Modeling local chemistry in PWR steam generator crevices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Millett, P.J.
1997-02-01
Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledgemore » of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.« less
NREL Fuels and Engines Research: Maximizing Vehicle Efficiency and
Laboratory, we analyze the effects of fuel chemistry on ignition and the potential emissions impacts. Our lab research. It can be used to investigate fuel chemistry effects on current and near-term engine technology , independent control allows for deeper interrogation of fuel effects on future-generation engine strategies
ERIC Educational Resources Information Center
Al-Balushi, Sulaiman M.; Al-Hajri, Sheikha H.
2014-01-01
The purpose of the current study is to explore the impact of associating animations with concrete models on eleventh-grade students' comprehension of different visual representations in organic chemistry. The study used a post-test control group quasi-experimental design. The experimental group (N = 28) used concrete models, submicroscopic…
Surface chemistry: Key to control and advance myriad technologies
Yates, John T.; Campbell, Charles T.
2011-01-01
This special issue on surface chemistry is introduced with a brief history of the field, a summary of the importance of surface chemistry in technological applications, a brief overview of some of the most important recent developments in this field, and a look forward to some of its most exciting future directions. This collection of invited articles is intended to provide a snapshot of current developments in the field, exemplify the state of the art in fundamental research in surface chemistry, and highlight some possibilities in the future. Here, we show how those articles fit together in the bigger picture of this field. PMID:21245359
Chemistry for Pollution Control.
ERIC Educational Resources Information Center
Everson, Larry
This booklet presents some methods of quantitative chemical analysis currently used in the field of fresh water pollution control. Only those tests that may be performed with little or no special reagents or pieces of equipment are listed. The booklet addresses the following determinations: (1) acidity; (2) alkalinity; (3) chloride; (4) hardness;…
Development and application of bond cleavage reactions in bioorthogonal chemistry.
Li, Jie; Chen, Peng R
2016-03-01
Bioorthogonal chemical reactions are a thriving area of chemical research in recent years as an unprecedented technique to dissect native biological processes through chemistry-enabled strategies. However, current concepts of bioorthogonal chemistry have largely centered on 'bond formation' reactions between two mutually reactive bioorthogonal handles. Recently, in a reverse strategy, a collection of 'bond cleavage' reactions has emerged with excellent biocompatibility. These reactions have expanded our bioorthogonal chemistry repertoire, enabling an array of exciting new biological applications that range from the chemically controlled spatial and temporal activation of intracellular proteins and small-molecule drugs to the direct manipulation of intact cells under physiological conditions. Here we highlight the development and applications of these bioorthogonal cleavage reactions. Furthermore, we lay out challenges and propose future directions along this appealing avenue of research.
Ingham, Richard J; Battilocchio, Claudio; Fitzpatrick, Daniel E; Sliwinski, Eric; Hawkins, Joel M; Ley, Steven V
2015-01-01
Performing reactions in flow can offer major advantages over batch methods. However, laboratory flow chemistry processes are currently often limited to single steps or short sequences due to the complexity involved with operating a multi-step process. Using new modular components for downstream processing, coupled with control technologies, more advanced multi-step flow sequences can be realized. These tools are applied to the synthesis of 2-aminoadamantane-2-carboxylic acid. A system comprising three chemistry steps and three workup steps was developed, having sufficient autonomy and self-regulation to be managed by a single operator. PMID:25377747
Organic templates for the generation of inorganic materials.
van Bommel, Kjeld J C; Friggeri, Arianna; Shinkai, Seiji
2003-03-03
Mankind's fascination with shapes and patterns, many examples of which come from nature, has greatly influenced areas such as art and architecture. Science too has long since been interested in the origin of shapes and structures found in nature. Whereas organic chemistry in general, and supramolecular chemistry especially, has been very successful in creating large superstructures of often stunning morphology, inorganic chemistry has lagged behind. Over the last decade, however, researchers in various fields of chemistry have been studying novel methods through which the shape of inorganic materials can be controlled at the micro- or even nanoscopic level. A method that has proven very successful is the formation of inorganic structures under the influence of (bio)organic templates, which has resulted in the generation of a large variety of structured inorganic structures that are currently unattainable through any other method.
From transistor to trapped-ion computers for quantum chemistry.
Yung, M-H; Casanova, J; Mezzacapo, A; McClean, J; Lamata, L; Aspuru-Guzik, A; Solano, E
2014-01-07
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
From transistor to trapped-ion computers for quantum chemistry
Yung, M.-H.; Casanova, J.; Mezzacapo, A.; McClean, J.; Lamata, L.; Aspuru-Guzik, A.; Solano, E.
2014-01-01
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology. PMID:24395054
Yang, Hui; Yuan, Bin; Zhang, Xi; Scherman, Oren A
2014-07-15
CONSPECTUS: Host-guest chemistry can greatly improve the selectivity of biomolecule-ligand binding on account of recognition-directed interactions. In addition, functional structures and the actuation of supramolecular assemblies in molecular systems can be controlled efficiently through various host-guest chemistry. Together, these highly selective, strong yet dynamic interactions can be exploited as an alternative methodology for applications in the field of programmable and controllable engineering of supramolecular soft materials through the reversible binding between complementary components. Many processes in living systems such as biotransformation, transportation of matter, and energy transduction begin with interfacial molecular recognition, which is greatly influenced by various external stimuli at biointerfaces. Detailed investigations about the molecular recognition at interfaces can result in a better understanding of life science, and further guide us in developing new biomaterials and medicines. In order to mimic complicated molecular-recognition systems observed in nature that adapt to changes in their environment, combining host-guest chemistry and surface science is critical for fabricating the next generation of multifunctional biointerfaces with efficient stimuli-responsiveness and good biocompatibility. In this Account, we will summarize some recent progress on multifunctional stimuli-responsive biointerfaces and biosurfaces fabricated by cyclodextrin- or cucurbituril-based host-guest chemistry and highlight their potential applications including drug delivery, bioelectrocatalysis, and reversible adsorption and resistance of peptides, proteins, and cells. In addition, these biointerfaces and biosurfaces demonstrate efficient response toward various external stimuli, such as UV light, pH, redox chemistry, and competitive guests. All of these external stimuli can aid in mimicking the biological stimuli evident in complex biological environments. We begin by reviewing the current state of stimuli-responsive supramolecular assemblies formed by host-guest interactions, discussing how to transfer host-guest chemistry from solution onto surfaces required for fabricating multifunctional biosurfaces and biointerfaces. Then, we present different stimuli-responsive biosurfaces and biointerfaces, which have been prepared through a combination of cyclodextrin- or cucurbituril-based host-guest chemistry and various surface technologies such as self-assembled monolayers or layer-by-layer assembly. Moreover, we discuss the applications of these biointerfaces and biosurfaces in the fields of drug release, reversible adsorption and release of some organic molecules, peptides, proteins, and cells, and photoswitchable bioelectrocatalysis. In addition, we summarize the merits and current limitations of these methods for fabricating multifunctional stimuli-responsive biointerfaces in a dynamic noncovalent manner. Finally, we present possible strategies for future designs of stimuli-responsive multifunctional biointerfaces and biosurfaces by combining host-guest chemistry with surface science, which will lead to further critical development of supramolecular chemistry at interfaces.
[Occupational stress effects on work ability in chemistry workers].
Yang, Huifang; Wang, Mianzhen; Wang, Zhiming; Lan, Yajia
2004-03-01
Investigating the status of work ability and occupational stress in 1030 chemistry workers at levels of chemical materials and explore their relationship and influence factors (481 workers of study group, 549 workers of control group). Work ability and occupational stress were measured with the work ability index (WAI) and occupational stress questionnaire (OSQ). The risk factors of work ability decline were evaluated. WAI and OSQ scores scores are significantly different between study group and control group (P < 0.01), and work ability correlated inversely with occupational stress (P < 0.01). The WAI scores are reducing with a higher of the OSQ. The work ability of chemistry-workers became lower with the increasing of age. Variables that influence work ability included the factors of disorder of musculoskeletal function (OR = 2.884), assessment of the current health (OR = 2.651), the diseases (OR = 2.498), emotion status (OR = 2.407), physical load (OR = 1.254) and lack of exercise (OR = 1.956). The stress levels and stress factors had affected work ability in chemistry-workers, and it was suggested that the findings could be helpful for the measures protecting and promoting of work ability on the health of workers.
2011-01-01
with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1...Research Associate at ARL with WRA, and largely completed more recently while at Dept. of Chem., SUNY, Cortland, NY. Currently unaffiliated. †Former...promised to provide an extensive, definitive review critically assessing our current understanding of DZ structure and chemistry, and providing a documented
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
...] (formerly 2003D-0571) Guidance for Industry on Drug Substance Chemistry, Manufacturing, and Controls... Substance Chemistry, Manufacturing, and Controls Information.'' This guidance provides recommendations on the chemistry, manufacturing, and controls (CMC) information for drug substances that should be...
Gunn-Christie, Rebekah G; Flatland, Bente; Friedrichs, Kristen R; Szladovits, Balazs; Harr, Kendal E; Ruotsalo, Kristiina; Knoll, Joyce S; Wamsley, Heather L; Freeman, Kathy P
2012-03-01
In December 2009, the American Society for Veterinary Clinical Pathology (ASVCP) Quality Assurance and Laboratory Standards committee published the updated and peer-reviewed ASVCP Quality Assurance Guidelines on the Society's website. These guidelines are intended for use by veterinary diagnostic laboratories and veterinary research laboratories that are not covered by the US Food and Drug Administration Good Laboratory Practice standards (Code of Federal Regulations Title 21, Chapter 58). The guidelines have been divided into 3 reports: (1) general analytical factors for veterinary laboratory performance and comparisons; (2) hematology, hemostasis, and crossmatching; and (3) clinical chemistry, cytology, and urinalysis. This particular report is one of 3 reports and documents recommendations for control of preanalytical, analytical, and postanalytical factors related to urinalysis, cytology, and clinical chemistry in veterinary laboratories and is adapted from sections 1.1 and 2.2 (clinical chemistry), 1.3 and 2.5 (urinalysis), 1.4 and 2.6 (cytology), and 3 (postanalytical factors important in veterinary clinical pathology) of these guidelines. These guidelines are not intended to be all-inclusive; rather, they provide minimal guidelines for quality assurance and quality control for veterinary laboratory testing and a basis for laboratories to assess their current practices, determine areas for improvement, and guide continuing professional development and education efforts. © 2012 American Society for Veterinary Clinical Pathology.
ERIC Educational Resources Information Center
Nivens, Delana A.; Padgett, Clifford W.; Chase, Jeffery M.; Verges, Katie J.; Jamieson, Deborah S.
2010-01-01
Case studies and current literature are combined with spectroscopic analysis to provide a unique chemistry experience for art history students and to provide a unique inquiry-based laboratory experiment for analytical chemistry students. The XRF analysis method was used to demonstrate to nonscience majors (art history students) a powerful…
Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.
Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J
2014-10-13
Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.
Haplotype Analysis of the Melanopsin Gene in Seasonal Affective Disorder and Controls
2007-06-19
Cole, P. A. (2002). Serotonin n-acetyltransferase: Mechanism and inhibition. Current Medicinal Chemistry , 9(12), 1187-1199. 152 APPENDIX A STRUCTURED ...such that low light levels fall below this threshold during winter in individuals with SAD. The present study investigated the haplotype structure of...Association Studies 51 Advantages of Population-Based Case-Control Samples 52 Haplotype Structure 53 Linkage Disequilibrium: A Measure of Correlation Between
Survey Exploring Views of Scientists on Current Trends in Chemistry Education
ERIC Educational Resources Information Center
Vamvakeros, Xenofon; Pavlatou, Evangelia A.; Spyrellis, Nicolas
2010-01-01
A survey exploring the views of scientists, chemists and chemical engineers, on current trends in Chemistry Education was conducted in Greece. Their opinions were investigated using a questionnaire focusing on curricula (the content and process of chemistry teaching and learning), as well as on the respondents' general educational beliefs and…
The Use of California Sagebrush (Artemisia californica) Liniment to Control Pain.
Adams, James D
2012-09-27
The incidence of arthritis is increasing every year, as does the need for pain medication. The current work reviews an American Indian liniment that is traditionally used for pain therapy. The chemistry, therapeutic use and safety of the liniment are reviewed. The liniment contains monoterpenoids, sesquiterpenes, flavonoids, alkaloids and other compounds.
Use of COTS Batteries on ISS and Shuttle: Payload Safety and Mission Success
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.
2004-01-01
Contents: Current program requirements; Challenges with COTS batteries; manned vehicle COTS methodology in use; List of typical flight COTS batteries; Energy content and toxicity; Hazards, failure modes and controls for different battery chemistries; JSC test details; List of incidents from Consumer Protection Safety Commission; Conclusions ans recommendations.
Esbaugh, A J; Brix, K V; Mager, E M; Grosell, M
2011-09-01
The current study examined the acute toxicity of lead (Pb) to Ceriodaphnia dubia and Pimephales promelas in a variety of natural waters. The natural waters were selected to range in pertinent water chemistry parameters such as calcium, pH, total CO(2) and dissolved organic carbon (DOC). Acute toxicity was determined for C. dubia and P. promelas using standard 48h and 96h protocols, respectively. For both organisms acute toxicity varied markedly according to water chemistry, with C. dubia LC50s ranging from 29 to 180μg/L and P. promelas LC50s ranging from 41 to 3598μg/L. Additionally, no Pb toxicity was observed for P. promelas in three alkaline natural waters. With respect to water chemistry parameters, DOC had the strongest protective impact for both organisms. A multi-linear regression (MLR) approach combining previous lab data and the current data was used to identify the relative importance of individual water chemistry components in predicting acute Pb toxicity for both species. As anticipated, the P. promelas best-fit MLR model combined DOC, calcium and pH. Unexpectedly, in the C. dubiaMLR model the importance of pH, TCO(2) and calcium was minimal while DOC and ionic strength were the controlling water quality variables. Adjusted R(2) values of 0.82 and 0.64 for the P. promelas and C. dubia models, respectively, are comparable to previously developed biotic ligand models for other metals. Copyright © 2011 Elsevier Inc. All rights reserved.
Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry
Liang, Yingkai; Li, Linqing; Scott, Rebecca A.; Kiick, Kristi L.
2017-01-01
Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic applications, such as providing spatial and temporal control over the release of therapeutic agents in drug delivery as well as engineering functional tissues and promoting the healing process in tissue engineering and regenerative medicine. This perspective presents important milestones in the development of polymeric biomaterials with defined structures and properties. Contemporary studies of biomaterial design have been reviewed with focus on constructing materials with controlled structure, dynamic functionality, and biological complexity. Examples of these polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/assembly strategies, and modulated cell-material interactions have been highlighted. As the field of polymeric biomaterials continues to evolve with increased sophistication, current challenges and future directions for the design and translation of these materials are also summarized. PMID:29151616
Session on coupled atmospheric/chemistry coupled models
NASA Technical Reports Server (NTRS)
Thompson, Anne
1993-01-01
The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.
Green Chemistry Metrics with Special Reference to Green Analytical Chemistry.
Tobiszewski, Marek; Marć, Mariusz; Gałuszka, Agnieszka; Namieśnik, Jacek
2015-06-12
The concept of green chemistry is widely recognized in chemical laboratories. To properly measure an environmental impact of chemical processes, dedicated assessment tools are required. This paper summarizes the current state of knowledge in the field of development of green chemistry and green analytical chemistry metrics. The diverse methods used for evaluation of the greenness of organic synthesis, such as eco-footprint, E-Factor, EATOS, and Eco-Scale are described. Both the well-established and recently developed green analytical chemistry metrics, including NEMI labeling and analytical Eco-scale, are presented. Additionally, this paper focuses on the possibility of the use of multivariate statistics in evaluation of environmental impact of analytical procedures. All the above metrics are compared and discussed in terms of their advantages and disadvantages. The current needs and future perspectives in green chemistry metrics are also discussed.
The Use of California Sagebrush (Artemisia californica) Liniment to Control Pain
Adams, James D.
2012-01-01
The incidence of arthritis is increasing every year, as does the need for pain medication. The current work reviews an American Indian liniment that is traditionally used for pain therapy. The chemistry, therapeutic use and safety of the liniment are reviewed. The liniment contains monoterpenoids, sesquiterpenes, flavonoids, alkaloids and other compounds. PMID:24281255
Spent refractory reuse as a slag conditioning additive in the EAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, James P.; Kwong, Kyei-Sing; Krabbe, Rick
2000-01-01
Refractories removed from service in EAF applications are typically landfilled. A joint USDOE and Steel Manufacturers Association program involving industrial cooperators is evaluating spent refractory recycling/reuse. A review of current recycling practices and a review of progress towards controlling EAF slag chemistry and properties with the additions of basic spent refractories will be discussed.
R&D 100, 2016: Stress-Induced Fabrication
Fan, Hongyou; Brennan, Tom; Wise, Jack; Liu, Sheng; Hickman, Randy
2018-06-13
Stress-induced fabrication (SIF) uses compressive mechanical stress to create new nanomaterials with lower production costs and enhanced materials performance compared to traditional fabrication routes. Simple, innovative, and with more degrees of freedom than current chemical synthesis methods, SIF uses physical force instead of chemistry applied to form new nanomaterials with precisely controlled structure and tunable properties.
R&D 100, 2016: Stress-Induced Fabrication
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Hongyou; Brennan, Tom; Wise, Jack
Stress-induced fabrication (SIF) uses compressive mechanical stress to create new nanomaterials with lower production costs and enhanced materials performance compared to traditional fabrication routes. Simple, innovative, and with more degrees of freedom than current chemical synthesis methods, SIF uses physical force instead of chemistry applied to form new nanomaterials with precisely controlled structure and tunable properties.
What is missing between model and Aura MLS observations in mesospheric OH?
NASA Astrophysics Data System (ADS)
Wang, S.; Li, K. F.; Zeng, Z.; Sander, S. P.; Shia, R. L.; Yung, Y. L.
2017-12-01
Recent Aura Microwave Limb Souder observations show higher mesospheric OH levels than earlier versions and previous satellite observations. The current photochemical model with standard chemistry is not able to accurately simulate MLS OH in the mesosphere. In particular, the model significantly underestimates OH over the altitude range of 60-80km. In the standard middle atmospheric chemistry, HOx over this altitude range is controled mainly through the reactions of H2O + hv (< 205 nm) → H + OH; H + O2 + M → HO2 + M; and OH + HO2 → H2O + O2. In an attempt to resolve the model-observation discrepancy, we adjust the rate coefficients of these reactions within recommended uncertainty ranges using an objective Bayesian approach. However, reasonable perturbations to these reactions are not capable of resolving the mesospheric discrepancy without introducing disagreements in other regions of the atmosphere. We explore possible new reactions in the Earth's atmosphere that are not included in current standard models. Some candidate reactions and their potential impacts on mesospheric HOx chemistry will be discussed. Our results urge new laboratory studies of these candidate reactions, whose rate coefficients have never been measured for the atmospheric conditions.
Ocean chemistry controls trends in foraminiferal mineralogy
NASA Astrophysics Data System (ADS)
de Nooijer, Lennart; van Dijk, Inge; Reichart, Gert-Jan
2014-05-01
Foraminifera are unicellular marine protists of which many produce a calcium carbonate shell of either aragonite or calcite. Since they are responsible for a large part of open ocean calcium carbonate precipitation, it is necessary to understand their response to changes in ocean chemistry. On geological time scales, the ratio of Mg over Ca in seawater played an important role in controlling marine aragonite versus calcite mineralogy. Here we reconstructed occurrences of aragonite and low- and high-Mg calcite producing foraminifera through the Phanerozoic. We discovered a two-step impact of seawater chemistry and mass extinction events on the evolution of foraminifera. Seawater Mg to Ca ratios favor production of either calcite, or of high magnesium carbonate and aragonite shells. However, mass extinction events controlled the timing of shifts in dominance from one mineralogy to the other. This observation suggests that ongoing ocean acidification may have important consequences for foraminiferal calcification. Although reduced carbonate saturation state increases dissolution rates of high-Mg calcite and aragonite compared to low-Mg calcite, the current high Mg/Ca of the ocean kinetically favors precipitation of high-Mg calcite and aragonite. Contrary to the differential effects of dissolution, we argue that ongoing ocean acidification is likely to particularly impact calcite producers (e.g. planktonic foraminifera, coccolithophores) compared to those precipitating high-Mg calcite and aragonite (e.g. corals).
The Effects of "Green Chemistry" on Secondary School Students' Understanding and Motivation
ERIC Educational Resources Information Center
Karpudewan, Mageswary; Roth, Wolff-Michael; Ismail, Zurida
2015-01-01
As an initial effort to reorient the current Malaysian chemistry curriculum, "green chemistry" was developed. In this study for the purpose of investigating the effectiveness of the green chemistry curriculum on secondary school students' understanding of chemistry concepts a quasi-experimental design was used. One-group pretest posttest…
Protein Engineering: Development of a Metal Ion Dependent Switch
2017-05-22
Society of Chemistry Royal Society of Chemistry Biochemistry PNAS Escherichia coli Journal of Biotechnology Biochemistry Nature Protocols Journal of...Molecular Biology Biochemistry Royal Society of Chemistry Proteins: Structure, Function, and Bioinformatics Journal of Molecular Biology Biophysical...Biophysical Journal Protein Science Journal of Computational Chemistry Current Opinion in Chemical Biology Royal Society of Chemistry
Clinical biochemistry education in Spain.
Queraltó, J M
1994-12-31
Clinical biochemistry in Spain was first established in 1978 as an independent specialty. It is one of several clinical laboratory sciences specialties, together with haematology, microbiology, immunology and general laboratory (Clinical analysis, análisis clinicos). Graduates in Medicine, Pharmacy, Chemistry and Biological Sciences can enter post-graduate training in Clinical Chemistry after a nation-wide examination. Training in an accredited Clinical Chemistry department is 4 years. A national committee for medical and pharmacist specialties advises the government on the number of trainees, program and educational units accreditation criteria. Technical staff includes nurses and specifically trained technologists. Accreditation of laboratories is developed at different regional levels. The Spanish Society for Clinical Biochemistry and Molecular Pathology (SECQ), the national representative in the IFCC, has 1600 members, currently publishes a scientific journal (Química Clinica) and a newsletter. It organizes a continuous education program, a quality control program and an annual Congress.
Thiol–ene click hydrogels for therapeutic delivery
Kharkar, Prathamesh M.; Rehmann, Matthew S.; Skeens, Kelsi M.; Maverakis, Emanual; Kloxin, April M.
2016-01-01
Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For use as a delivery vehicle, hydrophilic precursors are usually laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation and controlled release dictated by precursor design. Hydrogels formed by thiol–ene click reactions are attractive for local controlled release of therapeutics owing to their rapid reaction rate and efficiency under mild aqueous conditions, enabling in situ formation of gels with tunable properties often responsive to environmental cues. Herein, we will review the wide range of applications for thiol–ene hydrogels, from the prolonged release of anti-inflammatory drugs in the spine to the release of protein-based therapeutics in response to cell-secreted enzymes, with a focus on their clinical relevance. We will also provide a brief overview of thiol–ene click chemistry and discuss the available alkene chemistries pertinent to macromolecule functionalization and hydrogel formation. These chemistries include functional groups susceptible to Michael type reactions relevant for injection and radically-mediated reactions for greater temporal control of formation at sites of interest using light. Additionally, mechanisms for the encapsulation and controlled release of therapeutic cargoes are reviewed, including i) tuning the mesh size of the hydrogel initially and temporally for cargo entrapment and release and ii) covalent tethering of the cargo with degradable linkers or affinity binding sequences to mediate release. Finally, myriad thiol–ene hydrogels and their specific applications also are discussed to give a sampling of the current and future utilization of this chemistry for delivery of therapeutics, such as small molecule drugs, peptides, and biologics. PMID:28361125
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-14
...] Draft Guidance for Industry: Early Clinical Trials With Live Biotherapeutic Products: Chemistry...: Chemistry, Manufacturing, and Control Information'' dated September 2010. The draft guidance provides... Products: Chemistry, Manufacturing, and Control Information'' dated September 2010. The draft guidance...
Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M.; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad
2014-01-01
Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations. PMID:25972753
Mansoor, Muhammad Mudassir; Afzal, Muhammad; Raza, Abu Bakar M; Akram, Zeeshan; Waqar, Adil; Afzal, Muhammad Babar Shahzad
2015-05-01
Chrysoperla carnea (Stephens) is an important biological control agent currently being used in many integrated pest management (IPM) programs to control insect pests. The effect of post-treatment temperature on insecticide toxicity of a spinosyn (spinosad), pyrethroid (lambda cyhalothrin), organophosphate (chlorpyrifos) and new chemistry (acetamiprid) to C. carnea larvae was investigated under laboratory conditions. Temperature coefficients of each insecticide tested were evaluated. From 20 to 40 °C, toxicity of lambda cyhalothrin and spinosad decreased by 2.15- and 1.87-fold while toxicity of acetamiprid and chlorpyrifos increased by 2.00 and 1.79-fold, respectively. The study demonstrates that pesticide effectiveness may vary according to environmental conditions. In cropping systems where multiple insecticide products are used, attention should be given to temperature variation as a key factor in making pest management strategies safer for biological control agents. Insecticides with a negative temperature coefficient may play a constructive role to conserve C. carnea populations.
2017-01-01
Conspectus Microencapsulation is a fundamental concept behind a wide range of daily applications ranging from paints, adhesives, and pesticides to targeted drug delivery, transport of vaccines, and self-healing concretes. The beauty of microfluidics to generate microcapsules arises from the capability of fabricating monodisperse and micrometer-scale droplets, which can lead to microcapsules/particles with fine-tuned control over size, shape, and hierarchical structure, as well as high reproducibility, efficient material usage, and high-throughput manipulation. The introduction of supramolecular chemistry, such as host–guest interactions, endows the resultant microcapsules with stimuli-responsiveness and self-adjusting capabilities, and facilitates hierarchical microstructures with tunable stability and porosity, leading to the maturity of current microencapsulation industry. Supramolecular architectures and materials have attracted immense attention over the past decade, as they open the possibility to obtain a large variety of aesthetically pleasing structures, with myriad applications in biomedicine, energy, sensing, catalysis, and biomimicry, on account of the inherent reversible and adaptive nature of supramolecular interactions. As a subset of supramolecular interactions, host–guest molecular recognition involves the formation of inclusion complexes between two or more moieties, with specific three-dimensional structures and spatial arrangements, in a highly controllable and cooperative manner. Such highly selective, strong yet dynamic interactions could be exploited as an alternative methodology for programmable and controllable engineering of supramolecular architectures and materials, exploiting reversible interactions between complementary components. Through the engineering of molecular structures, assemblies can be readily functionalized based on host–guest interactions, with desirable physicochemical characteristics. In this Account, we summarize the current state of development in the field of monodisperse supramolecular microcapsules, fabricated through the integration of traditional microfluidic techniques and interfacial host–guest chemistry, specifically cucurbit[n]uril (CB[n])-mediated host–guest interactions. Three different strategies, colloidal particle-driven assembly, interfacial condensation-driven assembly and electrostatic interaction-driven assembly, are classified and discussed in detail, presenting the methodology involved in each microcapsule formation process. We highlight the state-of-the-art in design and control over structural complexity with desirable functionality, as well as promising applications, such as cargo delivery stemming from the assembled microcapsules. On account of its dynamic nature, the CB[n]-mediated host–guest complexation has demonstrated efficient response toward various external stimuli such as UV light, pH change, redox chemistry, and competitive guests. Herein, we also demonstrate different microcapsule modalities, which are engineered with CB[n] host–guest chemistry and also can be disrupted with the aid of external stimuli, for triggered release of payloads. In addition to the overview of recent achievements and current limitations of these microcapsules, we finally summarize several perspectives on tunable cargo loading and triggered release, directions, and challenges for this technology, as well as possible strategies for further improvement, which will lead to substainitial progress of host–guest chemistry in supramolecular architectures and materials. PMID:28075551
ERIC Educational Resources Information Center
Shweikeh, Eman
2014-01-01
Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on…
An all-electric single-molecule motor.
Seldenthuis, Johannes S; Prins, Ferry; Thijssen, Joseph M; van der Zant, Herre S J
2010-11-23
Many types of molecular motors have been proposed and synthesized in recent years, displaying different kinds of motion, and fueled by different driving forces such as light, heat, or chemical reactions. We propose a new type of molecular motor based on electric field actuation and electric current detection of the rotational motion of a molecular dipole embedded in a three-terminal single-molecule device. The key aspect of this all-electronic design is the conjugated backbone of the molecule, which simultaneously provides the potential landscape of the rotor orientation and a real-time measure of that orientation through the modulation of the conductivity. Using quantum chemistry calculations, we show that this approach provides full control over the speed and continuity of motion, thereby combining electrical and mechanical control at the molecular level over a wide range of temperatures. Moreover, chemistry can be used to change all key parameters of the device, enabling a variety of new experiments on molecular motors.
Recent developments with boron as a platform for novel drug design.
Leśnikowski, Zbigniew J
2016-06-01
After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.
NASA Astrophysics Data System (ADS)
Khan, M. Anwar H.; Cooke, Michael; Utembe, Steve; Archibald, Alexander; Derwent, Richard; Jenkin, Mike; Lyons, Kyle; Kent, Adam; Percival, Carl; Shallcross, Dudley E.
2016-04-01
Gas phase reactions of ozone with unsaturated compounds form stabilized Criegee intermediates (sCI) which play an important role in controlling the budgets of many tropospheric species including OH, organic acids and secondary organic aerosols (SOA). Recently sCI has been proposed to play a significant role in atmospheric sulfate and nitrate chemistry by forming sulfuric acid (promoter of aerosol formation) and nitrate radical (a powerful oxidizing agent). sCI can also undergo association reactions with water, alcohols, and carboxylic acids to form hydroperoxides and with aldehydes and ketones to form secondary ozonides. The products from these reactions are low volatility compounds which can contribute to the formation of SOA. The importance of plant emitted alkenes (isoprene, monoterpenes, sesquiterpenes) in the production of SOA through sCI formation have already been investigated in laboratory studies. However, the SOA formation from these reactions are absent in current global models. Thus, the formation of SOA has been incorporated in the global model, STOCHEM-CRI, a 3-D global chemistry transport model and the role of CI chemistry in controlling atmospheric composition and climate, and the influence of water vapor has been discussed in the study.
The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-D-0283] Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Postapproval Manufacturing Changes... guidance describes chemistry, manufacturing, and controls (CMC) postapproval manufacturing changes that FDA...
Undergraduate Chemistry Education: A Workshop Summary
ERIC Educational Resources Information Center
Sawyer, Keegan; Alper, Joe
2014-01-01
"Undergraduate Chemistry Education" is the summary of a workshop convened in May 2013 by the Chemical Science Roundtable of the National Research Council to explore the current state of undergraduate chemistry education. Research and innovation in undergraduate chemistry education has been done for many years, and one goal of this…
Automated Water Chemistry Control at University of Virginia Pools.
ERIC Educational Resources Information Center
Krone, Dan
1997-01-01
Describes the technologically advanced aquatic and fitness center at the University of Virginia. Discusses the imprecise water chemistry control at the former facility and its intensive monitoring requirements. Details the new chemistry control standards initiated in the new center, which ensure constant chlorine and pH levels. (RJM)
Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barto, R.J.; Farrell, D.M.; Noto, F.A.
1986-04-01
The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.
The current state, main problems and directions in improving water chemistry at NPSs
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Sharafutdinov, R. B.
2007-05-01
An analysis of the current state of managing water-chemistry (WC) at Russian nuclear power plants with type-VVER and-RBMK reactors presently in operation is presented. The main directions for improvement of WC are shown.
Scully, John R
2015-01-01
Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.
Ferritin-Polymer Conjugates: Grafting Chemistry and Self-Assembly
2009-10-26
a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a...Chemoselective modification of M13 bacteriophage and cell imaging We systematically investigated the chemical modification of three kinds of reactive...tyrosine residues, on M13 surface. The reactivity for each group was identified by conjugation with small fluorescent molecules. Furthermore, the
Veterinary Research Manpower Development for Defense
2012-09-01
production systems, such as the U.S. In turn, the international community acquires a benefit from control and eradication efforts of FMD. A current and...The origin of sepsis was intra-abdominal (n=5), pneumonia (3), urosepsis (3), cutaneous (2), and chemotherapy induced (1). Thirteen dogs had community ...Knoll & Dr. M. Moore Hematological and Serum Chemistry Profiles as a Prognostic Indicators in Stranded Common Dolphins, Delphinis delphis
Mercury Content of Sediments in East Fork Poplar Creek: Current Assessment and Past Trends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brooks, Scott C.; Eller, Virginia A.; Dickson, Johnbull O.
2017-01-01
This study provided new information on sediment mercury (Hg) and monomethylmercury (MMHg) content and chemistry. The current inventory of Hg in East Fork Poplar Creek (EFPC) bed sediments was estimated to be 334 kg, which represents a ~67% decrease relative to the initial investigations in 1984. MMHg sediment inventory was estimated to be 44.1 g, lower but roughly similar to past estimates. The results support the relevance and potential impacts of other active and planned investigations within the Mercury Remediation Technology Development for Lower East Fork Poplar Creek project (e.g., assessment and control of bank soil inputs, sorbents for Hgmore » and MMHg removal, re-introduction of freshwater clams to EFPC), and identify gaps in current understanding that represent opportunities to understand controlling variables that may inform future technology development studies.« less
Monitoring corrosion and chemistry phenomena in supercritical aqueous systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macdonald, D.D.; Pang, J.; Liu, C.
1994-12-31
The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved. new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensorsmore » for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from {approximately}250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly.« less
Current techniques in acid-chloride corrosion control and monitoring at The Geysers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirtz, Paul; Buck, Cliff; Kunzman, Russell
1991-01-01
Acid chloride corrosion of geothermal well casings, production piping and power plant equipment has resulted in costly corrosion damage, frequent curtailments of power plants and the permanent shut-in of wells in certain areas of The Geysers. Techniques have been developed to mitigate these corrosion problems, allowing continued production of steam from high chloride wells with minimal impact on production and power generation facilities.The optimization of water and caustic steam scrubbing, steam/liquid separation and process fluid chemistry has led to effective and reliable corrosion mitigation systems currently in routine use at The Geysers. When properly operated, these systems can yield steammore » purities equal to or greater than those encountered in areas of The Geysers where chloride corrosion is not a problem. Developments in corrosion monitoring techniques, steam sampling and analytical methodologies for trace impurities, and computer modeling of the fluid chemistry has been instrumental in the success of this technology.« less
Development of the Joint NASA/NCAR General Circulation Model
NASA Technical Reports Server (NTRS)
Lin, S.-J.; Rood, R. B.
1999-01-01
The Data Assimilation Office at NASA/Goddard Space Flight Center is collaborating with NCAR/CGD in an ambitious proposal for the development of a unified climate, numerical weather prediction, and chemistry transport model which is suitable for global data assimilation of the physical and chemical state of the Earth's atmosphere. A prototype model based on the NCAR CCM3 physics and the NASA finite-volume dynamical core has been built. A unique feature of the NASA finite-volume dynamical core is its advanced tracer transport algorithm on the floating Lagrangian control-volume coordinate. The model currently has a highly idealized ozone production/loss chemistry derived from the observed 2D (latitude-height) climatology of the recent decades. Nevertheless, the simulated horizontal wave structure of the total ozone is in good qualitative agreement with the observed (TOMS). Long term climate simulations and NWP experiments have been carried out. Current up to date status and futur! e plan will be discussed in the conference.
Ten key issues in modern flow chemistry.
Wegner, Jens; Ceylan, Sascha; Kirschning, Andreas
2011-04-28
Ten essentials of synthesis in the flow mode, a new enabling technology in organic chemistry, are highlighted as flashlighted providing an insight into current and future issues and developments in this field. © The Royal Society of Chemistry 2011
ERIC Educational Resources Information Center
Evans, Michael J.; Moore, Jeffrey S.
2011-01-01
In recent years, postsecondary instructors have recognized the potential of wikis to transform the way students learn in a collaborative environment. However, few instructors have embraced in-depth student use of chemistry software for the creation of interactive chemistry content on the Web. Using currently available software, students are able…
Determination of the Formula of a Hydrate: A Greener Alternative
ERIC Educational Resources Information Center
Klingshirn, Marc A.; Wyatt, Allison F.; Hanson, Robert M.; Spessard, Gary O.
2008-01-01
We are currently in the process of incorporating green chemistry throughout the chemistry curriculum. In this article we describe how we applied the principles of green chemistry in one of our first-semester general chemistry courses, specifically in relation to the determination of the formula of a hydrate. We utilize a copper hydrate salt that…
Using computer-aided drug design and medicinal chemistry strategies in the fight against diabetes.
Semighini, Evandro P; Resende, Jonathan A; de Andrade, Peterson; Morais, Pedro A B; Carvalho, Ivone; Taft, Carlton A; Silva, Carlos H T P
2011-04-01
The aim of this work is to present a simple, practical and efficient protocol for drug design, in particular Diabetes, which includes selection of the illness, good choice of a target as well as a bioactive ligand and then usage of various computer aided drug design and medicinal chemistry tools to design novel potential drug candidates in different diseases. We have selected the validated target dipeptidyl peptidase IV (DPP-IV), whose inhibition contributes to reduce glucose levels in type 2 diabetes patients. The most active inhibitor with complex X-ray structure reported was initially extracted from the BindingDB database. By using molecular modification strategies widely used in medicinal chemistry, besides current state-of-the-art tools in drug design (including flexible docking, virtual screening, molecular interaction fields, molecular dynamics, ADME and toxicity predictions), we have proposed 4 novel potential DPP-IV inhibitors with drug properties for Diabetes control, which have been supported and validated by all the computational tools used herewith.
Fundamentals of Aqueous Microwave Chemistry
The first chemical revolution changed modern life with a host of excellent amenities and services, but created serious problems related to environmental pollution. After 150 years of current chemistry principles and practices, we need a radical change to a new type of chemistry k...
Black, John H
2006-01-01
The simplest elements, hydrogen and helium, offer a remarkably rich chemistry, which has controlled crucial features of the early evolution of the universe. Theoretical models of the origin of structure (stars, galaxies, clusters of galaxies, etc.) now incorporate this chemistry in some detail. In addition to the origin of structure, cosmologists are concerned with observational tests of competing world models. Primordial chemistry may give rise to some of the earliest departures from thermodynamic equilibrium in the universe. These effects may be observable as broad-band spectroscopic distortions of the cosmic background radiation, which otherwise exhibits a nearly perfect blackbody spectrum. The chemical history of the expanding universe is followed through a detailed calculation of the evolution of the abundances of H, H+, H-, H2, H2+, H3+, and other minor species. It is shown that continuous absorption by the small concentration of H- can produce a distortion in the cosmic background spectrum with a maximum at a frequency near nu/c = 9 cm-1 (wavelength 1.1 mm). The predicted effect lies only a factor of 5 below current limits. Its detection would provide an important test of our understanding of the recombination epoch of the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, N.; Miyamaru, K.
1995-03-01
The new TEPCO BWR`s are capable of having the occupational radiation exposure controlled successfully at a low level by selecting low cobalt steel, using corrosion-resistant steel, employing dual condensate polishing systems, and controlling Ni/Fe ratio during operation. The occupational radiation exposure of the old BWR`s, on the other hand, remains high though reduced substantially through the use of low cobalt replacement steel and the partial addition of a filter in the condensate polishing system. Currently under review is the overall decontamination procedure for the old BWR`s to find out to measures needed to reduce the amount of crud that ismore » and has been carried over into the nuclear reactor. The current status of decontamination is reported below.« less
Göstl, Robert; Senf, Antti; Hecht, Stefan
2014-03-21
The foundation of the chemical enterprise has always been the creation of new molecular entities, such as pharmaceuticals or polymeric materials. Over the past decades, this continuing effort of designing compounds with improved properties has been complemented by a strong effort to render their preparation (more) sustainable by implementing atom as well as energy economic strategies. Therefore, synthetic chemistry is typically concerned with making specific bonds and connections in a highly selective and efficient manner. However, to increase the degree of sophistication and expand the scope of our work, we argue that the modern aspiring chemist should in addition be concerned with attaining (better) control over when and where chemical bonds are being made or broken. For this purpose, photoswitchable molecular systems, which allow for external modulation of chemical reactions by light, are being developed and in this review we are covering the current state of the art of this exciting new field. These "remote-controlled synthetic tools" provide a remarkable opportunity to perform chemical transformations with high spatial and temporal resolution and should therefore allow regulating biological processes as well as material and device performance.
Use of combinatorial chemistry to speed drug discovery.
Rádl, S
1998-10-01
IBC's International Conference on Integrating Combinatorial Chemistry into the Discovery Pipeline was held September 14-15, 1998. The program started with a pre-conference workshop on High-Throughput Compound Characterization and Purification. The agenda of the main conference was divided into sessions of Synthesis, Automation and Unique Chemistries; Integrating Combinatorial Chemistry, Medicinal Chemistry and Screening; Combinatorial Chemistry Applications for Drug Discovery; and Information and Data Management. This meeting was an excellent opportunity to see how big pharma, biotech and service companies are addressing the current bottlenecks in combinatorial chemistry to speed drug discovery. (c) 1998 Prous Science. All rights reserved.
ERIC Educational Resources Information Center
Dori, Y. J.; Barnea, N.
A computer-assisted instruction (CAI) module on polymers was used to introduce chemistry teachers (n=64) to the variety of possibilities and benefits of using courseware in the current chemistry curriculum in Israel. From an analysis of a pre-and post-attitude questionnaire regarding the use of computers in chemistry teaching, it was concluded…
ERIC Educational Resources Information Center
Mumba, Frackson; Hunter, William J. F.
2009-01-01
The purpose of this study was to find out how the scientific literacy themes are represented in the current Zambian high school chemistry syllabus, textbooks and grade twelve chemistry examination papers in an attempt to find out whether or not the chemistry course has adequate potential to contribute to the preparation of scientifically literate…
21 CFR 862.1660 - Quality control material (assayed and unassayed).
Code of Federal Regulations, 2013 CFR
2013-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry... control material (assayed and unassayed) for clinical chemistry is a device intended for medical purposes for use in a test system to estimate test precision and to detect systematic analytical deviations...
21 CFR 862.1660 - Quality control material (assayed and unassayed).
Code of Federal Regulations, 2014 CFR
2014-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry... control material (assayed and unassayed) for clinical chemistry is a device intended for medical purposes for use in a test system to estimate test precision and to detect systematic analytical deviations...
21 CFR 862.1660 - Quality control material (assayed and unassayed).
Code of Federal Regulations, 2012 CFR
2012-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry... control material (assayed and unassayed) for clinical chemistry is a device intended for medical purposes for use in a test system to estimate test precision and to detect systematic analytical deviations...
Substrate-Directed Catalytic Selective Chemical Reactions.
Sawano, Takahiro; Yamamoto, Hisashi
2018-05-04
The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.
Stereochemical Control in Carbohydrate Chemistry
ERIC Educational Resources Information Center
Batchelor, Rhys; Northcote, Peter T.; Harvey, Joanne E.; Dangerfield, Emma M.; Stocker, Bridget L.
2008-01-01
Carbohydrates, in the form of glycoconjugates, have recently been shown to control a wide range of cellular processes. Accordingly, students interested in the study of organic chemistry and biomedical sciences should be exposed to carbohydrate chemistry. To this end, we have developed a sequence of experiments that leads the student from the…
Safety Isn't Always First: A Disturbing Look at Chemistry Books.
ERIC Educational Resources Information Center
Manning, Pat; Newman, Alan R.
1986-01-01
Discusses the problem of serious dangers in current and backlist chemistry experiment books. Discarding of older books and careful evaluation of the dangers inherent in newer books are recommended. Safe alternatives are suggested, including some criteria for evaluating dangers, and a safer approach used by a current author. (EM)
New Guidelines for Undergraduate Chemistry Curricula Examined.
ERIC Educational Resources Information Center
Worthy, Ward
1989-01-01
Reviews current biochemistry, education, and polymer course options found in chemistry programs. Proposes a new core curriculum with 28 semester hours with courses in inorganic, chemical, and instrumental analysis, organic, bioorganic, and physical chemistry. Notes that the new curriculum would better prepare students for the existing employment…
The Chemistry of Fitness. Active Activities.
ERIC Educational Resources Information Center
Bergandine, David R.; And Others
1991-01-01
The outline for a unit on the chemistry of fitness and nutrition is presented. Topics discussed include the organic basis of life, functional groups, kitchen experiments, micronutrients, energetics, fitness vs. fatness, current topics, and evaluation. This unit reviews the basic concepts of chemical bonding, acid-base chemistry, stoichiometry, and…
2001-03-19
Plasma chemistry and technology represents a significant advance and improvement for green manufacturing, pollution control, and various processing...December 14-19, 2000 in Honolulu, HI. This Congress consists of over 120 symposia. amongst them the Symposium on Plasma Chemistry and Technology for...in the plasma chemistry many field beyond the more traditional and mature fields of semiconductor and materials processing. This symposium was focus on
Green analytical chemistry--theory and practice.
Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek
2010-08-01
This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.
Managing the cellular redox hub in photosynthetic organisms.
Foyer, Christine H; Noctor, Graham
2012-02-01
Light-driven redox chemistry is a powerful source of redox signals that has a decisive input into transcriptional control within the cell nucleus. Like photosynthetic electron transport pathways, the respiratory electron transport chain exerts a profound control over gene function, in order to balance energy (reductant and ATP) supply with demand, while preventing excessive over-reduction or over-oxidation that would be adversely affect metabolism. Photosynthetic and respiratory redox chemistries are not merely housekeeping processes but they exert a controlling influence over every aspect of plant biology, participating in the control of gene transcription and translation, post-translational modifications and the regulation of assimilatory reactions, assimilate partitioning and export. The number of processes influenced by redox controls and signals continues to increase as do the components that are recognized participants in the associated signalling pathways. A step change in our understanding of the overall importance of the cellular redox hub to plant cells has occurred in recent years as the complexity of the management of the cellular redox hub in relation to metabolic triggers and environmental cues has been elucidated. This special issue describes aspects of redox regulation and signalling at the cutting edge of current research in this dynamic and rapidly expanding field. © 2011 Blackwell Publishing Ltd.
A Smart Superwetting Surface with Responsivity in Both Surface Chemistry and Microstructure.
Zhang, Dongjie; Cheng, Zhongjun; Kang, Hongjun; Yu, Jianxin; Liu, Yuyan; Jiang, Lei
2018-03-26
Recently, smart surfaces with switchable wettability have aroused much attention. However, only single surface chemistry or the microstructure can be changed on these surfaces, which significantly limits their wetting performances, controllability, and applications. A new surface with both tunable surface microstructure and chemistry was prepared by grafting poly(N-isopropylacrylamide) onto the pillar-structured shape memory polymer on which multiple wetting states from superhydrophilicity to superhydrophobicity can be reversibly and precisely controlled by synergistically regulating the surface microstructure and chemistry. Meanwhile, based on the excellent controllability, we also showed the application of the surface as a rewritable platform, and various gradient wettings can be obtained. This work presents for the first time a surface with controllability in both surface chemistry and microstructure, which starts some new ideas for the design of novel superwetting materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gossart, Audrey; Battiston, Kyle G; Gand, Adeline; Pauthe, Emmanuel; Santerre, J Paul
2018-01-15
Monocyte interactions with materials that are biofunctionalized with fibronectin (Fn) are of interest because of the documented literature which associates this protein with white blood cell function at implant sites. A degradable-polar hydrophobic ionic polyurethane (D-PHI), has been reported to promote an anti-inflammatory response from human monocytes. The aim of the current work was to study the influence of intrinsic D-PHI material chemistry on Fn adsorption (mono and multi-layer structures), and to investigate the influence of such chemistry on the structural state of the Fn, as well as the latter's influence on the activity of human monocytes on the protein coated substrates. Significant differences in Fn adsorption, surface hydrophobicity and the availability of defined peptide sequences (N terminal, C terminal or Cell Binding Domain) for the Fn in mono vs multilayer structures were observed as a function of the changes in intrinsic material chemistry. A D-PHI-formulated polyurethane substrate with subtle changes in anionic and hydrophobic domain content relative to the polar non-ionic urethane/carbonate groups within the polymer matrix promoted the lowest activation of monocytes, in the presence of multi-layer Fn constructs. These results highlight the importance of chemical heterogeneity as a design parameter for biomaterial surfaces, and establishes a desired strategy for controlling human monocyte activity at the surface of devices, when these are coated with multi-layer Fn structures. The latter is an important step towards functionalizing the materials with multi-layer protein drug carriers as interventional therapeutic agents. The control of the behavior of monocytes, especially migration and activation, is of crucial interest to modulate the inflammatory response at the site of implanted biomaterial. Several studies report the influence of adsorbed serum proteins on the behavior of monocytes on biomaterials. However, few studies show the influence of surface chemical group distribution on the controlled adsorption and the subsequent induced conformation- of mono versus multi-layer assembled structures generated from specific proteins implicated in wound repair. The current research considered the role of Fn adsorption and conformation in thin films while interacting with the intrinsic chemistry of segmented block polyurethanes; and the influence of the former on modulation and activation of human monocytes. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Tomalia, Donald A; Khanna, Shiv N
2016-02-24
Development of a central paradigm is undoubtedly the single most influential force responsible for advancing Dalton's 19th century atomic/molecular chemistry concepts to the current maturity enjoyed by traditional chemistry. A similar central dogma for guiding and unifying nanoscience has been missing. This review traces the origins, evolution, and current status of such a critical nanoperiodic concept/framework for defining and unifying nanoscience. Based on parallel efforts and a mutual consensus now shared by both chemists and physicists, a nanoperiodic/systematic framework concept has emerged. This concept is based on the well-documented existence of discrete, nanoscale collections of traditional inorganic/organic atoms referred to as hard and soft superatoms (i.e., nanoelement categories). These nanometric entities are widely recognized to exhibit nanoscale atom mimicry features reminiscent of traditional picoscale atoms. All unique superatom/nanoelement physicochemical features are derived from quantized structural control defined by six critical nanoscale design parameters (CNDPs), namely, size, shape, surface chemistry, flexibility/rigidity, architecture, and elemental composition. These CNDPs determine all intrinsic superatom properties, their combining behavior to form stoichiometric nanocompounds/assemblies as well as to exhibit nanoperiodic properties leading to new nanoperiodic rules and predictive Mendeleev-like nanoperiodic tables, and they portend possible extension of these principles to larger quantized building blocks including meta-atoms.
Modeling the acid-base surface chemistry of montmorillonite.
Bourg, Ian C; Sposito, Garrison; Bourg, Alain C M
2007-08-15
Proton uptake on montmorillonite edge surfaces can control pore water pH, solute adsorption, dissolution kinetics and clay colloid behavior in engineered clay barriers and natural weathering environments. Knowledge of proton uptake reactions, however, is currently limited by strong discrepancies between reported montmorillonite titration data sets and by conflicting estimates of edge structure, reactivity and electrostatics. In the present study, we show that the apparent discrepancy between titration data sets results in large part from the widespread use of an erroneous assumption of zero specific net proton surface charge at the onset of titration. Using a novel simulation scheme involving a surface chemistry model to simulate both pretreatment and titration, we find that montmorillonite edge surface chemistry models that account for the "spillover" of electrostatic potential from basal onto edge surfaces and for the stabilization of deprotonated Al-Si bridging sites through bond-length relaxation at the edge surface can reproduce key features of the best available experimental titration data (the influence of pretreatment conditions on experimental results, the absence of a point of zero salt effect, buffer capacity in the acidic pH range). However, no combination of current models of edge surface structure, reactivity and electrostatics can quantitatively predict, without fitted parameters, the experimental titration data over the entire range of pH (4.5 to 9) and ionic strength (0.001 to 0.5 mol dm(-3)) covered by available data.
ERIC Educational Resources Information Center
National Academy of Sciences - National Research Council, Washington, DC.
Because of the changes occurring in the chemical sciences, a new survey of chemistry and its intellectual and economic impact was clearly needed. This report presents a current assessment of the status of chemistry and of the future opportunities in the field. This analysis contains: (1) an introductory chapter (establishing the need for the…
Throwing the Book at Elementary Chemistry.
ERIC Educational Resources Information Center
Pauling, Linus
1983-01-01
Several examples of misinformation and advanced topics included in current chemistry textbooks are provided. Suggests that since these books tend to be too long, too advanced, and too heavy, revisions should be shorter and less costly, with confusing aspects of chemistry (such as molecular-orbital theory) left out completely. (JN)
Jao Van De Lagemaat Photo of Jao Vandelagemaat. Jao Van De Lagemaat Center Director: Chemistry and Lagemaat is currently the Center Director of the Chemistry and Nanoscience Center at NREL. He received his university. Education Ph.D. Physical Chemistry, University of Utrecht Featured Publications View all NREL
Omani Twelfth Grade Students' Most Common Misconceptions in Chemistry
ERIC Educational Resources Information Center
Al-Balushi, Sulaiman M.; Ambusaidi, Abdullah K.; Al-Shuaili, Ali H.; Taylor, Neil
2012-01-01
The current study, undertaken in the Sultanate of Oman, explored twelfth grade students' common misconceptions in seven chemistry conceptual areas. The sample included 786 twelfth grade students in Oman while the instrument was a two-tier test called Chemistry Misconceptions Diagnostic Test (CMDT), consisting of 25 items with 12 items…
Photodegradation Pathways in Arid Ecosystems
NASA Astrophysics Data System (ADS)
King, J. Y.; Lin, Y.; Adair, E. C.; Brandt, L.; Carbone, M. S.
2013-12-01
Recent interest in improving our understanding of decomposition patterns in arid and semi-arid ecosystems and under potentially drier future conditions has led to a flurry of research related to abiotic degradation processes. Oxidation of organic matter by solar radiation (photodegradation) is one abiotic degradation process that contributes significantly to litter decomposition rates. Our meta-analysis results show that increasing solar radiation exposure corresponds to an average increase of 23% in litter mass loss rate with large variation among studies associated primarily with environmental and litter chemistry characteristics. Laboratory studies demonstrate that photodegradation results in CO2 emissions. Indirect estimates suggest that photodegradation could account for as much as 60% of ecosystem CO2 emissions from dry ecosystems, but these CO2 fluxes have not been measured in intact ecosystems. The current data suggest that photodegradation is important, not only for understanding decomposition patterns, but also for modeling organic matter turnover and ecosystem C cycling. However, the mechanisms by which photodegradation operates, along with their environmental and litter chemistry controls, are still poorly understood. Photodegradation can directly influence decomposition rates and ecosystem CO2 flux via photochemical mineralization. It can also indirectly influence biotic decomposition rates by facilitating microbial degradation through breakdown of more recalcitrant compounds into simpler substrates or by suppressing microbial activity directly. All of these pathways influence the decomposition process, but the relative importance of each is uncertain. Furthermore, a specific suite of controls regulates each of these pathways (e.g., environmental conditions such as temperature and relative humidity; physical environment such as canopy architecture and contact with soil; and litter chemistry characteristics such as lignin and cellulose content), and these controls have not yet been identified or quantified. To advance our understanding of photodegradation and its role in decomposition and in ecosystem C cycling, we must characterize its mechanisms and their associated controls and incorporate this understanding into biogeochemical models. Our objective is to summarize the current state of understanding of photodegradation and discuss some paths forward to address remaining critical gaps in knowledge about its mechanisms and influence on ecosystem C balance.
DNA Nanotechnology for Precise Control over Drug Delivery and Gene Therapy.
Angell, Chava; Xie, Sibai; Zhang, Liangfang; Chen, Yi
2016-03-02
Nanomedicine has been growing exponentially due to its enhanced drug targeting and reduced drug toxicity. It uses the interactions where nanotechnological components and biological systems communicate with each other to facilitate the delivery performance. At this scale, the physiochemical properties of delivery systems strongly affect their capacities. Among current delivery systems, DNA nanotechnology shows many advantages because of its unprecedented engineering abilities. Through molecular recognition, DNA nanotechnology can be used to construct a variety of nanostructures with precisely controllable size, shape, and surface chemistry, which can be appreciated in the delivery process. In this review, different approaches that are currently used for the construction of DNA nanostructures are reported. Further, the utilization of these DNA nanostructures with the well-defined parameters for the precise control in drug delivery and gene therapy is discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Voronov, V. N.; Yegoshina, O. V.; Bolshakova, N. A.; Yarovoi, V. O.; Latt, Aie Min
2016-12-01
Typical disturbances in the dynamics of a corrective reagent dosing system under unsteady-state conditions during the unsatisfactory operation of a chemical control system with some water chemistry upsets at thermal and nuclear power stations are considered. An experimental setup representing a physical model for the water chemistry control system is described. The two disturbances, which are most frequently encountered in water chemistry control practice, such as a breakdown or shutdown of temperature compensation during pH measurement and an increase in the heat-transfer fluid flow rate, have been modeled in the process of study. The study of the effect produced by the response characteristics of chemical control analyzers on the operation of a reagent dosing system under unsteady-state conditions is important for the operative control of a water chemistry regime state. The effect of temperature compensation during pH measurement on the dynamics of an ammonia-dosing system in the manual and automatic cycle chemistry control modes has been studied. It has been demonstrated that the reading settling time of a pH meter in the manual ammonia- dosing mode grows with a breakdown in temperature compensation and a simultaneous increase in the temperature of a heat-transfer fluid sample. To improve the efficiency of water chemistry control, some systems for the quality control of a heat-transfer fluid by a chemical parameter with the obligatory compensation of a disturbance in its flow rate have been proposed for use. Experimental results will possibly differ from industrial data due to a great length of sampling lines. For this reason, corrective reagent dosing systems must be adapted to the conditions of a certain power-generating unit in the process of their implementation.
ERIC Educational Resources Information Center
American Chemical Society, Washington, DC.
A questionnaire was mailed to 50 major chemistry departments, 112 smaller chemistry departments, and 25 chemical engineering (CE) departments. The survey (included in an appendix) consists of a series of questions on two broad subjects--the current inventory at the surveyed institutions and the needs for instrumentation. Responses were received…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummings, Marvin; Shirato, Nozomi; Kersell, Heath
Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less
Cummings, Marvin; Shirato, Nozomi; Kersell, Heath; ...
2017-01-05
Here, the effect of a local external electric field on the barrier potential of a tunneling gap is studied utilizing an emerging technique, synchrotron x-ray scanning tunneling microscopy. Here, we demonstrate that the shape of the potential barrier in the tunneling gap can be altered by a localized external electric field, generated by voltages placed on the metallic outer shield of a nanofabricated coaxial metal-insulator-metal tip, resulting in a controlled linear modulation of the tunneling current. Experiments at hard and soft x-ray synchrotron beamlines reveal that both the chemical contrast and magnetic contrast signals measured by the tip can bemore » drastically enhanced, resulting in improved local detection of chemistry and magnetization at the surface.« less
Carbonate system parameters of an algal-dominated reef along west Maui
Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan A.; Gallagher, Christopher; Cheriton, Olivia; Storlazzi, Curt
2018-01-01
Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-d sampling period in March 2016. Abiotic process – primarily SGD fluxes – controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean end-member TA and DIC measurements. A shift from net community production and calcification to net respiration and carbonate dissolution was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.
ERIC Educational Resources Information Center
Al-Balushi, Sulaiman M.; Al-Musawi, Ali S.; Ambusaidi, Abdullah K.; Al-Hajri, Fatemah H.
2017-01-01
The purpose of the current study was to investigate the effectiveness of interacting with animations using mobile devices on grade 12 students' spatial and reasoning abilities. The study took place in a grade 12 context in Oman. A quasi-experimental design was used with an experimental group of 32 students and a control group of 28 students. The…
Independent Study in High School Chemistry: A Progress Report.
ERIC Educational Resources Information Center
DeRose, James V.
This is a progress report of an independent study program in chemistry at a senior high school. Currently in its fourth year of operation, the program is designed to provide students with individualized, self-paced instruction in college-preparatory chemistry. The author discusses the rationale for the program, the initial phases, the problems…
Rearrangements of Allylic Sulfinates to Sulfones: A Mechanistic Study
ERIC Educational Resources Information Center
Ball, David B.; Mollard, Paul; Voigtritter, Karl R.; Ball, Jenelle L.
2010-01-01
Most current organic chemistry textbooks are organized by functional groups and those of us who teach organic chemistry use functional-group organization in our courses but ask students to learn organic chemistry from a mechanistic approach. To enrich and extend the chemical understanding and knowledge of pericyclic-type reactions for chemistry…
Turbulent Mixing Chemistry in Disks
NASA Astrophysics Data System (ADS)
Semenov, D.; Wiebe, D.
2006-11-01
A gas-grain chemical model with surface reaction and 1D/2D turbulent mixing is available for protoplanetary disks and molecular clouds. Current version is based on the updated UMIST'95 database with gas-grain interactions (accretion, desorption, photoevaporation, etc.) and modified rate equation approach to surface chemistry (see also abstract for the static chemistry code).
Role of modern chemistry in sustainable arable crop protection.
Smith, Keith; Evans, David A; El-Hiti, Gamal A
2008-02-12
Organic chemistry has been, and for the foreseeable future will remain, vitally important for crop protection. Control of fungal pathogens, insect pests and weeds is crucial to enhanced food provision. As world population continues to grow, it is timely to assess the current situation, anticipate future challenges and consider how new chemistry may help meet those challenges. In future, agriculture will increasingly be expected to provide not only food and feed, but also crops for conversion into renewable fuels and chemical feedstocks. This will further increase the demand for higher crop yields per unit area, requiring chemicals used in crop production to be even more sophisticated. In order to contribute to programmes of integrated crop management, there is a requirement for chemicals to display high specificity, demonstrate benign environmental and toxicological profiles, and be biodegradable. It will also be necessary to improve production of those chemicals, because waste generated by the production process mitigates the overall benefit. Three aspects are considered in this review: advances in the discovery process for new molecules for sustainable crop protection, including tests for environmental and toxicological properties as well as biological activity; advances in synthetic chemistry that may offer efficient and environmentally benign manufacturing processes for modern crop protection chemicals; and issues related to energy use and production through agriculture.
A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...
Man's impact on the troposphere: Lectures in tropospheric chemistry
NASA Technical Reports Server (NTRS)
Levine, J. S. (Editor); Schryer, D. R. (Editor)
1978-01-01
Lectures covering a broad spectrum of current research in tropospheric chemistry with particular emphasis on the interaction of measurements, modeling, and understanding of fundamental processes are presented.
Advances on Aryldiazonium Salt Chemistry Based Interfacial Fabrication for Sensing Applications.
Cao, Chaomin; Zhang, Yin; Jiang, Cheng; Qi, Meng; Liu, Guozhen
2017-02-15
Aryldiazonium salts as coupling agents for surface chemistry have evidenced their wide applications for the development of sensors. Combined with advances in nanomaterials, current trends in sensor science and a variety of particular advantages of aryldiazonium salt chemistry in sensing have driven the aryldiazonium salt-based sensing strategies to grow at an astonishing pace. This review focuses on the advances in the use of aryldiazonium salts for modifying interfaces in sensors and biosensors during the past decade. It will first summarize the current methods for modification of interfaces with aryldiazonium salts, and then discuss the sensing applications of aryldiazonium salts modified on different transducers (bulky solid electrodes, nanomaterials modified bulky solid electrodes, and nanoparticles). Finally, the challenges and perspectives that aryldiazonium salt chemistry is facing in sensing applications are critically discussed.
Radiation chemistry for modern nuclear energy development
NASA Astrophysics Data System (ADS)
Chmielewski, Andrzej G.; Szołucha, Monika M.
2016-07-01
Radiation chemistry plays a significant role in modern nuclear energy development. Pioneering research in nuclear science, for example the development of generation IV nuclear reactors, cannot be pursued without chemical solutions. Present issues related to light water reactors concern radiolysis of water in the primary circuit; long-term storage of spent nuclear fuel; radiation effects on cables and wire insulation, and on ion exchangers used for water purification; as well as the procedures of radioactive waste reprocessing and storage. Radiation effects on materials and enhanced corrosion are crucial in current (II/III/III+) and future (IV) generation reactors, and in waste management, deep geological disposal and spent fuel reprocessing. The new generation of reactors (III+ and IV) impose new challenges for radiation chemists due to their new conditions of operation and the usage of new types of coolant. In the case of the supercritical water-cooled reactor (SCWR), water chemistry control may be the key factor in preventing corrosion of reactor structural materials. This paper mainly focuses on radiation effects on long-term performance and safety in the development of nuclear power plants.
ERIC Educational Resources Information Center
Cheney, Miranda L.; Zaworotko, Michael J.; Beaton, Steve; Singer, Robert D.
2008-01-01
Green chemistry has become an important area of concern for all chemists from practitioners in the pharmaceutical industry to professors and the students they teach and is now being incorporated into lectures of general and organic chemistry courses. However, there are relatively few green chemistry experiments that are easily incorporated into…
Teaching Applied Chemistry in a Pollution Control Context.
ERIC Educational Resources Information Center
Sell, Nancy J.
1982-01-01
Discusses rationale behind and content of a course (Industrial Pollution Control Techniques) combining knowledge from fields of industrial chemistry and chemical engineering and utilizing this knowledge in the context of understanding pollution problems and potential methods of pollution control. (Author/SK)
Next Generation, Si-Compatible Materials and Devices in the Si-Ge-Sn System
2015-10-09
AFOSR support: Richard Beeler (currently at Intel), Liying Jiang (currently at IBM), Gordon Grzybowski (currently at Wright Patterson AFB) and Chi ( Seth ...approaches to Si integration” J. Kouvetakis, A.V.G Chizmeshya, T. Watkins , G. Grzybowski, L. Jiang, R.T. Beleer, and J. Menéndez, Chemistry of...A.V.G Chizmeshya, T. Watkins , G. Grzybowski, L. Jiang, R.T. Beleer, and J. Menéndez, Chemistry of Materials 24(16), 3219-3230 (2012). [12
Current status and future prospects for enabling chemistry technology in the drug discovery process.
Djuric, Stevan W; Hutchins, Charles W; Talaty, Nari N
2016-01-01
This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of "dangerous" reagents. Also featured are advances in the "computer-assisted drug design" area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities.
Gas Phase Nanoparticle Synthesis
NASA Astrophysics Data System (ADS)
Granqvist, Claes; Kish, Laszlo; Marlow, William
This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.
Contract W911NF-09-1-0384 (Purdue University)
2012-10-27
spin system, Physical Review A , (02 2010): 22324. doi: 10.1103/PhysRevA.81.022324 08/31/2011 8.00 Sabre Kais, Anmer Daskin . Group leaders... a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...billions ) and developed new quantum algorithms to solve complex chemistry problems such as global optimization and excited states of molecules. ( a ) Papers
Plasma chemistry as a tool for green chemistry, environmental analysis and waste management.
Mollah, M Y; Schennach, R; Patscheider, J; Promreuk, S; Cocke, D L
2000-12-15
The applications of plasma chemistry to environmental problems and to green chemistry are emerging fields that offer unique opportunities for advancement. There has been substantial progress in the application of plasmas to analytical diagnostics and to waste reduction and waste management. This review discusses the chemistry and physics necessary to a basic understanding of plasmas, something that has been missing from recent technical reviews. The current status of plasmas in environmental chemistry is summarized and emerging areas of application for plasmas are delineated. Plasmas are defined and discussed in terms of their properties that make them useful for environmental chemistry. Information is drawn from diverse fields to illustrate the potential applications of plasmas in analysis, materials modifications and hazardous waste treatments.
Point of View: Teaching Chemistry for the Twenty-Second Century
ERIC Educational Resources Information Center
Wright, Steven M.
2013-01-01
In this article, the author reflects on chemistry teaching in the next century. He questions--Was anything he taught in his fundamental chemistry course of value? And, how will our current understanding of the molecular world change during his students' lifetimes? It reminded him of a pseudo-quote he remembered from his own university…
ERIC Educational Resources Information Center
Liu, Xiufeng
2006-01-01
Based on current theories of chemistry learning, this study intends to test a hypothesis that computer modeling enhanced hands-on chemistry laboratories are more effective than hands-on laboratories or computer modeling laboratories alone in facilitating high school students' understanding of chemistry concepts. Thirty-three high school chemistry…
Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry
ERIC Educational Resources Information Center
Geyer, Michael J.
2017-01-01
A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…
The Khat and Meow Meow Tale: Teaching the Relevance of Chemistry through Novel Recreational Drugs
ERIC Educational Resources Information Center
Fergus, Suzanne; Kellett, Kathryn; Gerhard, Ute
2015-01-01
Using current research and real-life scenarios to motivate students to understand chemistry principles is a key strategy in learning and teaching. An illustration of psychoactive drugs referred to as "legal highs" used in the U.K. and Europe is presented to highlight key chemistry principles and relate the importance of chemistry…
ERIC Educational Resources Information Center
Dodson, B.C.
Surveyed were current objectives, teaching methods and teaching materials used in introductory college chemistry. Six general objectives were identified: (1) to develop the ability to do critical thinking, (2) to make the students familiar with the facts, principles, and concepts of chemistry, (3) to help the students understand the nature of…
Tetrazine ligation for chemical proteomics.
Kang, Kyungtae; Park, Jongmin; Kim, Eunha
2016-01-01
Determining small molecule-target protein interaction is essential for the chemical proteomics. One of the most important keys to explore biological system in chemical proteomics field is finding first-class molecular tools. Chemical probes can provide great spatiotemporal control to elucidate biological functions of proteins as well as for interrogating biological pathways. The invention of bioorthogonal chemistry has revolutionized the field of chemical biology by providing superior chemical tools and has been widely used for investigating the dynamics and function of biomolecules in live condition. Among 20 different bioorthogonal reactions, tetrazine ligation has been spotlighted as the most advanced bioorthogonal chemistry because of their extremely faster kinetics and higher specificity than others. Therefore, tetrazine ligation has a tremendous potential to enhance the proteomic research. This review highlights the current status of tetrazine ligation reaction as a molecular tool for the chemical proteomics.
Huang, Guanxing; Liu, Chunyan; Sun, Jichao; Zhang, Ming; Jing, Jihong; Li, Liangping
2018-06-01
A growing population accompanied by urbanization has increased groundwater resource demands in the Pearl River Delta (PRD) area, southern China, and a comprehensive understanding of the groundwater chemistry in the PRD is necessary. The aims of this study were to investigate the groundwater chemistry in various aquifers in the PRD on a regional scale and to discuss the factors that control the groundwater chemistries of different types of aquifers. In addition, the effect of the expansion of construction land on the groundwater chemistry was also taken into consideration in this study. Nearly 400 groundwater samples were collected and fourteen chemical parameters were investigated. The results show that natural factors, such as seawater intrusions, are mainly responsible for the higher concentrations of total dissolved solids, Na + , Mg 2+ , K + , and Cl - , in granular aquifers than those in fissured and karst aquifers. Similarly, higher concentrations of NH 4 + , Fe and Mn in granular aquifers than those in the other two types of aquifers are mainly ascribed to natural reduction. In contrast, human activities, such as the continuous irrigation of river water, upon granular aquifer are mainly responsible for the higher concentrations of Ca 2+ and HCO 3 - in granular aquifers than those in other two types of aquifers. Urbanization and industrialization are the main driving forces for the frequently occurrences of NO 3 and SO 4 water types, respectively. Moreover, the number of water types in the PRD increased to 89 after the decades of urbanization. Factors that control groundwater chemistries in various aquifers were extracted. A four-factor model controlled the groundwater chemistry of granular aquifers, while two three-factor models controlled the groundwater chemistries of fissured and karst aquifers, respectively. The results of this study show that the expansion of construction land is a powerful driving force for the change of groundwater chemistry in the PRD. Copyright © 2017 Elsevier B.V. All rights reserved.
Research in bioanalysis and separations at the University of Nebraska - Lincoln.
Hage, David S; Dodds, Eric D; Du, Liangcheng; Powers, Robert
2011-05-01
The Chemistry Department at the University of Nebraska - Lincoln (UNL) is located in Hamilton Hall on the main campus of UNL in Lincoln, NE, USA. This department houses the primary graduate and research program in chemistry in the state of Nebraska. This program includes the traditional fields of analytical chemistry, biochemistry, inorganic chemistry, organic chemistry and physical chemistry. However, this program also contains a great deal of multidisciplinary research in fields that range from bioanalytical and biophysical chemistry to nanomaterials, energy research, catalysis and computational chemistry. Current research in bioanalytical and biophysical chemistry at UNL includes work with separation methods such as HPLC and CE, as well as with techniques such as MS and LC-MS, NMR spectroscopy, electrochemical biosensors, scanning probe microscopy and laser spectroscopy. This article will discuss several of these areas, with an emphasis being placed on research in bioanalytical separations, binding assays and related fields.
“Towards building better linkages between aqueous phase ...
Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and employing a bisection method to calculate H+ concentrations. With potentially hundreds of reactions that may be important in cloud water and only seven reactions in the current model, expansion of the existing mechanism is an important area of investigation. However, with the current mechanism hardwired into the solver code, the module is difficult to expand with additional chemistry. It also ignores the impacts of mass transfer limitations on cloud chemistry which may be significant. Here, the Kinetic PreProcessor has been applied to generate a Rosenbrock solver for the CMAQ v5.0.1 aqueous phase chemistry mechanism. The module has been updated to simultaneously solve kinetic mass transfer between the phases, dissociation/association, chemical kinetics, Aitken scavenging, and wet deposition. This will allow for easier expansion of the chemical mechanism in the future and a better link between aqueous phase chemistry and droplet microphysics. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating pre
CPT Special Report: Survey of Ph.D. Programs in Chemistry.
ERIC Educational Resources Information Center
Journal of Chemical Education, 1997
1997-01-01
Presents preliminary results from a survey taken by the American Chemical Society (ACS) Committee on Professional Training (CPT) to determine the current practices among 155 Ph.D. programs in chemistry. (DKM)
Cheng, Yi-Yu; Qian, Zhong-Zhi; Zhang, Bo-Li
2017-01-01
The current situation, bottleneck problems and severe challenges in quality control technology of Chinese Medicine (CM) are briefly described. It is presented to change the phenomenon related to the post-test as the main means and contempt for process control in drug regulation, reverse the situation of neglecting the development of process control and management technology for pharmaceutical manufacture and reconstruct the technological system for quality control of CM products. The regulation and technology system based on process control and management for controlling CM quality should be established to solve weighty realistic problems of CM industry from the root causes, including backwardness of quality control technology, weakness of quality risk control measures, poor reputation of product quality and so on. By this way, the obstacles from poor controllability of CM product quality could be broken. Concentrating on those difficult problems and weak links in the technical field of CM quality control, it is proposed to build CMC (Chemistry, Manufacturing and Controls) regulation for CM products with Chinese characteristics and promote the regulation international recognition as soon as possible. The CMC technical framework, which is clinical efficacy-oriented, manufacturing manner-centered and process control-focused, was designed. To address the clinical characteristics of traditional Chinese medicine (TCM) and the production feature of CM manufacture, it is suggested to establish quality control engineering for CM manufacturing by integrating pharmaceutical analysis, TCM chemistry, TCM pharmacology, pharmaceutical engineering, control engineering, management engineering and other disciplines. Further, a theoretical model of quality control engineering for CM manufacturing and the methodology of digital pharmaceutical engineering are proposed. A technology pathway for promoting CM standard and realizing the strategic goal of CM internationalization is elaborated. Copyright© by the Chinese Pharmaceutical Association.
Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries
Prentice, Boone M.
2013-01-01
Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field. PMID:23257901
Gas-phase ion/ion reactions of peptides and proteins: acid/base, redox, and covalent chemistries.
Prentice, Boone M; McLuckey, Scott A
2013-02-01
Gas-phase ion/ion reactions are emerging as useful and flexible means for the manipulation and characterization of peptide and protein biopolymers. Acid/base-like chemical reactions (i.e., proton transfer reactions) and reduction/oxidation (redox) reactions (i.e., electron transfer reactions) represent relatively mature classes of gas-phase chemical reactions. Even so, especially in regards to redox chemistry, the widespread utility of these two types of chemistries is undergoing rapid growth and development. Additionally, a relatively new class of gas-phase ion/ion transformations is emerging which involves the selective formation of functional-group-specific covalent bonds. This feature details our current work and perspective on the developments and current capabilities of these three areas of ion/ion chemistry with an eye towards possible future directions of the field.
Carbonate system parameters of an algal-dominated reef along West Maui
NASA Astrophysics Data System (ADS)
Prouty, Nancy G.; Yates, Kimberly K.; Smiley, Nathan; Gallagher, Chris; Cheriton, Olivia; Storlazzi, Curt D.
2018-04-01
Constraining coral reef metabolism and carbon chemistry dynamics are fundamental for understanding and predicting reef vulnerability to rising coastal CO2 concentrations and decreasing seawater pH. However, few studies exist along reefs occupying densely inhabited shorelines with known input from land-based sources of pollution. The shallow coral reefs off Kahekili, West Maui, are exposed to nutrient-enriched, low-pH submarine groundwater discharge (SGD) and are particularly vulnerable to the compounding stressors from land-based sources of pollution and lower seawater pH. To constrain the carbonate chemistry system, nutrients and carbonate chemistry were measured along the Kahekili reef flat every 4 h over a 6-day sampling period in March 2016. Abiotic process - primarily SGD fluxes - controlled the carbonate chemistry adjacent to the primary SGD vent site, with nutrient-laden freshwater decreasing pH levels and favoring undersaturated aragonite saturation (Ωarag) conditions. In contrast, diurnal variability in the carbonate chemistry at other sites along the reef flat was driven by reef community metabolism. Superimposed on the diurnal signal was a transition during the second sampling period to a surplus of total alkalinity (TA) and dissolved inorganic carbon (DIC) compared to ocean endmember TA and DIC measurements. A shift from positive net community production and positive net community calcification to negative net community production and negative net community calcification was identified. This transition occurred during a period of increased SGD-driven nutrient loading, lower wave height, and reduced current speeds. This detailed study of carbon chemistry dynamics highlights the need to incorporate local effects of nearshore oceanographic processes into predictions of coral reef vulnerability and resilience.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
...] Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Information--Fermentation-Derived... Controls (CMC) Information-- Fermentation-Derived Intermediates, Drug Substances, and Related Drug Products... documentation to submit to support the CMC information for fermentation-derived intermediates, drug substances...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uchida, Shunsuke; Ohsumi, Katsumi; Takashima, Yoshie
1995-03-01
Improvements of operational procedures to control water chemistry, e.g., nickel/iron control, as well as application of hardware improvements for reducing radioactive corrosion products resulted in an extremely low occupational exposure of less than 0.5 man.Sv/yr without any serious impact on the radwaste system, for BWR plants involved in the Japanese Improvement and Standardization Program. Recently, {sup 60}C radioactively in the reactor water has been increasing due to less crud fixation on the two smooth surfaces of new type high performance fuels and to the pH drop caused by chromium oxide anions released from stainless steel structures and pipings. This increasemore » must be limited by changes in water chemistry, e.g., applications of modified nickel/iron ratio control and weak alkali control. Controlled water chemistry to optimize three points, the plant radiation level and integrities of fuel and structural materials, is the primary future subject for BWR water chemistry.« less
NASA Astrophysics Data System (ADS)
Rodriguez-Abudo, S.; Melendez, M.; Morell, J. M.; Padilla, A.; Salisbury, J.
2016-02-01
Time series of near-reef carbonate chemistry obtained through the National Coral Reef Monitoring Program (NCRMP) at La Parguera Marine Reserve, Puerto Rico exhibit seasonal and diurnal variations modulated by diverse processes including coral community metabolism, thermodynamics and hydrodynamics. While surface CO2 dynamics have been fairly well characterized with moored pCO2 efforts, detailed hydrodynamic information resulting from La Parguera's complex morphological, meteorological, and oceanographic processes is currently lacking. This project focuses on a one-month-long hydrodynamic assessment near a fore reef site located within 100 m of the NCRMP pCO2 buoy. Current profiles spanning 12 m of depth were resolved with a bottom-mounted ADCP. Preliminary results show that under no wind conditions, dominant currents are tidally driven and aligned with the reef channel. Depth-averaged currents exhibit diurnal and semidiurnal peaks, not inconsistent with tidal and wind forcing. The analysis also shows that at times surface current direction can differ from near-reef currents by as much as 200 degrees, suggesting a possible mismatch between carbonate chemistry resolved at the surface and that felt by the reef structure. Moreover, buoy measurements are potentially resolving carbonate chemistry from both, oceanic and inshore water masses. Our findings suggest that monitoring and potentially predicting near-reef CO2 dynamics require interdisciplinary expertise and integrated approaches. This project provides new insights into the effects of tidal and meteorological forcing on the carbonate chemistry of near-reef coral ecosystems.
Safety in the Chemical Laboratory: Fire Safety and Fire Control in the Chemistry Laboratory.
ERIC Educational Resources Information Center
Wilbraham, A. C.
1979-01-01
Discusses fire safety and fire control in the chemistry laboratory. The combustion process, extinguishing equipment, extinguisher maintenance and location, and fire safety and practices are included. (HM)
NASA Astrophysics Data System (ADS)
Semerjyan, Vardan; Yuan, Tao
2011-04-01
Sodium (Na) Faraday filters based spectrometer is a relatively new instrument to study sodium nightglow as well as sodium and oxygen chemistry in the mesopause region. Successful spectrometer measurement demands highly accurate control of filter temperature. The ideal, long-term operation site for the Na spectrometer is an isolated location with minimum nocturnal sky background. Thus, the remote control of the filter temperature is a requirement for such operation, whereas current temperature controllers can only be operated manually. The proposed approach is aimed to not only enhance the temperature control, but also achieve spectrometer's remote and autonomous operation. In the meantime, the redesign should relief the burden of the cost for multi temperature controllers. The program will give to the operator flexibility in setting the operation temperatures of the Faraday filters, monitoring the temperature variations, and logging the data during the operation. Research will make diligent efforts to attach preliminary data analysis subroutine to the main control program. The real-time observation results will be posted online after the observation is completed. This approach also can be a good substitute for the temperature control system currently used to run the Lidar system at Utah State University (USU).
Current status and future prospects for enabling chemistry technology in the drug discovery process
Djuric, Stevan W.; Hutchins, Charles W.; Talaty, Nari N.
2016-01-01
This review covers recent advances in the implementation of enabling chemistry technologies into the drug discovery process. Areas covered include parallel synthesis chemistry, high-throughput experimentation, automated synthesis and purification methods, flow chemistry methodology including photochemistry, electrochemistry, and the handling of “dangerous” reagents. Also featured are advances in the “computer-assisted drug design” area and the expanding application of novel mass spectrometry-based techniques to a wide range of drug discovery activities. PMID:27781094
Connell, Justin G.; Genorio, Bostjan; Lopes, Pietro Papa; ...
2016-10-17
Developing a new generation of battery chemistries is a critical challenge to moving beyond current Li-ion technologies. In this work, we introduce a surface-science-based approach for understanding the complex phenomena controlling the reversibility of Mg anodes for Mg-ion batteries. In addition, we identify the profound impact of trace levels of H 2O (≤3 ppm) on the kinetics of Mg deposition and determine that passive films of MgO and Mg(OH) 2 are formed only after Mg deposition ceases, rather than continuously during Mg reduction. We also find that Cl – inhibits passivation through the formation of adsorbed Cl – (Mg–Cl(ad)) and/ormore » MgCl 2 on the surface, as well as through a dynamic competition with H 2O in the double layer. In conclusion, this surface-science-based approach goes well beyond Mg anodes, highlighting the need for more in-depth understanding of electrolyte chemistries before a new generation of efficient and reversible battery technologies can be realized.« less
A Wirelessly Powered Micro-Spectrometer for Neural Probe-Pin Device
NASA Technical Reports Server (NTRS)
Choi, Sang H.; Kim, Min Hyuck; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn
2015-01-01
Treatment of neurological anomalies, places stringent demands on device functionality and size. A micro-spectrometer has been developed for use as an implantable neural probe to monitor neuro-chemistry in synapses. The microspectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) enabling operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, allow real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.
A wirelessly powered microspectrometer for neural probe-pin device
NASA Astrophysics Data System (ADS)
Choi, Sang H.; Kim, Min H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Uhn
2015-12-01
Treatment of neurological anomalies, whether done invasively or not, places stringent demands on device functionality and size. We have developed a micro-spectrometer for use as an implantable neural probe to monitor neuro-chemistry in synapses. The micro-spectrometer, based on a NASA-invented miniature Fresnel grating, is capable of differentiating the emission spectra from various brain tissues. The micro-spectrometer meets the size requirements, and is able to probe the neuro-chemistry and suppression voltage typically associated with a neural anomaly. This neural probe-pin device (PPD) is equipped with wireless power technology (WPT) to enable operation in a continuous manner without requiring an implanted battery. The implanted neural PPD, together with a neural electronics interface and WPT, enable real-time measurement and control/feedback for remediation of neural anomalies. The design and performance of the combined PPD/WPT device for monitoring dopamine in a rat brain will be presented to demonstrate the current level of development. Future work on this device will involve the addition of an embedded expert system capable of performing semi-autonomous management of neural functions through a routine of sensing, processing, and control.
Double shell tanks (DST) chemistry control data quality objectives
DOE Office of Scientific and Technical Information (OSTI.GOV)
BANNING, D.L.
2001-10-09
One of the main functions of the River Protection Project is to store the Hanford Site tank waste until the Waste Treatment Plant (WTP) is ready to receive and process the waste. Waste from the older single-shell tanks is being transferred to the newer double-shell tanks (DSTs). Therefore, the integrity of the DSTs must be maintained until the waste from all tanks has been retrieved and transferred to the WTP. To help maintain the integrity of the DSTs over the life of the project, specific chemistry limits have been established to control corrosion of the DSTs. These waste chemistry limitsmore » are presented in the Technical Safety Requirements (TSR) document HNF-SD-WM-TSR-006, Sec. 5 . IS, Rev 2B (CHG 200 I). In order to control the chemistry in the DSTs, the Chemistry Control Program will require analyses of the tank waste. This document describes the Data Quality Objective (DUO) process undertaken to ensure appropriate data will be collected to control the waste chemistry in the DSTs. The DQO process was implemented in accordance with Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. Ib, Vol. IV, Section 4.16, (Banning 2001) and the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994), with some modifications to accommodate project or tank specific requirements and constraints.« less
Reisner, Barbara A; Smith, Sheila R; Stewart, Joanne L; Raker, Jeffrey R; Crane, Johanna L; Sobel, Sabrina G; Pesterfield, Lester L
2015-09-21
The undergraduate inorganic chemistry curriculum in the United States mirrors the broad diversity of the inorganic research community and poses a challenge for the development of a coherent curriculum that is thorough, rigorous, and engaging. A recent large survey of the inorganic community has provided information about the current organization and content of the inorganic curriculum from an institutional level. The data reveal shared "core" concepts that are broadly taught, with tremendous variation in content coverage beyond these central ideas. The data provide an opportunity for a community-driven discussion about how the American Chemical Society's Committee on Professional Training's vision of a foundation and in-depth course for each of the five subdisciplines maps onto an inorganic chemistry curriculum that is consistent in its coverage of the core inorganic concepts, yet reflects the diversity and creativity of the inorganic community. The goal of this Viewpoint is to present the current state of the diverse undergraduate curriculum and lay a framework for an effective and engaging curriculum that illustrates the essential role inorganic chemistry plays within the chemistry community.
Time-dependent interstellar chemistry
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
1985-01-01
Some current problems in interstellar chemistry are considered in the context of time-dependent calculations. The limitations of steady-state models of interstellar gas-phase chemistry are discussed, and attempts to chemically date interstellar clouds are reviewed. The importance of studying the physical and chemical properties of interstellar dust is emphasized. Finally, the results of a series of studies of collapsing clouds are described.
ERIC Educational Resources Information Center
Boesdorfer, Sarah B.; Livermore, Robin A.
2018-01-01
In the United States with the Next Generation Science Standards (NGSS)'s emphasis on learning science while doing science, laboratory activities in the secondary school chemistry continues to be an important component of a strong curriculum. Laboratory equipment and consumable materials create a unique expense which chemistry teachers and schools…
ERIC Educational Resources Information Center
Tofan, Daniel C.
2009-01-01
This paper describes an upper-level undergraduate and graduate-level course on computers in chemical education that was developed and offered for the first time in Fall 2007. The course provides future chemistry teachers with exposure to current software tools that can improve productivity in teaching, curriculum development, and education…
E-Learning in Chemistry Education: Self-Regulated Learning in a Virtual Classroom
ERIC Educational Resources Information Center
Eidelman, Rachel Rosanne; Shwartz, Yael
2016-01-01
The virtual Chemistry classroom is a learning environment for students that are willing to study Chemistry, but have no opportunity to do so at school. The program launched in 2015, and currently, there are 22 students in the 11th grade and 80 students in the 10th grade. This study investigates and characterizes the virtual learning environment,…
ERIC Educational Resources Information Center
Van Aalsvoort, Joke
2004-01-01
Secondary school chemical education has a problem: namely, the seeming irrelevance to the pupils of chemistry. Chemical education prepares pupils for participation in society. Therefore, it must imply a model of society, of chemistry, and of the relation between them. In this article it is hypothesized that logical positivism currently offers this…
1983-11-04
Division AREA & WORK UNIT NUMBERS . Department of Chemistry Howard University Washington, D. C. 20059 NR-051-733 1t. CONTROLLING OFFICE NAME AND...Journal of Physical Chemistry Laser Chemistry Division Department of Chemistry Howard University Washington, D. C. 20059 November 4, 1983 *Reproduction in...Victor McCrary, David Zakheim, and William M. Jackson Laser Chemistry Division Chemistry Departmient Howard University Washington, D.C.. 20059 ABSTRACT The
Report: Analytical Chemistry in a Changing World.
ERIC Educational Resources Information Center
Laitinen, H. A.
1980-01-01
Examines some of the changes that have occurred in the field of analytic chemistry, with emphasis on how the field has adapted to changes in science and technology. Current trends also are identified and discussed. (CS)
ERIC Educational Resources Information Center
Sykes, Andrew G.; Caple, Gerald
1999-01-01
Describes three chemistry experiments that link common foodstuffs traditionally and currently harvested by Native Americans in different parts of North America to modern chemical instrumentation and discovery methods. (CCM)
Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity
NASA Astrophysics Data System (ADS)
Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.
2015-10-01
Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems. Electronic supplementary information (ESI) available: Experimental procedures, synthesis, and characterization of molecules 1, 2 and 3. Explanation of the electrochemical method for approximating nanopore diameter. Additional XPS spectra. See DOI: 10.1039/C5NR02939B
Electrolyte chemistry control in electrodialysis processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Thomas D.; Severin, Blaine F.
Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.
2013-11-27
SECURITY CLASSIFICATION OF: CUBRC has developed an in-line, multi-analyte isolation technology that utilizes solid phase extraction chemistries to purify...goals. Specifically, CUBRC will design and manufacture a prototype cartridge(s) and test the prototype cartridge for its ability to isolate each...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. CUBRC , Inc. P. O. Box 400 Buffalo, NY 14225 -1955
2011-01-01
for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 2010 2. REPORT...TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE MultiscalePhysical and Biological Dynamics in the Philippines Archipelago...chemistry, and radioisotopes in the Southeast Asian Basins. J. Geophys. Res., 91:14,345-‐14,354. Cabrera
2017-05-01
DATE : May 2017 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE May 2017 2. REPORT TYPE Annual 3. DATES COVERED...chemistry efforts to synthesize a non-radioactive tethered Hsp90 inhibitor, methods developed for stannylation of the molecule such that it can be
Reforming of JP-8 in Microplasmas for Compact SOFC Power 500 W
2012-11-30
Ouyang X, Bednarova L, Besser RS, Ho P. Preferential oxidation (PrOx) in a thin-film catalytic microreactor : Advantages and limitations. Vol. 51, 2005...Chemistry, Allyn and Bacon. Inc. Boston 1973:21. [23] Dietz D , Ghezel-Ayagh H, Hunt J, Belkind A , Becker K, Nickens A . Plasma treatment of a heated... a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a
Reum, Jonathan C P; Alin, Simone R; Feely, Richard A; Newton, Jan; Warner, Mark; McElhany, Paul
2014-01-01
Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008-2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems.
Reum, Jonathan C. P.; Alin, Simone R.; Feely, Richard A.; Newton, Jan; Warner, Mark; McElhany, Paul
2014-01-01
Carbonate chemistry variability is often poorly characterized in coastal regions and patterns of covariation with other biologically important variables such as temperature, oxygen concentration, and salinity are rarely evaluated. This absence of information hampers the design and interpretation of ocean acidification experiments that aim to characterize biological responses to future pCO2 levels relative to contemporary conditions. Here, we analyzed a large carbonate chemistry data set from Puget Sound, a fjord estuary on the U.S. west coast, and included measurements from three seasons (winter, summer, and fall). pCO2 exceeded the 2008–2011 mean atmospheric level (392 µatm) at all depths and seasons sampled except for the near-surface waters (< 10 m) in the summer. Further, undersaturated conditions with respect to the biogenic carbonate mineral aragonite were widespread (Ωar<1). We show that pCO2 values were relatively uniform throughout the water column and across regions in winter, enriched in subsurface waters in summer, and in the fall some values exceeded 2500 µatm in near-surface waters. Carbonate chemistry covaried to differing levels with temperature and oxygen depending primarily on season and secondarily on region. Salinity, which varied little (27 to 31), was weakly correlated with carbonate chemistry. We illustrate potential high-frequency changes in carbonate chemistry, temperature, and oxygen conditions experienced simultaneously by organisms in Puget Sound that undergo diel vertical migrations under present-day conditions. We used simple calculations to estimate future pCO2 and Ωar values experienced by diel vertical migrators based on an increase in atmospheric CO2. Given the potential for non-linear interactions between pCO2 and other abiotic variables on physiological and ecological processes, our results provide a basis for identifying control conditions in ocean acidification experiments for this region, but also highlight the wide range of carbonate chemistry conditions organisms may currently experience in this and similar coastal ecosystems. PMID:24586915
Interfacial chemistry of zinc anodes for reinforced concrete structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.
1997-12-01
Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 tomore » 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.« less
Patterning Self-Assembled Monolayers on Gold: Green Materials Chemistry in the Teaching Laboratory
ERIC Educational Resources Information Center
McFarland, Adam D.; Huffman, Lauren M.; Parent, Kathryn, E.; Hutchison, James E.; Thompson, John E.
2004-01-01
An experiment demonstrating self-assembled monolayer (SAM) chemistry, organic thin-film patterning and the use of molecular functionality to control macroscopic properties is described. Several important green chemistry principles are introduced.
The Chemistry of Paper Preservation: Part 1. The Aging of Paper and Conservation Techniques
NASA Astrophysics Data System (ADS)
Carter, Henry A.
1996-05-01
This study provides an introduction to the problem of the aging of paper and the conservation techniques that are currently being employed in paper preservation. The chemical reactions that are responsible for the aging of paper are discussed with the conclusion that acid-catalyzed hydrolysis is the predominant mechanism for cellulose degradation and strength loss. A description and the chemistry of a number of mass deacidification methods are presented. The more viable deacidification methods include the DEZ, Wei T'o, FMC, Bookkeeper, Viennese, Book Preservation Associates, Sable and the Batelle processes. A summary of the literature on the evaluations of these processes is presented, and the benefits and limitations of the mass deacidification methods are discussed. Other conservation techniques such as paper strengthening, conservation bleaching, and pest control are briefly introduced, followed by an introduction to alkaline papermaking.
Green Chemistry: Progress and Barriers
NASA Astrophysics Data System (ADS)
Green, Sarah A.
2016-10-01
Green chemistry can advance both the health of the environment and the primary objectives of the chemical enterprise: to understand the behavior of chemical substances and to use that knowledge to make useful substances. We expect chemical research and manufacturing to be done in a manner that preserves the health and safety of workers; green chemistry extends that expectation to encompass the health and safety of the planet. While green chemistry may currently be treated as an independent branch of research, it should, like safety, eventually become integral to all chemistry activities. While enormous progress has been made in shifting from "brown" to green chemistry, much more effort is needed to effect a sustainable economy. Implementation of new, greener paradigms in chemistry is slow because of lack of knowledge, ends-justify-the-means thinking, systems inertia, and lack of financial or policy incentives.
Computing protein infrared spectroscopy with quantum chemistry.
Besley, Nicholas A
2007-12-15
Quantum chemistry is a field of science that has undergone unprecedented advances in the last 50 years. From the pioneering work of Boys in the 1950s, quantum chemistry has evolved from being regarded as a specialized and esoteric discipline to a widely used tool that underpins much of the current research in chemistry today. This achievement was recognized with the award of the 1998 Nobel Prize in Chemistry to John Pople and Walter Kohn. As the new millennium unfolds, quantum chemistry stands at the forefront of an exciting new era. Quantitative calculations on systems of the magnitude of proteins are becoming a realistic possibility, an achievement that would have been unimaginable to the early pioneers of quantum chemistry. In this article we will describe ongoing work towards this goal, focusing on the calculation of protein infrared amide bands directly with quantum chemical methods.
40 CFR 230.11 - Factual determinations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...
40 CFR 230.11 - Factual determinations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...
40 CFR 230.11 - Factual determinations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the physical, chemical, and biological components of the aquatic environment in light of subparts C... including downstream flows, and normal water fluctuation. Consideration shall be given to water chemistry... characteristics and elevation, water or substrate chemistry, nutrients, currents, circulation, fluctuation, and...
Damn the Permanganate Volcanoes: Full Principles Ahead.
ERIC Educational Resources Information Center
Pilar, Frank L.
1981-01-01
Discusses whether chemistry should be taught using a purely descriptive approach or using the current "principles" approach. Considers what sort of background should be provided given the uses students are most apt to make of their general chemistry training. (SK)
NASA Astrophysics Data System (ADS)
Çam, Aylin; Geban, Ömer
2011-02-01
The purpose of the study was to investigate the effectiveness of case-based learning instruction over traditionally designed chemistry instruction on eleventh grade students' epistemological beliefs and their attitudes toward chemistry as a school subject. The subjects of this study consisted of 63 eleventh grade students from two intact classes of an urban high school instructed with same teacher. Each teaching method was randomly assigned to one class. The experimental group received case-based learning and the control group received traditional instruction. At the experimental group, life cases were presented with small group format; at the control group, lecturing and discussion was carried out. The results showed that there was a significant difference between the experimental and control group with respect to their epistemological beliefs and attitudes toward chemistry as a school subject in favor of case-based learning method group. Thus, case base learning is helpful for development of students' epistemological beliefs and attitudes toward chemistry.
Using a Web Application to Conduct and Investigate Syntheses of Methyl Orange Remotely
ERIC Educational Resources Information Center
van Rens, Lisette; van Dijk, Hans; Mulder, Jan; Nieuwland, Pieter
2013-01-01
Thirty-six pre-university chemistry students and two chemistry teachers used flow chemistry as a technology for the synthesis of methyl orange. FutureChemistry and VU University Amsterdam cooperatively created FlowStart Remote, a device that enabled the students to remotely conduct this synthesis and in real time monitor and control the device via…
van Rijt, Sabine H.; Sadler, Peter J.
2010-01-01
This review illustrates notable recent progress in the field of medicinal bioinorganic chemistry with many new approaches to the design of innovative metal-based anticancer drugs emerging. Current research addressing the problems associated with platinum drugs has focused on other metal-based therapeutics that have different modes of action, and on prodrug and targeting strategies in an effort to diminish the side-effects of cisplatin chemotherapy. PMID:19782150
Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating
Crouse, Dustin; Simon, John; Schulte, Kevin L.; ...
2018-01-31
Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less
Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crouse, Dustin; Simon, John; Schulte, Kevin L.
Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less
Zadran, Sohila; Levine, Raphael D
2013-01-01
Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.
Glucose Measurement: Time for a Gold Standard
Hagvik, Joakim
2007-01-01
There is no internationally recognized reference method for the measurement of blood glucose. The Centers for Disease Control and Prevention (CDC) highlighted the need for standardization some years ago when a project was started. The project objectives were to (1) investigate whether there are significant differences in calibration levels among currently used glucose monitors for home use and (2) develop a reference method for glucose determination. A first study confirmed the assumption that currently used home-use monitors differ significantly and that standardization is necessary in order to minimize variability and to improve patient care. As a reference method, CDC recommended a method based on isotope dilution gas chromatography–mass spectrometry, an assay that has received support from clinical chemists worldwide. CDC initiated a preliminary study to establish the suitability of this method, but then the project came to a halt. It is hoped that CDC, with support from the industry, as well as academic and professional organizations such as the American Association for Clinical Chemistry and International Federation of Clinical Chemistry and Laboratory Medicine, will be able to finalize the project and develop the long-awaited and much needed “gold standard” for glucose measurement. PMID:19888402
Tighten water-chemistry control after boiler layup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brestel, L.
1994-01-01
The potential for internal deposition and corrosion can affect boiler reliability by reducing thermal efficiency, tube integrity, and the time between chemical cleanings. While chemical control specifications for normal operation have been developed by consensus of manufacturers and industry, their impact on shutdowns, layups, and startups is not always appreciated. The discussion of chemical-control options applies to boiler systems operating in the medium- and high-pressure ranges. Identification and correction of root causes underlying the chemistry problems encountered and application of the principles involved should result in shorter startup times, improved control over phosphate hideout, and reduced need for chemical cleaning.more » Each of these has a significant cost impact; together, they are the true measure of a successful chemistry-control program.« less
Estimating reliable paediatric reference intervals in clinical chemistry and haematology.
Ridefelt, Peter; Hellberg, Dan; Aldrimer, Mattias; Gustafsson, Jan
2014-01-01
Very few high-quality studies on paediatric reference intervals for general clinical chemistry and haematology analytes have been performed. Three recent prospective community-based projects utilising blood samples from healthy children in Sweden, Denmark and Canada have substantially improved the situation. The present review summarises current reference interval studies for common clinical chemistry and haematology analyses. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Integrating Character Education Model With Spiral System In Chemistry Subject
NASA Astrophysics Data System (ADS)
Hartutik; Rusdarti; Sumaryanto; Supartono
2017-04-01
Integrating character education is the responsibility of all subject teachers including chemistry teacher. The integration of character education is just administrative requirements so that the character changes are not measurable. The research objective 1) describing the actual conditions giving character education, 2) mapping the character integration of chemistry syllabus with a spiral system, and 3) producing syllabus and guide system integrating character education in chemistry lessons. Of the eighteen value character, each character is mapped to the material chemistry value concepts of class X and repeated the system in class XI and class XII. Spiral system integration means integrating the character values of chemistry subjects in steps from class X to XII repeatedly at different depth levels. Besides developing the syllabus, also made the integration of characters in a learning guide. This research was designed with research and development [3] with the scope of 20 chemistry teachers in Semarang. The focus of the activities is the existence of the current character study, mapping the character values in the syllabus, and assessment of the integration guides of character education. The validity test of Syllabus and Lesson Plans by experts in FGD. The data were taken with questionnaire and interviews, then processed by descriptive analysis. The result shows 1) The factual condition, in general, the teachers designed learning one-time face-to-face with the integration of more than four characters so that behaviour changes and depth of character is poorly controlled, 2) Mapping each character values focused in the syllabus. Meaning, on one or two basic competence in four or five times, face to face, enough integrated with the value of one character. In this way, there are more noticeable changes in students behaviour. Guidance is needed to facilitate the integration of character education for teachers integrating systems. Product syllabus and guidelines validated by experts and the syllabus results averaging 4.37; guidebooks integrating character education in chemistry learning 4.36 with a maximum score of 5. Thus the device is declared valid. Through focus group discussions, each expert gave input for the improvement of learning modules of character education.
Green polymer chemistry: biocatalysis and biomaterials
USDA-ARS?s Scientific Manuscript database
This overview briefly surveys the practice of green chemistry in polymer science. Eight related themes can be discerned from the current research activities: 1) biocatalysis, 2) bio-based building blocks and agricultural products, 3) degradable polymers, 4) recycling of polymer products and catalys...
CompTox Chemistry Dashboard webinar
The CompTox Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The dashboard provides access to a variety of information on over 700,000 chemicals currently in use. Within the application, users
ERIC Educational Resources Information Center
Akeroyd, F. Michael
1984-01-01
Discusses the relationship of Karl Popper's theories to chemistry, examining scientific statements and verisimilitude (which indicates that newer theories should have a higher degree of truth content compared with older theories). Also provides examples illustrating the use of Agassi's criteria for assessing currently fashionable theories. (JN)
Toxicity Evaluation of Engineered Nanomaterials (Phase 1 Studies)
2012-01-01
Surface Chemistry on Cellular Response ...................................................................................................... 48...Gold Nanomaterial Solution Purity and Surface Chemistry Toxicity ................................................................. 18 Figure 7...Solution Purity and Surface Chemistry Control Although several studies have shown that both MPS and PEG are biocompatible, in order to ensure that
ERIC Educational Resources Information Center
Sloop, Joseph C.; Tsoi, Mai Yin; Coppock, Patrick
2016-01-01
A problem-solving scaffold approach to synthesis was developed and implemented in two intervention sections of Chemistry 2211K (Organic Chemistry I) at Georgia Gwinnett College (GGC). A third section of Chemistry 2211K at GGC served as the control group for the experiment. Synthesis problems for chapter quizzes and the final examination were…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
...] Guidance for Industry on Chemistry, Manufacturing, and Controls Information--Fermentation-Derived... (CMC) Information-- Fermentation-Derived Intermediates, Drug Substances, and Related Drug Products for... to submit to support the CMC information for fermentation-derived intermediates, drug substances, and...
Flash chemistry: flow chemistry that cannot be done in batch.
Yoshida, Jun-ichi; Takahashi, Yusuke; Nagaki, Aiichiro
2013-11-04
Flash chemistry based on high-resolution reaction time control using flow microreactors enables chemical reactions that cannot be done in batch and serves as a powerful tool for laboratory synthesis of organic compounds and for production in chemical and pharmaceutical industries.
Diao, Ying; Myerson, Allan S; Hatton, T Alan; Trout, Bernhardt L
2011-05-03
Current industrial practice for control of primary nucleation (nucleation from a system without pre-existing crystalline matter) during crystallization from solution involves control of supersaturation generation, impurity levels, and solvent composition. Nucleation behavior remains largely unpredictable, however, due to the presence of container surfaces, dust, dirt, and other impurities that can provide heterogeneous nucleation sites, thus making the control and scale-up of processes that depend on primary nucleation difficult. To develop a basis for the rational design of surfaces to control nucleation during crystallization from solution, we studied the role of surface chemistry and morphology of various polymeric substrates on heterogeneous nucleation using aspirin as a model compound. Nucleation induction time statistics were utilized to investigate and quantify systematically the effectiveness of polymer substrates in inducing nucleation. The nucleation induction time study revealed that poly(4-acryloylmorpholine) and poly(2-carboxyethyl acrylate), each cross-linked by divinylbenzene, significantly lowered the nucleation induction time of aspirin while the other polymers were essentially inactive. In addition, we found the presence of nanoscopic pores on certain polymer surfaces led to order-of-magnitude faster aspirin nucleation rates when compared with surfaces without pores. We studied the preferred orientation of aspirin crystals on polymer films and found the nucleation-active polymer surfaces preferentially nucleated the polar facets of aspirin, guided by hydrogen bonds. A model based on interfacial free energies was also developed which predicted the same trend of polymer surface nucleation activities as indicated by the nucleation induction times.
Carbohydrate Green Chemistry: C-Glycoside Ketones as Potential Chiral Building Blocks
USDA-ARS?s Scientific Manuscript database
"Green chemistry" methods to produce new chemicals from renewable agricultural feedstocks will decrease our dependence on imported petroleum feedstocks and lower the environmental impact of consumer products. Our current research focuses on development of new carbohydrate-based derivatives, "locked...
Environmental Toxicology and Chemistry at EPA's Western Ecology Division
The facility for the US Environmental Protection Agency’s Western Ecology Division (WED) has been involved in environmental toxicology and chemistry research since its inception in 1961 when it was the Pacific Northwest Water Laboratory. Currently, WED is one of four ecolog...
Optimization of the water chemistry of the primary coolant at nuclear power plants with VVER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barmin, L. F.; Kruglova, T. K.; Sinitsyn, V. P.
2005-01-15
Results of the use of automatic hydrogen-content meter for controlling the parameter of 'hydrogen' in the primary coolant circuit of the Kola nuclear power plant are presented. It is shown that the correlation between the 'hydrogen' parameter in the coolant and the 'hydrazine' parameter in the makeup water can be used for controlling the water chemistry of the primary coolant system, which should make it possible to optimize the water chemistry at different power levels.
Glenn D. Shaw; Ricardo Cisneros; Donald Schweizer; James O. Sickman; Mark E. Fenn
2014-01-01
Major ion chemistry (2000-2009) from 208 lakes (342 sample dates and 600 samples) in class I and II wilderness areas of the Sierra Nevada was used in the Steady-State Water Chemistry (SSWC) model to estimate critical loads for acid deposition and investigate the current vulnerability of high elevation lakes to acid deposition. The majority of the lakes were dilute (...
Plasma Chemistry Processes in the Closed Cycle EDL.
1979-07-01
chemistry. The present study is mainly concerned with plasma by-products and, to some degree, with initial impurities and their influence on laser...performance. The plasma chemistry important in the formation of these by-products has been studied in greatest detail for He/N 2 /C0 2 mixtures loaded by...cases for two closed cycle EDL devices currently under development. The study includes the effects on performance of variations in the electric field
1988-09-01
surfaces as components of materials . In particular, we hope to develop the ability to rationalize and predict the macroscooic properties of surfaces...of much of the current research in areas such as materials science, condensed matter and device physics, and polymer physical chemistry. Surface...6 Underlying our program in surface chemistry is a broad interest in the prop- erties of organic surfaces as components of materials . In particular
Intermediate-energy nuclear chemistry workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, G.W.; Giesler, G.C.; Liu, L.C.
1981-05-01
This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.
Chemistry, manufacturing and controls in passive transdermal drug delivery systems.
Goswami, Tarun; Audett, Jay
2015-01-01
Transdermal drug delivery systems (TDDS) are used for the delivery of the drugs through the skin into the systemic circulation by applying them to the intact skin. The development of TDDS is a complex and multidisciplinary affair which involves identification of suitable drug, excipients and various other components. There have been numerous problems reported with respect to TDDS quality and performance. These problems can be reduced by appropriately addressing chemistry, manufacturing and controls requirements, which would thereby result in development of robust TDDS product and processes. This article provides recommendations on the chemistry, manufacturing and controls focusing on the unique technical aspects of TDDS.
The Blackhole in Chemical Education.
ERIC Educational Resources Information Center
Zuur, Aad; van Santen, Jacques
1983-01-01
Discusses challenges that should be implemented in chemistry teaching during the 1980s/1990s. These include a focus on social relevance and orientation to student (considering developmental stages, way of thinking, and direct environment). These efforts may change the current negative public image of chemistry. (JN)
Toward Consistent Terminology for Cyclohexane Conformers in Introductory Organic Chemistry
ERIC Educational Resources Information Center
Nelson, Donna J.; Brammer, Christopher N.
2011-01-01
Recommended changes in use of cyclohexane conformers and their nomenclature will remedy inconsistencies in cyclohexane conformers and their nomenclature that exist across currently used organic chemistry textbooks. These inconsistencies prompted this logical analysis and the resulting recommendations. Recommended conformer names are "chair",…
Battery Research & Development Need for Military Vehicle Application
2012-06-19
The charge control for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries. • The discharge control...for lithium ion battery chemistries is different from those of flooded and sealed lead acid batteries. • Battery charging voltage changes with the
Using Laboratory Chemicals to Imitate Illicit Drugs in a Forensic Chemistry Activity
ERIC Educational Resources Information Center
Hasan, Shawn; Bromfield-Lee, Deborah; Oliver-Hoyo, Maria T.; Cintron-Maldonado, Jose A.
2008-01-01
This forensic chemistry activity utilizes presumptive forensic testing procedures and laboratory chemicals that produce screening results similar to controlled substances. For obvious reasons, obtaining heavily regulated controlled substances to create an undergraduate student activity is not practical for most educational institutions. We were…
NASA Technical Reports Server (NTRS)
Tufts, Bruce J.; Casagrande, Louis G.; Lewis, Nathan S.; Grunthaner, Frank J.
1990-01-01
Correlations between the surface chemistry of etched, (100) oriented n-GaAs electrodes and their subsequent photoelectrochemical behavior have been probed by high-resolution X-ray photoelectron spectroscopy. GaAs photoanodes were chemically treated to prepare either an oxide-free near stoichiometric surface, a surface enriched in zero-valent arsenic or a substrate-oxide terminated surface. The current-voltage (I-V) behavior of each surface type was subsequently monitored in contact with several electrolytes.
Friendship chemistry: An examination of underlying factors☆.
Campbell, Kelly; Holderness, Nicole; Riggs, Matt
2015-06-01
Interpersonal chemistry refers to a connection between two individuals that exists upon first meeting. The goal of the current study is to identify beliefs about the underlying components of friendship chemistry. Individuals respond to an online Friendship Chemistry Questionnaire containing items that are derived from interdependence theory and the friendship formation literature. Participants are randomly divided into two subsamples. A principal axis factor analysis with promax rotation is performed on subsample 1 and produces 5 factors: Reciprocal candor, mutual interest, personableness, similarity, and physical attraction. A confirmatory factor analysis is conducted using subsample 2 and provides support for the 5-factor model. Participants with agreeable, open, and conscientious personalities more commonly report experiencing friendship chemistry, as do those who are female, young, and European/white. Responses from participants who have never experienced chemistry are qualitatively analyzed. Limitations and directions for future research are discussed.
Chemistry in Microfluidic Channels
ERIC Educational Resources Information Center
Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.
2011-01-01
General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…
Chemistry on the Go: Review of Chemistry Apps on Smartphones
ERIC Educational Resources Information Center
Libman, Diana; Huang, Ling
2013-01-01
touch-controlled computers such as smartphones and iPods are seeing dramatic growth with increasing adoption rates. This review covers about 30 popular and mostly free apps that can be used to learn chemistry and to serve as reference or research tools. The target…
2015-01-01
Iterative, nonreducing polyketide synthases (NR-PKSs) are multidomain enzymes responsible for the construction of the core architecture of aromatic polyketide natural products in fungi. Engineering these enzymes for the production of non-native metabolites has been a long-standing goal. We conducted a systematic survey of in vitro “domain swapped” NR-PKSs using an enzyme deconstruction approach. The NR-PKSs were dissected into mono- to multidomain fragments and recombined as noncognate pairs in vitro, reconstituting enzymatic activity. The enzymes used in this study produce aromatic polyketides that are representative of the four main chemical features set by the individual NR-PKS: starter unit selection, chain-length control, cyclization register control, and product release mechanism. We found that boundary conditions limit successful chemistry, which are dependent on a set of underlying enzymatic mechanisms. Crucial for successful redirection of catalysis, the rate of productive chemistry must outpace the rate of spontaneous derailment and thioesterase-mediated editing. Additionally, all of the domains in a noncognate system must interact efficiently if chemical redirection is to proceed. These observations refine and further substantiate current understanding of the mechanisms governing NR-PKS catalysis. PMID:24815013
Nanocrystal synthesis in microfluidic reactors: where next?
Phillips, Thomas W; Lignos, Ioannis G; Maceiczyk, Richard M; deMello, Andrew J; deMello, John C
2014-09-07
The past decade has seen a steady rise in the use of microfluidic reactors for nanocrystal synthesis, with numerous studies reporting improved reaction control relative to conventional batch chemistry. However, flow synthesis procedures continue to lag behind batch methods in terms of chemical sophistication and the range of accessible materials, with most reports having involved simple one- or two-step chemical procedures directly adapted from proven batch protocols. Here we examine the current status of microscale methods for nanocrystal synthesis, and consider what role microreactors might ultimately play in laboratory-scale research and industrial production.
Raybaud, Virginie; Tambutté, Sylvie; Ferrier-Pagès, Christine; Reynaud, Stéphanie; Venn, Alexander A; Tambutté, Éric; Nival, Paul; Allemand, Denis
2017-07-07
Critical to determining vulnerability or resilience of reef corals to Ocean Acidification (OA) is a clearer understanding of the extent to which corals can control carbonate chemistry in their Extracellular Calcifying Medium (ECM) where the CaCO 3 skeleton is produced. Here, we employ a mathematical framework to calculate ECM aragonite saturation state (Ω arag.(ECM) ) and carbonate system ion concentration using measurements of calcification rate, seawater characteristics (temperature, salinity and pH) and ECM pH (pH (ECM) ). Our calculations of ECM carbonate chemistry at current-day seawater pH, indicate that Ω arag.(ECM) ranges from ∼10 to 38 (mean 20.41), i.e. about 5 to 6-fold higher than seawater. Accordingly, Dissolved Inorganic Carbon (DIC) and Total Alkalinity (TA) were calculated to be around 3 times higher in the ECM than in seawater. We also assessed the effects of acidification on ECM chemical properties of the coral Stylophora pistillata. At reduced seawater pH our calculations indicate that Ω arag.(ECM) remains almost constant. DIC (ECM) and TA (ECM) gradually increase as seawater pH declines, reaching values about 5 to 6-fold higher than in seawater, respectively for DIC and TA. We propose that these ECM characteristics buffer the effect of acidification and explain why certain corals continue to produce CaCO 3 even when seawater chemistry is less favourable. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong
2015-01-01
This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies.
Ethics in Science: The Unique Consequences of Chemistry.
Kovac, Jeffrey
2015-01-01
This article discusses the ethical issues unique to the science and practice of chemistry. These issues arise from chemistry's position in the middle between the theoretical and the practical, a science concerned with molecules that are of the right size to directly affect human life. Many of the issues are raised by the central activity of chemistry--synthesis. Chemists make thousands of new substances each year. Many are beneficial, but others are threats. Since the development of the chemical industry in the nineteenth century, chemistry has contributed to the deterioration of the environment but has also helped to reduce pollution. Finally, we discuss the role of codes of ethics and whether the current codes of conduct for chemists are adequate for the challenges of today's world.
Static Chemistry in Disks or Clouds
NASA Astrophysics Data System (ADS)
Semenov, D.; Wiebe, D.
2006-11-01
This FORTRAN77 code can be used to model static, time-dependent chemistry in ISM and circumstellar disks. Current version is based on the OSU'06 gas-grain astrochemical network with all updates to the reaction rates, and includes surface chemistry from Hasegawa & Herbst (1993) and Hasegawa, Herbst, and Leung (1992). Surface chemistry can be modeled either with the standard rate equation approach or modified rate equation approach (useful in disks). Gas-grain interactions include sticking of neutral molecules to grains, dissociative recombination of ions on grains as well as thermal, UV, X-ray, and CRP-induced desorption of frozen species. An advanced X-ray chemistry and 3 grain sizes with power-law size distribution are also included. An deuterium extension to this chemical model is available.
Dykema, John A.; Keith, David W.; Anderson, James G.; Weisenstein, Debra
2014-01-01
Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of ‘unknown unknowns’ exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment—provisionally titled the stratospheric controlled perturbation experiment—is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering. PMID:25404681
Dykema, John A; Keith, David W; Anderson, James G; Weisenstein, Debra
2014-12-28
Although solar radiation management (SRM) through stratospheric aerosol methods has the potential to mitigate impacts of climate change, our current knowledge of stratospheric processes suggests that these methods may entail significant risks. In addition to the risks associated with current knowledge, the possibility of 'unknown unknowns' exists that could significantly alter the risk assessment relative to our current understanding. While laboratory experimentation can improve the current state of knowledge and atmospheric models can assess large-scale climate response, they cannot capture possible unknown chemistry or represent the full range of interactive atmospheric chemical physics. Small-scale, in situ experimentation under well-regulated circumstances can begin to remove some of these uncertainties. This experiment-provisionally titled the stratospheric controlled perturbation experiment-is under development and will only proceed with transparent and predominantly governmental funding and independent risk assessment. We describe the scientific and technical foundation for performing, under external oversight, small-scale experiments to quantify the risks posed by SRM to activation of halogen species and subsequent erosion of stratospheric ozone. The paper's scope includes selection of the measurement platform, relevant aspects of stratospheric meteorology, operational considerations and instrument design and engineering.
Analytical chemistry in the Aegean Sea region: current status.
Samanidou, Victoria F
2012-12-01
The Eighth Aegean Analytical Chemistry Days Conference took place in Urla, İzmir, Turkey, from 16-20 September 2012. This conference is held every 2 years, organized alternately by analytical chemistry departments of Turkish and Greek universities, so that analytical chemists from the region around the Aegean Sea can exchange experience and knowledge based on their research in a large number of fields. This report summarizes the most interesting presentations and posters pertaining to bioanalytical work.
An Acid-Base Chemistry Example: Conversion of Nicotine
NASA Astrophysics Data System (ADS)
Summerfield, John H.
1999-10-01
The current government interest in nicotine conversion by cigarette companies provides an example of acid-base chemistry that can be explained to students in the second semester of general chemistry. In particular, the conversion by ammonia of the +1 form of nicotine to the easier-to-assimilate free-base form illustrates the effect of pH on acid-base equilibrium. The part played by ammonia in tobacco smoke is analogous to what takes place when cocaine is "free-based".
Water Chemistry of Ephemeral Streams
J.L. Michael; W.P. Fowler; H.L. Gibbs; J.B. Fischer
1994-01-01
Four individual, but related, studies are currently being conducted to determine the effects of clearcut and seed tree reproduction cutting methods on stream chemistry, sedimentation, and bedload movement by monitoring herbicide and nutrient movement in stemflow, overland flow, streamflow, and zonal subsurface flow. Sediment movement is being quantified for...
“Towards building better linkages between aqueous phase chemistry and microphysics in CMAQ”
Currently, CMAQ’s aqueous phase chemistry routine (AQCHEM-base) assumes Henry’s Law equilibrium and employs a forward Euler method to solve a small set of oxidation equations, considering the additional processes of aitken scavenging and wet deposition in series and e...
Using NASA and the Space Program to Help High School and College Students Learn Chemistry.
ERIC Educational Resources Information Center
Kelter, Paul B.; And Others
1987-01-01
Discusses the current state of space-related research and manufacturing techniques. Focuses on the areas of spectroscopy, materials processing, electrochemistry, and analysis. Provides examples and classroom application for using these aspects of the space program to teach chemistry. (TW)
Hypervelocity Air Flows With Finite Rate Chemistry
1994-07-01
run over a range of freestream con- ditions in both air and nitrogen to obtain conditions to examine flows from frozen to fully equilibrium gas flow ... chemistry . Currently, electron-beam equipment and instrumentation are being prepared at USC, Imperial College, and CUBRC for these studies. Also, instru
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-01
... Request; Guidance for Industry on Chemistry, Manufacturing, and Controls Postapproval Manufacturing... chemistry, manufacturing, and controls (CMC) postapproval manufacturing changes that FDA has determined will... Pharmaceutical Product Quality Initiative and its risk-based approach to CMC review, FDA has evaluated the types...
Cyclic Polarization Behavior of ASTM A537-Cl.1 Steel in the Vapor Space Above Simulated Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, B
2004-11-01
An assessment of the potential degradation mechanisms of Types I and II High-Level Waste (HLW) Tanks determined that pitting corrosion and stress corrosion cracking were the two most significant degradation mechanisms. Specifically, nitrate induced stress corrosion cracking was determined to be the principal degradation mechanism for the primary tank steel of non-stress relieved tanks. Controls on the solution chemistry have been in place to preclude the initiation and propagation of degradation in the tanks. However, recent experience has shown that steel not in contact with the bulk waste solution or slurry, but exposed to the ''vapor space'' above the bulkmore » waste, may be vulnerable to the initiation and propagation of degradation, including pitting and stress corrosion cracking. A program to resolve the issues associated with potential vapor space corrosion is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion (similar to current evaluations). There are several needs for a technically defensible basis with sufficient understanding to perform these evaluations. These include understanding of the (1) surface chemistry evolution, (2) corrosion response through coupon testing, and (3) mechanistic understanding through electrochemical studies. Experimentation performed in FY02 determined the potential for vapor space and liquid/air interface corrosion of ASTM A285-70 and ASTM A537-Cl.1 steels. The material surface characteristics, i.e. mill-scale, polished, were found to play a key role in the pitting response. The experimentation indicated that the potential for limited vapor space and liquid/air interface pitting exists at 1.5M nitrate solution when using chemistry controls designed to prevent stress corrosion cracking. Experimentation performed in FY03 quantified pitting rates as a function of material surface characteristics, including mill-scale and defects within the mill-scale. Testing was performed on ASTM A537-Cl.1 (normalized) steel, the material of construction of the Type III HLW tanks. The pitting rates were approximately 3 mpy for exposure above inhibited solutions, as calculated from the limited exposure times. This translates to a penetration time of 166 years for a 0.5-in tank wall provided that the pitting rate remains constant and the bulk solution chemistry is maintained within the L3 limit. The FY04 testing consisted of electrochemical testing to potentially lend insight into the surface chemistry and further understand the corrosion mechanism in the vapor space. Electrochemical testing lends insight into the corrosion processes through the determination of current potential relationships. The results of the electrochemical testing performed during FY04 are presented here.« less
ERIC Educational Resources Information Center
Mathabathe, Kgadi Clarrie; Potgieter, Marietjie
2017-01-01
This paper elaborates a process followed to characterise manifestations of cognitive regulation during the collaborative planning of chemistry practical investigations. Metacognitive activity was defined as the demonstration of planning, monitoring, control and evaluation of cognitive activities by students while carrying out the chemistry task.…
Silver-free Metallization Technology for Producing High Efficiency, Industrial Silicon Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaelson, Lynne M.; Munoz, Krystal; Karas, Joseph
The goal of this project is to provide a commercially viable Ag-free metallization technology that will both reduce cost and increase efficiency of standard silicon solar cells. By removing silver from the front grid metallization and replacing it with lower cost nickel, copper, and tin metal, the front grid direct materials costs will decrease. This reduction in material costs should provide a path to meeting the Sunshot 2020 goal of 1 dollar / W DC. As of today, plated contacts are not widely implemented in large scale manufacturing. For organizations that wish to implement pilot scale manufacturing, only two equipmentmore » choices exist. These equipment manufacturers do not supply plating chemistry. The main goal of this project is to provide a chemistry and equipment solution to the industry that enables reliable manufacturing of plated contacts marked by passing reliability results and higher efficiencies than silver paste front grid contacts. To date, there have been several key findings that point to plated contacts performing equal to or better than the current state of the art silver paste contacts. Poor adhesion and reliability concerns are a few of the hurdles for plated contacts, specifically plated nickel directly on silicon. A key finding of the Phase 1 budget period is that the plated contacts have the same adhesion as the silver paste controls. This is a huge win for plated contacts. With very little optimization work, state of the art electrical results for plated contacts on laser ablated lines have been demonstrated with efficiencies up to 19.1% and fill factors ~80% on grid lines 40-50 um wide. The silver paste controls with similar line widths demonstrate similar electrical results. By optimizing the emitter and grid design for the plated contacts, it is expected that the electrical performance will exceed the silver paste controls. In addition, cells plated using Technic chemistry and equipment pass reliability testing; i.e. 1000 hours damp heat and 200 thermal cycles, with results similar to silver paste control cells. 100 cells have been processed through Technic’s novel demo plating tool built and installed during budget period 2. This plating tool performed consistently from cell to cell, providing gentle handling for the solar cells. An agreement has been signed with a cell manufacturer to process their cells through our plating chemistry and equipment. Their main focus for plated contacts is to reduce the direct materials cost by utilizing nickel, copper, and tin in place of silver paste. Based on current market conditions and cost model calculations, the overall savings offered by plated contacts is only 3.5% dollar/W versus silver paste contacts; however, the direct materials savings depend on the silver market. If silver prices increase, plated contacts may find a wider adoption in the solar industry in order to keep the direct materials costs down for front grid contacts.« less
A Physical Chemistry Experiment in Polymer Crystallization Kinetics
ERIC Educational Resources Information Center
Singfield, Kathy L.; Chisholm, Roderick A.; King, Thomas L.
2012-01-01
A laboratory experiment currently used in an undergraduate physical chemistry lab to investigate the rates of crystallization of a polymer is described. Specifically, the radial growth rates of typical disc-shaped crystals, called spherulites, growing between microscope glass slides are measured and the data are treated according to polymer…
Density functional theory in surface chemistry and catalysis
Nørskov, Jens K.; Abild-Pedersen, Frank; Studt, Felix; Bligaard, Thomas
2011-01-01
Recent advances in the understanding of reactivity trends for chemistry at transition-metal surfaces have enabled in silico design of heterogeneous catalysts in a few cases. The current status of the field is discussed with an emphasis on the role of coupling theory and experiment and future challenges. PMID:21220337
SELECTED PAPERS FROM REGIONAL CONFERENCES 1966-67.
ERIC Educational Resources Information Center
MARQUARDT, D.N.
REPORTED ARE 15 SELECTED PAPERS ON VARIOUS TOPICS OF CURRENT INTEREST WHICH WERE PRESENTED AT THE VARIOUS REGIONAL CONFERENCES DURING 1966 AND 1967. THE VARIOUS CONFERENCES HAVE AS THEIR MAJOR CONCERNS (1) RECENT TRENDS IN GENERAL CHEMISTRY, (2) CHEMISTRY FOR GENERAL EDUCATION, (3) TEACHING UNDERGRADUATE ORGANIC LABORATORIES, (4) THE INTEGRATED…
Interdisciplinary, Application-Oriented Tutorials: Design, Implementation, and Evaluation
ERIC Educational Resources Information Center
Herman, Carolyn; Casiday, Rachel E.; Deppe, Roberta K.; Gilbertson, Michelle; Spees, William M.; Holten, Dewey; Frey, Regina F.
2005-01-01
Fifteen application-oriented chemical tutorials were developed out of which thirteen are currently in use in the general chemistry lab rotary curriculum for chemistry students at Washington University from 1998 to 2000. The central philosophy of the tutorial that the students learn to combine information from variety of sources like science…
Reactions to Changing Times: Trends and Tensions in U.S. Chemistry Graduate Education
ERIC Educational Resources Information Center
Loshbaugh, Heidi G.; Laursen, Sandra L.; Thiry, Heather
2011-01-01
Calls for reform in graduate education have emerged from professional societies, educational research, and foundations, with particular concern for how graduate students are prepared for their future professional environments. This qualitative research study explores current issues in Ph.D. chemistry education, including how U.S. chemistry…
Educational benefits of green chemistry
NASA Astrophysics Data System (ADS)
Desmond, Serenity; Ray, Christian; Andino Martínez, José G.
2017-08-01
In this article, we present our current state of affairs in the "greening" of general chemistry laboratories, at the University of Illinois at Urbana-Champaign. We recognize the need to quantify our environmental mark and what we plan to do to continue to strive to make our work more sustainable and educational.
Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course
ERIC Educational Resources Information Center
Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.
2012-01-01
Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…
On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2017-11-01
with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.
NASA Astrophysics Data System (ADS)
van Aalsvoort, Joke
2004-09-01
Secondary school chemical education has a problem: namely, the seeming irrelevance to the pupils of chemistry. Chemical education prepares pupils for participation in society. Therefore, it must imply a model of society, of chemistry, and of the relation between them. In this article it is hypothesized that logical positivism currently offers this model. Logical positivism is a philosophy of science that creates a divide between science and society. It is therefore further hypothesized that the adoption of logical positivism causes chemistry's lack of relevance in chemical education. Both hypotheses could be confirmed by an analysis of a grade nine course.
NASA Astrophysics Data System (ADS)
McEwen, Leah; Li, Ye
2014-10-01
There are compelling needs from a variety of camps for more chemistry data to be available. While there are funder and government mandates for depositing research data in the United States and Europe, this does not mean it will be done well or expediently. Chemists themselves do not appear overly engaged at this stage and chemistry librarians who work directly with chemists and their local information environments are interested in helping with this challenge. Our unique understanding of organizing data and information enables us to contribute to building necessary infrastructure and establishing standards and best practices across the full research data cycle. As not many support structures focused on chemistry currently exist, we are initiating explorations through a few case studies and focused pilot projects presented here, with an aim of identifying opportunities for increased collaboration among chemists, chemistry librarians, cheminformaticians and other chemistry professionals.
McEwen, Leah; Li, Ye
2014-10-01
There are compelling needs from a variety of camps for more chemistry data to be available. While there are funder and government mandates for depositing research data in the United States and Europe, this does not mean it will be done well or expediently. Chemists themselves do not appear overly engaged at this stage and chemistry librarians who work directly with chemists and their local information environments are interested in helping with this challenge. Our unique understanding of organizing data and information enables us to contribute to building necessary infrastructure and establishing standards and best practices across the full research data cycle. As not many support structures focused on chemistry currently exist, we are initiating explorations through a few case studies and focused pilot projects presented here, with an aim of identifying opportunities for increased collaboration among chemists, chemistry librarians, cheminformaticians and other chemistry professionals.
Book Notes: College Chemistry Faculties 1996, 10th ed.
NASA Astrophysics Data System (ADS)
Kauffman, George B.
1998-02-01
This comprehensive directory of the most current information on two-, three-, and four-year college and university teachers of chemistry, biochemistry, biotechnology, chemical engineering, chemical technology, medicinal chemistry, and other chemistry-related fields in the United States, its territories, and Canada will be of great use and interest not only to chemistry faculty members but to graduate and undergraduate students, librarians, and departmental secretaries as well. For each of the more than 2,150 academic departments devoted to these disciplines the entire staffs (except for emeriti, emeritae, adjunct, or visiting professors; persons on temporary appointment; postdoctoral fellows; research associates; or graduate students) are listed, along with major teaching fields, highest degree earned, and academic rank. Other departments, such as biology or physical science, in which these disciplines are taught are also included, but only persons who teach chemistry or related subjects are listed for these departments.
Friendship chemistry: An examination of underlying factors☆
Campbell, Kelly; Holderness, Nicole; Riggs, Matt
2015-01-01
Interpersonal chemistry refers to a connection between two individuals that exists upon first meeting. The goal of the current study is to identify beliefs about the underlying components of friendship chemistry. Individuals respond to an online Friendship Chemistry Questionnaire containing items that are derived from interdependence theory and the friendship formation literature. Participants are randomly divided into two subsamples. A principal axis factor analysis with promax rotation is performed on subsample 1 and produces 5 factors: Reciprocal candor, mutual interest, personableness, similarity, and physical attraction. A confirmatory factor analysis is conducted using subsample 2 and provides support for the 5-factor model. Participants with agreeable, open, and conscientious personalities more commonly report experiencing friendship chemistry, as do those who are female, young, and European/white. Responses from participants who have never experienced chemistry are qualitatively analyzed. Limitations and directions for future research are discussed. PMID:26097283
NASA Technical Reports Server (NTRS)
Davies, P. K.; Roth, R. S.
1991-01-01
The conference was held at Jackson Hole, Wyoming from August 17 to 22, 1990, and in an attempt to maximize the development of this rapidly moving, multidisciplinary field, this conference brought together major national and international researchers to bridge the gap between those primarily interested in the pure chemistry of inorganic solids and those interested in the physical and electronic properties of ceramics. With the many major discoveries that have occurred over the last decade, one of the goals of this meeting was to evaluate the current understanding of the chemistry of electronic ceramic materials, and to assess the state of a field that has become one of the most important areas of advanced materials research. The topics covered include: crystal chemistry; dielectric ceramics; low temperature synthesis and characterization; solid state synthesis and characterization; surface chemistry; superconductors; theory and modeling.
21 CFR 862.1505 - Mucopolysaccharides (nonquantitative) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry..., Scheie's Morquio's and Maroteaux-Lamy syndromes. (b) Classification. Class I (general controls). The...
Lang, Andrew SID; Bradley, Jean-Claude
2009-01-01
This review will focus on the current level on chemistry research, education, and visualization possible within the multi-user virtual environment of Second Life. We discuss how Second Life has been used as a platform for the interactive and collaborative visualization of data from molecules and proteins to spectra and experimental data. We then review how these visualizations can be scripted for immersive educational activities and real-life collaborative research. We also discuss the benefits of the social networking affordances of Second Life for both chemists and chemistry students. PMID:19852781
Current Scaling in an Atmospheric Pressure Capillary Dielectric Barrier Discharge (POSTPRINT)
2010-01-01
have significant advantages in terms of enhanced plasma chemistry at atmospheric pressure,7 and has recently been used to demonstrate the high-speed depo...sition of SiO2 films. 8 This motivates a more detailed look at the properties of the discharge and the factors that can affect the plasma chemistry near...N. van Berkel, E. R. Kieft, and E. Stoffels, Proceedings of the 16th International Symposium on Plasma Chemistry , 2005, Vol. 22, pp. 295–308. FIG. 4
Lang, Andrew S I D; Bradley, Jean-Claude
2009-10-23
This review will focus on the current level on chemistry research, education, and visualization possible within the multi-user virtual environment of Second Life. We discuss how Second Life has been used as a platform for the interactive and collaborative visualization of data from molecules and proteins to spectra and experimental data. We then review how these visualizations can be scripted for immersive educational activities and real-life collaborative research. We also discuss the benefits of the social networking affordances of Second Life for both chemists and chemistry students.
2006-10-31
microwave signal processing components, and micro-fluidic devices. The projected involved the preparation, surface mounting, and characterization of...Guisinger, R. Basu, and M. C. Hersam, “Atomic-level characterization and control of free radical surface chemistry using scanning tunneling microscopy...Basu, and M. C. Hersam, “Atomic level characterization and control of organosilicon surface chemistry using scanning tunneling microscopy,” presented
ERIC Educational Resources Information Center
Karpudewan, Mageswary; Ismail, Zurida; Roth, Wolff-Michael
2012-01-01
The purpose of this article is to describe a best practice: an approach to teaching chemistry that our quantitative research has shown to produce large differences between experimental and control groups in terms of achievement, pro-environmental attitudes, values, and motivation. Our interest in teaching chemistry by focusing on sustainable…
ERIC Educational Resources Information Center
Barthlow, Michelle J.; Watson, Scott B.
2014-01-01
A nonequivalent, control group design was used to investigate student achievement in secondary chemistry. This study investigated the effect of process-oriented guided inquiry learning (POGIL) in high school chemistry to reduce alternate conceptions related to the particulate nature of matter versus traditional lecture pedagogy. Data were…
ERIC Educational Resources Information Center
Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery
2016-01-01
Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…
College Students Solving Chemistry Problems: A Theoretical Model of Expertise
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Glynn, Shawn M.
2009-01-01
A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…
The multiple roles of computational chemistry in fragment-based drug design
NASA Astrophysics Data System (ADS)
Law, Richard; Barker, Oliver; Barker, John J.; Hesterkamp, Thomas; Godemann, Robert; Andersen, Ole; Fryatt, Tara; Courtney, Steve; Hallett, Dave; Whittaker, Mark
2009-08-01
Fragment-based drug discovery (FBDD) represents a change in strategy from the screening of molecules with higher molecular weights and physical properties more akin to fully drug-like compounds, to the screening of smaller, less complex molecules. This is because it has been recognised that fragment hit molecules can be efficiently grown and optimised into leads, particularly after the binding mode to the target protein has been first determined by 3D structural elucidation, e.g. by NMR or X-ray crystallography. Several studies have shown that medicinal chemistry optimisation of an already drug-like hit or lead compound can result in a final compound with too high molecular weight and lipophilicity. The evolution of a lower molecular weight fragment hit therefore represents an attractive alternative approach to optimisation as it allows better control of compound properties. Computational chemistry can play an important role both prior to a fragment screen, in producing a target focussed fragment library, and post-screening in the evolution of a drug-like molecule from a fragment hit, both with and without the available fragment-target co-complex structure. We will review many of the current developments in the area and illustrate with some recent examples from successful FBDD discovery projects that we have conducted.
NASA Astrophysics Data System (ADS)
Koroglu, Batikan; Armstrong, Mike; Cappelli, Mark; Chernov, Alex; Crowhurst, Jonathan; Mehl, Marco; Radousky, Harry; Rose, Timothy; Zaug, Joe
2016-10-01
The high temperature chemistry of rapidly condensing matter is under investigation using a steady state inductively coupled plasma (ICP) flow reactor. The objective is to study chemical processes on cooling time scales similar to that of a low yield nuclear fireball. The reactor has a nested set of gas flow rings that provide flexibility in the control of hydrodynamic conditions and mixing of chemical components. Initial tests were run using two different aqueous solutions (ferric nitrate and uranyl nitrate). Chemical reactants passing through the plasma torch undergo non-linear cooling from 10,000K to 1,000K on time scales of <0.1 to 0.5s depending on flow conditions. Optical spectroscopy measurements were taken at different positions along the flow axis to observe the in situ spatial and temporal evolution of chemical species at different temperatures. The current data offer insights into the changes in oxide chemistry as a function of oxygen fugacity. The time resolved measurements will also serve as a validation target for the development of kinetic models that will be used to describe chemical fractionation during nuclear fireball condensation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Kim, Sungjune; Hong, Seokpyo; Ahn, Kilsoo; Gong, Sungyong
2015-01-01
Objectives This study presents the indicators and proxy variables for the quantitative assessment of green chemistry technologies and evaluates the relative importance of each assessment element by consulting experts from the fields of ecology, chemistry, safety, and public health. Methods The results collected were subjected to an analytic hierarchy process to obtain the weights of the indicators and the proxy variables. Results These weights may prove useful in avoiding having to resort to qualitative means in absence of weights between indicators when integrating the results of quantitative assessment by indicator. Conclusions This study points to the limitations of current quantitative assessment techniques for green chemistry technologies and seeks to present the future direction for quantitative assessment of green chemistry technologies. PMID:26206364
NASA Astrophysics Data System (ADS)
Fakhraei, Habibollah; Driscoll, Charles T.; Selvendiran, Pranesh; DePinto, Joseph V.; Bloomfield, Jay; Quinn, Scott; Rowell, H. Chandler
2014-10-01
Acidic deposition has impaired acid-sensitive surface waters in the Adirondack region of New York by decreasing pH and acid neutralizing capacity (ANC). In spite of air quality programs over past decades, 128 lakes in the Adirondacks were classified as “impaired” under Section 303(d) of the Clean Water Act in 2010 due to elevated acidity. The biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric sulfur (S) and nitrogen (N) deposition to changes in lake water chemistry. The model was calibrated and confirmed using observed soil and lake water chemistry data and then was applied to calculate the maximum atmospheric deposition that the impaired lakes can receive while still achieving ANC targets. Two targets of ANC were used to characterize the recovery of acid-impaired lakes: 11 and 20 μeq L-1. Of the 128 acid-impaired lakes, 97 currently have ANC values below the target value of 20 μeq L-1 and 83 are below 11 μeq L-1. This study indicates that a moderate control scenario (i.e., 60% decrease from the current atmospheric S load) is projected to recover the ANC of lakes at a mean rate of 0.18 and 0.05 μeq L-1 yr-1 during the periods 2022-2050 and 2050-2200, respectively. The total maximum daily load (TMDL) of acidity corresponding to this moderate control scenario was estimated to be 7.9 meq S m-2 yr-1 which includes a 10% margin of safety.
21 CFR 862.1795 - Vanilmandelic acid test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... certain hypertensive conditions. (b) Classification. Class I (general controls). The device is exempt from...
21 CFR 862.1335 - Glucagon test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... mellitus, hypoglycemia, and hyperglycemia. (b) Classification. Class I (general controls). The device is...
Cheminformatics and Computational Chemistry: A Powerful ...
The registration of new chemicals under the Toxicological Substances Control Act (TSCA) and new pesticides under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) requires knowledge of the process science underlying the transformation of organic chemicals in natural ecosystems. The purpose of this presentation is to demonstrate how cheminformatics using chemical terms language in combination with the output of physicochemical property calculators can be employed to encode this knowledge and make it available to the appropriate decision makers. The encoded process science is realized through the execution of reaction libraries in simulators such as EPA’s Chemical Transformation Simulator (CTS). In support of the CTS, reaction libraries have or are currently being developed for a number of transformation processes including hydrolysis, abiotic reduction, photolysis and disinfection by-product formation. Examples of how the process science available in the peer-reviewed literature is being encoded will be presented. Presented at the 252nd American Chemical Society National Meeting:Aquatic Chemistry: Symposium in Honor of Professor Alan T. Stone
Enhancing boron rejection in FO using alkaline draw solutions.
Wang, Yi-Ning; Li, Weiyi; Wang, Rong; Tang, Chuyang Y
2017-07-01
This study provides a novel method to enhance boron removal in a forward osmosis (FO) process. It utilizes the reverse solute diffusion (RSD) of ions from alkaline draw solutions (DSs) and the concentration polarization of the hydroxyl ions to create a highly alkaline environment near the membrane active surface. The results show that boron rejection can be significantly enhanced by increasing the pH of NaCl DS to 12.5 in the active-layer-facing-feed-solution (AL-FS) orientation. The effect of RSD enhanced boron rejection was further promoted in the presence of concentration polarization (e.g., in the active-layer-facing-draw-solution (AL-DS) orientation). The current study opens a new dimension for controlling contaminant removal by FO using tailored DS chemistry, where the RSD-induced localized water chemistry change is taken advantage in contrast to the conventional method of chemical dosing to the bulk feed water. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Carlson, Barbara E.; Prather, Michael J.; Rossow, William B.
1987-01-01
Chemical equilibrium models used currently to interpret observations of Jupiter are reexamined using new data defining thermal profiles, which are substantially different from those used in the previous models. A model is developed for the chemical reactions controlling the composition of the upper troposphere on Jupiter, specifically the cloud-forming region from 10 bar to 0.1 bar, which includes, for the first time, the effects of aqueous chemistry on the composition and the vertical distribution of many measurable species in the atmosphere, identifying the factors influencing their abundances above the H2O cloud. The thermodynamic data for potential condensates on Jupiter, i.e., NH3(s), NH4SH(s), (NH4)2S(s), and H2S(s), are reexamined, recognizing the lack of data on sulfides for the temperature range of interest on Jupiter. Vertical profiles of mixing ratios for CO2, H2S, NH3, and H2, obtained for several assumed bulk abundances with respect to solar, are presented.
What should we look for when we return to Mars?. [possibility of extraterrestrial life
NASA Technical Reports Server (NTRS)
Soffen, G. A.
1988-01-01
The current state of knowledge about Mars is examined, and the details of current planned missions (Phobos and the Mars Orbiter) are considered. Speculations on some of the major future avenues of Mars research are presented; particular attention is given to questions relating to the early geological processes that resulted in Martian surface features, the effect liquid water has had on the planet, the volatile dynamics and chemistry, the chemistry of the iron-rich clays, the organic-compound mystery, and the biological issue.
21 CFR 862.1490 - Lysozyme (muramidase) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... monocytic leukemia and kidney disease. (b) Classification. Class I (general controls). The device is exempt...
21 CFR 862.1430 - 17-Ketosteroids test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... hypertension, diabetes, and hypothyroidism. (b) Classification. Class I (general controls). The device is...
21 CFR 862.1575 - Phospholipid test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... treatment of disorders involving lipid (fat) metabolism. (b) Classification. Class I (general controls). The...
21 CFR 862.1500 - Malic dehydrogenase test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... marrow) leukemia. (b) Classification. Class I (general controls). The device is exempt from the premarket...
Baxendale, Ian R; Braatz, Richard D; Hodnett, Benjamin K; Jensen, Klavs F; Johnson, Martin D; Sharratt, Paul; Sherlock, Jon-Paul; Florence, Alastair J
2015-03-01
This whitepaper highlights current challenges and opportunities associated with continuous synthesis, workup, and crystallization of active pharmaceutical ingredients (drug substances). We describe the technologies and requirements at each stage and emphasize the different considerations for developing continuous processes compared with batch. In addition to the specific sequence of operations required to deliver the necessary chemical and physical transformations for continuous drug substance manufacture, consideration is also given to how adoption of continuous technologies may impact different manufacturing stages in development from discovery, process development, through scale-up and into full scale production. The impact of continuous manufacture on drug substance quality and the associated challenges for control and for process safety are also emphasized. In addition to the technology and operational considerations necessary for the adoption of continuous manufacturing (CM), this whitepaper also addresses the cultural, as well as skills and training, challenges that will need to be met by support from organizations in order to accommodate the new work flows. Specific action items for industry leaders are: Develop flow chemistry toolboxes, exploiting the advantages of flow processing and including highly selective chemistries that allow use of simple and effective continuous workup technologies. Availability of modular or plug and play type equipment especially for workup to assist in straightforward deployment in the laboratory. As with learning from other industries, standardization is highly desirable and will require cooperation across industry and academia to develop and implement. Implement and exploit process analytical technologies (PAT) for real-time dynamic control of continuous processes. Develop modeling and simulation techniques to support continuous process development and control. Progress is required in multiphase systems such as crystallization. Involve all parts of the organization from discovery, research and development, and manufacturing in the implementation of CM. Engage with academia to develop the training provision to support the skills base for CM, particularly in flow chemistry, physical chemistry, and chemical engineering skills at the chemistry-process interface. Promote and encourage publication and dissemination of examples of CM across the sector to demonstrate capability, engage with regulatory comment, and establish benchmarks for performance and highlight challenges. Develop the economic case for CM of drug substance. This will involve various stakeholders at project and business level, however establishing the critical economic drivers is critical to driving the transformation in manufacturing. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Upwind MacCormack Euler solver with non-equilibrium chemistry
NASA Technical Reports Server (NTRS)
Sherer, Scott E.; Scott, James N.
1993-01-01
A computer code, designated UMPIRE, is currently under development to solve the Euler equations in two dimensions with non-equilibrium chemistry. UMPIRE employs an explicit MacCormack algorithm with dissipation introduced via Roe's flux-difference split upwind method. The code also has the capability to employ a point-implicit methodology for flows where stiffness is introduced through the chemical source term. A technique consisting of diagonal sweeps across the computational domain from each corner is presented, which is used to reduce storage and execution requirements. Results depicting one dimensional shock tube flow for both calorically perfect gas and thermally perfect, dissociating nitrogen are presented to verify current capabilities of the program. Also, computational results from a chemical reactor vessel with no fluid dynamic effects are presented to check the chemistry capability and to verify the point implicit strategy.
Chemical properties of forest soils
Charles H. Perry; Michael C. Amacher
2007-01-01
Why Is Soil Chemistry Important? The soil quality indicator was initially developed as a tool for assessing the current status of forest soil resources and predicting potential changes in soil properties. Soil chemistry data can be used to diagnose tree vigor and document the deposition of atmospheric pollutants (e.g., acid rain). This chapter focuses on two chemical...
Customized Internet Assessment for Students and Educators
ERIC Educational Resources Information Center
Barot, Aekam B.; Barot, Bal
2006-01-01
The average age of students at Lake Michigan College (LMC) is twenty-eight years old. In the current study, the application of customized internet assessment for Chemistry 101, Introductory College Chemistry, from 2001 to 2005 is compared with traditional assessment from 1996 to 2000. The authors describe the ways in which computerized assessment…
ERIC Educational Resources Information Center
Walter, Justin D.; Littlefield, Peter; Delbecq, Scott; Prody, Gerry; Spiegel, P. Clint
2010-01-01
New approaches are currently being developed to expose biochemistry and molecular biology undergraduates to a more interactive learning environment. Here, we propose a unique project-based laboratory module, which incorporates exposure to biophysical chemistry approaches to address problems in protein chemistry. Each of the experiments described…
40 Low-Waste, Low-Risk Chemistry Labs.
ERIC Educational Resources Information Center
Dougan, David
This resource book contains 40 chemistry labs and provides a single solution to the problems of purchase, storage, use, and disposal of chemicals. The text is designed to be used alone or integrated with current textbooks. A mixture of microchemistry and macrochemistry is used to provide variety and reflects trends in research and industry. Most…
Topic Sequence and Emphasis Variability of Selected Organic Chemistry Textbooks
ERIC Educational Resources Information Center
Houseknecht, Justin B.
2010-01-01
Textbook choice has a significant effect upon course success. Among the factors that influence this decision, two of the most important are material organization and emphasis. This paper examines the sequencing of 19 organic chemistry topics, 21 concepts and skills, and 7 biological topics within nine of the currently available organic textbooks.…
The Sequencing of Basic Chemistry Topics by Physical Science Teachers
ERIC Educational Resources Information Center
Sibanda, Doras; Hobden, Paul
2016-01-01
The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…
Problems in Teaching the Topic of Redox Reactions: Actions and Conceptions of Chemistry Teachers.
ERIC Educational Resources Information Center
De Jong, Onno; And Others
1995-01-01
Presents a case study of problems that can occur when teaching the topic of redox reactions to grade-11 students. Concludes that the teachers' scientific expertise is an important source of difficulties when teaching redox reactions. Discusses implications for improvement of current chemistry classroom practice and content-related teacher…
"Drugs, Religion and Chemistry in Tanzania": An Interactive Seminar for Chemistry Students
ERIC Educational Resources Information Center
Buchanan, Malcolm S.
2015-01-01
Most Tanzanian Higher Education Institutes do not have the materials and technology to give students a significant practical experience in the sciences. In 2013 Tanzania was rated 159th out of 187 countries for "human development" (United Nations Development Program 2014 Report). In order to supplement their current, limited practical…
Mental Capacity and Working Memory in Chemistry: Algorithmic "versus" Open-Ended Problem Solving
ERIC Educational Resources Information Center
St Clair-Thompson, Helen; Overton, Tina; Bugler, Myfanwy
2012-01-01
Previous research has revealed that problem solving and attainment in chemistry are constrained by mental capacity and working memory. However, the terms mental capacity and working memory come from different theories of cognitive resources, and are assessed using different tasks. The current study examined the relationships between mental…
21 CFR 862.1380 - Hydroxybutyric dehydrogenase test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... (general controls). The device is exempt from the premarket notification procedures in subpart E of part...
21 CFR 862.1330 - Globulin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... other disorders of blood globulins. (b) Classification. Class I (general controls). The device is exempt...
21 CFR 862.1470 - Lipid (total) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.... (b) Classification. Class I (general controls). The device is exempt from the premarket notification...
21 CFR 862.1805 - Vitamin A test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.... (b) Classification. Class I (general controls). The device is exempt from the premarket notification...
21 CFR 862.1605 - Pregnanediol test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in...
21 CFR 862.1550 - Urinary pH (nonquantitative) test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... the monitoring of patients with certain diets. (b) Classification. Class I (general controls). The...
21 CFR 862.1610 - Pregnanetriol test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... (congenital enlargement of the adrenal gland). (b) Classification. Class I (general controls). The device is...
21 CFR 862.1395 - 17-Hydroxyprogesterone test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test... adrenal glands or the ovaries. (b) Classification. Class I (general controls). The device is exempt from...
Quantum chemistry in environmental pesticide risk assessment.
Villaverde, Juan J; López-Goti, Carmen; Alcamí, Manuel; Lamsabhi, Al Mokhtar; Alonso-Prados, José L; Sandín-España, Pilar
2017-11-01
The scientific community and regulatory bodies worldwide, currently promote the development of non-experimental tests that produce reliable data for pesticide risk assessment. The use of standard quantum chemistry methods could allow the development of tools to perform a first screening of compounds to be considered for the experimental studies, improving the risk assessment. This fact results in a better distribution of resources and in better planning, allowing a more exhaustive study of the pesticides and their metabolic products. The current paper explores the potential of quantum chemistry in modelling toxicity and environmental behaviour of pesticides and their by-products by using electronic descriptors obtained computationally. Quantum chemistry has potential to estimate the physico-chemical properties of pesticides, including certain chemical reaction mechanisms and their degradation pathways, allowing modelling of the environmental behaviour of both pesticides and their by-products. In this sense, theoretical methods can contribute to performing a more focused risk assessment of pesticides used in the market, and may lead to higher quality and safer agricultural products. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Pinarbaşi; , Tacettin; Canpolat, Nurtaç; Bayrakçeken, Samih; Geban, Ömer
2006-12-01
This study investigated the effect of conceptual change text-oriented instruction over traditional instruction on students' understanding of solution concepts (e.g., dissolving, solubility, factors affecting solubility, concentrations of solutions, types of solutions, physical properties of solutions) and their attitudes towards chemistry. The sample of this study consisted of 87 undergraduate students from two classes enrolled in an introductory chemistry course. One of the classes was assigned randomly to the control group, and the other class were assigned randomly to the experimental group. During teaching the topic of solution concepts in the chemistry curriculum, a conceptual change text-oriented instruction was applied in the experimental group whereas traditional instruction was followed in the control group. The results showed that the students in the experimental group performed better with respect to solution concepts. In addition, it has been found that there was no significant difference between the attitudes of students in the experimental and control groups towards chemistry.
Ganellin, C Robin
2004-02-15
Robin Ganellin was born in East London and studied chemistry at Queen Mary College, London, receiving a PhD in 1958 under Professor Michael Dewar for his research on tropylium chemistry. He joined Smith Kline & French Laboratories (SK&F) in the UK in 1958 and was one of the co-inventors of the revolutionary drug cimetidine (Tagamet(R)) He subsequently became Vice-President for Research at the company's Welwyn facility. In 1986 he was awarded a DSc from London University for his work on the medicinal chemistry of drugs acting at histamine receptors and was also made a Fellow of the Royal Society and appointed to the SK&F Chair of Medicinal Chemistry at University College London, where he is now Emeritus Professor of Medicinal Chemistry. Professor Ganellin has been honoured extensively, including such awards as the Royal Society of Chemistry Award for Medicinal Chemistry, their Tilden Medal and Lectureship and their Adrien Albert Medal and Lectureship, Le Prix Charles Mentzer de France, the ACS Division of Medicinal Chemistry Award, the Society of Chemical Industry Messel Medal and the Society for Drug Research Award for Drug Discovery. He is a past Chairman of the Society for Drug Research, was President of the Medicinal Chemistry Section of IUPAC, and is currently Chairman of the IUPAC Subcommittee on Medicinal Chemistry and Drug Development.
Shape control VO2 nanorods prepared by soft chemistry and electrochemical method
NASA Astrophysics Data System (ADS)
Simo, A.; Sibanyoni, J.; Fuku, X.; Numan, N.; Omorogbe, S.; Maaza, M.
2018-07-01
"Bottom up" approach is of primary interest for chemistry and materials science because the fundamental building blocks are atoms. Thus colloidal chemical synthetic methods can be utilized to prepare uniform nanocrystals with controlled particle size. In the following work of study, thermochromic VO2 nanostructures were prepared by hydrothermal technique soft chemistry. We concentrate on solution phase synthetic methods that enable a proper shape and size control of metal oxide nanocrystals. Their structural properties were studied by Scanning Electron Microscopy (SEM), Fourier Transform IR (FTIR) and Differential Scanning Calorimetry (DSC). It is demonstrated that the surfactant assistance (NaOH) has great influence on the morphology-control of the material. Electrochemical properties of the nanospheres show good stability after 20 cycles and the surface diffusion coefficient was calculated to be 5 × 10-6 cm2 s-1.
ERIC Educational Resources Information Center
Godin, Elizabeth A.; Kwiek, Nicole; Sikes, Suzanne S.; Halpin, Myra J.; Weinbaum, Carolyn A.; Burgette, Lane F.; Reiter, Jerome P.; Schwartz-Bloom, Rochelle D.
2014-01-01
We developed the Alcohol Pharmacology Education Partnership (APEP), a set of modules designed to integrate a topic of interest (alcohol) with concepts in chemistry and biology for high school students. Chemistry and biology teachers (n = 156) were recruited nationally to field-test APEP in a controlled study. Teachers obtained professional…
Distributed Scaffolding: Wiki Collaboration among Latino High School Chemistry Students
ERIC Educational Resources Information Center
O'Sullivan, Edwin Duncan, Jr.
2013-01-01
The primary purpose of this study was to evaluate if wiki collaboration among Latino high school chemistry students can help reduce the science achievement gap between Latino and White students. The study was a quasi-experimental pre/post control group mixed-methods design. It used three intact sections of a high school chemistry course. The first…
ERIC Educational Resources Information Center
Krell, Moritz; Reinisch, Bianca; Krüger, Dirk
2015-01-01
In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…
ERIC Educational Resources Information Center
Gok, Tolga; Gok, Ozge
2016-01-01
The aim of this research was to investigate the effects of peer instruction on learning strategies, problem solving performance, and conceptual understanding of college students in a general chemistry course. The research was performed students enrolled in experimental and control groups of a chemistry course were selected. Students in the…
Effect of Ethnochemistry Practices on Secondary School Students' Attitude towards Chemistry
ERIC Educational Resources Information Center
Singh, Indra Sen; Chibuye, Bitwell
2016-01-01
The main purpose of the study was to find out the effect of ethnochemistry practices on secondary school students' attitude towards Chemistry. The design of the study was pre-test post-test control group quasiexperimental design. Two grade 11 intact classes were assigned into experimental and control groups randomly. The total sample size…
Students' Understanding of Salt Dissolution: Visualizing Animation in the Chemistry Classroom
NASA Astrophysics Data System (ADS)
Malkoc, Ummuhan
The present study explored the effect of animation implementation in learning a chemistry topic. 135 high school students taking chemistry class were selected for this study (quasi-experimental groups = 67 and control groups = 68). Independent samples t-tests were run to compare animation and control groups between and within the schools. The over-arching finding of this research indicated that when science teachers used animations while teaching salt dissolution phenomena, students will benefit the application of animations. In addition, the findings informed the TPACK framework on the idea that visual tools are important in students' understanding of salt dissolution concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochems, P.; Kirk, A. T.; Bunert, E.
Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron currentmore » due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.« less
21 CFR 862.1590 - Porphobilinogen test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... (general controls). The device is exempt from the premarket notification procedures in subpart E of part...
21 CFR 862.1790 - Uroporphyrin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... (general controls). The device is exempt from the premarket notification procedures in subpart E of part...
21 CFR 862.1595 - Porphyrins test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... (general controls). The device is exempt from the premarket notification procedures in subpart E of part...
21 CFR 862.1815 - Vitamin E test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... treatment of infants with vitamin E deficiency syndrome. (b) Classification. Class I (general controls). The...
21 CFR 862.1325 - Gastrin test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862...-secreting tumor of the pancreas). (b) Classification. Class I (general controls). The device is exempt from...
21 CFR 862.1620 - Progesterone test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... (general controls). The device is exempt from the premarket notification procedures in subpart E of part...
Presidential Green Chemistry Challenge: 2010 Designing Greener Chemicals Award
Presidential Green Chemistry Challenge 2010 award winner, Clarke, developed Natular, a plaster matrix that encapsulates the pesticide spinosad, slowly releasing it into water and effectively controlling mosquito larvae.
Spatially controlled immobilisation of biomolecules: A complete approach in green chemistry
NASA Astrophysics Data System (ADS)
Grinenval, Eva; Nonglaton, Guillaume; Vinet, Françoise
2014-01-01
The development of 'green' sensors is a challenging task in the field of biomolecule sensing, for example in the detection of cardiac troponin-I (cTnI). In the present work a complete approach in green chemistry was developed to create chemically active patterns for the immobilisation of biological probes. This key technology is discussed on the basis of the twelve green chemistry principles, and is a combination of surface patterning by spotting and surface chemistries modified by molecular vapour deposition. The (1H,1H,2H,2H)-perfluorodecyltrichlorosilane (FDTS) was used as a novel anti-adsorption layer while the 3,4-epoxybutyltrimethoxysilane (EBTMOS) was used to immobilise probes. Oligonucleotides and the anti-cTnI antibody were studied. The spatially controlled immobilisation of probes was characterised by fluorescence. The demonstrated surface modification has broad applications in areas such as diagnostics and bio-chemical sensing. Moreover, the environmental impacts of surface patterning and surface chemistry were discussed from a 'greenness' point of view.
NASA Astrophysics Data System (ADS)
Seisenbaeva, Gulaim A.; Kessler, Vadim G.
2014-05-01
This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2008-06-01
This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energy’s request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluationmore » with input from four national laboratories experienced in Pu-238 handling.« less
21 CFR 862.1615 - Pregnenolone test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862... diseases of the adrenal cortex or the gonads. (b) Classification. Class I (general controls). The device is...
Interview: An interview with Chad Mirkin: nanomedicine expert
Mirkin, Chad
2015-01-01
Chad Mirkin speaks to Hannah Stanwix, Assistant Commissioning Editor Professor Chad Mirkin received his Bachelor of Science Degree in Chemistry from Dickinson College (PA, USA) in 1986. He holds a PhD in Chemistry from Pennsylvania State University (PA, USA) and was a Postdoctoral Fellow at the Massachusetts Institute of Technology (MA, USA). He subsequently moved to Northwestern University (IL, USA) as a Professor of Chemistry in 1991. In 2004, Professor Mirkin became Director of the International Institute for Nanotechnology and holds that post currently. He is also the George B Rathmann Professor of Chemistry, Professor of Chemical and Biological Engineering, Professor of Biomedical Engineering, Professor of Materials Science and Engineering and Professor of Medicine at Northwestern University. Professor Mirkin is a member of the National Academy of Engineering, the National Academy of Sciences, the Institute of Medicine, and the American Academy of Arts and Sciences. He is also currently a member of President Obama’s Council of Advisors for Science and Technology. Professor Mirkin is best known for his work on spherical nucleic acid nanoparticle conjugates and the invention of Dip-Pen Nanolithography. He has received over 70 awards and accolades for his accomplishments. Currently, based on total citations, Professor Mirkin is one of the most cited chemists and nanomedicine researchers in the world. He has authored over 500 publications, as well as over 440 patents and applications worldwide. PMID:22630148
NASA Astrophysics Data System (ADS)
Pryhoda, M.; Sitchler, A.; Dickenson, E.
2013-12-01
The mountain pine beetle (MPB) epidemic in the northwestern United States is a recent indicator of climate change; having an impact on the lodgepole pine forest ecosystem productivity. Pine needle color can be used to predict the stage of a MPB infestation, as they change color from a healthy green, to red, to gray as the tree dies. Physical processes including precipitation and snowfall can cause leaching of pine needles in all infestation stages. Understanding the evolution of leachate chemistry through the stages of MPB infestation will allow for better prediction of the impact of MPBs on groundwater geochemistry, including a potential increase in soil metal mobilization and potential increases in disinfection byproduct precursor compounds. This study uses batch experiments to determine the leachate chemistry of pine needles from trees in four stages of MPB infestation from Summit County, CO, a watershed currently experiencing the MPB epidemic. Each stage of pine needles undergoes four subsequent leach periods in temperature-controlled DI water. The subsequent leaching method adds to the experiment by determining how leachate chemistry of each stage changes in relation to contact time with water. The leachate is analyzed for total organic carbon. Individual organic compounds present in the leachate are analyzed by UV absorption spectra, fluorescence spectrometry, high-pressure liquid chromatography for organic acid analysis, and size exclusion chromatography. Leachate chemistry results will be used to create a numerical model simulating reactions of the leachate with soil as it flows through to groundwater during precipitation and snowfall events.
A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly
2016-01-01
Recently, polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce block copolymer nanoparticles of controlled size, morphology, and surface chemistry. Several reviews of this field have been published since 2012, but a substantial number of new papers have been published in the last three years. In this Perspective, we provide a critical appraisal of the various advantages offered by this approach, while also pointing out some of its current drawbacks. Promising future research directions as well as remaining technical challenges and unresolved problems are briefly highlighted. PMID:27019522
Mars Atmospheric Chemistry and Astrobiology Workshop Summary
NASA Astrophysics Data System (ADS)
Allen, M.; Wennberg, P.
2002-09-01
The Mars Atmospheric Chemistry and Astrobiology (MACA) Workshop was held on the California Institute of Technology campus December 17-18, 2001. The prime objective of the workshop was to consider whether extant life beneath the surface, if it exists, would be in contact with the atmosphere and introduce a detectable signature in the atmosphere. To answer this question, the workshop also explored how well we understood the abiotic chemistry of the current atmosphere and other drivers of atmospheric composition (volcanoes, surface-atmosphere interactions, escape). The conclusions from this workshop will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, C.J.; Walbridge, M.R.; Burns, A.
1988-11-01
Several hundred freshwater swamps in North Carolina currently receive municipal waste-water inputs. In the study researchers examined three Coastal Plain wetlands to (1) characterize their soil chemical properties, (2) determine short-term and long-term effects of effluent additions on soil chemistry, (3) estimate the phosphorus sorption capacities of these swamp soils and determine the relationship between P sorption capacity and soil chemistry, and (4) develop a predictive index to evaluate the P sorption potentials of other N.C. Coastal Plain swamps.
Presidential Green Chemistry Challenge: 1999 Designing Greener Chemicals Award
Presidential Green Chemistry Challenge 1999 award winner, Dow AgroSciences, developed spinosad, a highly selective, low-toxicity, nonpersistant insecticide made by a soil microorganism. It controls many chewing insect pests.
Busch, D. Shallin; McElhany, Paul
2016-01-01
Ocean acidification (OA) has the potential to restructure ecosystems due to variation in species sensitivity to the projected changes in ocean carbon chemistry. Ecological models can be forced with scenarios of OA to help scientists, managers, and other stakeholders understand how ecosystems might change. We present a novel methodology for developing estimates of species sensitivity to OA that are regionally specific, and applied the method to the California Current ecosystem. To do so, we built a database of all published literature on the sensitivity of temperate species to decreased pH. This database contains 393 papers on 285 species and 89 multi-species groups from temperate waters around the world. Research on urchins and oysters and on adult life stages dominates the literature. Almost a third of the temperate species studied to date occur in the California Current. However, most laboratory experiments use control pH conditions that are too high to represent average current chemistry conditions in the portion of the California Current water column where the majority of the species live. We developed estimates of sensitivity to OA for functional groups in the ecosystem, which can represent single species or taxonomically diverse groups of hundreds of species. We based these estimates on the amount of available evidence derived from published studies on species sensitivity, how well this evidence could inform species sensitivity in the California Current ecosystem, and the agreement of the available evidence for a species/species group. This approach is similar to that taken by the Intergovernmental Panel on Climate Change to characterize certainty when summarizing scientific findings. Most functional groups (26 of 34) responded negatively to OA conditions, but when uncertainty in sensitivity was considered, only 11 groups had relationships that were consistently negative. Thus, incorporating certainty about the sensitivity of species and functional groups to OA is an important part of developing robust scenarios for ecosystem projections. PMID:27513576
Toward 4D Nanoprinting with Tip-Induced Organic Surface Reactions.
Carbonell, Carlos; Braunschweig, Adam B
2017-02-21
Future nanomanufacturing tools will prepare organic materials with complex four-dimensional (4D) structure, where the position (x, y, z) and chemical composition within a volume is controlled with sub-1 μm spatial resolution. Such tools could produce substrates that mimic biological interfaces, like the cell surface or the extracellular matrix, whose topology and chemical complexity combine to direct some of the most sophisticated biological events. The control of organic materials at the nanoscale-level of spatial resolution could revolutionize the assembly of next generation optical and electronic devices or substrates for tissue engineering or enable fundamental biological or material science investigations. Organic chemistry provides the requisite control over the orientation and position of matter within a nanoscale reference frame through the formation of new covalent bonds. Several challenges however preclude the integration of organic chemistry with conventional nanomanufacturing approaches, namely most nanolithography platforms would denature or destroy delicate organic and biologically active matter, confirming covalent bond formation at interfaces remains difficult, and finally, only a small handful of the reactions used to transform molecules in solution have been validated on surfaces. Thus, entirely new approaches, where organic transformations and spatial control are considered equally important contributors, are needed to create 4D organic nanoprinting platforms. This Account describes efforts from our group to reconcile nanolithography, and specifically massively parallel scanning probe lithography (SPL), with organic chemistry to further the goal of 4D organic nanoprinting. Massively parallel SPL involves arrays of elastomeric pyramids mounted onto piezoelectric actuators, and creates patterns with feature diameters below 50 nm by using the pyramidal tips for either the direct deposition of ink or the localized delivery of energy to a surface. While other groups have focused on tip and array architetctures, our efforts have been on exploring their use for localizing organic chemistry on surfaces with nanoscale spatial resolution in 3D. Herein we describe the use of massively parallel SPL to create covalently immobilized patterns of organic materials using thermal, catalytic, photochemical, and force-accelerated reactions. In doing so, we have developed a high-throughput protocol for confirming interfacial bond formation. These efforts have resulted in new opportunities for the preparation of glycan arrays, novel approaches for covalently patterning graphene, and a 3D nanoprinter by combining photochemical brush polymerizations with SPL. Achieving true 4D nanoprinting involves advances in surface chemistry and instrumentation development, and to this end 4D micropatterns were produced in a microfluidic photoreactor that can position polymers composed of different monomers within micrometer proximity. A substantial gap remains, however, between these current technologies and the future's 4D nanomanufacturing tools, but the marriage of SPL with organic chemistry is an important step toward this goal. As this field continues to mature we can expect bottom-up 4D nanomanufacturing to begin supplanting conventional top-down strategies for preparing electronics, bioarrays, and functional substrates. In addition, these new printing technologies may enable the preparation of synthetic targets, such as artificial biological interfaces, with a level of organic sophistication that is entirely unachievable using existing technologies.
Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate
NASA Technical Reports Server (NTRS)
Wang, Chien
2005-01-01
The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.
Wintertime nitric acid chemistry - Implications from three-dimensional model calculations
NASA Technical Reports Server (NTRS)
Rood, Richard B.; Kaye, Jack A.; Douglass, Anne R.; Allen, Dale J.; Steenford, Stephen
1990-01-01
A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of 'missing' nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics. Observations suggest that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.
Integrating pharmacology topics in high school biology and chemistry classes improves performance
NASA Astrophysics Data System (ADS)
Schwartz-Bloom, Rochelle D.; Halpin, Myra J.
2003-11-01
Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g., drug abuse) to help high school students learn basic principles in biology and chemistry. High school biology and chemistry teachers were recruited for the study and they attended a 1-week workshop to learn how to integrate pharmacology into their teaching. Working with university pharmacology faculty, they also developed classroom activities. The following year, teachers field-tested the pharmacology modules in their classrooms. Students in classrooms using the pharmacology topics scored significantly higher on a multiple choice test of basic biology and chemistry concepts compared with controls. Very large effect sizes (up to 1.27 standard deviations) were obtained when teachers used as many as four modules. In addition, biology students increased performance on chemistry questions and chemistry students increased performance on biology questions. Substantial gains in achievement may be made when high school students are taught science using topics that are interesting and relevant to their own lives.
Smart Phones, a Powerful Tool in the Chemistry Classroom
ERIC Educational Resources Information Center
Williams, Antony J.; Pence, Harry E.
2011-01-01
Cell phones, especially "smart phones", seem to have become ubiquitous. Actually, it is misleading to call many of these devices phones, as they are actually a portable and powerful computer that can be very valuable in the chemistry classroom. Currently, there are three major ways in which smart phones can be used for education. Smart phones…
ERIC Educational Resources Information Center
Posthuma-Adams, Erica
2014-01-01
As advanced placement (AP) teachers strive to implement the changes outlined in the AP chemistry redesign, they will have the opportunity to reflect on and evaluate their current practices. For many AP teachers, the new focus on conceptual understanding, reasoning, inquiry, and critical thinking over memorization and algorithmic problem solving…
ERIC Educational Resources Information Center
Cacciatore, Kristen L.; Sevian, Hannah
2009-01-01
Many institutions are responding to current research about how students learn science by transforming their general chemistry laboratory curricula to be inquiry-oriented. We present a comparison study of student performance after completing either a traditional or an inquiry stoichiometry experiment. This single laboratory experience was the only…
ERIC Educational Resources Information Center
Pursell, David P.
2009-01-01
Students of organic chemistry traditionally make 3 x 5 in. flash cards to assist learning nomenclature, structures, and reactions. Advances in educational technology have enabled flash cards to be viewed on computers, offering an endless array of drilling and feedback for students. The current generation of students is less inclined to use…
Towards Teaching Chemistry as a Language
ERIC Educational Resources Information Center
Laszlo, Pierre
2013-01-01
This paper presents views on the teaching of chemistry and directions for its further development. A detailed critical analysis is offered for the inadequacy of much of the current teaching, weighed that it is by a conventional, traditional and, as it turns out, rather outdated sense of the material to be covered. The ambient meta-discourse on the…
ERIC Educational Resources Information Center
Martin, Christopher B.; Schmidt, Monica; Soniat, Michael
2011-01-01
A survey was conducted of four-year institutions that teach undergraduate organic chemistry laboratories in the United States. The data include results from over 130 schools, describes the current practices at these institutions, and discusses the statistical results such as the scale of the laboratories performed, the chemical techniques applied,…
ERIC Educational Resources Information Center
Albright, Jessica C.; Dassenko, David J.; Mohamed, Essa A.; Beussman, Douglas J.
2009-01-01
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry is an important bioanalytical technique in drug discovery, proteomics, and research at the biology-chemistry interface. This is an especially powerful tool when combined with gel separation of proteins and database mining using the mass spectral data. Currently, few hands-on…
On the Use of Analogy to Connect Core Physical and Chemical Concepts to Those at the Nanoscale
ERIC Educational Resources Information Center
Muniz, Marc N.; Oliver-Hoyo, Maria T.
2014-01-01
Nanoscale science remains at the forefront of modern scientific endeavors. As such, students in chemistry need to be prepared to navigate the physical and chemical concepts that describe the unique phenomena observed at this scale. Current approaches to integrating nanoscale topics into undergraduate chemistry curricula range from the design of…
ERIC Educational Resources Information Center
Roehrig, Gillian; Garrow, Shauna
2007-01-01
Evidence of a gap in student understanding has been well documented in chemistry: the typical student holds an abundance of misconceptions. The current expectation is that educational reform will foster greater student achievement via inquiry teaching within classrooms. Using assessments involving both conceptual and algorithmic knowledge of gas…
ERIC Educational Resources Information Center
Ryan, Michael D.; Reid, Scott A.
2016-01-01
Despite much recent interest in the flipped classroom, quantitative studies are slowly emerging, particularly in the sciences. We report a year-long parallel controlled study of the flipped classroom in a second-term general chemistry course. The flipped course was piloted in the off-semester course in Fall 2014, and the availability of the…
Wang, Fudong; Buhro, William E
2017-12-26
Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.
Presidential Green Chemistry Challenge: 1996 Designing Greener Chemicals Award
Presidential Green Chemistry Challenge 1996 award winner, Rohm and Haas, developed Sea-Nine, a marine antifoulant to control plants and animals on ship hulls. Sea-Nine replaces persistent, toxic organotin antifoulants.
Southeast Atmosphere Studies: learning from model-observation syntheses
NASA Astrophysics Data System (ADS)
Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu; McNeill, V. Faye; Tsigaridis, Kostas; McDonald, Brian C.; Warneke, Carsten; Guenther, Alex; Alvarado, Matthew J.; de Gouw, Joost; Mickley, Loretta J.; Leibensperger, Eric M.; Mathur, Rohit; Nolte, Christopher G.; Portmann, Robert W.; Unger, Nadine; Tosca, Mika; Horowitz, Larry W.
2018-02-01
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales.This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Southeast Atmosphere Studies: learning from model-observation syntheses
Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu; McNeill, V. Faye; Tsigaridis, Kostas; McDonald, Brian C.; Warneke, Carsten; Guenther, Alex; Alvarado, Matthew J.; de Gouw, Joost; Mickley, Loretta J.; Leibensperger, Eric M.; Mathur, Rohit; Nolte, Christopher G.; Portmann, Robert W.; Unger, Nadine; Tosca, Mika; Horowitz, Larry W.
2018-01-01
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Southeast Atmosphere Studies: Learning from Model-Observation Syntheses
NASA Technical Reports Server (NTRS)
Mao, Jingqiu; Carlton, Annmarie; Cohen, Ronald C.; Brune, William H.; Brown, Steven S.; Wolfe, Glenn M.; Jimenez, Jose L.; Pye, Havala O. T.; Ng, Nga Lee; Xu, Lu;
2018-01-01
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts.
Li, Xia; Cui, Baoshan; Yang, Qichun; Tian, Hanqin; Lan, Yan; Wang, Tingting; Han, Zhen
2012-01-01
Macrophyte decomposition is important for carbon and nutrient cycling in lake ecosystems. Currently, little is known about how this process responds to detritus quality and water nutrient conditions in eutrophic shallow lakes in which incomplete decomposition of detritus accelerates the lake terrestrialization process. In this study, we investigated the effects of detritus quality and water nutrient concentrations on macrophyte decomposition in Lake Baiyangdian, China, by analyzing the decomposition of three major aquatic plants at three sites with different pollution intensities (low, medium, and high pollution sites). Detritus quality refers to detritus nutrient contents as well as C∶N, C∶P, and N∶P mass ratios in this study. Effects of detritus mixtures were tested by combining pairs of representative macrophytes at ratios of 75∶25, 50∶50 and 25∶75 (mass basis). The results indicate that the influence of species types on decomposition was stronger than that of site conditions. Correlation analysis showed that mass losses at the end of the experimental period were significantly controlled by initial detritus chemistry, especially by the initial phosphorus (P) content, carbon to nitrogen (C∶N), and carbon to phosphorus (C∶P) mass ratios in the detritus. The decomposition processes were also influenced by water chemistry. The NO3-N and NH4-N concentrations in the lake water retarded detritus mass loss at the low and high pollution sites, respectively. Net P mineralization in detritus was observed at all sites and detritus P release at the high pollution site was slower than at the other two sites. Nonadditive effects of mixtures tended to be species specific due to the different nutrient contents in each species. Results suggest that the nonadditive effects varied significantly among different sites, indicating that interactions between the detritus quality in species mixtures and site water chemistry may be another driver controlling decomposition in eutrophic shallow lakes. PMID:22848699
Chemical Modification of Semiconductor Surfaces for Molecular Electronics.
Vilan, Ayelet; Cahen, David
2017-03-08
Inserting molecular monolayers within metal/semiconductor interfaces provides one of the most powerful expressions of how minute chemical modifications can affect electronic devices. This topic also has direct importance for technology as it can help improve the efficiency of a variety of electronic devices such as solar cells, LEDs, sensors, and possible future bioelectronic ones. The review covers the main aspects of using chemistry to control the various aspects of interface electrostatics, such as passivation of interface states and alignment of energy levels by intrinsic molecular polarization, as well as charge rearrangement with the adjacent metal and semiconducting contacts. One of the greatest merits of molecular monolayers is their capability to form excellent thin dielectrics, yielding rich and unique current-voltage characteristics for transport across metal/molecular monolayer/semiconductor interfaces. We explain the interplay between the monolayer as tunneling barrier on the one hand, and the electrostatic barrier within the semiconductor, due to its space-charge region, on the other hand, as well as how different monolayer chemistries control each of these barriers. Practical tools to experimentally identify these two barriers and distinguish between them are given, followed by a short look to the future. This review is accompanied by another one, concerning the formation of large-area molecular junctions and charge transport that is dominated solely by molecules.
Controlled multistep synthesis in a three-phase droplet reactor
Nightingale, Adrian M.; Phillips, Thomas W.; Bannock, James H.; de Mello, John C.
2014-01-01
Channel-fouling is a pervasive problem in continuous flow chemistry, causing poor product control and reactor failure. Droplet chemistry, in which the reaction mixture flows as discrete droplets inside an immiscible carrier liquid, prevents fouling by isolating the reaction from the channel walls. Unfortunately, the difficulty of controllably adding new reagents to an existing droplet stream has largely restricted droplet chemistry to simple reactions in which all reagents are supplied at the time of droplet formation. Here we describe an effective method for repeatedly adding controlled quantities of reagents to droplets. The reagents are injected into a multiphase fluid stream, comprising the carrier liquid, droplets of the reaction mixture and an inert gas that maintains a uniform droplet spacing and suppresses new droplet formation. The method, which is suited to many multistep reactions, is applied to a five-stage quantum dot synthesis wherein particle growth is sustained by repeatedly adding fresh feedstock. PMID:24797034
Intrafen and interfen variation of Indiana fens: water chemistry
Stewart, Paul M.; Kessler, Katrina; Dunbar, Richard
1993-01-01
This study establishes a baseline of water chemistry information for selected Indiana fens over the course of one year. Fens are peatlands fed by groundwater seepage and are characterized by their dominant plant communities. Most of the fens discussed in this paper are located on property controlled and protected by the State of Indiana or the Federal government. Comparisons were made of variability in water chemistry data between fens located in the same area and those located some distance away. This survey indicated extensive variability in fen water chemistry with greater variability in water chemistry between fens in separate locations than in yearly variation within individual fens.
Fancher, J P; Aitkenhead-Peterson, J A; Farris, T; Mix, K; Schwab, A P; Wescott, D J; Hamilton, M D
2017-10-01
Soil samples from the Forensic Anthropology Research Facility (FARF) at Texas State University, San Marcos, TX, were analyzed for multiple soil characteristics from cadaver decomposition islands to a depth of 5centimeters (cm) from 63 human decomposition sites, as well as depths up to 15cm in a subset of 11 of the cadaver decomposition islands plus control soils. Postmortem interval (PMI) of the cadaver decomposition islands ranged from 6 to 1752 days. Some soil chemistry, including nitrate-N (NO 3 -N), ammonium-N (NH 4 -N), and dissolved inorganic carbon (DIC), peaked at early PMI values and their concentrations at 0-5cm returned to near control values over time likely due to translocation down the soil profile. Other soil chemistry, including dissolved organic carbon (DOC), dissolved organic nitrogen (DON), orthophosphate-P (PO 4 -P), sodium (Na + ), and potassium (K + ), remained higher than the control soil up to a PMI of 1752days postmortem. The body mass index (BMI) of the cadaver appeared to have some effect on the cadaver decomposition island chemistry. To estimate PMI using soil chemistry, backward, stepwise multiple regression analysis was used with PMI as the dependent variable and soil chemistry, body mass index (BMI) and physical soil characteristics such as saturated hydraulic conductivity as independent variables. Measures of soil parameters derived from predator and microbial mediated decomposition of human remains shows promise in estimating PMI to within 365days for a period up to nearly five years. This persistent change in soil chemistry extends the ability to estimate PMI beyond the traditionally utilized methods of entomology and taphonomy in support of medical-legal investigations, humanitarian recovery efforts, and criminal and civil cases. Copyright © 2017 Elsevier B.V. All rights reserved.
Concentration-discharge relationships in headwater streams of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Hunsaker, Carolyn T.; Johnson, Dale W.
2017-09-01
We examined stream water concentration-discharge relationships for eight small, forest watersheds ranging in elevation from 1485 to 2465 m in the southern Sierra Nevada. These headwater streams revealed nearly chemostatic behavior by current definitions for K+, Ca2+, Mg2+, Na+, Cl-, and SO42- in most cases but not for NH4+, NO3-, or ortho-P. The latter ions were somewhat enriched during high flows. All ions studied showed a dilution process at lower flows (<50 L s-1) with the concentration-discharge relationship being more chemostatic at higher flows. While previous studies in the Sierra Nevada have reported peak concentrations of NH4+, NO3-, and SO42- during snowmelt, the headwater systems of the Kings River Experimental Watersheds experience peak concentrations of these ions during the fall rains after the dry summer. These forested watersheds span the rain-snow transition zone, are 49-228 ha in size, and have soils derived from granite. A statistically significant relationship between soils and stream water concentrations for ortho-P, Ca2+, and Na+ strongly suggests that soil chemistry has a major influence on stream water chemistry. Factors controlling stream water NH4+, NO3-, and SO42- concentrations are less clear, but one possible source of spikes in these ions during storm events is input from O-horizon runoff where high concentrations were measured. Overall, stream water concentration-discharge relationships for these Sierran watersheds are similar to those found in other watershed systems (nearly chemostatic); however, the dominant processes controlling these relationships are probably localized because of different watershed characteristics like soil chemistry, vegetation cover, hydrologic flow paths, and weather patterns.
NASA Astrophysics Data System (ADS)
Keith, D.; Dykema, J. A.; Keutsch, F. N.
2017-12-01
Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., < 1 kg of 0.3 µm radius CaCO3 particles) at can be injected; while, the propellers allow the gondola to move at speeds up to 3 m/sec relative to the local air mass driving the gondola back forth through the volume to measure properties of the perturbed air mass. This presentation will provide an overview of the experiment including (a) a systems engineering perspective from high-level scientific questions through instrument selection, mission design, and proposed operations and data analysis; (b) instruments, include current status of integration testing; (c) payload engineering including structure, power and mass budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.
NASA Technical Reports Server (NTRS)
Heimbuch, A. H.; Parker, J. A.
1975-01-01
Basic and applied research in the fields of polymer chemistry, polymeric composites, chemical engineering, and biophysical chemistry is summarized. Emphasis is placed on fire safety and human survivability as they relate to commercial and military aircraft, high-rise buildings, mines and rapid transit transportation. Materials systems and other fire control systems developed for aerospace applications and applied to national domestic needs are described along with bench-scale and full-scale tests conducted to demonstrate the improvements in performance obtained through the utilization of these materials and fire control measures.
Increased Energy Delivery for Parallel Battery Packs with No Regulated Bus
NASA Astrophysics Data System (ADS)
Hsu, Chung-Ti
In this dissertation, a new approach to paralleling different battery types is presented. A method for controlling charging/discharging of different battery packs by using low-cost bi-directional switches instead of DC-DC converters is proposed. The proposed system architecture, algorithms, and control techniques allow batteries with different chemistry, voltage, and SOC to be properly charged and discharged in parallel without causing safety problems. The physical design and cost for the energy management system is substantially reduced. Additionally, specific types of failures in the maximum power point tracking (MPPT) in a photovoltaic (PV) system when tracking only the load current of a DC-DC converter are analyzed. The periodic nonlinear load current will lead MPPT realized by the conventional perturb and observe (P&O) algorithm to be problematic. A modified MPPT algorithm is proposed and it still only requires typically measured signals, yet is suitable for both linear and periodic nonlinear loads. Moreover, for a modular DC-DC converter using several converters in parallel, the input power from PV panels is processed and distributed at the module level. Methods for properly implementing distributed MPPT are studied. A new approach to efficient MPPT under partial shading conditions is presented. The power stage architecture achieves fast input current change rate by combining a current-adjustable converter with a few converters operating at a constant current.
TDPAC and β-NMR applications in chemistry and biochemistry
NASA Astrophysics Data System (ADS)
Jancso, Attila; Correia, Joao G.; Gottberg, Alexander; Schell, Juliana; Stachura, Monika; Szunyogh, Dániel; Pallada, Stavroula; Lupascu, Doru C.; Kowalska, Magdalena; Hemmingsen, Lars
2017-06-01
Time differential perturbed angular correlation (TDPAC) of γ-rays spectroscopy has been applied in chemistry and biochemistry for decades. Herein we aim to present a comprehensive review of chemical and biochemical applications of TDPAC spectroscopy conducted at ISOLDE over the past 15 years, including elucidation of metal site structure and dynamics in proteins and model systems. β-NMR spectroscopy is well established in nuclear physics, solid state physics, and materials science, but only a limited number of applications in chemistry have appeared. Current endeavors at ISOLDE advancing applications of β-NMR towards chemistry and biochemistry are presented, including the first experiment on 31Mg2+ in an ionic liquid solution. Both techniques require the production of radioisotopes combined with advanced spectroscopic instrumentation present at ISOLDE.
Lead-Testing Service to Elementary and Secondary Schools Using Anodic Stripping Voltammetry
NASA Astrophysics Data System (ADS)
Goebel, Amanda; Vos, Tracy; Louwagie, Anne; Lundbohm, Laura; Brown, Jay H.
2004-02-01
This article outlines a successful community service project that involved members of our undergraduate chemistry club and area elementary schools. Elementary school students from various science classes throughout the region collected drinking water samples and mailed them to the university for analysis. Chemistry club members analyzed the water samples for possible lead contamination using anodic stripping voltammetry. The results and experimental data were returned to the science teachers for use in a variety of class projects. Chemistry club members presented their work during our annual Environmental Chemistry Conference. All participating science classes were invited to the conference. Over the years, participation in this project has steadily increased to its current enrollment of 28 science classes throughout the region.
Cancer Prevention and Control Research Manpower Development
1997-10-01
of Lagos, Akoka, Lagos, Nigeria B.S. 1975 Chemistry Atlanta University, Atlanta, GA M.S. 1982 Physical Chemistry Georgia Institute of Technology...1992 Instructor of Hands on Laboratory Procedures in Physical Science Kindergarten through K8 Teachers in Atlanta Public School System. 1988-1990...Spectrum of Chlorine Nitrate and Evidence for the Existence of C1OONO. Journal of Physical Chemistry (1983), 87, 1091. 10
ERIC Educational Resources Information Center
Myers, Carmel A.
The classroom test performance of three groups, self-monitoring (SM), a combination of self-monitoring, self-reinforcement and self-punishment (SM+C), and controls, were compared in independent replications in a chemistry (n=149) and a calculus (n=80) class. In chemistry, but not calculus, the experimental subjects outperformed controls. It was…
NASA Astrophysics Data System (ADS)
Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.
2016-05-01
Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.
Johnson, Barry L.; Barko, John W.; Gerasimov, Yuri; James, William F.; Litvinov, Alexander; Naimo, Teresa J.; Wiener, James G.; Gaugush, Robert F.; Rogala, James T.; Rogers, Sara J.; Schoettger, R.A.
1996-01-01
The Finger Lakes habitat-rehabilitation project is intended to improve physical and chemical conditions for fish in six connected back water lakes in Navigation Pool 5 of the upper Missouri River. The primary management objective is to improve water temperature, dissolved oxygen concentration and current velocity during winter for bluegills, Lepomis macrochirus, and black crappies, Pomoxis nigromaculatus, two of the primary sport fishes in the lakes. The lakes will be hydrologically altered by Installing culverts to Introduce controlled flows of oxygenated water into four lakes, and an existing unregulated culvert on a fifth lake will be equipped with a control gate to regulate inflow. These habitat modifications constitute a manipulative field experiment that will compare pre-project (1991 to summer 1993) and post-project (fall 1993 to 1996) conditions in the lakes, including hydrology, chemistry, rooted vegetation, and fish and macroinvertebrate communities. Initial data indicate that the Finger Lakes differ in water chemistry, hydrology, and macrophyte abundance. Macroinvertebrate communities also differed among lakes: species diversity was highest in lakes with dense aquatic macrophytes. The system seems to support a single fish community, although some species concentrated in individual lakes at different times. The introduction of similar flows into five of the lakes will probably reduce the existing physical and chemical differences among lakes. However, our ability to predict the effects of hydrologic modification on fish populations is limited by uncertainties concerning both the interactions of temperature, oxygen and current in winter and the biological responses of primary and secondary producers. Results from this study should provide guidance for similar habitat-rehabilitation projects in large rivers.
A Longitudinal Assessment of Structural and Chemical Alterations in Mixed Martial Arts Fighters.
Mayer, Andrew R; Ling, Josef M; Dodd, Andrew B; Gasparovic, Charles; Klimaj, Stefan D; Meier, Timothy B
2015-11-15
Growing evidence suggests that temporally proximal acute concussions and repetitive subconcussive head injuries may lead to long-term neurological deficits. However, the underlying mechanisms of injury and their relative time-scales are not well documented in human injury models. The current study therefore investigated whether biomarkers of brain chemistry (magnetic resonance [MR] spectroscopy: N-acetylaspartate [NAA], combined glutamate and glutamine [Glx], total creatine [Cre], choline compounds [Cho], and myo-inositol [mI]) and structure (cortical thickness, white matter [WM]/subcortical volume) differed between mixed martial artists (MMA; n = 13) and matched healthy controls (HC) without a history of contact sport participation (HC; n = 14). A subset of participants (MMA = 9; HC = 10) returned for follow-up visits, with MMA (n = 3) with clinician-documented acute concussions also scanned serially. As expected, MMA self-reported a higher incidence of previous concussions and significantly more cognitive symptoms during prior concussion recovery. Fighters also exhibited reduced memory and processing speed relative to controls on neuropsychological testing coupled with cortical thinning in the left posterior cingulate gyrus and right occipital cortex at baseline assessment. Over a 1-year follow-up period, MMA experienced a significant decrease in both WM volume and NAA concentration, as well as relative thinning in the left middle and superior frontal gyri. These longitudinal changes did not correlate with self-reported metrics of injury (i.e., fight diary). In contrast, HC did not exhibit significant longitudinal changes over a 4-month follow-up period (p > 0.05). Collectively, current results provide preliminary evidence of progressive changes in brain chemistry and structure over a relatively short time period in individuals with high exposure to repetitive head hits. These findings require replication in independent samples.
Normal Science Education and its Dangers: The Case of School Chemistry
NASA Astrophysics Data System (ADS)
Van Berkel, Berry; De Vos, Wobbe; Verdonk, Adri H.; Pilot, Albert
We started the Conceptual Structure of School Chemistry research project, a part of which is reported on here, with an attempt to solve the problem of the hidden structure in school chemistry. In order to solve that problem, and informed by previous research, we performed a content analysis of school chemistry textbooks and syllabi. This led us to the hypothesis that school chemistry curricula are based on an underlying, coherent structure of chemical concepts that students are supposed to learn for the purpose of explaining and predicting chemical phenomena. The elicited comments and criticisms of an International Forum of twenty-eight researchers of chemical education, though, refuted the central claims of this hypothesis. This led to a descriptive theory of the currently dominant school chemistry curriculum in terms of a rigid combination of a specific substantive structure, based on corpuscular theory, a specific philosophical structure, educational positivism, and a specific pedagogical structure, involving initiatory and preparatory training of future chemists. Secondly, it led to an explanatory theory of the structure of school chemistry - based on Kuhn's theory of normal science and scientific training - in which dominant school chemistry is interpreted as a form of normal science education. Since the former has almost all characteristics in common with the latter, dominant school chemistry must be regarded as normal chemistry education. Forum members also formulated a number of normative criticisms on dominant school chemistry, which we interpret as specific dangers of normal chemistry education, complementing Popper's discussion of the general dangers of normal science and its teaching. On the basis of these criticisms, it is argued that normal chemistry education is isolated from common sense, everyday life and society, history and philosophy of science, technology, school physics, and from chemical research.
Qiu, Qingyan; Wu, Jianping; Liang, Guohua; Liu, Juxiu; Chu, Guowei; Zhou, Guoyi; Zhang, Deqiang
2015-05-01
Acid rain is an environmental problem of increasing concern in China. In this study, a laboratory leaching column experiment with acid forest soil was set up to investigate the responses of soil and soil solution chemistry to simulated acid rain (SAR). Five pH levels of SAR were set: 2.5, 3.0, 3.5, 4.0, and 4.5 (as a control, CK). The results showed that soil acidification would occur when the pH of SAR was ≤3.5. The concentrations of NO₃(-)and Ca(2+) in the soil increased significantly when the pH of SAR fell 3.5. The concentration of SO₄(2-) in the soil increased significantly when the pH of SAR was <4.0. The effects of SAR on soil solution chemistry became increasingly apparent as the experiment proceeded (except for Na(+) and dissolved organic carbon (DOC)). The net exports of NO₃(-), SO₄(2-), Mg(2+), and Ca(2+) increased about 42-86% under pH 2.5 treatment as compared to CK. The Ca(2+) was sensitive to SAR, and the soil could release Ca(2+) through mineral weathering to mitigate soil acidification. The concentration of exchangeable Al(3+) in the soil increased with increasing the acidity of SAR. The releases of soluble Al and Fe were SAR pH dependent, and their net exports under pH 2.5 treatment were 19.6 and 5.5 times, respectively, higher than that under CK. The net export of DOC was reduced by 12-29% under SAR treatments as compared to CK. Our results indicate the chemical constituents in the soil are more sensitive to SAR than those in the soil solution, and the effects of SAR on soil solution chemistry depend not only on the intensity of SAR but also on the duration of SAR addition. The soil and soil solution chemistry in this region may not be affected by current precipitation (pH≈4.5) in short term, but the soil and soil leachate chemistry may change dramatically if the pH of precipitation were below 3.5 and 3.0, respectively.
Use of COTS Batteries on ISS and Shuttle
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.
2004-01-01
This presentation focuses on COTS Battery testing for energy content, toxicity, hazards, failures modes and controls for different battery chemistries. It also discusses the current program requirements, challenges with COTS Batteries in manned vehicle COTS methodology, JSC test details, and gives a list of incidents from consumer protection safety commissions. The Battery test process involved testing new batteries for engineering certification, qualification of batteries, flight acceptance, cell and battery, environment, performance and abuse. Their conclusions and recommendations were that: high risk is undertaken with the use of COTS batteries, hazard control verification is required to allow the use of these batteries on manned space flights, failures during use cannot be understood if different scenarios of failure are not tested on the ground, and that testing is performed on small sample numbers due to restrictions on cost and time. They recommend testing of large sample size to gain more confidence in the operation of the hazard controls.
ERIC Educational Resources Information Center
Hussain, Ishtiaq; Suleman, Qaiser; ud Din, M. Naseer; Shafique, Farhan
2017-01-01
The current paper investigated the effects of information and communication technology on the students' academic achievement and retention in chemistry. Fifty students of 9th grade were selected randomly from Kohsar Public School and College Latamber Karak. The students were grouped into equivalent groups based on pretest score. In order to…
ERIC Educational Resources Information Center
Partanen, Lauri
2016-01-01
The aim of this study was to apply current pedagogical research in order to develop an effective course and exercise structure for a physical chemistry thermodynamics course intended for second or third year university students of chemistry. A mixed-method approach was used to measure the impact the changes had on student learning. In its final…
ERIC Educational Resources Information Center
Willson-Conrad, Angela; Kowalske, Megan Grunert
2018-01-01
Retention of students who major in STEM continues to be a major concern for universities. Many students cite poor teaching and disappointing grades as reasons for dropping out of STEM courses. Current college chemistry courses often assess what a student has learned through summative exams. To understand students' experiences of the exam process,…
ERIC Educational Resources Information Center
Kulatunga, Ushiri; Lewis, Jennifer E.
2013-01-01
Current literature has emphasized the lack of research into verbal behaviors of teachers as a barrier to understanding the effectiveness of instructional interventions. This study focuses on the verbal behaviors of peer leaders, who serve as de facto teachers in a college chemistry teaching reform based on cooperative learning. Video data obtained…
ERIC Educational Resources Information Center
de Berg, Kevin C.
2011-01-01
This paper discusses the findings of a search for the intellectual tools used by Joseph Priestley (1733-1804) in his chemistry, education, and theology documents. Priestley's enquiring democratic view of knowledge was applicable in all three areas and constitutes a significant part of his lifework. Current epistemological issues in science…
GROTTO visualization for decision support
NASA Astrophysics Data System (ADS)
Lanzagorta, Marco O.; Kuo, Eddy; Uhlmann, Jeffrey K.
1998-08-01
In this paper we describe the GROTTO visualization projects being carried out at the Naval Research Laboratory. GROTTO is a CAVE-like system, that is, a surround-screen, surround- sound, immersive virtual reality device. We have explored the GROTTO visualization in a variety of scientific areas including oceanography, meteorology, chemistry, biochemistry, computational fluid dynamics and space sciences. Research has emphasized the applications of GROTTO visualization for military, land and sea-based command and control. Examples include the visualization of ocean current models for the simulation and stud of mine drifting and, inside our computational steering project, the effects of electro-magnetic radiation on missile defense satellites. We discuss plans to apply this technology to decision support applications involving the deployment of autonomous vehicles into contaminated battlefield environments, fire fighter control and hostage rescue operations.
NASA Technical Reports Server (NTRS)
Dukes, C.; Loeffler, M.J.; Baragiola, R.; Christoffersen, R.; Keller, J.
2009-01-01
Current understanding of the chemistry and microstructure of the surfaces of lunar soil grains is dominated by a reference frame derived mainly from electron microscopy observations [e.g. 1,2]. These studies have shown that the outermost 10-100 nm of grain surfaces in mature lunar soil finest fractions have been modified by the combined effects of solar wind exposure, surface deposition of vapors and accretion of impact melt products [1,2]. These processes produce surface-correlated nanophase Feo, host grain amorphization, formation of surface patinas and other complex changes [1,2]. What is less well understood is how these changes are reflected directly at the surface, defined as the outermost 1-5 atomic monolayers, a region not easily chemically characterized by TEM. We are currently employing X-ray Photoelectron Spectroscopy (XPS) to study the surface chemistry of lunar soil samples that have been previously studied by TEM. This work includes modification of the grain surfaces by in situ irradiation with ions at solar wind energies to better understand how irradiated surfaces in lunar grains change their chemistry once exposed to ambient conditions on earth.
Plasma-water interactions at atmospheric pressure in a dc microplasma
NASA Astrophysics Data System (ADS)
Patel, Jenish; Němcová, Lucie; Mitra, Somak; Graham, William; Maguire, Paul; Švrček, Vladimir; Mariotti, Davide
2013-09-01
Plasma-liquid interactions generate a variety of chemical species that are very useful for the treatment of many materials and that makes plasma-induced liquid chemistry (PiLC) very attractive for industrial applications. The understanding of plasma-induced chemistry with water can open up a vast range of plasma-activated chemistry in liquid with enormous potential for the synthesis of chemical compounds, nanomaterials synthesis and functionalization. However, this basic understanding of the chemistry occurring at the plasma-liquid interface is still poor. In the present study, different properties of water are analysed when processed by plasma at atmospheric-pressure with different conditions. In particular, pH, temperature and conductivity of water are measured against current and time of plasma processing. We also observed the formation of molecular oxygen (O2) and hydrogen peroxide (H2O2) for the same plasma conditions. The current of plasma processing was found to affect the water properties and the production of hydrogen peroxide in water. The relation between the number of electrons injected from plasma in water and the number of H2O2 molecules was established and based on these results a scenario of reactions channels activated by plasma-water interface is concluded.
Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.; ...
2016-08-04
Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Storey, John Morse; Curran, Scott J.; Lewis, Samuel A.
Low-temperature compression ignition combustion can result in nearly smokeless combustion, as indicated by a smoke meter or other forms of soot measurement that rely on absorbance due to elemental carbon content. Highly premixed low-temperature combustion modes do not form particulate matter in the traditional pathways seen with conventional diesel combustion. Previous research into reactivity controlled compression ignition particulate matter has shown, despite a near zero smoke number, significant mass can be collected on filter media used for particulate matter certification measurement. In addition, particulate matter size distributions reveal that a fraction of the particles survive heated double-dilution conditions. This papermore » summarizes research completed at Oak Ridge National Laboratory to date on characterizing the nature, chemistry and aftertreatment considerations of reactivity controlled compression ignition particulate matter and presents new research highlighting the importance of injection strategy and fuel composition on reactivity controlled compression ignition particulate matter formation. Particle size measurements and the transmission electron microscopy results do show the presence of soot particles; however, the elemental carbon fraction was, in many cases, within the uncertainty of the thermal–optical measurement. Particulate matter emitted during reactivity controlled compression ignition operation was also collected with a novel sampling technique and analyzed by thermal desorption or pyrolysis gas chromatography mass spectroscopy. Particulate matter speciation results indicated that the high boiling range of diesel hydrocarbons was likely responsible for the particulate matter mass captured on the filter media. Finally, to investigate potential fuel chemistry effects, either ethanol or biodiesel were incorporated to assess whether oxygenated fuels may enhance particle emission reduction.« less
MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory.
Horowitz, Gary L; Zaman, Zahur; Blanckaert, Norbert J C; Chan, Daniel W; Dubois, Jeffrey A; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W; Nilsen, Olaug L; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang
2005-01-01
MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality.
MODULAR ANALYTICS: A New Approach to Automation in the Clinical Laboratory
Zaman, Zahur; Blanckaert, Norbert J. C.; Chan, Daniel W.; Dubois, Jeffrey A.; Golaz, Olivier; Mensi, Noury; Keller, Franz; Stolz, Herbert; Klingler, Karl; Marocchi, Alessandro; Prencipe, Lorenzo; McLawhon, Ronald W.; Nilsen, Olaug L.; Oellerich, Michael; Luthe, Hilmar; Orsonneau, Jean-Luc; Richeux, Gérard; Recio, Fernando; Roldan, Esther; Rymo, Lars; Wicktorsson, Anne-Charlotte; Welch, Shirley L.; Wieland, Heinrich; Grawitz, Andrea Busse; Mitsumaki, Hiroshi; McGovern, Margaret; Ng, Katherine; Stockmann, Wolfgang
2005-01-01
MODULAR ANALYTICS (Roche Diagnostics) (MODULAR ANALYTICS, Elecsys and Cobas Integra are trademarks of a member of the Roche Group) represents a new approach to automation for the clinical chemistry laboratory. It consists of a control unit, a core unit with a bidirectional multitrack rack transportation system, and three distinct kinds of analytical modules: an ISE module, a P800 module (44 photometric tests, throughput of up to 800 tests/h), and a D2400 module (16 photometric tests, throughput up to 2400 tests/h). MODULAR ANALYTICS allows customised configurations for various laboratory workloads. The performance and practicability of MODULAR ANALYTICS were evaluated in an international multicentre study at 16 sites. Studies included precision, accuracy, analytical range, carry-over, and workflow assessment. More than 700 000 results were obtained during the course of the study. Median between-day CVs were typically less than 3% for clinical chemistries and less than 6% for homogeneous immunoassays. Median recoveries for nearly all standardised reference materials were within 5% of assigned values. Method comparisons versus current existing routine instrumentation were clinically acceptable in all cases. During the workflow studies, the work from three to four single workstations was transferred to MODULAR ANALYTICS, which offered over 100 possible methods, with reduction in sample splitting, handling errors, and turnaround time. Typical sample processing time on MODULAR ANALYTICS was less than 30 minutes, an improvement from the current laboratory systems. By combining multiple analytic units in flexible ways, MODULAR ANALYTICS met diverse laboratory needs and offered improvement in workflow over current laboratory situations. It increased overall efficiency while maintaining (or improving) quality. PMID:18924721
Technical Basis for Water Chemistry Control of IGSCC in Boiling Water Reactors
NASA Astrophysics Data System (ADS)
Gordon, Barry; Garcia, Susan
Boiling water reactors (BWRs) operate with very high purity water. However, even the utilization of near theoretical conductivity water cannot prevent intergranular stress corrosion cracking (IGSCC) of sensitized stainless steel, wrought nickel alloys and nickel weld metals under oxygenated conditions. IGSCC can be further accelerated by the presence of certain impurities dissolved in the coolant. The goal of this paper is to present the technical basis for controlling various impurities under both oxygenated, i.e., normal water chemistry (NWC) and deoxygenated, i.e., hydrogen water chemistry (HWC) conditions for mitigation of IGSCC. More specifically, the effects of typical BWR ionic impurities (e.g., sulfate, chloride, nitrate, borate, phosphate, etc.) on IGSCC propensities in both NWC and HWC environments will be discussed. The technical basis for zinc addition to the BWR coolant will also provided along with an in-plant example of the most severe water chemistry transient to date.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersting, Annie B.
A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of anthropogenic plutonium (Pu) has accumulated worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al. 1999; Novikov et al. 2006; Santschi et al. 2002). Neptunium (Np) is less prevalent inmore » the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA) and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kersting, Annie B.; Zavarin, Mavrik
A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) ismore » less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).« less
A model of CO-CH4 global transport/chemistry. I - Chemistry model
NASA Technical Reports Server (NTRS)
Peters, L. K.; Kitada, T.
1980-01-01
A simplified chemistry model was developed to incorporate the CO-CH4 chemistry into the global transport model of these compounds. CO is important because of its effects on atmospheric chemistry and is partly responsible for controlling the hydroxyl radical (OH) concentration in the troposphere. The model includes the photodissociation rate coefficients expressed as functions of solar zenith angle and altitude, and it was applied to determine the sensitivity of the OH concentration to trace gaseous species, such as NOx, O3, and H2O. Also, the concentrations and diurnal variations of OH and HO2, and the contribution of individual reactions to OH generation and consumption were calculated.
NASA Astrophysics Data System (ADS)
Al-Balushi, Sulaiman M.; Al-Musawi, Ali S.; Ambusaidi, Abdullah K.; Al-Hajri, Fatemah H.
2017-02-01
The purpose of the current study was to investigate the effectiveness of interacting with animations using mobile devices on grade 12 students' spatial and reasoning abilities. The study took place in a grade 12 context in Oman. A quasi-experimental design was used with an experimental group of 32 students and a control group of 28 students. The experimental group studied chemistry using mobile tablets that had a digital instructional package with different animation and simulations. There was one tablet per student. A spatial ability test and a scientific reasoning test were administered to both groups prior and after the study, which lasted for 9 weeks. The findings showed that there were significant statistical differences between the two groups in terms of spatial ability in favour of the experimental group. However, there were no differences between the two groups in terms of reasoning ability. The authors reasoned that the types of animations and simulations used in the current study featured a wide range of three-dimensional animated illustrations at the particulate level of matter. Most probably, this decreased the level of abstractness that usually accompanies chemical entities and phenomena and helped the students to visualize the interactions between submicroscopic entities spatially. Further research is needed to decide on types of scientific animations that could help students improve their scientific reasoning.
Plasma medicine: an introductory review
NASA Astrophysics Data System (ADS)
Kong, M. G.; Kroesen, G.; Morfill, G.; Nosenko, T.; Shimizu, T.; van Dijk, J.; Zimmermann, J. L.
2009-11-01
This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry, biophysics, medicine and hygiene. Apart from the basic plasma processes and the restrictions and requirements set by international health standards, the review focuses on plasma interaction with prokaryotic cells (bacteria), eukaryotic cells (mammalian cells), cell membranes, DNA etc. In so doing, some of the unfamiliar terminology—an unavoidable by-product of interdisciplinary research—is covered and explained. Plasma health care may provide a fast and efficient new path for effective hospital (and other public buildings) hygiene—helping to prevent and contain diseases that are continuously gaining ground as resistance of pathogens to antibiotics grows. The delivery of medically active 'substances' at the molecular or ionic level is another exciting topic of research through effects on cell walls (permeabilization), cell excitation (paracrine action) and the introduction of reactive species into cell cytoplasm. Electric fields, charging of surfaces, current flows etc can also affect tissue in a controlled way. The field is young and hopes are high. It is fitting to cover the beginnings in New Journal of Physics, since it is the physics (and non-equilibrium chemistry) of room temperature atmospheric pressure plasmas that have made this development of plasma health care possible.
NASA Technical Reports Server (NTRS)
1974-01-01
The charactertistics and performance capability of the current Viking '75 Gas Chromatograph/Mass Spectrometer Instrument are reviewed and documented for the purpose of possible integration with a wet chemistry instrument. Interface, high mass discrimination, and vacuum requirements were determined in a simulated flight investigation. Suggestions for future investigations, tradeoff studies, and design modifications are presented, along with the results of column bleed measurements. A preliminary design of an integrated Wet Chemistry/Mass Spectrometer instrument for amino acid analysis is shown, including estimates of additional weight, volume, and power requirements.
Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Honghao; Cartmell, Samuel S.; Wang, Qiang
2014-01-21
The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. This study focuses on the optimization of microbattery design based on Li/CFx chemistry. Through appropriate modifications, a steady high-rate pulse current with desirable life time has been achieved while the weight and volume of the battery is largely reduced. The impedance variation in as-designed microbatteriesmore » is systematically compared with that of currently used watch batteries in JSATS with an attempt to understand the intrinsic factors that control the performances of microbatteries under the real testing environments.« less
AmO 2 Analysis for Analytical Method Testing and Assessment: Analysis Support for AmO 2 Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhn, Kevin John; Bland, Galey Jean; Fulwyler, James Brent
Americium oxide samples will be measured for various analytes to support AmO 2 production. The key analytes that are currently requested by the Am production customer at LANL include total Am content, Am isotopics, Pu assay, Pu isotopics, and trace element content including 237Np content. Multiple analytical methods will be utilized depending on the sensitivity, accuracy and precision needs of the Am matrix. Traceability to the National Institute of Standards and Technology (NIST) will be achieved, where applicable, by running NIST traceable quality control materials. This given that there are no suitable AmO 2 reference materials currently available for requestedmore » analytes. The primary objective is to demonstrate the suitability of actinide analytical chemistry methods to support AmO 2 production operations.« less
Microwave quantum logic gates for trapped ions.
Ospelkaus, C; Warring, U; Colombe, Y; Brown, K R; Amini, J M; Leibfried, D; Wineland, D J
2011-08-10
Control over physical systems at the quantum level is important in fields as diverse as metrology, information processing, simulation and chemistry. For trapped atomic ions, the quantized motional and internal degrees of freedom can be coherently manipulated with laser light. Similar control is difficult to achieve with radio-frequency or microwave radiation: the essential coupling between internal degrees of freedom and motion requires significant field changes over the extent of the atoms' motion, but such changes are negligible at these frequencies for freely propagating fields. An exception is in the near field of microwave currents in structures smaller than the free-space wavelength, where stronger gradients can be generated. Here we first manipulate coherently (on timescales of 20 nanoseconds) the internal quantum states of ions held in a microfabricated trap. The controlling magnetic fields are generated by microwave currents in electrodes that are integrated into the trap structure. We also generate entanglement between the internal degrees of freedom of two atoms with a gate operation suitable for general quantum computation; the entangled state has a fidelity of 0.76(3), where the uncertainty denotes standard error of the mean. Our approach, which involves integrating the quantum control mechanism into the trapping device in a scalable manner, could be applied to quantum information processing, simulation and spectroscopy.
ERIC Educational Resources Information Center
Radakovitz, Richard
1975-01-01
Describes a cure for the high school chemistry student with Second Semester Poisoning (SSP), the student disease of apathy which occurs in the spring. Remedy: an outdoor (preferably) demonstration of a series of controlled combustion experiments, with accompanying explanations of the chemistry involved. (MLH)
Teaching Techniques in Clinical Chemistry.
ERIC Educational Resources Information Center
Wilson, Diane
This master's thesis presents several instructional methods and techniques developed for each of eleven topics or subject areas in clinical chemistry: carbohydrate metabolism, lipid metabolism, diagnostic enzymology, endocrinology, toxicology, quality control, electrolytes, acid base balance, hepatic function, nonprotein nitrogenous compounds, and…
NASA Astrophysics Data System (ADS)
Flynn, C. M.; Prather, M. J.; Zhu, X.; Strode, S. A.; Steenrod, S. D.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Mao, J.; Murray, L. T.; Shindell, D. T.
2016-12-01
Experience with climate and chemistry model intercomparison projects (MIPs) has demonstrated a diversity in model projections for the chemical greenhouse gases CH4 and O3, even when forced by the same emissions. In general, the MIPs show that models diverge in the distribution of the many key trace species that control the reactivity of the troposphere (defined here as the loss of CH4 and the production and loss of O3). Two possible sources of model differences are the chemistry-transport coupling that creates the pattern of the essential precursor species, and the calculation of reactivity. Suppose that observations, such as those planned by NASA's Atmospheric Tomography (ATom) mission, provide us with enough of a chemical climatology to constrain the modeled distribution of the essential chemical species for the current epoch. Would the models calculate the same reactivity? ATom uses the DC-8 to make in situ measurements slicing through the middle of the Pacific and Atlantic Ocean basins each season and measuring the essential trace species. Unfortunately, ATom measurements will not be available until mid-2017. Here we take the baseline chemistry from one model version (as pseudo-observations) and use it to initialize 6 other global chemistry models. In this pre-ATom MIP, we take the full chemical composition for meridional slices centered on the Dateline (UC Irvine Chemistry-Transport Model, 0.6 deg resolution, 30 layers in the troposphere). We use grid cells between 0.5 and 12 km from 60 S to 60 N to initialize grid cells in the other six models (GEOS-Chem, GFDL-AM3, GISS ModelE2, GSFC GMI, NCAR, UCI CTM). The models are then integrated for 1 day and the key chemical rates (CH4, O3) are saved. These simulations assume that the initialized parcels remain unmixed over the 24 hours, and, hence, model-to-model variations will be due to differences in photochemistry, including clouds. In addition, we assess the relative importance of the precursor species by running sensitivity tests in which each of the major precursors (e.g., NOx, HOOH, HCHO, CO) is perturbed by 10%. Such sensitivity tests can help determine the causes of model differences. Overall, this new approach allows us to characterize each model's chemistry package for a wide range of designated chemical composition. The real test will be with ATom data next year.
NASA Astrophysics Data System (ADS)
Shweikeh, Eman
Over the past 50 years, considerable research has been dedicated to chemistry education. In evaluating principal chemistry courses in higher education, educators have noted the learning process for first-year general chemistry courses may be challenging. The current study investigated perceptions of faculty, students and administrators on chemistry education at three institutions in Southern California. Via action research, the study sought to develop a plan to improve student engagement in general chemistry courses. A mixed method was utilized to analyze different perceptions on key factors determining the level of commitment and engagement in general chemistry education. The approach to chemistry learning from both a faculty and student perspective was examined including good practices, experiences and extent of active participation. The research study considered well-known measures of effective education with an emphasis on two key components: educational practices and student behavior. Institutional culture was inclusively assessed where cognitive expectations of chemistry teaching and learning were communicated. First, the extent in which faculty members are utilizing the "Seven Principles for Good Practice in Undergraduate Education" in their instruction was explored. Second, student attitudes and approaches toward chemistry learning were examined. The focus was on investigating student understanding of the learning process and the structure of chemistry knowledge. The seven categories used to measure students' expectations for learning chemistry were: effort, concepts, math link, reality link, outcome, laboratory, and visualization. This analysis represents the views of 16 faculty and 140 students. The results validated the assertion that students need some competencies and skills to tackle the challenges of the chemistry learning process to deeply engage in learning. A mismatch exists between the expectations of students and those of the faculty. Furthermore, improving attitudes and beliefs could be a potential for bringing about successful interventions to general chemistry learning. Importantly, the role of collaboration between chemistry educators is essential to forming instructional strategies. Additionally, shifting paradigms should be given utmost attention, including differences among student engagement in general chemistry, ways in which faculty can modify practices to meet student expectations, and the role of administrators in providing the necessary tools that stimulate chemistry education and research.
Rosenbaum, Matthew W; Flood, James G; Melanson, Stacy E F; Baumann, Nikola A; Marzinke, Mark A; Rai, Alex J; Hayden, Joshua; Wu, Alan H B; Ladror, Megan; Lifshitz, Mark S; Scott, Mitchell G; Peck-Palmer, Octavia M; Bowen, Raffick; Babic, Nikolina; Sobhani, Kimia; Giacherio, Donald; Bocsi, Gregary T; Herman, Daniel S; Wang, Ping; Toffaletti, John; Handel, Elizabeth; Kelly, Kathleen A; Albeiroti, Sami; Wang, Sihe; Zimmer, Melissa; Driver, Brandon; Yi, Xin; Wilburn, Clayton; Lewandrowski, Kent B
2018-05-29
In the United States, minimum standards for quality control (QC) are specified in federal law under the Clinical Laboratory Improvement Amendment and its revisions. Beyond meeting this required standard, laboratories have flexibility to determine their overall QC program. We surveyed chemistry and immunochemistry QC procedures at 21 clinical laboratories within leading academic medical centers to assess if standardized QC practices exist for chemistry and immunochemistry testing. We observed significant variation and unexpected similarities in practice across laboratories, including QC frequency, cutoffs, number of levels analyzed, and other features. This variation in practice indicates an opportunity exists to establish an evidence-based approach to QC that can be generalized across institutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, S.B.; Wullschleger, S.; Stone, A.
The role of acid deposition in the health of spruce fir forests in the Southern Appalachian Mountains has been investigated by a wide variety of experimental approaches during the past 10 years. These studies have proceeded from initial dendroecological documentation of altered growth patterns of mature trees to increasingly more focused ecophysiological research on the causes and characteristics of changes in system function associated with increased acidic deposition. Field studies across gradients in deposition and soil chemistry have been located on four mountains spanning 85 km of latitude within the Southern Appalachians. The conclusion that calcium nutrition is an importantmore » component regulating health of red spruce in the Southern Appalachians and that acid deposition significantly reduces calcium availability in several ways has emerged as a consistent result from multiple lines or research. These have included analysis of trends in wood chemistry, soil solution chemistry, foliar nutrition, gas exchange physiology, root histochemistry, and controlled laboratory and field studies in which acid deposition and/or calcium nutrition has been manipulated and growth and nutritional status of saplings or mature red spruce trees measured. This earlier research has led us to investigate the broader implications and consequences of calcium deficiency for changing resistance of spruce-fir forests to natural stresses. Current research is exploring possible relationships between altered calcium nutrition and shifts in response of Fraser fir to insect attack by the balsam wooly adelgid. In addition, changes in wood ultrastructural properties in relation to altered wood chemistry is being examined to evaluate its possible role in canopy deterioration, under wind and ice stresses typical of high elevation forests.« less
Controlled Redox Chemistry at Cerium within a Tripodal Nitroxide Ligand Framework
Bogart, Justin A.; Lippincott, Connor A.; Carroll, Patrick J.; ...
2015-10-27
Ligand reorganization has been shown to have a profound effect on the outcome of cerium redox chemistry. Through the use of a tethered, tripodal, trianionic nitroxide ligand, [((2-tBuNOH)C 6 H 4 CH 2 ) 3 N] 3- (TriNO x 3- ), controlled redox chemistry at cerium was accomplished, and typically reactive complexes of tetravalent cerium were isolated. These included rare cationic complexes [Ce(TriNO x )thf][BAr F 4 ], in which Ar F =3,5-(CF 3 ) 2 -C 6 H 3 , and [Ce(TriNO x )py][OTf] . A rare complete Ce-halide series, Ce(TriNO x )X, in which X=F - , Clmore » - , Br - , I - , was also synthesized. We explored the solution chemistry of these complexes through detailed solution-phase electrochemistry and 1 H NMR experiments and showed a unique shift in the ratio of species with inner- and outer-sphere anions with size of the anionic X - group. DFT calculations on the series of calculations corroborated the experimental findings. Also, the use of a bulky and strongly donating tethered tripodal nitroxide ligand allowed the controlled redox chemistry at cerium. As a result, rare examples of cationic Ce IV complexes were synthesized and fully characterized. The full Ce-halide series supported by the tripodal ligand framework is also reported (see scheme).« less
NASA Astrophysics Data System (ADS)
Pageau, Gayle J.; Mabaera, Rodwell; Kosuda, Kathryn M.; Sebelius, Tamara A.; Ghaffari, Ali H.; Kearns, Kenneth A.; McIntyre, Jean P.; Beachy, Tina M.; Thamattoor, Dasan M.
2002-01-01
The diastereoselective synthesis of ethyl (E)-3-methyl-3-phenylglycidate, a strawberry flavoring agent, is carried out by epoxidizing ethyl trans-b-methylcinnamate with m-chloroperbenzoic acid. This epoxidation is appropriate for the introductory organic laboratory and augments the small number of such experiments currently available for undergraduate education. In the course of performing this exercise, students are exposed to many important facets of organic chemistry such as synthesis, reaction mechanism, stereochemistry, chromatography, quantitative analysis, spectroscopy, and computational chemistry. The 1H NMR spectrum of this compound is especially interesting and presents instructive examples of diastereotopic protons and shielding effects of the aromatic ring current.
NASA Astrophysics Data System (ADS)
Fish, C.; Hill, T. M.; Davis, C. V.; Lipski, D.; Jahncke, J.
2017-12-01
Elucidating both surface and bottom water ecosystem impacts of temperature change, acidification, and food web disruption are needed to understand anthropogenic processes in the ocean. The Applied California Current Ecosystem Studies (ACCESS) partnership surveys the California Current within the Greater Farallones and Cordell Bank National Marine Sanctuaries three times annually, sampling water column hydrography and discrete water samples from 0 m and 200 m depth at five stations along three primary transects. The transects span the continental shelf with stations as close as 13 km from the coastline to 65 km. This time series extends from 2004 to 2017, integrating information on climate, productivity, zooplankton abundance, oxygenation, and carbonate chemistry. We focus on the interpretation of the 2012-2017 carbonate chemistry data and present both long term trends over the duration of the time series as well as shorter term variability (e.g., ENSO, `warm blob' conditions) to investigate the region's changing oceanographic conditions. For example, we document oscillations in carbonate chemistry, oxygenation, and foraminiferal abundance in concert with interannual oceanographic variability and seasonal (upwelling) cycles. We concentrate on results from near Cordell Bank that potentially impact deep sea coral ecosystems.
NASA Technical Reports Server (NTRS)
Shaffer, R. M.
1973-01-01
A detailed description is given of the methods of choose the duplication film and chemistry currently used in the NASA-ERTS Ground Data Handling System. The major ERTS photographic duplication goals are given as background information to justify the specifications for the desirable film/chemistry combination. Once these specifications were defined, a quantitative evaluation program was designed and implemented to determine if any recommended combinations could meet the ERTS laboratory specifications. The specifications include tone reproduction, granularity, MTF and cosmetic effects. A complete description of the techniques used to measure the test response variables is given. It is anticipated that similar quantitative techniques could be used on other programs to determine the optimum film/chemistry consistent with the engineering goals of the program.
Critical aspects in the production of periodically ordered mesoporous titania thin films
NASA Astrophysics Data System (ADS)
Soler-Illia, Galo J. A. A.; Angelomé, Paula C.; Fuertes, M. Cecilia; Grosso, David; Boissiere, Cedric
2012-03-01
Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems.Periodically ordered mesoporous titania thin films (MTTF) present a high surface area, controlled porosity in the 2-20 nm pore diameter range and an amorphous or crystalline inorganic framework. These materials are nowadays routinely prepared by combining soft chemistry and supramolecular templating. Photocatalytic transparent coatings and titania-based solar cells are the immediate promising applications. However, a wealth of new prospective uses have emerged on the horizon, such as advanced catalysts, perm-selective membranes, optical materials based on plasmonics and photonics, metamaterials, biomaterials or new magnetic nanocomposites. Current and novel applications rely on the ultimate control of the materials features such as pore size and geometry, surface functionality and wall structure. Even if a certain control of these characteristics has been provided by the methods reported so far, the needs for the next generation of MTTF require a deeper insight in the physical and chemical processes taking place in their preparation and processing. This article presents a critical discussion of these aspects. This discussion is essential to evolve from know-how to sound knowledge, aiming at a rational materials design of these fascinating systems. Dedicated to Clément Sanchez, on the first anniversary of his appointment to the Hybrid Materials Chair of the Collège de France.
Green chemistry: development trajectory
NASA Astrophysics Data System (ADS)
Moiseev, I. I.
2013-07-01
Examples of applications of green chemistry methods in heavy organic synthesis are analyzed. Compounds, which can be produced by the processing of the biomass, and the criteria for the selection of the most promising products are summarized. The current status of the ethanol production and processing is considered. The possibilities of the use of high fatty acid triglycerides, glycerol, succinic acid, and isoprene are briefly discussed. The bibliography includes 67 references.
ERIC Educational Resources Information Center
Pierce, Karisa M.; Schale, Stephen P.; Le, Trang M.; Larson, Joel C.
2011-01-01
We present a laboratory experiment for an advanced analytical chemistry course where we first focus on the chemometric technique partial least-squares (PLS) analysis applied to one-dimensional (1D) total-ion-current gas chromatography-mass spectrometry (GC-TIC) separations of biodiesel blends. Then, we focus on n-way PLS (n-PLS) applied to…
ERIC Educational Resources Information Center
Taylor, Georgette
2008-01-01
This paper presents a case study that contributes to the current debate among historians of chemistry concerning the role and influence of pedagogy in science. Recently, Bernadette Bensaude-Vincent and her colleagues concluded that in nineteenth-century France, "textbooks played an important role in discipline building and in creating…
ERIC Educational Resources Information Center
Sabanayagam, Kalyani; Dani, Vivek D.; John, Matthew; Restivo, Wanda; Mikhaylichenko, Svetlana; Dalili, Shadi
2017-01-01
This paper describes the successful adaptation of certain components of peer-led team learning (PLTL) as well as service learning principles into our initiative: lab skills seminars (LSS). These seminars were organized for large, second year organic chemistry laboratory courses. Prior to LSS, the only help available for students was traditional…
Kossoy, Elizaveta; Weissman, Haim; Rybtchinski, Boris
2015-01-02
In the current work, we demonstrate how coordination chemistry can be employed to direct self-assembly based on strong hydrophobic interactions. To investigate the influence of coordination sphere geometry on aqueous self-assembly, we synthesized complexes of the amphiphilic perylene diimide terpyridine ligand with the first-row transition-metal centers (zinc, cobalt, and nickel). In aqueous medium, aggregation of these complexes is induced by hydrophobic interactions between the ligands. However, the final shapes of the resulting assemblies depend on the preferred geometry of the coordination spheres typical for the particular metal center. The self-assembly process was characterized by UV/Vis spectroscopy, zeta potential measurements, and cryogenic transmission electron microscopy (cryo-TEM). Coordination of zinc(II) and cobalt(II) leads to the formation of unique nanospiral assemblies, whereas complexation of nickel(II) leads to the formation of straight nanofibers. Notably, coordination bonds are utilized not as connectors between elementary building blocks, but as directing interactions, enabling control over supramolecular geometry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Hitchhiker's Guide to Flow Chemistry ∥.
Plutschack, Matthew B; Pieber, Bartholomäus; Gilmore, Kerry; Seeberger, Peter H
2017-09-27
Flow chemistry involves the use of channels or tubing to conduct a reaction in a continuous stream rather than in a flask. Flow equipment provides chemists with unique control over reaction parameters enhancing reactivity or in some cases enabling new reactions. This relatively young technology has received a remarkable amount of attention in the past decade with many reports on what can be done in flow. Until recently, however, the question, "Should we do this in flow?" has merely been an afterthought. This review introduces readers to the basic principles and fundamentals of flow chemistry and critically discusses recent flow chemistry accounts.
Efforts to control radiation build-up in Ringhals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egner, K.; Aronsson, P.O.; Erixon, O.
1995-03-01
It is well known that good control of the primary chemistry in a PWR is essential in order to minimize material problems and fuel damages. It has also been well established that the water chemistry has a great influence on accumulation of corrosion products on the fuel and the radiation build-up on primary system surfaces. Ringhals was one of the pioneers to increase operating pH in order to reduce radiation build-up and has now been operating for ten years with pH at 7.4 or (in later years) 7.2. Our experience is favourable and includes low radiation levels in the newmore » (1989) steam generators of Ringhals 2. Ringhals 4 has operated almost its whole life at pH 7.2 or higher and it remains one of the cleanest PWRs of its vintage. In addition to strict adherence to a stable operating chemistry, Ringhals is now working on a program with the aim to find optimum shut-down and start-up chemistry to reduce activity levels in the primary systems. A particular goal is to use the shut-down and start-up chemistry at the 1994 outage in Ringhals 3 in order to reduce doserates in preparation for the planned steam generator replacement in 1995. The paper summarizes the experience to date of the established operating chemistry, on-going tests with modified shut-down and start-up chemistry and other measures to limit or reduce the activity build-up.« less
Diameter and location control of ZnO nanowires using electrodeposition and sodium citrate
NASA Astrophysics Data System (ADS)
Lifson, Max L.; Levey, Christopher G.; Gibson, Ursula J.
2013-10-01
We report single-step growth of spatially localized ZnO nanowires of controlled diameter to enable improved performance of piezoelectric devices such as nanogenerators. This study is the first to demonstrate the combination of electrodeposition with zinc nitrate and sodium citrate in the growth solution. Electrodeposition through a thermally-grown silicon oxide mask results in localization, while the growth voltage and solution chemistry are tuned to control the nanowire geometry. We observe a competition between lateral (relative to the (0001) axis) citrate-related morphology and voltage-driven vertical growth which enables this control. High aspect ratios result with either pure nitrate or nitrate-citrate mixtures if large voltages are used, but low growth voltages permit the growth of large diameter nanowires in solution with citrate. Measurements of the current density suggest a two-step growth process. An oxide mask blocks the electrodeposition, and suppresses nucleation of thermally driven growth, permitting single-step lithography on low cost p-type silicon substrates.
Atmospheric chemistry of ethane and ethylene
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Herman, J. R.; Maier, E. J.; Mcquillan, C. J.
1982-01-01
It is shown by a study of ethane and ethylene photochemistry that the loss of ethane is controlled by OH in the troposphere and Cl in the stratosphere. Ethane observations indicating free Cl concentrations below 30 km that are only 10% of the value predicted by the present model calculations cannot be explained by heterogeneous aerosol concentration processes, and contradict current stratospheric photochemistry. The chemical destruction of ethane and ethylene leads to the generation of such compounds as carbon monoxide and formaldehyde, and it is found that the tropospheric concentrations of the latter are enhanced by nearly a factor of three for an ethylene mixing ratio of 2 ppb.
Recent trends in laboratory automation in the pharmaceutical industry.
Rutherford, M L; Stinger, T
2001-05-01
The impact of robotics and automation on the pharmaceutical industry over the last two decades has been significant. In the last ten years, the emphasis of laboratory automation has shifted from the support of manufactured products and quality control of laboratory applications, to research and development. This shift has been the direct result of an increased emphasis on the identification, development and eventual marketing of innovative new products. In this article, we will briefly identify and discuss some of the current trends in laboratory automation in the pharmaceutical industry as they apply to research and development, including screening, sample management, combinatorial chemistry, ADME/Tox and pharmacokinetics.
Cumulative reports and publications through December 31, 1989
NASA Technical Reports Server (NTRS)
1990-01-01
A complete list of reports from the Institute for Computer Applications in Science and Engineering (ICASE) is presented. The major categories of the current ICASE research program are: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effectual numerical methods; computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; computer systems and software, especially vector and parallel computers, microcomputers, and data management. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available.
Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton
2001-06-29
Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.
Aqueous foams: a field of investigation at the frontier between chemistry and physics.
Langevin, Dominique
2008-03-14
This paper reviews the properties of aqueous foams. The current state of knowledge is summarized briefly and the interdisciplinary aspects of this field of investigation are emphasized. Many phenomena are controlled by physical laws, but they are highly dependent upon the chemicals used as foam stabilizers: surfactants, polymers, particles. Most of the existing work is related to surfactants and polymer foams, and little is known yet for particle foams although research in this field is becoming popular. This article presents the general concepts used to describe the monolayers and the films and also some of the recent advances being made in this area.
Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Neal P.
The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.
NASA Astrophysics Data System (ADS)
Overman, Michelle; Vermunt, Jan D.; Meijer, Paulien C.; Bulte, Astrid M. W.; Brekelmans, Mieke
2014-07-01
Context-based curriculum reforms in chemistry education are thought to bring greater diversity to the ways in which chemistry teachers organize their teaching. First and foremost, students are expected to perceive this diversity. However, empirical research on how students perceive their teacher's teaching in context-based chemistry classrooms, and whether this teaching differs from traditional chemistry lessons, is scarce. This study aims to develop our understanding of what teaching looks like, according to students, in context-based chemistry classrooms compared with traditional chemistry classrooms. As such, it might also provide a better understanding of whether teachers implement and attain the intentions of curriculum developers. To study teacher behaviour we used three theoretical perspectives deemed to be important for student learning: a content perspective, a learning activities perspective, and an interpersonal perspective. Data were collected from 480 students in 24 secondary chemistry classes in the Netherlands. Our findings suggest that, according to the students, the changes in teaching in context-based chemistry classrooms imply a lessening of the emphasis on fundamental chemistry and the use of a teacher-centred approach, compared with traditional chemistry classrooms. However, teachers in context-based chemistry classrooms seem not to display more 'context-based' teaching behaviour, such as emphasizing the relation between chemistry, technology, and society and using a student-centred approach. Furthermore, students in context-based chemistry classrooms perceive their teachers as having less interpersonal control and showing less affiliation than teachers in traditional chemistry classrooms. Our findings should be interpreted in the context of former and daily experiences of both teachers and students. As only chemistry is reformed in the schools in which context-based chemistry is implemented, it is challenging for both students and teachers to deal with these reforms.
SCIENCE VERSION OF PM CHEMISTRY MODEL
PM chemistry models containing detailed treatments of key chemical processes controlling ambient concentrations of inorganic and organic compounds in PM2.5 are needed to develop strategies for reducing PM2.5 concentrations. This task, that builds on previous research conducted i...
Analytical Chemistry Laboratory
NASA Technical Reports Server (NTRS)
Anderson, Mark
2013-01-01
The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.
Mast, M. Alisa; Campbell, Donald H.; Ingersoll, George P.
2005-01-01
Precipitation, snowpack, and surface-water samples collected during 1995-2003 were analyzed to evaluate the effects of emission reductions at the Hayden powerplant on water chemistry in the Mount Zirkel Wilderness Area. The Hayden powerplant, one of two large coal-fired powerplants in the Yampa Valley, was retrofitted with control systems during late 1998 and 1999 to reduce emissions of sulfur dioxide and nitrogen oxide--the primary precursors of haze and acidic precipitation. The U.S. Geological Survey, in cooperation with the Colorado Department of Public Health and Environment, evaluated three water-chemistry data sets: wet-only precipitation chemistry from the National Atmospheric Deposition Program, snowpack chemistry from the Rocky Mountain snowpack network, and surface-water chemistry from a U.S. Geological Survey long-term lakes monitoring program. Concentrations and deposition rates of selected constituents were compared for the periods before and after emission reductions at the Hayden powerplant. Data collected during 1995-98 were used to represent the pre-control period, and data collected during 2000-2003 were used to represent the post-control period. Ten stations in the National Atmospheric Deposition Program were evaluated including two that were directly downwind from the Hayden powerplant (Dry Lake and Buffalo Pass) and eight that were upwind or more distant (more than 100 kilometers) from the powerplant. Precipitation amount at all 10 precipitation stations was lower in the post-control period than the pre-control period as a result of a regional drought that persisted during the post-control period. In contrast to precipitation amount, there was no consistent pattern of change in sulfate concentrations between periods, indicating that the drought did not have a concentrating effect on sulfate or that trends in regional sulfur dioxide emissions masked its influence. Sulfate concentrations increased at three stations between periods, remained the same at three stations, and decreased at four stations. The largest change in average annual sulfate concentrations occurred at the two precipitation stations downwind from the Hayden powerplant, decreasing by 3.3 microequivalents per liter at Dry Lake and by 2.2 microequivalents per liter at Buffalo Pass. Declines in annual sulfate deposition also were greater at Dry Lake (3.4 kilograms per hectare) and Buffalo Pass (3.3 kilograms per hectare) than at the other stations, which ranged from 0.2 to 1.7 kilograms per hectare. These results indicate that emission reductions at the Hayden powerplant have been a factor in declines in atmospheric deposition of sulfate downwind from the powerplant. Nitrate, ammonium, and base-cation concentrations, in contrast to sulfate, were higher in the post-control period than the pre-control period at all 10 stations, most likely due to a concentrating effect of the drought. Twenty-two snowpack sites in the Rocky Mountain snowpack network were evaluated including 4 sites that were located directly downwind from the Hayden powerplant and 18 sites that were upwind or more distant (as much as 200 kilometers) from the powerplant. The water content of the snowpack at maximum accumulation was lower in the post-control period than the pre-control period, reflecting the regional drought. Although there were small declines in snowpack sulfate concentrations at the downwind stations between the pre- and post-control periods, the difference was not statistically significant, indicating emission reductions had a weaker effect on snowpack chemistry than precipitation chemistry. Sulfate deposition decreased at all four downwind sites in the post-control period, primarily reflecting both lower water content and concentrations in the snowpack. As observed at the precipitation stations, nitrate, ammonium, and base-cation concentrations at all 22 sites were significantly higher in the post-control period than the pre-control period, reflecting d
Flow chemistry to control the synthesis of nano and microparticles for biomedical applications.
Hassan, Natalia; Oyarzun-Ampuero, Felipe; Lara, Pablo; Guerrero, Simón; Cabuil, Valérie; Abou-Hassan, Ali; Kogan, Marcelo J
2014-03-01
In this article we review the flow chemistry methodologies for the controlled synthesis of different kind of nano and microparticles for biomedical applications. Injection mechanism has emerged as new alternative for the synthesis of nanoparticles due to this strategy allows achieving superior levels of control of self-assemblies, leading to higher-ordered structures and rapid chemical reactions. Self-assembly events are strongly dependent on factors such as the local concentration of reagents, the mixing rates, and the shear forces, which can be finely tuned, as an example, in a microfluidic device. Injection methods have also proved to be optimal to elaborate microsystems comprising polymer solutions. Concretely, extrusion based methods can provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. We provide an update of synthesis of nano and microparticles such as core/shell, Janus, nanocrystals, liposomes, and biopolymeric microgels through flow chemistry, its potential bioapplications and future challenges in this field are discussed.
Multicomponent inorganic Janus particles with controlled compositions, morphologies, and dimensions.
Lyubarskaya, Yekaterina L; Shestopalov, Alexander A
2013-08-14
We report a new protocol for the preparation of shape-controlled multicomponent particles comprising metallic (Au and Ti), magnetic (Ni), and oxide (SiO2, TiO2) layers. Our method allows for a precise control over the composition, shape, and size and permits fabrication of nonsymmetrical particles, whose opposite sides can be orthogonally functionalized using well-established organosilanes and thiol chemistries. Because of their unique geometries and surface chemistries, these colloids represent ideal materials with which to study nonsymmetrical self-assembly at the meso- and microscales.
Contribution of radiation chemistry to the study of metal clusters.
Belloni, J
1998-11-01
Radiation chemistry dates from the discovery of radioactivity one century ago by H. Becquerel and P. and M. Curie. The complex phenomena induced by ionizing radiation have been explained progressively. At present, the methodology of radiation chemistry, particularly in the pulsed mode, provides a powerful means to study not only the early processes after the energy absorption, but more generally a broad diversity of chemical and biochemical reaction mechanisms. Among them, the new area of metal cluster chemistry illustrates how radiation chemistry contributed to this field in suggesting fruitful original concepts, in guiding and controlling specific syntheses, and in the detailed elaboration of the mechanisms of complex and long-unsolved processes, such as the dynamics of nucleation, electron transfer catalysis and photographic development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gussev, Maxim N.; Field, Kevin G.; Yamamoto, Yukinori
2016-06-03
The present report summarizes and discusses the preliminary results for the in-depth characterization of the modern, nuclear-grade FeCrAl alloys currently under development. The alloys were designed for enhanced radiation tolerance and weldability, and the research is currently being pursued by the Department of Energy (DOE) Nuclear Energy Enabling Technologies (NEET) program. Last year, seven candidate FeCrAl alloys with well-controlled chemistry and microstructures were designed and produced; welding was performed under well-controlled conditions. The structure and general performance of unirradiated alloys were assessed using standardized and advanced microstructural characterization techniques and mechanical testing. The primary objective is to identify the bestmore » candidate alloy, or at a minimum to identify the contributing factors that increase the weldability and radiation tolerance of FeCrAl alloys, therefore enabling future generations of FeCrAl alloys to deliver better performance parameters. This report is structured so as to describe these critical assessments of the weldability; radiation tolerance will be reported on in later reports from this program.« less
Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G
2016-06-22
Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.
Effects of iron on arsenic speciation and redox chemistry in acid mine water
Bednar, A.J.; Garbarino, J.R.; Ranville, J.F.; Wildeman, T.R.
2005-01-01
Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining-influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not always hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides deplete iron from some systems, and also affect arsenite and arsenate concentrations through sorption processes. ?? 2004 Elsevier B.V. All rights reserved.
21 CFR 862.1360 - Gamma-glutamyl transpeptidase and isoenzymes test system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1360 Gamma-glutamyl transpeptidase and isoenzymes test system. (a... alcoholic cirrhosis and primary and secondary liver tumors. (b) Classification. Class I (general controls...
CHLORINE DIOXIDE CHEMISTRY, REACTIONS, AND DISINFECTION BY-PRODUCTS
This chapter contains two main sections-the first section describes the chemistry and reactions of chlorine dioxide, and the second describes the disinfection by-products (DBPs) of chlorine dioxide and their control. A short section on Research Needs completes this chapter. The...
Controls on dripwater chemistry of Oregon Caves National Monument, northwestern United States
NASA Astrophysics Data System (ADS)
Rushdi, Ahmed I.; Ersek, Vasile; Mix, Alan C.; Clark, Peter U.
2018-02-01
Cave dripwater chemistry of Oregon Caves National Monument (OCNM) was studied, where the parameters pH, total alkalinity, calcium, magnesium, strontium, sodium and barium were analyzed at quasi-monthly intervals from 2005 to 2007. Different statistical analyses have been used to investigate the variability of the chemical parameters in the different sites in the OCNM cave system. The dripwater varies in response to seasonal changes in rainfall. The drip rates range from zero in summer to continuous flow in winter, closely following the rainfall intensity. Spatial variations of dripwater chemistry, which is nonlinearly related to dripwater discharge likely, reflect the chemical composition of bedrock and overlying soil, and the residence time of the ground water within the aquifer. The residence time of infiltrated water in bedrock cracks control the dissolution carbonate bedrock, reprecipitation of calcium carbonate and the degree of saturation of dripwater with respect to calcium carbonate minerals. Spatiotemporal fluctuations of dripwater Mg/Ca and Sr/Ca ratios are controlled by dissolution of carbonate bedrock and the degree of calcite reprecipitation in bedrock cracks. This suggests that trace elements in speleothem deposits at the OCNM may serve as paleoclimatological proxies for precipitation, if interpreted within the context of understanding local bedrock chemistry.
Chemistry with spatial control using particles and streams†
Kalinin, Yevgeniy V.; Murali, Adithya
2012-01-01
Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis. PMID:23145348
Selective host molecules obtained by dynamic adaptive chemistry.
Matache, Mihaela; Bogdan, Elena; Hădade, Niculina D
2014-02-17
Up till 20 years ago, in order to endow molecules with function there were two mainstream lines of thought. One was to rationally design the positioning of chemical functionalities within candidate molecules, followed by an iterative synthesis-optimization process. The second was the use of a "brutal force" approach of combinatorial chemistry coupled with advanced screening for function. Although both methods provided important results, "rational design" often resulted in time-consuming efforts of modeling and synthesis only to find that the candidate molecule was not performing the designed job. "Combinatorial chemistry" suffered from a fundamental limitation related to the focusing of the libraries employed, often using lead compounds that limit its scope. Dynamic constitutional chemistry has developed as a combination of the two approaches above. Through the rational use of reversible chemical bonds together with a large plethora of precursor libraries, one is now able to build functional structures, ranging from quite simple molecules up to large polymeric structures. Thus, by introduction of the dynamic component within the molecular recognition processes, a new perspective of deciphering the world of the molecular events has aroused together with a new field of chemistry. Since its birth dynamic constitutional chemistry has continuously gained attention, in particular due to its ability to easily create from scratch outstanding molecular structures as well as the addition of adaptive features. The fundamental concepts defining the dynamic constitutional chemistry have been continuously extended to currently place it at the intersection between the supramolecular chemistry and newly defined adaptive chemistry, a pivotal feature towards evolutive chemistry. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The changing role of the historiography of chemistry in continental Europe since 1800.
Beretta, Marco
2011-11-01
Throughout the nineteenth century and the first half of the twentieth century, many distinguished chemists attributed an important, at times crucial, role to the historical narrative. When the first professional histories were published during the nineteenth century, their role was intimately interwoven with the identity of chemistry, a science that in spite (or because) of its rapidly growing importance in the industrialisation of Europe, did not have the same reputation as either the exact sciences or the medical-biological disciplines. With the works by Berthelot, Lippmann, and Mieli, the history of chemistry focused on its rich and varied documentary sources. The histories of chemistry produced during this period set the ground for a variety of approaches that reflect, to a large degree, the main currents of old and recent history of science. Moreover, historians of chemistry, both continental and Anglo-American, had a prominent role in establishing the history of science as an independent discipline.
Cellular uptake: lessons from supramolecular organic chemistry.
Gasparini, Giulio; Bang, Eun-Kyoung; Montenegro, Javier; Matile, Stefan
2015-07-04
The objective of this Feature Article is to reflect on the importance of established and emerging principles of supramolecular organic chemistry to address one of the most persistent problems in life sciences. The main topic is dynamic covalent chemistry on cell surfaces, particularly disulfide exchange for thiol-mediated uptake. Examples of boronate and hydrazone exchange are added for contrast, comparison and completion. Of equal importance are the discussions of proximity effects in polyions and counterion hopping, and more recent highlights on ring tension and ion pair-π interactions. These lessons from supramolecular organic chemistry apply to cell-penetrating peptides, particularly the origin of "arginine magic" and the "pyrenebutyrate trick," and the currently emerging complementary "disulfide magic" with cell-penetrating poly(disulfide)s. They further extend to the voltage gating of neuronal potassium channels, gene transfection, and the delivery of siRNA. The collected examples illustrate that the input from conceptually innovative chemistry is essential to address the true challenges in biology beyond incremental progress and random screening.
Teaching Chemistry Lab Safety through Comics
NASA Astrophysics Data System (ADS)
di Raddo, Pasquale
2006-04-01
As a means for raising students' interest in aspects pertaining to chemistry lab safety, this article presents a novel approach to teaching this important subject. Comic book lab scenes that involve fictional characters familiar to many students are presented and discussed as to the safety concerns represented in those images. These are discussed in a safety prelab session. For the sake of comparison, students are then shown images taken from current chemistry journals of safety-conscious contemporary chemists at work in their labs. Finally the need to adhere to copyright regulations for the use of the images is discussed so as to increase students' awareness of academic honesty and copyright issues.
An approach to quality and performance control in a computer-assisted clinical chemistry laboratory.
Undrill, P E; Frazer, S C
1979-01-01
A locally developed, computer-based clinical chemistry laboratory system has been in operation since 1970. This utilises a Digital Equipment Co Ltd PDP 12 and an interconnected PDP 8/F computer. Details are presented of the performance and quality control techniques incorporated into the system. Laboratory performance is assessed through analysis of results from fixed-level control sera as well as from cumulative sum methods. At a simple level the presentation may be considered purely indicative, while at a more sophisticated level statistical concepts have been introduced to aid the laboratory controller in decision-making processes. PMID:438340
NASA Astrophysics Data System (ADS)
Gutwill-Wise, Joshua P.
2001-05-01
This study evaluates new materials, "modules", for teaching introductory chemistry courses. The modules, under development by faculty from two NSF-funded consortia, employ real-world contexts and an interactive class format to foster conceptual understanding, scientific thinking, and improved attitudes toward science. The evaluation studies were conducted at two institutions, a small college and a large university. The experimental design at each school compared students in a course section taught with modules to those in a section that used a textbook and lecture format. At both schools, students in the modular section outperformed the control group on conceptual problems in chemistry and on scientific thinking problems. Modular section students at the large university also outperformed their peers on the first midterm exam in the subsequent organic chemistry course. Regarding attitudes, the modular section students were more positive about chemistry and the course than their peers in the control section at the small college. However, at the large school, the opposite attitudinal pattern was found. An analysis of informal focus group data provides insight into the negative attitudes in the modular section of the large course. Possible remedies for the issues raised are discussed.
Anton, Stephen D.; Embry, Chelsea; Marsiske, Michael; Lud, Xiaomin; Doss, Hani; Leeuwenburgh, Christiaan; Manini, Todd M.
2014-01-01
Resveratrol has been found to have potent antioxidant, anti-inflammatory, and anticarcinogenic effects. The safety and efficacy of resveratrol supplementation in older adults are currently unknown. We conducted a double-blind, randomized, placebo-controlled trial to examine the safety and metabolic outcomes in 32 overweight, older adults (mean age, 73 ± 7 years). Participants were randomized into one of three treatment groups: (1) placebo, (2) moderate dose resveratrol (300 mg/day), and (3) high dose resveratrol (1000 mg/day). Both resveratrol and placebo were orally ingested in capsule form twice daily for 90 days. Blood chemistry values remained within the normal range, and there were no significant differences in the number of participants reporting adverse events across conditions. Compared to placebo, glucose levels were significantly lower at post-treatment among participants randomized to both resveratrol conditions, with and without adjustment for the corresponding baseline values (ps < 0.05). Glucose values of participants in the treatment groups, however, were not significantly different from baseline levels. These findings suggest that short-term resveratrol supplementation at doses of 300 mg/day and 1000 mg/day does not adversely affect blood chemistries and is well tolerated in overweight, older individuals. These findings support the study of resveratrol for improving cardio-metabolic health in older adults in larger clinical trials. PMID:24866496
Pyrrolizidine Alkaloids: Chemistry, Pharmacology, Toxicology and Food Safety.
Moreira, Rute; Pereira, David M; Valentão, Patrícia; Andrade, Paula B
2018-06-05
Pyrrolizidine alkaloids (PA) are widely distributed in plants throughout the world, frequently in species relevant for human consumption. Apart from the toxicity that these molecules can cause in humans and livestock, PA are also known for their wide range of pharmacological properties, which can be exploited in drug discovery programs. In this work we review the current body of knowledge regarding the chemistry, toxicology, pharmacology and food safety of PA.
Succes of foraminiferal calcification mechanisms depend on ocean chemistry
NASA Astrophysics Data System (ADS)
van Dijk, I. V.; de Nooijer, L. J.; Hart, M.; Reichart, G. J.
2014-12-01
Although the relationship between Phanerozoic changes in seawater Mg/Ca and the evolutionary history of many marine calcifyers has been analyzed, the response of foraminifera to changes in Mg/Casw is only sparsely investigated. Geological longevity, areal distribution and importance in the global carbon cycle, however, make foraminifera particularly suitable to study the interplay between seawater chemistry and biogenic mineralogy. We assess global foraminifera abundances in the geological record from fossil species occurrences in the Paleobiology DataBase (PaleoDB; www.paleodb.org). Here, we present an analysis of the distribution of major groups of foraminifera through the Phanerozoic by comparing dominance of taxa producing aragonite or (low- and high-Mg) calcite in relation to changes in Mg/Casw and mass marine extinction events (P/T, T/J and K/Pg). This allows relating the effect of ocean chemistry to the relative success of foraminifera with different calcification strategies. We show for the first time that the success of foraminifera with different calcification mechanisms (i.e. aragonite versus calcite producers) is governed by Mg/Casw, potentially making foraminifera with unfavored mineralogy more vulnerable to major environmental perturbations. Furthermore, we suggest that planktic foraminifera, which are currently calcifying in a period with unfavorable sea water chemistry, might be more sensitive to on-going ocean acidification and associated environmental perturbations than currently assumed.
Powell, Michael L; Bowler, Frank R; Martinez, Aurore J; Greenwood, Catherine J; Armes, Niall; Piepenburg, Olaf
2018-02-15
Rapid, cost-effective and sensitive detection of nucleic acids has the ability to improve upon current practices employed for pathogen detection in diagnosis of infectious disease and food testing. Furthermore, if assay complexity can be reduced, nucleic acid amplification tests could be deployed in resource-limited and home use scenarios. In this study, we developed a novel Fpg (Formamidopyrimidine DNA glycosylase) probe chemistry, which allows lateral flow detection of amplification in undiluted recombinase polymerase amplification (RPA) reactions. The prototype nucleic acid lateral flow chemistry was applied to a human genomic target (rs1207445), Campylobacter jejuni 16S rDNA and two genetic markers of the important food pathogen E. coli O157:H7. All four assays have an analytical sensitivity between 10 and 100 copies DNA per amplification. Furthermore, the assay is performed with fewer hands-on steps than using the current RPA Nfo lateral flow method as dilution of amplicon is not required for lateral flow analysis. Due to the simplicity of the workflow, we believe that the lateral flow chemistry for direct detection could be readily adapted to a cost-effective single-use consumable, ideal for use in non-laboratory settings. Copyright © 2017. Published by Elsevier Inc.
Nitrogenase Cofactor: Inspiration for Model Chemistry.
Djurdjevic, Ivana; Einsle, Oliver; Decamps, Laure
2017-07-04
The cofactor of nitrogenase is the largest and most intricate metal cluster known in nature. Its reactivity, mode of action and even the precise binding site of substrate remain a matter of debate. For decades, synthetic chemists have taken inspiration from the exceptional structural, electronic and catalytic features of the cofactor and have tried to either mimic the unique topology of the entire site, or to extract its functional principles and build them into novel catalysts that achieve the same-or very similar-astounding transformations. We review some of the available model chemistry as it represents the various approaches that have been taken from studying the cofactor, to eventually summarize the current state of knowledge on catalysis by nitrogenase and highlight the mutually beneficial role of model chemistry and enzymology in bioinorganic chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chemical Education Research: Improving Chemistry Learning
NASA Astrophysics Data System (ADS)
Dudley Herron, J.; Nurrenbern, Susan C.
1999-10-01
Chemical education research is the systematic investigation of learning grounded in a theoretical foundation that focuses on understanding and improving learning of chemistry. This article reviews many activities, changes, and accomplishments that have taken place in this area of scholarly activity despite its relatively recent emergence as a research area. The article describes how the two predominant broad perspectives of learning, behaviorism and constructivism, have shaped and influenced chemical education research design, analysis, and interpretation during the 1900s. Selected research studies illustrate the range of research design strategies and results that have contributed to an increased understanding of learning in chemistry. The article also provides a perspective of current and continuing challenges that researchers in this area face as they strive to bridge the gap between chemistry and education - disciplines with differing theoretical bases and research paradigms.
Andreae is New Editor of Global Biogeochemical Cycles
NASA Astrophysics Data System (ADS)
Andreae, Meinrat O.
2004-10-01
As the incoming editor of Global Biogeochemical Cycles, I would like to introduce myself and my ideas for the journal to Eos readers and to current and potential GBC authors. I've had a somewhat ``roaming'' scientific evolution, coming from ``straight'' chemistry through hard-rock geochemistry to chemical oceanography, the field in which I did my Ph.D. I taught marine chemistry at Florida State University for a number of years, and developed an interest in ocean/atmosphere interactions and atmospheric chemistry. In 1987 I took on my present job at the Max Planck Institute for Chemistry, in Mainz, Germany, and, after leaving the seacoast, my interests shifted to interactions between the terrestrial biosphere and atmosphere, including the role of vegetation fires. My present focus is on the role of biogenic aerosols and biomass smoke in regulating cloud properties and influencing climate.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.
2000-01-01
Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summaries 1997- 1999. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1999 An Assessment Report.
ERIC Educational Resources Information Center
Wanke, Randall; Stauffer, Jennifer
2007-01-01
An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.
Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.
ERIC Educational Resources Information Center
Ebisuzaki, Y.; Sanborn, W. B.
1985-01-01
Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)
Major uncertainties remain in our ability to identify the key reactions and primary oxidation products of volatile hydrocarbons that contribute to ozone formation in the troposphere. To reduce these uncertainties, computational chemistry, mechanistic and process analysis techniqu...
Flynn, Brendan T; Oleksak, Richard P; Thevuthasan, Suntharampillai; Herman, Gregory S
2018-01-31
A method to understand the role of interfacial chemistry on the modulation of Schottky barrier heights for platinum and amorphous indium gallium zinc oxide (a-IGZO) interfaces is demonstrated through thermal processing and background ambient pressure control. In situ X-ray photoelectron spectroscopy was used to characterize the interfacial chemistries that modulate barrier heights in this system. The primary changes were a significant chemical reduction of indium, from In 3+ to In 0 , that occurs during deposition of Pt on to the a-IGZO surface in ultrahigh vacuum. Postannealing and controlling the background ambient O 2 pressure allows further tuning of the reduction of indium and the corresponding Schottky barrier heights from 0.17 to 0.77 eV. Understanding the detailed interfacial chemistries at Pt/a-IGZO interfaces may allow for improved electronic device performance, including Schottky diodes, memristors, and metal-semiconductor field-effect transistors.
NASA Astrophysics Data System (ADS)
Shibley, Ivan A., Jr.; Zimmaro, Dawn M.
2002-06-01
This study was designed to determine the effect of collaborative learning on student attitudes and performance in an introductory chemistry laboratory. Two sections per semester for three semesters were randomly designated as either a control section or an experimental section. Students in the control section performed most labs individually, while those in the experimental section performed all labs in groups of four. Both quantitative and qualitative measures were used to evaluate the impact of collaborative learning on student achievement and attitudes. Grades did not differ between the two sections, indicating that collaborative learning did not affect short-term student achievement. Students seemed to develop a more positive attitude about the laboratory and about chemistry in the collaborative learning sections as judged from their classroom evaluations of the teacher, the course, and the collaborative learning experience. The use of collaborative learning in the laboratory as described in this paper therefore may provide a means of improving student attitudes toward chemistry.
ENVIRONMENTAL MASS SPECTROMETRY: EMERGING CONTAMINANTS AND CURRENT ISSUES, 2006
This biennial review covers developments in Environmental Mass Spectrometry over the period of 2004-2005. A few significant references that appeared between January and February 2006 are also included. Analytical Chemistry's current policy is to limit reviews to include 100-200 s...
WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES, 2005 REVIEW
This biennial review covers developments in Water Analysis over the period of 2003-2004. A few significant references that appeared between January and February 2005 are also included. Analytical Chemistry's current policy is to limit reviews to include 100-200 significant refe...
WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES: 2007 REVIEW
This biennial review covers developments in Water Analysis over the period of 2005-2006. A few significant references that appeared between January and March 2007 are also included. Analytical Chemistry's current policy is to limit reviews to include 200-250 significant referen...
NASA Astrophysics Data System (ADS)
Vilches, Amparo; Gil-Pérez, Daniel
2013-07-01
The International Union of Pure and Applied Chemistry (IUPAC) and UNESCO have proposed that the International Year of Chemistry, 2011, should make a strong educational contribution to the goals of the UN Decade of Education for Sustainable Development. This emphasis is absolutely necessary because education for sustainability remains practically absent nowadays in many high school and university chemistry curricula all over the world. Behind this lack of attention to the current situation of planetary emergency, there are several obstacles that we analyse in this paper. We firstly discuss an extended conception of "pure Chemistry"—object of chemists' research and teaching- the object of which would just be to increase knowledge: moral problems should only appear in connection to the use of the applications of science by, generally, nonscientists. This belief that genuine scientific activity lies beyond the reach of moral judgment is logically transferred to teaching, voluntarily limited to the transmission of the corpus of knowledge. Consequently, the challenges of sustainable development, with so many social implications, are put aside. After questioning this and other obstacles, we develop the possible contribution of chemistry and chemical education to the construction of a sustainable future, in accordance with the goals of the International Year of Chemistry.
NASA Astrophysics Data System (ADS)
Venables, Jeffrey M.
The literature on microcomputer-based laboratories (MBL) lacks quantitative studies that measure the effect of MBL on student achievement. The purpose of this study was to investigate the effect of MBL systems on the achievement of high school chemistry students. The first research question examined the effect of MBL systems on student achievement in high school chemistry laboratories. The second question analyzed the effect of MBL systems on the academic achievement of students of different genders, ethnicities, and socioeconomic backgrounds. This quasi-experimental quantitative research study evaluated the effects of MBL on student achievement in high school chemistry. The sample consisted of 124 college preparatory chemistry students at two high schools in a South Carolina school district. There were 42 participants in the experimental group and 82 participants in the control group. Both experimental and groups completed a pre- and post-test with MBL being the independent variable. The mean difference score for the experimental group was compared to that of the control group using an independent-measures t test and an analysis of variance. For the second research question, results were analyzed using a two-factor analysis of variance. Participant scores were broken down by gender, ethnicity, and socioeconomic status in order to identify potential differences. The results revealed no significant differences between the experimental and control groups, and no significant differences in effects of MBL on different segments of the population. Future studies should examine students using MBL for longer durations than one unit of study. As society continues to make technological advances, the effective assessment and implementation of technology resources for the classroom are becoming increasingly important.
NASA Technical Reports Server (NTRS)
Kumar, A.; Graves, R. A., Jr.; Weilmuenster, K. J.
1980-01-01
A vectorized code, EQUIL, was developed for calculating the equilibrium chemistry of a reacting gas mixture on the Control Data STAR-100 computer. The code provides species mole fractions, mass fractions, and thermodynamic and transport properties of the mixture for given temperature, pressure, and elemental mass fractions. The code is set up for the electrons H, He, C, O, N system of elements. In all, 24 chemical species are included.
Preparation and measurement methods for studying nanoparticle aggregate surface chemistry.
Szakal, Christopher; McCarthy, James A; Ugelow, Melissa S; Konicek, Andrew R; Louis, Kacie; Yezer, Benjamin; Herzing, Andrew A; Hamers, Robert J; Holbrook, R David
2012-07-01
Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files. We present differences in mass spectral peak ratios for bare TiO(2) NPs compared to NPs mixed separately with natural organic matter (NOM) or pond water. The results suggest that subtle changes in the local environment can alter the surface chemistry of TiO(2) NPs, as monitored by Ti(+)/TiO(+) and Ti(+)/C(3)H(5)(+) peak ratios. The subtle changes in the absolute surface chemistry of NP aggregates vs. that of the subsurface are explored. It is envisioned that the methods developed herein can be adapted for monitoring the surface chemistries of a variety of engineered NPs obtained from diverse natural environments.
Diers, Anne R.; Keszler, Agnes; Hogg, Neil
2015-01-01
BACKGROUND S-Nitrosothiols have been recognized as biologically-relevant products of nitric oxide that are involved in many of the diverse activities of this free radical. SCOPE OF REVIEW This review serves to discuss current methods for the detection and analysis of protein S-nitrosothiols. The major methods of S-nitrosothiol detection include chemiluminescence-based methods and switch-based methods, each of which comes in various flavors with advantages and caveats. MAJOR CONCLUSIONS The detection of S-nitrosothiols is challenging and prone to many artifacts. Accurate measurements require an understanding of the underlying chemistry of the methods involved and the use of appropriate controls. GENERAL SIGNIFICANCE Nothing is more important to a field of research than robust methodology that is generally trusted. The field of S-Nitrosation has developed such methods but, as S-nitrosothiols are easy to introduce as artifacts, it is vital that current users learn from the lessons of the past. PMID:23988402
NASA Astrophysics Data System (ADS)
Scholin, C.; Preston, C.; Harris, A.; Birch, J.; Marin, R.; Jensen, S.; Roman, B.; Everlove, C.; Makarewicz, A.; Riot, V.; Hadley, D.; Benett, W.; Dzenitis, J.
2008-12-01
An internet search using the phrase "ecogenomic sensor" will return numerous references that speak broadly to the idea of detecting molecular markers indicative of specific organisms, genes or other biomarkers within an environmental context. However, a strict and unified definition of "ecogenomic sensor" is lacking and the phrase may be used for laboratory-based tools and techniques as well as semi or fully autonomous systems that can be deployed outside of laboratory. We are exploring development of an ecogenomic sensor from the perspective of a field-portable device applied towards oceanographic research and water quality monitoring. The device is known as the Environmental Sample Processor, or ESP. The ESP employs wet chemistry molecular analytical techniques to autonomously assess the presence and abundance of specific organisms, their genes and/or metabolites in near real-time. Current detection chemistries rely on low- density DNA probe and protein arrays. This presentation will emphasize results from 2007-8 field trials when the ESP was moored in Monterey Bay, CA, as well as current engineering activities for improving analytical capacity of the instrument. Changes in microbial community structure at the rRNA level were observed remotely in accordance with changing chemical and physical oceanographic conditions. Current developments include incorporation of a reusable solid phase extraction column for purifying nucleic acids and a 4-channel real-time PCR module. Users can configure this system to support a variety of PCR master mixes, primer/probe combinations and control templates. An update on progress towards fielding a PCR- enabled ESP will be given along with an outline of plans for its use in coastal and oligotrophic oceanic regimes.
KINETIC MODELING OF NOX FORMATION AND DESTRUCTION AND COMBUSTIBLES BURNOUT
The report describes a model of the gas-phase chemistry involved in the combustion of simple hydrocarbon fuels and the interconversion of fixed nitrogen species. One focus of the work was on modeling the chemistry involved in reburning and other advanced NOx control strategies. A...
Influence of fungicides on gas exchange of pecan foliage
USDA-ARS?s Scientific Manuscript database
There are several fungicide chemistries used for disease control on pecan (Carya illinoinensis), but there is little or no knowledge of subtle short- or long-term side-effects of these chemistries on host physiological processes, including photosynthesis (Pn). This study quantifies the impact of se...
Cooperative Education. Cosmetic Science: A Career Option for Majors in Chemistry.
ERIC Educational Resources Information Center
Lichtin, J. Leon; Radd, Billie L.
1987-01-01
Discusses the growing field of cosmetic science as a career option for chemistry majors. Outlines the design, formulation, manufacture, stabilization, evaluation, control management, safety, mechanism of action, and claim substantiation of cosmetic products. Provides information on the concerns and professional responsibilities of the cosmetic…
Lin, Ying-Hsuan; Zhang, Haofei; Pye, Havala O. T.; Zhang, Zhenfa; Marth, Wendy J.; Park, Sarah; Arashiro, Maiko; Cui, Tianqu; Budisulistiorini, Sri Hapsari; Sexton, Kenneth G.; Vizuete, William; Xie, Ying; Luecken, Deborah J.; Piletic, Ivan R.; Edney, Edward O.; Bartolotti, Libero J.; Gold, Avram; Surratt, Jason D.
2013-01-01
Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NOx = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NOx. PMID:23553832
Lin, Ying-Hsuan; Zhang, Haofei; Pye, Havala O T; Zhang, Zhenfa; Marth, Wendy J; Park, Sarah; Arashiro, Maiko; Cui, Tianqu; Budisulistiorini, Sri Hapsari; Sexton, Kenneth G; Vizuete, William; Xie, Ying; Luecken, Deborah J; Piletic, Ivan R; Edney, Edward O; Bartolotti, Libero J; Gold, Avram; Surratt, Jason D
2013-04-23
Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NO(x) = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NO(x).
ENVIRONMENTAL MASS SPECTROMETRY: EMERGING CONTAMINANTS AND CURRENT ISSUES, 2004 REVIEW
This review covers developments in environmental mass spectrometry over the period of 2002-2003. A few significant references that appeared between January and March 2004 are also included. This review is in keeping with a current approach of Analytical Chemistry to include onl...
ENVIRONMENTAL CHEMISTRY: EMERGING CONTAMINANTS AND CURRENT ISSUES
Much has been achieved in the way of environmental protection over the last 30 years. However, as we learn more, new concerns arise. This presentation will discuss chemical and microbial contaminants that the U.S. EPA and other agencies are currently concerned about. In this gr...
Reacting Chemistry Based Burn Model for Explosive Hydrocodes
NASA Astrophysics Data System (ADS)
Schwaab, Matthew; Greendyke, Robert; Steward, Bryan
2017-06-01
Currently, in hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of an equilibrium Arrhenius rate reacting chemistry model in place of these empirically derived burn models will improve the accuracy for these computational codes. Such models have been successfully used in codes simulating the flow physics around hypersonic vehicles. A reacting chemistry model of this form was developed for the cyclic nitramine RDX by the Naval Research Laboratory (NRL). Initial implementation of this chemistry based burn model has been conducted on the Air Force Research Laboratory's MPEXS multi-phase continuum hydrocode. In its present form, the burn rate is based on the destruction rate of RDX from NRL's chemistry model. Early results using the chemistry based burn model show promise in capturing deflagration to detonation features more accurately in continuum hydrocodes than previously achieved using empirically derived burn models.
NASA Astrophysics Data System (ADS)
Zoller, Uri
2005-08-01
Worldwide, the essence of the current reform in science education is a paradigm shift from algorithmic, lower-order cognitive skills (LOCS) teaching to higher-order cognitive skills (HOCS) learning. In the context of education in environmental chemistry (EEC), the ultimate goal is to educate students to be science technology environment society (STES)-literate, capable of evaluative thinking, decision making, problem solving and taking responsible action accordingly. Educators need to translate this goal into effective courses that can be implemented: this includes developing teaching strategies and assessment methodologies that are consonant with the goal of HOCS learning. An international workshop—"Environmental Chemistry Education in Europe: Setting the Agenda"—yielded two main recommendations for those undertaking educational reform in science education, particularly to promote meaningful EEC. The first recommendation concerns integration of environmental sciences into core chemistry courses as well as the development and implementation of HOCS-promoting teaching strategies and assessment methodologies in chemical education. The second emphasizes the development of students' HOCS for transfer, followed by performance assessment of HOCS. This requires changing the way environmental chemistry is typically taught, moving from a narrowly focused approach (applied analytical, ecotoxicological, or environmental engineering chemistry) to an interdisciplinary and multidisciplinary approach.
Bioinorganic Life and Neural Activity: Toward a Chemistry of Consciousness?
Chang, Christopher J
2017-03-21
Identifying what elements are required for neural activity as potential path toward consciousness, which represents life with the state or quality of awareness, is a "Holy Grail" of chemistry. As life itself arises from coordinated interactions between elements across the periodic table, the majority of which are metals, new approaches for analysis, binding, and control of these primary chemical entities can help enrich our understanding of inorganic chemistry in living systems in a context that is both universal and personal.
Seisenbaeva, Gulaim A; Kessler, Vadim G
2014-06-21
This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.
NASA Astrophysics Data System (ADS)
Long, Yoann; Charbouillot, Tiffany; Brigante, Marcello; Mailhot, Gilles; Delort, Anne-Marie; Chaumerliac, Nadine; Deguillaume, Laurent
2013-10-01
Currently, cloud chemistry models are including more detailed and explicit multiphase mechanisms based on laboratory experiments that determine such values as kinetic constants, stability constants of complexes and hydration constants. However, these models are still subject to many uncertainties related to the aqueous chemical mechanism they used. Particularly, the role of oxidants such as iron and hydrogen peroxide in the oxidative capacity of the cloud aqueous phase has typically never been validated against laboratory experimental data. To fill this gap, we adapted the M2C2 model (Model of Multiphase Cloud Chemistry) to simulate irradiation experiments on synthetic aqueous solutions under controlled conditions (e.g., pH, temperature, light intensity) and for actual cloud water samples. Various chemical compounds that purportedly contribute to the oxidative budget in cloud water (i.e., iron, oxidants, such as hydrogen peroxide: H2O2) were considered. Organic compounds (oxalic, formic and acetic acids) were taken into account as target species because they have the potential to form iron complexes and are good indicators of the oxidative capacity of the cloud aqueous phase via their oxidation in this medium. The range of concentrations for all of the chemical compounds evaluated was representative of in situ measurements. Numerical outputs were compared with experimental data that consisted of a time evolution of the concentrations of the target species. The chemical mechanism in the model describing the “oxidative engine” of the HxOy/iron (HxOy = H2O2, HO2rad /O2rad - and HOrad ) chemical system was consistent with laboratory measurements. Thus, the degradation of the carboxylic acids evaluated was closely reproduced by the model. However, photolysis of the Fe(C2O4)+ complex needs to be considered in cloud chemistry models for polluted conditions (i.e., acidic pH) to correctly reproduce oxalic acid degradation. We also show that iron and formic acid lead to a stable complex whose photoreactivity has currently not been investigated. The updated aqueous chemical mechanism was compared with data from irradiation experiments using natural cloud water. The new reactions considered in the model (i.e., iron complex formation with oxalic and formic acids) correctly reproduced the experimental observations.
Brahmachari, Goutam
2016-02-01
This account summarizes our recent efforts in designing a good number of important organic transformations leading to the synthesis of biologically relevant compounds at room temperature and pressure. Currently, the concept of green chemistry is globally acclaimed and has already advanced quite significantly to emerge as a distinct branch of chemical sciences. Among the principles of green chemistry, one principle is dedicated to the "design of energy efficiency" - that is, to develop synthetic strategies that require less or the minimum amount of energy to carry out a specific reaction with optimum productivity - and the most effective way to save energy is to develop strategies/protocols that are capable enough to carry out the transformations at ambient temperature! As part of on-going developments in green synthetic strategies, the design of reactions under ambient conditions coupled with other green aspects is, thus, an area of current interest. The concept of developing reaction strategies at room temperature and pressure is now an emerging field of research in organic chemistry and is progressing steadily. This account is aimed to offer an overview of our recent research works directly related to this particular field of interest, and highlights the green chemistry practice leading to carbon-carbon and carbon-heteroatom bond-forming reactions of topical significance. Green synthetic routes to a variety of biologically relevant organic molecules (heterocyclic, heteroaromatic, alicyclic, acyclic, etc.) at room temperature and pressure are discussed. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Kiige, Mwangi James; Atina, James Onywoki
2016-01-01
The changeover of the Kenyan system of education from the 7-4-2-3 to the current 8-4-4 in 1984 made science subjects (Biology, Chemistry and Physics) compulsory to all students up to form two at the secondary school level. This meant increased numbers of students in one class at a time attending the science subjects, which may compromise quality.…
Determinants of exposure to chemical pollutants in wet X-ray film processing in Iran.
Kakooei, Hossein; Ardakani, Mehdi B; Sadighi, Alireza
2007-07-15
The aim of the current study was to measure glutaraldehyde, acetic acid and sulfur dioxide and levels inside wet x-ray processing areas in a developing country and comparing data with those in developed countries. Forty-five radiographers from 10 educational hospitals affiliated to the Tehran University of Medical Sciences (TUMS) in Tehran, Iran participated in this descriptive-analytical study. Exposure to glutaraldehyde (a constituent of developer chemistry), acetic acid (a constituent of fixer chemistry) and sulfur dioxide (a byproduct of sulfites present in both developer and fixer solutions) was measured in all participants as well as area exposure. Average full-shift exposure to glutaraldehyde, acetic acid and sulfur dioxide were 0.0018, 2.65 and 1.64 mg m(-1), respectively. The results showed that the TUMS radiographers full-shift exposures are generally lower than the American Conference of Governmental Industrial Hygienists (ACGIH) recommended levels. The concentration of glutaraldehyde collected by area sampling (darkroom) was almost five times (0.0104 mg m(-3)) greater than taken by personal sampling. Exposure to the chemical pollutants in the currents study were generally higher than in developed countries. Identification of these key exposure determinants is useful in targeting exposure evaluation and controls to reduce developer and fixer chemicals exposures in the radiology departments. Employing of a digital imaging system that do not involve wet x-ray processing of photographic film would be a useful device for radiographers protection.
Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography
Morris, Michael A.
2017-01-01
The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs) and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP) feature patterning. An elegant route is demonstrated using directed self-assembly (DSA) of BCPs for the fabrication of aligned tungsten trioxide (WO3) nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL) silsesquioxane (SSQ)-based trenches were utilized in order to align a cylinder forming poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) BCP soft template. We outline WO3 nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm) contacted WO3 nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance. PMID:28973987
Creating Active Device Materials for Nanoelectronics Using Block Copolymer Lithography.
Cummins, Cian; Bell, Alan P; Morris, Michael A
2017-09-30
The prolonged and aggressive nature of scaling to augment the performance of silicon integrated circuits (ICs) and the technical challenges and costs associated with this has led to the study of alternative materials that can use processing schemes analogous to semiconductor manufacturing. We examine the status of recent efforts to develop active device elements using nontraditional lithography in this article, with a specific focus on block copolymer (BCP) feature patterning. An elegant route is demonstrated using directed self-assembly (DSA) of BCPs for the fabrication of aligned tungsten trioxide (WO₃) nanowires towards nanoelectronic device application. The strategy described avoids conventional lithography practices such as optical patterning as well as repeated etching and deposition protocols and opens up a new approach for device development. Nanoimprint lithography (NIL) silsesquioxane (SSQ)-based trenches were utilized in order to align a cylinder forming poly(styrene)- block -poly(4-vinylpyridine) (PS- b -P4VP) BCP soft template. We outline WO₃ nanowire fabrication using a spin-on process and the symmetric current-voltage characteristics of the resulting Ti/Au (5 nm/45 nm) contacted WO₃ nanowires. The results highlight the simplicity of a solution-based approach that allows creating active device elements and controlling the chemistry of specific self-assembling building blocks. The process enables one to dictate nanoscale chemistry with an unprecedented level of sophistication, forging the way for next-generation nanoelectronic devices. We lastly outline views and future research studies towards improving the current platform to achieve the desired device performance.
Using Computer Simulations in Chemistry Problem Solving
ERIC Educational Resources Information Center
Avramiotis, Spyridon; Tsaparlis, Georgios
2013-01-01
This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…
Conceptual Questions and Lack of Formal Reasoning: Are They Mutually Exclusive?
ERIC Educational Resources Information Center
Igaz, Csaba; Proksa, Miroslav
2012-01-01
Using specially designed conceptual question pairs, 9th grade students were tested on tasks (presented as experimental situations in pictorial form) that involved controlling the variables' scheme of formal reasoning. The question topics focused on these three chemical contexts: chemistry in everyday life, chemistry without formal concepts, and…
Parameterizations of interactions of polar multifunctional organic oxygenates in PM2.5 must be included in aerosol chemistry models for evaluating control strategies for reducing ambient concentrations of PM2.5 compounds. Vapor pressures and activity coefficients of these compo...
Using Cooperative Learning to Teach Chemistry: A Meta-Analytic Review
ERIC Educational Resources Information Center
Warfa, Abdi-Rizak M.
2016-01-01
A meta-analysis of recent quantitative studies that examine the effects of cooperative learning (CL) on achievement outcomes in chemistry is presented. Findings from 25 chemical education studies involving 3985 participants (N[subscript treatment] = 1,845; N[subscript control] = 2,140) and published since 2001 show positive association between…
NASA Technical Reports Server (NTRS)
Chin, Gordon
2011-01-01
Vesper conducts a focused investigation of the chemistry and dynamics of the middle atmosphere of our sister planet- from the base of the global cloud cover to the lower thermosphere. The middle atmosphere controls the stability of the Venus climate system. Vesper determines what processes maintain the atmospheric chemical stability, cause observed variability of chemical composition, control the escape of water, and drive the extreme super-rotation. The Vesper science investigation provides a unique perspective on the Earth environment due to the similarities in the middle atmosphere processes of both Venus and the Earth. Understanding key distinctions and similarities between Venus and Earth will increase our knowledge of how terrestrial planets evolve along different paths from nearly identical initial conditions.
Second-generation difluorinated cyclooctynes for copper-free click chemistry.
Codelli, Julian A; Baskin, Jeremy M; Agard, Nicholas J; Bertozzi, Carolyn R
2008-08-27
The 1,3-dipolar cycloaddition of azides and activated alkynes has been used for site-selective labeling of biomolecules in vitro and in vivo. While copper catalysis has been widely employed to activate terminal alkynes for [3 + 2] cycloaddition, this method, often termed "click chemistry", is currently incompatible with living systems because of the toxicity of the metal. We recently reported a difluorinated cyclooctyne (DIFO) reagent that rapidly reacts with azides in living cells without the need for copper catalysis. Here we report a novel class of DIFO reagents for copper-free click chemistry that are considerably more synthetically tractable. The new analogues maintained the same elevated rates of [3 + 2] cycloaddition as the parent compound and were used for imaging glycans on live cells. These second-generation DIFO reagents should expand the use of copper-free click chemistry in the hands of biologists.
Chemical education experiences from the English language learner perspective
NASA Astrophysics Data System (ADS)
Flores, Annette
2011-12-01
The Rio Grande Valley (RGV) is a region populated by Spanish-speaking immigrants and their descendants producing a large English Language Learner (ELL) student population. ELLs have historically had low literacy rates and achievement levels when compared to their counterparts. In order to address this achievement gap, previous research efforts and curriculum interventions have focused on language acquisition as being the determining factor in ELL education, with little attention given to academic content acquisition. More current research efforts have transitioned into English language acquisition through academic content instruction; this present research study specifically focuses on ELL experiences in chemistry. Participants were high school chemistry students who identified as ELL or had recently exited out of ELL status. Students were interviewed to identify factors that attributed to their experiences in chemistry. Findings indicate code-switching as a key to learning chemistry in English but also the deterrent in English language acquisition.
NOx Binding and Dissociation: Enhanced Ferroelectric Surface Chemistry by Catalytic Monolayers
NASA Astrophysics Data System (ADS)
Kakekhani, Arvin; Ismail-Beigi, Sohrab
2013-03-01
NOx molecules are regulated air pollutants produced during automotive combustion. As part of an effort to design viable catalysts for NOx decomposition operating at higher temperatures that would allow for improved fuel efficiency, we examine NOx chemistry on ferroelectric perovskite surfaces. Changing the direction of ferroelectric polarization can modify surface electronic properties and may lead to switchable surface chemistry. Here, we describe our recent work on potentially enhanced surface chemistry using catalytic RuO2 monolayers on perovskite ferroelectric substrates. In addition to thermodynamic stabilization of the RuO2 layer, we present results on the polarization-dependent binding of NO, O2, N2, and atomic O and N. We present results showing that one key problem with current catalysts, involving the difficulty of releasing dissociation products (especially oxygen), can be ameliorated by this method. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles Casey
2011-08-20
This proposal supported Chemistry Symposia at the 2011 American Association for the Advancement of Science (AAAS) Meeting in Washington, DC February 17-21, 2011. The Chemistry Section of AAAS presented an unusually strong set of symposia for the 2011 AAAS meeting to help celebrate the 2011 International Year of Chemistry. The AAAS meeting provided an unusual opportunity to convey the excitement and importance of chemistry to a very broad audience and allowed access to a large contingent of the scientific press. Excellent suggestions for symposia were received from AAAS Chemistry Fellows and from the chairs of the American Chemical Society Technicalmore » Divisions. The AAAS Chemistry executive committee selected topics that would have wide appeal to scientists, the public, and the press for formal proposals of symposia. The symposia proposals were peer reviewed by AAAS. The Chemistry Section made a strong case to the program selection committee for approval of the chemistry symposia and 6 were approved for the 2011 annual meeting. The titles of the approved symposia were: (1) Powering the Planet: Generation of Clean Fuels from Sunlight and Water, (2) Biological Role and Consequences of Intrinsic Protein Disorder, (3) Chemically Speaking: How Organisms Talk to Each Other, (4) Molecular Self-Assembly and Artificial Molecular Machines, (5) Frontiers in Organic Materials for Information Processing, Energy and Sensors, and (6) Celebrating Marie Curie's 100th Anniversary of Her Nobel Prize in Chemistry. The Chemistry Section of AAAS is provided with funds to support only 1-2 symposia a year. Because of the much greater number of symposia approved in conjunction with observance of the 2011 International Year of Chemistry, additional support was sought from DOE to help support the 30 invited speakers and 8 symposia moderators/organizers. Support for the symposia provided the opportunity to highlight the excitement of current chemical research, to educate the public about the achievements of chemistry and its contributions to the well-being of humankind. The 2011 AAAS Annual Meeting provided an important opportunity to play a prominent role in the global celebration of the 2011 International Year of Chemistry.« less
The U.S. experience in promoting sustainable chemistry.
Tickner, Joel A; Geiser, Ken; Coffin, Melissa
2005-01-01
Recent developments in European chemicals policy, including the Registration, Evaluation and Authorization of Chemicals (REACH) proposal, provide a unique opportunity to examine the U.S. experience in promoting sustainable chemistry as well as the strengths and weaknesses of existing policies. Indeed, the problems of industrial chemicals and limitations in current regulatory approaches to address chemical risks are strikingly similar on both sides of the Atlantic. We provide an overview of the U.S. regulatory system for chemicals management and its relationship to efforts promoting sustainable chemistry. We examine federal and state initiatives and examine lessons learned from this system that can be applied to developing more integrated, sustainable approaches to chemicals management. There is truly no one U.S. chemicals policy, but rather a series of different un-integrated policies at the federal, regional, state and local levels. While centerpiece U.S. Chemicals Policy, the Toxic Substances Control Act of 1976, has resulted in the development of a comprehensive, efficient rapid screening process for new chemicals, agency action to manage existing chemicals has been very limited. The agency, however, has engaged in a number of successful, though highly underfunded, voluntary data collection, pollution prevention, and sustainable design programs that have been important motivators for sustainable chemistry. Policy innovation in the establishment of numerous state level initiatives on persistent and bioaccumulative toxics, chemical restrictions and toxics use reduction have resulted in pressure on the federal government to augment its efforts. It is clear that data collection on chemical risks and phase-outs of the most egregious chemicals alone will not achieve the goals of sustainable chemistry. These alone will also not internalize the cultural and institutional changes needed to ensure that design and implementation of safer chemicals, processes, and products are the focus of the future. Thus, a more holistic approach of 'carrots and sticks'--that involves not just chemical producers but those who use and purchase chemicals is necessary. Some important lessons of the US experience in chemicals management include: (1) the need for good information on chemicals flows, toxic risks, and safer substances.; (2) the need for comprehensive planning processes for chemical substitution and reduction to avoid risk trade-offs and ensure product quality; (3) the need for technical and research support to firms for innovation in safer chemistry; and (4) the need for rapid screening processes and tools for comparison of alternative chemicals, materials, and products.
NASA Astrophysics Data System (ADS)
Cheung, Derek
2015-02-01
For students to be successful in school chemistry, a strong sense of self-efficacy is essential. Chemistry self-efficacy can be defined as students' beliefs about the extent to which they are capable of performing specific chemistry tasks. According to Bandura (Psychol. Rev. 84:191-215, 1977), students acquire information about their level of self-efficacy from four sources: performance accomplishments, vicarious experiences, verbal persuasion, and physiological states. No published studies have investigated how instructional strategies in chemistry lessons can provide students with positive experiences with these four sources of self-efficacy information and how the instructional strategies promote students' chemistry self-efficacy. In this study, questionnaire items were constructed to measure student perceptions about instructional strategies, termed efficacy-enhancing teaching, which can provide positive experiences with the four sources of self-efficacy information. Structural equation modeling was then applied to test a hypothesized mediation model, positing that efficacy-enhancing teaching positively affects students' chemistry self-efficacy through their use of deep learning strategies such as metacognitive control strategies. A total of 590 chemistry students at nine secondary schools in Hong Kong participated in the survey. The mediation model provided a good fit to the student data. Efficacy-enhancing teaching had a direct effect on students' chemistry self-efficacy. Efficacy-enhancing teaching also directly affected students' use of deep learning strategies, which in turn affected students' chemistry self-efficacy. The implications of these findings for developing secondary school students' chemistry self-efficacy are discussed.
Albrecht, Markus
2007-12-01
This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.
The Transition Metal-Like Reactivity of Low Oxidation State s- and p-Block Compounds
2017-10-20
equivalent (e.g. Scheme 5),16 and the most active group 14 metal hydrides used for the, sometimes reversible, hydrometallation of unactivated alkenes...not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 20-10...Main Group Chemistry 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 16 19a
Advances in hydrogel delivery systems for tissue regeneration.
Toh, Wei Seong; Loh, Xian Jun
2014-12-01
Hydrogels are natural or synthetic polymer networks that have high water-absorbing capacity and closely mimic native extracellular matrices. As hydrogel-based cell delivery systems are being increasingly employed in regenerative medicine, several advances have been made in the hydrogel chemistry and modification for enhanced control of cell fate and functions, and modulation of cell and tissue responses against oxidative stress and inflammation in the tissue environment. This review aims to provide the state-of-the-art overview of the recent advances in field, discusses new perspectives and challenges in the regeneration of specific tissues, and highlights some of the limitations of current systems for possible future advancements. Copyright © 2014 Elsevier B.V. All rights reserved.
An overview of zinc addition for BWR dose rate control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marble, W.J.
1995-03-01
This paper presents an overview of the BWRs employing feedwater zinc addition to reduce primary system dose rates. It identifies which BWRs are using zinc addition and reviews the mechanical injection and passive addition hardware currently being employed. The impact that zinc has on plant chemistry, including the factor of two to four reduction in reactor water Co-60 concentrations, is discussed. Dose rate results, showing the benefits of implementing zinc on either fresh piping surfaces or on pipes with existing films are reviewed. The advantages of using zinc that is isotopically enhanced by the depletion of the Zn-64 precursor tomore » Zn-65 are identified.« less
Glycine Transporters and Their Inhibitors
NASA Astrophysics Data System (ADS)
Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant
Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.
Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs
Shen, Xiulong; Corey, David R
2018-01-01
Abstract RNA plays a central role in the expression of all genes. Because any sequence within RNA can be recognized by complementary base pairing, synthetic oligonucleotides and oligonucleotide mimics offer a general strategy for controlling processes that affect disease. The two primary antisense approaches for regulating expression through recognition of cellular RNAs are single-stranded antisense oligonucleotides and duplex RNAs. This review will discuss the chemical modifications and molecular mechanisms that make synthetic nucleic acid drugs possible. Lessons learned from recent clinical trials will be summarized. Ongoing clinical trials are likely to decisively test the adequacy of our current generation of antisense nucleic acid technologies and highlight areas where more basic research is needed. PMID:29240946
Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.
Lehn, Jean-Marie
2012-01-01
Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.
Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor
NASA Astrophysics Data System (ADS)
Tyapkov, V. F.; Erpyleva, S. F.
2017-05-01
Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.
Effect of poor control of film processors on mammographic image quality.
Kimme-Smith, C; Sun, H; Bassett, L W; Gold, R H
1992-11-01
With the increasingly stringent standards of image quality in mammography, film processor quality control is especially important. Current methods are not sufficient for ensuring good processing. The authors used a sensitometer and densitometer system to evaluate the performance of 22 processors at 16 mammographic facilities. Standard sensitometric values of two films were established, and processor performance was assessed for variations from these standards. Developer chemistry of each processor was analyzed and correlated with its sensitometric values. Ten processors were retested, and nine were found to be out of calibration. The developer components of hydroquinone, sulfites, bromide, and alkalinity varied the most, and low concentrations of hydroquinone were associated with lower average gradients at two facilities. Use of the sensitometer and densitometer system helps identify out-of-calibration processors, but further study is needed to correlate sensitometric values with developer component values. The authors believe that present quality control would be improved if sensitometric or other tests could be used to identify developer components that are out of calibration.
Wall, Matthew A; Harmsen, Stefan; Pal, Soumik; Zhang, Lihua; Arianna, Gianluca; Lombardi, John R; Drain, Charles Michael; Kircher, Moritz F
2017-06-01
Gold nanoparticles have unique properties that are highly dependent on their shape and size. Synthetic methods that enable precise control over nanoparticle morphology currently require shape-directing agents such as surfactants or polymers that force growth in a particular direction by adsorbing to specific crystal facets. These auxiliary reagents passivate the nanoparticles' surface, and thus decrease their performance in applications like catalysis and surface-enhanced Raman scattering. Here, a surfactant- and polymer-free approach to achieving high-performance gold nanoparticles is reported. A theoretical framework to elucidate the growth mechanism of nanoparticles in surfactant-free media is developed and it is applied to identify strategies for shape-controlled syntheses. Using the results of the analyses, a simple, green-chemistry synthesis of the four most commonly used morphologies: nanostars, nanospheres, nanorods, and nanoplates is designed. The nanoparticles synthesized by this method outperform analogous particles with surfactant and polymer coatings in both catalysis and surface-enhanced Raman scattering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Changlin; Oliaee, Shirin Norooz; Hwang, Sang Youp; Kong, Xiangkai; Peng, Zhenmeng
2016-01-13
Mass production of shape-controlled platinum group metal (PGM) and alloy nanoparticles is of high importance for their many fascinating properties in catalysis, electronics, and photonics. Despite of successful demonstrations at milligram scale using wet chemistry syntheses in many fundamental studies, there is still a big gap between the current methods and their real applications due to the complex synthetic procedures, scale-up difficulty, and surface contamination problem of the made particles. Here we report a generic wet impregnation method for facile, surfactant-free, and scalable preparation of nanoparticles of PGMs and their alloys on different substrate materials with controlled particle morphology and clean surface, which bridges the outstanding properties of these nanoparticles to practical important applications. The underlying particle growth and shape formation mechanisms were investigated using a combination of ex situ and in situ characterizations and were attributed to their different interactions with the applied gas molecules.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, R.W.; Dussert, B.W.; Kovacic, S.L.
Laboratory studies have identified the cause of the pH rise, which occurs during water treatment with activated carbon, as an interaction between the naturally occurring anions and protons in the water and the carbon surface. The interaction can be described as an ion exchange type of phenomenon, in which the carbon surface sorbs the anions and corresponding hydronium ions from the water. These studies have shown that the anion sorption and resulting pH increase is independent of the raw material used for the activated carbon production, e.g. bituminous or subbituminous coal, peat, wood or coconut. Also, the pH excursions occurmore » with virgin, reactivated, and acid washed granular carbons. Current pH control technologies focus on adjustment of the wastewater pH prior to discharge or recycle of the initial effluent water until the pH increase abates. However, improved water pH control options have been realized by altering the carbon surface through controlled oxidation rather than the water chemistry or extended preprocessing at the treatment site.« less
Pegalajar-Jurado, Adoracion; Easton, Christopher D; Crawford, Russell J; McArthur, Sally L
2015-03-26
Billions of dollars are spent annually worldwide to combat the adverse effects of bacterial attachment and biofilm formation in industries as varied as maritime, food, and health. While advances in the fabrication of antifouling surfaces have been reported recently, a number of the essential aspects responsible for the formation of biofilms remain unresolved, including the important initial stages of bacterial attachment to a substrate surface. The reduction of bacterial attachment to surfaces is a key concept in the prevention or minimization of biofilm formation. The chemical and physical characteristics of both the substrate and bacteria are important in understanding the attachment process, but substrate modification is likely the most practical route to enable the extent of bacterial attachment taking place to be effectively controlled. The microtopography and chemistry of the surface are known to influence bacterial attachment. The role of surface chemistry versus nanotopography and their interplay, however, remain unclear. Most methods used for imparting nanotopographical patterns onto a surface also induce changes in the surface chemistry and vice versa. In this study, the authors combine colloidal lithography and plasma polymerization to fabricate homogeneous, reproducible, and periodic nanotopographies with a controllable surface chemistry. The attachment of Escherichia coli bacteria onto carboxyl (plasma polymerized acrylic acid, ppAAc) and hydrocarbon (plasma polymerized octadiene, ppOct) rich plasma polymer films on either flat or colloidal array surfaces revealed that the surface chemistry plays a critical role in bacterial attachment, whereas the effect of surface nanotopography on the bacterial attachment appears to be more difficult to define. This platform represents a promising approach to allow a greater understanding of the role that surface chemistry and nanotopography play on bacterial attachment and the subsequent biofouling of the surface.
Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S
2012-07-01
The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Nuclear Forensics and Attribution: A National Laboratory Perspective
NASA Astrophysics Data System (ADS)
Hall, Howard L.
2008-04-01
Current capabilities in technical nuclear forensics - the extraction of information from nuclear and/or radiological materials to support the attribution of a nuclear incident to material sources, transit routes, and ultimately perpetrator identity - derive largely from three sources: nuclear weapons testing and surveillance programs of the Cold War, advances in analytical chemistry and materials characterization techniques, and abilities to perform ``conventional'' forensics (e.g., fingerprints) on radiologically contaminated items. Leveraging that scientific infrastructure has provided a baseline capability to the nation, but we are only beginning to explore the scientific challenges that stand between today's capabilities and tomorrow's requirements. These scientific challenges include radically rethinking radioanalytical chemistry approaches, developing rapidly deployable sampling and analysis systems for field applications, and improving analytical instrumentation. Coupled with the ability to measure a signature faster or more exquisitely, we must also develop the ability to interpret those signatures for meaning. This requires understanding of the physics and chemistry of nuclear materials processes well beyond our current level - especially since we are unlikely to ever have direct access to all potential sources of nuclear threat materials.
Rapid determination of enantiomeric excess: a focus on optical approaches.
Leung, Diana; Kang, Sung Ok; Anslyn, Eric V
2012-01-07
High-throughput screening (HTS) methods are becoming increasingly essential in discovering chiral catalysts or auxiliaries for asymmetric transformations due to the advent of parallel synthesis and combinatorial chemistry. Both parallel synthesis and combinatorial chemistry can lead to the exploration of a range of structural candidates and reaction conditions as a means to obtain the highest enantiomeric excess (ee) of a desired transformation. One current bottleneck in these approaches to asymmetric reactions is the determination of ee, which has led researchers to explore a wide range of HTS techniques. To be truly high-throughput, it has been proposed that a technique that can analyse a thousand or more samples per day is needed. Many of the current approaches to this goal are based on optical methods because they allow for a rapid determination of ee due to quick data collection and their parallel analysis capabilities. In this critical review these techniques are reviewed with a discussion of their respective advantages and drawbacks, and with a contrast to chromatographic methods (180 references). This journal is © The Royal Society of Chemistry 2012
Evaluation of mean climate in a chemistry-climate model simulation
NASA Astrophysics Data System (ADS)
Hong, S.; Park, H.; Wie, J.; Park, R.; Lee, S.; Moon, B. K.
2017-12-01
Incorporation of the interactive chemistry is essential for understanding chemistry-climate interactions and feedback processes in climate models. Here we assess a newly developed chemistry-climate model (GRIMs-Chem), which is based on the Global/Regional Integrated Model system (GRIMs) including the aerosol direct effect as well as stratospheric linearized ozone chemistry (LINOZ). We conducted GRIMs-Chem with observed sea surface temperature during the period of 1979-2010, and compared the simulation results with observations and also with CMIP models. To measure the relative performance of our model, we define the quantitative performance metric using the Taylor diagram. This metric allow us to assess overall features in simulating multiple variables. Overall, our model better reproduce the zonal mean spatial pattern of temperature, horizontal wind, vertical motion, and relative humidity relative to other models. However, the model did not produce good simulations at upper troposphere (200 hPa). It is currently unclear which model processes are responsible for this. AcknowledgementsThis research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."
Semisynthetic protein nanoreactor for single-molecule chemistry
Lee, Joongoo; Bayley, Hagan
2015-01-01
The covalent chemistry of individual reactants bound within a protein pore can be monitored by observing the ionic current flow through the pore, which acts as a nanoreactor responding to bond-making and bond-breaking events. In the present work, we incorporated an unnatural amino acid into the α-hemolysin (αHL) pore by using solid-phase peptide synthesis to make the central segment of the polypeptide chain, which forms the transmembrane β-barrel of the assembled heptamer. The full-length αHL monomer was obtained by native chemical ligation of the central synthetic peptide to flanking recombinant polypeptides. αHL pores with one semisynthetic subunit were then used as nanoreactors for single-molecule chemistry. By introducing an amino acid with a terminal alkyne group, we were able to visualize click chemistry at the single-molecule level, which revealed a long-lived (4.5-s) reaction intermediate. Additional side chains might be introduced in a similar fashion, thereby greatly expanding the range of single-molecule covalent chemistry that can be investigated by the nanoreactor approach. PMID:26504203
Hill, Robert A; Sutherland, Andrew
2018-04-25
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as tundrenone from Methylobacter tundripaludum.
ERIC Educational Resources Information Center
Education in Chemistry, 1976
1976-01-01
Described are a number of publications and items for use in chemistry. Included are brief descriptions of actuators, thermometer strips, current balances, and a variety of catalogues and other publications. (RH)
Carreyre, Hélène; Carré, Grégoire; Ouedraogo, Maurice; Vandebrouck, Clarisse; Bescond, Jocelyn; Supuran, Claudiu T; Thibaudeau, Sébastien
2017-05-31
Dodoneine (Ddn) is one of the active compounds identified from Agelanthus dodoneifolius , which is a medicinal plant used in African pharmacopeia and traditional medicine for the treatment of hypertension. In the context of a scientific program aiming at discovering new hypotensive agents through the original combination of natural product discovery and superacid chemistry diversification, and after evidencing dodoneine's vasorelaxant effect on rat aorta, superacid modifications allowed us to generate original analogues which showed selective human carbonic anhydrase III (hCA III) and L-type Ca 2+ current inhibition. These derivatives can now be considered as new lead compounds for vasorelaxant therapeutics targeting these two proteins.
Chemistry on the world-wide-web: a ten year experiment.
Goodman, Jonathan M
2004-11-21
The server logs for access to the Cambridge Chemistry webserver show how use of the server has increased over the last ten years, with access doubling every year and a half. This growth has started to slow, and extrapolation of the data suggests that the current rate of access is close to a plateau of ten million downloads a year. The transition for chemists from no internet access to saturation coverage, therefore, appears almost complete.
Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J; Luna-Freire, Kristerson R; Mioso, Roberto
2015-01-01
Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together current research, theory, and practice, and always in accordance with pedagogical ideas. © 2015 The International Union of Biochemistry and Molecular Biology.
Statistical Analysis of Physiological Signals
NASA Astrophysics Data System (ADS)
Ruiz, María G.; Pérez, Leticia
2003-07-01
In spite of two hundred years of clinical practice, Homeopathy still lacks of scientific basis. Its fundamental laws, similia principle and the activity of the denominated ultra-high dilutions are controversial issues that do not fit into the mainstream medicine or current physical-chemistry field as well. Aside its clinical efficacy, the identification of physical - chemistry parameters, as markers of the homeopathic effect, would allow to construct mathematic models [1], which in turn, could provide clues regarding the involved mechanism.
NASA Technical Reports Server (NTRS)
Marley, Mark; Freedman, Richard S.
2015-01-01
The thermal emission spectra of young giant planets is shaped by the opacity of atoms and molecules residing in their atmospheres. While great strides have been made in improving the opacities of important molecules, particularly NH3 and CH4, at high temperatures, much more work is needed to understand the opacity and chemistry of atomic Na and K. The highly pressure broadened fundamental band of Na and K in the optical stretches into the near-infrared, strongly influencing the shape of the Y and K spectral bands. Since young giant planets are bright in these bands it is important to understand the influences on the spectral shape. Discerning gravity and atmospheric composition is difficult, if not impossible, without both good atomic opacities as well as an excellent understanding of the relevant atmospheric chemistry. Since Na and K condense at temperatures near 500 to 600 K, the chemistry of the condensation process must be well understood as well, particularly any disequilibrium chemical pathways. Comparisons of the current generation of sophisticated atmospheric models and available data, however, reveal important shortcomings in the models. We will review the current state of observations and theory of young giant planets and will discuss these and other specific examples where improved laboratory measurements for alkali compounds have the potential of substantially improving our understanding of these atmospheres.
NASA Technical Reports Server (NTRS)
Wey, Thomas; Liu, Nan-Suey
2003-01-01
The overall objective of the current effort at NASA GRC is to evaluate, develop, and apply methodologies suitable for modeling intra-engine trace chemical changes over post combustor flow path relevant to the pollutant emissions from aircraft engines. At the present time, the focus is the high pressure turbine environment. At first, the trace chemistry model of CNEWT were implemented into GLENN-HT as well as NCC. Then, CNEWT, CGLENN-HT, and NCC were applied to the trace species evolution in a cascade of Cambridge University's No. 2 rotor and in a turbine vane passage. In general, the results from these different codes provide similar features. However, the details of some of the quantities of interest can be sensitive to the differences of these codes. This report summaries the implementation effort and presents the comparison of the No. 2 rotor results obtained from these different codes. The comparison of the turbine vane passage results is reported elsewhere. In addition to the implementation of trace chemistry model into existing CFD codes, several pre/post-processing tools that can handle the manipulations of the geometry, the unstructured and structured grids as well as the CFD solutions also have been enhanced and seamlessly tied with NCC, CGLENN-HT, and CNEWT. Thus, a complete CFD package consisting of pre/post-processing tools and flow solvers suitable for post-combustor intra-engine trace chemistry study is assembled.
Curing conditions to inactivate Trichinella spiralis muscle larvae in ready-to-eat pork sausage
USDA-ARS?s Scientific Manuscript database
Curing processes for ready to eat (RTE) pork products currently require individual validation of methods to demonstrate inactivation of Trichinella spiralis. This is a major undertaking for each process; currently no model of meat chemistry exists that can be correlated with inactivation of Trichin...
Analytical evaluation of current starch methods used in the international sugar industry: Part I
USDA-ARS?s Scientific Manuscript database
Several analytical starch methods currently exist in the international sugar industry that are used to prevent or mitigate starch-related processing challenges as well as assess the quality of traded end-products. These methods use simple iodometric chemistry, mostly potato starch standards, and uti...
Network analysis reveals multiscale controls on streamwater chemistry
Kevin J. McGuire; Christian E. Torgersen; Gene E. Likens; Donald C. Buso; Winsor H. Lowe; Scott W. Bailey
2014-01-01
By coupling synoptic data from a basin-wide assessment of streamwater chemistry with network-based geostatistical analysis, we show that spatial processes differentially affect biogeochemical condition and pattern across a headwater stream network. We analyzed a high-resolution dataset consisting of 664 water samples collected every 100 m throughout 32 tributaries in...
Problem-Based Learning Method: Secondary Education 10th Grade Chemistry Course Mixtures Topic
ERIC Educational Resources Information Center
Üce, Musa; Ates, Ismail
2016-01-01
In this research; aim was determining student achievement by comparing problem-based learning method with teacher-centered traditional method of teaching 10th grade chemistry lesson mixtures topic. Pretest-posttest control group research design is implemented. Research sample includes; two classes of (total of 48 students) an Anatolian High School…
A modeling study was conducted to evaluate the acid-base chemistry of streams within Shenandoah National Park, Virginia and to project future responses to sulfur (S) and nitrogen (N) atmospheric emissions controls. Many of the major stream systems in the Park have acid neutraliz...
Applications of Pulsed Power in Advanced Oxidation and Reduction Processes for Pollution Control
1993-06-01
electrical driver pulse width and rise time, electrical drive circuit coupling to plasma cells, and the role of UV light in the plasma chemistry and...will permit industrial service. Basic understanding of the plasma chemistry has evolved to the point where trends and equipment scaling can be
ERIC Educational Resources Information Center
1971
Computers have effected a comprehensive transformation of chemistry. Computers have greatly enhanced the chemist's ability to do model building, simulations, data refinement and reduction, analysis of data in terms of models, on-line data logging, automated control of experiments, quantum chemistry and statistical and mechanical calculations, and…
A Flipped Classroom Redesign in General Chemistry
ERIC Educational Resources Information Center
Reid, Scott A.
2016-01-01
The flipped classroom continues to attract significant attention in higher education. Building upon our recent parallel controlled study of the flipped classroom in a second-term general chemistry course ("J. Chem. Educ.," 2016, 93, 13-23), here we report on a redesign of the flipped course aimed at scaling up total enrollment while…
(Short overview of the Mexican Society of Clinical Chemistry meetings)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burtis, C.
1991-01-01
Organized and chaired session on instrument evaluation at the XIV Congreso Nacional De Quimica Clinica which is the National Meeting of the Mexican Society of Clinical Chemistry. In addition, I presented a paper on calibration at a Congress workshop and spoke on the impact of technology in a symposium on quality control.
NASA Astrophysics Data System (ADS)
Puspita, Ita; Sugiyarto, Kristian H.; Ikhsan, Jaslin
2017-05-01
The aims of this research are to: (1) develop chemistry instructional games on reaction rate matter; and (2) reveal the collaboration of chemistry instructional games and group investigation model to improvement learning outcome in high school student. This study is research and development (R&D). The procedure of developing product was adapted from Borg & Gall that modified into three principal steps: product planning, product developing, and product evaluating. The product planning step consist of field study, literature study, and manufacturing product. Product developing was developed product using Adobe Flash Professional CS 6 program. The last, product evaluating was performed by year XI of high school students, uses experimental methods nonequivalent control-group design by control class and experiment class. The results of this research show that: (1) a software of chemistry instructional games successfully developed using Adobe Flash Professional CS 6 and can be run on Android device; and (2) the test results of students showed that the collaboration of instructional games and group investigation model able to improvement learning outcome of hight school student.
TGT for chemistry learning to enhance students' achievement and critical thinking skills
NASA Astrophysics Data System (ADS)
Bolhassan, Norlailatulakma; Taha, Hafsah
2017-05-01
The form of cooperative learning known as Teams-Games-Tournament (TGT) in this study favors the use of teams work and learning tools combined with student play and practice to foster students' achievement and critical thinking skills. Using this paradigm, this study incorporates Teams-Games-Tournament and Flash Cards Games Kit during an 8-weeks experimental instruction period that includes 67 Form Four students; 34 students in the experimental group and 33 in the control group. The learning design in experimental group emphasizes scaffolding, guided practices, cooperative learning, and active participation in learning. While the experimental group experienced the TGT approach, the control group encountered the conventional teaching approach of chemistry drills. An achievement chemistry test and Watson Glaser Critical Thinking Appraisal (WGCTA) were used for the pretest and posttest. The finding indicates that TGT learning was more effective than drills in promoting chemistry performance, and the playful competiveness among students promotes students' critical thinking. In addition, TGT cooperative learning also creates an active learning environment in solving problems and discussions among students and teachers.
Surface-Enhanced Raman Spectroscopy as a Probe of the Surface Chemistry of Nanostructured Materials.
Dick, Susan; Konrad, Magdalena P; Lee, Wendy W Y; McCabe, Hannah; McCracken, John N; Rahman, Taifur M D; Stewart, Alan; Xu, Yikai; Bell, Steven E J
2016-07-01
Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fan, Ming; Ma, Ye; Zhang, Ziwei; Mao, Jiahui; Tan, Huaping; Hu, Xiaohong
2015-11-01
A robust synthetic strategy of biopolymer-based hydrogels has been developed where hyaluronic acid derivatives reacted through aqueous Diels-Alder chemistry without the involvement of chemical catalysts, allowing for control and sustain release of dexamethasone. To conjugate the hydrogel, furan and maleimide functionalized hyaluronic acid were synthesized, respectively, as well as furan functionalized dexamethasone, for the covalent immobilization. Chemical structure, gelation time, morphologies, swelling kinetics, weight loss, compressive modulus and dexamethasone release of the hydrogel system in PBS at 37°C were studied. The results demonstrated that the aqueous Diels-Alder chemistry provides an extremely selective reaction and proceeds with high efficiency for hydrogel conjugation and covalent immobilization of dexamethasone. Cell culture results showed that the dexamethasone immobilized hydrogel was noncytotoxic and preserved proliferation of entrapped human adipose-derived stem cells. This synthetic approach uniquely allows for the direct fabrication of biologically functionalized gel scaffolds with ideal structures for adipose tissue engineering, which provides a competitive alternative to conventional conjugation techniques such as copper mediated click chemistry. Copyright © 2015. Published by Elsevier B.V.
Walker, Wade T.; Callan, Robert J.; Hill, Ashley E.; Tisher, Kelly B.
2014-01-01
This study evaluated the effects of administering oral powder electrolytes on packed cell volume (PCV), plasma chemistry parameters, and incidence of colic in horses participating on a 6-day 162-km trail ride in which water was not offered ad libitum. Twenty-three horses received grain with powder electrolytes daily while 19 control horses received grain only. Horses were ridden approximately 32 km a day at a walk or trot. Packed cell volume and plasma chemistry parameters were analyzed daily. Episodes of colic were diagnosed and treated by a veterinarian unaware of treatment group allocation. Blood parameters and incidence of colic were compared between treatment groups. Electrolyte administration did not alter PCV or plasma chemistry parameters compared to controls. The incidence of colic was significantly higher in treated horses (P = 0.05). Oral powder electrolytes did not enhance hydration status or electrolyte homeostasis and may be associated with colic in horses participating on long distance trail rides similar to this model. PMID:25082992
Walker, Wade T; Callan, Robert J; Hill, Ashley E; Tisher, Kelly B
2014-08-01
This study evaluated the effects of administering oral powder electrolytes on packed cell volume (PCV), plasma chemistry parameters, and incidence of colic in horses participating on a 6-day 162-km trail ride in which water was not offered ad libitum. Twenty-three horses received grain with powder electrolytes daily while 19 control horses received grain only. Horses were ridden approximately 32 km a day at a walk or trot. Packed cell volume and plasma chemistry parameters were analyzed daily. Episodes of colic were diagnosed and treated by a veterinarian unaware of treatment group allocation. Blood parameters and incidence of colic were compared between treatment groups. Electrolyte administration did not alter PCV or plasma chemistry parameters compared to controls. The incidence of colic was significantly higher in treated horses (P = 0.05). Oral powder electrolytes did not enhance hydration status or electrolyte homeostasis and may be associated with colic in horses participating on long distance trail rides similar to this model.
Sen, Sanghamitra; Sadeghifar, Hasan; Argyropoulos, Dimitris S
2013-10-14
Despite its aromatic and polymeric nature, the heterogeneous, stochastic, and reactive characteristics of softwood kraft lignin seriously limit its potential for thermoplastic applications. Our continuing efforts toward creating thermoplastic lignin polymers are now focused at exploring propargylation derivatization chemistry and its potential as a versatile novel route for the eventual utilization of technical lignins with a significant amount of molecular control. To do this, we initially report the systematic propargylation of softwood kraft lignin. The synthesized derivatives were extensively characterized with thermal methods (DSC, TGA), (1)H, (13)C, and quantitative (31)P NMR and IR spectroscopies. Further on, we explore the versatile nature of the lignin pendant propargyl groups by demonstrating two distinct chain extension chemistries; the solution-based, copper-mediated, oxidative coupling and the thermally induced, solid-state, Claissen rearrangement polymerization chemistries. Overall, we show that it is possible to modulate the reactivity of softwood kraft lignin via a combination of methylation and chain extension providing a rational means for the creation of higher molecular weight polymers with the potential for thermoplastic materials and carbon fibers with the desired control of structure-property relations.
Hill, Robert A; Sutherland, Andrew
2018-06-07
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as mollebenzylanol A from Rhododendron molle.
40 CFR 262.10 - Purpose, scope, and applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... current hazardous waste accumulation areas Boston College, Chestnut Hill, MA 120 Chemistry, Biology..., Biology, Psychology, Anthropology, Geology and Earth Sciences, and Environmental, Coastal and Ocean...
Measurement and control of in-plane surface chemistry during the oxidation of H-terminated (111) Si
Gokce, Bilal; Adles, Eric J.; Aspnes, David E.; Gundogdu, Kenan
2010-01-01
In-plane directional control of surface chemistry during interface formation can lead to new opportunities regarding device structures and applications. Control of this type requires techniques that can probe and hence provide feedback on the chemical reactivity of bonds not only in specific directions but also in real time. Here, we demonstrate both control and measurement of the oxidation of H-terminated (111) Si. Control is achieved by externally applying uniaxial strain, and measurement by second-harmonic generation (SHG) together with the anisotropic-bond model of nonlinear optics. In this system anisotropy results because bonds in the strain direction oxidize faster than those perpendicular to it, leading in addition to transient structural changes that can also be detected at the bond level by SHG. PMID:20876145
Why Nuclear Forensics Needs New Plasma Chemistry Data
NASA Astrophysics Data System (ADS)
Rose, T.; Armstrong, M.; Chernov, A.; Crowhurst, J.; Dai, Z.; Knight, K.; Koroglu, B.; Radousky, H.; Stavrou, E.; Weisz, D.; Zaug, J.; Azer, M.; Finko, M.; Curreli, D.
2016-10-01
The mechanisms that control the distribution of radionuclides in fallout after a nuclear detonation are not adequately constrained. Current capabilities for assessing post-detonation scenarios often rely on empirical observations and approximations. Deeper insight into chemical condensation requires a coupled experimental, theoretical, and modeling approach. The behavior of uranium during plasma condensation is perplexing. Two independent methods are being developed to investigate gas phase uranium chemistry and speciation during plasma condensation: (1) laser-induced breakdown spectroscopy and (2) a unique steady-state ICP flow reactor. Both methods use laser absorption spectroscopy to obtain in situ data for vapor phase molecular species as they form. We are developing a kinetic model to describe the relative abundance of uranium species in the evolving plasma. Characterization of the uranium-oxygen system will be followed by other chemical components, including `carrier' materials such as silica. The goal is to develop a semi-empirical model to describe the chemical fractionation of uranium during fallout formation. Prepared by LLNL under Contract DE-AC52-07NA27344. This project was sponsored in part by the Department of the Defense, Defense Threat Reduction Agency, under Grant Number HDTRA1-16-1-0020.
Ultrasonic Mastering of Filter Flow and Antifouling of Renewable Resources.
Radziuk, Darya; Möhwald, Helmuth
2016-04-04
Inadequate access to pure water and sanitation requires new cost-effective, ergonomic methods with less consumption of energy and chemicals, leaving the environment cleaner and sustainable. Among such methods, ultrasound is a unique means to control the physics and chemistry of complex fluids (wastewater) with excellent performance regarding mass transfer, cleaning, and disinfection. In membrane filtration processes, it overcomes diffusion limits and can accelerate the fluid flow towards the filter preventing antifouling. Here, we outline the current state of knowledge and technological design, with a focus on physicochemical strategies of ultrasound for water cleaning. We highlight important parameters of ultrasound for the delivery of a fluid flow from a technical perspective employing principles of physics and chemistry. By introducing various ultrasonic methods, involving bubbles or cavitation in combination with external fields, we show advancements in flow acceleration and mass transportation to the filter. In most cases we emphasize the main role of streaming and the impact of cavitation with a perspective to prevent and remove fouling deposits during the flow. We also elaborate on the deficiencies of present technologies and on problems to be solved to achieve a wide-spread application. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nanoporous Membranes with Chemically-Tailored Pore Walls from Triblock Terpolymer Templates
NASA Astrophysics Data System (ADS)
Mulvenna, Ryan; Weidman, Jacob; Pople, John; Boudouris, Bryan; Phillip, William
2014-03-01
Membranes generated from self-assembled block polymers have shown promise as highly permeable and selective filters; however, current syntheses of such materials lack diverse pore wall chemical functionality. Here, we report the facile synthesis of polyisoprene- b-polystyrene- b-poly(N , N -dimethylacrylamide) (PI-PS-PDMA) using a controlled reversible addition-fragmentation chain transfer (RAFT) polymerization mechanism to yield a macromolecule with an easily-tunable molecular weight and a narrow molecular weight distribution. The PI-PS-PDMA is then cast into an anisotropic membrane using the self-assembly and non-solvent induced phase separation process (SNIPS) protocol. These membranes can be used in size-selective separations for particles as small as 8 nm in diameter. Furthermore, the PDMA block can be converted to poly(acrylic acid) (PAA) readily in the solid state, and this PI-PS-PAA terpolymer membrane can separate particles as low as 2 nm in diameter while still retaining a relatively high flux. This is the smallest reported separation for a block polymer-based membrane to date. Additionally, the PAA-lined pores serve as a conversion platform to be tuned to any other pore chemistry, which allows the membrane to be of great utility in optimizing chemistry-specific separations.
Nanowire-based thermoelectrics
NASA Astrophysics Data System (ADS)
Ali, Azhar; Chen, Yixi; Vasiraju, Venkata; Vaddiraju, Sreeram
2017-07-01
Research on thermoelectrics has seen a huge resurgence since the early 1990s. The ability of tuning a material’s electrical and thermal transport behavior upon nanostructuring has led to this revival. Nevertheless, thermoelectric performances of nanowires and related materials lag far behind those achieved with thin-film superlattices and quantum dot-based materials. This is despite the fact that nanowires offer many distinct advantages in enhancing the thermoelectric performances of materials. The simplicity of the strategy is the first and foremost advantage. For example, control of the nanowire diameters and their surface roughnesses will aid in enhancing their thermoelectric performances. Another major advantage is the possibility of obtaining high thermoelectric performances using simpler nanowire chemistries (e.g., elemental and binary compound semiconductors), paving the way for the fabrication of thermoelectric modules inexpensively from non-toxic elements. In this context, the topical review provides an overview of the current state of nanowire-based thermoelectrics. It concludes with a discussion of the future vision of nanowire-based thermoelectrics, including the need for developing strategies aimed at the mass production of nanowires and their interface-engineered assembly into devices. This eliminates the need for trial-and-error strategies and complex chemistries for enhancing the thermoelectric performances of materials.