two volumes. Volume 1 contains the results of the advanced system studies with the emphasis on reference evolution configurations, system design requirements and accommodations, and long-range technology projections. Volume 2 reports on advanced development tasks within the Transition Definition Program. Products of these tasks include: engineering fidelity demonstrations and evaluations on Station development testbeds and Shuttle-based flight experiments; detailed requirements and performance specifications which address advanced technology implementation issues; and mature applications and the tools required for the development, implementation, and support of advanced technology within the Space Station Freedom Program.

  9. Recent advances in plasma devices based on plasma lens configuration for manipulating high-current heavy ion beams.

    PubMed

    Dobrovolskiy, A; Dunets, S; Evsyukov, A; Goncharov, A; Gushenets, V; Litovko, I; Oks, E

    2010-02-01

    We describe new results of development of novel generation cylindrical plasma devices based on the electrostatic plasma lens configuration and concept of electrons magnetic insulation. The crossed electric and magnetic fields plasma lens configuration provides us with the attractive and suitable method for establishing a stable plasma discharge at low pressure. Using plasma lens configuration in this way some cost-effective plasma devices were developed for ion treatment and deposition of exotic coatings and the effective lens was first proposed for manipulating high-current beams of negatively charged particles. Here we describe operation and features of these plasma devices, and results of theoretical consideration of mechanisms determining their optimal operation conditions.

  10. Information risk and security modeling

    NASA Astrophysics Data System (ADS)

    Zivic, Predrag

    2005-03-01

    This research paper presentation will feature current frameworks to addressing risk and security modeling and metrics. The paper will analyze technical level risk and security metrics of Common Criteria/ISO15408, Centre for Internet Security guidelines, NSA configuration guidelines and metrics used at this level. Information IT operational standards view on security metrics such as GMITS/ISO13335, ITIL/ITMS and architectural guidelines such as ISO7498-2 will be explained. Business process level standards such as ISO17799, COSO and CobiT will be presented with their control approach to security metrics. Top level, the maturity standards such as SSE-CMM/ISO21827, NSA Infosec Assessment and CobiT will be explored and reviewed. For each defined level of security metrics the research presentation will explore the appropriate usage of these standards. The paper will discuss standards approaches to conducting the risk and security metrics. The research findings will demonstrate the need for common baseline for both risk and security metrics. This paper will show the relation between the attribute based common baseline and corporate assets and controls for risk and security metrics. IT will be shown that such approach spans over all mentioned standards. The proposed approach 3D visual presentation and development of the Information Security Model will be analyzed and postulated. Presentation will clearly demonstrate the benefits of proposed attributes based approach and defined risk and security space for modeling and measuring.

  11. Influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostrovskaya, G. V., E-mail: galya-ostr@mail.ru; Markov, V. S.; Frank, A. G., E-mail: annfrank@fpl.gpi.ru

    The influence of the initial parameters of the magnetic field and plasma on the spatial structure of the electric current and electron density in current sheets formed in helium plasma in 2D and 3D magnetic configurations with X-type singular lines is studied by the methods of holographic interferometry and magnetic measurements. Significant differences in the structures of plasma and current sheets formed at close parameters of the initial plasma and similar configurations of the initial magnetic fields are revealed.

  12. Navigation Assistance: A Trade-Off between Wayfinding Support and Configural Learning Support

    ERIC Educational Resources Information Center

    Munzer, Stefan; Zimmer, Hubert D.; Baus, Jorg

    2012-01-01

    Current GPS-based mobile navigation assistance systems support wayfinding, but they do not support learning about the spatial configuration of an environment. The present study examined effects of visual presentation modes for navigation assistance on wayfinding accuracy, route learning, and configural learning. Participants (high-school students)…

  13. Why Teach the Electron Configuration of the Elements as We Do?

    ERIC Educational Resources Information Center

    Millikan, Roger C.

    1982-01-01

    Discusses pros and cons of current methods of teaching electron configurations of elements. Offers alternative instructional strategies, suggesting that although tables of electron configurations are useful and in conjunction with periodic tables may help solve many problems, they should be included as reference material. (Author/JN)

  14. M-I-S solar cell - Theory and experimental results

    NASA Technical Reports Server (NTRS)

    Childs, R.; Fortuna, J.; Geneczko, J.; Fonash, S. J.

    1976-01-01

    The paper presents an operating-mode analysis of an MIS solar cell and discusses the advantages which can arise as a result of the use of transport control, field shaping (increased n factor), and zero bias barrier height modification. It is noted that for an n-type semiconductor, it is relatively easy to obtain an enhanced n factor using acceptor-like states without an increase in diode saturation current, the converse being true for p-type semiconductors. Several MIS configurations are examined: an acceptor-like, localized state configuration producing field shaping and no change in diode saturation current, and acceptor-like localized configurations producing field shaping, with a decrease of diode saturation current, in one case, and an increase in the other.

  15. Report of the DOE Review Committee on the baseline validation of the Superconducting Super Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    The Secretary of Energy directed that an independent review of the current cost and schedule baseline for the SSC be conducted. The purpose of this independent review was to validate the current cost and schedule baseline and to ensure that the project status is accurate as currently reported. Through May 1993, approximately $1.5 billion of the baseline cost of $8.249 billion had been expended, with project completion forecasted on the baseline schedule as of September 1999. This report documents the findings of the SSC Baseline Validation Review Committee (the Committee). The report is organized into five parts. The first sectionmore » is the Executive Summary. This introduction is followed by a discussion of the project progress/status as determined by the Committee. The next section describes the Committee`s estimate of the cost at completion for the SSC project, followed by an assessment of the adequacy of the business management systems currently being used to manage the project. The final section presents the Committee`s conclusions and recommendations. The main body of the report is followed by the subcommittee reports and appendices.« less

  16. Shuttle/Agena study. Volume 2, part 2: Agena tug configurations, Shuttle/Agena interface, performance, safety, cost

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An evaluation of the compatibility of the space shuttle and Agena rocket vehicle was conducted. The Agena space tug configuration design is described in terms of the total vehicle system as well as the individual subsystems and major assemblies and components. The complete interface between the Agena space tug and the space shuttle orbiter is defined for in-flight and ground operations. The derivation and design of an evolutionary stage is also presented. This vehicle conforms to the same guidelines and interface requirements as the Agena space tug. Performance data developed for both vehicles for each of the three study baseline missions are included.

  17. Aerodynamic effects of moveable sidewall nozzle geometry and rotor exit restriction on the performance of a radial turbine

    NASA Technical Reports Server (NTRS)

    Rogo, C.; Hajek, T.; Roelke, R.

    1983-01-01

    Attention is given to the experimental results obtained with a high work capacity radial inflow turbine of known performance, whose baseline configuration was modified to accept a variety of movable nozzle sidewall, diffusing or accelerating rotor inlet ramp, and rotor exit restriction ring combinations. The performance of this variable geometry turbine was measured at constant speed and pressure ratio for 31 different test configurations, yielding test data over a nozzle area range from 50 to 100 percent of maximum depending on the movement of the nozzle assembly's forward and rearward sidewalls. Performance comparisons with data for a variable stagger angle vane concept indicate the present system's viability.

  18. Results from the search for eV-sterile neutrinos with IceCube

    NASA Astrophysics Data System (ADS)

    Argüelles, Carlos A.; IceCube Collaboration

    2017-09-01

    The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy. Using IceCubes full detector configuration we have performed searches for eV-scale sterile neutrinos. Such a sterile neutrino, motivated by the anomalies observed in short-baseline experiments, is expected to have a significant effect on {\\bar{ν }}μ survival probability due to matter-induced resonant effects for energies of order 1 TeV. This effect makes this search unique and sensitive to small sterile mixing angle values. This work comprises results obtained using up-going muon neutrinos taken with one year of full detector configuration.

  19. Brain regions sensitive to the face inversion effect: a functional magnetic resonance imaging study in humans.

    PubMed

    Leube, Dirk T; Yoon, Hyo Woon; Rapp, Alexander; Erb, Michael; Grodd, Wolfgang; Bartels, Mathias; Kircher, Tilo T J

    2003-05-22

    Perception of upright faces relies on configural processing. Therefore recognition of inverted, compared to upright faces is impaired. In a functional magnetic resonance imaging experiment we investigated the neural correlate of a face inversion task. Thirteen healthy subjects were presented with a equal number of upright and inverted faces alternating with a low level baseline with an upright and inverted picture of an abstract symbol. Brain activation was calculated for upright minus inverted faces. For this differential contrast, we found a signal change in the right superior temporal sulcus and right insula. Configural properties are processed in a network comprising right superior temporal and insular cortex.

  20. Applicability of the control configured design approach to advanced earth orbital transportation systems

    NASA Technical Reports Server (NTRS)

    Hepler, A. K.; Zeck, H.; Walker, W. H.; Shafer, D. E.

    1978-01-01

    The applicability of the control configured design approach (CCV) to advanced earth orbital transportation systems was studied. The baseline system investigated was fully reusable vertical take-off/horizontal landing single-stage-to-orbit vehicle and had mission requirements similar to the space shuttle orbiter. Technical analyses were made to determine aerodynamic, flight control and subsystem design characteristics. Figures of merit were assessed on vehicle dry weight and orbital payload. The results indicated that the major parameters for CCV designs are hypersonic trim, aft center of gravity, and control surface heating. Optimized CCV designs can be controllable and provide substantial payload gains over conventional non-CCV design vertical take-off vehicles.

  1. Project NEO Specific Impulse Testing Solutions

    NASA Technical Reports Server (NTRS)

    Baffa, Bill

    2018-01-01

    The Neo test stand is currently configured to fire a horizontally mounted rocket motor with up to 6500 lbf thrust. Currently, the Neo test stand can measure flow of liquid propellant and oxidizer, pressures residing in the closed system up to the combustion chamber. The current configuration does not have the ability to provide all data needed to compute specific impulse. This presents three methods to outfit the NEO test fixture with instrumentation allowing for calculation of specific impulse.

  2. Improvement on the Repair Effect of Electrochemical Chloride Extraction Using a Modified Electrode Configuration

    PubMed Central

    Feng, Wei; Xu, Jinxia; Jiang, Linhua; Song, Yingbin; Cao, Yalong; Tan, Qiping

    2018-01-01

    To improve the repair effect of electrochemical chloride extraction, a modified electrode configuration is applied in this investigation. In this configuration, two auxiliary electrodes placed in the anodic and cathodic electrolytes were used as the anode and cathode, respectively. Besides this, the steel in the mortar was grounded to protect it from corrosion. By a comparative experiment, the potential evolution, various ions concentrations (Cl−, OH−, Na+, and K+) in different mortar depths, the corrosion potential, and the current density of the steel were measured. The results indicate that compared to electrochemical chloride extraction with the traditional electrode configuration, this electrochemical chloride extraction method with a modified electrode configuration has a similar chloride removal ratio. Besides this, potential of steel is just about 800 mV for a saturated calomel electrode (SCE) during the treatment, which did not reach the hydrogen evolution potential. The phenomenon of the accumulation of OH−, Na+, and K+ did not occur when the modified electrode configuration is applied. Additionally, higher corrosion potentials and lower corrosion current rates were measured after performing electrochemical chloride extraction with the modified electrode configuration. Additionally, it is a short period of time for the steel to go from activation to passivation. On this basis, the modified electrode configuration may overcome the drawbacks of electrochemical chloride extraction. PMID:29389855

  3. Simulations of stellar winds and planetary bodies: Magnetized obstacles in a super-Alfvénic flow with southward IMF

    NASA Astrophysics Data System (ADS)

    Vernisse, Y.; Riousset, J. A.; Motschmann, U.; Glassmeier, K.-H.

    2018-03-01

    This study addresses the issue of the electromagnetic interactions between a stellar wind and planetary magnetospheres with various dipole field strengths by means of hybrid simulations. Focus is placed on the configuration where the upstream plasma magnetic field is parallel to the planetary magnetic moment (also called "Southward-IMF" configuration), leading to anti-parallel magnetic fields in the dayside interaction region. Each type of plasma interaction is characterized by means of currents flowing in the interaction region. Reconnection triggered in the tail in such configuration is shown to affect significantly the structure of the magnetotail at early stages. On the dayside, only the magnetopause current is observable for moderate planetary dipole field amplitude, while both bow-shock and magnetotail currents are identifiable downtail from the terminator. Strong differences in term of temperature for ions are particularly noticeable in the magnetosheath and in the magnetotail, when the present results are compared with our previous study, which focused on "Northward-IMF" configuration.

  4. CHI Research on NSTX-U

    NASA Astrophysics Data System (ADS)

    Lay, W.-S.; Raman, R.; Jarboe, T. R.; Nelson, B. A.; Mueller, D.; Ebrahimi, F.; Ono, M.; Jardin, S. C.; Taylor, G.

    2017-10-01

    At present about 20% of the total plasma current required for sustained operation has been generated by transient CHI. The present understanding suggests that it may be possible to generate all of the needed current in a ST / tokamak using transient CHI. In such a scenario, one could transition directly from a CHI produced plasma to a non-inductively sustained plasma, without the difficult intermediate step that involves non-inductive current ramp-up. STs based on this new configuration would take advantage of evolving developments in high-temperature superconductor technology to develop a simpler design ST that relies primarily on CHI for plasma current generation. Motivated by the very good results from NSTX and HIT-II, we are examining the potential application of transient CHI for reactor configurations through these studies. (1) Study of the maximum levels of start-up currents that could be generated on NSTX-U, (2) application of a single biased electrode configuration on QUEST to protect the insulator from neutron damage in a CHI reactor installation, and (3) QUEST-like, but a double biased electrode configuration for PEGASUS and NSTX-U. Results from these on-going studies will be described. This work is supported by U.S. DOE Contracts: DE-AC02-09CH11466, DE-FG02-99ER54519 AM08, and DE-SC0006757.

  5. Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode.

    PubMed

    Chen, Horng-Shyang; Liu, Zhan Hui; Shih, Pei-Ying; Su, Chia-Ying; Chen, Chih-Yen; Lin, Chun-Han; Yao, Yu-Feng; Kiang, Yean-Woei; Yang, C C

    2014-04-07

    A reverse-biased voltage is applied to either device in the vertical configuration of two light-emitting diodes (LEDs) grown on patterned and flat Si (110) substrates with weak and strong quantum-confined Stark effects (QCSEs), respectively, in the InGaN/GaN quantum wells for independently controlling the applied voltage across and the injection current into the p-i-n junction in the lateral configuration of LED operation. The results show that more carrier supply is needed in the LED of weaker QCSE to produce a carrier screening effect for balancing the potential tilt in increasing the forward-biased voltage, when compared with the LED of stronger QCSE. The small spectral shift range in increasing injection current in the LED of weaker QCSE is attributed not only to the weaker QCSE, but also to its smaller device resistance such that a given increment of applied voltage leads to a larger increment of injection current. From a viewpoint of practical application in LED operation, by applying a reverse-biased voltage in the vertical configuration, the applied voltage and injection current in the lateral configuration can be independently controlled by adjusting the vertical voltage for keeping the emission spectral peak fixed.

  6. Study of Semi-Span Model Testing Techniques

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; McGhee, Robert J.

    1996-01-01

    An investigation has been conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel in order to further the development of semi-span testing capabilities. A twin engine, energy efficient transport (EET) model with a four-element wing in a takeoff configuration was used for this investigation. Initially a full span configuration was tested and force and moment data, wing and fuselage surface pressure data, and fuselage boundary layer measurements were obtained as a baseline data set. The semi-span configurations were then mounted on the wind tunnel floor, and the effects of fuselage standoff height and shape as well as the effects of the tunnel floor boundary layer height were investigated. The effectiveness of tangential blowing at the standoff/floor juncture as an active boundary-layer control technique was also studied. Results indicate that the semi-span configuration was more sensitive to variations in standoff height than to variations in floor boundary layer height. A standoff height equivalent to 30 percent of the fuselage radius resulted in better correlation with full span data than no standoff or the larger standoff configurations investigated. Undercut standoff leading edges or the use of tangential blowing in the standoff/ floor juncture improved correlation of semi-span data with full span data in the region of maximum lift coefficient.

  7. A condition for small bootstrap current in three-dimensional toroidal configurations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mikhailov, M. I., E-mail: mikhaylov-mi@nrcki.ru; Nührenberg, J.; Zille, R.

    2016-11-15

    It is shown that, if the maximum of the magnetic field strength on a magnetic surface in a threedimensional magnetic confinement configuration with stellarator symmetry constitutes a line that is orthogonal to the field lines and crosses the symmetry line, then the bootstrap current density is smaller compared to that in quasi-axisymmetric (qa) [J. Nührenberg et al., in Proc. of Joint Varenna−Lausanne Int. Workshop on Theory of Fusion Plasmas, Varenna, 1994, p. 3] and quasi-helically (qh) symmetric [J. Nührenberg and R. Zille, Phys. Lett. A 129, 113 (1988)] configurations.

  8. Active thermal control system evolution

    NASA Technical Reports Server (NTRS)

    Petete, Patricia A.; Ames, Brian E.

    1991-01-01

    The 'restructured' baseline of the Space Station Freedom (SSF) has eliminated many of the growth options for the Active Thermal Control System (ATCS). Modular addition of baseline technology to increase heat rejection will be extremely difficult. The system design and the available real estate no longer accommodate this type of growth. As the station matures during its thirty years of operation, a demand of up to 165 kW of heat rejection can be expected. The baseline configuration will be able to provide 82.5 kW at Eight Manned Crew Capability (EMCC). The growth paths necessary to reach 165 kW have been identified. Doubling the heat rejection capability of SSF will require either the modification of existing radiator wings or the attachment of growth structure to the baseline truss for growth radiator wing placement. Radiator performance can be improved by enlarging the surface area or by boosting the operating temperature with a heat pump. The optimal solution will require both modifications. The addition of growth structure would permit the addition of a parallel ATCS using baseline technology. This growth system would simplify integration. The feasibility of incorporating these growth options to improve the heat rejection capacity of SSF is under evaluation.

  9. Site systems engineering fiscal year 1999 multi-year work plan (MYWP) update for WBS 1.8.2.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRYGIEL, M.L.

    1998-10-08

    Manage the Site Systems Engineering process to provide a traceable integrated requirements-driven, and technically defensible baseline. Through the Site Integration Group(SIG), Systems Engineering ensures integration of technical activities across all site projects. Systems Engineering's primary interfaces are with the RL Project Managers, the Project Direction Office and with the Project Major Subcontractors, as well as with the Site Planning organization. Systems Implementation: (1) Develops, maintains, and controls the site integrated technical baseline, ensures the Systems Engineering interfaces between projects are documented, and maintain the Site Environmental Management Specification. (2) Develops and uses dynamic simulation models for verification of the baselinemore » and analysis of alternatives. (3) Performs and documents fictional and requirements analyses. (4) Works with projects, technology management, and the SIG to identify and resolve technical issues. (5) Supports technical baseline information for the planning and budgeting of the Accelerated Cleanup Plan, Multi-Year Work Plans, Project Baseline Summaries as well as performance measure reporting. (6) Works with projects to ensure the quality of data in the technical baseline. (7) Develops, maintains and implements the site configuration management system.« less

  10. Computational and Experimental Flow Field Analyses of Separate Flow Chevron Nozzles and Pylon Interaction

    NASA Technical Reports Server (NTRS)

    Massey, Steven J.; Thomas, Russell H.; AbdolHamid, Khaled S.; Elmiligui, Alaa A.

    2003-01-01

    A computational and experimental flow field analyses of separate flow chevron nozzles is presented. The goal of this study is to identify important flow physics and modeling issues required to provide highly accurate flow field data which will later serve as input to the Jet3D acoustic prediction code. Four configurations are considered: a baseline round nozzle with and without a pylon, and a chevron core nozzle with and without a pylon. The flow is simulated by solving the asymptotically steady, compressible, Reynolds-averaged Navier-Stokes equations using an implicit, up-wind, flux-difference splitting finite volume scheme and standard two-equation kappa-epsilon turbulence model with a linear stress representation and the addition of a eddy viscosity dependence on total temperature gradient normalized by local turbulence length scale. The current CFD results are seen to be in excellent agreement with Jet Noise Lab data and show great improvement over previous computations which did not compensate for enhanced mixing due to high temperature gradients.

  11. Global cost and weight evaluation of fuselage keel design concepts

    NASA Technical Reports Server (NTRS)

    Flynn, B. W.; Morris, M. R.; Metschan, S. L.; Swanson, G. D.; Smith, P. J.; Griess, K. H.; Schramm, M. R.; Humphrey, R. J.

    1993-01-01

    The Boeing program entitled Advanced Technology Composite Aircraft Structure (ATCAS) is focused on the application of affordable composite technology to pressurized fuselage structure of future aircraft. As part of this effort, a design study was conducted on the keel section of the aft fuselage. A design build team (DBT) approach was used to identify and evaluate several design concepts which incorporated different material systems, fabrication processes, structural configurations, and subassembly details. The design concepts were developed in sufficient detail to accurately assess their potential for cost and weight savings as compared with a metal baseline representing current wide body technology. The cost and weight results, along with an appraisal of performance and producibility risks, are used to identify a globally optimized keel design; one which offers the most promising cost and weight advantages over metal construction. Lastly, an assessment is given of the potential for further cost and weight reductions of the selected keel design during local optimization.

  12. Rapid Contingency Simulation Modeling of the NASA Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Betts, Kevin M.; Rutherford, R. Chad; McDuffie, James; Johnson, Matthew D.

    2007-01-01

    The NASA Crew Launch Vehicle is a two-stage orbital launcher designed to meet NASA's current as well as future needs for human space flight. In order to free the designers to explore more possibilities during the design phase, a need exists for the ability to quickly perform simulation on both the baseline vehicle as well as the vehicle after proposed changes due to mission planning, vehicle configuration and avionics changes, proposed new guidance and control algorithms, and any other contingencies the designers may wish to consider. Further, after the vehicle is designed and built, the need will remain for such analysis in the event of future mission planning. An easily reconfigurable, modular, nonlinear six-degree-of-freedom simulation matching NASA Marshall's in-house high-fidelity simulator is created with the ability to quickly perform simulation and analysis of the Crew Launch Vehicle throughout the entire launch profile. Simulation results are presented and discussed, and an example comparison fly-off between two candidate controllers is presented.

  13. Correlation of the CME Productivity of Solar Active Regions with Measures of their Global Nonpotentiality from Vector Magnetograms: Baseline Results

    NASA Technical Reports Server (NTRS)

    Falconer, David A.; Moore, Ron L.; Gary, G. Allen; Six, N. Frank (Technical Monitor)

    2001-01-01

    From conventional magnetograms and chromospheric and coronal images, it is known qualitatively that the fastest coronal mass ejections (CMEs) are magnetic explosions from sunspot active regions in which the magnetic field is globally strongly sheared and twisted from its minimum-energy potential configuration. In this paper, we present measurements from active-region vector magnetograms that begin to quantify the dependence of the CME productivity of an active region on the global nonpotentiality of its magnetic field. From each of 17 magnetograms of 12 bipolar active regions, we obtain a measure of the size of the active region (the magnetic flux content, phi) and three different measures of the global nonpotentiality (L(sub SS), the length of strong-shear, strong-field main neutral line; I(sub N), the net electric current arching from one polarity to the other; and alpha = muI(subN/phi), a flux-normalized measure of the field twist).

  14. Membrane Distillation Bioreactor (MDBR) - A lower Green-House-Gas (GHG) option for industrial wastewater reclamation.

    PubMed

    Goh, Shuwen; Zhang, Jinsong; Liu, Yu; Fane, Anthony G

    2015-12-01

    A high-retention membrane bioreactor system, the Membrane Distillation Bioreactor (MDBR) is a wastewater reclamation process which has the potential to tap on waste heat generated in industries to produce high quality product water. There are a few key factors which could make MDBR an attractive advanced treatment option, namely tightening legal requirements due to increasing concerns on the micropollutants in industrial wastewater effluents as well as concerns over the electrical requirement of pressurized advanced treatment processes and greenhouse gas emissions associated with wastewater reclamation. This paper aims to provide a consolidated review on the current state of research for the MDBR system and to evaluate the system as a possible lower Green House Gas (GHG) emission option for wastewater reclamation using the membrane bioreactor-reverse osmosis (MBR-RO) system as a baseline for comparison. The areas for potential applications and possible configurations for MDBR applications are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The asteroid rendezvous spacecraft. An adaptation study of TIROS/DMSP technology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The feasibility of using the TIROS/DMSP Earth orbiting meteorological satellite in application to a near Earth asteroid rendezvous mission. System and subsystems analysis was carried out to develop a configuration of the spacecraft suitable for this mission. Mission analysis studies were also done and maneuver/rendezvous scenarios developed for baseline missions to both Anteros and Eros. The fact that the Asteroid mission is the most complex of the Pioneer class missions currently under consideration notwithstanding, the basic conclusion very strongly supports the suitability of the basic TIROS bus for this mission in all systems and subsystems areas, including science accommodation. Further, the modifications which are required due to the unique mission are very low risk and can be accomplished readily. The key issue is that in virtually every key subsystem, the demands of the Asteroid mission are a subset of the basic meteorological satellite mission. This allows a relatively simple reconfiguration to be accomplished without a major system redesign.

  16. Aerodynamic drag reduction tests on a box-shaped vehicle

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.; Sandlin, D. R.

    1981-01-01

    The intent of the present experiment is to define a near optimum value of drag coefficient for a high volume type of vehicle through the use of a boattail, on a vehicle already having rounded front corners and an underbody seal, or fairing. The results of these tests will constitute a baseline for later follow-on studies to evaluate candidate methods of obtaining afterbody drag coefficients approaching the boattail values, but without resorting to such impractical afterbody extensions. The current modifications to the box-shaped vehicle consisted of a full and truncated boattail in conjunction with the faired and sealed underbody. Drag results from these configurations are compared with corresponding wind tunnel results of a 1/10 scale model. Test velocities ranged up to 96.6 km/h (60 mph) and the corresponding Reynolds numbers ranged up to 1.3 x 10 to the 7th power based on the vehicles length which includes the boattail. A simple coast-down technique was used to define drag.

  17. Space station freedom resource nodes internal thermal control system

    NASA Technical Reports Server (NTRS)

    Merhoff, Paul; Dellinger, Brent; Taggert, Shawn; Cornwell, John

    1993-01-01

    This paper presents an overview of the design and operation of the internal thermal control system (ITCS) developed for Space Station Freedom by the NASA-Johnson Space Center and McDonnell Douglas Aerospace to provide cooling for the resource nodes, airlock, and pressurized logistics modules. The ITCS collects, transports and rejects waste heat from these modules by a dual-loop, single-phase water cooling system. ITCS performance, cooling, and flow rate requirements are presented. An ITCS fluid schematic is shown and an overview of the current baseline system design and its operation is presented. Assembly sequence of the ITCS is explained as its configuration develops from Man Tended Capability (MTC), for which node 2 alone is cooled, to Permanently Manned Capability (PMC) where the airlock, a pressurized logistics module, and node 1 are cooled, in addition to node 2. A SINDA/FLUINT math model of the ITCS is described, and results of analyses for an MTC and a PMC case are shown and discussed.

  18. Imaging biomarkers of angiogenesis and the microvascular environment in cerebral tumours

    PubMed Central

    Thompson, G; Mills, S J; Coope, D J; O’connor, J P B; Jackson, A

    2011-01-01

    Conventional contrast-enhanced CT and MRI are now in routine clinical use for the diagnosis, treatment and monitoring of diseases in the brain. The presence of contrast enhancement is a proxy for the pathological changes that occur in the normally highly regulated brain vasculature and blood-brain barrier. With recognition of the limitations of these techniques, and a greater appreciation for the nuanced mechanisms of microvascular change in a variety of pathological processes, novel techniques are under investigation for their utility in further interrogating the microvasculature of the brain. This is particularly important in tumours, where the reliance on angiogenesis (new vessel formation) is crucial for tumour growth, and the resulting microvascular configuration and derangement has profound implications for diagnosis, treatment and monitoring. In addition, novel therapeutic approaches that seek to directly modify the microvasculature require more sensitive and specific biological markers of baseline tumour behaviour and response. The currently used imaging biomarkers of angiogenesis and brain tumour microvascular environment are reviewed. PMID:22433824

  19. Development of non-destructive evaluation system using an HTS-SQUID gradiometer for magnetized materials

    NASA Astrophysics Data System (ADS)

    Kawano, J.; Tsukamoto, A.; Adachi, S.; Oshikubo, Y.; Hato, T.; Tanabe, K.; Okamura, T.

    We have developed a new eddy-current non-destructive evaluation (NDE) system using an HTS SQUID gradiometer with the aim of applying it to practical materials with magnetization. The new NDE system employs a LN2-cooled external Cu pickup coil and an HTS SQUID chip placed in a magnetic shield made of HTS material. The HTS SQUID chip consists of an HTS planar gradiometer manufactured by using a ramp-edge junction technology and a multi-turn HTS thin film input coil coupled with the flip-chip configuration. The first-order coaxial gradiometric Cu pickup coil with a diameter of 16 mm and the baseline of 5.6 mm was used in the present NDE experiments. By using this NDE system, we could observe defect-induced magnetic signals without an appreciable influence of magnetization up to 10 mT. We also examined the ability of detecting deep-lying defects and compared with the results obtained using our previous NDE system.

  20. Sikorsky Aircraft Advanced Rotorcraft Transmission (ART) program

    NASA Technical Reports Server (NTRS)

    Kish, Jules G.

    1993-01-01

    The objectives of the Advanced Rotorcraft Transmission program were to achieve a 25 percent weight reduction, a 10 dB noise reduction, and a 5,000 hour mean time between removals (MTBR). A three engine Army Cargo Aircraft (ACA) of 85,000 pounds gross weight was used as the baseline. Preliminary designs were conducted of split path and split torque transmissions to evaluate weight, reliability, and noise. A split path gearbox was determined to be 23 percent lighter, greater than 10 dB quieter, and almost four times more reliable than the baseline two stage planetary design. Detail design studies were conducted of the chosen split path configuration, and drawings were produced of a 1/2 size gearbox consisting of a single engine path of the split path section. Fabrication and testing was then conducted on the 1/2 size gearbox. The 1/2 size gearbox testing proved that the concept of the split path gearbox with high reduction ratio double helical output gear was sound. The improvements were attributed to extensive use of composites, spring clutches, advanced high hot hardness gear steels, the split path configuration itself, high reduction ratio, double helical gearing on the output stage, elastomeric load sharing devices, and elimination of accessory drives.

  1. Comparing a Fischer-Tropsch Alternate Fuel to JP-8 and Their 50-50 Blend: Flow and Flame Visualization Results

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, M.

    2013-01-01

    Combustion performance of a Fischer-Tropsch (FT) jet fuel manufactured by Sasol was compared to JP-8 and a 50-50 blend of the two fuels, using the NASA/Woodward 9 point Lean Direct Injector (LDI) in its baseline configuration. The baseline LDI configuration uses 60deg axial air-swirlers, whose vanes generate clockwise swirl, in the streamwise sense. For all cases, the fuel-air equivalence ratio was 0.455, and the combustor inlet pressure and pressure drop were 10-bar and 4 percent. The three inlet temperatures used were 828, 728, and 617 K. The objectives of this experiment were to visually compare JP-8 flames with FT flames for gross features. Specifically, we sought to ascertain in a simple way visible luminosity, sooting, and primary flame length of the FT compared to a standard JP grade fuel. We used color video imaging and high-speed imaging to achieve these goals. The flame color provided a way to qualitatively compare soot formation. The length of the luminous signal measured using the high speed camera allowed an assessment of primary flame length. It was determined that the shortest flames resulted from the FT fuel.

  2. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  3. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlisch, Jeffery J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle. In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight program computer model predictions with specific operating conditions.

  4. A Study of Standing Pressure Waves Within Open and Closed Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Daniels, C.; Steinetz, B.; Finkbeiner, J.; Raman, G.; Li, X.

    2002-01-01

    The first section of the results presented herein was conducted on an axisymmetric resonator configured with open ventilation ports on either end of the resonator, but otherwise closed and free from obstruction. The remaining section presents the results of a similar resonator shape that was closed, but contained an axisymmetric blockage centrally located through the axis of the resonator. Ambient air was used as the working fluid. In each of the studies, the resonator was oscillated at the resonant frequency of the fluid contained within the cavity while the dynamic pressure, static pressure, and temperature of the fluid were recorded at both ends of the resonator. The baseline results showed a marked reduction in the amplitude of the dynamic pressure waveforms over previous studies due to the use of air instead of refrigerant as the working fluid. A sharp reduction in the amplitude of the acoustic pressure waves was expected and recorded when the configuration of the resonators was modified from closed to open. A change in the resonant frequency was recorded when blockages of differing geometries were used in the closed resonator, while acoustic pressure amplitudes varied little from baseline measurements.

  5. Reduced Pressure Cabin Testing of the Orion Atmosphere Revitalization Technology

    NASA Technical Reports Server (NTRS)

    Button, Amy B.; Sweterlitsch, Jeffrey J.

    2013-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by United Technologies Corp. Aerospace Systems (UTAS, formerly Hamilton Sundstrand) and baselined for the Atmosphere Revitalization System for moderate duration missions of the Orion Multipurpose Crew Vehicle (MPCV). In previous years at this conference, reports were presented on extensive Johnson Space Center testing of this technology in a sea-level pressure environment with simulated and actual human metabolic loads in both open and closed-loop configurations. In 2011, the technology was tested in an open cabin-loop configuration at ambient and two sub-ambient pressures to compare the performance of the system to the results of previous tests at ambient pressure. The testing used a human metabolic simulator with a different type of water vapor generation than previously used, which added some unique challenges in the data analysis. This paper summarizes the results of: baseline and some matrix testing at all three cabin pressures, increased vacuum regeneration line pressure testing with a high metabolic load, a set of tests studying CO2 and water vapor co-adsorption effects relative to model-predicted performance, and validation tests of flight project computer model predictions with specific operating conditions.

  6. Subsonic panel method for designing wing surfaces from pressure distribution

    NASA Technical Reports Server (NTRS)

    Bristow, D. R.; Hawk, J. D.

    1983-01-01

    An iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical distribution of pressure. The calculations are initialized by using a surface panel method to analyze a baseline wing or wing-fuselage configuration. A first-order expansion to the baseline panel method equations is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter. In every iteration cycle, the matrix is used both to calculate the geometry perturbation and to analyze the perturbed geometry. The distribution of potential on the perturbed geometry is established by simple linear extrapolation from the baseline solution. The extrapolated potential is converted to pressure by Bernoulli's equation. Not only is the accuracy of the approach good for very large perturbations, but the computing cost of each complete iteration cycle is substantially less than one analysis solution by a conventional panel method.

  7. Beyond the Baseline: Proceedings of the Space Station Evolution Symposium. Volume 1, Part 2; Space Station Freedom

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report contains the individual presentations delivered at the Space Station Evolution Symposium in League City, Texas on February 6, 7, 8, 1990. Personnel responsible for Advanced Systems Studies and Advanced Development within the Space Station Freedom Program reported on the results of their work to date. Systems Studies presentations focused on identifying the baseline design provisions (hooks and scars) necessary to enable evolution of the facility to support changing space policy and anticipated user needs. Also emphasized were evolution configuration and operations concepts including on-orbit processing of space transfer vehicles. Advanced Development task managers discussed transitioning advanced technologies to the baseline program, including those near-term technologies which will enhance the safety and productivity of the crew and the reliability of station systems. Special emphasis was placed on applying advanced automation technology to ground and flight systems.

  8. Viper. [Design modification

    NASA Technical Reports Server (NTRS)

    Gilbert, L. E. Paul; Berry, Cassie; Lamborn, Dana; Murphy, Jack; Okelly, Chris

    1993-01-01

    A Viper aircraft was redesigned with a new airfoil and engine to verify if improvements can be made to the baseline configuration. The two major redesigning processes were: replacing the baseline aircraft's NACA 652-415 airfoil with an NLF 0414 Natural Laminar Flow airfoil, and the baseline aircraft's Lycoming 0-235 engine with a Teledyne Continental GR-36 rotary combustion engine. As a result of these changes: (1) the Viper aircraft becomes smaller in most respects (gross weight, wing platform area, and horizontal tail area); (2) overall drag of the aircraft decreased (due to reduction in area and the reduced drug of the new airfoil); (3) cruise velocity, the maximum rate of climb at sea level, and takeoff distance (but not landing distance) decreased; and (4) cost increased. Although the overall drag decreased, the performance remained about the same due to the reduced horsepower available from the Teledyne Continental engine.

  9. Numerical investigation of disruption characteristics for the snowflake divertor configuration in HL-2M

    NASA Astrophysics Data System (ADS)

    Xue, L.; Duan, X. R.; Zheng, G. Y.; Liu, Y. Q.; Pan, Y. D.; Yan, S. L.; Dokuka, V. N.; Lukash, V. E.; Khayrutdinov, R. R.

    2016-05-01

    Cold and hot vertical displacement events (VDEs) are frequently related to the disruption of vertically-elongated tokamaks. The weak poloidal magnetic field around the null-points of a snowflake divertor configuration may influence the vertical displacement process. In this paper, the major disruption with a cold VDE and the vertical disruption in the HL-2M tokamak are investigated by the DINA code. In order to better illustrate the effect from the weak poloidal field, a double-null snowflake configuration is compared with the standard divertor (SD) configuration under the same plasma parameters. Computational results show that the weak poloidal magnetic field can be partly beneficial for mitigating the vertical instability of the plasma under small perturbations. For major disruption, the peak poloidal halo current fraction is almost the same between the snowflake and the SD configurations. However, this fraction becomes much larger for the snowflake in the event of a hot VDE. Furthermore, during the disruption for a snowflake configuration, the distribution of electromagnetic force on a vacuum vessel gets more non-uniform during the current quench.

  10. Configuring Eclipse for GMAT Builds: Instructions for Windows Users, Rev. 0.3

    NASA Technical Reports Server (NTRS)

    Conway, Darrel J.

    2007-01-01

    This document provides instructions about how to configure the Eclipse IDE to build GMAT on Windows based PCs. The current instructions are preliminary; the Windows builds using Eclipse are currently a bit crude. These instructions are intended to give you enough information to get Eclipse setup to build wxWidgets based executables in general, and GMAT in particular.

  11. Power scaling and experimentally fitted model for broad area quantum cascade lasers in continuous wave operation

    NASA Astrophysics Data System (ADS)

    Suttinger, Matthew; Go, Rowel; Figueiredo, Pedro; Todi, Ankesh; Shu, Hong; Leshin, Jason; Lyakh, Arkadiy

    2018-01-01

    Experimental and model results for 15-stage broad area quantum cascade lasers (QCLs) are presented. Continuous wave (CW) power scaling from 1.62 to 2.34 W has been experimentally demonstrated for 3.15-mm long, high reflection-coated QCLs for an active region width increased from 10 to 20 μm. A semiempirical model for broad area devices operating in CW mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sublinearity of pulsed power versus current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall-plug efficiency can be achieved from 3.15 mm×25 μm devices with 21 stages of the same design, but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300 Å, pulsed rollover current density of 6 kA/cm2, and InGaAs waveguide layers, an optical power increase of 41% is projected. Finally, the model projects that power level can be increased to ˜4.5 W from 3.15 mm×31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  12. Continuous wave power scaling in high power broad area quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Suttinger, M.; Leshin, J.; Go, R.; Figueiredo, P.; Shu, H.; Lyakh, A.

    2018-02-01

    Experimental and model results for high power broad area quantum cascade lasers are presented. Continuous wave power scaling from 1.62 W to 2.34 W has been experimentally demonstrated for 3.15 mm-long, high reflection-coated 5.6 μm quantum cascade lasers with 15 stage active region for active region width increased from 10 μm to 20 μm. A semi-empirical model for broad area devices operating in continuous wave mode is presented. The model uses measured pulsed transparency current, injection efficiency, waveguide losses, and differential gain as input parameters. It also takes into account active region self-heating and sub-linearity of pulsed power vs current laser characteristic. The model predicts that an 11% improvement in maximum CW power and increased wall plug efficiency can be achieved from 3.15 mm x 25 μm devices with 21 stages of the same design but half doping in the active region. For a 16-stage design with a reduced stage thickness of 300Å, pulsed roll-over current density of 6 kA/cm2 , and InGaAs waveguide layers; optical power increase of 41% is projected. Finally, the model projects that power level can be increased to 4.5 W from 3.15 mm × 31 μm devices with the baseline configuration with T0 increased from 140 K for the present design to 250 K.

  13. Mesoscopic Vortex–Meissner currents in ring ladders

    NASA Astrophysics Data System (ADS)

    Haug, Tobias; Amico, Luigi; Dumke, Rainer; Kwek, Leong-Chuan

    2018-07-01

    Recent experimental progress have revealed Meissner and Vortex phases in low-dimensional ultracold atoms systems. Atomtronic setups can realize ring ladders, while explicitly taking the finite size of the system into account. This enables the engineering of quantized chiral currents and phase slips in between them. We find that the mesoscopic scale modifies the current. Full control of the lattice configuration reveals a reentrant behavior of Vortex and Meissner phases. Our approach allows a feasible diagnostic of the currents’ configuration through time-of-flight measurements.

  14. Magneto-optic current sensor

    DOEpatents

    Lanagan, Michael T.; Valsko-Vlasov, Vitalii K.; Fisher, Brandon L.; Welp, Ulrich

    2003-10-07

    An optical current transducer configured to sense current in the conductor is disclosed. The optical current transducer includes a light source and a polarizer that generates linearly polarized light received from a the light source. The light is communicated to a magneto-optic garnet that includes, among other elements, bismuth, iron and oxygen and is coupled to the conductor. The magneto-optic garnet is configured to rotate the polarization of the linearly polarized light received from the polarizer. The optical current transducer also includes an analyzer in optical communication with the magneto-optic garnet. The analyzer detects the rotation of the linearly polarized light caused by the magneto-optic garnet.

  15. Low profile, highly configurable, current sharing paralleled wide band gap power device power module

    DOEpatents

    McPherson, Brice; Killeen, Peter D.; Lostetter, Alex; Shaw, Robert; Passmore, Brandon; Hornberger, Jared; Berry, Tony M

    2016-08-23

    A power module with multiple equalized parallel power paths supporting multiple parallel bare die power devices constructed with low inductance equalized current paths for even current sharing and clean switching events. Wide low profile power contacts provide low inductance, short current paths, and large conductor cross section area provides for massive current carrying. An internal gate & source kelvin interconnection substrate is provided with individual ballast resistors and simple bolted construction. Gate drive connectors are provided on either left or right size of the module. The module is configurable as half bridge, full bridge, common source, and common drain topologies.

  16. Super sensitive UV detector using polymer functionalized nanobelts

    DOEpatents

    Wang, Zhong L; Lao, Changshi; Zhou, Jun

    2012-10-23

    An ultraviolet light sensor includes an elongated metal oxide nanostructure, a layer of an ultraviolet light-absorbing polymer, a current source and a current detector. The elongated metal oxide nanostructure has a first end and an opposite second end. The layer of an ultraviolet light-absorbing polymer is disposed about at least a portion of the metal oxide nanostructure. The current source is configured to provide electrons to the first end of the metal oxide nanostructure. The current detector is configured to detect an amount of current flowing through the metal oxide nanostructure. The amount of current flowing through the metal oxide nanostructure corresponds to an amount of ultraviolet light impinging on the metal oxide nanostructure.

  17. Current algebras, measures quasi-invariant under diffeomorphism groups, and infinite quantum systems with accumulation points

    NASA Astrophysics Data System (ADS)

    Sakuraba, Takao

    The approach to quantum physics via current algebra and unitary representations of the diffeomorphism group is established. This thesis studies possible infinite Bose gas systems using this approach. Systems of locally finite configurations and systems of configurations with accumulation points are considered, with the main emphasis on the latter. In Chapter 2, canonical quantization, quantization via current algebra and unitary representations of the diffeomorphism group are reviewed. In Chapter 3, a new definition of the space of configurations is proposed and an axiom for general configuration spaces is abstracted. Various subsets of the configuration space, including those specifying the number of points in a Borel set and those specifying the number of accumulation points in a Borel set are proved to be measurable using this axiom. In Chapter 4, known results on the space of locally finite configurations and Poisson measure are reviewed in the light of the approach developed in Chapter 3, including the approach to current algebra in the Poisson space by Albeverio, Kondratiev, and Rockner. Goldin and Moschella considered unitary representations of the group of diffeomorphisms of the line based on self-similar random processes, which may describe infinite quantum gas systems with clusters. In Chapter 5, the Goldin-Moschella theory is developed further. Their construction of measures quasi-invariant under diffeomorphisms is reviewed, and a rigorous proof of their conjectures is given. It is proved that their measures with distinct correlation parameters are mutually singular. A quasi-invariant measure constructed by Ismagilov on the space of configurations with accumulation points on the circle is proved to be singular with respect to the Goldin-Moschella measures. Finally a generalization of the Goldin-Moschella measures to the higher-dimensional case is studied, where the notion of covariance matrix and the notion of condition number play important roles. A rigorous construction of measures quasi-invariant under the group of diffeomorphisms of d-dimensional space stabilizing a point is given.

  18. Analysis of aeromedical retrieval coverage using elliptical isochrones: An evaluation of helicopter fleet size configurations in Scotland.

    PubMed

    Dodds, Naomi; Emerson, Philip; Phillips, Stephanie; Green, David R; Jansen, Jan O

    2017-03-01

    Trauma systems in remote and rural regions often rely on helicopter emergency medical services to facilitate access to definitive care. The siting of such resources is key, but often relies on simplistic modeling of coverage, using circular isochrones. Scotland is in the process of implementing a national trauma network, and there have been calls for an expansion of aeromedical retrieval capacity. The aim of this study was to analyze population and area coverage of the current retrieval service configuration, with three aircraft, and a configuration with an additional helicopter, in the North East of Scotland, using a novel methodology. Both overall coverage and coverage by physician-staffed aircraft, with enhanced clinical capability, were analyzed. This was a geographical analysis based on calculation of elliptical isochrones, which consider the "open-jaw" configuration of many retrieval flights. Helicopters are not always based at hospitals. We modeled coverage based on different outbound and inbound flights. Areally referenced population data were obtained from the Scottish Government. The current helicopter network configuration provides 94.2% population coverage and 59.0% area coverage. The addition of a fourth helicopter would marginally increase population coverage to 94.4% and area coverage to 59.1%. However, when considering only physician-manned aircraft, the current configuration provides only 71.7% population coverage and 29.4% area coverage, which would be increased to 91.1% and 51.2%, respectively, with a second aircraft. Scotland's current helicopter network configuration provides good population coverage for retrievals to major trauma centers, which would only be increased minimally by the addition of a fourth aircraft in the North East. The coverage provided by the single physician-staffed aircraft is more limited, however, and would be increased considerably by a second physician-staffed aircraft in the North East. Elliptical isochrones provide a useful means of modeling "open-jaw" retrieval missions and provide a more realistic estimate of coverage. Epidemiological study, level IV; therapeutic study, level IV.

  19. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    NASA Technical Reports Server (NTRS)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  20. Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration

    NASA Technical Reports Server (NTRS)

    Clark, John

    2010-01-01

    HPT blade unsteadiness in the presence of a downstream vane consistent with contra-rotation is characterized by strong interaction at the first harmonic of downstream vane passing. E An existing stage-and-one-half transonic turbine rig design was used as a baseline to investigate means of reducing such a blade-vane interaction. E Methods assessed included: Aerodynamic shaping of HPT blades 3D stacking of the downstream vane Steady pressure-side blowing E Of the methods assessed, a combination of vane bowing and steady pressure-side blowing produced the most favorable result. E Transonic turbine experiments are planned to assess predictive accuracy for the baseline turbine and any design improvements.

  1. The Role of Configural Processing in Face Classification by Race: An ERP Study

    PubMed Central

    Lv, Jing; Yan, Tianyi; Tao, Luyang; Zhao, Lun

    2015-01-01

    The current study investigated the time course of the other-race classification advantage (ORCA) in the subordinate classification of normally configured faces and distorted faces by race. Slightly distorting the face configuration delayed the categorization of own-race faces and had no conspicuous effects on other-race faces. The N170 was sensitive neither to configural distortions nor to faces' races. The P3 was enhanced for other-race than own-race faces and reduced by configural manipulation only for own-race faces. We suggest that the source of ORCA is the configural analysis applied by default while processing own-race faces. PMID:26733850

  2. Ion current in a magnetic neutral region - Generation of an incipient magnetopause

    NASA Technical Reports Server (NTRS)

    Whipple, E. C.; Silevitch, M. B.

    1982-01-01

    The current contributed by ions trapped in the vicinity of a magnetic X line is calculated. The three dimensional configuration of the neutral region is found to be critical in determining the current in that the escape mechanism and trapping times depend on the three-dimensional aspects. A trapping criterion is defined. In the neutral region the ions can gain substantial kinetic energy, and the current will change the X line configuration in such a way that there will be a positive feedback effect, rapidly forming an extended magnetopauselike structure for even very small incident plasma densities.

  3. HSX as an example of a resilient non-resonant divertor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bader, A.; Boozer, A. H.; Hegna, C. C.

    This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less

  4. HSX as an example of a resilient non-resonant divertor

    DOE PAGES

    Bader, A.; Boozer, A. H.; Hegna, C. C.; ...

    2017-03-16

    This study describes an initial description of the resilient divertor properties of quasi-symmetric (QS) stellarators using the HSX (Helically Symmetric eXperiment) configuration as a test-case. Divertors in high-performance QS stellarators will need to be resilient to changes in plasma configuration that arise due to evolution of plasma pressure profiles and bootstrap currents for divertor design. Resiliency is tested by examining the changes in strike point patterns from the field line following, which arise due to configurational changes. A low strike point variation with high configuration changes corresponds to high resiliency. The HSX edge displays resilient properties with configuration changes arisingmore » from the (1) wall position, (2) plasma current, and (3) external coils. The resilient behavior is lost if large edge islands intersect the wall structure. The resilient edge properties are corroborated by heat flux calculations from the fully 3-D plasma simulations using EMC3-EIRENE. Additionally, the strike point patterns are found to correspond to high curvature regions of magnetic flux surfaces.« less

  5. Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Kim, Hyun Dae; Brown, Gerald V.; Felder, James L.

    2008-01-01

    Meeting future goals for aircraft and air traffic system performance will require new airframes with more highly integrated propulsion. Previous studies have evaluated hybrid wing body (HWB) configurations with various numbers of engines and with increasing degrees of propulsion-airframe integration. A recently published configuration with 12 small engines partially embedded in a HWB aircraft, reviewed herein, serves as the airframe baseline for the new concept aircraft that is the subject of this paper. To achieve high cruise efficiency, a high lift-to-drag ratio HWB was adopted as the baseline airframe along with boundary layer ingestion inlets and distributed thrust nozzles to fill in the wakes generated by the vehicle. The distributed powered-lift propulsion concept for the baseline vehicle used a simple, high-lift-capable internally blown flap or jet flap system with a number of small high bypass ratio turbofan engines in the airframe. In that concept, the engine flow path from the inlet to the nozzle is direct and does not involve complicated internal ducts through the airframe to redistribute the engine flow. In addition, partially embedded engines, distributed along the upper surface of the HWB airframe, provide noise reduction through airframe shielding and promote jet flow mixing with the ambient airflow. To improve performance and to reduce noise and environmental impact even further, a drastic change in the propulsion system is proposed in this paper. The new concept adopts the previous baseline cruise-efficient short take-off and landing (CESTOL) airframe but employs a number of superconducting motors to drive the distributed fans rather than using many small conventional engines. The power to drive these electric fans is generated by two remotely located gas-turbine-driven superconducting generators. This arrangement allows many small partially embedded fans while retaining the superior efficiency of large core engines, which are physically separated but connected through electric power lines to the fans. This paper presents a brief description of the earlier CESTOL vehicle concept and the newly proposed electrically driven fan concept vehicle, using the previous CESTOL vehicle as a baseline.

  6. SNAP-8 power conversion system design review

    NASA Technical Reports Server (NTRS)

    Lopez, L. P.

    1970-01-01

    The conceptual design of the SNAP-8 electrical generating system configurations are reviewed including the evolution of the PCS configuration, and the current concepts. The reliabilities of two alternative PCS-G heat rejection loop configurations with two radiator design concepts are also reviewed. A computer program for calculating system pressure loss using multiple-loop flow analysis is included.

  7. The Horizon: A blended wing aircraft configuration design project, volume 3

    NASA Technical Reports Server (NTRS)

    Keidel, Paul; Gonda, Mark; Freeman, Darnon; Kim, Jay; Hsu, Yul

    1988-01-01

    The results of a study to design a High-Speed Civilian Transport (HSCT) using the blended wing-body configuration are presented. The HSCT is a Mach 2 to 5 transport aircraft designed to compete with current commercial aircraft. The subjects discussed are sizing, configuration, aerodynamics, stability and control, propulsion, performance, structures and pollution effects.

  8. Overview Of Suborbital Human Transportation Concept Alpha

    NASA Astrophysics Data System (ADS)

    Adirim, H.; Pilz, N.; Marini, M.; Hendrick, P.; Schmid, M.; Behr, R.; Barth, T.; Tarfeld, F.; Wiegand, A.; Charbonnier, D.; Haya Ramos, R.; Steeland, J.; Mack, A.

    2011-05-01

    Within the EC co-funded project FAST20XX (Future high-Altitude high-Speed Transport 20XX), the European suborbital passenger transportation system concept ALPHA (Airplane Launched PHoenix Aircraft), which shall be based to a maximum extent on existing technologies and capabilities, is currently being investigated as collaborative project by a European consortium under coordination of ESA. The ALPHA concept incorporates an air-launch from a carrier aircraft, which shall be used as first stage. The ALPHA vehicle shall be capable of transporting up to four passengers plus one pilot to an altitude of at least 100 km. The ALPHA vehicle is a down-scaled version of the suborbital space transportation concept Hopper, which was already deeply investigated within the European FESTIP System Study and the German ASTRA program including the successfully flown experimental landing demonstrator Phoenix. This approach has allowed the use of existing aerodynamic vehicle data and has led to the adaptation of the external Hopper/Phoenix configuration for ALPHA. In FESTIP and ASTRA, the Hopper configuration showed sufficient stability margins. Due to the geometric similarity of the ALPHA and Hopper vehicles, a trimable and flyable configuration could be derived by means of ALPHA flight trajectory calculations. In its current configuration, the ALPHA vehicle has a length of ca. 9 m and a gross take-off mass of ca. 3.5 Mg. The launch, staging and separation of ALPHA shall be performed either as internal air-launch from the cargo bay of the carrier aircraft, as under-wing air-launch or as towed air-launch. After separation from the carrier aircraft, the ALPHA vehicle ignites its onboard rocket propulsion system. Since conventional liquid and solid propulsion did not seem suitable for ALPHA due to Their high cost, limited safety and toxicity, a low-cost, “green” and non-hazardous hybrid propulsion system based on liquid nitrous oxide in combination with a solid polymer fuel was selected as baseline ALPHA propulsion. The general feasibility of hybrid propulsion for suborbital vehicle application with this propellant combination was already successfully demonstrated in the first reusable and privately-funded manned launch vehicle SpaceShipOne and consequently represents the solution with the lowest development risk for the investigated application. Due to the huge success of SpaceShipOne, the same type of hybrid propulsion is foreseen for Virgin Galactic’s SpaceShipTwo. ALPHA vehicle guidance will preferably be fully autonomous during the entire mission flight profile. The required technology for autonomous vehicle guidance can be adapted from the European RLV demonstrator Phoenix, which successfully demonstrated automated landing when it was dropped three times by a helicopter and landed precisely after a GPS-guided glide. This paper outlines the current status of the technology development work for ALPHA and has a special focus on aerodynamic and aerothermodynamic aspects of the concept.

  9. Two-dimensional aerodynamic characteristics of several polygon-shaped cross-sectional models applicable to helicopter fuselages

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.; Crowell, Cynthia A.; Wilson, John C.

    1992-01-01

    A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model.

  10. Porous and Microporous Honeycomb Composites as Potential Boundary-Layer Bleed Materials

    NASA Technical Reports Server (NTRS)

    Davis, D. O.; Willis, B. P.; Schoenenberger, M.

    1997-01-01

    Results of an experimental investigation are presented in which the use of porous and microporous honeycomb composite materials is evaluated as an alternate to perforated solid plates for boundary-layer bleed in supersonic aircraft inlets. The terms "porous" and "microporous," respectively, refer to bleed orifice diameters roughly equal to and much less than the displacement thickness of the approach boundary-layer. A Baseline porous solid plate, two porous honeycomb, and three microporous honeycomb configurations are evaluated. The performance of the plates is characterized by the flow coefficient and relative change in boundary-layer profile parameters across the bleed region. The tests were conducted at Mach numbers of 1.27 and 1.98. The results show the porous honeycomb is not as efficient at removing mass compared to the baseline. The microporous plates were about equal to the baseline with one plate demonstrating a significantly higher efficiency. The microporous plates produced significantly fuller boundary-layer profiles downstream of the bleed region for a given mass flow removal rate than either the baseline or the porous honeycomb plates.

  11. Space Communications and Navigation (SCaN) Network Simulation Tool Development and Its Use Cases

    NASA Technical Reports Server (NTRS)

    Jennings, Esther; Borgen, Richard; Nguyen, Sam; Segui, John; Stoenescu, Tudor; Wang, Shin-Ywan; Woo, Simon; Barritt, Brian; Chevalier, Christine; Eddy, Wesley

    2009-01-01

    In this work, we focus on the development of a simulation tool to assist in analysis of current and future (proposed) network architectures for NASA. Specifically, the Space Communications and Navigation (SCaN) Network is being architected as an integrated set of new assets and a federation of upgraded legacy systems. The SCaN architecture for the initial missions for returning humans to the moon and beyond will include the Space Network (SN) and the Near-Earth Network (NEN). In addition to SCaN, the initial mission scenario involves a Crew Exploration Vehicle (CEV), the International Space Station (ISS) and NASA Integrated Services Network (NISN). We call the tool being developed the SCaN Network Integration and Engineering (SCaN NI&E) Simulator. The intended uses of such a simulator are: (1) to characterize performance of particular protocols and configurations in mission planning phases; (2) to optimize system configurations by testing a larger parameter space than may be feasible in either production networks or an emulated environment; (3) to test solutions in order to find issues/risks before committing more significant resources needed to produce real hardware or flight software systems. We describe two use cases of the tool: (1) standalone simulation of CEV to ISS baseline scenario to determine network performance, (2) participation in Distributed Simulation Integration Laboratory (DSIL) tests to perform function testing and verify interface and interoperability of geographically dispersed simulations/emulations.

  12. Altered ulnar nerve kinematic behavior in a cadaver model of entrapment.

    PubMed

    Mahan, Mark A; Vaz, Kenneth M; Weingarten, David; Brown, Justin M; Shah, Sameer B

    2015-06-01

    Ulnar nerve entrapment at the elbow is more than a compressive lesion of the nerve. The tensile biomechanical consequences of entrapment are currently marginally understood. To evaluate the effects of tethering on the kinematics of the ulnar nerve as a model of entrapment neuropathy. The ulnar nerve was exposed in 7 fresh cadaver arms, and markers were placed at 1-cm increments along the nerve, centered on the retrocondylar region. Baseline translation (pure sliding) and strain (stretch) were measured in response to progressively increasing tension produced by varying configurations of elbow flexion and wrist extension. Then the nerves were tethered by suturing to the cubital tunnel retinaculum and again exposed to progressively increasing tension from joint positioning. In the native condition, for all joint configurations, the articular segment of the ulnar nerve exhibited greater strain than segments proximal and distal to the elbow, with a maximum strain of 28 ± 1% and translation of 11.6 ± 1.8 mm distally. Tethering the ulnar nerve suppressed translation, and the distal segment experienced strains that were more than 50% greater than its maximum strain in an untethered state. This work provides a framework for evaluating regional nerve kinematics. Suppressed translation due to tethering shifted the location of high strain from articular to more distal regions of the ulnar nerve. The authors hypothesize that deformation is thus shifted to a region of the nerve less accustomed to high strains, thereby contributing to the development of ulnar neuropathy.

  13. Magnetospheric electric fields and currents

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Zanetti, L. J.

    1987-01-01

    The progress made in the years 1983-1986 in understanding the character and operation of magnetospheric electric fields and electric currents is discussed, with emphasis placed on the connection with the interior regions. Special attention is given to determinations of global electric-field configurations, measurements of the response of magnetospheric particle populations to the electric-field configurations, and observations of the magnetospheric currents at high altitude and during northward IMF. Global simulations of current distributions are discussed, and the sources of global electric fields and currents are examined. The topics discussed in the area of impulsive and small-scale phenomena include substorm current systems, impulsive electric fields and associated currents, and field-aligned electrodynamics. A key finding of these studies is that the electric fields and currents are interrelated and cannot be viewed as separate entities.

  14. Current Practices in Runway Configuration Management (RCM) and Arrival/Departure Runway Balancing (ADRB)

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.

    2008-01-01

    Significant air traffic increases are anticipated for the future of the National Airspace System (NAS). To cope with future traffic increases, fundamental changes are required in many aspects of the air traffic management process including the planning and use of NAS resources. Two critical elements of this process are the selection of airport runway configurations, and the effective management of active runways. Two specific research areas in NASA's Airspace Systems Program (ASP) have been identified to address efficient runway management: Runway Configuration Management (RCM) and Arrival/Departure Runway Balancing (ADRB). This report documents efforts in assessing past as well as current work in these two areas.

  15. Optical RAM-enabled cache memory and optical routing for chip multiprocessors: technologies and architectures

    NASA Astrophysics Data System (ADS)

    Pleros, Nikos; Maniotis, Pavlos; Alexoudi, Theonitsa; Fitsios, Dimitris; Vagionas, Christos; Papaioannou, Sotiris; Vyrsokinos, K.; Kanellos, George T.

    2014-03-01

    The processor-memory performance gap, commonly referred to as "Memory Wall" problem, owes to the speed mismatch between processor and electronic RAM clock frequencies, forcing current Chip Multiprocessor (CMP) configurations to consume more than 50% of the chip real-estate for caching purposes. In this article, we present our recent work spanning from Si-based integrated optical RAM cell architectures up to complete optical cache memory architectures for Chip Multiprocessor configurations. Moreover, we discuss on e/o router subsystems with up to Tb/s routing capacity for cache interconnection purposes within CMP configurations, currently pursued within the FP7 PhoxTrot project.

  16. Electrical Stimulation for Wound-Healing: Simulation on the Effect of Electrode Configurations

    PubMed Central

    2017-01-01

    Endogenous electric field is known to play important roles in the wound-healing process, mainly through its effects on protein synthesis and cell migration. Many clinical studies have demonstrated that electrical stimulation (ES) with steady direct currents is beneficial to accelerating wound-healing, even though the underlying mechanisms remain unclear. In the present study, a three-dimensional finite element wound model was built to optimize the electrode configuration in ES. Four layers of the skin, stratum corneum, epidermis, dermis, and subcutis, with defined thickness and electrical properties were modeled. The main goal was to evaluate the distributions of exogenous electric fields delivered with direct current (DC) stimulation using different electrode configurations such as sizes and positions. Based on the results, some guidelines were obtained in designing the electrode configuration for applications of clinical ES. PMID:28497054

  17. Wireless power transfer electric vehicle supply equipment installation and validation tool

    DOEpatents

    Jones, Perry T.; Miller, John M.

    2015-05-19

    A transmit pad inspection device includes a magnetic coupling device, which includes an inductive circuit that is configured to magnetically couple to a primary circuit of a charging device in a transmit pad through an alternating current (AC) magnetic field. The inductive circuit functions as a secondary circuit for a set of magnetically coupled coils. The magnetic coupling device further includes a rectification circuit, and includes a controllable load bank or is configured to be connected to an external controllable load back. The transmit pad inspection device is configured to determine the efficiency of power transfer under various coupling conditions. In addition, the transmit pad inspection device can be configured to measure residual magnetic field and the frequency of the input current, and to determine whether the charging device has been installed properly.

  18. Noise Spectra and Directivity For a Scale-Model Landing Gear

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Brooks, Thomas F.

    2007-01-01

    An extensive experimental study has been conducted to acquire detailed noise spectra and directivity data for a high-fidelity, 6.3%-scale, Boeing 777 main landing gear. The measurements were conducted in the NASA Langley Quiet Flow Facility using a 41-microphone directional array system positioned at a range of polar and azimuthal observer angles with respect to the model. DAMAS (Deconvolution Approach for the Mapping of Acoustic Sources) array processing as well as straightforward individual microphone processing were employed to compile unique flyover and sideline directivity databases for a range of freestream Mach numbers (0.11 - 0.17) covering typical approach conditions. Comprehensive corrections were applied to the test data to account for shear layer ray path and amplitude variations. This allowed proper beamforming at different measurement orientations, as well as directivity presentation in free-field emission coordinates. Four different configurations of the landing gear were tested: a baseline configuration with and without an attached side door, and a noise reduction concept "toboggan" truck fairing with and without side door. DAMAS noise source distributions were determined. Spectral analyses demonstrated that individual microphones could establish model spectra. This finding permitted the determination of unique, spatially-detailed directivity contours of spectral band levels over a hemispherical surface. Spectral scaling for the baseline model confirmed that the acoustic intensity scaled with the expected sixth-power of the Mach number. Finally, comparison of spectra and directivity between the baseline gear and the gear with an attached toboggan indicated that the toboggan fairing may be of some value in reducing gear noise over particular frequency ranges.

  19. Operation of a test bed axial-gap brushless dc rotor with a superconducting stator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKeever, J.W.; Sohns, C.W.; Schwenterly, S.W.

    1993-08-01

    A variable-speed axial-gap motor with a stator consisting of four liquid helium cooled superconducting electromagnets (two pole pairs) was built and proof tested up to 608 rpm in November 1990 as a tool for joint industry-laboratory evaluation of coils fabricated from high-temperature oxide superconductors. A second rotor was fabricated with improved materia winding configuration, and wire type, and the drive system was modified to eliminate current spiking. The modified motor was characterized to design speed, 188 rad/s (1800 rpm), to acquire a performance baseline for future comparison with that of high-temperature superconducting (HIS) wire. As it becomes commercially available, HTSmore » wire will replace the low-temperature electromagnet wire in a stator modified to control wire temperatures between 4 K and 77 K. Measurements of the superconducting electromagnetic field and locked rotor torque as functions of cryocurrent and dc current through two phases of the rotor, respectively, provided data to estimate power that could be developed by the rotor. Back emf and parasitic mechanical and electromagnetic drag torques were measured as functions of angular velocity to calculate actual rotor power developed and to quantify losses, which reduce the motor`s efficiency. A detailed measurement of motor power at design speed confirmed the developed power equation. When subsequently operated at the 33-A maximum available rotor current, the motor delivered 15.3 kill (20.5 hp) to the load. In a final test, the cryostat was operated at 2500 A, 200 A below its critical current. At rotor design current of 60 A and 2500 A stator current, the extrapolated developed power would be 44.2 kill (59.2 hp) with 94% efficiency.« less

  20. Low-Speed Aerodynamic Data for an 0.18-Scale Model of an F-16XL with Various Leading-Edge Modifications

    NASA Technical Reports Server (NTRS)

    Hahne, Daniel E.

    1999-01-01

    Using the F-16XL as a test-bed, two strategies for improving the low-speed flying characteristics that had minimal impact on high-speed performance were evaluated. In addition to the basic F-16XL configuration several modifications to the baseline configuration were tested in the Langley 30- X 60-Foot Tunnel: 1) the notched area at the wing leading edge and fuselage juncture was removed resulting in a continuous 70 deg leading-edge sweep on the inboard portion of the wing; 2) an integral attached-flow leading-edge flap concept was added to the continuous leading edge; and 3) a deployable vortex flap concept was added to the continuous leading edge. The purpose of this report is simply to document the test configurations, test conditions, and data obtained in this investigation for future reference and analysis. No analysis is presented herein and the data only appear in tabulated format.

  1. Wind Tunnel Measured Effects on a Twin-Engine Short-Haul Transport Caused by Simulated Ice Accretions

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew; Potapczuk, Mark; Ratvasky, Thomas; Laflin, Brenda Gile

    1996-01-01

    A series of wind tunnel tests were conducted to assess the effects of leading edge ice contamination upon the performance of a short-haul transport. The wind tunnel test was conducted in the NASA Langley 14 by 22 foot facility. The test article was a 1/8 scale twin-engine short-haul jet transport model. Two separate leading edge ice contamination configurations were tested in addition to the uncontaminated baseline configuration. Several aircraft configurations were examined including various flap and slat deflections, with and without landing gear. Data gathered included force measurements via an internal six-component force balance, pressure measurements through 700 electronically scanned wing pressure ports, and wing surface flow visualization measurements. The artificial ice contamination caused significant performance degradation and caused visible changes demonstrated by the flow visualization. The data presented here is just a portion of the data gathered. A more complete data report is planned for publication as a NASA Technical Memorandum and data supplement.

  2. The Orion Atmosphere Revitalization Technology in Manned Ambient Pressure Space Suit Testing

    NASA Technical Reports Server (NTRS)

    Button, Amy; Sweterlitsch, Jeffrey

    2011-01-01

    An amine-based carbon dioxide (CO2) and water vapor sorbent in pressure-swing regenerable beds has been developed by Hamilton Sundstrand and baselined for the Atmosphere Revitalization System (ARS) for moderate duration missions of the Orion Multipurpose Crew Vehicle. The Orion ARS is designed to support not only open-cabin operations, tests of which have been reported in previous years at this conference, but also closed space suit-loop operations. A previous low-pressure suit loop test was performed with a human metabolic simulator, and humans wearing emergency masks were tested in a closed-loop configuration before that. In late 2011, simple tests were performed in a suit-loop configuration with human test subjects in prototype space suits with prototype umbilicals at ambient and two slightly above-ambient pressures. Trace contaminant filters and a prototype blower were also incorporated into the test rig. This paper discusses the performance of the ARS technology in that 2011 test configuration.

  3. Spreadsheet Calculation of Jets in Crossflow: Opposed Rows of Slots Slanted at 45 Degrees

    NASA Technical Reports Server (NTRS)

    Holderman, James D.; Clisset, James R.; Moder, Jeffrey P.

    2011-01-01

    The purpose of this study was to extend a baseline empirical model to the case of jets entering the mainstream flow from opposed rows of 45 degrees slanted slots. The results in this report were obtained using a spreadsheet modified from the one posted with NASA/TM--2010-216100. The primary conclusion in this report is that the best mixing configuration for opposed rows of 45 degrees slanted slots at any down stream distance is a parallel staggered configuration where the slots are angled in the same direction on top and bottom walls and one side is shifted by half the orifice spacing. Although distributions from perpendicular slanted slots are similar to those from parallel staggered configurations at some downstream locations, results for perpendicular slots are highly dependent on downstream distance and are no better than parallel staggered slots at locations where they are similar and are worse than parallel ones at other distances.

  4. An Overview of the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.; Wilson, R. Joseph; Flick, Bradley C.; Rood, Richard L.

    1996-01-01

    This paper gives an overview of the NASA F-18 High Alpha Research Vehicle. The three flight phases of the program are introduced, along with the specific goals and data examples taken during each phase. The aircraft configuration and systems needed to perform the disciplinary and inter-disciplinary research are discussed. The specific disciplines involved with the flight research are introduced, including aerodynamics, controls, propulsion, systems, and structures. Decisions that were made early in the planning of the aircraft project and the results of those decisions are briefly discussed. Each of the three flight phases corresponds to a particular aircraft configuration, and the research dictated the configuration to be flown. The first phase gathered data with the baseline F-18 configuration. The second phase was the thrust-vectoring phase. The third phase used a modified forebody with deployable nose strakes. Aircraft systems supporting these flights included extensive instrumentation systems, integrated research flight controls using flight control hardware and corresponding software, analog interface boxes to control forebody strakes, a thrust-vectoring system using external post-exit vanes around axisymmetric nozzles, a forebody vortex control system with strakes, and backup systems using battery-powered emergency systems and a spin recovery parachute.

  5. Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A two-year study conducted to establish a basis for industry decisions on the application of laminar flow control (LFC) to future commercial transports was presented. Areas of investigation included: (1) mission definition and baseline selection; (2) concepts evaluations; and (3) LFC transport configuration selection and component design. The development and evaluation of competing design concepts was conducted in the areas of aerodynamics, structures and materials, and systems. The results of supporting wind tunnel and laboratory testing on a full-scale LFC wing panel, suction surface opening concepts and structural samples were included. A final LFC transport was configured in incorporating the results of concept evaluation studies and potential performance improvements were assessed. Remaining problems together with recommendations for future research are discussed.

  6. Space Station needs, attributes and architectural options. Volume 2, book 2, part 1: Mission implementation concepts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The overall configuration and modules of the initial and evolved space station are described as well as tended industrial and polar platforms. The mass properties that are the basis for costing are summarized. User friendly attributes (interfaces, resources, and facilities) are identified for commercial; science and applications; industrial park; international participation; national security; and the external tank option. Configuration alternates studied to determine a baseline are examined. Commonality for clustered 3-man and 9-man stations are considered as well as the use of tethered platforms. Requirements are indicated for electrical, communication and tracking; data management Subsystem requirements for electrical, data management, communication and tracking, environment control/life support system; and guidance navigation and control subsystems are identified.

  7. Baikal-GVD

    NASA Astrophysics Data System (ADS)

    Avrorin, A. D.; Avrorin, A. V.; Aynutdinov, V. M.; Bannash, R.; Belolaptikov, I. A.; Brudanin, V. B.; Budnev, N. M.; Danilchenko, I. A.; Demidov, S. V.; Domogatsky, G. V.; Doroshenko, A. A.; Dvornicky, R.; Dyachok, A. N.; Dzhilkibaev, Zh.-A. M.; Fajt, L.; Fialkovsky, S. V.; Gafarov, A. R.; Gaponenko, O. N.; Golubkov, K. V.; Gress, T. I.; Honz, Z.; Kebkal, K. G.; Kebkal, O. G.; Konischev, K. V.; Korobchenko, A. V.; Koshechkin, A. P.; Koshel, F. K.; Kozhin, A. V.; Kulepov, V. F.; Kuleshov, D. A.; Milenin, M. B.; Mirgazov, R. A.; Osipova, E. R.; Panfilov, A. I.; Pan'kov, L. V.; Pliskovsky, E. N.; Rozanov, M. I.; Rjabov, E. V.; Shamakhov, F. A.; Shaybonov, B. A.; Sheifler, A. A.; Shelepov, M. D.; Simkovic, F.; Skurihin, A. V.; Smagina, A. A.; Stekl, I.; Suvorova, O. V.; Tabolenko, V. A.; Tarashansky, B. A.; Yakovlev, S. A.; Zagorodnikov, A. V.; Zurbanov, V. L.

    2017-03-01

    We present the status of the Gigaton Volume Detector in Lake Baikal (Baikal-GVD) designed for the detection of high energy neutrinos of astrophysical origin. The telescope consists of functionally independent clusters, sub-arrays of optical modules (OMs), which are connected to shore by individual electro-optical cables. During 2015 the GVD demonstration cluster, comprising 192 OMs, has been successfully operated in Lake Baikal. In 2016 this array was upgraded to baseline configuration of GVD cluster with 288 OMs arranged on eight vertical strings. Thus the instrumented water volume has been increased up to about 5.9 Mtons. The array was commissioned in early April 2016 and takes data since then. We describe the configuration and design of the 2016 array. Preliminary results obtained with data recorded in 2015 are also discussed.

  8. Space Station needs, attributes and architectural options. Volume 2, book 2, part 1: Mission implementation concepts

    NASA Astrophysics Data System (ADS)

    1983-04-01

    The overall configuration and modules of the initial and evolved space station are described as well as tended industrial and polar platforms. The mass properties that are the basis for costing are summarized. User friendly attributes (interfaces, resources, and facilities) are identified for commercial; science and applications; industrial park; international participation; national security; and the external tank option. Configuration alternates studied to determine a baseline are examined. Commonality for clustered 3-man and 9-man stations are considered as well as the use of tethered platforms. Requirements are indicated for electrical, communication and tracking; data management Subsystem requirements for electrical, data management, communication and tracking, environment control/life support system; and guidance navigation and control subsystems are identified.

  9. Laser space rendezvous and docking tradeoff

    NASA Technical Reports Server (NTRS)

    Adelman, S.; Levinson, S.; Raber, P.; Weindling, F.

    1974-01-01

    A spaceborne laser radar (LADAR) was configured to meet the requirements for rendezvous and docking with a cooperative object in synchronous orbit. The LADAR, configurated using existing pulsed CO2 laser technology and a 1980 system technology baseline, is well suited for the envisioned space tug missions. The performance of a family of candidate LADARS was analyzed. Tradeoff studies as a function of size, weight, and power consumption were carried out for maximum ranges of 50, 100, 200, and 300 nautical miles. The investigation supports the original contention that a rendezvous and docking LADAR can be constructed to offer a cost effective and reliable solution to the envisioned space missions. In fact, the CO2 ladar system offers distinct advantages over other candidate systems.

  10. Evaluation of Synthetic Vision Display Concepts for Improved Awareness in Unusual Attitude Recovery Scenarios

    NASA Technical Reports Server (NTRS)

    Nicholas, Stephanie

    2016-01-01

    A recent study conducted by the Commercial Aviation Safety Team (CAST) determined 40 percent of all fixed-wing fatal accidents, between 2001 and 2011, were caused by Loss-of-Control (LOC) in flight (National Transportation Safety Board, 2015). Based on their findings, CAST recommended manufacturers develop and implement virtual day-visual meteorological conditions (VMC) display systems, such as synthetic vision or equivalent systems (CAST, 2016). In a 2015 simulation study conducted at NASA Langley Research Center (LaRC), researchers gathered to test and evaluate virtual day-VMC displays under realistic flight operation scenarios capable of inducing reduced attention states in pilots. Each display concept was evaluated to determine its efficacy to improve attitude awareness. During the experiment, Evaluation Pilots (EPs) were shown the following three display concepts on the Primary Flight Display (PFD): Baseline, Synthetic Vision (SV) with color gradient, and SV with texture. The baseline configuration was a standard, conventional 'blue over brown' display. Experiment scenarios were simulated over water to evaluate Unusual Attitude (UA) recovery over 'featureless terrain' environments. Thus, the SV with color gradient configuration presented a 'blue over blue' display with a linear blue color progression, to differentiate attitude changes between sky and ocean. The SV with texture configuration presented a 'blue over blue' display with a black checkerboard texture atop a synthetic ocean. These displays were paired with a Background Attitude Indicator (BAI) concept. The BAI was presented across all four Head-Down Displays (HDDs), displaying a wide field-of-view blue-over-blue attitude indicator. The BAI aligned with the PFD and showed through the background of the navigation displays with opaque transparency. Each EP participated in a two-part experiment series with a total seventy-five trial runs: Part I included a set of twenty-five Unusual Attitude Recovery (UAR) scenarios; Part II included a set of fifty Attitude Memory Recall Tasks (AMRT). At the conclusion of each trial, EPs were asked to complete a set post-run questionnaires. Quantitative results showed that there were no significant statistical effects on UA recovery times when utilizing SV with or without the presence of a BAI. Qualitative results show the SV displays (color, texture) with BAI On are most preferred for both UA recognition and recovery when compared with the baseline display. When only comparing SV display concepts, EPs performed better when using the SV with texture, BAI On, than any other display configuration. This is an interesting find considering most EPs noted their preference towards the SV with color gradient when the BAI was on.

  11. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The power extension package (PEP) is a solar array system that will be used on the space transportation system to augment the power of the Orbiter vehicle and to extend the time the vehicle may stay in orbit. The baseline configuration of the PEP is reviewed. The programmatic aspects of the design covering the development plan, the manufacturing facility plan and the estimated costs and risks are presented.

  12. Role of action potential configuration and the contribution of Ca2+ and K+ currents to isoprenaline-induced changes in canine ventricular cells

    PubMed Central

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, PP

    2012-01-01

    BACKGROUND AND PURPOSE Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca2+ current (ICa), slow delayed rectifier K+ current (IKs) and fast delayed rectifier K+ current (IKr) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. EXPERIMENTAL APPROACH Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. KEY RESULTS In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the IKr blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the IKs blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the ICa blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating ICa followed by a rise in IKs, both currents increased with increasing the cycle length. CONCLUSIONS AND IMPLICATIONS The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of IKs– but not IKr– may be responsible for the observed shortening of action potentials. PMID:22563726

  13. Role of action potential configuration and the contribution of C²⁺a and K⁺ currents to isoprenaline-induced changes in canine ventricular cells.

    PubMed

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, P P

    2012-10-01

    Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca²⁺ current (I(Ca)), slow delayed rectifier K⁺ current (I(Ks)) and fast delayed rectifier K⁺ current (I(Kr)) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the I(Kr) blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the I(Ks) blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the I(Ca) blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating I(Ca) followed by a rise in I(Ks) , both currents increased with increasing the cycle length. The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of I(Ks) - but not I(Kr) - may be responsible for the observed shortening of action potentials. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  14. 100 Days of ELF/VLF Generation via HF Heating with HAARP (Invited)

    NASA Astrophysics Data System (ADS)

    Cohen, M.; Golkowski, M.

    2013-12-01

    ELF/VLF radio waves are difficult to generate with conventional antennas. Ionospheric HF heating facilities generate ELF/VLF waves via modulated heating of the lower ionosphere. HF heating of the ionosphere changes the lower ionospheric conductivity, which in the presence of natural currents such as the auroral electrojet, creates an antenna in the sky when heating is modulated at ELF/VLF frequencies. We present a summary of nearly 100 days of ELF/VLF wave generation experiments at the 3.6 MW HAARP facility near Gakona, Alaska, and provide a baseline reference of ELF/VLF generation capabilities with HF heating. Between February 2007 and August 2008, HAARP was operated on close to 100 days for ELF/VLF wave generation experiments, at a variety of ELF/VLF frequencies, seasons and times of day. We present comprehensive statistics of generated ELF/VLF magnetic fields observed at a nearby site, in the 500-3500 Hz band. Transmissions with a specific HF beam configuration (3.25 MHz, vertical beam, amplitude modulation) are isolated so the data comparison is self-consistent, across nearly 5 million individual measurements of either a tone or a piece of a frequency-time ramp. There is a minimum in the average generation close to local midnight. It is found that generation during local nighttime is on average weaker, but more highly variable, with a small number of very strong generation periods. Signal amplitudes from day to day may vary by as much as 20-30 dB. Generation strengthens by ~5 dB during the first ~30 minutes of transmission, which may be a signature of slow electron density changes from sustained HF heating. Theoretical calculations are made to relate the amplitude observed to the power injected into the waveguide and reaching 250 km. The median power generated by HAARP and injected into the waveguide is ~0.05-0.1 W in this base-line configuration (vertical beam, 3.25 MHz, amplitude modulation), but may have generated hundreds of Watts for brief durations. Several efficiency improvements have improved the ELF/VLF wave generation efficiency further.

  15. Smashing the Stovepipe: Leveraging the GMSEC Open Architecture and Advanced IT Automation to Rapidly Prototype, Develop and Deploy Next-Generation Multi-Mission Ground Systems

    NASA Technical Reports Server (NTRS)

    Swenson, Paul

    2017-01-01

    Satellite/Payload Ground Systems - Typically highly-customized to a specific mission's use cases - Utilize hundreds (or thousands!) of specialized point-to-point interfaces for data flows / file transfers Documentation and tracking of these complex interfaces requires extensive time to develop and extremely high staffing costs Implementation and testing of these interfaces are even more cost-prohibitive, and documentation often lags behind implementation resulting in inconsistencies down the road With expanding threat vectors, IT Security, Information Assurance and Operational Security have become key Ground System architecture drivers New Federal security-related directives are generated on a daily basis, imposing new requirements on current / existing ground systems - These mandated activities and data calls typically carry little or no additional funding for implementation As a result, Ground System Sustaining Engineering groups and Information Technology staff continually struggle to keep up with the rolling tide of security Advancing security concerns and shrinking budgets are pushing these large stove-piped ground systems to begin sharing resources - I.e. Operational / SysAdmin staff, IT security baselines, architecture decisions or even networks / hosting infrastructure Refactoring these existing ground systems into multi-mission assets proves extremely challenging due to what is typically very tight coupling between legacy components As a result, many "Multi-Mission" ops. environments end up simply sharing compute resources and networks due to the difficulty of refactoring into true multi-mission systems Utilizing continuous integration / rapid system deployment technologies in conjunction with an open architecture messaging approach allows System Engineers and Architects to worry less about the low-level details of interfaces between components and configuration of systems GMSEC messaging is inherently designed to support multi-mission requirements, and allows components to aggregate data across multiple homogeneous or heterogeneous satellites or payloads - The highly-successful Goddard Science and Planetary Operations Control Center (SPOCC) utilizes GMSEC as the hub for it's automation and situational awareness capability Shifts focus towards getting GS to a final configuration-managed baseline, as well as multi-mission / big-picture capabilities that help increase situational awareness, promote cross-mission sharing and establish enhanced fleet management capabilities across all levels of the enterprise.

  16. Application of computational aeroacoustic methodologies to advanced propeller configurations - A review

    NASA Technical Reports Server (NTRS)

    Korkan, Kenneth D.; Eagleson, Lisa A.; Griffiths, Robert C.

    1991-01-01

    Current research in the area of advanced propeller configurations for performance and acoustics are briefly reviewed. Particular attention is given to the techniques of Lock and Theodorsen modified for use in the design of counterrotating propeller configurations; a numerical method known as SSTAGE, which is a Euler solver for the unducted fan concept; the NASPROP-E numerical analysis also based on a Euler solver and used to study the near acoustic fields for the SR series propfan configurations; and a counterrotating propeller test rig designed to obtain an experimental performance/acoustic data base for various propeller configurations.

  17. Micro-Electromechanical Instrument and Systems Development at the Charles Stark Draper Laboratory

    NASA Technical Reports Server (NTRS)

    Connelly, J. H.; Gilmore, J. P.; Weinberg, M. S.

    1995-01-01

    Several generations of micromechanical gyros and accelerometers have been developed at Draper. Current design effort centers on tuning-fork gyro design and pendulous accelerometer configurations. Over 200 gyros of different generations have been packaged and tested. These units have successfully performed across a temperature range of -40 to 85 degrees C, and have survived 30,000-g shock tests along all axes. Draper is currently under contract to develop an integrated micro-mechanical inertial sensor assembly (MMISA) and global positioning system (GPS) receiver configuration. The ultimate projections for size, weight, and power for an MMISA, after electronic design of the application specific integrated circuit (ASIC ) is completed, are 2 x 2 x 0.5 cm, 5 gm, and less than 1 W, respectively. This paper describes the fabrication process, the current gyro and accelerometer designs, and system configurations.

  18. Virtual cathode formations in nested-well configurations

    NASA Astrophysics Data System (ADS)

    Stephens, K. F.; Ordonez, C. A.; Peterkin, R. E.

    1999-12-01

    Complete transmission of an electron beam through a cavity is not possible if the current exceeds the space-charge limited current. The formation of a virtual cathode reflects some of the beam electrons and reduces the current transmitted through the cavity. Transients in the injected current have been shown to lower the transmitted current below the value predicted by the electrostatic Child-Langmuir law. The present work considers the propagation of an electron beam through a nested-well configuration. Electrostatic particle-in-cell simulations are used to demonstrate that ions can be trapped in the electric potential depression of an electron beam. Furthermore, the trapped ions can prevent the formation of a virtual cathode for beam currents exceeding the space-charge limit.

  19. 2016 Annual Technology Baseline (ATB) - Webinar Presentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley; Kurup, Parthiv; Hand, Maureen

    2016-09-13

    This deck was presented for the 2016 Annual Technology Baseline Webinar. The presentation describes the Annual Technology Baseline, which is a compilation of current and future cost and performance data for electricity generation technologies.

  20. The effect of tracking network configuration on Global Positioning System (GPS) baseline estimates for the CASA (Central and South America) Uno experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, S.K.; Dixon, T.H.; Freymueller, J.T.

    1990-04-01

    Geodetic monitoring of subduction of the Nazca and Cocos plates is a goal of the CASA (Central and South America) Global Positioning System (GPS) experiments, and requires measurement of intersite distances (baselines) in excess of 500 km. The major error source in these measurements is the uncertainty in the position of the GPS satellites at the time of observation. A key aspect of the first CASA experiment, CASA Uno, was the initiation of a global network of tracking stations minimize these errors. The authors studied the effect of using various subsets of this global tracking network on long (>100 km)more » baseline estimates in the CASA region. Best results were obtained with a global tracking network consisting of three U.S. fiducial stations, two sites in the southwest pacific and two sites in Europe. Relative to smaller subsets, this global network improved baseline repeatability, resolution of carrier phase cycle ambiguities, and formal errors of the orbit estimates. Describing baseline repeatability for horizontal components as {sigma}=(a{sup 2} + b{sup 2}L{sup 2}){sup 1/2} where L is baseline length, the authors obtained a = 4 and 9 mm and b = 2.8{times}10{sup {minus}8} and 2.3{times}10{sup {minus}8} for north and east components, respectively, on CASA baselines up to 1,000 km in length with this global network.« less

Top