Gross, John E.; Tercek, Michael; Guay, Kevin; Chang, Tony; Talbert, Marian; Rodman, Ann; Thoma, David; Jantz, Patrick; Morisette, Jeffrey T.
2016-01-01
Most of the western United States is experiencing the effects of rapid and directional climate change (Garfin et al. 2013). These effects, along with forecasts of profound changes in the future, provide strong motivation for resource managers to learn about and prepare for future changes. Climate adaptation plans are based on an understanding of historic climate variation and their effects on ecosystems and on forecasts of future climate trends. Frameworks for climate adaptation thus universally identify the importance of a summary of historical, current, and projected climates (Glick, Stein, and Edelson 2011; Cross et al. 2013; Stein et al. 2014). Trends in physical climate variables are usually the basis for evaluating the exposure component in vulnerability assessments. Thus, this chapter focuses on step 2 of the Climate-Smart Conservation framework (chap. 2): vulnerability assessment. We present analyses of historical and current observations of temperature, precipitation, and other key climate measurements to provide context and a baseline for interpreting the ecological impacts of projected climate changes.
Probabilistic attribution of individual unprecedented extreme events
NASA Astrophysics Data System (ADS)
Diffenbaugh, N. S.
2016-12-01
The last decade has seen a rapid increase in efforts to understand the influence of global warming on individual extreme climate events. Although trends in the distributions of climate observations have been thoroughly analyzed, rigorously quantifying the contribution of global-scale warming to individual events that are unprecedented in the observed record presents a particular challenge. This paper describes a method for leveraging observations and climate model ensembles to quantify the influence of historical global warming on the severity and probability of unprecedented events. This approach uses formal inferential techniques to quantify four metrics: (1) the contribution of the observed trend to the event magnitude, (2) the contribution of the observed trend to the event probability, (3) the probability of the observed trend in the current climate and a climate without human influence, and (4) the probability of the event magnitude in the current climate and a climate without human influence. Illustrative examples are presented, spanning a range of climate variables, timescales, and regions. These examples illustrate that global warming can influence the severity and probability of unprecedented extremes. In some cases - particularly high temperatures - this change is indicated by changes in the mean. However, changes in probability do not always arise from changes in the mean, suggesting that global warming can alter the frequency with which complex physical conditions co-occur. Because our framework is transparent and highly generalized, it can be readily applied to a range of climate events, regions, and levels of climate forcing.
Attribution of the Regional Patterns of North American Climate Trends
NASA Astrophysics Data System (ADS)
Hoerling, M.; Kumar, A.; Karoly, D.; Rind, D.; Hegerl, G.; Eischeid, J.
2007-12-01
North American trends in surface temperature and precipitation during 1951-2006 exhibit large spatial and seasonal variations. We seek to explain these by synthesizing new information based on existing model simulations of climate and its forcing, and based on modern reanalyses that describe past and current conditions within the free atmosphere. The presentation focuses on current capabilities to explain the spatial variations and seasonal differences in North American climate trends. It will address whether various heterogeneities in space and time can be accounted for by the climate system's sensitivity to time evolving anthropogenic forcing, and examines the influences of non-anthropogenic processes. New findings are presented that indicate anthropogenic forcing alone was unlikely the cause for key regional and seasonal patterns of change, including the absence of summertime warming over the Great Plains of the United States, and the absence of warming during both winter and summer over the southern United States. Key regional features are instead attributed to trends in the principal patterns of atmospheric flow that affect North American climate. It is demonstrated that observed variations in global sea surface temperatures have significantly influenced these patterns of atmospheric flow.
Putting the Nation on a Path for Climate Resilience and Preparedness
Putting current data in a historical context, NOAA publishes the monthly State of the Climate Report that includes analyses of the Nation's recent climate conditions, their unusualness, and their rank within long‐term trends.
Climate change over Leh (Ladakh), India
NASA Astrophysics Data System (ADS)
Chevuturi, A.; Dimri, A. P.; Thayyen, R. J.
2018-01-01
Mountains over the world are considered as the indicators of climate change. The Himalayas are comprised of five ranges, viz., Pir Panjal, Great Himalayas, Zanskar, Ladhak, and Karakorum. The Ladakh region lies in the northernmost state of India, Jammu and Kashmir, in the Ladhak range. It has a unique cold-arid climate and lies immediately south of the Karakorum range. With scarce water resources, such regions show high sensitivity and vulnerability to the change in climate and need urgent attention. The objective of this study is to understand the climate of the Ladakh region and to characterize its changing climate. Using different temperature and precipitation datasets over Leh and surrounding regions, we statistically analyze the current trends of climatic patterns over the region. The study shows that the climate over Leh shows a warming trend with reduced precipitation in the current decade. The reduced average seasonal precipitation might also be associated with some indications of reducing number of days with higher precipitation amounts over the region.
Asch, Rebecca G.
2015-01-01
Climate change has prompted an earlier arrival of spring in numerous ecosystems. It is uncertain whether such changes are occurring in Eastern Boundary Current Upwelling ecosystems, because these regions are subject to natural decadal climate variability, and regional climate models predict seasonal delays in upwelling. To answer this question, the phenology of 43 species of larval fishes was investigated between 1951 and 2008 off southern California. Ordination of the fish community showed earlier phenological progression in more recent years. Thirty-nine percent of seasonal peaks in larval abundance occurred earlier in the year, whereas 18% were delayed. The species whose phenology became earlier were characterized by an offshore, pelagic distribution, whereas species with delayed phenology were more likely to reside in coastal, demersal habitats. Phenological changes were more closely associated with a trend toward earlier warming of surface waters rather than decadal climate cycles, such as the Pacific Decadal Oscillation and North Pacific Gyre Oscillation. Species with long-term advances and delays in phenology reacted similarly to warming at the interannual time scale as demonstrated by responses to the El Niño Southern Oscillation. The trend toward earlier spawning was correlated with changes in sea surface temperature (SST) and mesozooplankton displacement volume, but not coastal upwelling. SST and upwelling were correlated with delays in fish phenology. For species with 20th century advances in phenology, future projections indicate that current trends will continue unabated. The fate of species with delayed phenology is less clear due to differences between Intergovernmental Panel on Climate Change models in projected upwelling trends. PMID:26159416
Climate change. Six centuries of variability and extremes in a coupled marine-terrestrial ecosystem.
Black, Bryan A; Sydeman, William J; Frank, David C; Griffin, Daniel; Stahle, David W; García-Reyes, Marisol; Rykaczewski, Ryan R; Bograd, Steven J; Peterson, William T
2014-09-19
Reported trends in the mean and variability of coastal upwelling in eastern boundary currents have raised concerns about the future of these highly productive and biodiverse marine ecosystems. However, the instrumental records on which these estimates are based are insufficiently long to determine whether such trends exceed preindustrial limits. In the California Current, a 576-year reconstruction of climate variables associated with winter upwelling indicates that variability increased over the latter 20th century to levels equaled only twice during the past 600 years. This modern trend in variance may be unique, because it appears to be driven by an unprecedented succession of extreme, downwelling-favorable, winter climate conditions that profoundly reduce productivity for marine predators of commercial and conservation interest. Copyright © 2014, American Association for the Advancement of Science.
Current Trends in Preservation Research and Development.
ERIC Educational Resources Information Center
Cunha, George Martin
1990-01-01
Overview of current trends in the preservation of library materials discusses collections conservation and management; climate control; insect and mold control; fire control; the effects of compact shelving; freezing and freeze-drying; space drying; alkaline paper; recycled paper; mass deacidification; and paper strengthening. (27 notes and…
Beyond climate envelopes: effects of weather on regional population trends in butterflies.
WallisDeVries, Michiel F; Baxter, Wendy; Van Vliet, Arnold J H
2011-10-01
Although the effects of climate change on biodiversity are increasingly evident by the shifts in species ranges across taxonomical groups, the underlying mechanisms affecting individual species are still poorly understood. The power of climate envelopes to predict future ranges has been seriously questioned in recent studies. Amongst others, an improved understanding of the effects of current weather on population trends is required. We analysed the relation between butterfly abundance and the weather experienced during the life cycle for successive years using data collected within the framework of the Dutch Butterfly Monitoring Scheme for 40 species over a 15-year period and corresponding climate data. Both average and extreme temperature and precipitation events were identified, and multiple regression was applied to explain annual changes in population indices. Significant weather effects were obtained for 39 species, with the most frequent effects associated with temperature. However, positive density-dependence suggested climatic independent trends in at least 12 species. Validation of the short-term predictions revealed a good potential for climate-based predictions of population trends in 20 species. Nevertheless, data from the warm and dry year of 2003 indicate that negative effects of climatic extremes are generally underestimated for habitat specialists in drought-susceptible habitats, whereas generalists remain unaffected. Further climatic warming is expected to influence the trends of 13 species, leading to an improvement for nine species, but a continued decline in the majority of species. Expectations from climate envelope models overestimate the positive effects of climate change in northwestern Europe. Our results underline the challenge to include population trends in predicting range shifts in response to climate change.
Climate and Vegetation Effects on Temperate Mountain Forest Evapotranspiration
Current forest composition may be resilient to typical climatic variability; however, climate trends, combined with projected changes in species composition, may increase tree vulnerability to water stress. A shift in forest composition toward tree species with higher water use h...
Medone, Paula; Ceccarelli, Soledad; Parham, Paul E.; Figuera, Andreína; Rabinovich, Jorge E.
2015-01-01
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. PMID:25688019
Small lakes show muted climate change signal in deepwater temperatures
Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.; Hanson, Paul C.
2015-01-01
Water temperature observations were collected from 142 lakes across Wisconsin, USA, to examine variation in temperature of lakes exposed to similar regional climate. Whole lake water temperatures increased across the state from 1990 to 2012, with an average trend of 0.042°C yr−1 ± 0.01°C yr−1. In large (>0.5 km2) lakes, the positive temperature trend was similar across all depths. In small lakes (<0.5 km2), the warming trend was restricted to shallow waters, with no significant temperature trend observed in water >0.5 times the maximum lake depth. The differing response of small versus large lakes is potentially a result of wind-sheltering reducing turbulent mixing magnitude in small lakes. These results demonstrate that small lakes respond differently to climate change than large lakes, suggesting that current predictions of impacts to lakes from climate change may require modification.
Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Amy Clark Eagle; Joshua G. Cohen; Rich Corner; Peter B. Reich; Tim Baker; Sophan Chhin; Eric Clark; David Fehringer; Jon Fosgitt; James Gries; Christine Hall; Kimberly R. Hall; Robert Heyd; Christopher L. Hoving; Ines Ibáñez; Don Kuhr; Stephen Matthews; Jennifer Muladore; Knute Nadelhoffer; David Neumann; Matthew Peters; Anantha Prasad; Matt Sands; Randy Swaty; Leiloni Wonch; Jad Daley; Mae Davenport; Marla R. Emery; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel
2014-01-01
Forests in northern Michigan will be affected directly and indirectly by a changing climate during the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Michigan's eastern Upper Peninsula and northern Lower Peninsula to a range of future climates. Information on current forest conditions, observed climate trends, projected climate...
Stephen Handler; Matthew J. Duveneck; Louis Iverson; Emily Peters; Robert M. Scheller; Kirk R. Wythers; Leslie Brandt; Patricia Butler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Kelly Barrett; Randy Kolka; Casey McQuiston; Brian Palik; Peter B. Reich; Clarence Turner; Mark White; Cheryl Adams; Anthony D' Amato; Suzanne Hagell; Patricia Johnson; Rosemary Johnson; Mike Larson; Stephen Matthews; Rebecca Montgomery; Steve Olson; Matthew Peters; Anantha Prasad; Jack Rajala; Jad Daley; Mae Davenport; Marla R. Emery; David Fehringer; Christopher L. Hoving; Gary Johnson; Lucinda Johnson; David Neitzel; Adena Rissman; Chadwick Rittenhouse; Robert. Ziel
2014-01-01
Forests in northern Minnesota will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of forest ecosystems in Minnesota's Laurentian Mixed Forest Province to a range of future climates. Information on current forest conditions, observed climate trends, projected climate changes, and...
Trends and Controls of inter-annual Variability in the Carbon Budget of Terrestrial Ecosystems
NASA Astrophysics Data System (ADS)
Cescatti, A.; Marcolla, B.
2014-12-01
The climate sensitivity of the terrestrial carbon budget will substantially affect the sign and strength of the land-climate feedbacks and the future climate trajectories. Current trends in the inter-annual variability of terrestrial carbon fluxes (IAV) may contribute to clarify the relative role of physical and biological controls of ecosystem responses to climate change. For this purpose we investigated how recent climate variability has impacted the carbon fluxes at long-term FLUXNET sites. Using a novel method, the IAV has been factored out in climate induced variability (physical control), variability due to changes in ecosystem functioning (biological control) and the interaction of the two terms. The relative control of the main climatic drivers (temperature, water availability) on the physical and biological sources of IAV has been investigated using both site level fluxes and global gridded products generated from the up-scaling of flux data. Results of this analysis highlight the fundamental role of precipitation trends on the pattern of IAV in the last 30 years. Our findings on the spatial/temporal trends of IAV have been finally confirmed using the signal derived from the global network of atmospheric CO2 concentrations measurements.
NASA Astrophysics Data System (ADS)
LY, M., Jr.
2014-12-01
It is now admitted that the West African region faces a lot of constraints due to the comprehensiveness of the high climate variability and potential climate change. This is mainly due to the lack of a large number of datasets and long-term records as summarized in the in the IPCC reports. This paper aims to provide improved knowledge and evidence on current and future climate conditions, for better manage climate variability over seasons and from year to year and strengthen the capacity to adapt to future climate change. In this regards, we analyse the evolution of some extreme temperature and precipitation indices over a large area of West Africa. Prior results show a general warming trend at individual stations throughout the region during the period from 1960 to 2010, namely negative trends in the number of cool nights, and positive trends in the number of warm days and length of warm spells. Trends in rainfall-related indices are not as uniform as the ones in temperatures, rather they display marked multi-decadal variability, as expected. To refine analyses of temperature variations and their relation to precipitation we investigated on cluster analysis aimed at distinguishing different sub-regions, such as continental and coastal, and relevant seasons, such as wet, dry/cold and dry warm. This will contribute to significantly lower uncertainties by developing better and more tailored temperature and precipitation trends to inform the user communities on climate related risks, as well as enhance their resilience to food insecurity and other climate related disasters.
A climate trend analysis of Uganda
Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; White, Libby
2012-01-01
This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies observed changes in rainfall and temperature in Uganda, based on an analysis of a quality-controlled, long time series of station observations throughout Uganda. Extending recent trends forward, it also provides a current and near-future context for understanding the actual nature of climate change impacts in the country, and a basis for identifying climate adaptations that may protect and improve the country's food security.
NASA Astrophysics Data System (ADS)
García-Marcos, Luis; Batllés-Garrido, José; Blanco-Quirós, Alfredo; García-Hernández, Gloria; Guillén-Grima, Francisco; González-Díaz, Carlos; García-Merino, Águeda; Arnedo-Pena, Alberto; Busquets-Monge, Rosa M.; Morales-Suárez-Varela, María; López-Silvarrey-Varela, Ángel; García-Andoin, Nekane
2009-01-01
Few studies have focused on the long-term influence of the climate on the prevalence of asthma. The aim of this study is to establish the influence of geo-climatic conditions on the prevalence of asthma symptoms both in adolescents and schoolchildren, and to discover if this influence is associated with their time trends. Eight centres in Spain performed both ISAAC phases I (1994) and III (2002) in children 13-14 years old. Six of them also surveyed children 6-7 years old. For each age group and phase, about 3,000 children were surveyed per centre. This study examines the prevalence of current wheeze and severe current wheeze in two different geo-climatic zones, coast and plateau, considering their relative humidity and temperature range. In both age groups, the mean asthma prevalence on the coast, for phase I and III, was significantly higher than on the plateau. Living on the plateau was an independent protective factor for current wheeze and severe current wheeze for the two age groups. Within the coastal centres, the increase of the annual relative humidity was a statistical significant risk factor for current wheeze, the same trend existing for current severe wheeze. These effects were independent of the sex and of the phase of the study. The prevalence of asthma and severe asthma symptoms is more frequent on the coast of Spain as compared to the inner plateau. This finding was repeated both in 1994 and in 2002.
Medone, Paula; Ceccarelli, Soledad; Parham, Paul E; Figuera, Andreína; Rabinovich, Jorge E
2015-04-05
Chagas disease, caused by the parasite Trypanosoma cruzi, is the most important vector-borne disease in Latin America. The vectors are insects belonging to the Triatominae (Hemiptera, Reduviidae), and are widely distributed in the Americas. Here, we assess the implications of climatic projections for 2050 on the geographical footprint of two of the main Chagas disease vectors: Rhodnius prolixus (tropical species) and Triatoma infestans (temperate species). We estimated the epidemiological implications of current to future transitions in the climatic niche in terms of changes in the force of infection (FOI) on the rural population of two countries: Venezuela (tropical) and Argentina (temperate). The climatic projections for 2050 showed heterogeneous impact on the climatic niches of both vector species, with a decreasing trend of suitability of areas that are currently at high-to-moderate transmission risk. Consequently, climatic projections affected differently the FOI for Chagas disease in Venezuela and Argentina. Despite the heterogeneous results, our main conclusions point out a decreasing trend in the number of new cases of Tr. cruzi human infections per year between current and future conditions using a climatic niche approach. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Which climate change path are we following? Bad news from Scots pine
D’Andrea, Ettore; Rezaie, Negar; Cammarano, Mario; Matteucci, Giorgio
2017-01-01
Current expectations on future climate derive from coordinated experiments, which compile many climate models for sampling the entire uncertainty related to emission scenarios, initial conditions, and modelling process. Quantifying this uncertainty is important for taking decisions that are robust under a wide range of possible future conditions. Nevertheless, if uncertainty is too large, it can prevent from planning specific and effective measures. For this reason, reducing the spectrum of the possible scenarios to a small number of one or a few models that actually represent the climate pathway influencing natural ecosystems would substantially increase our planning capacity. Here we adopt a multidisciplinary approach based on the comparison of observed and expected spatial patterns of response to climate change in order to identify which specific models, among those included in the CMIP5, catch the real climate variation driving the response of natural ecosystems. We used dendrochronological analyses for determining the geographic pattern of recent growth trends for three European species of trees. At the same time, we modelled the climatic niche for the same species and forecasted the suitability variation expected across Europe under each different GCM. Finally, we estimated how well each GCM explains the real response of ecosystems, by comparing the expected variation with the observed growth trends. Doing this, we identified four climatic models that are coherent with the observed trends. These models are close to the highest range limit of the climatic variations expected by the ensemble of the CMIP5 models, suggesting that current predictions of climate change impacts on ecosystems could be underestimated. PMID:29252985
Which climate change path are we following? Bad news from Scots pine.
Bombi, Pierluigi; D'Andrea, Ettore; Rezaie, Negar; Cammarano, Mario; Matteucci, Giorgio
2017-01-01
Current expectations on future climate derive from coordinated experiments, which compile many climate models for sampling the entire uncertainty related to emission scenarios, initial conditions, and modelling process. Quantifying this uncertainty is important for taking decisions that are robust under a wide range of possible future conditions. Nevertheless, if uncertainty is too large, it can prevent from planning specific and effective measures. For this reason, reducing the spectrum of the possible scenarios to a small number of one or a few models that actually represent the climate pathway influencing natural ecosystems would substantially increase our planning capacity. Here we adopt a multidisciplinary approach based on the comparison of observed and expected spatial patterns of response to climate change in order to identify which specific models, among those included in the CMIP5, catch the real climate variation driving the response of natural ecosystems. We used dendrochronological analyses for determining the geographic pattern of recent growth trends for three European species of trees. At the same time, we modelled the climatic niche for the same species and forecasted the suitability variation expected across Europe under each different GCM. Finally, we estimated how well each GCM explains the real response of ecosystems, by comparing the expected variation with the observed growth trends. Doing this, we identified four climatic models that are coherent with the observed trends. These models are close to the highest range limit of the climatic variations expected by the ensemble of the CMIP5 models, suggesting that current predictions of climate change impacts on ecosystems could be underestimated.
Trends of Measured Climate Forcing Agents
NASA Technical Reports Server (NTRS)
Hansen, James E.; Sato, Makiko; Einaudi, Franco (Technical Monitor)
2002-01-01
The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/sq m per century. This growth rate has since declined to approximately equal to 3 W/sq m per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate "alternative" climate scenario (approximately equal to 2 W/M2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic "co-benefits" of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate + 0.15 +/- 0.05 C per decade will occur over the next several decades.
Exploiting temporal variability to understand tree recruitment response to climate change
Ines Ibanez; James S. Clark; Shannon LaDeau; Janneke Hill Ris Lambers
2007-01-01
Predicting vegetation shifts under climate change is a challenging endeavor, given the complex interactions between biotic and abiotic variables that influence demographic rates. To determine how current trends and variation in climate change affect seedling establishment, we analyzed demographic responses to spatiotemporal variation to temperature and soil moisture in...
The trend of the multi-scale temporal variability of precipitation in Colorado River Basin
NASA Astrophysics Data System (ADS)
Jiang, P.; Yu, Z.
2011-12-01
Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.
Leslie Brandt; Hong He; Louis Iverson; Frank R. Thompson; Patricia Butler; Stephen Handler; Maria Janowiak; P. Danielle Shannon; Chris Swanston; Matthew Albrecht; Richard Blume-Weaver; Paul Deizman; John DePuy; William D. Dijak; Gary Dinkel; Songlin Fei; D. Todd Jones-Farrand; Michael Leahy; Stephen Matthews; Paul Nelson; Brad Oberle; Judi Perez; Matthew Peters; Anantha Prasad; Jeffrey E. Schneiderman; John Shuey; Adam B. Smith; Charles Studyvin; John M. Tirpak; Jeffery W. Walk; Wen J. Wang; Laura Watts; Dale Weigel; Steve Westin
2014-01-01
The forests in the Central Hardwoods Region will be affected directly and indirectly by a changing climate over the next 100 years. This assessment evaluates the vulnerability of terrestrial ecosystems in the Central Hardwoods Region of Illinois, Indiana, and Missouri to a range of future climates. Information on current forest conditions, observed climate trends,...
Granath, Gustaf; Limpens, Juul; Posch, Maximilian; Mücher, Sander; de Vries, Wim
2014-04-01
To quantify potential nitrogen (N) deposition impacts on peatland carbon (C) uptake, we explored temporal and spatial trends in N deposition and climate impacts on the production of the key peat forming functional group (Sphagnum mosses) across European peatlands for the period 1900-2050. Using a modelling approach we estimated that between 1900 and 1950 N deposition impacts remained limited irrespective of geographical position. Between 1950 and 2000 N deposition depressed production between 0 and 25% relative to 1900, particularly in temperate regions. Future scenarios indicate this trend will continue and become more pronounced with climate warming. At the European scale, the consequences for Sphagnum net C-uptake remained small relative to 1900 due to the low peatland cover in high-N areas. The predicted impacts of likely changes in N deposition on Sphagnum productivity appeared to be less than those of climate. Nevertheless, current critical loads for peatlands are likely to hold under a future climate. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Molnar, Gyula; Susskind, Joel
2008-01-01
The AIRS instrument is currently the best space-based tool to simultaneously monitor the vertical distribution of key climatically important atmospheric parameters as well as surface properties, and has provided high quality data for more than 5 years. AIRS analysis results produced at the GODDARD/DAAC, based on Versions 4 & 5 of the AIRS retrieval algorithm, are currently available for public use. Here, first we present an assessment of interrelationships of anomalies (proxies of climate variability based on 5 full years, since Sept. 2002) of various climate parameters at different spatial scales. We also present AIRS-retrievals-based global, regional and 1x1 degree grid-scale "trend"-analyses of important atmospheric parameters for this 5-year period. Note that here "trend" simply means the linear fit to the anomaly (relative the mean seasonal cycle) time series of various parameters at the above-mentioned spatial scales, and we present these to illustrate the usefulness of continuing AIRS-based climate observations. Preliminary validation efforts, in terms of intercomparisons of interannual variabilities with other available satellite data analysis results, will also be addressed. For example, we show that the outgoing longwave radiation (OLR) interannual spatial variabilities from the available state-of-the-art CERES measurements and from the AIRS computations are in remarkably good agreement. Version 6 of the AIRS retrieval scheme (currently under development) promises to further improve bias agreements for the absolute values by implementing a more accurate radiative transfer model for the OLR computations and by improving surface emissivity retrievals.
Temporal changes and variability in temperature series over Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Suhaila, Jamaludin
2015-02-01
With the current concern over climate change, the descriptions on how temperature series changed over time are very useful. Annual mean temperature has been analyzed for several stations over Peninsular Malaysia. Non-parametric statistical techniques such as Mann-Kendall test and Theil-Sen slope estimation are used primarily for assessing the significance and detection of trends, while a nonparametric Pettitt's test and sequential Mann-Kendall test are adopted to detect any abrupt climate change. Statistically significance increasing trends for annual mean temperature are detected for almost all studied stations with the magnitude of significant trend varied from 0.02°C to 0.05°C per year. The results shows that climate over Peninsular Malaysia is getting warmer than before. In addition, the results of the abrupt changes in temperature using Pettitt's and sequential Mann-Kendall test reveal the beginning of trends which can be related to El Nino episodes that occur in Malaysia. In general, the analysis results can help local stakeholders and water managers to understand the risks and vulnerabilities related to climate change in terms of mean events in the region.
Hunter, Mark D; Kozlov, Mikhail V; Itämies, Juhani; Pulliainen, Erkki; Bäck, Jaana; Kyrö, Ella-Maria; Niemelä, Pekka
2014-06-01
Changes in climate are influencing the distribution and abundance of the world's biota, with significant consequences for biological diversity and ecosystem processes. Recent work has raised concern that populations of moths and butterflies (Lepidoptera) may be particularly susceptible to population declines under environmental change. Moreover, effects of climate change may be especially pronounced in high latitude ecosystems. Here, we examine population dynamics in an assemblage of subarctic forest moths in Finnish Lapland to assess current trajectories of population change. Moth counts were made continuously over a period of 32 years using light traps. From 456 species recorded, 80 were sufficiently abundant for detailed analyses of their population dynamics. Climate records indicated rapid increases in temperature and winter precipitation at our study site during the sampling period. However, 90% of moth populations were stable (57%) or increasing (33%) over the same period of study. Nonetheless, current population trends do not appear to reflect positive responses to climate change. Rather, time-series models illustrated that the per capita rates of change of moth species were more frequently associated negatively than positively with climate change variables, even as their populations were increasing. For example, the per capita rates of change of 35% of microlepidoptera were associated negatively with climate change variables. Moth life-history traits were not generally strong predictors of current population change or associations with climate change variables. However, 60% of moth species that fed as larvae on resources other than living vascular plants (e.g. litter, lichen, mosses) were associated negatively with climate change variables in time-series models, suggesting that such species may be particularly vulnerable to climate change. Overall, populations of subarctic forest moths in Finland are performing better than expected, and their populations appear buffered at present from potential deleterious effects of climate change by other ecological forces. © 2014 John Wiley & Sons Ltd.
Climate change and malaria in Canada: a systems approach.
Berrang-Ford, L; Maclean, J D; Gyorkos, Theresa W; Ford, J D; Ogden, N H
2009-01-01
This article examines the potential for changes in imported and autochthonous malaria incidence in Canada as a consequence of climate change. Drawing on a systems framework, we qualitatively characterize and assess the potential direct and indirect impact of climate change on malaria in Canada within the context of other concurrent ecological and social trends. Competent malaria vectors currently exist in southern Canada, including within this range several major urban centres, and conditions here have historically supported endemic malaria transmission. Climate change will increase the occurrence of temperature conditions suitable for malaria transmission in Canada, which, combined with trends in international travel, immigration, drug resistance, and inexperience in both clinical and laboratory diagnosis, may increase malaria incidence in Canada and permit sporadic autochthonous cases. This conclusion challenges the general assumption of negligible malaria risk in Canada with climate change.
Climate Change and Malaria in Canada: A Systems Approach
Berrang-Ford, L.; MacLean, J. D.; Gyorkos, Theresa W.; Ford, J. D.; Ogden, N. H.
2009-01-01
This article examines the potential for changes in imported and autochthonous malaria incidence in Canada as a consequence of climate change. Drawing on a systems framework, we qualitatively characterize and assess the potential direct and indirect impact of climate change on malaria in Canada within the context of other concurrent ecological and social trends. Competent malaria vectors currently exist in southern Canada, including within this range several major urban centres, and conditions here have historically supported endemic malaria transmission. Climate change will increase the occurrence of temperature conditions suitable for malaria transmission in Canada, which, combined with trends in international travel, immigration, drug resistance, and inexperience in both clinical and laboratory diagnosis, may increase malaria incidence in Canada and permit sporadic autochthonous cases. This conclusion challenges the general assumption of negligible malaria risk in Canada with climate change. PMID:19277107
Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.
2011-01-01
The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time. ?? 2011 Elsevier B.V.
Climate-driven variability in the occurrence of major floods across North America and Europe
NASA Astrophysics Data System (ADS)
Hodgkins, Glenn A.; Whitfield, Paul H.; Burn, Donald H.; Hannaford, Jamie; Renard, Benjamin; Stahl, Kerstin; Fleig, Anne K.; Madsen, Henrik; Mediero, Luis; Korhonen, Johanna; Murphy, Conor; Wilson, Donna
2017-09-01
Concern over the potential impact of anthropogenic climate change on flooding has led to a proliferation of studies examining past flood trends. Many studies have analysed annual-maximum flow trends but few have quantified changes in major (25-100 year return period) floods, i.e. those that have the greatest societal impacts. Existing major-flood studies used a limited number of very large catchments affected to varying degrees by alterations such as reservoirs and urbanisation. In the current study, trends in major-flood occurrence from 1961 to 2010 and from 1931 to 2010 were assessed using a very large dataset (>1200 gauges) of diverse catchments from North America and Europe; only minimally altered catchments were used, to focus on climate-driven changes rather than changes due to catchment alterations. Trend testing of major floods was based on counting the number of exceedances of a given flood threshold within a group of gauges. Evidence for significant trends varied between groups of gauges that were defined by catchment size, location, climate, flood threshold and period of record, indicating that generalizations about flood trends across large domains or a diversity of catchment types are ungrounded. Overall, the number of significant trends in major-flood occurrence across North America and Europe was approximately the number expected due to chance alone. Changes over time in the occurrence of major floods were dominated by multidecadal variability rather than by long-term trends. There were more than three times as many significant relationships between major-flood occurrence and the Atlantic Multidecadal Oscillation than significant long-term trends.
Climate-driven variability in the occurrence of major floods across North America and Europe
Hodgkins, Glenn A.; Whitfield, Paul H.; Burn, Donald H.; Hannaford, Jamie; Renard, Benjamin; Stahl, Kerstin; Fleig, Anne K.; Madsen, Henrik; Mediero, Luis; Korhonen, Johanna; Murphy, Conor; Wilson, Donna
2017-01-01
Concern over the potential impact of anthropogenic climate change on flooding has led to a proliferation of studies examining past flood trends. Many studies have analysed annual-maximum flow trends but few have quantified changes in major (25–100 year return period) floods, i.e. those that have the greatest societal impacts. Existing major-flood studies used a limited number of very large catchments affected to varying degrees by alterations such as reservoirs and urbanisation. In the current study, trends in major-flood occurrence from 1961 to 2010 and from 1931 to 2010 were assessed using a very large dataset (>1200 gauges) of diverse catchments from North America and Europe; only minimally altered catchments were used, to focus on climate-driven changes rather than changes due to catchment alterations. Trend testing of major floods was based on counting the number of exceedances of a given flood threshold within a group of gauges. Evidence for significant trends varied between groups of gauges that were defined by catchment size, location, climate, flood threshold and period of record, indicating that generalizations about flood trends across large domains or a diversity of catchment types are ungrounded. Overall, the number of significant trends in major-flood occurrence across North America and Europe was approximately the number expected due to chance alone. Changes over time in the occurrence of major floods were dominated by multidecadal variability rather than by long-term trends. There were more than three times as many significant relationships between major-flood occurrence and the Atlantic Multidecadal Oscillation than significant long-term trends.
Projected continent-wide declines of the emperor penguin under climate change
NASA Astrophysics Data System (ADS)
Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal
2014-08-01
Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.
NASA Astrophysics Data System (ADS)
Castañeda-Vera, Alba; Garrido, Alberto; Ruiz-Ramos, Margarita; Sánchez-Sánchez, Enrique; Inés Mínguez, M.
2013-04-01
An extension of risk coverages in the insurance policies for processing tomato, mainly related to rainfall events, has resulted in an important increase in claims. This suggests that damages related to extreme or ill-timed showers have been underestimated in previous years. An estimation of damages related to rainfall in the last thirty years and the impact of climate change in the risk related to rainfall in processing tomato crops in the Guadiana river basin (SW Spain) were studied through a risk index. First, the risk index was defined with temperature and relative humidity thresholds related to different damage magnitudes. Then, this index was applied to current climate and to future climate scenarios in nine weather stations representative of the studied area to determine the trends in losses related to extreme or inopportune rainfall events. Thresholds of temperature and relative humidity were obtained from cross-checking agricultural insurance records and meteorological data from local weather stations (REDAREX, http://sw-aperos.juntaex.es/redarex). To consider longer time series, the reanalysis database ERA-INTERIM (Dee et al., 2011) was used. Simulated climate was obtained from the European Project ENSEMBLES (http://www.ensembles-eu.org/). Trends in climatic risk were analysed by applying the risk index to three sets of data defining current climate (1980-2010), mid-future climate (2010-2040) and long-term future climate (2040-2070). An algorithm to choose the surrounding cell that minimizes the temperature and precipitation climatic biases and maximizes seasonal correlation when comparing ENSEMBLES regional climate model simulations and observed climate was applied before index calculation. The results show the trends in frequency and magnitude of the risk of suffering damages related to rainfall events. The methodology decreased the uncertainty on risk levels. Results contribute to detect the periods during the growing season with larger risk of damage in order to provide information to assist research on risk management practices and to support insurance policy makers to extend guaranties and to adapt the insurance conditions and costs to real crop risks. This research is being financed by MULCLIVAR project (CGL2012-38923-C02-02), MINECO, Spain Keywords: climate change, risk, rainfall, processing tomato. References Dee, D. P., with 35 co-authors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc., 137, 553-597.
Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin
2013-11-01
Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions-the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers' perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers' perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.
NASA Astrophysics Data System (ADS)
Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin
2013-11-01
Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions—the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers’ perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new risks outside the range of current experiences. To enable farmers to adapt to these impacts critical technological, institutional, and market-access constraints need to be removed. Inconsistencies between farmers’ perceptions and observed climate trends (e.g., decrease in annual rainfall) could lead to sub-optimal or counterproductive adaptations, and therefore must be removed by better communication and capacity building, for example through Climate Field Schools. Enabling strategies, which are among others targeted at agricultural inputs, credit supply, market access, and strengthening of local knowledge and information services need to become integral part of government policies to assist farmers to adapt to the impacts of current and future climate change.
Observing climate change trends in ocean biogeochemistry: when and where.
Henson, Stephanie A; Beaulieu, Claudie; Lampitt, Richard
2016-04-01
Understanding the influence of anthropogenic forcing on the marine biosphere is a high priority. Climate change-driven trends need to be accurately assessed and detected in a timely manner. As part of the effort towards detection of long-term trends, a network of ocean observatories and time series stations provide high quality data for a number of key parameters, such as pH, oxygen concentration or primary production (PP). Here, we use an ensemble of global coupled climate models to assess the temporal and spatial scales over which observations of eight biogeochemically relevant variables must be made to robustly detect a long-term trend. We find that, as a global average, continuous time series are required for between 14 (pH) and 32 (PP) years to distinguish a climate change trend from natural variability. Regional differences are extensive, with low latitudes and the Arctic generally needing shorter time series (<~30 years) to detect trends than other areas. In addition, we quantify the 'footprint' of existing and planned time series stations, that is the area over which a station is representative of a broader region. Footprints are generally largest for pH and sea surface temperature, but nevertheless the existing network of observatories only represents 9-15% of the global ocean surface. Our results present a quantitative framework for assessing the adequacy of current and future ocean observing networks for detection and monitoring of climate change-driven responses in the marine ecosystem. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Climate and atmospheric deposition patterns and trends
Warren E. Heilman; John Hom; Brian E. Potter
2000-01-01
One of the most important factors impacting terrestrial and aquatic ecosystems is the atmospheric environment. Climatic and weather events play a significant role in governing the natural processes that occur in these ecosystems. The current characteristics of the vast number of ecosystems that cover the northeast and north central United States are, in part, the...
Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review
NASA Astrophysics Data System (ADS)
Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van
2013-04-01
Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions; adaptive approach that provides inherent flexibility and reversibility and avoids closing off options; importance of active learning. References: Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012). Impacts of climate change on rainfall extremes and urban drainage. IWA Publishing, 252 p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118
One Strategy for Reducing Uncertainty in Climate Change Communications
NASA Astrophysics Data System (ADS)
Romm, J.
2011-12-01
Future impacts of climate change are invariably presented with a very wide range of impacts reflecting two different sets of uncertainties. The first concerns our uncertainty about precisely how much greenhouse gas emissions humanity will emit into the atmosphere. The second concerns our uncertainty about precisely what impact those emissions will have on the climate. By failing to distinguish between these two types of uncertainties, climate scientists have not clearly explained to the public and policymakers what the scientific literature suggests is likely to happen if we don't substantially alter our current emissions path. Indeed, much of climate communications has been built around describing the range of impacts from emissions paths that are increasingly implausible given political and technological constraints, such as a stabilization at 450 or 550 parts per million atmospheric of carbon dioxide. For the past decade, human emissions of greenhouse gases have trended near the worst-case scenarios of the Intergovernmental Panel on Climate Change, emissions paths that reach 800 ppm or even 1000 ppm. The current policies of the two biggest emitters, the United States and China, coupled with the ongoing failure of international negotiations to come to an agreement on restricting emissions, suggests that recent trends will continue for the foreseeable future. This in turn suggests that greater clarity in climate change communications could be achieved by more clearly explaining to the public what the scientific literature suggests the range of impacts are for our current high emissions path. This also suggests that more focus should be given in the scientific literature to better constraining the range of impacts from the high emissions scenarios.
NASA Astrophysics Data System (ADS)
Reyes, J. J.; Elias, E.; Eischens, A.; Shilts, M.; Rango, A.; Steele, R.
2017-12-01
The collaborative synthesis of existing datasets, such as long-term climate observations and farmers' crop insurance payments, can increase their overall collective value and societal application. The U.S. Department of Agriculture (USDA) Climate Hubs were created to develop and deliver science-based information and technologies to agricultural and natural resource managers to enable climate-informed decision-making. As part of this mission, Hubs work across USDA and other climate service agencies to synthesize existing information. The USDA Risk Management Agency (RMA) is responsible for overseeing the Federal crop insurance program which currently insures over $100 billion in crops annually. RMA hosts data describing the cause for loss (e.g. drought, wind, irrigation failure) and indemnity amount (i.e. total cost of loss) at multiple spatio-temporal scales (i.e. state, county, year, month). The objective of this paper is to link climate information with indemnities, and their associated cause of loss, to assess climate risk on agricultural production and provide regionally-relevant information to stakeholders to promote resilient working landscapes. We performed a retrospective trend analysis at the state-level for the American Southwest (SW). First, we assessed indemnity-only trends by cause of loss and crop type at varying temporal scales. Historical monthly weather data (i.e. precipitation and temperature) and long-term drought indices (e.g. Palmer Drought Severity Index) were then linked with indemnities and grouped by different causes of loss. Climatological ranks were used to integrate historical comparative intensity of acute and long-term climatic events. Heat and drought as causes of loss were most correlated with temperature and drought indicators, respectively. Across all SW states increasing indemnities were correlated with warmer conditions. Multiple statistical trend analyses suggest a framework is necessary to appropriately measure the biophysical signals in crop insurance trends taking into account spatio-temporal characteristics. Based on stakeholder feedback, we also developed a web-based information browser to visualize and assess indemnity trends providing useful and usable knowledge to support informed land management decisions and ecosystem resilience.
Precipitation Indices as a Tool for Climate-Resilient Development in the Peruvian Andes
NASA Astrophysics Data System (ADS)
Chisolm, R. E.; McKinney, D. C.
2016-12-01
The local people living in the mountains of the Ancash Department in Peru have noticed changes in their water supply as climate change has altered precipitation patterns. They are seeking adaptation solutions to help guarantee the reliability of their water supply, but there has been very little analysis of historical data to evaluate and justify these adaptation solutions. In addition, Peru's Ministry of Economy and Finance now requires that climate change be part of the vulnerability assessment for all public investment project proposals, but there are currently no tools or methods of data analysis for including climate change in vulnerability assessments. Compounding the difficulties of considering climate change in the sustainability of development projects is the scarcity of climate data in the region and the difficulty of accessing existing data. To counteract this problem, the Peruvian government recommends using local people's perceptions of change as a proxy for gauged climate data. This work focuses on precipitation data analysis in the mountains of Ancash, Peru. The objectives of this analysis were to determine the accuracy of the local population's perceptions of climate change and to investigate how changes in precipitation patterns might impact public investment projects. The precipitation data analysis was compared to a local study of perceptions of change to determine whether or not these perceptions might be used in lieu of gauged climate data. It appears that people's perceptions of precipitation trends do not accurately reflect the trends observed in the gauged data. The methods of analysis were designed so that the results may be useful for public investment projects with a particular emphasis on agricultural projects. The data were analyzed for trends, seasonal patterns and variability. Dry spells were examined, and the results indicate that droughts during the rainy season have become more frequent and of longer duration. This could have significant impact on agricultural projects. It is likely that the current practice of relying exclusively on wet season rainfall to meet crop water requirements may not be sustainable in the future. Further analysis of climate data is needed to generate a regional climatic characterization that can be used for climate-resilient development projects.
Davey, C.A.; Pielke, R.A.; Gallo, K.P.
2006-01-01
There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Ingraham, Elizabeth Wright
Scientists and educators examined long-term national and world trends related to the web of interrelationships involved in climate, food production, population, land use, and environmental quality. Current information and projections for the next quarter century were discussed. In reviewing scientific findings, it was noted that global weather…
Wildfire risk and home purchase decisions.
Patricia Champ; Geoffrey Donovan; Christopher Barth
2008-01-01
In the last 20 years, wildfire damages and the costs of wildfire suppression have risen dramatically. This trend has been attributed to three main factors: climate change, increased fuel loads from a century of wildfire suppression, and increased housing development in fire-prone areas., There is little that fire managers can do about climate change, and current fuel...
Carbon dynamics in trees: feast or famine?
Anna Sala; David R. Woodruff; Fredrick C. Meinzer
2012-01-01
Research on the degree to which carbon (C) availability limits growth in trees, as well as recent trends in climate change and concurrent increases in drought related tree mortality, have led to a renewed focus on the physiological mechanisms associated with tree growth responses to current and future climate. This has led to some dispute over the role of stored...
Urban climate archipelagos: a new framework for urban impacts on climate
J. Marshall Shepherd; T. Andersen; Chris Strother; A. Horst; L. Bounoua; C. Mitra
2013-01-01
Earth is increasingly an âurbanizedâ planet. The âWorld Population Clockâ registered a Population of 7,175,309,538 at 8:30 pm (LST) on Oct. 6, 2013. Current and future trends suggest that this population will increasingly reside in cities. Currently, 52 percent of the world population is urban, which means we are a majority âurbanizedâ society. Figure 1 indicates...
Recent changes in ecologically-relevant streamflows in North America
NASA Astrophysics Data System (ADS)
Ficklin, D. L.; Abatzoglou, J. T.; Knouft, J.; Robeson, S. M.
2017-12-01
The streamflow regime is a primary regulator of the composition and functioning of freshwater ecosystems. Growth, behavior, and/or reproduction of most freshwater organisms are influenced in some way by the amount of water, including high and low flows, and seasonal fluctuations in water availability in a particular habitat. This work examines trends in ecologically-relevant measures of streamflows from 1980-2015 for over 3,000 streamflow gauges located throughout Canada and United States. Specifically, we examine trends in water year mean flow and variability, as well as trends in high (95th and 99th percentile), low (1st and 5th percentile), and 7- and 3-day maximum and minimum streamflows. The results indicate a clear regional delineation of significant increases of ecologically-relevant streamflows in the northern Central Plains/south-central Canada, upper Midwest (except Michigan and Wisconsin) and northeastern United States/southeastern Canada, while significant decreases are found throughout the southeastern and southwestern United States. The regional agreement between streamflow trends in regulated and unregulated watersheds indicate a widespread climatic influence that is not masked by human alteration of streamflows. We explore the degree to which climate factors explain both interannual variability and observed trends in streamflow to better elucidate the role of top-down climate drivers versus bottom-up land surface drivers on recent trends in ecologically-relevant streamflow. We also explore how these changes in streamflow are affecting water quality such as water temperature and sediment concentration. This type of analysis will aid in highlighting streamflow regions in the United States that are currently sensitive to changes in climate, but may also aid in understanding which regions may be sensitive to future climatic changes.
A Test of Model Validation from Observed Temperature Trends
NASA Astrophysics Data System (ADS)
Singer, S. F.
2006-12-01
How much of current warming is due to natural causes and how much is manmade? This requires a comparison of the patterns of observed warming with the best available models that incorporate both anthropogenic (greenhouse gases and aerosols) as well as natural climate forcings (solar and volcanic). Fortunately, we have the just published U.S.-Climate Change Science Program (CCSP) report (www.climatescience.gov/Library/sap/sap1-1/finalreport/default.htm), based on best current information. As seen in Fig. 1.3F of the report, modeled surface temperature trends change little with latitude, except for a stronger warming in the Arctic. The observations, however, show a strong surface warming in the northern hemisphere but not in the southern hemisphere (see Fig. 3.5C and 3.6D). The Antarctic is found to be cooling and Arctic temperatures, while currently rising, were higher in the 1930s than today. Although the Executive Summary of the CCSP report claims "clear evidence" for anthropogenic warming, based on comparing tropospheric and surface temperature trends, the report itself does not confirm this. Greenhouse models indicate that the tropics should provide the most sensitive location for their validation; trends there should increase by 200-300 percent with altitude, peaking at around 10 kilometers. The observations, however, show the opposite: flat or even decreasing tropospheric trend values (see Fig. 3.7 and also Fig. 5.7E). This disparity is demonstrated most strikingly in Fig. 5.4G, which shows the difference between surface and troposphere trends for a collection of models (displayed as a histogram) and for balloon and satellite data. [The disparities are less apparent in the Summary, which displays model results in terms of "range" rather than as histograms.] There may be several possible reasons for the disparity: Instrumental and other effects that exaggerate or otherwise distort observed temperature trends. Or, more likely: Shortcomings in models that result in much reduced values of climate sensitivity; for example, the neglect of important negative feedbacks. Allowing for uncertainties in the data and for imperfect models, there is only one valid conclusion from the failure of greenhouse models to explain the observations: The human contribution to global warming is still quite small, so that natural climate factors are dominant. This may also explain why the climate was cooling from 1940 to 1975 -- even as greenhouse-gas levels increased rapidly. An overall test for climate prediction may soon be possible by measuring the ongoing rise in sea level. According to my estimates, sea level should rise by 1.5 to 2.0 cm per decade (about the same rate as in past millennia); the U.N.-IPCC (4th Assessment Report) predicts 1.4 to 4.3 cm per decade. In the New York Review of Books (July 13, 2006), however, James Hansen suggests 20 feet or more per century -- equivalent to about 60 cm or more per decade.
Trends and Correlation Estimation in Climate Sciences: Effects of Timescale Errors
NASA Astrophysics Data System (ADS)
Mudelsee, M.; Bermejo, M. A.; Bickert, T.; Chirila, D.; Fohlmeister, J.; Köhler, P.; Lohmann, G.; Olafsdottir, K.; Scholz, D.
2012-12-01
Trend describes time-dependence in the first moment of a stochastic process, and correlation measures the linear relation between two random variables. Accurately estimating the trend and correlation, including uncertainties, from climate time series data in the uni- and bivariate domain, respectively, allows first-order insights into the geophysical process that generated the data. Timescale errors, ubiquitious in paleoclimatology, where archives are sampled for proxy measurements and dated, poses a problem to the estimation. Statistical science and the various applied research fields, including geophysics, have almost completely ignored this problem due to its theoretical almost-intractability. However, computational adaptations or replacements of traditional error formulas have become technically feasible. This contribution gives a short overview of such an adaptation package, bootstrap resampling combined with parametric timescale simulation. We study linear regression, parametric change-point models and nonparametric smoothing for trend estimation. We introduce pairwise-moving block bootstrap resampling for correlation estimation. Both methods share robustness against autocorrelation and non-Gaussian distributional shape. We shortly touch computing-intensive calibration of bootstrap confidence intervals and consider options to parallelize the related computer code. Following examples serve not only to illustrate the methods but tell own climate stories: (1) the search for climate drivers of the Agulhas Current on recent timescales, (2) the comparison of three stalagmite-based proxy series of regional, western German climate over the later part of the Holocene, and (3) trends and transitions in benthic oxygen isotope time series from the Cenozoic. Financial support by Deutsche Forschungsgemeinschaft (FOR 668, FOR 1070, MU 1595/4-1) and the European Commission (MC ITN 238512, MC ITN 289447) is acknowledged.
NASA Astrophysics Data System (ADS)
Wang, W.; Hashimoto, H.; Ganguly, S.; Votava, P.; Nemani, R. R.; Myneni, R. B.
2010-12-01
Large uncertainties exist in our understanding of the trends and variability in global net primary production (NPP) and its controls. This study attempts to address this question through a multi-model ensemble experiment. In particular, we drive ecosystem models including CASA, LPJ, Biome-BGC, TOPS-BGC, and BEAMS with a long-term climate dataset (i.e., CRU-NCEP) to estimate global NPP from 1901 to 2009 at a spatial resolution of 0.5 x 0.5 degree. We calculate the trends of simulated NPP during different time periods and test their sensitivities to climate variables of solar radiation, air temperature, precipitation, vapor pressure deficit (VPD), and atmospheric CO2 levels. The results indicate a large diversity among the simulated NPP trends over the past 50 years, ranging from nearly no trend to an increasing trend of ~0.1 PgC/yr. Spatial patterns of the NPP generally show positive trends in boreal forests, induced mainly by increasing temperatures in these regions; they also show negative trends in the tropics, although the spatial patterns are more diverse. These diverse trends result from different climatic sensitivities of NPP among the tested models. Depending the ecological processes (e.g., photosynthesis or respiration) a model emphasizes, it can be more or less responsive to changes in solar radiation, temperatures, water, or atmospheric CO2 levels. Overall, these results highlight the limit of current ecosystem models in simulating NPP, which cannot be easily observed. They suggest that the traditional single-model approach is not ideal for characterizing trends and variability in global carbon cycling.
USDA-ARS?s Scientific Manuscript database
Climate change will add a new stress to our ability to produce food and supply water and energy for the expanding population. There is an emerging gap between the current production trends in food commodities around the world and the projected needs to meet the demands for the world population. This...
Managing for climate change on protected areas: An adaptive management decision making framework.
Tanner-McAllister, Sherri L; Rhodes, Jonathan; Hockings, Marc
2017-12-15
Current protected area management is becoming more challenging with advancing climate change and current park management techniques may not be adequate to adapt for effective management into the future. The framework presented here provides an adaptive management decision making process to assist protected area managers with adapting on-park management to climate change. The framework sets out a 4 step process. One, a good understanding of the park's context within climate change. Secondly, a thorough understanding of the park management systems including governance, planning and management systems. Thirdly, a series of management options set out as an accept/prevent change style structure, including a systematic assessment of those options. The adaptive approaches are defined as acceptance of anthropogenic climate change impact and attempt to adapt to a new climatic environment or prevention of change and attempt to maintain current systems under new climatic variations. Last, implementation and monitoring of long term trends in response to ecological responses to management interventions and assessing management effectiveness. The framework addresses many issues currently with park management in dealing with climate change including the considerable amount of research focussing on 'off-reserve' strategies, and threats and stress focused in situ park management. Copyright © 2017 Elsevier Ltd. All rights reserved.
Woody plants and the prediction of climate-change impacts on bird diversity.
Kissling, W D; Field, R; Korntheuer, H; Heyder, U; Böhning-Gaese, K
2010-07-12
Current methods of assessing climate-induced shifts of species distributions rarely account for species interactions and usually ignore potential differences in response times of interacting taxa to climate change. Here, we used species-richness data from 1005 breeding bird and 1417 woody plant species in Kenya and employed model-averaged coefficients from regression models and median climatic forecasts assembled across 15 climate-change scenarios to predict bird species richness under climate change. Forecasts assuming an instantaneous response of woody plants and birds to climate change suggested increases in future bird species richness across most of Kenya whereas forecasts assuming strongly lagged woody plant responses to climate change indicated a reversed trend, i.e. reduced bird species richness. Uncertainties in predictions of future bird species richness were geographically structured, mainly owing to uncertainties in projected precipitation changes. We conclude that assessments of future species responses to climate change are very sensitive to current uncertainties in regional climate-change projections, and to the inclusion or not of time-lagged interacting taxa. We expect even stronger effects for more specialized plant-animal associations. Given the slow response time of woody plant distributions to climate change, current estimates of future biodiversity of many animal taxa may be both biased and too optimistic.
Climate change in the Fertile Crescent and implications of the recent Syrian drought
Kelley, Colin P.; Mohtadi, Shahrzad; Cane, Mark A.; Seager, Richard; Kushnir, Yochanan
2015-01-01
Before the Syrian uprising that began in 2011, the greater Fertile Crescent experienced the most severe drought in the instrumental record. For Syria, a country marked by poor governance and unsustainable agricultural and environmental policies, the drought had a catalytic effect, contributing to political unrest. We show that the recent decrease in Syrian precipitation is a combination of natural variability and a long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without this trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Eastern Mediterranean, which also shows a long-term trend. There has been also a long-term warming trend in the Eastern Mediterranean, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with model studies of the response to increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. Analyses of observations and model simulations indicate that a drought of the severity and duration of the recent Syrian drought, which is implicated in the current conflict, has become more than twice as likely as a consequence of human interference in the climate system. PMID:25733898
Climate change in the Fertile Crescent and implications of the recent Syrian drought.
Kelley, Colin P; Mohtadi, Shahrzad; Cane, Mark A; Seager, Richard; Kushnir, Yochanan
2015-03-17
Before the Syrian uprising that began in 2011, the greater Fertile Crescent experienced the most severe drought in the instrumental record. For Syria, a country marked by poor governance and unsustainable agricultural and environmental policies, the drought had a catalytic effect, contributing to political unrest. We show that the recent decrease in Syrian precipitation is a combination of natural variability and a long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without this trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Eastern Mediterranean, which also shows a long-term trend. There has been also a long-term warming trend in the Eastern Mediterranean, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with model studies of the response to increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. Analyses of observations and model simulations indicate that a drought of the severity and duration of the recent Syrian drought, which is implicated in the current conflict, has become more than twice as likely as a consequence of human interference in the climate system.
Climate change in the Fertile Crescent and implications of the recent Syrian drought
NASA Astrophysics Data System (ADS)
Kelley, Colin P.; Mohtadi, Shahrzad; Cane, Mark A.; Seager, Richard; Kushnir, Yochanan
2015-03-01
Before the Syrian uprising that began in 2011, the greater Fertile Crescent experienced the most severe drought in the instrumental record. For Syria, a country marked by poor governance and unsustainable agricultural and environmental policies, the drought had a catalytic effect, contributing to political unrest. We show that the recent decrease in Syrian precipitation is a combination of natural variability and a long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without this trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Eastern Mediterranean, which also shows a long-term trend. There has been also a long-term warming trend in the Eastern Mediterranean, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with model studies of the response to increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. Analyses of observations and model simulations indicate that a drought of the severity and duration of the recent Syrian drought, which is implicated in the current conflict, has become more than twice as likely as a consequence of human interference in the climate system.
David M. Barnard; Frederick C. Meinzer; Barbara Lachenbruch; Katherine A. McCulloh; Daniel M. Johnson; David R. Woodruff
2011-01-01
In the Pacific north-west, the Cascade Mountain Range blocks much of the precipitation and maritime influence of the Pacific Ocean, resulting in distinct climates east and west of the mountains. The current study aimed to investigate relationships between water storage and transport properties in populations of Douglas-fir (Pseudotsuga menziesii)...
Climate driven variability and detectability of temporal trends in low flow indicators for Ireland
NASA Astrophysics Data System (ADS)
Hall, Julia; Murphy, Conor; Harrigan, Shaun
2013-04-01
Observational data from hydrological monitoring programs plays an important role in informing decision makers of changes in key hydrological variables. To analyse how changes in climate influence stream flow, undisturbed river basins with near-natural conditions limited from human influences are needed. This study analyses low flow indicators derived from observations from the Irish Reference Network. Within the trend analysis approach the influence of individual years or sub-periods on the detected trend are analysed using sequential trend tests on all possible periods (of at least 10 years in length) by varying the start and end dates of records for various indicators. Results from this study highlight that the current standard approach using fixed periods to determine long term trends is not appropriate as statistical significance and direction of trends from short term records do not persist continuously over entire record and can be heavily influenced by extremes within the record. The importance of longer records in contextualising short term trends derived from fixed-periods influenced by natural annual, inter-annual and multi-decadal variability is highlighted. Due to the low signal (trend) to noise (variability) ratio, the apparent trends derived from the low flow indicators cannot be used as confident guides to inform future water resources planning and decision making on climate change. Infact, some derived trends contradict expected climate change impacts and even small changes in study design can change the outcomes to a high degree. Therefore it is important not only to evaluate the magnitude of trends derived from monitoring data but also when a trend of a certain magnitude in a given indicator will be detectable to inform decision making or what changes might be required to detect trends for a certain significance level. In this study, the influence of observed variance in the monitoring records on the expected detection times for trends with a fixed magnitude are presented. Depending on the indicator selected, the sample variance and trend magnitude very different detection time estimates are obtained and in most cases not within the time required for anticipatory adaptation in the water resources sector. Additionally, the minimum changes in low flow indicators required to be detectable are large and changes are unlikely to be statistically detectable for many years. This means that water management and planning for anticipated future climatic changes will be required to take place without these changes being formally statistically detectable.Waiting for these trends to become formally detectable with the traditional statistical methods might not be an option for water resources management. Within the monitoring network, a considerable difference is apparent between stations in terms of detection times and changes required for detection. The existence of flow monitoring stations showing short detection times for specific indicators confirms the potential for identifying stations that may be first responders to climate induced changes. Identifying sentinel stations can increase the ability to more effectively optimise the deployment of resources for monitoring the influences of climatic change in a hydrometric reference network.
Climate change and human health: what are the research trends? A scoping review protocol.
Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie
2016-12-23
For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Climate change and human health: what are the research trends? A scoping review protocol
Herlihy, Niamh; Bar-Hen, Avner; Verner, Glenn; Fischer, Helen; Sauerborn, Rainer; Depoux, Anneliese; Flahault, Antoine; Schütte, Stefanie
2016-01-01
Introduction For 28 years, the Intergovernmental Panel on Climate Change (IPCC) has been assessing the potential risks associated with anthropogenic climate change. Although interest in climate change and health is growing, the implications arising from their interaction remain understudied. Generating a greater understanding of the health impacts of climate change could be key step in inciting some of the changes necessary to decelerate global warming. A long-term and broad overview of the existing scientific literature in the field of climate change and health is currently missing in order to ensure that all priority areas are being adequately addressed. In this paper we outline our methods to conduct a scoping review of the published peer-reviewed literature on climate change and health between 1990 and 2015. Methods and analysis A detailed search strategy will be used to search the PubMed and Web of Science databases. Specific inclusion and exclusion criteria will be applied in order to capture the most relevant literature in the time frame chosen. Data will be extracted, categorised and coded to allow for statistical analysis of the results. Ethics and dissemination No ethical approval was required for this study. A searchable database of climate change and health publications will be developed and a manuscript will be complied for publication and dissemination of the findings. We anticipate that this study will allow us to map the trends observed in publications over the 25-year time period in climate change and health research. It will also identify the research areas with the highest volume of publications as well as highlight the research trends in climate change and health. PMID:28011805
NASA Astrophysics Data System (ADS)
Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei
2017-09-01
Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.
The Current Status and Future of GNSS-Meteorology in Europe
NASA Astrophysics Data System (ADS)
Jones, J.; Guerova, G.; Dousa, J.; Dick, G.; Haan, de, S.; Pottiaux, E.; Bock, O.; Pacione, R.
2017-12-01
GNSS is a well established atmospheric observing system which can accurately sense water vapour, the most abundant greenhouse gas, accounting for 60-70% of atmospheric warming. Water vapour observations are currently under-sampled in operational meteorology and obtaining and exploiting additional high-quality humidity observations is essential to improve severe weather forecasting and climate monitoring. Inconsistencies introduced into long-term time series from improved GNSS processing algorithms make climate trend analysis challenging. Ongoing re-processing efforts using state-of-the-art models are underway which will provide consistent time series' of tropospheric data, using 15+ years of GNSS observations and from over 600 stations worldwide. These datasets will enable validation of systematic biases from a range of instrumentation, improve the knowledge of climatic trends of atmospheric water vapour, and will potentially be of great benefit to global and regional NWP reanalyses and climate model simulations (e.g. IPCC AR5) COST Action ES1206 is a 4-year project, running from 2013 to 2017, which has coordinated new and improved capabilities from concurrent developments in GNSS, meteorological and climate communities. For the first time, the synergy of multi-GNSS constellations has been used to develop new, more advanced tropospheric products, exploiting the full potential of multi-GNSS on a wide range of temporal and spatial scales - from real-time products monitoring and forecasting severe weather, to the highest quality post-processed products suitable for climate research. The Action has also promoted the use of meteorological data as an input to real-time GNSS positioning, navigation, and timing services and has stimulated knowledge and data transfer throughout Europe and beyond. This presentation will give an overview of COST Action ES1206 plus an overview of ground-based GNSS-meteorology in Europe in general, including current status and future opportunities.
Impact of regional climate change on human health
NASA Astrophysics Data System (ADS)
Patz, Jonathan A.; Campbell-Lendrum, Diarmid; Holloway, Tracey; Foley, Jonathan A.
2005-11-01
The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.
Zhou, Yang; Li, Ning; Dong, Guanpeng; Wu, Wenxiang
2013-08-30
Investigating the degree to which climate change may have impacted on rice yields can provide an insight into how to adapt to climate change in the future. Meteorological and rice yield data over the period 1960-2009 from the Heilongjiang Reclamation Area of north-east China (HRANC) were used to explore the possible impacts of climate change on rice yields at sub-regional scale. Results showed that a warming trend was obvious in the HRANC and discernible climate fluctuations and yield variations on inter-annual scale were detected to have occurred in the 1980s and 1990s, respectively. Statistically positive correlation was observed between growing season temperature and rice yields, with an increase rate by approximately 3.60% for each 1°C rise in the minimum temperature during growing season. Such findings are consistent with the current mainstream view that warming climate may exert positive impacts on crop yields in the middle and higher latitude regions. Our study indicated that the growing season minimum temperature was a major driver of all the climatic factors to the recent increase trends in rice yield in HRANC over the last five decades. © 2013 Society of Chemical Industry.
Impact of regional climate change on human health.
Patz, Jonathan A; Campbell-Lendrum, Diarmid; Holloway, Tracey; Foley, Jonathan A
2005-11-17
The World Health Organisation estimates that the warming and precipitation trends due to anthropogenic climate change of the past 30 years already claim over 150,000 lives annually. Many prevalent human diseases are linked to climate fluctuations, from cardiovascular mortality and respiratory illnesses due to heatwaves, to altered transmission of infectious diseases and malnutrition from crop failures. Uncertainty remains in attributing the expansion or resurgence of diseases to climate change, owing to lack of long-term, high-quality data sets as well as the large influence of socio-economic factors and changes in immunity and drug resistance. Here we review the growing evidence that climate-health relationships pose increasing health risks under future projections of climate change and that the warming trend over recent decades has already contributed to increased morbidity and mortality in many regions of the world. Potentially vulnerable regions include the temperate latitudes, which are projected to warm disproportionately, the regions around the Pacific and Indian oceans that are currently subjected to large rainfall variability due to the El Niño/Southern Oscillation sub-Saharan Africa and sprawling cities where the urban heat island effect could intensify extreme climatic events.
NASA Astrophysics Data System (ADS)
Menzel, Annette
2014-05-01
Phenology is the study of the timing of natural events such as plant growth or animal migration. Currently nearly 500 papers are published annually that include 'phenolog*' in their title; many are related to anthropogenic change. Since seasonal events are triggered predominantly by climate, phenology has emerged as a key asset in identifying fingerprints of climate change in natural systems, especially since recent warming has been mirrored by significantly advancing spring events. Phenological changes have been reported across continents, habitats and taxa, predominantly as mean temporal changes ('trends') or as relationships to temperature and other drivers ('responses'), and have been summarised in various meta-analyses. However, a considerable variability in observed trends and responses is reported along with mixed messages of the footprint of climate change in nature. Phenology has made considerable advances but is a crossroads of understanding this variability. At the same time a change of emphasis in explanation, prediction and adaptation is emerging, which needs a full acknowledgement of this variability; likely yielding to more plasticity and resilience. In this review, I summarize current knowledge and recent insights into the role of • different observation methods, their accuracy and their target phenophases • observed events, species, traits, ontogenetic effects • species-specific safeguarding strategies, e.g. chilling, photoperiod • additional drivers other than climate, e.g. nutrients, GHG, biotic effects, anthropogenic / agricultural management • seasonal as well as spatio-temporal variation, effects of regional climate changes and analogous climates. This review clearly demonstrated that, comparable to weather and climate ensembles, only a full consideration of variation in responses allows a complete understanding of ecological, cultural and socioeconomic consequences of these phenological changes.
Changes in plant community composition lag behind climate warming in lowland forests.
Bertrand, Romain; Lenoir, Jonathan; Piedallu, Christian; Riofrío-Dillon, Gabriela; de Ruffray, Patrice; Vidal, Claude; Pierrat, Jean-Claude; Gégout, Jean-Claude
2011-10-19
Climate change is driving latitudinal and altitudinal shifts in species distribution worldwide, leading to novel species assemblages. Lags between these biotic responses and contemporary climate changes have been reported for plants and animals. Theoretically, the magnitude of these lags should be greatest in lowland areas, where the velocity of climate change is expected to be much greater than that in highland areas. We compared temperature trends to temperatures reconstructed from plant assemblages (observed in 76,634 surveys) over a 44-year period in France (1965-2008). Here we report that forest plant communities had responded to 0.54 °C of the effective increase of 1.07 °C in highland areas (500-2,600 m above sea level), while they had responded to only 0.02 °C of the 1.11 °C warming trend in lowland areas. There was a larger temperature lag (by 3.1 times) between the climate and plant community composition in lowland forests than in highland forests. The explanation of such disparity lies in the following properties of lowland, as compared to highland, forests: the higher proportion of species with greater ability for local persistence as the climate warms, the reduced opportunity for short-distance escapes, and the greater habitat fragmentation. Although mountains are currently considered to be among the ecosystems most threatened by climate change (owing to mountaintop extinction), the current inertia of plant communities in lowland forests should also be noted, as it could lead to lowland biotic attrition. ©2011 Macmillan Publishers Limited. All rights reserved
Gunda, Resign; Chimbari, Moses John; Shamu, Shepherd; Sartorius, Benn; Mukaratirwa, Samson
2017-09-30
Malaria is a public health problem in Zimbabwe. Although many studies have indicated that climate change may influence the distribution of malaria, there is paucity of information on its trends and association with climatic variables in Zimbabwe. To address this shortfall, the trends of malaria incidence and its interaction with climatic variables in rural Gwanda, Zimbabwe for the period January 2005 to April 2015 was assessed. Retrospective data analysis of reported cases of malaria in three selected Gwanda district rural wards (Buvuma, Ntalale and Selonga) was carried out. Data on malaria cases was collected from the district health information system and ward clinics while data on precipitation and temperature were obtained from the climate hazards group infrared precipitation with station data (CHIRPS) database and the moderate resolution imaging spectro-radiometer (MODIS) satellite data, respectively. Distributed lag non-linear models (DLNLM) were used to determine the temporal lagged association between monthly malaria incidence and monthly climatic variables. There were 246 confirmed malaria cases in the three wards with a mean incidence of 0.16/1000 population/month. The majority of malaria cases (95%) occurred in the > 5 years age category. The results showed no correlation between trends of clinical malaria (unconfirmed) and confirmed malaria cases in all the three study wards. There was a significant association between malaria incidence and the climatic variables in Buvuma and Selonga wards at specific lag periods. In Ntalale ward, only precipitation (1- and 3-month lag) and mean temperature (1- and 2-month lag) were significantly associated with incidence at specific lag periods (p < 0.05). DLNM results suggest a key risk period in current month, based on key climatic conditions in the 1-4 month period prior. As the period of high malaria risk is associated with precipitation and temperature at 1-4 month prior in a seasonal cycle, intensifying malaria control activities over this period will likely contribute to lowering the seasonal malaria incidence.
Carbajo, Aníbal E; Vera, Carolina; González, Paula LM
2009-01-01
Background Oligoryzomys longicaudatus (colilargo) is the rodent responsible for hantavirus pulmonary syndrome (HPS) in Argentine Patagonia. In past decades (1967–1998), trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent distribution in an equivalent period of time only in certain areas. Given that changes maintain for 60 years or double in 30 years, the hantavirus reservoir Oligoryzomys longicaudatus may contract its distribution in Argentine Patagonia extensively. PMID:19607707
Kjellstrom, Tord; Lemke, Bruno; Otto, Matthias
2017-09-01
Occupational health is particularly affected by high heat exposures in workplaces, which will be an increasing problem as climate change progresses. People working in jobs of moderate or heavy work intensity in hot environments are at particular risk, owing to exposure to high environmental heat and internal heat production. This heat needs to be released to protect health, and such release is difficult or impossible at high temperatures and high air humidity. A range of clinical health effects can occur, and the heat-related physical exhaustion leads to a reduction of work capacity and labour productivity, which may cause substantial economic losses. Current trends in countries of the World Health Organization South-East Asia Region are towards higher ambient heat levels during large parts of each year, and modelling indicates continuing trends, which will particularly affect low-income individuals and communities. Prevention activities need to address the climate policies of each country, and to apply currently available heat-reducing technologies in workplaces whenever possible. Work activities can be adjusted to reduce exposure to daily heat peaks or seasonal heat concerns. Application of basic occupational health principles, such as supply of drinking water, enforcement of rest periods and training of workers and supervisors, is essential.
External costs of transport in central and eastern Europe : final report
DOT National Transportation Integrated Search
2003-08-08
Current and projected transport trends in Central and Eastern Europe are not sustainable and cause severe damage to human health and the environment. Transport-related accidents, air pollution, noise, climate change impacts, etc. generate large socia...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graumlich, L.J.
1991-02-01
Five tree-ring series from foxtail pine (Pinus balfouriana), lodgepole pine (P. murrayana), and western juniper (Juniperus occidentalis) collected in the Sierra Nevada, California, were analyzed to determine if the temporal and spatial patterns of recent growth were consistent with the hypothesized CO{sub 2}-induced growth enhancement. Specifically, the author addresses the following questions: (1) can growth trends be explained solely in terms of climatic variation; (2) are recent growth trends unusual with respect to long-term growth records While the results offer no support for the hypothesized CO{sub 2} fertilization effect, they do provide insights into the response of subalpine conifers tomore » climatic variation. Response surfaces demonstrate that precipitation during previous winter and temperature during the current summer interact in controlling growth and that the response can be nonlinear. Although maximum growth rates occur under conditions of high winter precipitation and warm summers for all three species, substantial species-to-species variation occurs in the response to these two variables.« less
Importance of ensembles in projecting regional climate trends
NASA Astrophysics Data System (ADS)
Arritt, Raymond; Daniel, Ariele; Groisman, Pavel
2016-04-01
We have performed an ensemble of simulations using RegCM4 to examine the ability to reproduce observed trends in precipitation intensity and to project future changes through the 21st century for the central United States. We created a matrix of simulations over the CORDEX North America domain for 1950-2099 by driving the regional model with two different global models (HadGEM2-ES and GFDL-ESM2M, both for RCP8.5), by performing simulations at both 50 km and 25 km grid spacing, and by using three different convective parameterizations. The result is a set of 12 simulations (two GCMs by two resolutions by three convective parameterizations) that can be used to systematically evaluate the influence of simulation design on predicted precipitation. The two global models were selected to bracket the range of climate sensitivity in the CMIP5 models: HadGEM2-ES has the highest ECS of the CMIP5 models, while GFDL-ESM2M has one of the lowestt. Our evaluation metrics differ from many other RCM studies in that we focus on the skill of the models in reproducing past trends rather than the mean climate state. Trends in frequency of extreme precipitation (defined as amounts exceeding 76.2 mm/day) for most simulations are similar to the observed trend but with notable variations depending on RegCM4 configuration and on the driving GCM. There are complex interactions among resolution, choice of convective parameterization, and the driving GCM that carry over into the future climate projections. We also note that biases in the current climate do not correspond to biases in trends. As an example of these points the Emanuel scheme is consistently "wet" (positive bias in precipitation) yet it produced the smallest precipitation increase of the three convective parameterizations when used in simulations driven by HadGEM2-ES. However, it produced the largest increase when driven by GFDL-ESM2M. These findings reiterate that ensembles using multiple RCM configurations and driving GCMs are essential for projecting regional climate change, even when a single RCM is used. This research was sponsored by the U.S. Department of Agriculture National Institute of Food and Agriculture.
Climate Change and Political Instability in Syria
NASA Astrophysics Data System (ADS)
Kelley, C. P.; Mohtadi, S.; Cane, M. A.; Seager, R.; Kushnir, Y.
2013-12-01
From 2005 to 2010, Syria experienced the most severe and persistent drought in the instrumental record, devastating the agriculture and causing widespread crop failure. A mass migration of farming families to urban peripheries followed the resulting food shortages, unemployment, and disruption of rural social structure. The addition of nearly 1.5 million drought refugees to the recent influx of Iraqi refugees greatly exacerbated conditions in the urban slums. Anger at the government's failure to respond to the drought's impacts contributed to the political unrest that began in March 2011. The recent decrease in Syrian precipitation is a combination of natural variability and long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without the trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Eastern Mediterranean, which also shows a long-term trend. Compared to the natural variability alone, the trend has made the occurrence of such a severe drought eight times more likely. There has been also a long-term warming trend in Syria, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with observed increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. The severity and duration of the recent Syrian drought, implicated as a cause of the current conflict, is highly likely to be a consequence of human interference in the climate system.
A reversal of fortunes: climate change ‘winners’ and ‘losers’ in Antarctic Peninsula penguins
Clucas, Gemma V.; Dunn, Michael J.; Dyke, Gareth; Emslie, Steven D.; Levy, Hila; Naveen, Ron; Polito, Michael J.; Pybus, Oliver G.; Rogers, Alex D.; Hart, Tom
2014-01-01
Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces ‘winners’, species that benefit from these events and ‘losers’, species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a ‘reversal of fortunes’ as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change ‘winners’, while Adélie and chinstrap penguins have become climate change ‘losers’. PMID:24865774
A reversal of fortunes: climate change 'winners' and 'losers' in Antarctic Peninsula penguins.
Clucas, Gemma V; Dunn, Michael J; Dyke, Gareth; Emslie, Steven D; Naveen, Ron; Polito, Michael J; Pybus, Oliver G; Rogers, Alex D; Hart, Tom
2014-06-12
Climate change is a major threat to global biodiversity. Antarctic ecosystems are no exception. Investigating past species responses to climatic events can distinguish natural from anthropogenic impacts. Climate change produces 'winners', species that benefit from these events and 'losers', species that decline or become extinct. Using molecular techniques, we assess the demographic history and population structure of Pygoscelis penguins in the Scotia Arc related to climate warming after the Last Glacial Maximum (LGM). All three pygoscelid penguins responded positively to post-LGM warming by expanding from glacial refugia, with those breeding at higher latitudes expanding most. Northern (Pygoscelis papua papua) and Southern (Pygoscelis papua ellsworthii) gentoo sub-species likely diverged during the LGM. Comparing historical responses with the literature on current trends, we see Southern gentoo penguins are responding to current warming as they did during post-LGM warming, expanding their range southwards. Conversely, Adélie and chinstrap penguins are experiencing a 'reversal of fortunes' as they are now declining in the Antarctic Peninsula, the opposite of their response to post-LGM warming. This suggests current climate warming has decoupled historic population responses in the Antarctic Peninsula, favoring generalist gentoo penguins as climate change 'winners', while Adélie and chinstrap penguins have become climate change 'losers'.
Climate change in the Fertile Crescent and implications of the recent Syrian drought
Kelley, Colin P.; Mohtadi, Shahrzad; Cane, Mark A.; ...
2015-03-02
Before the Syrian uprising that began in 2011, the greater Fertile Crescent experienced the most severe drought in the instrumental record. For Syria, a country marked by poor governance and unsustainable agricultural and environmental policies, the drought had a catalytic effect, contributing to political unrest. In this paper, we show that the recent decrease in Syrian precipitation is a combination of natural variability and a long-term drying trend, and the unusual severity of the observed drought is here shown to be highly unlikely without this trend. Precipitation changes in Syria are linked to rising mean sea-level pressure in the Easternmore » Mediterranean, which also shows a long-term trend. There has been also a long-term warming trend in the Eastern Mediterranean, adding to the drawdown of soil moisture. No natural cause is apparent for these trends, whereas the observed drying and warming are consistent with model studies of the response to increases in greenhouse gases. Furthermore, model studies show an increasingly drier and hotter future mean climate for the Eastern Mediterranean. Finally, analyses of observations and model simulations indicate that a drought of the severity and duration of the recent Syrian drought, which is implicated in the current conflict, has become more than twice as likely as a consequence of human interference in the climate system.« less
On the definition and identifiability of the alleged "hiatus" in global warming.
Lewandowsky, Stephan; Risbey, James S; Oreskes, Naomi
2015-11-24
Recent public debate and the scientific literature have frequently cited a "pause" or "hiatus" in global warming. Yet, multiple sources of evidence show that climate change continues unabated, raising questions about the status of the "hiatus". To examine whether the notion of a "hiatus" is justified by the available data, we first document that there are multiple definitions of the "hiatus" in the literature, with its presumed onset spanning a decade. For each of these definitions we compare the associated temperature trend against trends of equivalent length in the entire record of modern global warming. The analysis shows that the "hiatus" trends are encompassed within the overall distribution of observed trends. We next assess the magnitude and significance of all possible trends up to 25 years duration looking backwards from each year over the past 30 years. At every year during the past 30 years, the immediately preceding warming trend was always significant when 17 years (or more) were included in the calculation, alleged "hiatus" periods notwithstanding. If current definitions of the "pause" used in the literature are applied to the historical record, then the climate system "paused" for more than 1/3 of the period during which temperatures rose 0.6 K.
Modelling Bambara Groundnut Yield in Southern Africa: Towards a Climate-Resilient Future
NASA Technical Reports Server (NTRS)
Karunaratne, A. S.; Walker, S.; Ruane, A. C.
2015-01-01
Current agriculture depends on a few major species grown as monocultures that are supported by global research underpinning current productivity. However, many hundreds of alternative crops have the potential to meet real world challenges by sustaining humanity, diversifying agricultural systems for food and nutritional security, and especially responding to climate change through their resilience to certain climate conditions. Bambara groundnut (Vigna subterranea (L.) Verdc.), an underutilised African legume, is an exemplar crop for climate resilience. Predicted yield performances of Bambara groundnut by AquaCrop (a crop-water productivity model) were evaluated for baseline (1980-2009) and mid-century climates (2040-2069) under 20 downscaled Global Climate Models (CMIP5-RCP8.5), as well as for climate sensitivities (AgMIPC3MP) across 3 locations in Southern Africa (Botswana, South Africa, Namibia). Different land - races of Bambara groundnut originating from various semi-arid African locations showed diverse yield performances with diverse sensitivities to climate. S19 originating from hot-dry conditions in Namibia has greater future yield potential compared to the Swaziland landrace Uniswa Red-UN across study sites. South Africa has the lowest yield under the current climate, indicating positive future yield trends. Namibia reported the highest baseline yield at optimum current temperatures, indicating less yield potential in future climates. Bambara groundnut shows positive yield potential at temperatures of up to 31degC, with further warming pushing yields down. Thus, many regions in Southern Africa can utilize Bambara groundnut successfully in the coming decades. This modelling exercise supports decisions on genotypic suitability for present and future climates at specific locations.
NASA Astrophysics Data System (ADS)
Giannini, Alessandra; Lyon, Bradfield; Seager, Richard; Vigaud, Nicolas
2018-01-01
We propose a dynamical interpretation of model projections for an end-of-century wetting in equatorial East Africa. In the current generation of global climate models, increased atmospheric moisture content associated with warming is not the dominant process explaining the increase in rainfall, as the regional circulation is only weakly convergent even during the rainy seasons. Instead, projected wetter future conditions are generally consistent with the El Niño-like trend in tropical Pacific sea surface temperatures in climate models. In addition, a weakening in moisture convergence over the adjacent Congo Basin and Maritime Continent cores of convection results in the weakening of near-surface winds, which increases moisture advection from the Congo Basin core toward the East African margin. Overall confidence in the projections is limited by the significant biases in simulation of the regional climatology and disagreement between observed and modeled tropical Pacific sea surface temperature trends to date.
Andriuzzi, W S; Adams, B J; Barrett, J E; Virginia, R A; Wall, D H
2018-02-01
Long-term observations of ecological communities are necessary for generating and testing predictions of ecosystem responses to climate change. We investigated temporal trends and spatial patterns of soil fauna along similar environmental gradients in three sites of the McMurdo Dry Valleys, Antarctica, spanning two distinct climatic phases: a decadal cooling trend from the early 1990s through the austral summer of February 2001, followed by a shift to the current trend of warming summers and more frequent discrete warming events. After February 2001, we observed a decline in the dominant species (the nematode Scottnema lindsayae) and increased abundance and expanded distribution of less common taxa (rotifers, tardigrades, and other nematode species). Such diverging responses have resulted in slightly greater evenness and spatial homogeneity of taxa. However, total abundance of soil fauna appears to be declining, as positive trends of the less common species so far have not compensated for the declining numbers of the dominant species. Interannual variation in the proportion of juveniles in the dominant species was consistent across sites, whereas trends in abundance varied more. Structural equation modeling supports the hypothesis that the observed biological trends arose from dissimilar responses by dominant and less common species to pulses of water availability resulting from enhanced ice melt. No direct effects of mean summer temperature were found, but there is evidence of indirect effects via its weak but significant positive relationship with soil moisture. Our findings show that combining an understanding of species responses to environmental change with long-term observations in the field can provide a context for validating and refining predictions of ecological trends in the abundance and diversity of soil fauna. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Pricope, N. G.; Husak, G. J.; Funk, C. C.; Lopez-Carr, D.
2014-12-01
Increasing climate variability and extreme weather conditions along with declining trends in both rainfall and temperature represent major risk factors affecting agricultural production and food security in many regions of the world. We identify regions where significant rainfall decrease from 1979-2011 over the entire continent of Africa couples with significant human population density increase. The rangelands of Ethiopia, Kenya, and Somalia in the East African Horn remain one of the world's most food insecure regions, yet have significantly increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. Vegetation in this region is characterized by a variable mosaic of land covers, generally dominated by grasslands necessary for agro-pastoralism, interspersed by woody vegetation. Recent assessments indicate that widespread degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using two underutilized MODIS products, we observe significant changes in vegetation patterns and productivity over the last decade all across the East African Horn. We observe significant vegetation browning trends in areas experiencing drying precipitation trends in addition to increasing population pressures. We also found that the drying precipitation trends only partially statistically explain the vegetation browning trends, further indicating that other factors such as population pressures and land use changes are responsible for the observed declining vegetation health. Furthermore, we show that the general vegetation browning trends persist even during years with normal rainfall conditions such as 2012, indicating potential long-term degradation of rangelands on which approximately 10 million people depend. These findings have serious implications for current and future regional food security monitoring and forecasting as well as for mitigation and adaptation strategies in a region where population is expected to continue increasing against a backdrop of drying climate trends.
The scaling law of climate change and its relevance to assessing (palaeo)biological responses
NASA Astrophysics Data System (ADS)
Kiessling, Wolfgang; Eichenseer, Kilian
2014-05-01
It is often argued that current rates of climate change are unprecedented in the geological past. At the same time, the magnitudes of change were often much greater in deep time than they are in history. The most severe global warming in the Phanerozoic, with dramatic consequences for life, probably occurred across the Permian-Triassic (P-T) boundary when an increase of tropical water temperatures of 15° C has been observed to occur over a timespan 0.8 myr (Sun et al. 2012), whereas global ocean warming over the last 50 years was 0.35° C (Burrows et al. 2011). When transforming these data into rates of change the P-T rate was roughly 370 times smaller than the current rate. We argue that the smaller rates of change inferred from geological proxy records are due to a scaling effect, that is, rates of climate change generally decrease with timespan of observation. We compiled from the published literature data on measured or inferred temperature changes and the timespans over which these changes were assessed. Our compilation currently comprises 120 values and covers timespans from 20 to 107 years. A log-log plot of timespan versus rate of temperature change depicts a highly significant correlation (r2 = 0.95) of a power-law relationship with an exponent of -0.87. Warming trends show a slightly lower exponent (-0.84) than cooling trends (-0.89) but the explained variance is better for the scaling of warming trends. Importantly, the scaled warming trend across the P-T boundary is higher than the current rates of warming. Similar scaling effects are well explored for sediment accumulation rates (Sadler 1981) and evolutionary rates (Gingerich 1993). These have been interpreted as being due to breaks in sedimentation and periods of stasis or transient reversals, respectively. In case of climate change, transient reversals in general trends are the most likely explanation for the scaling relationship. Even relatively rapid intervals of warming, such as the Pleistocene interglacials, are not monotonic, but punctuated by short-term cooling intervals. The fossil record tells us that biodiversity responded dramatically to ancient intervals of climate warming. We can now see that the apparently slower rates of change in some mass extinctions (Permian-Triassic, Triassic-Jurassic) were greater than today when the scaling law is considered. This reassures us that studying deep time patterns of organismic response to climate change is a worthwhile endeavor that is relevant for predicting the future. References Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., Kiessling, W., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F. B., Sydeman, W. J., and Richardson, A. J.: The pace of shifting climate in marine and terrestrial ecosystems, Science, 334, 652-655, 2011. Gingerich, P. D.: Quantification and comparison of evolutionary rates, American Journal of Science, 293A, 453-478, 1993. Sadler, P. M.: Sediment accumulation rates and the completeness of stratigraphic sections, Journal of Geology, 89, 569-584, 1981. Sun, Y., Joachimski, M. M., Wignall, P. B., Yan, C., Chen, Y., Jiang, H., Wang, L., and Lai, X.: Lethally hot temperatures during the Early Triassic greenhouse, Science, 338, 366-370, 2012.
Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof
2017-10-01
Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species ( Larix decidua , Picea abies , Pinus cembra , and Pinus mugo ) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall ( L. decidua ) and current year's spring ( L. decidua , P. abies ). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies , P. cembra , and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long-suspected negative and positive feedback of climate change on stand dynamics at treeline.
NASA Astrophysics Data System (ADS)
Lawrence, S. P.; Llewellyn-Jones, D. T.; Smith, S. J.
2004-08-01
Global sea-surface temperature is an important indicator of climate change, with the ability to reflect warming/cooling climate trends. The detection of such trends requires rigorous measurements that are global, accurate, and consistent. Space instruments can provide the means to achieve these required attributes in sea-surface temperature data. Analyses of two independent data sets from the Advanced Very High Resolution and Along Track Scanning Radiometers series of space sensors during the period 1985 to 2000 reveal trends of increasing global temperature with magnitudes of 0.09°C and 0.13°C per decade, respectively, closely matching that expected due to current levels of greenhouse gas exchange. In addition, an analysis based upon singular value decomposition, allowing the removal of El Niño in order to examine areas of change other than the tropical Pacific region, indicates that the 1997 El Niño event affected sea-surface temperature globally. The methodology demonstrated here can be applied to other data sets, which cover long time series observations of geophysical observations in order to characterize long-term change. The conclusion is that satellite sea-surface temperature provides an important means to quantify and explore the processes of climate change.
Climate forcings in the industrial era.
Hansen, J E; Sato, M; Lacis, A; Ruedy, R; Tegen, I; Matthews, E
1998-10-27
The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.
Climate Forcings in the Industrial Era
NASA Technical Reports Server (NTRS)
Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine
1998-01-01
The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is-that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.
Climate forcings in the Industrial era
Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine
1998-01-01
The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular “business as usual” or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue. PMID:9788985
Climate Simulations of Past, Present and Future
NASA Technical Reports Server (NTRS)
Hansen, James E.
1999-01-01
The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.
Climate Forcing in the Industrial Era
NASA Technical Reports Server (NTRS)
Hansen, James E.
1998-01-01
The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO2 growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.
Perspective: Climate Forcings in the Industrial Era
NASA Technical Reports Server (NTRS)
Hansen, James E.; Sato, Makiko; Lacis, Andrew; Ruedy, Reto; Tegen, Ina; Matthews, Elaine
1998-01-01
The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. One consequence of this partial balance is that the natural forcing due to solar irradiance changes may play a larger role in long-term climate change than inferred from comparison with GHGs alone. Current trends in GHG climate forcings are smaller than in popular "business as usual" or 1% per year CO growth scenarios. The summary implication is a paradigm change for long-term climate projections: uncertainties in climate forcings have supplanted global climate sensitivity as the predominant issue.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-10
... level), rising sea levels due to climate change may inundate some habitat occupied by the species and... current population levels, and current and projected trends; and (e) Past and ongoing conservation... Philosophical Society, Vol. 4 (1799), pp. 362-381). The Florida Museum of Natural History Web site 2011 ( http...
Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew
2012-01-01
This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.
NASA Astrophysics Data System (ADS)
McMonagle, H.; Koslow, J. A.; Watson, W.
2016-02-01
Climate has been shown to play a major role in the dynamics of fisheries and marine ecosystems. Previous studies of relationships between physical oceanography and fish population dynamics have focused primarily on commercially important species. However, as we move towards more comprehensive, ecosystem-based management of fisheries, it is important to understand how entire assemblages of fish, including ecologically important but noncommercial taxa, are influenced by climate. We used the ichthyoplankton time series maintained by the California Cooperative Oceanic Fisheries Investigations (CalCOFI) to examine changes in over 200 fish taxa from 1969 to 2011 in the Southern California Current region. We used several indices of species richness and evenness, as well as graphical approaches, to examine potential changes in the diversity of regional fish assemblages in relation to interannual and decadal-scale climate variability. These include El Niño-La Niña events, changes in deepwater oxygen concentration and long-term ocean warming. Richness was positively correlated with deepwater oxygen concentration, consistent with the strong correlation between midwater fish abundance and oxygen. Diversity (a measurement of both richness and evenness) was positively correlated with sea surface temperature. Diversity decreased as the abundance of a diverse midwater fish assemblage declined, and it increased as a dominant assemblage of common, coldwater fish declined. This latter pattern may be due to the strong dominance of species with cold water affinities when conditions were favorable, which reduced evenness in the community. Trends in deoxygenation and warming are predicted to continue due to climate change. A better understanding of the relationships between the diversity of fish communities and climate could lead to improved indicators of ecosystem status and the ability to predict trends in fish communities related to climate change.
Phenological Changes in the Southern Hemisphere
Chambers, Lynda E.; Altwegg, Res; Barbraud, Christophe; Barnard, Phoebe; Beaumont, Linda J.; Crawford, Robert J. M.; Durant, Joel M.; Hughes, Lesley; Keatley, Marie R.; Low, Matt; Morellato, Patricia C.; Poloczanska, Elvira S.; Ruoppolo, Valeria; Vanstreels, Ralph E. T.; Woehler, Eric J.; Wolfaardt, Anton C.
2013-01-01
Current evidence of phenological responses to recent climate change is substantially biased towards northern hemisphere temperate regions. Given regional differences in climate change, shifts in phenology will not be uniform across the globe, and conclusions drawn from temperate systems in the northern hemisphere might not be applicable to other regions on the planet. We conduct the largest meta-analysis to date of phenological drivers and trends among southern hemisphere species, assessing 1208 long-term datasets from 89 studies on 347 species. Data were mostly from Australasia (Australia and New Zealand), South America and the Antarctic/subantarctic, and focused primarily on plants and birds. This meta-analysis shows an advance in the timing of spring events (with a strong Australian data bias), although substantial differences in trends were apparent among taxonomic groups and regions. When only statistically significant trends were considered, 82% of terrestrial datasets and 42% of marine datasets demonstrated an advance in phenology. Temperature was most frequently identified as the primary driver of phenological changes; however, in many studies it was the only climate variable considered. When precipitation was examined, it often played a key role but, in contrast with temperature, the direction of phenological shifts in response to precipitation variation was difficult to predict a priori. We discuss how phenological information can inform the adaptive capacity of species, their resilience, and constraints on autonomous adaptation. We also highlight serious weaknesses in past and current data collection and analyses at large regional scales (with very few studies in the tropics or from Africa) and dramatic taxonomic biases. If accurate predictions regarding the general effects of climate change on the biology of organisms are to be made, data collection policies focussing on targeting data-deficient regions and taxa need to be financially and logistically supported. PMID:24098389
Applying Metrological Techniques to Satellite Fundamental Climate Data Records
NASA Astrophysics Data System (ADS)
Woolliams, Emma R.; Mittaz, Jonathan PD; Merchant, Christopher J.; Hunt, Samuel E.; Harris, Peter M.
2018-02-01
Quantifying long-term environmental variability, including climatic trends, requires decadal-scale time series of observations. The reliability of such trend analysis depends on the long-term stability of the data record, and understanding the sources of uncertainty in historic, current and future sensors. We give a brief overview on how metrological techniques can be applied to historical satellite data sets. In particular we discuss the implications of error correlation at different spatial and temporal scales and the forms of such correlation and consider how uncertainty is propagated with partial correlation. We give a form of the Law of Propagation of Uncertainties that considers the propagation of uncertainties associated with common errors to give the covariance associated with Earth observations in different spectral channels.
Biodiversity in a changing climate: a synthesis of current and projected trends in the US
Staudinger, Michelle D.; Carter, Shawn L.; Cross, Molly S.; Dubois, Natalie S.; Duffy, J. Emmett; Enquist, Carolyn; Griffis, Roger; Hellmann, Jessica J.; Lawler, Joshua J.; O’Leary, John; Morrison, Scott A.; Sneddon, Lesley; Stein, Bruce A.; Thompson, Laura M.; Turner, Woody
2013-01-01
This paper provides a synthesis of the recent literature describing how global biodiversity is being affected by climate change and is projected to respond in the future. Current studies reinforce earlier findings of major climate-change-related impacts on biological systems and document new, more subtle after-effects. For example, many species are shifting their distributions and phenologies at faster rates than were recorded just a few years ago; however, responses are not uniform across species. Shifts have been idiosyncratic and in some cases counterintuitive, promoting new community compositions and altering biotic interactions. Although genetic diversity enhances species' potential to respond to variable conditions, climate change may outpace intrinsic adaptive capacities and increase the relative vulnerabilities of many organisms. Developing effective adaptation strategies for biodiversity conservation will not only require flexible decision-making and management approaches that account for uncertainties in climate projections and ecological responses but will also necessitate coordinated monitoring efforts.
Incidence of climate on common frog breeding: Long-term and short-term changes
NASA Astrophysics Data System (ADS)
Neveu, André
2009-09-01
In Brittany (northwest France), the climate is showing a trend toward warming. This change is increasingly suspected to have a role in driving amphibian decline, but it is very difficult to determine at what level the climate affects the future of species. Recently, some studies have detected some direct effects on breeding phenology and indirect effects on energy allocation. The present study explores some of these effects on the common frog ( Rana temporaria) from 1984 to 2007. The results show two trends: a long-term change in breeding activities and a short-term influence due to the 2003 climatic anomaly. For the period of study, the start of egg-laying shows a precocity that was correlated with thermal conditions during the preceding 40 days as well as milder springs during the previous year. This degree of precocity is currently the highest found in Europe (+26.6 days). As a result of the 2003 heat wave, the clutch mean fecundity in 2004 was smaller than for other years, the fecundity rates were reduced and abortions were numerous (unlike other years). Moreover, young females were the smallest observed in recent years and some females seemed to exhibit a trade-off between fecundity and growth. Before or after egg-laying, female body condition and mean weight of mature ovules were both lower. The year 2005 appears as a transition period before the recovery in 2006-2007. The results show that climate warming endangers the vital rates of the common frog, while the 2003 climatic events seem more detrimental than the long-term warming trend.
The GCOS Reference Upper-Air Network (GRUAN)
NASA Astrophysics Data System (ADS)
Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.
2009-04-01
While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.
Frontiers in Decadal Climate Variability: Proceedings of a Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purcell, Amanda
A number of studies indicate an apparent slowdown in the overall rise in global average surface temperature between roughly 1998 and 2014. Most models did not predict such a slowdown--a fact that stimulated a lot of new research on variability of Earth's climate system. At a September 2015 workshop, leading scientists gathered to discuss current understanding of climate variability on decadal timescales (10 to 30 years) and whether and how prediction of it might be improved. Many researchers have focused their attention on the climate system itself, which is known to vary across seasons, decades, and other timescales. Several naturalmore » variables produce "ups and downs" in the climate system, which are superimposed on the long-term warming trend due to human influence. Understanding decadal climate variability is important not only for assessing global climate change but also for improving decision making related to infrastructure, water resources, agriculture, energy, and other realms. Like the well-studied El Nino and La Nina interannual variations, decadal climate variability is associated with specific regional patterns of temperature and precipitation, such as heat waves, cold spells, and droughts. Several participants shared research that assesses decadal predictive capability of current models.« less
Recent trends in rainfall and temperature over North West India during 1871-2016
NASA Astrophysics Data System (ADS)
Saxena, Rani; Mathur, Prasoon
2018-03-01
Rainfall and temperature are the most important environmental factors influencing crop growth, development, and yield. The northwestern (NW) part of India is one of the main regions of food grain production of the country. It comprises of six meteorological subdivisions (Haryana, Punjab, West Rajasthan, East Rajasthan, Gujarat and Saurashtra, Kutch and Diu). In this study, attempts were made to study variability and trends in rainfall and temperature during 30-year climate normal periods (CN) and 10-year decadal excess or deficit rainfall frequency during the historical period from 1871 to 2016. The Mann-Kendall and Spearman's rank correlation (Spearman's rho) tests were used to determine significance of trends. Least square linear fitting method was adopted to find out the slopes of the trend lines. The long-term mean annual rainfall over North West India is 587.7 mm (standard deviation of 153.0 mm and coefficient of variation 26.0). There was increasing trend in minimum and maximum temperatures during post monsoon season in entire study period and current climate normal period (1991-2016) due to which the sowing of rabi season crops may be delayed and there may be germination problem too. There was a non-significant decreasing trend in rainfall during monsoon season and an increasing trend in rainfall during post monsoon over North West India during entire study period. During current CN5 (1991-2016), all the subdivision (except the Saurashtra region) showed a decreasing trend in rainfall during monsoon season which is a matter of concern for kharif crops and those rabi crops which are grown as rainfed on conserved soil moisture. The decadal annual and seasonal frequencies of excess and deficit years results revealed that the annual total deficit rainfall years (24) exceeded total excess rainfall years (22) in North West India during the entire study period. While during the current decadal period (2011 to 2016), single year was the excess year and 2 years were deficit rainfall years in all subdivisions (except East Rajasthan) on annual basis.
Research on trend of warm-humid climate in Central Asia
NASA Astrophysics Data System (ADS)
Gong, Zhi; Peng, Dailiang; Wen, Jingyi; Cai, Zhanqing; Wang, Tiantian; Hu, Yuekai; Ma, Yaxin; Xu, Junfeng
2017-07-01
Central Asia is a typical arid area, which is sensitive and vulnerable part of climate changes, at the same time, Central Asia is the Silk Road Economic Belt of the core district, the warm-humid climate change will affect the production and economic development of neighboring countries. The average annual precipitation, average anneal temperature and evapotranspiration are the important indexes to weigh the climate change. In this paper, the annual precipitation, annual average temperature and evapotranspiration data of every pixel point in Central Asia are analyzed by using long-time series remote sensing data to analyze the trend of warm and humid conditions. Finally, using the model to analyzed the distribution of warm-dry trend, the warm-wet trend, the cold-dry trend and the cold-wet trend in Central Asia and Xinjiang area. The results showed that most of the regions of Central Asia were warm-humid and warm-dry trends, but only a small number of regions showed warm-dry and cold-dry trends. It is of great significance to study the climatic change discipline and guarantee the ecological safety and improve the ability to cope with climate change in the region. It also provide scientific basis for the formulation of regional climate change program. The first section in your paper
Mentzafou, A; Wagner, S; Dimitriou, E
2018-04-29
Identifying the historical hydrometeorological trends in a river basin is necessary for understanding the dominant interactions between climate, human activities and local hydromorphological conditions. Estimating the hydrological reference conditions in a river is also crucial for estimating accurately the impacts from human water related activities and design appropriate water management schemes. In this effort, the output of a regional past climate model was used, covering the period from 1660 to 1990, in combination with a dynamic, spatially distributed, hydrologic model to estimate the past and recent trends in the main hydrologic parameters such as overland flow, water storages and evapotranspiration, in a Mediterranean river basin. The simulated past hydrologic conditions (1660-1960) were compared with the current hydrologic regime (1960-1990), to assess the magnitude of human and natural impacts on the identified hydrologic trends. The hydrological components of the recent period of 2008-2016 were also examined in relation to the impact of human activities. The estimated long-term trends of the hydrologic parameters were partially assigned to varying atmospheric forcing due to volcanic activity combined with spontaneous meteorological fluctuations. Copyright © 2018. Published by Elsevier B.V.
Regional climate projections for Northeast India: an appraisal from CORDEX South Asia experiment
NASA Astrophysics Data System (ADS)
Kumar, D.; Dimri, A. P.
2017-11-01
An appraisal of the recent changes in the present climate (1970-2005) followed by the possible future (2006-2100) changes in the climate has been carried out in the current study using the observations and regional climate model (REMO) over the Northeast Indian region. The regional climate model simulation has been used from the COordinated Regional climate Downscaling EXperiment (CORDEX) South Asia framework. A consistent warming for the winter (December, January, and February (DJF)) and post-monsoon (October and November (ON)) has been observed for the present climate especially in the northern and eastern parts of the region. The changes in the near future (2020-2049) and far future (2070-2099) temperature climatology suggest a rise in temperature by 3-8 °C across different representative concentration pathways (RCPs). The rate of long-term (1970-2099) increase in temperature has been found ranging between 0.01 and 0.07 °C/year across the region in the least emission (RCP2.6) to strongest emission (RCP8.5) scenarios. The daily mean precipitation statistics suggests an overall increasing trends of precipitation during the pre-monsoon (March, April, and May (MAM)) for the present across the region with a mixed trend in other seasons. A change in daily mean precipitation ranging from - 60% (during winter) to + 40% during post-monsoon has been projected by the model across different RCPs. RCP4.5 and RCP8.5 show a strong deficit in precipitation in the warmer climate across the region as compared to RCP2.6. This fact is also confirmed from the long-term trend of precipitation where a consistent decreasing trend dominates in the RCP4.5- and RCP8.5-simulated precipitations by the end of the twenty-first century. A large model bias in temperature and precipitation along with high amount of uncertainty is associated with the model simulations; thus, in order to use the projections, a more careful approach to improve the utility of downscaled product should be adopted.
Mapping human dimensions of climate change research in the Canadian Arctic.
Ford, James D; Bolton, Kenyon; Shirley, Jamal; Pearce, Tristan; Tremblay, Martin; Westlake, Michael
2012-12-01
This study maps current understanding and research trends on the human dimensions of climate change (HDCC) in the eastern and central Canadian Arctic. Developing a systematic literature review methodology, 117 peer reviewed articles are identified and examined using quantitative and qualitative methods. The research highlights the rapid expansion of HDCC studies over the last decade. Early scholarship was dominated by work documenting Inuit observations of climate change, with research employing vulnerability concepts and terminology now common. Adaptation studies which seek to identify and evaluate opportunities to reduce vulnerability to climate change and take advantage of new opportunities remain in their infancy. Over the last 5 years there has been an increase social science-led research, with many studies employing key principles of community-based research. We currently have baseline understanding of climate change impacts, adaptation, and vulnerability in the region, but key gaps are evident. Future research needs to target significant geographic disparities in understanding, consider risks and opportunities posed by climate change outside of the subsistence hunting sector, complement case study research with regional analyses, and focus on identifying and characterizing sustainable and feasible adaptation interventions.
Understanding How Climate Change Could Affect Tornadoes
NASA Astrophysics Data System (ADS)
Elsner, James; Guishard, Mark
2014-11-01
Current understanding of how tornadoes might change with global warming is limited. Incomplete data sets and the small-scale nature of tornadic events make it difficult to draw definitive conclusions. A consensus report on the climate of extreme storms found little evidence of trends in tornado frequency in the United States. However new research suggests a potential climate change footprint on tornadoes. Some of this research was presented at the First International Summit on Tornadoes and Climate Change, hosted by Aegean Conferences. The summit took place at the Minoa Palace in Chania, Greece, from 25 to 30 May 2014. Thirty delegates from eight countries—Greece, the United States, Germany, the United Kingdom, China, Japan, Israel, and Taiwan—participated.
Patt, Anthony G; Tadross, Mark; Nussbaumer, Patrick; Asante, Kwabena; Metzger, Marc; Rafael, Jose; Goujon, Anne; Brundrit, Geoff
2010-01-26
When will least developed countries be most vulnerable to climate change, given the influence of projected socio-economic development? The question is important, not least because current levels of international assistance to support adaptation lag more than an order of magnitude below what analysts estimate to be needed, and scaling up support could take many years. In this paper, we examine this question using an empirically derived model of human losses to climate-related extreme events, as an indicator of vulnerability and the need for adaptation assistance. We develop a set of 50-year scenarios for these losses in one country, Mozambique, using high-resolution climate projections, and then extend the results to a sample of 23 least-developed countries. Our approach takes into account both potential changes in countries' exposure to climatic extreme events, and socio-economic development trends that influence countries' own adaptive capacities. Our results suggest that the effects of socio-economic development trends may begin to offset rising climate exposure in the second quarter of the century, and that it is in the period between now and then that vulnerability will rise most quickly. This implies an urgency to the need for international assistance to finance adaptation.
Patt, Anthony G.; Tadross, Mark; Nussbaumer, Patrick; Asante, Kwabena; Metzger, Marc; Rafael, Jose; Goujon, Anne; Brundrit, Geoff
2010-01-01
When will least developed countries be most vulnerable to climate change, given the influence of projected socio-economic development? The question is important, not least because current levels of international assistance to support adaptation lag more than an order of magnitude below what analysts estimate to be needed, and scaling up support could take many years. In this paper, we examine this question using an empirically derived model of human losses to climate-related extreme events, as an indicator of vulnerability and the need for adaptation assistance. We develop a set of 50-year scenarios for these losses in one country, Mozambique, using high-resolution climate projections, and then extend the results to a sample of 23 least-developed countries. Our approach takes into account both potential changes in countries’ exposure to climatic extreme events, and socio-economic development trends that influence countries’ own adaptive capacities. Our results suggest that the effects of socio-economic development trends may begin to offset rising climate exposure in the second quarter of the century, and that it is in the period between now and then that vulnerability will rise most quickly. This implies an urgency to the need for international assistance to finance adaptation. PMID:20080585
NASA Astrophysics Data System (ADS)
Davey, Christopher A.; Pielke, Roger A., Sr.
2005-04-01
The U.S. Historical Climate Network is a subset of surface weather observation stations selected from the National Weather Service cooperative station network. The criteria used to select these stations do not sufficiently address station exposure characteristics. In addition, the current metadata available for cooperative network stations generally do not describe site exposure characteristics in sufficient detail. This paper focuses on site exposures with respect to air temperature measurements. A total of 57 stations were photographically surveyed in eastern Colorado, comparing existing exposures to the standards endorsed by the World Meteorological Organization. The exposures of most sites surveyed, including U.S. Historical Climate Network sites, were observed to fall short of these standards. This raises a critical question about the use of many Historical Climate Network sites in the development of long-term climate records and the detection of climate trends. Some of these sites clearly have poor exposures and therefore should be considered for removal from the Historical Climate Network. Candidate replacement sites do exist and should be considered for addition into the network to replace the removed sites. Documentation as performed for this study should be conducted worldwide in order to determine the extent of spatially nonrepresentative exposures and possible temperature biases.
Endurance of larch forest ecosystems in eastern Siberia under warming trends
NASA Astrophysics Data System (ADS)
Sato, H.; Iwahana, G.; Ohta, T.
2015-12-01
The larch (Larix spp.) forest in eastern Siberia is the world's largest coniferous forest. However, its existence depends on near-surface permafrost, which increases water availability for trees, and the boundary of the forest closely follows the permafrost zone. Therefore, the degradation of near-surface permafrost due to forecasted warming trends during the 21st century is expected to affect the larch forest in Siberia. However, predictions of how warming trends will affect this forest vary greatly, and many uncertainties remain about land-atmospheric interactions within the ecosystem. We developed an integrated land surface model to analyze how the Siberian larch forest will react to current warming trends. This model analyzed interactions between vegetation dynamics and thermo-hydrology and showed that, under climatic conditions predicted by the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathway (RCP) scenarios 2.6 and 8.5, annual larch net primary production (NPP) increased about 2 and 3 times, respectively, by the end of 21st century compared with that in the 20th century. Soil water content during larch growing season showed no obvious trend, even after decay of surface permafrost and accompanying sub-surface runoff. A sensitivity test showed that the forecasted warming and pluvial trends extended leafing days of larches and reduced water shortages during the growing season, thereby increasing productivity.
On the definition and identifiability of the alleged “hiatus” in global warming
Lewandowsky, Stephan; Risbey, James S.; Oreskes, Naomi
2015-01-01
Recent public debate and the scientific literature have frequently cited a “pause” or “hiatus” in global warming. Yet, multiple sources of evidence show that climate change continues unabated, raising questions about the status of the “hiatus”. To examine whether the notion of a “hiatus” is justified by the available data, we first document that there are multiple definitions of the “hiatus” in the literature, with its presumed onset spanning a decade. For each of these definitions we compare the associated temperature trend against trends of equivalent length in the entire record of modern global warming. The analysis shows that the “hiatus” trends are encompassed within the overall distribution of observed trends. We next assess the magnitude and significance of all possible trends up to 25 years duration looking backwards from each year over the past 30 years. At every year during the past 30 years, the immediately preceding warming trend was always significant when 17 years (or more) were included in the calculation, alleged “hiatus” periods notwithstanding. If current definitions of the “pause” used in the literature are applied to the historical record, then the climate system “paused” for more than 1/3 of the period during which temperatures rose 0.6 K. PMID:26597713
NASA Astrophysics Data System (ADS)
Foulon, Étienne; Rousseau, Alain N.; Gagnon, Patrick
2018-02-01
Low flow conditions are governed by short-to-medium term weather conditions or long term climate conditions. This prompts the question: given climate scenarios, is it possible to assess future extreme low flow conditions from climate data indices (CDIs)? Or should we rely on the conventional approach of using outputs of climate models as inputs to a hydrological model? Several CDIs were computed using 42 climate scenarios over the years 1961-2100 for two watersheds located in Québec, Canada. The relationship between the CDIs and hydrological data indices (HDIs; 7- and 30-day low flows for two hydrological seasons) were examined through correlation analysis to identify the indices governing low flows. Results of the Mann-Kendall test, with a modification for autocorrelated data, clearly identified trends. A partial correlation analysis allowed attributing the observed trends in HDIs to trends in specific CDIs. Furthermore, results showed that, even during the spatial validation process, the methodological framework was able to assess trends in low flow series from: (i) trends in the effective drought index (EDI) computed from rainfall plus snowmelt minus PET amounts over ten to twelve months of the hydrological snow cover season or (ii) the cumulative difference between rainfall and potential evapotranspiration over five months of the snow free season. For 80% of the climate scenarios, trends in HDIs were successfully attributed to trends in CDIs. Overall, this paper introduces an efficient methodological framework to assess future trends in low flows given climate scenarios. The outcome may prove useful to municipalities concerned with source water management under changing climate conditions.
NASA Technical Reports Server (NTRS)
Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue
2014-01-01
Land swiace phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstmted to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This srudy detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examIned across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and OSL varied considerably during 1982-2010 across the globe. Generally, the interarmual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative OSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3 decades. OGI mainly showed late trends in the Southern Hemisphere of Africa while GSL was reversed from reduced GSL trends (1982-1999) to prolonged trends (2000-2010). In Australia, GSL exhibited considerable interannual variation, but the consistent trend lacked presence in most regions. Finally, the proportion of pixels with significant trends was less than I% in most of climate regions although it could be as large as 10%.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyang; Tan, Bin; Yu, Yunyue
2014-05-01
Land surface phenology is widely retrieved from satellite observations at regional and global scales, and its long-term record has been demonstrated to be a valuable tool for reconstructing past climate variations, monitoring the dynamics of terrestrial ecosystems in response to climate impacts, and predicting biological responses to future climate scenarios. This study detected global land surface phenology from the advanced very high resolution radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) data from 1982 to 2010. Based on daily enhanced vegetation index at a spatial resolution of 0.05 degrees, we simulated the seasonal vegetative trajectory for each individual pixel using piecewise logistic models, which was then used to detect the onset of greenness increase (OGI) and the length of vegetation growing season (GSL). Further, both overall interannual variations and pixel-based trends were examined across Koeppen's climate regions for the periods of 1982-1999 and 2000-2010, respectively. The results show that OGI and GSL varied considerably during 1982-2010 across the globe. Generally, the interannual variation could be more than a month in precipitation-controlled tropical and dry climates while it was mainly less than 15 days in temperature-controlled temperate, cold, and polar climates. OGI, overall, shifted early, and GSL was prolonged from 1982 to 2010 in most climate regions in North America and Asia while the consistently significant trends only occurred in cold climate and polar climate in North America. The overall trends in Europe were generally insignificant. Over South America, late OGI was consistent (particularly from 1982 to 1999) while either positive or negative GSL trends in a climate region were mostly reversed between the periods of 1982-1999 and 2000-2010. In the Northern Hemisphere of Africa, OGI trends were mostly insignificant, but prolonged GSL was evident over individual climate regions during the last 3 decades. OGI mainly showed late trends in the Southern Hemisphere of Africa while GSL was reversed from reduced GSL trends (1982-1999) to prolonged trends (2000-2010). In Australia, GSL exhibited considerable interannual variation, but the consistent trend lacked presence in most regions. Finally, the proportion of pixels with significant trends was less than 1 % in most of climate regions although it could be as large as 10 %.
NASA Astrophysics Data System (ADS)
Zohaib, Muhammad; Kim, Hyunglok; Choi, Minha
2017-08-01
Root zone soil moisture (RZSM) is a crucial variable in land-atmosphere interactions. Evaluating the spatiotemporal trends and variability patterns of RZSM are essential for discerning the anthropogenic and climate change effects on the regional and global hydrological cycles. In this study, the trends of RZSM, computed by the exponential filter from the European Space Agency's Climate Change Initiative soil moisture, were evaluated in major climate regions of East Asia from 1982 to 2014. Moreover, the trends of RZSM were compared to the trends of precipitation (
NASA Astrophysics Data System (ADS)
Jeelani, G.; Feddema, Johannes J.; van der Veen, Cornelis J.; Stearns, Leigh
2012-12-01
Snowmelt and icemelt are believed to be important regulators of seasonal discharge of Himalayan rivers. To analyze the long term contribution of snowmelt and glacier/icemelt to river hydrology we apply a water budget model to simulate hydrology of the Liddar watershed in the western Himalaya, India for the 20th century (1901-2010) and future IPCC A1B climate change scenario. Long term (1901-2010) temperature and precipitation data in this region show a warming trend (0.08°C yr-1) and an increase in precipitation (0.28 mm yr-1), with a significant variability in seasonal trends. In particular, winter months have undergone the most warming, along with a decrease in precipitation rates; precipitation has increased throughout the spring. These trends have accelerated the melting and rapid disappearance of snow, causing a seasonal redistribution in the availability of water. Our model results show that about 60% of the annual runoff of the Liddar watershed is contributed from the snowmelt, while only 2% is contributed from glacier ice. The climate trend observed from the 1901 to 2010 time period and its impact on the availability of water will become significantly worse under the IPCC climate change scenarios. Our results suggest that there is a significant shift in the timing and quantity of water runoff in this region of the Himalayas due to snow distribution and melt. With greatly increased spring runoff and its reductions in summer potentially leading to reduced water availability for irrigation agriculture in summer.
Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
Qiao, Jianmin; Yu, Deyong; Liu, Yupeng
2017-10-01
Climate change plays a critical role in crop yield variations, which has attracted a great deal of concern worldwide. However, the mechanisms of how climatic trend and fluctuations affect crop yields are not well understood and need to be further investigated. Thus, using the GIS-based Environmental Policy Integrated Climate (EPIC) model, we simulated the yields of major crops (i.e., wheat, maize, and rice) and evaluated the impacts of climatic factors on crop yields in the Agro-Pastoral Transitional Zone (APTZ) of northern China between 1980 and 2010. The partial least squares regression model was used to assess the contribution rates of climatic factors (i.e., precipitation, photosynthetically active radiation (PAR), minimum temperature (T min ), maximum temperature (T max )) to the variation of crop yields. The Breaks for Additive Season and Trend (BFAST) model was adopted to decompose the climate factors into trend and fluctuation components, and the relative contributions of climate trend and fluctuation were then evaluated. The results indicated that the contributions of climatic factors to yield variations of wheat, maize, and rice were 31.7, 37.7, and 23.1%, respectively. That is, climate change had larger impacts on maize than wheat and rice. More cultivated areas were significantly and positively correlated with precipitation than with other climatic factors due to the limited precipitation in the APTZ. Also, climatic trend component had positive impacts on crop yields in the whole region, whereas the climate fluctuation was associated mainly with the areas where the crop yields decreased. This study helps improve our understanding of the mechanisms of climate change impacts on crop yields, and provides useful scientific information for designing regional-scale strategies of adaptation to climate change.
Non-parametric trend analysis of the aridity index for three large arid and semi-arid basins in Iran
NASA Astrophysics Data System (ADS)
Ahani, Hossien; Kherad, Mehrzad; Kousari, Mohammad Reza; van Roosmalen, Lieke; Aryanfar, Ramin; Hosseini, Seyyed Mashaallah
2013-05-01
Currently, an important scientific challenge that researchers are facing is to gain a better understanding of climate change at the regional scale, which can be especially challenging in an area with low and highly variable precipitation amounts such as Iran. Trend analysis of the medium-term change using ground station observations of meteorological variables can enhance our knowledge of the dominant processes in an area and contribute to the analysis of future climate projections. Generally, studies focus on the long-term variability of temperature and precipitation and to a lesser extent on other important parameters such as moisture indices. In this study the recent 50-year trends (1955-2005) of precipitation (P), potential evapotranspiration (PET), and aridity index (AI) in monthly time scale were studied over 14 synoptic stations in three large Iran basins using the Mann-Kendall non-parametric test. Additionally, an analysis of the monthly, seasonal and annual trend of each parameter was performed. Results showed no significant trends in the monthly time series. However, PET showed significant, mostly decreasing trends, for the seasonal values, which resulted in a significant negative trend in annual PET at five stations. Significant negative trends in seasonal P values were only found at a number of stations in spring and summer and no station showed significant negative trends in annual P. Due to the varied positive and negative trends in annual P and to a lesser extent PET, almost as many stations with negative as positive trends in annual AI were found, indicating that both drying and wetting trends occurred in Iran. Overall, the northern part of the study area showed an increasing trend in annual AI which meant that the region became wetter, while the south showed decreasing trends in AI.
Water quality status and trends in the United States
Larsen, Matthew C.; Hamilton, Pixie A.; Werkheiser, William H.; Ahuja, Satinder
2013-01-01
Information about water quality is vital to ensure long-term availability and sustainability of water that is safe for drinking and recreation and suitable for industry, irrigation, fish, and wildlife. Protecting and enhancing water quality is a national priority, requiring information on water-quality status and trends, progress toward clean water standards, continuing problems, and emerging challenges. In this brief review, we discuss U.S. Geological Survey assessments of nutrient pollution, pesticides, mixtures of organic wastewater compounds (known as emerging contaminants), sediment-bound contaminants (like lead and DDT), and mercury, among other contaminants. Additionally, aspects of land use and current and emerging challenges associated with climate change are presented. Climate change must be considered, as water managers continue their efforts to maintain sufficient water of good quality for humans and for the ecosystem.
NASA Astrophysics Data System (ADS)
Armal, S.; Devineni, N.; Khanbilvardi, R.
2017-12-01
This study presents a systematic analysis for identifying and attributing trends in the annual frequency of extreme rainfall events across the contiguous United States to climate change and climate variability modes. A Bayesian multilevel model is developed for 1,244 stations simultaneously to test the null hypothesis of no trend and verify two alternate hypotheses: Trend can be attributed to changes in global surface temperature anomalies, or to a combination of cyclical climate modes with varying quasi-periodicities and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool information across stations and reduce the parameter estimation uncertainty, hence identifying the trends better. The choice of the best alternate hypotheses is made based on Watanabe-Akaike Information Criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed in 742 of the 1,244 stations. Trends in 409 of these stations can be attributed to changes in global surface temperature anomalies. These stations are predominantly found in the Southeast and Northeast climate regions. The trends in 274 of these stations can be attributed to the El Nino Southern Oscillations, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation along with changes in global surface temperature anomalies. These stations are mainly found in the Northwest, West and Southwest climate regions.
Projected asymmetric response of Adélie penguins to Antarctic climate change
NASA Astrophysics Data System (ADS)
Cimino, Megan A.; Lynch, Heather J.; Saba, Vincent S.; Oliver, Matthew J.
2016-06-01
The contribution of climate change to shifts in a species’ geographic distribution is a critical and often unresolved ecological question. Climate change in Antarctica is asymmetric, with cooling in parts of the continent and warming along the West Antarctic Peninsula (WAP). The Adélie penguin (Pygoscelis adeliae) is a circumpolar meso-predator exposed to the full range of Antarctic climate and is undergoing dramatic population shifts coincident with climate change. We used true presence-absence data on Adélie penguin breeding colonies to estimate past and future changes in habitat suitability during the chick-rearing period based on historic satellite observations and future climate model projections. During the contemporary period, declining Adélie penguin populations experienced more years with warm sea surface temperature compared to populations that are increasing. Based on this relationship, we project that one-third of current Adélie penguin colonies, representing ~20% of their current population, may be in decline by 2060. However, climate model projections suggest refugia may exist in continental Antarctica beyond 2099, buffering species-wide declines. Climate change impacts on penguins in the Antarctic will likely be highly site specific based on regional climate trends, and a southward contraction in the range of Adélie penguins is likely over the next century.
Phenological plasticity will not help all species adapt to climate change.
Duputié, Anne; Rutschmann, Alexis; Ronce, Ophélie; Chuine, Isabelle
2015-08-01
Concerns are rising about the capacity of species to adapt quickly enough to climate change. In long-lived organisms such as trees, genetic adaptation is slow, and how much phenotypic plasticity can help them cope with climate change remains largely unknown. Here, we assess whether, where and when phenological plasticity is and will be adaptive in three major European tree species. We use a process-based species distribution model, parameterized with extensive ecological data, and manipulate plasticity to suppress phenological variations due to interannual, geographical and trend climate variability, under current and projected climatic conditions. We show that phenological plasticity is not always adaptive and mostly affects fitness at the margins of the species' distribution and climatic niche. Under current climatic conditions, phenological plasticity constrains the northern range limit of oak and beech and the southern range limit of pine. Under future climatic conditions, phenological plasticity becomes strongly adaptive towards the trailing edges of beech and oak, but severely constrains the range and niche of pine. Our results call for caution when interpreting geographical variation in trait means as adaptive, and strongly point towards species distribution models explicitly taking phenotypic plasticity into account when forecasting species distribution under climate change scenarios. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Takle, E. S.; Gustafson, D. I.; Beachy, R.; Nelson, G. C.; Mason-D'Croz, D.; Palazzo, A.
2013-12-01
Agreement is developing among agricultural scientists on the emerging inability of agriculture to meet growing global food demands. The lack of additional arable land and availability of freshwater have long been constraints on agriculture. Changes in trends of weather conditions that challenge physiological limits of crops, as projected by global climate models, are expected to exacerbate the global food challenge toward the middle of the 21st century. These climate- and constraint-driven crop production challenges are interconnected within a complex global economy, where diverse factors add to price volatility and food scarcity. We use the DSSAT crop modeling suite, together with mid-century projections of four AR4 global models, as input to the International Food Policy Research Institute IMPACT model to project the impact of climate change on food security through the year 2050 for internationally traded crops. IMPACT is an iterative model that responds to endogenous and exogenous drivers to dynamically solve for the world prices that ensure global supply equals global demand. The modeling methodology reconciles the limited spatial resolution of macro-level economic models that operate through equilibrium-driven relationships at a national level with detailed models of biophysical processes at high spatial resolution. The analysis presented here suggests that climate change in the first half of the 21st century does not represent a near-term threat to food security in the US due to the availability of adaptation strategies (e.g., loss of current growing regions is balanced by gain of new growing regions). However, as climate continues to trend away from 20th century norms current adaptation measures will not be sufficient to enable agriculture to meet growing food demand. Climate scenarios from higher-level carbon emissions exacerbate the food shortfall, although uncertainty in climate model projections (particularly precipitation) is a limitation to impact studies.
Serra-Diaz, Josep M; Maxwell, Charles; Lucash, Melissa S; Scheller, Robert M; Laflower, Danelle M; Miller, Adam D; Tepley, Alan J; Epstein, Howard E; Anderson-Teixeira, Kristina J; Thompson, Jonathan R
2018-04-30
The impacts of climatic changes on forests may appear gradually on time scales of years to centuries due to the long generation times of trees. Consequently, current forest extent may not reflect current climatic patterns. In contrast with these lagged responses, abrupt transitions in forests under climate change may occur in environments where alternative vegetation states are influenced by disturbances, such as fire. The Klamath forest landscape (northern California and southwest Oregon, USA) is currently dominated by high biomass, biodiverse temperate coniferous forests, but climate change could disrupt the mechanisms promoting forest stability (e.g. growth, regeneration and fire tolerance). Using a landscape simulation model, we estimate that about one-third of the Klamath forest landscape (500,000 ha) could transition from conifer-dominated forest to shrub/hardwood chaparral, triggered by increased fire activity coupled with lower post-fire conifer establishment. Such shifts were widespread under the warmer climate change scenarios (RCP 8.5) but were surprisingly prevalent under the climate of 1949-2010, reflecting the joint influences of recent warming trends and the legacy of fire suppression that may have enhanced conifer dominance. Our results demonstrate that major forest ecosystem shifts should be expected when climate change disrupts key stabilizing feedbacks that maintain the dominance of long-lived, slowly regenerating trees.
Thermal Environments. Educational Facilities Review Series Number 17.
ERIC Educational Resources Information Center
Baas, Alan M.
This review surveys documents and journal articles previously announced in RIE and CIJE that deal with climate control, integrated thermal and luminous systems, total energy systems, and current trends in school air conditioning. The literature cited indicates that selection of thermal systems must take into account longterm operating costs in…
Role of Technology in Decision Making: Exploring Land-Use Decisions
ERIC Educational Resources Information Center
Zaino, Maureen A.
2012-01-01
Increases in population, climatic changes, and other environmental issues are current challenges affecting the U.S. Geological Survey's (USGS) decision to examine land-use trends and emphasize efficient use and reuse of limited resources. Because of global concerns involving limited natural resources, researchers recognize land-use decision…
NASA Astrophysics Data System (ADS)
Huybrechts, P.
2003-04-01
The evolution of continental ice sheets introduces a long time scale in the climate system. Large ice sheets have a memory of millenia, hence the present-day ice sheets of Greenland and Antarctica are still adjusting to climatic variations extending back to the last glacial period. This trend is separate from the direct response to mass-balance changes on decadal time scales and needs to be correctly accounted for when assessing current and future contributions to sea level. One way to obtain estimates of current ice mass changes is to model the past history of the ice sheets and their underlying beds over the glacial cycles. Such calculations assist to distinguish between the longer-term ice-dynamic evolution and short-term mass-balance changes when interpreting altimetry data, and are helpful to isolate the effects of postglacial rebound from gravity and altimetry trends. The presentation will discuss results obtained from 3-D thermomechanical ice-sheet/lithosphere/bedrock models applied to the Antarctic and Greenland ice sheets. The simulations are forced by time-dependent boundary conditions derived from sediment and ice core records and are constrained by geomorphological and glacial-geological data of past ice sheet and sea-level stands. Current simulations suggest that the Greenland ice sheet is close to balance, while the Antarctic ice sheet is still losing mass, mainly due to incomplete grounding-line retreat of the West Antarctic ice sheet since the LGM. The results indicate that altimetry trends are likely dominated by ice thickness changes but that the gravitational signal mainly reflects postglacial rebound.
NASA Astrophysics Data System (ADS)
Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.
2016-12-01
Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection capabilities of existing sensors.
Mapping of the Land Cover Spatiotemporal Characteristics in Northern Russia Caused by Climate Change
NASA Astrophysics Data System (ADS)
Panidi, E.; Tsepelev, V.; Torlopova, N.; Bobkov, A.
2016-06-01
The study is devoted to the investigation of regional climate change in Northern Russia. Due to sparseness of the meteorological observation network in northern regions, we investigate the application capabilities of remotely sensed vegetation cover as indicator of climate change at the regional scale. In previous studies, we identified statistically significant relationship between the increase of surface air temperature and increase of the shrub vegetation productivity. We verified this relationship using ground observation data collected at the meteorological stations and Normalised Difference Vegetation Index (NDVI) data produced from Terra/MODIS satellite imagery. Additionally, we designed the technique of growing seasons separation for detailed investigation of the land cover (shrub cover) dynamics. Growing seasons are the periods when the temperature exceeds +5°C and +10°C. These periods determine the vegetation productivity conditions (i.e., conditions that allow growth of the phytomass). We have discovered that the trend signs for the surface air temperature and NDVI coincide on planes and river floodplains. On the current stage of the study, we are working on the automated mapping technique, which allows to estimate the direction and magnitude of the climate change in Northern Russia. This technique will make it possible to extrapolate identified relationship between land cover and climate onto territories with sparse network of meteorological stations. We have produced the gridded maps of NDVI and NDWI for the test area in European part of Northern Russia covered with the shrub vegetation. Basing on these maps, we may determine the frames of growing seasons for each grid cell. It will help us to obtain gridded maps of the NDVI linear trend for growing seasons on cell-by-cell basis. The trend maps can be used as indicative maps for estimation of the climate change on the studied areas.
Reframing the climate change challenge in light of post-2000 emission trends.
Anderson, Kevin; Bows, Alice
2008-11-13
The 2007 Bali conference heard repeated calls for reductions in global greenhouse gas emissions of 50 per cent by 2050 to avoid exceeding the 2 degrees C threshold. While such endpoint targets dominate the policy agenda, they do not, in isolation, have a scientific basis and are likely to lead to dangerously misguided policies. To be scientifically credible, policy must be informed by an understanding of cumulative emissions and associated emission pathways. This analysis considers the implications of the 2 degrees C threshold and a range of post-peak emission reduction rates for global emission pathways and cumulative emission budgets. The paper examines whether empirical estimates of greenhouse gas emissions between 2000 and 2008, a period typically modelled within scenario studies, combined with short-term extrapolations of current emissions trends, significantly constrains the 2000-2100 emission pathways. The paper concludes that it is increasingly unlikely any global agreement will deliver the radical reversal in emission trends required for stabilization at 450 ppmv carbon dioxide equivalent (CO2e). Similarly, the current framing of climate change cannot be reconciled with the rates of mitigation necessary to stabilize at 550 ppmv CO2e and even an optimistic interpretation suggests stabilization much below 650 ppmv CO2e is improbable.
Climate Trends and Farmers' Perceptions of Climate Change in Zambia.
Mulenga, Brian P; Wineman, Ayala; Sitko, Nicholas J
2017-02-01
A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters-notably, rising average temperature-there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.
Observed Changes at the Surface of the Arctic Ocean
NASA Astrophysics Data System (ADS)
Ortmeyer, M.; Rigor, I.
2004-12-01
The Arctic has long been considered a harbinger of global climate change since simulations with global climate models predict that if the concentration of CO2 in the atmosphere doubles, the Arctic would warm by more than 5°C, compared to a warming of 2°C for subpolar regions (Manabe et al., 1991). And indeed, studies of the observational records show polar amplification of the warming trends (e.g. Serreze and Francis, 2004). These temperature trends are accompanied by myriad concurrent changes in Arctic climate. One of the first indicators of Arctic climate change was found by Walsh et al. (1996) using sea level pressure (SLP) data from the International Arctic Buoy Programme (IABP, http://iabp.apl.washington.edu). In this study, they showed that SLP over the Arctic Ocean decreased by over 4 hPa from 1979 - 1994. The decreases in SLP (winds) over the Arctic Ocean, forced changes in the circulation of sea ice and the surface ocean currents such that the Beaufort Gyre is reduced in size and speed (e.g. Rigor et al., 2002). Data from the IABP has also been assimilated into the global surface air temperature (SAT) climatologies (e.g. Jones et al. 1999), and the IABP SAT analysis shows that the temperature trends noted over land extend out over the Arctic Ocean. Specifically, Rigor et al. (2000) found warming trends in SAT over the Arctic Ocean during win¬ter and spring, with values as high as 2°C/decade in the eastern Arctic during spring. It should be noted that many of the changes in Arctic climate were first observed or explained using data from the IABP. The observations from IABP have been one of the cornerstones for environmental forecasting and studies of climate and climate change. These changes have a profound impact on wildlife and people. Many species and cultures depend on the sea ice for habitat and subsistence. Thus, monitoring the Arctic Ocean is crucial not only for our ability to detect climate change, but also to improve our understanding of the Arctic and global climate system, and for forecasting weather and sea ice conditions. The IABP provides the longest continuing record of observations for the Arctic Ocean.
Scanlon, Bridget R.; Zhang, Zizhan; Save, Himanshu; Sun, Alexander Y.; van Beek, Ludovicus P. H.; Wiese, David N.; Reedy, Robert C.; Longuevergne, Laurent; Döll, Petra; Bierkens, Marc F. P.
2018-01-01
Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002–2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤−0.5 km3/y) and increasing (≥0.5 km3/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km3/y, whereas most models estimate decreasing trends (−71 to 11 km3/y). Land water storage trends, summed over all basins, are positive for GRACE (∼71–82 km3/y) but negative for models (−450 to −12 km3/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated. PMID:29358394
Scanlon, Bridget R; Zhang, Zizhan; Save, Himanshu; Sun, Alexander Y; Müller Schmied, Hannes; van Beek, Ludovicus P H; Wiese, David N; Wada, Yoshihide; Long, Di; Reedy, Robert C; Longuevergne, Laurent; Döll, Petra; Bierkens, Marc F P
2018-02-06
Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002-2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤-0.5 km 3 /y) and increasing (≥0.5 km 3 /y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km 3 /y, whereas most models estimate decreasing trends (-71 to 11 km 3 /y). Land water storage trends, summed over all basins, are positive for GRACE (∼71-82 km 3 /y) but negative for models (-450 to -12 km 3 /y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated. Copyright © 2018 the Author(s). Published by PNAS.
Liu, Yupeng; Yu, Deyong; Su, Yun; Hao, Ruifang
2014-12-01
Climate change comprises three fractions of trend, fluctuation, and extreme event. Assessing the effect of climate change on terrestrial ecosystem requires an understanding of the action mechanism of these fractions, respectively. This study examined 11 years of remotely sensed-derived net primary productivity (NPP) to identify the impacts of the trend and fluctuation of climate change as well as extremely low temperatures caused by a freezing disaster on ecosystem productivity in Hunan province, China. The partial least squares regression model was used to evaluate the contributions of temperature, precipitation, and photosynthetically active radiation (PAR) to NPP variation. A climatic signal decomposition and contribution assessment model was proposed to decompose climate factors into trend and fluctuation components. Then, we quantitatively evaluated the contributions of each component of climatic factors to NPP variation. The results indicated that the total contribution of the temperature, precipitation, and PAR to NPP variation from 2001 to 2011 in Hunan province is 85 %, and individual contributions of the temperature, precipitation, and PAR to NPP variation are 44 % (including 34 % trend contribution and 10 % fluctuation contribution), 5 % (including 4 % trend contribution and 1 % fluctuation contribution), and 36 % (including 30 % trend contribution and 6 % fluctuation contribution), respectively. The contributions of temperature fluctuation-driven NPP were higher in the north and lower in the south, and the contributions of precipitation trend-driven NPP and PAR fluctuation-driven NPP are higher in the west and lower in the east. As an instance of occasionally triggered disturbance in 2008, extremely low temperatures and a freezing disaster produced an abrupt decrease of NPP in forest and grass ecosystems. These results prove that the climatic trend change brought about great impacts on ecosystem productivity and that climatic fluctuations and extreme events can also alter the ecosystem succession process, even resulting in an alternative trajectory. All of these findings could improve our understanding of the impacts of climate change on the provision of ecosystem functions and services and can also provide a basis for policy makers to apply adaptive measures to overcome the unfavorable influence of climate change.
A climate trend analysis of Sudan
Funk, Christopher C.; Eilerts, Gary; Verdin, Jim; Rowland, Jim; Marshall, Michael
2011-01-01
Summer rains in western and southern Sudan have declined by 10-20 percent since the mid-1970s. Observed warming of more than 1 degree Celsius is equivalent to another 10-20 percent reduction in rainfall for crops. The warming and drying have impacted southern Darfur and areas around Juba. Rainfall declines west of Juba threaten southern Sudan's future food production prospects. In many cases, areas with changing climate are coincident with zones of substantial conflict, suggesting some degree of association; however, the contribution of climate change to these conflicts is not currently understood. Rapid population growth and the expansion of farming and pastoralism under a more variable climate regime could dramatically increase the number of at-risk people in Sudan over the next 20 years.
NASA Technical Reports Server (NTRS)
Veldkamp, Ted; Wada, Yoshihide; Aerts, Jeroen; Ward, Phillip
2016-01-01
Water scarcity -driven by climate change, climate variability, and socioeconomic developments- is recognized as one of the most important global risks, both in terms of likelihood and impact. Whilst a wide range of studies have assessed the role of long term climate change and socioeconomic trends on global water scarcity, the impact of variability is less well understood. Moreover, the interactions between different forcing mechanisms, and their combined effect on changes in water scarcity conditions, are often neglected. Therefore, we provide a first step towards a framework for global water scarcity risk assessments, applying probabilistic methods to estimate water scarcity risks for different return periods under current and future conditions while using multiple climate and socioeconomic scenarios.
Adams, Rick A
2010-08-01
Climate change models predict that much of western North America is becoming significantly warmer and drier, resulting in overall reductions in availability of water for ecosystems. Herein, I demonstrate that significant declines in the reproductive success of female insectivorous bats occur in years when annual environmental conditions mimic the long-term predictions of regional climate change models. Using a data set gathered on bat populations from 1996 through 2008 along the Front Range of Colorado, I compare trends in population numbers and reproductive outcomes of six species of vespertilionid bats with data on mean annual high temperature, precipitation, snow pack, and stream discharge rates. I show that levels of precipitation and flow rates of small streams near maternity colonies is fundamentally tied to successful reproduction in female bats, particularly during the lactation phase. Across years that experienced greater than average mean temperatures with less than average precipitation and stream flow, bat populations responded by slight to profound reductions in reproductive output depending on the severity of drought conditions. In particular, reproductive outputs showed profound declines (32-51%) when discharge rates of the largest stream in the field area dropped below 7 m3/s, indicating a threshold response. Such sensitivity to environmental change portends severe impacts to regional bat populations if current scenarios for climate change in western North America are accurate. In addition, bats act as early-warning indicators of large-scale ecological effects resulting from further regional warming and drying trends currently at play in western North America.
Kolanowska, Marta; Kras, Marta; Lipińska, Monika; Mystkowska, Katarzyna; Szlachetko, Dariusz L; Naczk, Aleksandra M
2017-10-05
Current and expected changes in global climate are major threat for biological diversity affecting individuals, communities and ecosystems. However, there is no general trend in the plants response to the climate change. The aim of present study was to evaluate impact of the future climate changes on the distribution of holomycotrophic orchid species using ecological niche modeling approach. Three different scenarios of future climate changes were tested to obtain the most comprehensive insight in the possible habitat loss of 16 holomycotrophic orchids. The extinction of Cephalanthera austiniae was predicted in all analyses. The coverage of suitable niches of Pogoniopsis schenckii will decrease to 1-30% of its current extent. The reduction of at least 50% of climatic niche of Erythrorchis cassythoides and Limodorum abortivum will be observed. In turn, the coverage of suitable niches of Hexalectris spicata, Uleiorchis ulaei and Wullschlaegelia calcarata may be even 16-74 times larger than in the present time. The conducted niche modeling and analysis of the similarity of their climatic tolerance showed instead that the future modification of the coverage of their suitable niches will not be unified and the future climate changes may be not so harmful for holomycotrophic orchids as expected.
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Atiqur; Yunsheng, Lou; Sultana, Nahid; Ongoma, Victor
2018-03-01
ET0 is an important hydro-meteorological phenomenon, which is influenced by changing climate like other climatic parameters. This study investigates the present and future trends of ET0 in Bangladesh using 39 years' historical and downscaled CMIP5 daily climatic data for the twenty-first century. Statistical Downscaling Model (SDSM) was used to downscale the climate data required to calculate ET0. Penman-Monteith formula was applied in ET0 calculation for both the historical and modelled data. To analyse ET0 trends and trend changing patterns, modified Mann-Kendall and Sequential Mann-Kendall tests were, respectively, done. Spatial variations of ET0 trends are presented by inverse distance weighting interpolation using ArcGIS 10.2.2. Results show that RCP8.5 (2061-2099) will experience the highest amount of ET0 totals in comparison to the historical and all other scenarios in the same time span of 39 years. Though significant positive trends were observed in the mid and last months of year from month-wise trend analysis of representative concentration pathways, significant negative trends were also found for some months using historical data in similar analysis. From long-term annual trend analysis, it was found that major part of the country represents decreasing trends using historical data, but increasing trends were observed for modelled data. Theil-Sen estimations of ET0 trends in the study depict a good consistency with the Mann-Kendall test results. The findings of the study would contribute in irrigation water management and planning of the country and also in furthering the climate change study using modelled data in the context of Bangladesh.
Climate change: Potential impacts and interactions in wetlands of the United States
Burkett, Virginia; Kusler, Jon
2000-01-01
Wetlands exist in a transition zone between aquatic and terrestrial environments which can be altered by subtle changes in hydrology. Twentieth century climate records show that the United States is generally experiencing a trend towards a wetter, warmer climate; some climate models suggest that his trend will continue and possibly intensify over the next 100 years. Wetlands that are most likely to be affected by these and other potential changes (e.g., sea-level rise) associated with atmospheric carbon enrichment include permafrost wetlands, coastal and estuarine wetlands, peatlands, alpine wetlands, and prairie pothote wetlands. Potential impacts range from changes in community structure to changes in ecological function, and from extirpation to enhancement. Wetlands (particularly boreal peatlands) play an important role in the global carbon cycle, generally sequestering carbon in the form of biomass, methane, dissolved organic material and organic sediment. Wetlands that are drained or partially dried can become a net source of methane and carbon dioxide to the atmosphere, serving as a positive biotic feedback to global warming. Policy options for minimizing the adverse impacts of climate change on wetland ecosystems include the reduction of current anthropogenic stresses, allowing for inland migration of coastal wetlands as sea-level rises, active management to preserve wetland hydrology, and a wide range of other management and restoration options.
A new statistical tool for NOAA local climate studies
NASA Astrophysics Data System (ADS)
Timofeyeva, M. M.; Meyers, J. C.; Hollingshead, A.
2011-12-01
The National Weather Services (NWS) Local Climate Analysis Tool (LCAT) is evolving out of a need to support and enhance the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) field offices' ability to efficiently access, manipulate, and interpret local climate data and characterize climate variability and change impacts. LCAT will enable NOAA's staff to conduct regional and local climate studies using state-of-the-art station and reanalysis gridded data and various statistical techniques for climate analysis. The analysis results will be used for climate services to guide local decision makers in weather and climate sensitive actions and to deliver information to the general public. LCAT will augment current climate reference materials with information pertinent to the local and regional levels as they apply to diverse variables appropriate to each locality. The LCAT main emphasis is to enable studies of extreme meteorological and hydrological events such as tornadoes, flood, drought, severe storms, etc. LCAT will close a very critical gap in NWS local climate services because it will allow addressing climate variables beyond average temperature and total precipitation. NWS external partners and government agencies will benefit from the LCAT outputs that could be easily incorporated into their own analysis and/or delivery systems. Presently we identified five existing requirements for local climate: (1) Local impacts of climate change; (2) Local impacts of climate variability; (3) Drought studies; (4) Attribution of severe meteorological and hydrological events; and (5) Climate studies for water resources. The methodologies for the first three requirements will be included in the LCAT first phase implementation. Local rate of climate change is defined as a slope of the mean trend estimated from the ensemble of three trend techniques: (1) hinge, (2) Optimal Climate Normals (running mean for optimal time periods), (3) exponentially-weighted moving average. Root mean squared error is used to determine the best fit of trend to the observations with the least error. The studies of climate variability impacts on local extremes use composite techniques applied to various definitions of local variables: from specified percentiles to critical thresholds. Drought studies combine visual capabilities of Google maps with statistical estimates of drought severity indices. The process of development will be linked to local office interactions with users to ensure the tool will meet their needs as well as provide adequate training. A rigorous internal and tiered peer-review process will be implemented to ensure the studies are scientifically-sound that will be published and submitted to the local studies catalog (database) and eventually to external sources, such as the Climate Portal.
Learning and Risk Exposure in a Changing Climate
NASA Astrophysics Data System (ADS)
Moore, F.
2015-12-01
Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.
Falk, Donald A.; Westerling, Anthony L.; Swetnam, Thomas W.
2017-01-01
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread. PMID:29244839
Analyzing climate variations at multiple timescales can guide Zika virus response measures.
Muñoz, Ángel G; Thomson, Madeleine C; Goddard, Lisa; Aldighieri, Sylvain
2016-10-06
The emergence of Zika virus (ZIKV) in Latin America and the Caribbean in 2014-2016 occurred during a period of severe drought and unusually high temperatures, conditions that have been associated with the 2015-2016 El Niño event, and/or climate change; however, no quantitative assessment has been made to date. Analysis of related flaviviruses transmitted by the same vectors suggests that ZIKV dynamics are sensitive to climate seasonality and longer-term variability and trends. A better understanding of the climate conditions conducive to the 2014-2016 epidemic may permit the development of climate-informed short and long-term strategies for ZIKV prevention and control. Using a novel timescale-decomposition methodology, we demonstrate that the extreme climate anomalies observed in most parts of South America during the current epidemic are not caused exclusively by El Niño or climate change, but by a combination of climate signals acting at multiple timescales. In Brazil, the dry conditions present in 2013-2015 are primarily explained by year-to-year variability superimposed on decadal variability, but with little contribution of long-term trends. In contrast, the warm temperatures of 2014-2015 resulted from the compound effect of climate change, decadal and year-to-year climate variability. ZIKV response strategies made in Brazil during the drought concurrent with the 2015-2016 El Niño event, may require revision in light of the likely return of rainfall associated with the borderline La Niña event expected in 2016-2017. Temperatures are likely to remain warm given the importance of long term and decadal scale climate signals. The Author(s)
Kitzberger, Thomas; Falk, Donald A; Westerling, Anthony L; Swetnam, Thomas W
2017-01-01
Predicting wildfire under future conditions is complicated by complex interrelated drivers operating across large spatial scales. Annual area burned (AAB) is a useful index of global wildfire activity. Current and antecedent seasonal climatic conditions, and the timing of snowpack melt, have been suggested as important drivers of AAB. As climate warms, seasonal climate and snowpack co-vary in intricate ways, influencing fire at continental and sub-continental scales. We used independent records of seasonal climate and snow cover duration (last date of permanent snowpack, LDPS) and cell-based Structural Equation Models (SEM) to separate direct (climatic) and indirect (snow cover) effects on relative changes in AAB under future climatic scenarios across western and boreal North America. To isolate seasonal climate variables with the greatest effect on AAB, we ran multiple regression models of log-transformed AAB on seasonal climate variables and LDPS. We used the results of multiple regressions to project future AAB using GCM ensemble climate variables and LDPS, and validated model predictions with recent AAB trends. Direct influences of spring and winter temperatures on AAB are larger and more widespread than the indirect effect mediated by changes in LDPS in most areas. Despite significant warming trends and reductions in snow cover duration, projected responses of AAB to early-mid 21st century are heterogeneous across the continent. Changes in AAB range from strongly increasing (one order of magnitude increases in AAB) to moderately decreasing (more than halving of baseline AAB). Annual wildfire area burned in coming decades is likely to be highly geographically heterogeneous, reflecting interacting regional and seasonal climate drivers of fire occurrence and spread.
Wesche, Sonia D; Chan, Hing Man
2010-09-01
This study examined critical impacts of climate change on Inuit diet and nutritional health in four Inuit communities in the Inuvialuit Settlement Region, Western Arctic, Canada. The first objective was to combine data from community observation studies and dietary interview studies to determine potential climate change impacts on nutritional quality. The second objective was to address the scale of data collection and/or availability to compare local versus regional trends, and identify implications for adaptation planning. Information was compiled from 5 reports (4 community reports and 1 synthesis report) of climate change observations, impacts and adaptations in 12 Inuit communities (2005-2006), and from a dietary report of food use from 18 Inuit communities (1997-2000). Changing access to, availability of, quality of, and ability to use traditional food resources has implications for quality of diet. Nutritional implications of lower traditional food use include likely reductions in iron, zinc, protein, vitamin D, and omega-3 fatty acids, among others. The vulnerability of each community to changing food security is differentially influenced by a range of factors, including current harvesting trends, levels of reliance on individual species, opportunities for access to other traditional food species, and exposure to climate change hazards. Understanding linkages between climate change and traditional food security provides a basis for strengthening adaptive capacity and determining effective adaptation options to respond to future change.
The United Nations and Climate Change: Legal and Policy Developments
NASA Astrophysics Data System (ADS)
Bunn, Isabella D.
2009-07-01
The Secretary-General of the United Nations, Ban Ki-moon, has declared that climate change is "the defining challenge of our times." Climate change trends indicate increasingly severe negative impacts on the majority of countries, with disproportionate effects on poor and vulnerable populations. The scientific reports of the Intergovernmental Panel on Climate Change (IPCC), as well as the negotiations under the UN Framework Convention on Climate Change (UNFCCC), have placed the issue on the forefront of the international agenda. This article examines how climate change is shaping legal and policy developments in five key areas of UN responsibility: international law, humanitarian affairs, human rights, development, and peace and security. It concludes with some observations about high-level efforts to coordinate the response of multilateral institutions, the changing stance of the US government, and the role of environmental protection in addressing the current global economic crisis.
NASA Astrophysics Data System (ADS)
Poppick, A. N.; McKinnon, K. A.; Dunn-Sigouin, E.; Deser, C.
2017-12-01
Initial condition climate model ensembles suggest that regional temperature trends can be highly variable on decadal timescales due to characteristics of internal climate variability. Accounting for trend uncertainty due to internal variability is therefore necessary to contextualize recent observed temperature changes. However, while the variability of trends in a climate model ensemble can be evaluated directly (as the spread across ensemble members), internal variability simulated by a climate model may be inconsistent with observations. Observation-based methods for assessing the role of internal variability on trend uncertainty are therefore required. Here, we use a statistical resampling approach to assess trend uncertainty due to internal variability in historical 50-year (1966-2015) winter near-surface air temperature trends over North America. We compare this estimate of trend uncertainty to simulated trend variability in the NCAR CESM1 Large Ensemble (LENS), finding that uncertainty in wintertime temperature trends over North America due to internal variability is largely overestimated by CESM1, on average by a factor of 32%. Our observation-based resampling approach is combined with the forced signal from LENS to produce an 'Observational Large Ensemble' (OLENS). The members of OLENS indicate a range of spatially coherent fields of temperature trends resulting from different sequences of internal variability consistent with observations. The smaller trend variability in OLENS suggests that uncertainty in the historical climate change signal in observations due to internal variability is less than suggested by LENS.
Mangrove systems are known carbon (C) and greenhouse gas (GHG) sinks, but this function may be affected by global change drivers that include (but are not limited to) eutrophication, climate change, species composition shifts, and hydrological changes. In Puerto Rico’s San...
Mangrove systems are known carbon (C) and greenhouse gas (GHG) sinks, but this function may be affected by global change drivers that include (but are not limited to) eutrophication, climate change, species composition shifts, and hydrological changes. In Puerto Rico’s...
History as the Core of the Liberal Arts.
ERIC Educational Resources Information Center
Devendittis, Paul J.
While the importance of vocational education in today's economic climate cannot be denied, the current trend toward isolated career training should be countered with the recognition that a college education, the liberal arts in general, and the study of history in particular are vital agents in man's attempt to change society for the better.…
USDA-ARS?s Scientific Manuscript database
Long-term research conducted at multiple scales is critical to assessing the effects of key long term drivers (e.g., global population growth; land-use change; increased competition for natural resources; climate variability and change) on our ability to sustain or enhance agricultural production to...
Demographic Trends and Advocacy Experiences of Gay-Straight Alliance Advisors
ERIC Educational Resources Information Center
Graybill, Emily C.; Varjas, Kris; Meyers, Joel; Dever, Bridget V.; Greenberg, Daphne; Roach, Andrew T.; Morillas, Catalina
2015-01-01
Using an ecological model, the individual-, school-, and sociocultural-level characteristics that affect gay-straight alliance (GSA) advisors were examined in the current study. The formation of GSAs has been one way that schools have sought to improve the school climate for lesbian, gay, bisexual, and transgender (LGBT) youth. Limited information…
"The Dalmatian": First Australian Opera by a Woman
ERIC Educational Resources Information Center
Jenkins, Louise
2014-01-01
Australia is currently responding to an international trend that encourages social inclusion and the provision of equal opportunity for all. In a climate that is encouraging and supporting social inclusion, it can be enriching to look back at Australia's history and consider the benefits that have been gained in a previous era when people were…
"Drinking water quality at the consumer's tap is the center piece of U.S. drinking water regulations to protect people's health. Recently promulgated Stage II DBP rules are an example, which requires a system approach in a multi-barrier strategy for compliance and risk managemen...
National Variation in Crop Yield Production Functions
NASA Astrophysics Data System (ADS)
Devineni, N.; Rising, J. A.
2017-12-01
A new multilevel model for yield prediction at the county scale using regional climate covariates is presented in this paper. A new crop specific water deficit index, growing degree days, extreme degree days, and time-trend as an approximation of technology improvements are used as predictors to estimate annual crop yields for each county from 1949 to 2009. Every county in the United States is allowed to have unique parameters describing how these weather predictors are related to yield outcomes. County-specific parameters are further modeled as varying according to climatic characteristics, allowing the prediction of parameters in regions where crops are not currently grown and into the future. The structural relationships between crop yield and regional climate as well as trends are estimated simultaneously. All counties are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. The model captures up to 60% of the variability in crop yields after removing the effect of technology, does well in out of sample predictions and is useful in relating the climate responses to local bioclimatic factors. We apply the predicted growing models in a cost-benefit analysis to identify the most economically productive crop in each county.
Climate Change In Indonesia (Case Study : Medan, Palembang, Semarang)
NASA Astrophysics Data System (ADS)
Suryadi, Yadi; Sugianto, Denny Nugroho; Hadiyanto
2018-02-01
Indonesia's maritime continent is one of the most vulnerable regions regarding to climate change impacts. One of the vulnerable areas affected are the urban areas, because they are home to almost half of Indonesia's population where they live and earn a living, so that environmental management efforts need to be done. To support such efforts, climate change analysis is required. The analysis was carried out in several big cities in Indonesia. The method used in the research was trend analysis of temperature, rainfall, shifts in rainfall patterns, and extreme climatic trend. The data of rainfall and temperature were obtained from Meteorology and Geophysics Agency (BMKG). The result shows that the air temperature and rainfall have a positive trend, except in Semarang City which having a negative rainfall trend. The result also shows heavy rainfall trends. These indicate that climate is changing in these three cities.
Global trends in vegetation phenology from 32-year GEOV1 leaf area index time series
NASA Astrophysics Data System (ADS)
Verger, Aleixandre; Baret, Frédéric; Weiss, Marie; Filella, Iolanda; Peñuelas, Josep
2013-04-01
Phenology is a critical component in understanding ecosystem response to climate variability. Long term data records from global mapping satellite platforms are valuable tools for monitoring vegetation responses to climate change at the global scale. Phenology satellite products and trend detection from satellite time series are expected to contribute to improve our understanding of climate forcing on vegetation dynamics. The capacity of monitoring ecosystem responses to global climate change was evaluated in this study from the 32-year time series of global Leaf Area Index (LAI) which have been recently produced within the geoland2 project. The long term GEOV1 LAI products were derived from NOAA/AVHRR (1981 to 2000) and SPOT/VGT (1999 to the present) with specific emphasis on consistency and continuity. Since mid-November, GEOV1 LAI products are freely available to the scientific community at geoland2 portal (www.geoland2.eu/core-mapping-services/biopar.html). These products are distributed at a dekadal time step for the period 1981-2000 and 2000-2012 at 0.05° and 1/112°, respectively. The use of GEOV1 data covering a long time period and providing information at dense time steps are expected to increase the reliability of trend detection. In this study, GEOV1 LAI time series aggregated at 0.5° spatial resolution are used. The CACAO (Consistent Adjustment of the Climatology to Actual Observations) method (Verger et al, 2013) was applied to characterize seasonal anomalies as well as identify trends. For a given pixel, CACAO computes, for each season, the time shift and the amplitude difference between the current temporal profile and the climatology computed over the 32 years. These CACAO parameters allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. Interannual variations in the timing of the Start of Season and End of Season, Season Length and LAI level in the peak of the growing season are analyzed. Trend analysis with robust statistical test of significance is conducted. Climate variables (precipitation, temperature, radiation) are then used to interpret the anomaly patterns detected in vegetation response.
Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil
NASA Astrophysics Data System (ADS)
Salvador, Mozar de A.; de Brito, J. I. B.
2017-06-01
During the 1980s, a new agricultural frontier arouse in Brazil, which occupied part of the states of Maranhão, Tocantins, Piauí, and Bahia. Currently, this new frontier is known as the MATOPIBA region. The region went through intense transformations in its social and environmental characteristics, with the emergence of extensive areas of intensive agriculture and large herds. The purpose of this research was to study the climatic variabilities of temperature in the MATOPIBA region through extreme climate indexes of ClimAp tool. Data from 11 weather stations were analyzed for yearly air temperature (maximum and minimum) in the period of 1970 to 2012. To verify the trend in the series, we used methods of linear regression analysis and Kendall-tau test. The annual analysis of maximum and minimum temperatures and of the temperature extremes indexes showed a strong positive trend in practically every series (with p value less than 0.05). These results indicated that the region went through to a significant heating process in the last 3 decades. The indices of extreme also showed a significant positive trend in most of the analyzed stations, indicating a higher frequency of warm days during the year.
Dominance of climate warming effects on recent drying trends over wet monsoon regions
NASA Astrophysics Data System (ADS)
Park, Chang-Eui; Jeong, Su-Jong; Ho, Chang-Hoi; Park, Hoonyoung; Piao, Shilong; Kim, Jinwon; Feng, Song
2017-09-01
Understanding changes in background dryness over land is key information for adapting to climate change because of its critical socioeconomic consequences. However, causes of continental dryness changes remain uncertain because various climate parameters control dryness. Here, we verify dominant climate variables determining dryness trends over continental eastern Asia, which is characterized by diverse hydroclimate regimes ranging from arid to humid, by quantifying the relative effects of changes in precipitation, solar radiation, wind speed, surface air temperature, and relative humidity on trends in the aridity index based on observed data from 189 weather stations for the period of 1961-2010. Before the early 1980s (1961-1983), change in precipitation is a primary condition for determining aridity trends. In the later period (1984-2010), the dominant climate parameter for aridity trends varies according to the hydroclimate regime. Drying trends in arid regions are mostly explained by reduced precipitation. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon region despite an enhanced water supply and relatively less warming. Our results show significant drying effects of warming over the humid monsoon region in recent decades; this also supports the drying trends over warm and water-sufficient regions in future climate.
The impact of climate change on photovoltaic power generation in Europe
Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; López-Romero, Jose María; Thais, Françoise; Bartok, Blanka; Christensen, Ole Bøssing; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin
2015-01-01
Ambitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. PMID:26658608
Bunnell, D.B.; Adams, J.V.; Gorman, O.T.; Madenjian, C.P.; Riley, S.C.; Roseman, E.F.; Schaeffer, J.S.
2010-01-01
Climate and dispersal are the two most commonly cited mechanisms to explain spatial synchrony among time series of animal populations, and climate is typically most important for fishes. Using data from 1978-2006, we quantified the spatial synchrony in recruitment and population catch-per-unit-effort (CPUE) for bloater (Coregonus hoyi) populations across lakes Superior, Michigan, and Huron. In this natural field experiment, climate was highly synchronous across lakes but the likelihood of dispersal between lakes differed. When data from all lakes were pooled, modified correlograms revealed spatial synchrony to occur up to 800 km for long-term (data not detrended) trends and up to 600 km for short-term (data detrended by the annual rate of change) trends. This large spatial synchrony more than doubles the scale previously observed in freshwater fish populations, and exceeds the scale found in most marine or estuarine populations. When analyzing the data separately for within- and between-lake pairs, spatial synchrony was always observed within lakes, up to 400 or 600 km. Conversely, between-lake synchrony did not occur among short-term trends, and for long-term trends, the scale of synchrony was highly variable. For recruit CPUE, synchrony occurred up to 600 km between both lakes Michigan and Huron (where dispersal was most likely) and lakes Michigan and Superior (where dispersal was least likely), but failed to occur between lakes Huron and Superior (where dispersal likelihood was intermediate). When considering the scale of putative bloater dispersal and genetic information from previous studies, we concluded that dispersal was likely underlying within-lake synchrony but climate was more likely underlying between-lake synchrony. The broad scale of synchrony in Great Lakes bloater populations increases their probability of extirpation, a timely message for fishery managers given current low levels of bloater abundance. ?? Springer-Verlag 2009.
Climate is changing, everything is flowing, stationarity is immortal
NASA Astrophysics Data System (ADS)
Koutsoyiannis, Demetris; Montanari, Alberto
2015-04-01
There is no doubt that climate is changing -- and ever has been. The environment is also changing and in the last decades, as a result of demographic change and technological advancement, environmental change has been accelerating. These affect also the hydrological processes, whose changes in connection with rapidly changing human systems have been the focus of the new scientific decade 2013-2022 of the International Association of Hydrological Sciences, entitled "Panta Rhei - Everything Flows". In view of the changing systems, it has recently suggested that, when dealing with water management and hydrological extremes, stationarity is no longer a proper assumption. Hence, it was proposed that hydrological processes should be treated as nonstationary. Two main reasons contributed to this perception. First, the climate models project a future hydroclimate that will be different from the current one. Second, as streamflow record become longer, they indicate the presence of upward or downward trends. However, till now hydroclimatic projections made in the recent past have not been verified. At the same time, evidence from quite longer records, instrumental or proxy, suggest that local trends are omnipresent but not monotonic; rather at some time upward trends turn to downward ones and vice versa. These observations suggest that improvident dismiss of stationarity and adoption of nonstationary descriptions based either on climate model outputs or observed trends may entail risks. The risks stem from the facts that the future can be different from what was deterministically projected, that deterministic projections are associated with an illusion of decreased uncertainty, as well as that nonstationary models fitted on observed data may have lower predictive capacity than simpler stationary ones. In most of the cases, what is actually needed is to revisit the concept of stationarity and try to apply it carefully, making it consistent with the presence of local trends, possibly incorporating information from deterministic predictions, whenever these prove to be reliable, and estimating the total predictive uncertainty.
Eastaugh, Chris S; Pötzelsberger, Elisabeth; Hasenauer, Hubert
2011-03-01
The aim of this paper is to determine whether a detectable impact of climate change is apparent in Austrian forests. In regions of complex terrain such as most of Austria, climatic trends over the past 50 years show marked geographic variability. As climate is one of the key drivers of forest growth, a comparison of growth characteristics between regions with different trends in temperature and precipitation can give insights into the impact of climatic change on forests. This study uses data from several hundred climate recording stations, interpolated to measurement sites of the Austrian National Forest Inventory (NFI). Austria as a whole shows a warming trend over the past 50 years and little overall change in precipitation. The warming trends, however, vary considerably across certain regions and regional precipitation trends vary widely in both directions, which cancel out on the national scale These differences allow the delineation of 'climatic change zones' with internally consistent climatic trends that differ from other zones. This study applies the species-specific adaptation of the biogeochemical model BIOME-BGC to Norway spruce (Picea abies (L.) Karst) across a range of Austrian climatic change zones, using input data from a number of national databases. The relative influence of extant climate change on forest growth is quantified, and compared with the far greater impact of non-climatic factors. At the national scale, climate change is found to have negligible effect on Norway spruce productivity, due in part to opposing effects at the regional level. The magnitudes of the modeled non-climatic influences on aboveground woody biomass increment increases are consistent with previously reported values of 20-40 kg of added stem carbon sequestration per kilogram of additional nitrogen deposition, while climate responses are of a magnitude difficult to detect in NFI data.
NASA Astrophysics Data System (ADS)
Kohfeld, K. E.; Savo, V.; Sillmann, J.; Morton, C.; Lepofsky, D.
2016-12-01
Shifting precipitation patterns are a well-documented consequence of climate change, but their spatial variability is particularly difficult to assess. While the accuracy of global models has increased, specific regional changes in precipitation regimes are not well captured by these models. Typically, researchers who wish to detect trends and patterns in climatic variables, such as precipitation, use instrumental observations. In our study, we combined observations of rainfall by subsistence-oriented communities with several metrics of rainfall estimated from global instrumental records for comparable time periods (1955 - 2005). This comparison was aimed at identifying: 1) which rainfall metrics best match human observations of changes in precipitation; 2) areas where local communities observe changes not detected by global models. The collated observations ( 3800) made by subsistence-oriented communities covered 129 countries ( 1830 localities). For comparable time periods, we saw a substantial correspondence between instrumental records and human observations (66-77%) at the same locations, regardless of whether we considered trends in general rainfall, drought, or extreme rainfall. We observed a clustering of mismatches in two specific regions, possibly indicating some climatic phenomena not completely captured by the currently available global models. Many human observations also indicated an increased unpredictability in the start, end, duration, and continuity of the rainy seasons, all of which may hamper the performance of subsistence activities. We suggest that future instrumental metrics should capture this unpredictability of rainfall. This information would be important for thousands of subsistence-oriented communities in planning, coping, and adapting to climate change.
Population trends influence species ability to track climate change.
Ralston, Joel; DeLuca, William V; Feldman, Richard E; King, David I
2017-04-01
Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche tracking imply shifts in species' realized climate niches. We argue that quantifying climate niche shifts and analyzing them for a suite of species reveal general patterns of niche shifts and the factors affecting species' ability to track climate change. We analyzed changes in realized climate niche between 1984 and 2012 for 46 species of North American birds in relation to population trends in an effort to determine whether species differ in the ability to track climate change and whether differences in niche tracking are related to population trends. We found that increasingly abundant species tended to show greater levels of niche expansion (climate space occupied in 2012 but not in 1980) compared to declining species. Declining species had significantly greater niche unfilling (climate space occupied in 1980 but not in 2012) compared to increasing species due to an inability to colonize new sites beyond their range peripheries after climate had changed at sites of occurrence. Increasing species, conversely, were better able to colonize new sites and therefore showed very little niche unfilling. Our results indicate that species with increasing trends are better able to geographically track climate change compared to declining species, which exhibited lags relative to changes in climate. These findings have important implications for understanding past changes in distribution, as well as modeling dynamic species distributions in the face of climate change. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Wu, J.; Zhou, J.; Shen, B.; Zeng, H.
2017-12-01
Global climate change has the potential to accelerate the hydrological cycle, which may further enhance the temporal frequency of regional extreme floods. Climatic models predict that intra-annual rainfall variability will intensify, which will shift current rainfall regimes towards more extreme systems with lower precipitation frequencies, longer dry periods, and larger individual precipitation events worldwide. Understanding the temporal variations of extreme floods that occur in response to climate change is essential to anticipate the trends in flood magnitude and frequency in the context of global warming. However, currently available instrumental data are not long enough for capturing the most extreme events, thus the acquisition of long duration datasets for historical floods that extend beyond available instrumental records is clearly an important step in discerning trends in flood frequency and magnitude with respect to climate change. In this study, a reconstruction of paleofloods over the past 300 years was conducted through an analysis of grain sizes from the sediments of Kanas Lake in the Altay Mountains of northwestern China. Grain parameters and frequency distributions both demonstrate that two abrupt environment changes exist within the lake sedimentary sequence. Based on canonical discriminant analysis (CDA) and C-M pattern analysis, two flood events corresponding to ca. 1760 AD and ca. 1890 AD were identified, both of which occurred during warmer and wetter climate conditions according to tree-ring records. These two flood events are also evidenced by lake sedimentary records in the Altay and Tianshan areas. Furthermore, through a comparison with other records, the flood event in ca. 1760 AD seems to have occurred in both the arid central Asia and the Alps in Europe, and thus may have been associated with changes in the North Atlantic Oscillation (NAO) index.
Population trends influence species ability to track climate change
Joel Ralston; William V. DeLuca; Richard E. Feldman; David I. King
2016-01-01
Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche...
NASA Astrophysics Data System (ADS)
Saft, M.; Peel, M. C.; Andreassian, V.; Parajka, J.; Coxon, G.; Freer, J. E.; Woods, R. A.
2017-12-01
Accurate prediction of hydrologic response to potentially changing climatic forcing is a key current challenge in hydrology. Recent studies exploring decadal to multidecadal climate drying in the African Sahel and south-eastern and south-western Australia demonstrated that long dry periods also had an indirect cumulative impact on streamflow via altered catchment biophysical properties. As a result, hydrologic response to persisting change in climatic conditions, i.e. precipitation, cannot be confidently inferred from the hydrologic response to short-term interannual climate fluctuations of similar magnitude. This study aims to characterise interdecadal changes in precipitation-runoff conversion processes globally. The analysis is based on long continuous records from near-natural baseline catchments in North America, Europe, and Australia. We used several complimentary metrics characterising precipitation-runoff relationship to assess how partitioning changed over recent decades. First, we explore the hypothesis that during particularly dry or wet decades the precipitation elasticity of streamflow increases over what can be expected from inter-annual variability. We found this hypothesis holds for both wet and dry periods in some regions, but not everywhere. Interestingly, trend-like behaviour in the precipitation-runoff partitioning, unrelated to precipitation changes, offset the impact of persisting precipitation change in some regions. Therefore, in the second part of this study we explored longer-term trends in precipitation-runoff partitioning, and related them to climate and streamflow changes. We found significant changes in precipitation-runoff relationship around the world, which implies that runoff response to a given precipitation can vary over decades even in near-natural catchments. When significant changes occur, typically less runoff is generated for a given precipitation over time - even when precipitation is increasing. We discuss the consistency of the results and how the likely drivers differ between regions, and between water-limited and energy limited environments. We argue that when considering the impact of climatic change on hydrological systems we need to consider potential cumulative impacts of climatic shifts.
An analysis of surface air temperature trends and variability along the Andes
NASA Astrophysics Data System (ADS)
Franquist, Eric S.
Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of greenhouse gas emissions as the most likely cause.
Amsterdamøya: a key site for the post-glacial of Svalbard
NASA Astrophysics Data System (ADS)
Bakke, Jostein; Balascio, Nicholas; van der Bilt, Willem; D`Andrea, William; Bradley, Raymond; Gjerde, Marthe; Hormes, Anne; Olafsdottir, Sædis; Røthe, Torgeir; Vasskog, Kristian; De Wet, Greg; Werner, Johannes
2016-04-01
No other place on Earth is changing as fast as the Arctic in terms of climate. On average this region is warming twice as fast as the global average with a seasonal bias towards winter. A major retreat in sea ice extent accompanied by an even more massive thinning represents one of the most robust trends in the Arctic. This trend is anticipated to continue in the decades to come and, according to some models, will leave the Arctic Ocean open during summer some time between 2050-2100. Unabated reduction in the spring-snow cover represents another significant trend. The current warming is also expressed in the massive melting of the Greenland ice sheet as well as local glaciers and ice caps in the Arctic, which causes increased freshwater influx to the Arctic Ocean and adjacent seas. Climate modeling and scenarios are improving and becoming of growing importance, but without a firmer understanding of natural climate variability over longer timescale it is still hard to evaluate and best read the output from these models. In the SHIFTS project we have done an unparalleled effort to overcome this quandary, providing necessary empirical data on past climate which is critical for assessing past changes in atmospheric circulation patterns controlling Arctic hydroclimate. Our study site is located at the northwestern corner of Svalbard on the Island of Amsterdamøya, a site sensitive to changes in both oceanic and atmospheric forcing, at tail of the westward moving branch of the North Atlantic current. Here we have cored several lakes with the goal of providing quantitative data on temperature, hydrology and winter precipitation for the Holocene. Our approach has been to combine reconstruction of glaciers with lipid biomarkers and hydrogen isotopes with the goal of unravel the underlying signature of past climate in the Arctic. Chronological control is secured by radiocarbon dates on macrofossils combined with measurement of paleomagnetic secular variations. Here we synthesis the individual time series providing quantitative data on winter precipitation and summer temperature of the past.
Physiological plasticity increases resilience of ectothermic animals to climate change
NASA Astrophysics Data System (ADS)
Seebacher, Frank; White, Craig R.; Franklin, Craig E.
2015-01-01
Understanding how climate change affects natural populations remains one of the greatest challenges for ecology and management of natural resources. Animals can remodel their physiology to compensate for the effects of temperature variation, and this physiological plasticity, or acclimation, can confer resilience to climate change. The current lack of a comprehensive analysis of the capacity for physiological plasticity across taxonomic groups and geographic regions, however, constrains predictions of the impacts of climate change. Here, we assembled the largest database to date to establish the current state of knowledge of physiological plasticity in ectothermic animals. We show that acclimation decreases the sensitivity to temperature and climate change of freshwater and marine animals, but less so in terrestrial animals. Animals from more stable environments have greater capacity for acclimation, and there is a significant trend showing that the capacity for thermal acclimation increases with decreasing latitude. Despite the capacity for acclimation, climate change over the past 20 years has already resulted in increased physiological rates of up to 20%, and we predict further future increases under climate change. The generality of these predictions is limited, however, because much of the world is drastically undersampled in the literature, and these undersampled regions are the areas of greatest need for future research efforts.
NASA Astrophysics Data System (ADS)
Urban, F. E.; Clow, G. D.; Meares, D. C.
2004-12-01
Observations of long-term climate and surficial geological processes are sparse in most of the Arctic, despite the fact that this region is highly sensitive to climate change. Instrumental networks that monitor the interplay of climatic variability and geological/cryospheric processes are a necessity for documenting and understanding climate change. Improvements to the spatial coverage and temporal scale of Arctic climate data are in progress. The USGS, in collaboration with The Bureau of Land Management (BLM) and The Fish and Wildlife Service (FWS) currently maintains two types of monitoring networks in northern Alaska: (1) A 15 site network of continuously operating active-layer and climate monitoring stations, and (2) a 21 element array of deep bore-holes in which the thermal state of deep permafrost is monitored. Here, we focus on the USGS Alaska Active Layer and Climate Monitoring Network (AK-CLIM). These 15 stations are deployed in longitudinal transects that span Alaska north of the Brooks Range, (11 in The National Petroleum Reserve Alaska, (NPRA), and 4 in The Arctic National Wildlife Refuge (ANWR)). An informative overview and update of the USGS AK-CLIM network is presented, including insight to current data, processing and analysis software, and plans for data telemetry. Data collection began in 1998 and parameters currently measured include air temperature, soil temperatures (5-120 cm), snow depth, incoming and reflected short-wave radiation, soil moisture (15 cm), wind speed and direction. Custom processing and analysis software has been written that calculates additional parameters such as active layer thaw depth, thawing-degree-days, albedo, cloudiness, and duration of seasonal snow cover. Data from selected AK-CLIM stations are now temporally sufficient to begin identifying trends, anomalies, and inter-annual variability in the climate of northern Alaska.
Climatic change controls productivity variation in global grasslands
Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue
2016-01-01
Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565
Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model
NASA Technical Reports Server (NTRS)
Hansen, J.; Fung, I.; Lacis, A.; Rind, D.; Lebedeff, S.; Ruedy, R.; Russell, G.
1988-01-01
The global climate effects of time-dependent atmospheric trace gas and aerosol variations are simulated by NASA-Goddard's three-dimensional climate model II, which possesses 8 x 10-deg horizontal resolution, for the cases of a 100-year control run and three different atmospheric composition scenarios in which trace gas growth is respectively a continuation of current exponential trends, a reduced linear growth, and a rapid curtailment of emissions due to which net climate forcing no longer increases after the year 2000. The experiments begin in 1958, run to the present, and encompass measured or estimated changes in CO2, CH4, N2O, chlorofluorocarbons, and stratospheric aerosols. It is shown that the greenhouse warming effect may be clearly identifiable in the 1990s.
NASA Astrophysics Data System (ADS)
Bordi, I.; Fraedrich, K.; Sutera, A.
2010-06-01
The lead time dependent climates of the ECMWF weather prediction model, initialized with ERA-40 reanalysis, are analysed using 44 years of day-1 to day-10 forecasts of the northern hemispheric 500-hPa geopotential height fields. The study addresses the question whether short-term tendencies have an impact on long-term trends. Comparing climate trends of ERA-40 with those of the forecasts, it seems that the forecast model rapidly loses the memory of initial conditions creating its own climate. All forecast trends show a high degree of consistency. Comparison results suggest that: (i) Only centers characterized by an upward trend are statistical significant when increasing the lead time. (ii) In midilatitudes an upward trend larger than the one observed in the reanalysis characterizes the forecasts, while in the tropics there is a good agreement. (iii) The downward trend in reanalysis at high latitudes characterizes also the day-1 forecast which, however, increasing lead time approaches zero.
Sulfate Aerosol Control of Tropical Atlantic Climate over the Twentieth Century
NASA Technical Reports Server (NTRS)
Chang, C.-Y.; Chiang, J. C. H.; Wehner, M. F.; Friedman, A. R.; Ruedy, R.
2011-01-01
The tropical Atlantic interhemispheric gradient in sea surface temperature significantly influences the rainfall climate of the tropical Atlantic sector, including droughts over West Africa and Northeast Brazil. This gradient exhibits a secular trend from the beginning of the twentieth century until the 1980s, with stronger warming in the south relative to the north. This trend behavior is on top of a multi-decadal variation associated with the Atlantic multi-decadal oscillation. A similar long-term forced trend is found in a multimodel ensemble of forced twentieth-century climate simulations. Through examining the distribution of the trend slopes in the multimodel twentieth-century and preindustrial models, the authors conclude that the observed trend in the gradient is unlikely to arise purely from natural variations; this study suggests that at least half the observed trend is a forced response to twentieth-century climate forcings. Further analysis using twentieth-century single-forcing runs indicates that sulfate aerosol forcing is the predominant cause of the multimodel trend. The authors conclude that anthropogenic sulfate aerosol emissions, originating predominantly from the Northern Hemisphere, may have significantly altered the tropical Atlantic rainfall climate over the twentieth century
NASA Astrophysics Data System (ADS)
Ruppel, Meri M.; Soares, Joana; Gallet, Jean-Charles; Isaksson, Elisabeth; Martma, Tõnu; Svensson, Jonas; Kohler, Jack; Pedersen, Christina A.; Manninen, Sirkku; Korhola, Atte; Ström, Johan
2017-10-01
The climate impact of black carbon (BC) is notably amplified in the Arctic by its deposition, which causes albedo decrease and subsequent earlier snow and ice spring melt. To comprehensively assess the climate impact of BC in the Arctic, information on both atmospheric BC concentrations and deposition is essential. Currently, Arctic BC deposition data are very scarce, while atmospheric BC concentrations have been shown to generally decrease since the 1990s. However, a 300-year Svalbard ice core showed a distinct increase in EC (elemental carbon, proxy for BC) deposition from 1970 to 2004 contradicting atmospheric measurements and modelling studies. Here, our objective was to decipher whether this increase has continued in the 21st century and to investigate the drivers of the observed EC deposition trends. For this, a shallow firn core was collected from the same Svalbard glacier, and a regional-to-meso-scale chemical transport model (SILAM) was run from 1980 to 2015. The ice and firn core data indicate peaking EC deposition values at the end of the 1990s and lower values thereafter. The modelled BC deposition results generally support the observed glacier EC variations. However, the ice and firn core results clearly deviate from both measured and modelled atmospheric BC concentration trends, and the modelled BC deposition trend shows variations seemingly independent from BC emission or atmospheric BC concentration trends. Furthermore, according to the model ca. 99 % BC mass is wet-deposited at this Svalbard glacier, indicating that meteorological processes such as precipitation and scavenging efficiency have most likely a stronger influence on the BC deposition trend than BC emission or atmospheric concentration trends. BC emission source sectors contribute differently to the modelled atmospheric BC concentrations and BC deposition, which further supports our conclusion that different processes affect atmospheric BC concentration and deposition trends. Consequently, Arctic BC deposition trends should not directly be inferred based on atmospheric BC measurements, and more observational BC deposition data are required to assess the climate impact of BC in Arctic snow.
Feng, Huihui
2016-09-07
Climate and vegetation change are two dominating factors for soil moisture trend. However, their individual contributions remain unknown due to their complex interaction. Here, I separated their contributions through a trajectory-based method across the global, regional and local scales. Our results demonstrated that climate change accounted for 98.78% and 114.64% of the global drying and wetting trend. Vegetation change exhibited a relatively weak influence (contributing 1.22% and -14.64% of the global drying and wetting) because it occurred in a limited area on land. Regionally, the impact of vegetation change cannot be neglected, which contributed -40.21% of the soil moisture change in the wetting zone. Locally, the contributions strongly correlated to the local environmental characteristics. Vegetation negatively affected soil moisture trends in the dry and sparsely vegetated regions and positively in the wet and densely vegetated regions. I conclude that individual contributions of climate and vegetation change vary at the global, regional and local scales. Climate change dominates the soil moisture trends, while vegetation change acts as a regulator to drying or wetting the soil under the changing climate.
Yao, Shuai-Lei; Luo, Jing-Jia; Huang, Gang
2016-01-01
Regional climate projections are challenging because of large uncertainty particularly stemming from unpredictable, internal variability of the climate system. Here, we examine the internal variability-induced uncertainty in precipitation and surface air temperature (SAT) trends during 2005-2055 over East Asia based on 40 member ensemble projections of the Community Climate System Model Version 3 (CCSM3). The model ensembles are generated from a suite of different atmospheric initial conditions using the same SRES A1B greenhouse gas scenario. We find that projected precipitation trends are subject to considerably larger internal uncertainty and hence have lower confidence, compared to the projected SAT trends in both the boreal winter and summer. Projected SAT trends in winter have relatively higher uncertainty than those in summer. Besides, the lower-level atmospheric circulation has larger uncertainty than that in the mid-level. Based on k-means cluster analysis, we demonstrate that a substantial portion of internally-induced precipitation and SAT trends arises from internal large-scale atmospheric circulation variability. These results highlight the importance of internal climate variability in affecting regional climate projections on multi-decadal timescales.
NASA Astrophysics Data System (ADS)
Wason, J. W., III; Dovciak, M.; Bevilacqua, E.
2015-12-01
Climate change in the northeastern United States is expected to shift climatic (temperature) envelopes for spruce-fir forests upslope and northward decreasing their area in the region by 2100. Coarse scale landscape models however, may not incorporate heterogeneity in climatic conditions in mountains that can create climatic refugia for species in high-elevation spruce-fir forests. To determine spatial and temporal trends in climate of mountain spruce-fir forests we measured microclimate at 98 forest plots in 2012 and 2013 on 12 mountains in New York, Vermont, New Hampshire, and Maine. By linking regional climate trends with our spatial climate data we calculated elevational shifts in temperature envelopes during the last 50 years. Additionally we linked our spatial dataset to a range of future climate conditions for 2100 based on Representative Concentration Pathways (1 to 5°C warming). We hypothesized that climates have already changed to an extent that spruce-fir forests should begin to respond and that future climate conditions may shift suitable habitat for spruce-fir forests beyond their current range. We found that regional climate change over the last 50 years has resulted in warming of 0.66 and 1.62°C for average annual daily maximum (Tmax) and minimum (Tmin) temperatures in the region. When linked to our spatial microclimate model, this warming results in a 100 (Tmax) and 312m (Tmin) upslope shift in temperature envelopes. Future climate projections suggest that by 2100 Tmax may shift upslope between 152 and 758m for the 1 and 5°C scenarios respectively, while Tmin may shift upslope between 192 and 962m. Spruce-fir forests typically occupy an elevation range of ~500m suggesting that the climate experienced in these forests 50 years ago may not be found within their elevation range by 2100. These results are discussed in the context of responses of tree populations and growth rates observed along the elevation gradients of northeastern United States.
A hydrologic and archeologic study of climate change in Al Ain, United Arab Emirates
NASA Astrophysics Data System (ADS)
Jorgensen, Donald G.; Yasin al-Tikiriti, Walid
2003-01-01
Aridity trends established for Al Ain, United Arab Emirates, for the past 4500 years correlate with the trends of increased well depths and declining groundwater levels. Depth of wells found at archeologic sites at Hili near Al Ain were correlated to groundwater levels. Trends of declining groundwater levels were related to trends of increasing aridity (climate change). The increasing aridity had a pronounced affect on man's development in Al Ain area as well. For example, nonirrigation farming could not be successfully sustained at the end of the Bronze Age. This thwarted the economic development until the falaj (a water conveyance structure) was introduced in the Iron Age. The aridity trends in Al Ain correspond to contemporaneous aridity trends noted in Mesopotamia and the Dead Sea area, as well as the Middle East, Mediterranean, and northern Africa, in general. Other global climatic changes that are contemporaneous with climate change at Al Ain have been noted. The increased aridity (desertification) trends at Al Ain are contemporaneous with increased atmospheric CO 2 trends as reported by Indermuhle et al. [Nature (398) 121].
NASA Astrophysics Data System (ADS)
Wang, J.; Yin, H.; Chung, F.
2008-12-01
While the population growth, the future land use change, and the desire for better environmental preservation and protection are adding up pressure on water resources management in California, California is facing an extra challenge of addressing potential climate change impacts on water supple and demand in California. The concerns on water facilities planning and flood control caused by climate change include modified precipitation patterns, changes in snow levels and runoff patterns due to increased air temperatures. Although long-term climate projections are largely uncertain, there appears to be a strong consistency in predicting the warming trend of future surface temperature, and the resulting shift in the seasonal patterns of runoff. However, projected changes in precipitation (wetting or drying), which control annual runoff, are far less certain. This paper attempts to separate the effects of warming trend from the effects of precipitation trend on water planning especially in California where reservoir operations are more sensitive to seasonal patterns of runoff than to the total annual runoff. The water resources systems planning model, CALSIM2, is used to evaluate climate change impact on water resource management in California. Rather than directly ingesting estimated streamflows from climate model projections into CALSIM2, a three step perturbation ratio method is proposed to introduce climate change impact into the planning model. Firstly, monthly perturbation ratio of projected monthly inflow to simulated historical monthly inflow is applied to observed historical monthly inflow to generate climate change inflows to major dams and reservoirs. To isolate the effects of warming trend on water resources, a further annual inflow adjustment is applied to the inflows generated in step one to preserve the volume of the observed annual inflow. To re-introduce the effects of precipitation trend on water resources, an additional inflow trend adjustment is applied to the adjusted climate change inflow. Therefore, three CALSIM2 experiments will be implemented: (1) base run with the observed historic inflow (1921 to 2003); (2) sensitivity run with the adjusted climate change inflow through annual inflow adjustment; (3) sensitivity run with the adjusted climate change inflow through annual inflow adjustment and inflow trend adjustment. To account for the variability of various climate models in projecting future climates, the uncertainty in future emission scenarios, and the difference in different projection periods, estimated inflows from 6 climate models for 2 emission scenarios (A2 and B1) and two projection periods (2030-2059 and 2070-2099) are included in the CALSIM model experiments.
Impacts of land cover changes on climate trends in Jiangxi province China.
Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger
2014-07-01
Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.
NASA Astrophysics Data System (ADS)
Chen, Bin
2018-04-01
Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.
Globally-Gridded Interpolated Night-Time Marine Air Temperatures 1900-2014
NASA Astrophysics Data System (ADS)
Junod, R.; Christy, J. R.
2016-12-01
Over the past century, climate records have pointed to an increase in global near-surface average temperature. Near-surface air temperature over the oceans is a relatively unused parameter in understanding the current state of climate, but is useful as an independent temperature metric over the oceans and serves as a geographical and physical complement to near-surface air temperature over land. Though versions of this dataset exist (i.e. HadMAT1 and HadNMAT2), it has been strongly recommended that various groups generate climate records independently. This University of Alabama in Huntsville (UAH) study began with the construction of monthly night-time marine air temperature (UAHNMAT) values from the early-twentieth century through to the present era. Data from the International Comprehensive Ocean and Atmosphere Data Set (ICOADS) were used to compile a time series of gridded UAHNMAT, (20S-70N). This time series was homogenized to correct for the many biases such as increasing ship height, solar deck heating, etc. The time series of UAHNMAT, once adjusted to a standard reference height, is gridded to 1.25° pentad grid boxes and interpolated using the kriging interpolation technique. This study will present results which quantify the variability and trends and compare to current trends of other related datasets that include HadNMAT2 and sea-surface temperatures (HadISST & ERSSTv4).
Campbell-Lendrum, Diarmid; Manga, Lucien; Bagayoko, Magaran; Sommerfeld, Johannes
2015-01-01
Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address this challenge, and outline related initiatives by the World Health Organization (WHO) and its partners. Much of the debate to date has centred on attribution of past changes in disease rates to climate change, and the use of scenario-based models to project future changes in risk for specific diseases. While these can give useful indications, the unavoidable uncertainty in such analyses, and contingency on other socioeconomic and public health determinants in the past or future, limit their utility as decision-support tools. For operational health agencies, the most pressing need is the strengthening of current disease control efforts to bring down current disease rates and manage short-term climate risks, which will, in turn, increase resilience to long-term climate change. The WHO and partner agencies are working through a range of programmes to (i) ensure political support and financial investment in preventive and curative interventions to bring down current disease burdens; (ii) promote a comprehensive approach to climate risk management; (iii) support applied research, through definition of global and regional research agendas, and targeted research initiatives on priority diseases and population groups. PMID:25688013
Schut, Antonius G T; Ivits, Eva; Conijn, Jacob G; Ten Brink, Ben; Fensholt, Rasmus
2015-01-01
Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.
Spatial trends in Pearson Type III statistical parameters
Lichty, R.W.; Karlinger, M.R.
1995-01-01
Spatial trends in the statistical parameters (mean, standard deviation, and skewness coefficient) of a Pearson Type III distribution of the logarithms of annual flood peaks for small rural basins (less than 90 km2) are delineated using a climate factor CT, (T=2-, 25-, and 100-yr recurrence intervals), which quantifies the effects of long-term climatic data (rainfall and pan evaporation) on observed T-yr floods. Maps showing trends in average parameter values demonstrate the geographically varying influence of climate on the magnitude of Pearson Type III statistical parameters. The spatial trends in variability of the parameter values characterize the sensitivity of statistical parameters to the interaction of basin-runoff characteristics (hydrology) and climate. -from Authors
Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand.
Prabnakorn, Saowanit; Maskey, Shreedhar; Suryadi, F X; de Fraiture, Charlotte
2018-04-15
Rice yields in Thailand are among the lowest in Asia. In northeast Thailand where about 90% of rice cultivation is rain-fed, climate variability and change affect rice yields. Understanding climate characteristics and their impacts on the rice yield is important for establishing proper adaptation and mitigation measures to enhance productivity. In this paper, we investigate climatic conditions of the past 30years (1984-2013) and assess the impacts of the recent climate trends on rice yields in the Mun River Basin in northeast Thailand. We also analyze the relationship between rice yield and a drought indicator (Standardized Precipitation and Evapotranspiration Index, SPEI), and the impact of SPEI trends on the yield. Our results indicate that the total yield losses due to past climate trends are rather low, in the range of <50kg/ha per decade (3% of actual average yields). In general, increasing trends in minimum and maximum temperatures lead to modest yield losses. In contrast, precipitation and SPEI-1, i.e. SPEI based on one monthly data, show positive correlations with yields in all months, except in the wettest month (September). If increasing trends of temperatures during the growing season persist, a likely climate change scenario, there is high possibility that the yield losses will become more serious in future. In this paper, we show that the drought index SPEI-1 detects soil moisture deficiency and crop stress in rice better than precipitation or precipitation based indicators. Further, our results emphasize the importance of spatial and temporal resolutions in detecting climate trends and impacts on yields. Copyright © 2017 Elsevier B.V. All rights reserved.
Lake Baikal isotope records of Holocene Central Asian precipitation
NASA Astrophysics Data System (ADS)
Swann, George E. A.; Mackay, Anson W.; Vologina, Elena; Jones, Matthew D.; Panizzo, Virginia N.; Leng, Melanie J.; Sloane, Hilary J.; Snelling, Andrea M.; Sturm, Michael
2018-06-01
Climate models currently provide conflicting predictions of future climate change across Central Asia. With concern over the potential for a change in water availability to impact communities and ecosystems across the region, an understanding of historical trends in precipitation is required to aid model development and assess the vulnerability of the region to future changes in the hydroclimate. Here we present a record from Lake Baikal, located in the southern Siberian region of central Asia close to the Mongolian border, which demonstrates a relationship between the oxygen isotope composition of diatom silica (δ18Odiatom) and precipitation to the region over the 20th and 21st Century. From this, we suggest that annual rates of precipitation in recent times are at their lowest for the past 10,000 years and identify significant long-term variations in precipitation throughout the early to late Holocene interval. Based on comparisons to other regional records, these trends are suggested to reflect conditions across the wider Central Asian region around Lake Baikal and highlight the potential for further changes in precipitation with future climate change.
Late Holocene droughts in the Fertile Crescent recorded in a speleothem from northern Iraq
NASA Astrophysics Data System (ADS)
Flohr, Pascal; Fleitmann, Dominik; Zorita, Eduardo; Sadekov, Aleksey; Cheng, Hai; Bosomworth, Matt; Edwards, Lawrence; Matthews, Wendy; Matthews, Roger
2017-02-01
Droughts have had large impacts on past and present societies. High-resolution paleoclimate data are essential to place recent droughts in a meaningful historical context and to predict regional future changes with greater accuracy. Such records, however, are very scarce in the Middle East in general, and the Fertile Crescent in particular. Here we present a 2400 year long speleothem-based multiproxy record from Gejkar Cave in northern Iraq. Oxygen and carbon isotopes and magnesium are faithful recorders of effective moisture. The new Gejkar record not only shows that droughts in 1998-2000 and 2007-2010, which have been argued to be a contributing factor to Syrian civil war, were extreme compared to the current mean climate, but they were also superimposed on a long-term aridification trend that already started around or before 950 C.E. (Common Era). This long-term trend is not captured by tree ring records and climate models, emphasizing the importance of using various paleoclimate proxy data to evaluate and improve climate models and to correctly inform policy makers about future hydroclimatic changes in this drought-prone region.
Spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean.
Zhang, Min; Zhang, Yuanling; Shu, Qi; Zhao, Chang; Wang, Gang; Wu, Zhaohua; Qiao, Fangli
2018-01-15
Analyses of the chlorophyll a concentration (chla) from satellite ocean color products have suggested the decadal-scale variability of chla linked to the climate change. The decadal-scale variability in chla is both spatially and temporally non-uniform. We need to understand the spatiotemporal evolution of chla in decadal or multi-decadal timescales to better evaluate its linkage to climate variability. Here, the spatiotemporal evolution of the chla trend in the North Atlantic Ocean for the period 1997-2016 is analyzed using the multidimensional ensemble empirical mode decomposition method. We find that this variable trend signal of chla shows a dipole pattern between the subpolar gyre and along the Gulf Stream path, and propagation along the opposite direction of the North Atlantic Current. This propagation signal has an overlapping variability of approximately twenty years. Our findings suggest that the spatiotemporal evolution of chla during the two most recent decades is part of the multidecadal variations and possibly regulated by the changes of Atlantic Meridional Overturning Circulation, whereas the mechanisms of such evolution patterns still need to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.
Source gases: Concentrations, emissions, and trends
NASA Technical Reports Server (NTRS)
Fraser, Paul J.; Harriss, Robert; Penkett, Stuart A.; Makide, Yoshihiro; Sanhueza, Eugenio; Alyea, Fred N.; Rowland, F. Sherwood; Blake, Don; Sasaki, Toru; Cunnold, Derek M.
1991-01-01
Source gases are defined as those gases that influence levels of stratospheric ozone (O3) by transporting species containing halogen, hydrogen, and nitrogen to the stratosphere. Examples are the CFC's, methane (CH4), and nitrous oxide (N2O). Other source gases that also come under consideration in an atmospheric O3 context are those that are involved in the O3 or hydroxyl (OH) radical chemistry of the troposphere. Examples are CH4, carbon monoxide (CO), and nonmethane hydrocarbons (NMHC's). Most of the source gases, along with carbon dioxide (CO2) and water vapor (H2O), are climatically significant and thus affect stratospheric O3 levels by their influence on stratospheric temperatures. Carbonyl sulphide (COS) could affect stratospheric O3 through maintenance of the stratospheric sulphate aerosol layer, which may be involved in heterogeneous chlorine-catalyzed O3 destruction. The previous reviews of trends and emissions of source gases, either from the context of their influence on atmospheric O3 or global climate change, are updated. The current global abundances and concentration trends of the trace gases are given in tabular format.
NASA Astrophysics Data System (ADS)
Marchi, Sylvain; Fichefet, Thierry; Goosse, Hugues; Zunz, Violette; Tietsche, Steffen; Day, Jonny; Hawkins, Ed
2016-04-01
Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice extent over recent decades. Although many processes have already been suggested to explain this positive trend, it remains the subject of current investigations. Understanding the evolution of the Antarctic sea ice turns out to be more complicated than for the Arctic for two reasons: the lack of observations and the well-known biases of climate models in the Southern Ocean. Irrespective of those issues, another one is to determine whether the positive trend in sea ice extent would have been predictable if adequate observations and models were available some decades ago. This study of Antarctic sea ice predictability is carried out using 6 global climate models (HadGEM1.2, MPI-ESM-LR, GFDL CM3, EC-Earth V2, MIROC 5.2 and ECHAM 6-FESOM) which are all part of the APPOSITE project. These models are used to perform hindcast simulations in a perfect model approach. The predictive skill is estimated thanks to the PPP (Potential Prognostic Predictability) and the ACC (Anomaly Correlation Coefficient). The former is a measure of the uncertainty of the ensemble while the latter assesses the accuracy of the prediction. These two indicators are applied to different variables related to sea ice, in particular the total sea ice extent and the ice edge location. This first model intercomparison study about sea ice predictability in the Southern Ocean aims at giving a general overview of Antarctic sea ice predictability in current global climate models.
Peer Group and Friend Influences on the Social Acceptability of Adolescent Book Reading
ERIC Educational Resources Information Center
Merga, Margaret K.
2014-01-01
Increasing recreational reading is a priority in a climate of growing adolescent aliteracy. Raising the social appeal of books has been identified as one potential avenue for arresting this trend. An understanding of the current social acceptability of book reading amongst contemporary adolescents is important in informing an effective approach to…
Transforming Policy To Enhance Educational Services for the Gifted.
ERIC Educational Resources Information Center
Passow, A. Harry; Rudnitski, Rose A.
This paper looks at broad trends in education of the gifted and identifies elements that states should review and reconsider in terms of the current climate for educational reform. The 1972 Marland report is contrasted with the 1993 report of the U.S. Department of Education titled "National Excellence: A Case for Developing America's…
Opinion: Saving the Social Imagination--The Function of the Humanities at the Present Time
ERIC Educational Resources Information Center
Spellmeyer, Kurt
2012-01-01
In the current economic climate, many corporate and political leaders seek to reform public education through entrepreneurial efforts that reflect a managerial approach. Similarly, several academic scholars are busily marketing their research. To counter these trends and improve one's own standing, the author suggests that those who are in the…
Living with wildfire in Log Hill Mesa, Colorado
James R. Meldrum; Christopher M. Barth; Lilia Colter Falk; Hannah Brenkert-Smith; Travis Warziniack; Patricia Champ
2013-01-01
Over the past 50 years, Colorado has experienced an increase in the number and size of wildfires on its public and private lands. Nationwide, expenditures on wildfire suppression have increased for decades and now are measured in the billions of tax dollars. Current trends in climate changes, fuel accumulation from past wildfire suppression, and expansion of the...
Consistent response of bird populations to climate change on two continents
Stephens, Philip A.; Mason, Lucy R.; Green, Rhys E.; Gregory, Richard D.; Sauer, John R.; Alison, Jamie; Aunins, Ainars; Brotons, Lluís; Butchart, Stuart H.M.; Campedelli, Tommaso; Chodkiewicz, Tomasz; Chylarecki, Przemyslaw; Crowe, Olivia; Elts, Jaanus; Escandell, Virginia; Foppen, Ruud P.B.; Heldbjerg, Henning; Herrando, Sergi; Husby, Magne; Jiguet, Frédéric; Lehikoinen, Aleksi; Lindström, Åke; Noble, David G.; Paquet, Jean-Yves; Reif, Jiri; Sattler, Thomas; Szép, Tibor; Teufelbauer, Norbert; Trautmann, Sven; Van Strien, Arco; van Turnhout, Chris A.M.; Vorisek, Petr; Willis, Stephen G.
2016-01-01
Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends.
Kretchun, Alec M; Scheller, Robert M; Lucash, Melissa S; Clark, Kenneth L; Hom, John; Van Tuyl, Steve
2014-01-01
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years.
Kretchun, Alec M.; Scheller, Robert M.; Lucash, Melissa S.; Clark, Kenneth L.; Hom, John; Van Tuyl, Steve
2014-01-01
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years. PMID:25119162
Sherman, Kenneth; Belkin, Igor M; Friedland, Kevin D; O'Reilly, John; Hyde, Kimberly
2009-06-01
Information on the effects of global climate change on trends in global fisheries biomass yields has been limited in spatial and temporal scale. Results are presented of a global study of the impact of sea surface temperature (SST) changes over the last 25 years on the fisheries yields of 63 large marine ecosystems (LMEs) that annually produce 80% of the world's marine fisheries catches. Warming trends were observed in 61 LMEs around the globe. In 18 of the LMEs, rates of SST warming were two to four times faster during the past 25 years than the globally averaged rates of SST warming reported by the Intergovernmental Panel on Climate Change in 2007. Effects of warming on fisheries biomass yields were greatest in the fast-warming northern Northeast Atlantic LMEs, where increasing trends in fisheries biomass yields were related to zooplankton biomass increases. In contrast, fisheries biomass yields of LMEs in the fast-warming, more southerly reaches of the Northeast Atlantic were declining in response to decreases in zooplankton abundance. The LMEs around the margins of the Indian Ocean, where SSTs were among the world's slowest warming, revealed a consistent pattern of fisheries biomass increases during the past 25 years, driven principally by human need for food security from fisheries resources. As a precautionary approach toward more sustainable fisheries utilization, management measures to limit the total allowable catch through a cap-and-sustain approach are suggested for the developing nations recently fishing heavily on resources of the Agulhas Current, Somali Current, Arabian Sea, and Bay of Bengal LMEs.
Trend analysis of hydro-climatic variables in the north of Iran
NASA Astrophysics Data System (ADS)
Nikzad Tehrani, E.; Sahour, H.; Booij, M. J.
2018-04-01
Trend analysis of climate variables such as streamflow, precipitation, and temperature provides useful information for understanding the hydrological changes associated with climate change. In this study, a nonparametric Mann-Kendall test was employed to evaluate annual, seasonal, and monthly trends of precipitation and streamflow for the Neka basin in the north of Iran over a 44-year period (1972 to 2015). In addition, the Inverse Distance Weight (IDW) method was used for annual seasonal, monthly, and daily precipitation trends in order to investigate the spatial correlation between precipitation and streamflow trends in the study area. Results showed a downward trend in annual and winter precipitation (Z < -1.96) and an upward trend in annual maximum daily precipitation. Annual and monthly mean flows for most of the months in the Neka basin decreased by 14% significantly, but the annual maximum daily flow increased by 118%. Results for the trend analysis of streamflow and climatic variables showed that there are statistically significant relationships between precipitation and streamflow (p value < 0.05). Correlation coefficients for Kendall, Spearman's rank and linear regression are 0.43, 0.61, and 0.67, respectively. The spatial presentation of the detected precipitation and streamflow trends showed a downward trend for the mean annual precipitation observed in the upstream part of the study area which is consistent with the streamflow trend. Also, there is a good correlation between monthly and seasonal precipitation and streamflow for all sub-basins (Sefidchah, Gelvard, Abelu). In general, from a hydro-climatic point of view, the results showed that the study area is moving towards a situation with more severe drought events.
Global Trends in Chlorophyll Concentration Observed with the Satellite Ocean Colour Data Record
NASA Astrophysics Data System (ADS)
Melin, F.; Vantrepotte, V.; Chuprin, A.; Grant, M.; Jackson, T.; Sathyendranath, S.
2016-08-01
To detect climate change signals in the data records derived from remote sensing of ocean colour, combining data from multiple missions is required, which implies that the existence of inter-mission differences be adequately addressed prior to undertaking trend studies. Trend distributions associated with merged products are compared with those obtained from single-mission data sets in order to evaluate their suitability for climate studies. Merged products originally developed for operational applications such as near-real time distribution (GlobColour) do not appear to be proper climate data records, showing large parts of the ocean with trends significantly different from trends obtained with SeaWiFS, MODIS or MERIS. On the other hand, results obtained from the Climate Change Initiative (CCI) data are encouraging, showing a good consistency with single-mission products.
Urban climate and energy demand interaction in Northern Eurasia
NASA Astrophysics Data System (ADS)
Kasilova, E. V.; Ginzburg, A. S.; Demchenko, P. F.
2017-11-01
The regional and urban climate change in Northern Eurasia is one of the main challenges for sustainable development of human habitats situated in boreal and temperate areas. The half of primary energy is spent for space heating even under quite a mild European climate. Implementation of the district heating in urban areas is currently seen as one of the key conditions of sustainable development. The clear understanding of main problems of the urban climateenergy demand interaction is crucial for both small towns and megacities. The specific features of the urban energy systems in Finland, Russia and China under the changing climate conditions were studied. Regional manifestations of the climate change were examined. The climate projections were established for urban regions of the Northern Eurasia. It was shown that the climate warming is likely to continue intensively there. History and actual development trends were discussed for the urban district heating systems in Russia, China and Finland. Common challenges linked with the climate change have been identified for the considered areas. Adaptation possibilities were discussed taking into account climate-energy interactions.
NASA Astrophysics Data System (ADS)
Qin, Y.; Rana, A.; Moradkhani, H.
2014-12-01
The multi downscaled-scenario products allow us to better assess the uncertainty of the changes/variations of precipitation and temperature in the current and future periods. Joint Probability distribution functions (PDFs), of both the climatic variables, might help better understand the interdependence of the two, and thus in-turn help in accessing the future with confidence. Using the joint distribution of temperature and precipitation is also of significant importance in hydrological applications and climate change studies. In the present study, we have used multi-modelled statistically downscaled-scenario ensemble of precipitation and temperature variables using 2 different statistically downscaled climate dataset. The datasets used are, 10 Global Climate Models (GCMs) downscaled products from CMIP5 daily dataset, namely, those from the Bias Correction and Spatial Downscaling (BCSD) technique generated at Portland State University and from the Multivariate Adaptive Constructed Analogs (MACA) technique, generated at University of Idaho, leading to 2 ensemble time series from 20 GCM products. Thereafter the ensemble PDFs of both precipitation and temperature is evaluated for summer, winter, and yearly periods for all the 10 sub-basins across Columbia River Basin (CRB). Eventually, Copula is applied to establish the joint distribution of two variables enabling users to model the joint behavior of the variables with any level of correlation and dependency. Moreover, the probabilistic distribution helps remove the limitations on marginal distributions of variables in question. The joint distribution is then used to estimate the change trends of the joint precipitation and temperature in the current and future, along with estimation of the probabilities of the given change. Results have indicated towards varied change trends of the joint distribution of, summer, winter, and yearly time scale, respectively in all 10 sub-basins. Probabilities of changes, as estimated by the joint precipitation and temperature, will provide useful information/insights for hydrological and climate change predictions.
The Contribution of Soils to North America's Current and Future Climate
NASA Astrophysics Data System (ADS)
Mayes, M. A.; Reed, S.; Thornton, P. E.; Lajtha, K.; Bailey, V. L.; Shrestha, G.; Jastrow, J. D.; Torn, M. S.
2015-12-01
This presentation will cover key aspects of the terrestrial soil carbon cycle in North America and the US for the upcoming State of the Carbon Cycle Report (SOCCRII). SOCCRII seeks to summarize how natural processes and human interactions affect the global carbon cycle, how socio-economic trends affect greenhouse gas concentrations in the atmosphere, and how ecosystems are influenced by and respond to greenhouse gas emissions, management decisions, and concomitant climate effects. Here, we will summarize the contemporary understanding of carbon stocks, fluxes, and drivers in the soil ecosystem compartment. We will highlight recent advances in modeling the magnitude of soil carbon stocks and fluxes, as well as the importance of remaining uncertainties in predicting soil carbon cycling and its relationship with climate. Attention will be given to the role of uncertainties in predicting future fluxes from soils, and how those uncertainties vary by region and ecosystem. We will also address how climate feedbacks and management decisions can enhance or minimize future climatic effects based on current understanding and observations, and will highlight select research needs to improve our understanding of the balance of carbon in soils in North America.
Climate change and archaeology in Mesoamerica
NASA Astrophysics Data System (ADS)
Beach, Timothy
2016-03-01
I first encountered Mesoamerican paleoclimate in a graduate seminar taught by Herb Wright, Jr. in Geology at the University of Minnesota in 1984. Herb passed away in 2015 at 98 after decades of studying paleoclimate and many other aspects of Quaternary studies. In 1984 there were few Maya paleoclimate studies, and a Science article on Mayan Urbanism by Deevey et al. (1979) was still current. Mark Brenner was one of the authors of that piece and he has been constant over these decades, appearing again as a coauthor of two articles in this issue. Several recent articles have noted the expansion in Maya climate studies from the perspectives of Climate Science, to Paleotempestology, and to Archeology (Douglas et al., in this issue;Beach et al., 2015; Luzzadder-Beach et al., in press). This special issue grew out of the recognition of that explosion of studies and the need to bring some important current findings together in one issue. This special issue does that by incorporating new reviews and specific studies that help us refine the trends of climate change and the drivers of climate and their connections to what we know of human history and archeology in the region.
NASA Astrophysics Data System (ADS)
Clinton, J.
2017-12-01
Much of Hawaii's history is recorded in archeological sites. Researchers and cultural practitioners have been studying and reconstructing significant archeological sites for generations. Climate change, and more specifically, sea level rise may threaten these sites. Our research records current sea levels and then projects possible consequences to these cultural monuments due to sea level rise. In this mixed methods study, research scientists, cultural practitioners, and secondary students use plane-table mapping techniques to create maps of coastlines and historic sites. Students compare historical records to these maps, analyze current sea level rise trends, and calculate future sea levels. They also gather data through interviews with community experts and kupuna (elders). If climate change continues at projected rates, some historic sites will be in danger of negative impact due to sea level rise. Knowing projected sea levels at specific sites allows for preventative action and contributes to raised awareness of the impacts of climate change to the Hawaiian Islands. Students will share results with the community and governmental agencies in hopes of inspiring action to minimize climate change. It will take collaboration between scientists and cultural communities to inspire future action on climate change.
NASA Technical Reports Server (NTRS)
Wu, Xiao-Ping
1999-01-01
The response of the Greenland ice sheet to climate change could significantly alter sea level. The ice sheet was much thicker at the last glacial maximum. To gain insight into the global change process and the future trend, it is important to evaluate the ice mass variation as a function of time and space. The Gravity Recovery and Climate Experiment (GRACE) mission to fly in 2001 for 5 years will measure gravity changes associated with the current ice variation and the solid earth's response to past variations. Our objective is to assess the separability of different change sources, accuracy and resolution in the mass variation determination by the new gravity data and possible Global Positioning System (GPS) bedrock uplift measurements. We use a reference parameter state that follows a dynamic ice model for current mass variation and a variant of the Tushingham and Peltier ICE-3G deglaciation model for historical deglaciation. The current linear trend is also assumed to have started 5 kyr ago. The Earth model is fixed as preliminary reference Earth model (PREM) with four viscoelastic layers. A discrete Bayesian inverse algorithm is developed employing an isotropic Gaussian a priori covariance function over the ice sheet and time. We use data noise predicted by the University of Texas and JPL for major GRACE error sources. A 2 mm/yr uplift uncertainty is assumed for GPS occupation time of 5 years. We then carry out covariance analysis and inverse simulation using GRACE geoid coefficients up to degree 180 in conjunction with a number of GPS uplift rates. Present-day ice mass variation and historical deglaciation are solved simultaneously over 146 grids of roughly 110 km x 110 km and with 6 time increments of 3 kyr each, along with a common starting epoch of the current trend. For present-day ice thickness change, the covariance analysis using GRACE geoid data alone results in a root mean square (RMS) posterior root variance of 2.6 cm/yr, with fairly large a priori uncertainties in the parameters and a Gaussian correlation length of 350 km. Simulated inverse can successfully recover most features in the reference present-day change. The RMS difference between them over the grids is 2.8 cm/yr. The RMS difference becomes 1.1 cm/yr when both are averaged with a half Gaussian wavelength of 150 km. With a fixed Earth model, GRACE alone can separate the geoid signals due to past and current load fairly well. Shown are the reference geoid signatures of direct and elastic effects of the current trend, the viscoelastic effect of the same trend starting from 5 kyr ago, the Post Glacial Rebound (PGR), and the predicted GRACE geoid error. The difference between the reference and inverse modeled total viscoelastic signatures is also shown. Although past and current ice mass variations are allowed the same spatial scale, their geoid signals have different spatial patterns. GPS data can contribute to the ice mass determination as well. Additional information is contained in the original.
Global warming /climate change: Involving students using local example.
NASA Astrophysics Data System (ADS)
Isiorho, S. A.
2016-12-01
The current political climate has made it apparent that the general public does not believe in global warming. Also, there appears to be some confusion between global warming and climate change; global warming is one aspect of climate change. Most scientists believe there is climate change and global warming, although, there is still doubt among students on global warming. Some upper level undergraduate students are required to conduct water level/temperature measurements as part of their course grade. In addition to students having their individual projects, the various classes also utilize a well field within a wetland on campus to conduct group projects. Twelve wells in the well field on campus are used regularly by students to measure the depth of groundwater, the temperature of the waters and other basic water chemistry parameters like pH, conductivity and total dissolved solid (TDS) as part of the class group project. The data collected by each class is added to data from previous classes. Students work together as a group to interpret the data. More than 100 students have participated in this venture for more than 10 years of the four upper level courses: hydrogeology, environmental and urban geology, environmental conservation and wetlands. The temperature trend shows the seasonal variation as one would expect, but it also shows an upward trend (warming). These data demonstrate a change in climate and warming. Thus, the students participated in data collection, learn to write report and present their result to their peers in the classrooms.
Impact of climate change on runoff in Lake Urmia basin, Iran
NASA Astrophysics Data System (ADS)
Sanikhani, Hadi; Kisi, Ozgur; Amirataee, Babak
2018-04-01
Investigation of the impact of climate change on water resources is very necessary in dry and arid regions. In the first part of this paper, the climate model Long Ashton Research Station Weather Generator (LARS-WG) was used for downscaling climate data including rainfall, solar radiation, and minimum and maximum temperatures. Two different case studies including Aji-Chay and Mahabad-Chay River basins as sub-basins of Lake Urmia in the northwest part of Iran were considered. The results indicated that the LARS-WG successfully downscaled the climatic variables. By application of different emission scenarios (i.e., A1B, A2, and B1), an increasing trend in rainfall and a decreasing trend in temperature were predicted for both the basins over future time periods. In the second part of this paper, gene expression programming (GEP) was applied for simulating runoff of the basins in the future time periods including 2020, 2055, and 2090. The input combination including rainfall, solar radiation, and minimum and maximum temperatures in current and prior time was selected as the best input combination with highest predictive power for runoff prediction. The results showed that the peak discharge will decrease by 50 and 55.9% in 2090 comparing with the baseline period for the Aji-Chay and Mahabad-Chay basins, respectively. The results indicated that the sustainable adaptation strategies are necessary for these basins for protection of water resources in future.
Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages
NASA Astrophysics Data System (ADS)
Samartin, Stéphanie; Heiri, Oliver; Joos, Fortunat; Renssen, Hans; Franke, Jörg; Brönnimann, Stefan; Tinner, Willy
2017-02-01
Understanding past climate trends is key for reliable projections of global warming and associated risks and hazards. Uncomfortably large discrepancies between vegetation-based summer temperature reconstructions (mainly based on pollen) and climate model results have been reported for the current interglacial, the Holocene. For the Mediterranean region these reconstructions indicate cooler-than-present mid-Holocene summers, in contrast with expectations based on climate models and long-term changes in summer insolation. We present new quantitative and replicated Holocene summer temperature reconstructions based on fossil chironomid midges from the northern central Mediterranean region. The Holocene thermal maximum is reconstructed 9,000-5,000 years ago and estimated to have been 1-2 °C warmer in mean July temperature than the recent pre-industrial period, consistent with glacier and marine records, and with transient climate model runs. This combined evidence implies that widely used pollen-based summer temperature reconstructions in the Mediterranean area are significantly biased by precipitation or other forcings such as early land use. Our interpretation can resolve the previous discrepancy between climate models and quantitative palaeotemperature records for millennial-scale Holocene summer temperature trends in the Mediterranean region. It also suggests that pollen-based evidence for cool mid-Holocene summers in other semi-arid to arid regions of the Northern Hemisphere may have to be reconsidered, with potential implications for global-scale reconstructions.
The role of internal climate variability for interpreting climate change scenarios
NASA Astrophysics Data System (ADS)
Maraun, Douglas
2013-04-01
When communicating information on climate change, the use of multi-model ensembles has been advocated to sample uncertainties over a range as wide as possible. To meet the demand for easily accessible results, the ensemble is often summarised by its multi-model mean signal. In rare cases, additional uncertainty measures are given to avoid loosing all information on the ensemble spread, e.g., the highest and lowest projected values. Such approaches, however, disregard the fundamentally different nature of the different types of uncertainties and might cause wrong interpretations and subsequently wrong decisions for adaptation. Whereas scenario and climate model uncertainties are of epistemic nature, i.e., caused by an in principle reducible lack of knowledge, uncertainties due to internal climate variability are aleatory, i.e., inherently stochastic and irreducible. As wisely stated in the proverb "climate is what you expect, weather is what you get", a specific region will experience one stochastic realisation of the climate system, but never exactly the expected climate change signal as given by a multi model mean. Depending on the meteorological variable, region and lead time, the signal might be strong or weak compared to the stochastic component. In cases of a low signal-to-noise ratio, even if the climate change signal is a well defined trend, no trends or even opposite trends might be experienced. Here I propose to use the time of emergence (TOE) to quantify and communicate when climate change trends will exceed the internal variability. The TOE provides a useful measure for end users to assess the time horizon for implementing adaptation measures. Furthermore, internal variability is scale dependent - the more local the scale, the stronger the influence of internal climate variability. Thus investigating the TOE as a function of spatial scale could help to assess the required spatial scale for implementing adaptation measures. I exemplify this proposal with a recently published study on the TOE for mean and heavy precipitation trends in Europe. In some regions trends emerge only late in the 21st century or even later, suggesting that in these regions adaptation to internal variability rather than to climate change is required. Yet in other regions the climate change signal is strong, urging for timely adaptation. Douglas Maraun, When at what scale will trends in European mean and heavy precipitation emerge? Env. Res. Lett., in press, 2013.
Secular trends and climate drift in coupled ocean-atmosphere general circulation models
NASA Astrophysics Data System (ADS)
Covey, Curt; Gleckler, Peter J.; Phillips, Thomas J.; Bader, David C.
2006-02-01
Coupled ocean-atmosphere general circulation models (coupled GCMs) with interactive sea ice are the primary tool for investigating possible future global warming and numerous other issues in climate science. A long-standing problem with such models is that when different components of the physical climate system are linked together, the simulated climate can drift away from observation unless constrained by ad hoc adjustments to interface fluxes. However, 11 modern coupled GCMs, including three that do not employ flux adjustments, behave much better in this respect than the older generation of models. Surface temperature trends in control run simulations (with external climate forcing such as solar brightness and atmospheric carbon dioxide held constant) are small compared with observed trends, which include 20th century climate change due to both anthropogenic and natural factors. Sea ice changes in the models are dominated by interannual variations. Deep ocean temperature and salinity trends are small enough for model control runs to extend over 1000 simulated years or more, but trends in some regions, most notably the Arctic, differ substantially among the models and may be problematic. Methods used to initialize coupled GCMs can mitigate climate drift but cannot eliminate it. Lengthy "spin-ups" of models, made possible by increasing computer power, are one reason for the improvements this paper documents.
Climate change and observed climate trends in the fort cobb experimental watershed.
Garbrecht, J D; Zhang, X C; Steiner, J L
2014-07-01
Recurring droughts in the Southern Great Plains of the United States are stressing the landscape, increasing uncertainty and risk in agricultural production, and impeding optimal agronomic management of crop, pasture, and grazing systems. The distinct possibility that the severity of recent droughts may be related to a greenhouse-gas induced climate change introduces new challenges for water resources managers because the intensification of droughts could represent a permanent feature of the future climate. Climate records of the Fort Cobb watershed in central Oklahoma were analyzed to determine if recent decade-long trends in precipitation and air temperature were consistent with climate change projections for central Oklahoma. The historical precipitation record did not reveal any compelling evidence that the recent 20-yr-long decline in precipitation was related to climate change. Also, precipitation projections by global circulation models (GCMs) displayed a flat pattern through the end of the 21st century. Neither observed nor projected precipitation displayed a multidecadal monotonic rising or declining trend consistent with an ongoing warming climate. The recent trend in observed annual precipitation was probably a decade-scale variation not directly related to the warming climate. On the other hand, the observed monotonic warming trend of 0.34°C decade that started around 1978 is consistent with GCM projections of increasing temperature for central Oklahoma. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Effects of climate change on evapotranspiration over the Okavango Delta water resources
NASA Astrophysics Data System (ADS)
Moses, Oliver; Hambira, Wame L.
2018-06-01
In semi-arid developing countries, most poor people depend on contaminated surface or groundwater resources since they do not have access to safe and centrally supplied water. These water resources are threatened by several factors that include high evapotranspiration rates. In the Okavango Delta region in the north-western Botswana, communities facing insufficient centrally supplied water rely mainly on the surface water resources of the Delta. The Delta loses about 98% of its water through evapotranspiration. However, the 2% remaining water rescues the communities facing insufficient water from the main stream water supply. To understand the effects of climate change on evapotranspiration over the Okavango Delta water resources, this study analysed trends in the main climatic parameters needed as input variables in evapotranspiration models. The Mann Kendall test was used in the analysis. Trend analysis is crucial since it reveals the direction of trends in the climatic parameters, which is helpful in determining the effects of climate change on evapotranspiration. The main climatic parameters required as input variables in evapotranspiration models that were of interest in this study were wind speeds, solar radiation and relative humidity. Very little research has been conducted on these climatic parameters in the Okavango Delta region. The conducted trend analysis was more on wind speeds, which had relatively longer data records than the other two climatic parameters of interest. Generally, statistically significant increasing trends have been found, which suggests that climate change is likely to further increase evapotranspiration over the Okavango Delta water resources.
Creating Near-Term Climate Scenarios for AgMIP
NASA Astrophysics Data System (ADS)
Goddard, L.; Greene, A. M.; Baethgen, W.
2012-12-01
For the next assessment report of the IPCC (AR5), attention is being given to development of climate information that is appropriate for adaptation, such as decadal-scale and near-term predictions intended to capture the combined effects of natural climate variability and the emerging climate change signal. While the science and practice evolve for the production and use of dynamic decadal prediction, information relevant to agricultural decision-makers can be gained from analysis of past decadal-scale trends and variability. Statistical approaches that mimic the characteristics of observed year-to-year variability can indicate the range of possibilities and their likelihood. In this talk we present work towards development of near-term climate scenarios, which are needed to engage decision-makers and stakeholders in the regions in current decision-making. The work includes analyses of decadal-scale variability and trends in the AgMIP regions, and statistical approaches that capture year-to-year variability and the associated persistence of wet and dry years. We will outline the general methodology and some of the specific considerations in the regional application of the methodology for different AgMIP regions, such those for Western Africa versus southern Africa. We will also show some examples of quality checks and informational summaries of the generated data, including (1) metrics of information quality such as probabilistic reliability for a suite of relevant climate variables and indices important for agriculture; (2) quality checks relative to the use of this climate data in crop models; and, (3) summary statistics (e.g., for 5-10-year periods or across given spatial scales).
Trends in record-breaking temperatures for the conterminous United States
NASA Astrophysics Data System (ADS)
Rowe, Clinton M.; Derry, Logan E.
2012-08-01
In an unchanging climate, record-breaking temperatures are expected to decrease in frequency over time, as established records become increasingly more difficult to surpass. This inherent trend in the number of record-breaking events confounds the interpretation of actual trends in the presence of any underlying climate change. Here, a simple technique to remove the inherent trend is introduced so that any remaining trend can be examined separately for evidence of a climate change. As this technique does not use the standard definition of a broken record, our records* are differentiated by an asterisk. Results for the period 1961-2010 indicate that the number of record* low daily minimum temperatures has been significantly and steadily decreasing nearly everywhere across the United States while the number of record* high daily minimum temperatures has been predominantly increasing. Trends in record* low and record* high daily maximum temperatures are generally weaker and more spatially mixed in sign. These results are consistent with other studies examining changes expected in a warming climate.
Gauthier, Gilles; Bêty, Joël; Cadieux, Marie-Christine; Legagneux, Pierre; Doiron, Madeleine; Chevallier, Clément; Lai, Sandra; Tarroux, Arnaud; Berteaux, Dominique
2013-01-01
Arctic wildlife is often presented as being highly at risk in the face of current climate warming. We use the long-term (up to 24 years) monitoring records available on Bylot Island in the Canadian Arctic to examine temporal trends in population attributes of several terrestrial vertebrates and in primary production. Despite a warming trend (e.g. cumulative annual thawing degree-days increased by 37% and snow-melt date advanced by 4–7 days over a 23-year period), we found little evidence for changes in the phenology, abundance or productivity of several vertebrate species (snow goose, foxes, lemmings, avian predators and one passerine). Only primary production showed a response to warming (annual above-ground biomass of wetland graminoids increased by 123% during this period). We nonetheless found evidence for potential mismatches between herbivores and their food plants in response to warming as snow geese adjusted their laying date by only 3.8 days on average for a change in snow-melt of 10 days, half of the corresponding adjustment shown by the timing of plant growth (7.1 days). We discuss several reasons (duration of time series, large annual variability, amplitude of observed climate change, nonlinear dynamic or constraints imposed by various rate of warming with latitude in migrants) to explain the lack of response by herbivores and predators to climate warming at our study site. We also show how length and intensity of monitoring could affect our ability to detect temporal trends and provide recommendations for future monitoring. PMID:23836788
Wave climate simulation for southern region of the South China Sea
NASA Astrophysics Data System (ADS)
Mirzaei, Ali; Tangang, Fredolin; Juneng, Liew; Mustapha, Muzneena Ahmad; Husain, Mohd Lokman; Akhir, Mohd Fadzil
2013-08-01
This study investigates long-term variability and wave characteristic trends in the southern region of the South China Sea (SCS). We implemented the state-of-the art WAVEWATCH III spectral wave model to simulate a 31-year wave hindcast. The simulation results were used to assess the inter-annual variability and long-term changes in the SCS wave climate for the period 1979 to 2009. The model was forced with Climate Forecast System Reanalysis winds and validated against altimeter data and limited available measurements from an Acoustic Wave and Current recorder located offshore of Terengganu, Malaysia. The mean annual significant wave height and peak wave period indicate the occurrence of higher wave heights and wave periods in the central SCS and lower in the Sunda shelf region. Consistent with wind patterns, the wave direction also shows southeasterly (northwesterly) waves during the summer (winter) monsoon. This detailed hindcast demonstrates strong inter-annual variability of wave heights, especially during the winter months in the SCS. Significant wave height correlated negatively with Niño3.4 index during winter, spring and autumn seasons but became positive in the summer monsoon. Such correlations correspond well with surface wind anomalies over the SCS during El Nino events. During El Niño Modoki, the summer time positive correlation extends northeastwards to cover the entire domain. Although significant positive trends were found at 95 % confidence levels during May, July and September, there is significant negative trend in December covering the Sunda shelf region. However, the trend appears to be largely influenced by large El Niño signals.
NASA Astrophysics Data System (ADS)
Kynett, K.; Azimi-Gaylon, S.; Doidic, C.
2014-12-01
The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with State and local agencies. Ultimately, Delta WIN can inform responsive science and adaptive management in other estuaries and critical natural resource areas facing times of change.
Global Warming and Northern Hemisphere Sea Ice Extent.
Vinnikov; Robock; Stouffer; Walsh; Parkinson; Cavalieri; Mitchell; Garrett; Zakharov
1999-12-03
Surface and satellite-based observations show a decrease in Northern Hemisphere sea ice extent during the past 46 years. A comparison of these trends to control and transient integrations (forced by observed greenhouse gases and tropospheric sulfate aerosols) from the Geophysical Fluid Dynamics Laboratory and Hadley Centre climate models reveals that the observed decrease in Northern Hemisphere sea ice extent agrees with the transient simulations, and both trends are much larger than would be expected from natural climate variations. From long-term control runs of climate models, it was found that the probability of the observed trends resulting from natural climate variability, assuming that the models' natural variability is similar to that found in nature, is less than 2 percent for the 1978-98 sea ice trends and less than 0.1 percent for the 1953-98 sea ice trends. Both models used here project continued decreases in sea ice thickness and extent throughout the next century.
Spring leaf phenology and the diurnal temperature range in a temperate maple forest.
Hanes, Jonathan M
2014-03-01
Spring leaf phenology in temperate climates is intricately related to numerous aspects of the lower atmosphere [e.g., surface energy balance, carbon flux, humidity, the diurnal temperature range (DTR)]. To further develop and improve the accuracy of ecosystem and climate models, additional investigations of the specific nature of the relationships between spring leaf phenology and various ecosystem and climate processes are required in different environments. This study used visual observations of maple leaf phenology, below-canopy light intensities, and micrometeorological data collected during the spring seasons of 2008, 2009, and 2010 to examine the potential influence of leaf phenology on a seasonal transition in the trend of the DTR. The timing of a reversal in the DTR trend occurred near the time when the leaves were unfolding and expanding. The results suggest that the spring decline in the DTR can be attributed primarily to the effect of canopy closure on daily maximum temperature. These findings improve our understanding of the relationship between leaf phenology and the diurnal temperature range in temperate maple forests during the spring. They also demonstrate the necessity of incorporating accurate phenological data into ecosystem and climate models and warrant a careful examination of the extent to which canopy phenology is currently incorporated into existing models.
Climate change and habitat conversion favour the same species.
Frishkoff, Luke O; Karp, Daniel S; Flanders, Jon R; Zook, Jim; Hadly, Elizabeth A; Daily, Gretchen C; M'Gonigle, Leithen K
2016-09-01
Land-use change and climate change are driving a global biodiversity crisis. Yet, how species' responses to climate change are correlated with their responses to land-use change is poorly understood. Here, we assess the linkages between climate and land-use change on birds in Neotropical forest and agriculture. Across > 300 species, we show that affiliation with drier climates is associated with an ability to persist in and colonise agriculture. Further, species shift their habitat use along a precipitation gradient: species prefer forest in drier regions, but use agriculture more in wetter zones. Finally, forest-dependent species that avoid agriculture are most likely to experience decreases in habitable range size if current drying trends in the Neotropics continue as predicted. This linkage suggests a synergy between the primary drivers of biodiversity loss. Because they favour the same species, climate and land-use change will likely homogenise biodiversity more severely than otherwise anticipated. © 2016 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Vallam, P.; Qin, X. S.
2017-07-01
Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.
Forest legacies, climate change, altered disturbance regimes, invasive species and water
Stohlgren, T.; Jarnevich, C.; Kumar, S.
2007-01-01
The factors that must be considered in seeking to predict changes in water availability has been examined. These factors are the following: forest legacies including logging, mining, agriculture, grazing, elimination of large carnivores, human-caused wildfire, and pollution; climate change and stream flow; altered disturbances such as frequency intensity and pattern of wildfires and insect outbreaks as well as flood control; lastly, invasive species like forest pests and pathogens. An integrated approach quantifying the current and past condition trends can be combined with spatial and temporal modeling to develop future change in forest structures and water supply. The key is a combination of geographic information system technologies with climate and land use scenarios, while preventing and minimizing the effects of harmful invasive species.
Emerging trends in global freshwater availability.
Rodell, M; Famiglietti, J S; Wiese, D N; Reager, J T; Beaudoing, H K; Landerer, F W; Lo, M-H
2018-05-01
Freshwater availability is changing worldwide. Here we quantify 34 trends in terrestrial water storage observed by the Gravity Recovery and Climate Experiment (GRACE) satellites during 2002-2016 and categorize their drivers as natural interannual variability, unsustainable groundwater consumption, climate change or combinations thereof. Several of these trends had been lacking thorough investigation and attribution, including massive changes in northwestern China and the Okavango Delta. Others are consistent with climate model predictions. This observation-based assessment of how the world's water landscape is responding to human impacts and climate variations provides a blueprint for evaluating and predicting emerging threats to water and food security.
NASA Astrophysics Data System (ADS)
Park, Jungjae; Byrne, Roger; Böhnel, Harald
2017-04-01
Periodic droughts have been one of the most serious environmental issues in central Mexico since the earliest times. The impacts of future droughts are likely to become even more severe as the current global warming trend increases potential evaporation and moisture deficits. A full understanding of the mechanism underlying climate variability is imperative to narrow the uncertainty about future droughts and predict water availability. The climatic complexity generated by the combined influence of both Atlantic and Pacific forcings, however, causes considerable difficulty in interpreting central Mexican climate records. Also, the lack of high-resolution information regarding the climate in the recent past makes it difficult to clearly understand current drought mechanisms. Our new high-resolution δ18 O record from Hoya Rincon de Parangueo in central Mexico provides useful information on climate variations since the early 1600s. According to our results, the central Mexican climate has been predominantly controlled by the combined influence of the 20-year Pacific Decadal Oscillation (PDO) and the 70-year Atlantic Multidecadal Oscillation (AMO). However, the AMO probably lost much of its influence in central Mexico in the early 20th century and the PDO has mostly driven climate change since. Marked dryness was mostly associated with co-occurrence of highly positive PDO and negative AMO between ∼1600 and 1900.
ERIC Educational Resources Information Center
Bardo, John W.
2009-01-01
In the current environment, presidents and chancellors can expect to have their institutions under nearly continuous scrutiny from regional accrediting bodies. The number of reports, the expected details of outcomes measures, and the level of ongoing interaction between the institution and the regional association will continue to increase. In…
ERIC Educational Resources Information Center
Pleasant, Stephanie
2017-01-01
This essay explores the intersection of employee engagement and workplace diversity and inclusion. The current trend of organizations fusing these two concepts has provided motivation to examine the (dis)connection between theory and practice. This essay advances the perspectives of practitioners, as well as a critical framework used to discuss…
Effects of urbanization on climate of İstanbul and Ankara
NASA Astrophysics Data System (ADS)
Karaca, Mehmet; Tayanç, Mete; Toros, Hüseyi˙n.
The purpose of this work is to study regional climate change and investigate the effects of urbanization on climates of two largest cities in Turkey: İstanbul and Ankara. Air temperature (mean, maximum and minimum) data of İstanbul and Ankara are analyzed to study regional climate change and to understand the possible effects of urbanization on the climate of these regions owing to industrialization and large flux of migration from rural parts of the country. For the trend analysis, linear regression and the sequential version of the Mann-Kendall test is used. A significant upward trend is found in the urban temperatures of southern İstanbul, which is the most highly populated and industrialized part of the city compared to its rural parts. Northern stations do not show any warming trend; instead, they have a cooling trend. Urbanization and industrialization in the southern part of İstanbul has a negative effect on regional cooling. In spite of Ankara's urban geometry and air pollution problem, the urban station in Ankara does not show any warming trend. A significant urban heat island intensity ( urban-rural) is not observed in Ankara.
USDA-ARS?s Scientific Manuscript database
Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based up...
Consistent response of bird populations to climate change on two continents.
Stephens, Philip A; Mason, Lucy R; Green, Rhys E; Gregory, Richard D; Sauer, John R; Alison, Jamie; Aunins, Ainars; Brotons, Lluís; Butchart, Stuart H M; Campedelli, Tommaso; Chodkiewicz, Tomasz; Chylarecki, Przemysław; Crowe, Olivia; Elts, Jaanus; Escandell, Virginia; Foppen, Ruud P B; Heldbjerg, Henning; Herrando, Sergi; Husby, Magne; Jiguet, Frédéric; Lehikoinen, Aleksi; Lindström, Åke; Noble, David G; Paquet, Jean-Yves; Reif, Jiri; Sattler, Thomas; Szép, Tibor; Teufelbauer, Norbert; Trautmann, Sven; van Strien, Arco J; van Turnhout, Chris A M; Vorisek, Petr; Willis, Stephen G
2016-04-01
Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends. Copyright © 2016, American Association for the Advancement of Science.
Land use/land cover change effects on temperature trends at U.S. Climate Normals stations
Hale, R.C.; Gallo, K.P.; Owen, T.W.; Loveland, Thomas R.
2006-01-01
Alterations in land use/land cover (LULC) in areas near meteorological observation stations can influence the measurement of climatological variables such as temperature. Urbanization near climate stations has been the focus of considerable research attention, however conversions between non-urban LULC classes may also have an impact. In this study, trends of minimum, maximum, and average temperature at 366 U.S. Climate Normals stations are analyzed based on changes in LULC defined by the U.S. Land Cover Trends Project. Results indicate relatively few significant temperature trends before periods of greatest LULC change, and these are generally evenly divided between warming and cooling trends. In contrast, after the period of greatest LULC change was observed, 95% of the stations that exhibited significant trends (minimum, maximum, or mean temperature) displayed warming trends. Copyriht 2006 by the American Geophysical Union.
Campbell-Lendrum, Diarmid; Manga, Lucien; Bagayoko, Magaran; Sommerfeld, Johannes
2015-04-05
Vector-borne diseases continue to contribute significantly to the global burden of disease, and cause epidemics that disrupt health security and cause wider socioeconomic impacts around the world. All are sensitive in different ways to weather and climate conditions, so that the ongoing trends of increasing temperature and more variable weather threaten to undermine recent global progress against these diseases. Here, we review the current state of the global public health effort to address this challenge, and outline related initiatives by the World Health Organization (WHO) and its partners. Much of the debate to date has centred on attribution of past changes in disease rates to climate change, and the use of scenario-based models to project future changes in risk for specific diseases. While these can give useful indications, the unavoidable uncertainty in such analyses, and contingency on other socioeconomic and public health determinants in the past or future, limit their utility as decision-support tools. For operational health agencies, the most pressing need is the strengthening of current disease control efforts to bring down current disease rates and manage short-term climate risks, which will, in turn, increase resilience to long-term climate change. The WHO and partner agencies are working through a range of programmes to (i) ensure political support and financial investment in preventive and curative interventions to bring down current disease burdens; (ii) promote a comprehensive approach to climate risk management; (iii) support applied research, through definition of global and regional research agendas, and targeted research initiatives on priority diseases and population groups. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Teleconnections in the Presence of Climate Change: A Case Study of the Annular Modes
NASA Astrophysics Data System (ADS)
Gerber, Edwin; Baldwin, Mark
2010-05-01
Long model integrations of future and past climates present a problem for defining teleconnection patterns through Empirical Orthogonal Function (EOF) or correlation analysis when trends in the underlying climate begin to dominate the covariance structure. Similar issues may soon appear in observations as the record becomes longer, especially if climate trends accelerate. The Northern and Southern Annular Modes provide a prime example, because the poleward shift of the jet streams strongly projects onto these patterns, particularly in the Southern Hemisphere. Climate forecasts of the 21st century by chemistry climate models provide a case study. Computation of the annular modes in these long data sets with secular trends requires refinement of the standard definition of the annular mode, and a more robust procedure that allows for slowly varying trends is established and verified. The new procedure involves two key changes. First, the global mean geopotential height is removed at each time step before computing anomalies. This is particularly important high in the atmosphere, where seasonal variations in geopotential height become significant, and filters out trends due to changes in the temperature structure of the atmosphere. Pattern definition can be very sensitive near the tropopause, as regions of the atmosphere that used to be more of stratospheric character begin to take on tropospheric characteristics as the tropopause rises. The second change is to define anomalies relative to a slowly evolving seasonal climatology, so that the covariance structure reflects internal variability. Once these changes are accounted for, it is found that the zonal mean variability of the atmosphere stays remarkably constant, despite significant changes in the baseline climate forecast for the rest of the century. This stability of the internal variability makes it possible to relate trends in climate to teleconnections.
Schut, Antonius G. T.; Ivits, Eva; Conijn, Jacob G.; ten Brink, Ben; Fensholt, Rasmus
2015-01-01
Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982–2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17–36% of all productive areas depending on the NDVI metric used. For only 1–2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity. PMID:26466347
Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.
Ebi, Kristie L; Balbus, John; Kinney, Patrick L; Lipp, Erin; Mills, David; O'Neill, Marie S; Wilson, Mark L
2009-06-01
The need to identify and try to prevent adverse health impacts of climate change has risen to the forefront of climate change policy debates and become a top priority of the public health community. Given the observed and projected changes in climate and weather patterns, their current and anticipated health impacts, and the significant degree of regulatory discussion underway in the U.S. government, it is reasonable to determine the extent of federal investment in research to understand, avoid, prepare for, and respond to the human health impacts of climate change in the United States. In this commentary we summarize the health risks of climate change in the United States and examine the extent of federal funding devoted to understanding, avoiding, preparing for, and responding to the human health risks of climate change. Future climate change is projected to exacerbate various current health problems, including heat-related mortality, diarrheal diseases, and diseases associated with exposure to ozone and aeroallergens. Demographic trends and geophysical and socioeconomic factors could increase overall vulnerability. Despite these risks, extramural federal funding of climate change and health research is estimated to be < $3 million per year. Given the real risks that climate change poses for U.S. populations, the National Institutes of Health, Centers for Disease Control and Prevention, U.S. Environmental Protection Agency, and other agencies need to have robust intramural and extramural programs, with funding of > $200 million annually. Oversight of the size and priorities of these programs could be provided by a standing committee within the National Academy of Sciences.
Unidirectional trends in annual and seasonal climate and extremes in Egypt
NASA Astrophysics Data System (ADS)
Nashwan, Mohamed Salem; Shahid, Shamsuddin; Abd Rahim, Norhan
2018-05-01
The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948-2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08-0.29 °C/decade) much faster compared to maximum temperature (0.07-0.24 °C/decade) and therefore, a decrease in diurnal temperature range (- 0.01 to - 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.
NASA Technical Reports Server (NTRS)
Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas
2012-01-01
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration system for the reflected solar portion of CLARREO. SOLARIS provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections.
The uncertainties and causes of the recent changes in global evapotranspiration from 1982 to 2010
NASA Astrophysics Data System (ADS)
Dong, Bo; Dai, Aiguo
2017-07-01
Recent studies have shown considerable changes in terrestrial evapotranspiration (ET) since the early 1980s, but the causes of these changes remain unclear. In this study, the relative contributions of external climate forcing and internal climate variability to the recent ET changes are examined. Three datasets of global terrestrial ET and the CMIP5 multi-model ensemble mean ET are analyzed, respectively, to quantify the apparent and externally-forced ET changes, while the unforced ET variations are estimated as the apparent ET minus the forced component. Large discrepancies of the ET estimates, in terms of their trend, variability, and temperature- and precipitation-dependence, are found among the three datasets. Results show that the forced global-mean ET exhibits an upward trend of 0.08 mm day-1 century-1 from 1982 to 2010. The forced ET also contains considerable multi-year to decadal variations during the latter half of the 20th century that are caused by volcanic aerosols. The spatial patterns and interannual variations of the forced ET are more closely linked to precipitation than temperature. After removing the forced component, the global-mean ET shows a trend ranging from -0.07 to 0.06 mm day-1 century-1 during 1982-2010 with varying spatial patterns among the three datasets. Furthermore, linkages between the unforced ET and internal climate modes are examined. Variations in Pacific sea surface temperatures (SSTs) are found to be consistently correlated with ET over many land areas among the ET datasets. The results suggest that there are large uncertainties in our current estimates of global terrestrial ET for the recent decades, and the greenhouse gas (GHG) and aerosol external forcings account for a large part of the apparent trend in global-mean terrestrial ET since 1982, but Pacific SST and other internal climate variability dominate recent ET variations and changes over most regions.
NASA Astrophysics Data System (ADS)
Teslić, Nemanja; Zinzani, Giordano; Parpinello, Giuseppina P.; Versari, Andrea
2018-01-01
The trend of climate change and its effect on grape production and wine composition was evaluated using a real case study of seven wineries located in the "Romagna Sangiovese" appellation area (northern Italy), one of the most important wine producing region of Italy. This preliminary study focused on three key aspects: (i) Assessment of climate change trends by calculating bioclimatic indices over the last 61 years (from 1953 to 2013) in the Romagna Sangiovese area: significant increasing trends were found for the maximum, mean, and minimum daily temperatures, while a decreasing trend was found for precipitation during the growing season period (April-October). Mean growing season temperature was 18.49 °C, considered as warm days in the Romagna Sangiovese area and optimal for vegetative growth of Sangiovese, while nights during the ripening months were cold (13.66 °C). The rise of temperature shifted studied area from the temperate/warm temperate to the warm temperate-/warm grape-growing region (according to the Huglin classification). (ii) Relation between the potential alcohol content from seven wineries and the climate change from 2001 to 2012: dry spell index (DSI) and Huglin index (HI) suggested a large contribution to increasing level of potential alcohol in Sangiovese wines, whereas DSI showed higher correlation with potential alcohol respect to the HI. (iii) Relation between grape production and the climate change from 1982 to 2012: a significant increasing trend was found with little effect of the climate change trends estimated with used bioclimatic indices. Practical implication at viticultural and oenological levels is discussed.
Shao, Wanyun; Goidel, Kirby
2016-11-01
What role do objective weather conditions play in coastal residents' perceptions of local climate shifts and how do these perceptions affect attitudes toward climate change? While scholars have increasingly investigated the role of weather and climate conditions on climate-related attitudes and behaviors, they typically assume that residents accurately perceive shifts in local climate patterns. We directly test this assumption using the largest and most comprehensive survey of Gulf Coast residents conducted to date supplemented with monthly temperature data from the U.S. Historical Climatology Network and extreme weather events data from National Climatic Data Center. We find objective conditions have limited explanatory power in determining perceptions of local climate patterns. Only the 15- and 19-year hurricane trends and decadal summer temperature trend have some effects on perceptions of these weather conditions, while the decadal trend of total number of extreme weather events and 15- and 19-year winter temperature trends are correlated with belief in climate change. Partisan affiliation, in contrast, plays a powerful role affecting individual perceptions of changing patterns of air temperatures, flooding, droughts, and hurricanes, as well as belief in the existence of climate change and concern for future consequences. At least when it comes to changing local conditions, "seeing is not believing." Political orientations rather than local conditions drive perceptions of local weather conditions and these perceptions-rather than objectively measured weather conditions-influence climate-related attitudes. © 2016 Society for Risk Analysis.
Suggestions for Forest Conservation Policy under Climate Change
NASA Astrophysics Data System (ADS)
Choe, H.; Thorne, J. H.; Lee, D. K.; Seo, C.
2015-12-01
Climate change and the destruction of natural habitats by land-use change are two main factors in decreasing terrestrial biodiversity. Studying land-use and climate change and their impact under different scenarios can help suggest policy directions for future events. This study explores the spatial results of different land use and climate models on the extent of species rich areas in South Korea. We built land use models of forest conversion and created four 2050 scenarios: (1) a loss trend following current levels, resulting in 15.5% lost; (2) similar loss, but with forest conservation in areas with suitable future climates; (3) a reduction of forest loss by 50%; and (4) a combination of preservation of forest climate refugia and overall reduction of loss by 50%. Forest climate refugia were identified through the use of species distribution models run on 1,031 forest plant species to project current and 2050 distributions. We calculated change in species richness under four climate projections, permitting an assessment of forest refugia zones. We then crossed the four land use models with the climate-driven change in species richness. Forest areas predominantly convert to agricultural areas, while climate-suitable extents for forest plants decline and move northward, especially to higher elevations. Scenario 2, that has the higher level of deforestation but protects future species rich areas, conserves nearly as much future biodiversity as scenario 3, which reduced deforestation rates by 50%. This points to the importance of including biogeographic climate dynamics in forest policy. Scenario 4 was the most effective at conserving forest biodiversity. We suggest conserving forest areas with suitable climates for biodiversity conservation and the establishment of monoculture plantations targeted to areas where species richness will decline based on our results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Kumar, Jitendra; Hoffman, Forrest M.
Statement of the Problem: ASHRAE releases updates to 90.1 “Energy Standard for Buildings except Low-Rise Residential Buildings” every three years resulting in a 3.7%-17.3% increase in energy efficiency for buildings with each release. This is adopted by or informs building codes in nations across the globe, is the National Standard for the US, and individual states elect which release year of the standard they will enforce. These codes are built upon Standard 169 “Climatic Data for Building Design Standards,” the latest 2017 release of which defines climate zones based on 8, 118 weather stations throughout the world and data frommore » the past 8-25 years. This data may not be indicative of the weather that new buildings built today, will see during their upcoming 30-120 year lifespan. Methodology & Theoretical Orientation: Using more modern, high-resolution datasets from climate satellites, IPCC climate models (PCM and HadGCM), high performance computing resources (Titan) and new capabilities for clustering and optimization the authors briefly analyzed different methods for redefining climate zones. Using bottom-up analysis of multiple meteorological variables which were the subject matter, experts selected as being important to energy consumption, rather than the heating/cooling degree days currently used. Findings: We analyzed the accuracy of redefined climate zones, compared to current climate zones and how the climate zones moved under different climate change scenarios, and quantified the accuracy of these methods on a local level, at a national scale for the US. Conclusion & Significance: There is likely to be a significant annual, national energy and cost (billions USD) savings that could be realized by adjusting climate zones to take into account anticipated trends or scenarios in regional weather patterns.« less
NASA Astrophysics Data System (ADS)
Chavaillaz, Y.; Joussaume, S.; Bony, S.; Braconnot, P.
2015-12-01
Most climate studies characterize the future climate change by considering the evolution between a fixed current baseline and the future. It emphasizes an increase of future precipitation changes with global warming. Here we use an alternative approach that considers rate of change indicators related to precipitation using projections of an ensemble of General Circulation Models. The rate is defined by the difference between two subsequent 20-year periods. This approach can be relevant to impacts affecting upcoming generations, and to their continuous adaptation towards a changing target. Under the strongest emission pathway (RCP8.5), moistening and drying rates strongly increase at the global scale. As we move further over the twenty-first century, more and more regions exhibit substantial rates. These regions are modified over time due to spatial variability of precipitation. However, we show that they tend to become more geographically stationary through the century, leading to persisting trends at several places over the globe. Whilst global warming is accelerating, this spatial stabilization is due to the decreasing relative influence of global circulation in precipitation changes compared to thermodynamic processes. In specific regions, the combination of intensification and persistence of such substantial rates should be considered in the framework of future impact studies (i.e. the Mediterranean Sea, Central America, South Asia and the Arctic). These trends are already visible in the current period, but could almost disappear if strong mitigation policies (RCP2.6) were quickly implemented.
NASA Astrophysics Data System (ADS)
Chen, R. S.; Levy, M.; Baptista, S.; Adamo, S.
2010-12-01
Vulnerability to climate variability and change will depend on dynamic interactions between different aspects of climate, land-use change, and socioeconomic trends. Measurements and projections of these changes are difficult at the local scale but necessary for effective planning. New data sources and methods make it possible to assess land-use and socioeconomic changes that may affect future patterns of climate vulnerability. In this paper we report on new time series data sets that reveal trends in the spatial patterns of climate vulnerability in the Caribbean/Gulf of Mexico Region. Specifically, we examine spatial time series data for human population over the period 1990-2000, time series data on land use and land cover over 2000-2009, and infant mortality rates as a proxy for poverty for 2000-2008. We compare the spatial trends for these measures to the distribution of climate-related natural disaster risk hotspots (cyclones, floods, landslides, and droughts) in terms of frequency, mortality, and economic losses. We use these data to identify areas where climate vulnerability appears to be increasing and where it may be decreasing. Regions where trends and patterns are especially worrisome include coastal areas of Guatemala and Honduras.
NASA Astrophysics Data System (ADS)
Gädeke, Anne; Koch, Hagen; Pohle, Ina; Grünewald, Uwe
2014-05-01
In anthropogenically heavily impacted river catchments, such as the Lusatian river catchments of Spree and Schwarze Elster (Germany), the robust assessment of possible impacts of climate change on the regional water resources is of high relevance for the development and implementation of suitable climate change adaptation strategies. Large uncertainties inherent in future climate projections may, however, reduce the willingness of regional stakeholder to develop and implement suitable adaptation strategies to climate change. This study provides an overview of different possibilities to consider uncertainties in climate change impact assessments by means of (1) an ensemble based modelling approach and (2) the incorporation of measured and simulated meteorological trends. The ensemble based modelling approach consists of the meteorological output of four climate downscaling approaches (DAs) (two dynamical and two statistical DAs (113 realisations in total)), which drive different model configurations of two conceptually different hydrological models (HBV-light and WaSiM-ETH). As study area serve three near natural subcatchments of the Spree and Schwarze Elster river catchments. The objective of incorporating measured meteorological trends into the analysis was twofold: measured trends can (i) serve as a mean to validate the results of the DAs and (ii) be regarded as harbinger for the future direction of change. Moreover, regional stakeholders seem to have more trust in measurements than in modelling results. In order to evaluate the nature of the trends, both gradual (Mann-Kendall test) and step changes (Pettitt test) are considered as well as both temporal and spatial correlations in the data. The results of the ensemble based modelling chain show that depending on the type (dynamical or statistical) of DA used, opposing trends in precipitation, actual evapotranspiration and discharge are simulated in the scenario period (2031-2060). While the statistical DAs simulate a strong decrease in future long term annual precipitation, the dynamical DAs simulate a tendency towards increasing precipitation. The trend analysis suggests that precipitation has not changed significantly during the period 1961-2006. Therefore, the decrease simulated by the statistical DAs should be interpreted as a rather dry future projection. Concerning air temperature, measured and simulated trends agree on a positive trend. Also the uncertainty related to the hydrological model within the climate change modelling chain is comparably low when long-term averages are considered but increases significantly during extreme events. This proposed framework of combining an ensemble based modelling approach with measured trend analysis is a promising approach for regional stakeholders to gain more confidence into the final results of climate change impact assessments. However, climate change impact assessments will remain highly uncertain. Thus, flexible adaptation strategies need to be developed which should not only consider climate but also other aspects of global change.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-27
... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board; Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-17
... DEPARTMENT OF DEFENSE Office of the Secretary Defense Science Board Task Force on Trends and Implications of Climate Change for National and International Security AGENCY: Department of Defense (DoD... and Implications of Climate Change for National and International Security will meet in closed session...
Hydrologic responses to climate change: considering geographic context and alternative hypotheses
J.A. Jones
2011-01-01
One of the most significant consequences of climate warming is the likely change in streamflow as a result of warming air temperatures. Hydrologists have responded to the challenge of understanding these effects. Many recent studies quantify historical trends in streamflow and usually attribute these trends to climate warming, via altered evapotranspiration and...
Satellite-based trends of solar radiation and cloud parameters in Europe
NASA Astrophysics Data System (ADS)
Pfeifroth, Uwe; Bojanowski, Jedrzej S.; Clerbaux, Nicolas; Manara, Veronica; Sanchez-Lorenzo, Arturo; Trentmann, Jörg; Walawender, Jakub P.; Hollmann, Rainer
2018-04-01
Solar radiation is the main driver of the Earth's climate. Measuring solar radiation and analysing its interaction with clouds are essential for the understanding of the climate system. The EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF) generates satellite-based, high-quality climate data records, with a focus on the energy balance and water cycle. Here, multiple of these data records are analyzed in a common framework to assess the consistency in trends and spatio-temporal variability of surface solar radiation, top-of-atmosphere reflected solar radiation and cloud fraction. This multi-parameter analysis focuses on Europe and covers the time period from 1992 to 2015. A high correlation between these three variables has been found over Europe. An overall consistency of the climate data records reveals an increase of surface solar radiation and a decrease in top-of-atmosphere reflected radiation. In addition, those trends are confirmed by negative trends in cloud cover. This consistency documents the high quality and stability of the CM SAF climate data records, which are mostly derived independently from each other. The results of this study indicate that one of the main reasons for the positive trend in surface solar radiation since the 1990's is a decrease in cloud coverage even if an aerosol contribution cannot be completely ruled out.
NASA Astrophysics Data System (ADS)
Yang, Y.; Gan, T. Y.; Tan, X.
2017-12-01
In the past few decades, there have been more extreme climate events around the world, and Canada has also suffered from numerous extreme precipitation events. In this paper, trend analysis, change point analysis, probability distribution function, principal component analysis and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation in Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data from 164 gauging stations. Several large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Pacific-North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective Available Potential Energy (CAPE), specific humidity, and surface temperature were employed to investigate the potential causes of the trends.The results show statistically significant positive trends for most indices, which indicate increasing extreme precipitation. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominate in the central Canadian Prairies (CP). In addition, strong connections are found between the extreme precipitation and climate indices and the effects of climate pattern differ for each region. The seasonal CAPE, specific humidity, and temperature are found to be closely related to Canadian extreme precipitation.
NASA Astrophysics Data System (ADS)
Etemadi, Halimeh; Samadi, S. Zahra; Sharifikia, Mohammad; Smoak, Joseph M.
2016-10-01
Mangrove wetlands exist in the transition zone between terrestrial and marine environments and have remarkable ecological and socio-economic value. This study uses climate change downscaling to address the question of non-stationarity influences on mangrove variations (expansion and contraction) within an arid coastal region. Our two-step approach includes downscaling models and uncertainty assessment, followed by a non-stationary and trend procedure using the Extreme Value Analysis (extRemes code). The Long Ashton Research Station Weather Generator (LARS-WG) model along with two different general circulation model (GCMs) (MIRH and HadCM3) were used to downscale climatic variables during current (1968-2011) and future (2011-2030, 2045-2065, and 2080-2099) periods. Parametric and non-parametric bootstrapping uncertainty tests demonstrated that the LARS-WGS model skillfully downscaled climatic variables at the 95 % significance level. Downscaling results using MIHR model show that minimum and maximum temperatures will increase in the future (2011-2030, 2045-2065, and 2080-2099) during winter and summer in a range of +4.21 and +4.7 °C, and +3.62 and +3.55 °C, respectively. HadCM3 analysis also revealed an increase in minimum (˜+3.03 °C) and maximum (˜+3.3 °C) temperatures during wet and dry seasons. In addition, we examined how much mangrove area has changed during the past decades and, thus, if climate change non-stationarity impacts mangrove ecosystems. Our results using remote sensing techniques and the non-parametric Mann-Whitney two-sample test indicated a sharp decline in mangrove area during 1972,1987, and 1997 periods ( p value = 0.002). Non-stationary assessment using the generalized extreme value (GEV) distributions by including mangrove area as a covariate further indicated that the null hypothesis of the stationary climate (no trend) should be rejected due to the very low p values for precipitation ( p value = 0.0027), minimum ( p value = 0.000000029) and maximum ( p value = 0.00016) temperatures. Based on non-stationary analysis and an upward trend in downscaled temperature extremes, climate change may control mangrove development in the future.
Richard Periman; Christine Dawe; Bryce Rickel; Amy Unthank; Champe Green; Roy Jemison; Kurt Nelson; Brian Kent
2009-01-01
Climate scientists agree that the earth is undergoing a warming trend, and that human-caused elevations in atmospheric concentrations of carbon dioxide (CO2) and other greenhouse gases (GHGs) are among the causes of global temperature increases. The observed concentrations of these greenhouse gases are projected to increase. Climate change may intensify the risk of...
Luo, Xu; Wang, Yu Li; Zhang, Jin Quan
2018-03-01
Predicting the effects of climate warming and fire disturbance on forest aboveground biomass is a central task of studies in terrestrial ecosystem carbon cycle. The alteration of temperature, precipitation, and disturbance regimes induced by climate warming will affect the carbon dynamics of forest ecosystem. Boreal forest is an important forest type in China, the responses of which to climate warming and fire disturbance are increasingly obvious. In this study, we used a forest landscape model LANDIS PRO to simulate the effects of climate change on aboveground biomass of boreal forests in the Great Xing'an Mountains, and compared direct effects of climate warming and the effects of climate warming-induced fires on forest aboveground biomass. The results showed that the aboveground biomass in this area increased under climate warming scenarios and fire disturbance scenarios with increased intensity. Under the current climate and fire regime scenario, the aboveground biomass in this area was (97.14±5.78) t·hm -2 , and the value would increase up to (97.93±5.83) t·hm -2 under the B1F2 scenario. Under the A2F3 scenario, aboveground biomass at landscape scale was relatively higher at the simulated periods of year 100-150 and year 150-200, and the value were (100.02±3.76) t·hm -2 and (110.56±4.08) t·hm -2 , respectively. Compared to the current fire regime scenario, the predicted biomass at landscape scale was increased by (0.56±1.45) t·hm -2 under the CF2 scenario (fire intensity increased by 30%) at some simulated periods, and the aboveground biomass was reduced by (7.39±1.79) t·hm -2 in CF3 scenario (fire intensity increased by 230%) at the entire simulation period. There were significantly different responses between coniferous and broadleaved species under future climate warming scenarios, in that the simulated biomass for both Larix gmelinii and Betula platyphylla showed decreasing trend with climate change, whereas the simulated biomass for Pinus sylvestris var. mongolica, Picea koraiensis and Populus davidiana showed increasing trend at different degrees during the entire simulation period. There was a time lag for the direct effect of climate warming on biomass for coniferous and broadleaved species. The response time of coniferous species to climate warming was 25-30 years, which was longer than that for broadleaf species. The forest landscape in the Great Xing'an Mountains was sensitive to the interactive effect of climate warming (high CO 2 emissions) and high intensity fire disturbance. Future climate warming and high intensity forest fire disturbance would significantly change the composition and structure of forest ecosystem.
NASA Astrophysics Data System (ADS)
Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao
2017-01-01
Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000-2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend.
Yu, Mei; Gao, Qiong; Gao, Chunxiao; Wang, Chao
2017-01-01
Tropical forests have essential functions in global C dynamics but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and mechanisms behind are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated greenness trend in the Greater Antilles Caribbean during 2000–2015, and analyzed trend of vegetation patches without LCLUC to give prominence to climate impacts. We hypothesized that night warming and heavy cloudiness would reduce EVI in this mountainous tropical region. Over the 15 years, EVI decreased significantly in Jamaica, Haiti, Dominican Republic, and Puerto Rico, but increased in Cuba partly due to its strong reforestation. Haiti had the largest decreasing trend because of continuous deforestation for charcoals. After LCLUC was excluded, EVI trend still varied greatly, decreasing in the windward but increasing in the leeward of Puerto Rico. Nighttime warming reinforced by spatially heterogeneous cloudiness was found to significantly and negatively correlate with EVI trend, and explained the spatial pattern of the latter. Although cooled daytime and increased rainfall might enhance EVI, nighttime warming dominated the climate impacts and differentiated the EVI trend. PMID:28120949
Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism
NASA Astrophysics Data System (ADS)
Dong, Lu; Zhou, Tianjun; Wu, Bo
2014-01-01
The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958-2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958-2004 (0.5 K (47-year)-1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST warming via deeper thermocline in the western basin. The easterly anomalies also drive westward anomalous equatorial currents, against the eastward climatology currents, which is in favor of the SST warming in the western basin via anomalous warm advection. Therefore, both the atmospheric and oceanic processes are in favor of the IOD-like warming pattern formation over the equator.
[Climate suitability for tea growing in Zhejiang Province].
Jin, Zhi-Feng; Ye, Jian-Gang; Yang, Zai-Qiang; Sun, Rui; Hu, Bo; Li, Ren-Zhong
2014-04-01
It is important to quantitatively assess the climate suitability of tea and its response to climate change. Based on meteorological indices of tea growth and daily meteorological data from 1971 to 2010 in Zhejiang Province, three climate suitability models for single climate factors, including temperature, precipitation and sunshine, were established at a 10-day scale by using the fuzzy mathematics method, and a comprehensive climate suitability model was established with the geometric average method. The results indicated that the climate suitability was high in the tea growth season in Zhejiang Province, and the three kinds of climate suitability were all higher than 0.6. As for the single factor climate suitability, temperature suitability was the highest and sunshine suitability was the lowest. There were obvious inter-annual variations of tea climate suitability, with a decline trend in the 1970s, less variation in the 1980s, and an obvious incline trend after the 1990s. The change tendency of climate suitability for spring tea was similar with that of annual climate suitability, lower in the 1980s, higher in the 1970s and after the 1990s. However, the variation amplitude of the climate suitability for spring tea was larger. The climate suitability for summer tea and autumn tea showed a decline trend from 1971 to 2010.
Parker, Gordon B; Hadzi-Pavlovic, Dusan; Graham, Rebecca K
2017-01-15
Studies have established higher rates of hospitalization for mania in spring and summer and posit various explanatory climatic variables. As the earth's climate is changing, we pursue whether this is reflected in the yearly seasonal variation in hospitalizations for mania. This would be indicated by the presence of secular changes in both the hospitalization seasonal pattern and climatic variables, and associations between both variable sets. Data were obtained for 21,882 individuals hospitalized to psychiatric hospitals in the Australian state of New South Wales (NSW) over a 14-year period (2000-2014) with ICD-diagnosed mania - and with NSW population figures and salient climatic variables collected for the same period. Regression analyses were conducted to examine the predictive value of climate variables on hospital admissions. Data quantified a peak for manic admissions in spring of the southern hemisphere, in the months of October and November. There was a significant linear increase in manic admissions (0.5%/year) over the 14-year time period, with significant variation across years. In terms of climatic variables, there was a significant linear trend over the interval for solar radiation, although the trend indicated a decrease rather than an increase. Seasonal variation in admissions was most closely associated with two climate variables - evaporation in the current month and temperature in the previous month. Hospitalization rates do not necessarily provide an accurate estimate of the onset of manic episodes and findings may be limited to the southern hemisphere, or New South Wales. While overall findings do not support the hypothesis that climate change is leading to a higher seasonal impact for manic hospital admissions in the southern hemisphere, analyses identified two climate/weather variables - evaporation and temperature - that may account for the yearly spring excess. Copyright © 2016 Elsevier B.V. All rights reserved.
Emerging Forms of Climate Protection Governance: Urban Initiatives in the European Union
NASA Astrophysics Data System (ADS)
Rosenthal, J. K.; Brunner, E.
2006-12-01
Changes in climate patterns are expected to pose increasing challenges for cities in the following decades, with adverse impacts on urban populations currently stressed by poverty, health and economic inequities. Simultaneously, a strong global trend towards urbanization of poverty exists, with increased challenges for local governments to protect and sustain the well-being of growing cities. In the context of these two overarching trends, interdisciplinary research at the city scale is prioritized for understanding the social impacts of climate change and variability and for the evaluation of strategies in the built environment that might serve as adaptive and mitigative responses to climate change. Urban managers, and transnational networks of municipalities and non-state actors, have taken an increasingly active role in climate protection, through research, policies, programs and agreements on adaptation and mitigation strategies. Concerns for urban impacts of climate change include the potential increase in frequency and intensity of damaging extreme weather events, such as heat waves, hurricanes, heavy rainfall or drought, and coastal flooding and erosion, and potentially adverse impacts on infrastructure, energy systems, and public health. Higher average summertime temperatures in temperate zone cities are also associated with environmental and public health liabilities such as decreased air quality and increased peak electrical demand. We review municipal climate protection programs, generally categorized as approaches based on technological innovation (e.g., new materials); changes in behavior and public education (e.g., use of cooling centers); and improvements in urban design (e.g., zoning for mixed land-use; the use of water, vegetation and plazas to reduce the urban heat island effect). Climate protection initiatives in three European cities are assessed within the context of the global collective efforts enacted by the Kyoto Protocol and United Nations Framework Convention on Climate Change. Initiatives in Stockholm, London and Milan provide evidence that local actions are inevitable and of central importance to mitigate and adapt to the adverse impacts of climate change, the urban heat island effect, and extreme weather events.
NASA Astrophysics Data System (ADS)
Lee, J.; Waliser, D. E.; Lee, H.; Loikith, P. C.; Kunkel, K.
2017-12-01
Monitoring temporal changes in key climate variables, such as surface air temperature and precipitation, is an integral part of the ongoing efforts of the United States National Climate Assessment (NCA). Climate models participating in CMIP5 provide future trends for four different emissions scenarios. In order to have confidence in the future projections of surface air temperature and precipitation, it is crucial to evaluate the ability of CMIP5 models to reproduce observed trends for three different time periods (1895-1939, 1940-1979, and 1980-2005). Towards this goal, trends in surface air temperature and precipitation obtained from the NOAA nClimGrid 5 km gridded station observation-based product are compared during all three time periods to the 206 CMIP5 historical simulations from 48 unique GCMs and their multi-model ensemble (MME) for NCA-defined climate regions during summer (JJA) and winter (DJF). This evaluation quantitatively examines the biases of simulated trends of the spatially averaged temperature and precipitation in the NCA climate regions. The CMIP5 MME reproduces historical surface air temperature trends for JJA for all time period and all regions, except the Northern Great Plains from 1895-1939 and Southeast during 1980-2005. Likewise, for DJF, the MME reproduces historical surface air temperature trends across all time periods over all regions except the Southeast from 1895-1939 and the Midwest during 1940-1979. The Regional Climate Model Evaluation System (RCMES), an analysis tool which supports the NCA by providing access to data and tools for regional climate model validation, facilitates the comparisons between the models and observation. The RCMES Toolkit is designed to assist in the analysis of climate variables and the procedure of the evaluation of climate projection models to support the decision-making processes. This tool is used in conjunction with the above analysis and results will be presented to demonstrate its capability to access observation and model datasets, calculate evaluation metrics, and visualize the results. Several other examples of the RCMES capabilities can be found at https://rcmes.jpl.nasa.gov.
NASA Astrophysics Data System (ADS)
Koslow, J. A.; Brodeur, R.; Duffy-Anderson, J. T.; Perry, I.; jimenez Rosenberg, S.; Aceves, G.
2016-02-01
Ichthyoplankton time series available from the Bering Sea, Gulf of Alaska and California Current (Oregon to Baja California) provide a potential ocean observing network to assess climate impacts on fish communities along the west coast of North America. Larval fish abundance reflects spawning stock biomass, so these data sets provide indicators of the status of a broad range of exploited and unexploited fish populations. Analyses to date have focused on individual time series, which generally exhibit significant change in relation to climate. Off California, a suite of 24 midwater fish taxa have declined > 60%, correlated with declining midwater oxygen concentrations, and overall larval fish abundance has declined 72% since 1969, a trend based on the decline of predominantly cool-water affinity taxa in response to warming ocean temperatures. Off Oregon, there were dramatic differences in community structure and abundance of larval fishes between warm and cool ocean conditions. Midwater deoxygenation and warming sea surface temperature trends are predicted to continue as a result of global climate change. US, Canadian, and Mexican fishery scientists are now collaborating in a virtual ocean observing network to synthesize available ichthyoplankton time series and compare patterns of change in relation to climate. This will provide regional indicators of populations and groups of taxa sensitive to warming, deoxygenation and potentially other stressors, establish the relevant scales of coherence among sub-regions and across Large Marine Ecosystems, and provide the basis for predicting future climate change impacts on these ecosystems.
NASA Astrophysics Data System (ADS)
Shrestha, N. S.; Dahal, P.
2016-12-01
Changes in the hydrological extreme are expected due to climate variability and are needed to assess at local and regional scales since these changes are not uniform over the globe. This study analyses the changes in intensity, frequency and persistence hydrological extreme in Gandaki River Basin (GRB) Nepal over past and future and its relation to climate variability. Hydrological data of 12 different hydrological stations covering all the sub basins of Gandaki River Basin were analyzed. At least 1 hydrological station in each sub basin to the maximum of 3 was taken into consideration for this study. Results show that hydrological extreme have increased in intensity, frequency and persistence over recent year and are predicted to increase in future (2030-2060). The time-series analysis revealed an increase in the magnitude, frequency and duration of flood and drought. The instantaneous maximum flow, flood events and duration of flood events are found to have increasing trend. The minimum discharge was observed to be decreasing which entails that the water availability in the driest time is decreasing. Trend analysis of seasonal flow revealed an increase in monsoon flows and decreasing in post monsoon. Changes in climate variability over the same period shows higher anomalies in both temperature and precipitation in recent decades (1990s and 2000s) compared to the baseline period (1970-2000). Model suggests an increasing trend in annual flows with the increase more pronounced in 2060s. Significant increase in extreme flows and subsequent decrease in dependable flows suggest increase in frequency of isolated extreme flows followed by prolonged dry spells. Data also showed that the mean temperature will be increasing from 1.9 0C to 3.1 0C and precipitation will be changing by -8% to +12% in 2031-2060 compared to the baseline period. For long-term planning and management of water resources, current trend and future change in the pattern of water availability should be analysed well in advance. Climate change with intensifying extreme events will likely have serious consequences on the hydrological changes. Therefore, this study would be useful in understanding how the hydrological regime has been changing with climate change in mountainous watershed.
Simulated discharge trends indicate robustness of hydrological models in a changing climate
NASA Astrophysics Data System (ADS)
Addor, Nans; Nikolova, Silviya; Seibert, Jan
2016-04-01
Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant parameter values over the whole reference period. Further, preliminary results suggest that some trends in parameter values do not reflect changes in hydrological processes, as reported by others previously, but instead might stem from a modeling artifact related to the parameterization of evapotranspiration, which is overly sensitive to temperature increase. We adopt a trading-space-for-time approach to better understand whether robust relationships between parameter values and forcing can be established, and to critically explore the rationale behind time-dependent parameter values in conceptual hydrological models.
Changes in U.S. Regional-Scale Air Quality at 2030 Simulated Using RCP 6.0
NASA Astrophysics Data System (ADS)
Nolte, C. G.; Otte, T.; Pinder, R. W.; Faluvegi, G.; Shindell, D. T.
2012-12-01
Recent improvements in air quality in the United States have been due to significant reductions in emissions of ozone and particulate matter (PM) precursors, and these downward emissions trends are expected to continue in the next few decades. To ensure that planned air quality regulations are robust under a range of possible future climates and to consider possible policy actions to mitigate climate change, it is important to characterize and understand the effects of climate change on air quality. Recent work by several research groups using global and regional models has demonstrated that there is a "climate penalty," in which climate change leads to increases in surface ozone levels in polluted continental regions. One approach to simulating future air quality at the regional scale is via dynamical downscaling, in which fields from a global climate model are used as input for a regional climate model, and these regional climate data are subsequently used for chemical transport modeling. However, recent studies using this approach have encountered problems with the downscaled regional climate fields, including unrealistic surface temperatures and misrepresentation of synoptic pressure patterns such as the Bermuda High. We developed a downscaling methodology and showed that it now reasonably simulates regional climate by evaluating it against historical data. In this work, regional climate simulations created by downscaling the NASA/GISS Model E2 global climate model are used as input for the Community Multiscale Air Quality (CMAQ) model. CMAQ simulations over the continental United States are conducted for two 11-year time slices, one representing current climate (1995-2005) and one following Representative Concentration Pathway 6.0 from 2025-2035. Anthropogenic emissions of ozone and PM precursors are held constant at year 2006 levels for both the current and future periods. In our presentation, we will examine the changes in ozone and PM concentrations, with particular focus on exceedances of the current U.S. air quality standards, and attempt to relate the changes in air quality to the projected changes in regional climate.
Tropical cloud forest climate variability and the demise of the Monteverde golden toad
Anchukaitis, Kevin J.; Evans, Michael N.
2010-01-01
Widespread amphibian extinctions in the mountains of the American tropics have been blamed on the interaction of anthropogenic climate change and a lethal pathogen. However, limited meteorological records make it difficult to conclude whether current climate conditions at these sites are actually exceptional in the context of natural variability. We use stable oxygen isotope measurements from trees without annual rings to reconstruct a century of hydroclimatology in the Monteverde Cloud Forest of Costa Rica. High-resolution measurements reveal coherent isotope cycles that provide annual chronological control and paleoclimate information. Climate variability is dominated by interannual variance in dry season moisture associated with El Niño Southern Oscillation events. There is no evidence of a trend associated with global warming. Rather, the extinction of the Monteverde golden toad (Bufo periglenes) appears to have coincided with an exceptionally dry interval caused by the 1986–1987 El Niño event. PMID:20194772
Zhang, Xing-Liang; He, Xing-Yuan; Chen, Zhen-Ju; Cui, Ming-Xing; Li, Na
2011-12-01
Based on the theory and methodology of dendrochronology, the tree ring width chronology of Pinus sylvestris var. mongolica in Mangui of Great Xing' an Mountains was developed, and the relationships between the standardized tree ring width chronology and local climate factors (temperature and precipitation) as well as the effects of climate factors on the P. sylvestris var. mongolica radial growth were analyzed. In this region, the mean monthly temperature in April-August of current year was the main factor limiting the radial growth, and the increasing mean monthly temperature from April to August had negative effects to the radial growth. The simulation of the variations of the radial growth by the mean monthly temperature change in April-August showed that the radial growth of P. sylvestris var. mongolica would present a declining trend accompanied with the warmer and drier regional climate condition.
Global climate change and international security.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karas, Thomas H.
2003-11-01
This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national andmore » international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.« less
Kang, Sinkyu; Kimball, John S; Running, Steven W
2006-06-01
We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.
Setting Goals for Urban Scale Climate Governance
NASA Astrophysics Data System (ADS)
Rosenthal, J. K.; Brunner, E.
2007-12-01
The impacts of climate change on temperate urban areas may include the increase in frequency and intensity of damaging extreme weather events, such as heat waves, hurricanes, heavy rainfall or drought, and coastal flooding and erosion, and potential adverse impacts on infrastructure, energy systems, and public health. Warmer average summertime temperatures are also associated with environmental and public health liabilities, such as decreased air quality and increased peak electrical demand. Simultaneously, a strong global trend towards urbanization of poverty exists, with increased challenges for local governments to protect and sustain the well-being of growing cities and populations currently stressed by poverty, health and economic inequities. In the context of these trends, research at the city scale has sought to understand the social and economic impacts of climate change and variability and to evaluate strategies in the built environment that might serve as adaptive and mitigative responses to climate change. We review the goals and outcomes of several municipal climate protection programs, generally categorized as approaches based on technological innovation (e.g., new materials); changes in behavior and public education (e.g., neighborhood watch programs and cooling centers); improvements in urban design (e.g., zoning for mixed land-use; the use of water, vegetation and plazas to reduce the urban heat island effect); and efforts to incentivize the use of non-fossil-fuel based energy sources. Urban initiatives in European and American cities are assessed within the context of the global collective efforts enacted by the Kyoto Protocol and United Nations Framework Convention on Climate Change. Our concern is to understand the active networked role of urban managers in climate policies and programs in relation to supranational objectives and non-state actors.
Zhang, Tianyi; Yang, Xiaoguang; Wang, Hesong; Li, Yong; Ye, Qing
2014-04-01
Climatic or technological ceilings could cause yield stagnation. Thus, identifying the principal reasons for yield stagnation within the context of the local climate and socio-economic conditions are essential for informing regional agricultural policies. In this study, we identified the climatic and technological ceilings for seven rice-production regions in China based on yield gaps and on a yield trend pattern analysis for the period 1980-2010. The results indicate that 54.9% of the counties sampled experienced yield stagnation since the 1980. The potential yield ceilings in northern and eastern China decreased to a greater extent than in other regions due to the accompanying climate effects of increases in temperature and decreases in radiation. This may be associated with yield stagnation and halt occurring in approximately 49.8-57.0% of the sampled counties in these areas. South-western China exhibited a promising scope for yield improvement, showing the greatest yield gap (30.6%), whereas the yields were stagnant in 58.4% of the sampled counties. This finding suggests that efforts to overcome the technological ceiling must be given priority so that the available exploitable yield gap can be achieved. North-eastern China, however, represents a noteworthy exception. In the north-central area of this region, climate change has increased the yield potential ceiling, and this increase has been accompanied by the most rapid increase in actual yield: 1.02 ton ha(-1) per decade. Therefore, north-eastern China shows a great potential for rice production, which is favoured by the current climate conditions and available technology level. Additional environmentally friendly economic incentives might be considered in this region. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Caffarra, Amelia; Zottele, Fabio; Gleeson, Emily; Donnelly, Alison
2014-05-01
In order to predict the impact of future climate warming on trees it is important to quantify the effect climate has on their development. Our understanding of the phenological response to environmental drivers has given rise to various mathematical models of the annual growth cycle of plants. These models simulate the timing of phenophases by quantifying the relationship between development and its triggers, typically temperature. In addition, other environmental variables have an important role in determining the timing of budburst. For example, photoperiod has been shown to have a strong influence on phenological events of a number of tree species, including Betula pubescens (birch). A recently developed model for birch (DORMPHOT), which integrates the effects of temperature and photoperiod on budburst, was applied to future temperature projections from a 19-member ensemble of regional climate simulations (on a 25 km grid) generated as part of the ENSEMBLES project, to simulate the timing of birch budburst in Ireland each year up to the end of the present century. Gridded temperature time series data from the climate simulations were used as input to the DORMPHOT model to simulate future budburst timing. The results showed an advancing trend in the timing of birch budburst over most regions in Ireland up to 2100. Interestingly, this trend appeared greater in the northeast of the country than in the southwest, where budburst is currently relatively early. These results could have implications for future forest planning, species distribution modeling, and the birch allergy season.
How resilient are ecosystems in adapting to climate variability
NASA Astrophysics Data System (ADS)
Savenije, Hubert H. G.
2015-04-01
The conclusion often drawn in the media is that ecosystems may perish as a result of climate change. Although climatic trends may indeed lead to shifts in ecosystem composition, the challenge to adjust to climatic variability - even if there is no trend - is larger, particularly in semi-arid or topical climates where climatic variability is large compared to temperate climates. How do ecosystems buffer for climatic variability? The most powerful mechanism is to invest in root zone storage capacity, so as to guarantee access to water and nutrients during period of drought. This investment comes at a cost of having less energy available to invest in growth or formation of fruits. Ecosystems are expected to create sufficient buffer to overcome critical periods of drought, but not more than is necessary to survive or reproduce. Based on this concept, a methodology has been developed to estimate ecosystem root zone storage capacity at local, regional and global scale. These estimates correspond well with estimates made by combining soil and ecosystem information, but are more accurate and more detailed. The methodology shows that ecosystems have intrinsic capacity to adjust to climatic variability and hence have a high resilience to both climatic variability and climatic trends.
NASA Astrophysics Data System (ADS)
Shi, Chunhua; Huang, Ying; Guo, Dong; Zhou, Shunwu; Hu, Kaixi; Liu, Yu
2018-05-01
The South Asian High (SAH) has an important influence on atmospheric circulation and the Asian climate in summer. However, current comparative analyses of the SAH are mostly between reanalysis datasets and there is a lack of sounding data. We therefore compared the climatology, trends and abrupt changes in the SAH in the Japanese 55-year Reanalysis (JRA-55) dataset, the National Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR) dataset, the European Center for Medium-Range Weather Forecasts Reanalysis Interim (ERA-interim) dataset and radiosonde data from China using linear analysis and a sliding t-test. The trends in geopotential height in the control area of the SAH were positive in the JRA-55, NCEP-CFSR and ERA-interim datasets, but negative in the radiosonde data in the time period 1979-2014. The negative trends for the SAH were significant at the 90% confidence level in the radiosonde data from May to September. The positive trends in the NCEP-CFSR dataset were significant at the 90% confidence level in May, July, August and September, but the positive trends in the JRA-55 and ERA-Interim were only significant at the 90% confidence level in September. The reasons for the differences in the trends of the SAH between the radiosonde data and the three reanalysis datasets in the time period 1979-2014 were updates to the sounding systems, changes in instrumentation and improvements in the radiation correction method for calculations around the year 2000. We therefore analyzed the trends in the two time periods of 1979-2000 and 2001-2014 separately. From 1979 to 2000, the negative SAH trends in the radiosonde data mainly agreed with the negative trends in the NCEP-CFSR dataset, but were in contrast with the positive trends in the JRA-55 and ERA-Interim datasets. In 2001-2014, however, the trends in the SAH were positive in all four datasets and most of the trends in the radiosonde and NCEP-CFSR datasets were significant. It is therefore better to use the NCEP-CFSR dataset than the JRA-55 and ERA-Interim datasets when discussing trends in the SAH.
Strategies for reforestation under uncertain future climates: guidelines for Alberta, Canada.
Gray, Laura K; Hamann, Andreas
2011-01-01
Commercial forestry programs normally use locally collected seed for reforestation under the assumption that tree populations are optimally adapted to local environments. However, in western Canada this assumption is no longer valid because of climate trends that have occurred over the last several decades. The objective of this study is to show how we can arrive at reforestation recommendations with alternative species and genotypes that are viable under a majority of climate change scenarios. In a case study for commercially important tree species of Alberta, we use an ecosystem-based bioclimate envelope modeling approach for western North America to project habitat for locally adapted populations of tree species using multi-model climate projections for the 2020s, 2050s and 2080s. We find that genotypes of species that are adapted to drier climatic conditions will be the preferred planting stock over much of the boreal forest that is commercially managed. Interestingly, no alternative species that are currently not present in Alberta can be recommended with any confidence. Finally, we observe large uncertainties in projections of suitable habitat that make reforestation planning beyond the 2050s difficult for most species. More than 50,000 hectares of forests are commercially planted every year in Alberta. Choosing alternative planting stock, suitable for expected future climates, could therefore offer an effective climate change adaptation strategy at little additional cost. Habitat projections for locally adapted tree populations under observed climate change conform well to projections for the 2020s, which suggests that it is a safe strategy to change current reforestation practices and adapt to new climatic realities through assisted migration prescriptions.
Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise
NASA Astrophysics Data System (ADS)
Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.
2018-03-01
Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.
Identifying trends in climate: an application to the cenozoic
NASA Astrophysics Data System (ADS)
Richards, Gordon R.
1998-05-01
The recent literature on trending in climate has raised several issues, whether trends should be modeled as deterministic or stochastic, whether trends are nonlinear, and the relative merits of statistical models versus models based on physics. This article models trending since the late Cretaceous. This 68 million-year interval is selected because the reliability of tests for trending is critically dependent on the length of time spanned by the data. Two main hypotheses are tested, that the trend has been caused primarily by CO2 forcing, and that it reflects a variety of forcing factors which can be approximated by statistical methods. The CO2 data is obtained from model simulations. Several widely-used statistical models are found to be inadequate. ARIMA methods parameterize too much of the short-term variation, and do not identify low frequency movements. Further, the unit root in the ARIMA process does not predict the long-term path of temperature. Spectral methods also have little ability to predict temperature at long horizons. Instead, the statistical trend is estimated using a nonlinear smoothing filter. Both of these paradigms make it possible to model climate as a cointegrated process, in which temperature can wander quite far from the trend path in the intermediate term, but converges back over longer horizons. Comparing the forecasting properties of the two trend models demonstrates that the optimal forecasting model includes CO2 forcing and a parametric representation of the nonlinear variability in climate.
Sustainability of winter tourism in a changing climate over Kashmir Himalaya.
Dar, Reyaz Ahmad; Rashid, Irfan; Romshoo, Shakil Ahmad; Marazi, Asif
2014-04-01
Mountain areas are sensitive to climate change. Implications of climate change can be seen in less snow, receding glaciers, increasing temperatures, and decreasing precipitation. Climate change is also a severe threat to snow-related winter sports such as skiing, snowboarding, and cross-country skiing. The change in climate will put further pressure on the sensitive environment of high mountains. Therefore, in this study, an attempt has been made to know the impact of climate change on the snow precipitation, water resources, and winter tourism in the two famous tourist resorts of the Kashmir Valley. Our findings show that winters are getting prolonged with little snow falls on account of climate change. The average minimum and maximum temperatures are showing statistically significant increasing trends for winter months. The precipitation is showing decreasing trends in both the regions. A considerable area in these regions remains under the snow and glacier cover throughout the year especially during the winter and spring seasons. However, time series analysis of LandSat MODIS images using Normalized Difference Snow Index shows a decreasing trend in snow cover in both the regions from past few years. Similarly, the stream discharge, comprising predominantly of snow- and glacier-melt, is showing a statistically significant declining trend despite the melting of these glaciers. The predicted futuristic trends of temperature from Predicting Regional Climates for Impact Studies regional climate model are showing an increase which may enhance snow-melting in the near future posing a serious threat to the sustainability of winter tourism in the region. Hence, it becomes essential to monitor the changes in temperature and snow cover depletion in these basins in order to evaluate their effect on the winter tourism and water resources in the region.
NASA Astrophysics Data System (ADS)
Reinhard, M.; Alexakis, E.; Rebetez, M.; Schlaepfer, R.
2003-04-01
In Southern Switzerland, we have observed increasing trends in extreme drought and precipitation events, probably linked to global climatic change. These modifications are more important than changes in annual precipitation sums. On the one hand, an increase in extreme drought implies a higher risk for forest fires, impeding the fulfilment of the various forest functions, on the other hand, extreme precipitation events, developing over a short time span, could simultaneously damage the forest ecosystems or destabilise the soil of burned areas, triggering debris flows. Climatic changes might additionally lead to modifications of the current species composition in the forests. Changes are currently observed at lower elevations (laurophiliation), but are still largely unknown at higher elevations. For the time being, forest fires cannot be regarded as natural phenomena in the South of Switzerland because they are mostly anthropogenically triggered. However, the changing climatic patterns, which set new conditions for the forests, may become a new ecological regulator for the forests as well as the forest fires. The social and environmental consequences are important for these issues. The implications for forest planning and management must be further studied and taken into account. Despite uncertainty about the response of forest ecosystems to climate change, planning and management can no longer rely on decadal to century climatic patterns. The increasing importance of changing environmental conditions within the framework of prevention will have to be reconsidered.
Flousek, Jiří; Telenský, Tomáš; Hanzelka, Jan; Reif, Jiří
2015-01-01
Climate change is among the most important global threats to biodiversity and mountain areas are supposed to be under especially high pressure. Although recent modelling studies suggest considerable future range contractions of montane species accompanied with increased extinction risk, data allowing to test actual population consequences of the observed climate changes and identifying traits associated to their adverse impacts are very scarce. To fill this knowledge gap, we estimated long-term population trends of montane birds from 1984 to 2011 in a central European mountain range, the Giant Mountains (Krkonoše), where significant warming occurred over this period. We then related the population trends to several species' traits related to the climate change effects. We found that the species breeding in various habitats at higher altitudes had more negative trends than species breeding at lower altitudes. We also found that the species moved upwards as a response to warming climate, and these altitudinal range shifts were associated with more positive population trends at lower altitudes than at higher altitudes. Moreover, long-distance migrants declined more than residents or species migrating for shorter distances. Taken together, these results indicate that the climate change, besides other possible environmental changes, already influences populations of montane birds with particularly adverse impacts on high-altitude species such as water pipit (Anthus spinoletta). It is evident that the alpine species, predicted to undergo serious climatically induced range contractions due to warming climate in the future, already started moving along this trajectory.
NASA Astrophysics Data System (ADS)
Gaertner, B. A.; Zegre, N.
2015-12-01
Climate change is surfacing as one of the most important environmental and social issues of the 21st century. Over the last 100 years, observations show increasing trends in global temperatures and intensity and frequency of precipitation events such as flooding, drought, and extreme storms. Global circulation models (GCM) show similar trends for historic and future climate indicators, albeit with geographic and topographic variability at regional and local scale. In order to assess the utility of GCM projections for hydrologic modeling, it is important to quantify how robust GCM outputs are compared to robust historical observations at finer spatial scales. Previous research in the United States has primarily focused on the Western and Northeastern regions due to dominance of snow melt for runoff and aquifer recharge but the impact of climate warming in the mountainous central Appalachian Region is poorly understood. In this research, we assess the performance of GCM-generated historical climate compared to historical observations primarily in the context of forcing data for macro-scale hydrologic modeling. Our results show significant spatial heterogeneity of modeled climate indices when compared to observational trends at the watershed scale. Observational data is showing considerable variability within maximum temperature and precipitation trends, with consistent increases in minimum temperature. The geographic, temperature, and complex topographic gradient throughout the central Appalachian region is likely the contributing factor in temperature and precipitation variability. Variable climate changes are leading to more severe and frequent climate events such as temperature extremes and storm events, which can have significant impacts on our drinking water supply, infrastructure, and health of all downstream communities.
NASA Astrophysics Data System (ADS)
Ait Brahim, Yassine; Cheng, Hai; Sifeddine, Abdelfettah; Wassenburg, Jasper A.; Cruz, Francisco W.; Khodri, Myriam; Sha, Lijuan; Pérez-Zanón, Núria; Beraaouz, El Hassane; Apaéstegui, James; Guyot, Jean-Loup; Jochum, Klaus Peter; Bouchaou, Lhoussaine
2017-10-01
This study presents the first well-dated high resolution stable isotope (δ18 O and δ13 C) and trace element (Mg and Sr) speleothem records from southwestern Morocco covering the last 1000 yrs. Our records reveal substantial decadal to multidecadal swings between dry and humid periods, consistent with regional paleorecords with prevailing dry conditions during the Medieval Climate Anomaly (MCA), wetter conditions during the second part of the Little Ice Age (LIA), and a trend towards dry conditions during the current warm period. These coherent regional climate signals suggest common climate controls. Statistical analyses indicate that the climate of southwestern Morocco remained under the combined influence of both the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation (AMO) over the last millennium. Interestingly, the generally warmer MCA and colder LIA at longer multidecadal timescales probably influenced the regional climate in North Africa through the influence on Sahara Low which weakened and strengthened the mean moisture inflow from the Atlantic Ocean during the MCA and LIA respectively.
Detecting changes in forced climate attractors with Wasserstein distance
NASA Astrophysics Data System (ADS)
Robin, Yoann; Yiou, Pascal; Naveau, Philippe
2017-07-01
The climate system can been described by a dynamical system and its associated attractor. The dynamics of this attractor depends on the external forcings that influence the climate. Such forcings can affect the mean values or variances, but regions of the attractor that are seldom visited can also be affected. It is an important challenge to measure how the climate attractor responds to different forcings. Currently, the Euclidean distance or similar measures like the Mahalanobis distance have been favored to measure discrepancies between two climatic situations. Those distances do not have a natural building mechanism to take into account the attractor dynamics. In this paper, we argue that a Wasserstein distance, stemming from optimal transport theory, offers an efficient and practical way to discriminate between dynamical systems. After treating a toy example, we explore how the Wasserstein distance can be applied and interpreted to detect non-autonomous dynamics from a Lorenz system driven by seasonal cycles and a warming trend.
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Astrophysics Data System (ADS)
Koshak, W. J.
2017-12-01
With the recent advent of space-based lightning mappers [i.e., the Geostationary Lightning Mapper (GLM) on GOES-16, and the Lightning Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between lightning and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. Lightning nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of lightning (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA Lightning Analysis Tool (LAT). It includes key findings on the development of different types of lightning flash energy indicators derived from space-based lightning observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.
USDA-ARS?s Scientific Manuscript database
Climate change has emerged as a key issue facing agriculture and water resources in the US. Long-term (1968-2012) temperature, precipitation and streamflow data from a small (7.3 km2) watershed in east-central Pennsylvania was used to examine climatic and hydrologic trends in the context of recent c...
Wang, Rulin; Li, Qing; He, Shisong; Liu, Yuan; Wang, Mingtian; Jiang, Gan
2018-01-01
Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to the kiwifruit industry throughout the world and accounts for substantial economic losses in China. The aim of the present study was to test and explore the possibility of using MaxEnt (maximum entropy models) to predict and analyze the future large-scale distribution of Psa in China. Based on the current environmental factors, three future climate scenarios, which were suggested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined with ArcGIS was applied to predict the potential suitable areas and the changing trend of Psa in China. The jackknife test and correlation analysis were used to choose dominant climatic factors. The receiver operating characteristic curve (ROC) drawn by MaxEnt was used to evaluate the accuracy of the simulation. The results showed that under current climatic conditions, the area from latitude 25° to 36°N and from longitude 101° to 122°E is the primary potential suitable area of Psa in China. The highly suitable area (with suitability between 66 and 100) was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land in China. Under different future emission scenarios, both the areas and the centers of the suitable areas all showed differences compared with the current situation. Four climatic variables, i.e., maximum April temperature (19%), mean temperature of the coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in October (10.8%), had the largest impact on the distribution of Psa. The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa under climate change, and it provides important guidance for comprehensive management.
NASA Astrophysics Data System (ADS)
Newton, Robert; Pfirman, Stephanie; Schlosser, Peter; Tremblay, Bruno; Murray, Maribeth; Pomerance, Rafe
2016-08-01
Recent trends and climate models suggest that the Arctic summer sea ice cover is likely to be lost before climate interventions can stabilize it. There are environmental, socioeconomic, and sociocultural arguments for, but also against, restoring and sustaining current conditions. Even if global warming can be reversed, some people will experience ice-free summers before perennial sea ice begins to return. We ask: How will future generations feel about bringing sea ice back where they have not experienced it before? How will conflicted interests in ice-covered vs. ice-free conditions be resolved? What role will science play in these debates?
An observationally centred method to quantify local climate change as a distribution
NASA Astrophysics Data System (ADS)
Stainforth, David; Chapman, Sandra; Watkins, Nicholas
2013-04-01
For planning and adaptation, guidance on trends in local climate is needed at the specific thresholds relevant to particular impact or policy endeavours. This requires quantifying trends at specific quantiles in distributions of variables such as daily temperature or precipitation. These non-normal distributions vary both geographically and in time. The trends in the relevant quantiles may not simply follow the trend in the distribution mean. We present a method[1] for analysing local climatic timeseries data to assess which quantiles of the local climatic distribution show the greatest and most robust trends. We demonstrate this approach using E-OBS gridded data[2] timeseries of local daily temperature from specific locations across Europe over the last 60 years. Our method extracts the changing cumulative distribution function over time and uses a simple mathematical deconstruction of how the difference between two observations from two different time periods can be assigned to the combination of natural statistical variability and/or the consequences of secular climate change. This deconstruction facilitates an assessment of the sensitivity of different quantiles of the distributions to changing climate. Geographical location and temperature are treated as independent variables, we thus obtain as outputs how the trend or sensitivity varies with temperature (or occurrence likelihood), and with geographical location. These sensitivities are found to be geographically varying across Europe; as one would expect given the different influences on local climate between, say, Western Scotland and central Italy. We find as an output many regionally consistent patterns of response of potential value in adaptation planning. We discuss methods to quantify the robustness of these observed sensitivities and their statistical likelihood. This also quantifies the level of detail needed from climate models if they are to be used as tools to assess climate change impact. [1] S C Chapman, D A Stainforth, N W Watkins, 2013, On Estimating Local Long Term Climate Trends, Phil. Trans. R. Soc. A, in press [2] Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201
[Laboratory diagnosis of toxoplasmosis].
Strhársky, J; Mad'arová, L; Klement, C
2009-04-01
Under Central European climatic conditions, toxoplasmosis is one of the most common human parasitic diseases. A wide range of methods for both direct and indirect detection of the causative agent are currently available for the laboratory diagnosis of toxoplasmosis. The purpose of the article is to review the history of the discovery of the causative agent of toxoplasmosis and how laboratory diagnostic methods were developed and improved. The main emphasis is placed on current options in the diagnosis of Toxoplasma gondii, more precisely on the serodiagnosis and new trends in molecular biology-based techniques.
A Climate Trend Analysis of Burkina Faso
Funk, Christopher C.; Rowland, Jim; Eilerts, Gary; Adoum, Alkhalil; White, Libby
2012-01-01
This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), examines recent trends in rainfall and air temperatures. These analyses are based on quality controlled station observations. Conclusions: * Summer rains have remained steady over the past 20 years, but remain 15 percent below the 1920-69 average. * Temperatures have increased by 0.6° Celsius since 1975, amplifying the effect of droughts. * The amount of farmland per person is low, and declining. * Burkina Faso has offset rapid population growth with improved yields. * Continued yield growth would maintain current levels of per capita food production.
A climate trend analysis of Mali
Funk, Christopher C.; Rowland, Jim; Adoum, Alkhalil; Eilerts, Gary; White, Libby
2012-01-01
This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies modest declines in rainfall, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have remained relatively steady for the past 20 years, but are 12 percent below the 1920-1969 average. * Temperatures have increased by 0.8° Celsius since 1975, amplifying the effect of droughts. * Cereal yields are low but have been improving. * Current population and agricultural trends indicate that increased yields have offset population expansion, keeping per capita cereal production steady.
Uncertainties in observations and climate projections for the North East India
NASA Astrophysics Data System (ADS)
Soraisam, Bidyabati; Karumuri, Ashok; D. S., Pai
2018-01-01
The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades due to increased human activities. However, lack of observations makes it difficult to ascertain the climate change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite & CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970-2005) observed, minimum and maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical (1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics, though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are observed in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly maximum and minimum temperature are projected to increase. It is not clear from future projections how the extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the relatively high resolution.
Development of A Dust Climate Indicator for the US National Climate Assessment
NASA Astrophysics Data System (ADS)
Tong, D.; Wang, J. X. L.; Gill, T. E.; Van Pelt, S.; Kim, D.
2016-12-01
Dust activity is a relatively simple but practical indicator to document the response of dryland ecosystems to climate change, making it an integral part of the National Climate Assessment (NCA). We present here a multi-agency collaboration that aims at developing a suite of dust climate indicators to document and monitor the long-term variability and trend of dust storm activity in the western United States. Recent dust observations have revealed rapid intensification of dust storm activity in the western United States. This trend is also closely correlated with a rapid increase in dust deposition in rainwater and "valley fever" hospitalization in southwestern states. It remains unclear, however, if such a trend, when enhanced by predicted warming and rainfall oscillation in the Southwest, will result in irreversible environmental development such as desertification or even another "Dust Bowl". Based on continuous ground aerosol monitoring, we have reconstructed a long-term dust storm climatology in the western United States. We report here direct evidence of rapid intensification of dust storm activity over US deserts in the past decades (1990 to 2013), in contrast to the decreasing trends in Asia and Africa. The US trend is spatially and temporally correlated with incidences of valley fever, an infectious disease caused by soil-dwelling fungus that has increased eight-fold in the past decade. We further investigate the linkage between dust variations and possible climate drivers and find that the regional dust trends are likely driven by large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation (PDO). Future study will explore the link between the temporal and spatial trends of increase in dustiness and vegetation change in southwestern semi-arid and arid ecosystems.
Land Use and Environmental Variability Impacts on the Phenology of Arid Agro-Ecosystems.
Romo-Leon, Jose Raul; van Leeuwen, Willem J D; Castellanos-Villegas, Alejandro
2016-02-01
The overexploitation of water resources in arid environments often results in abandonment of large extensions of agricultural lands, which may (1) modify phenological trends, and (2) alter the sensitivity of specific phenophases to environmental triggers. In Mexico, current governmental policies subsidize restoration efforts, to address ecological degradation caused by abandonments; however, there is a need for new approaches to assess their effectiveness. Addressing this, we explore a method to monitor and assess (1) land surface phenology trends in arid agro-ecosystems, and (2) the effect of climatic factors and restoration treatments on the phenology of abandoned agricultural fields. We used 16-day normalized difference vegetation index composites from the moderate resolution imaging spectroradiometer from 2000 to 2009 to derive seasonal phenometrics. We then derived phenoclimatic variables and land cover thematic maps, to serve as a set of independent factors that influence vegetation phenology. We conducted a multivariate analysis of variance to analyze phenological trends among land cover types, and developed multiple linear regression models to assess influential climatic factors driving phenology per land cover analyzed. Our results suggest that the start and length of the growing season had different responses to environmental factors depending on land cover type. Our analysis also suggests possible establishment of arid adapted species (from surrounding ecosystems) in abandoned fields with longer times since abandonment. Using this approach, we were able increase our understanding on how climatic factors influence phenology on degraded arid agro-ecosystems, and how this systems evolve after disturbance.
Schneider, Benjamin; González-Romá, Vicente; Ostroff, Cheri; West, Michael A
2017-03-01
We review the literature on organizational climate and culture paying specific attention to articles published in the Journal of Applied Psychology (JAP) since its first volume in 1917. The article traces the history of the 2 constructs though JAP has been far more important for climate than culture research. We distinguish 4 main periods: the pre-1971 era, with pioneering work on exploring conceptualization and operationalizations of the climate construct; the 1971-1985 era, with foundational work on aggregation issues, outcome-focused climates (on safety and service) and early writings on culture; the 1986-1999 era, characterized by solidification of a focused climate approach to understanding organizational processes (justice, discrimination) and outcomes (safety, service) and the beginnings of survey approaches to culture; and the 2000-2014 era, characterized by multilevel work on climate, climate strength, demonstrated validity for a climate approach to outcomes and processes, and the relationship between leadership and climate and culture. We summarize and comment on the major theory and research achievements in each period, showing trends observed in the literature and how JAP has contributed greatly to moving research on these constructs, especially climate, forward. We also recommend directions for future research given the current state of knowledge. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio
2012-01-01
The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species' ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model's output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change.
Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio
2012-01-01
The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species’ ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model’s output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change. PMID:23272115
Kapwata, Thandi; Gebreslasie, Michael T; Mathee, Angela; Wright, Caradee Yael
2018-05-10
Climate change has resulted in rising temperature trends which have been associated with changes in temperature extremes globally. Attendees of Conference of the Parties (COP) 21 agreed to strive to limit the rise in global average temperatures to below 2 °C compared to industrial conditions, the target being 1.5 °C. However, current research suggests that the African region will be subjected to more intense heat extremes over a shorter time period, with projections predicting increases of 4⁻6 °C for the period 2071⁻2100, in annual average maximum temperatures for southern Africa. Increased temperatures may exacerbate existing chronic ill health conditions such as cardiovascular disease, respiratory disease, cerebrovascular disease, and diabetes-related conditions. Exposure to extreme temperatures has also been associated with mortality. This study aimed to consider the relationship between temperatures in indoor and outdoor environments in a rural residential setting in a current climate and warmer predicted future climate. Temperature and humidity measurements were collected hourly in 406 homes in summer and spring and at two-hour intervals in 98 homes in winter. Ambient temperature, humidity and windspeed were obtained from the nearest weather station. Regression models were used to identify predictors of indoor apparent temperature (AT) and to estimate future indoor AT using projected ambient temperatures. Ambient temperatures will increase by a mean of 4.6 °C for the period 2088⁻2099. Warming in winter was projected to be greater than warming in summer and spring. The number of days during which indoor AT will be categorized as potentially harmful will increase in the future. Understanding current and future heat-related health effects is key in developing an effective surveillance system. The observations of this study can be used to inform the development and implementation of policies and practices around heat and health especially in rural areas of South Africa.
NASA Astrophysics Data System (ADS)
He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Tzedakis, P. C.
2013-12-01
Decreases in orbitally-forced summer insolation along with downward trends in greenhouse gases (GHG) have been precursors to incipient glaciation in the past. In the last several thousand years of the current interglacial, while summer insolation has decreased, there was a reversal of the downward trends in CH4 and CO2 concentration within the Holocene around 5,000 and 7,000 years ago. While the cause of this reversal remains unresolved, a leading hypothesis is Ruddiman's Early Anthropogenic Hypothesis that early agriculture, starting several thousand years ago, caused emissions of GHG large enough to reverse natural downward trends in CO2 and CH4 and kept Earth's climate anomalously warm, with the corollary that this may have prevented incipient glaciation during the late Holocene. Here we use the 1-degree, fully coupled Community Climate System Model version 4 (CCSM4) with climate forcings (orbital parameters and GHG) of a previous glacial inception to investigate whether glacial inception should have occurred prior to the industrial revolution if the concentrations of CH4 and CO2 had followed their natural downward trends throughout the Holocene. Tzedakis et al. [2012] show that for the previous eight interglacials, Stage 11 and Stage 19 are the best analogs of the Holocene because of their low eccentricities, and Stage 19 is a better analog than Stage 11 for the Holocene due to the in-phase relationship between obliquity and precession. Furthermore, their study suggests that 777 ka BP (777,000 years before present) is the timing of glacial inception for Stage 19, based on the occurrence of the earliest bipolar seesaw event associated with glacial melting. Not only do the orbital parameters at 777 ka BP resemble pre-industrial conditions, but the concentrations of CO2 at that time were essentially the same as their expected 'natural' pre-industrial values in the absence of anthropogenic greenhouse emissions. Our multi-millennial coupled CCSM4 simulations show that the 'natural' climatic forcings (GHG, orbital parameters) during pre-industrial (corresponding here to year 1850) produce essentially the same global climate as at the glacial inception of Stage 19. The simulation of 'natural' pre-industrial climate also produces similar Northern Hemisphere permanent snow cover as at the glacial inception of Stage 19, which is almost twice as large as the permanent snow in the CCSM4 control run with observed year-1850 GHG concentrations. We also found that the Atlantic Meridional Overturning Circulation slows down in the simulations of the glacial inceptions and contributes to the strong cooling and growth of permanent snow cover in Northern Hemisphere polar regions. Our study provides supports for the overdue glaciation hypothesis that early agriculture may have prevented incipient glaciation during the late Holocene. Tzedakis, P. C., J. E. T. Channell, D. A. Hodell, H. F. Kleiven, and L. C. Skinner (2012), Determining the natural length of the current interglacial, Nature Geoscience, 5(2), 138-141.
Zeigler, Matthew P.; Todd, Andrew S.; Caldwell, Colleen A.
2012-01-01
Evidence of anthropogenically influenced climate change has motivated natural resource managers to incorporate adaptive measures to minimize risks to sensitive and threatened species. Detecting trends in climate variables (i.e., air temperature and hydrology) can serve as a valuable management tool for protecting vulnerable species by increasing our understanding of localized conditions and trends. The Rio Grande cutthroat trout Oncorhynchus clarkii virginalis has suffered a severe decline in its historical distribution, with the majority of current populations persisting in isolated headwater streams. To evaluate recent climate change within the subspecies' historical range, we examined trends in average air temperatures, biologically important hydrological variables (timing of snowmelt and seasonal flows), and the April 1 snow water equivalent over the last 45 years (1963–2007). While rates of change in all three metrics were variable across sites, rangewide patterns were evident. Across the subspecies' historical range, average annual air temperatures increased (0.29°C per decade) and the timing of snowmelt shifted 10.6 d earlier in the year (2.3 d/decade). Flows increased during biologically important periods, including winter (January 1–March 31; 6.6% increase per decade), prespawning (April 1–May 14; 6.9% increase per decade), and spawning (May 15–June 15; 4.2% increase per decade) and decreased in summer (June 16–September 15; 1.9% decrease per decade). Evidence of decreasing April 1 snow water equivalent (5.3% per decade) was also observed. While the impacts of these changes at the population level are equivocal, it is likely that negative effects would influence the subspecies by altering its distribution, decreasing available habitat, and altering the timing of important life history components. Continued monitoring and proactive management will be required to increase the resiliency of remaining populations to ensure long-term persistence and protection in a changing climate.
Temperature and Snowfall in Western Queen Maud Land Increasing Faster Than Climate Model Projections
NASA Astrophysics Data System (ADS)
Medley, B.; McConnell, J. R.; Neumann, T. A.; Reijmer, C. H.; Chellman, N.; Sigl, M.; Kipfstuhl, S.
2018-02-01
East Antarctic Ice Sheet (EAIS) mass balance is largely driven by snowfall. Recently, increased snowfall in Queen Maud Land led to years of EAIS mass gain. It is difficult to determine whether these years of enhanced snowfall are anomalous or part of a longer-term trend, reducing our ability to assess the mitigating impact of snowfall on sea level rise. We determine that the recent snowfall increases in western Queen Maud Land (QML) are part of a long-term trend (+5.2 ± 3.7% decade-1) and are unprecedented over the past two millennia. Warming between 1998 and 2016 is significant and rapid (+1.1 ± 0.7°C decade-1). Using these observations, we determine that the current accumulation and temperature increases in QML from an ensemble of global climate simulations are too low, which suggests that projections of the QML contribution to sea level rise are potentially overestimated with a reduced mitigating impact of enhanced snowfall in a warming world.
Temperature and Snowfall in Western Queen Maud Land Increasing Faster than Climate Model Projections
NASA Technical Reports Server (NTRS)
Medley, B.; McConnell, J. R.; Neumann, T. A.; Reijmer, C. H.; Chellman, N.; Sigl, M.; Kipfstuhl, S.
2017-01-01
East Antarctic Ice Sheet (EAIS) mass balance is largely driven by snowfall. Recently, increased snowfall in Queen Maud Land led to years of EAIS mass gain. It is difficult to determine whether these years of enhanced snowfall are anomalous or part of a longer-term trend, reducing our ability to assess the mitigating impact of snowfall on sea level rise. We determine that the recent snowfall increases in western Queen Maud Land (QML) are part of a long-term trend (+5.2 +/- 3.7% decade(exp -1)) and are unprecedented over the past two millennia. Warming between 1998 and 2016 is significant and rapid (+1.1 +/- 0.7 C decade(exp -1)). Using these observations, we determine that the current accumulation and temperature increases in QML from an ensemble of global climate simulations are too low, which suggests that projections of the QML contribution to sea level rise are potentially overestimated with a reduced mitigating impact of enhanced snowfall in a warming world.
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D. T.; Corlett, G. K.; Remedios, J. J.; Noyes, E. J.; Good, S. A.
2007-05-01
Sea-Surface Temperature (SST) is an important indicator of global change, designated by GCOS as an essential Climate Variable (ECV). The detection of trends in Global SST requires rigorous measurements that are not only global, but also highly accurate and consistent. Space instruments can provide the means to achieve these required attributes in SST data. This paper presents an analysis of 15 years of SST data from two independent data sets, generated from the (A)ATSR and AVHRR series of sensors respectively. The analyses reveal trends of increasing global temperature between 0.13°C to 0.18 °C, per decade, closely matching that expected from some current predictions. A high level of consistency in the results from the two independent observing systems is seen, which gives increased confidence in data from both systems and also enables comparative analyses of the accuracy and stability of both data sets to be carried out. The conclusion is that these satellite SST data-sets provide important means to quantify and explore the processes of climate change. An analysis based upon singular value decomposition, allowing the removal of gross transitory disturbances, notably the El Niño, in order to examine regional areas of change other than the tropical Pacific, is also presented. Interestingly, although El Niño events clearly affect SST globally, they are found to have a non- significant (within error) effect on the calculated trends, which changed by only 0.01 K/decade when the pattern of El Niño and the associated variations was removed from the SST record. Although similar global trends were calculated for these two independent data sets, larger regional differences are noted. Evidence of decreased temperatures after the eruption of Mount Pinatubo in 1991 was also observed. The methodology demonstrated here can be applied to other data-sets, which cover long time-series observations of geophysical observations in order to characterise long-term change.
Sensitivity of salmonid freshwater life history in western US streams to future climate conditions.
Beer, W Nicholas; Anderson, James J
2013-08-01
We projected effects of mid-21st century climate on the early life growth of Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) in western United States streams. Air temperature and snowpack trends projected from observed 20th century trends were used to predict future seasonal stream temperatures. Fish growth from winter to summer was projected with temperature-dependent models of egg development and juvenile growth. Based on temperature data from 115 sites, by mid-21st century, the effects of climate change are projected to be mixed. Fish in warm-region streams that are currently cooled by snow melt will grow less, and fish in suboptimally cool streams will grow more. Relative to 20th century conditions, by mid-21st century juvenile salmonids' weights are expected to be lower in the Columbia Basin and California Central Valley, but unchanged or greater in coastal and mountain streams. Because fish weight affects fish survival, the predicted changes in weight could impact population fitness depending on other factors such as density effects, food quality and quantity changes, habitat alterations, etc. The level of year-to-year variability in stream temperatures is high and our analysis suggests that identifying effects of climate change over the natural variability will be difficult except in a few streams. © 2013 John Wiley & Sons Ltd.
Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China
NASA Astrophysics Data System (ADS)
Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao
2014-03-01
Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD.
Climate change effects on human health in a gender perspective: some trends in Arctic research.
Natalia, Kukarenko
2011-01-01
Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both women and men in the Arctic. Global Health Action 2011. © 2011 Kukarenko Natalia.
Climate change effects on human health in a gender perspective: some trends in Arctic research
Natalia, Kukarenko
2011-01-01
Background Climate change and environmental pollution have become pressing concerns for the peoples in the Arctic region. Some researchers link climate change, transformations of living conditions and human health. A number of studies have also provided data on differentiating effects of climate change on women's and men's well-being and health. Objective To show how the issues of climate and environment change, human health and gender are addressed in current research in the Arctic. The main purpose of this article is not to give a full review but to draw attention to the gaps in knowledge and challenges in the Arctic research trends on climate change, human health and gender. Methods A broad literature search was undertaken using a variety of sources from natural, medical, social science and humanities. The focus was on the keywords. Results Despite the evidence provided by many researchers on differentiating effects of climate change on well-being and health of women and men, gender perspective remains of marginal interest in climate change, environmental and health studies. At the same time, social sciences and humanities, and gender studies in particular, show little interest towards climate change impacts on human health in the Arctic. As a result, we still observe the division of labour between disciplines, the disciplinary-bound pictures of human development in the Arctic and terminology confusion. Conclusion Efforts to bring in a gender perspective in the Arctic research will be successful only when different disciplines would work together. Multidisciplinary research is a way to challenge academic/disciplinary homogeneity and their boundaries, to take advantage of the diversity of approaches and methods in production of new integrated knowledge. Cooperation and dialogue across disciplines will help to develop adequate indicators for monitoring human health and elaborating efficient policies and strategies to the benefit of both women and men in the Arctic. PMID:21949499
Vulnerability Assessment, Climate Change Impacts and Adaptation Measures in Slovenia
NASA Astrophysics Data System (ADS)
Cegnar, T.
2010-09-01
In relation to the priority tasks of the climate change measures, the Republic of Slovenia estimates that special attention needs to be devoted to the following sectors in general: - sectors that currently indicate a strong vulnerability for the current climate variability (for instance, agriculture), - sectors where the vulnerability for climate change is increased by current trends (for instance, urban development, use of space), - sectors where the adaptation time is the longest and the subsequent development changes are connected with the highest costs (for instance, use of space, infrastructural objects, forestry, urban development, building stock). Considering the views of Slovenia to the climate change problem in Europe and Slovenia, priority measures and emphasis on future adaptation to climate change, the Republic of Slovenia has especially exposed the following action areas: - sustainable and integrated management of water sources for water power production, prevention of floods, provision of water for the enrichment of low flow rates, and preservation of environmental function as well as provision of water for other needs; - sustainable management of forest ecosystems, adjusted to changes, for the provision of their environmental function as well as being a source of biomass, wood for products for the conservation of carbon, and carbon sinks; - spatial planning as one of the important preventive instruments for the adaptation to climate change through the processes of integral planning of spatial and urban development; - sustainable use and preservation of natural wealth and the preservation of biodiversity as well as ecosystem services with measures and policies that enable an enhanced resistance of ecosystems to climate change, and the role of biological diversity in integral adaptation measures; - informing and awareness on the consequences of climate change and adaptation possibilities. For years, the most endangered sectors have been agriculture and forestry; therefore, they are also the only sectors for which a national adaptation strategy was adopted.
Omumbo, Judith A; Lyon, Bradfield; Waweru, Samuel M; Connor, Stephen J; Thomson, Madeleine C
2011-01-17
Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.
Climate Change and Future Pollen Allergy in Europe.
Lake, Iain R; Jones, Natalia R; Agnew, Maureen; Goodess, Clare M; Giorgi, Filippo; Hamaoui-Laguel, Lynda; Semenov, Mikhail A; Solomon, Fabien; Storkey, Jonathan; Vautard, Robert; Epstein, Michelle M
2017-03-01
Globally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans. We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed ( Ambrosia artemisiifolia ) in Europe. A process-based model estimated the change in ragweed's range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose-response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios. Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041-2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results. Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change. Citation: Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov MA, Solomon F, Storkey J, Vautard R, Epstein MM. 2017. Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385-391; http://dx.doi.org/10.1289/EHP173.
Temperature and heat wave trends in northwest Mexico
NASA Astrophysics Data System (ADS)
Martínez-Austria, Polioptro F.; Bandala, Erick R.; Patiño-Gómez, Carlos
2016-02-01
Increase in temperature extremes is one of the main expected impacts of climate change, as well as one of the first signs of its occurrence. Nevertheless, results emerging from General Circulation Models, while sufficient for large scales, are not enough for forecasting local trends and, hence, the IPCC has called for local studies based on on-site data. Indeed, it is expected that climate extremes will be detected much earlier than changes in climate averages. Heat waves are among the most important and least studied climate extremes, however its occurrence has been only barely studied and even its very definition remains controversial. This paper discusses the observed changes in temperature trends and heat waves in Northwestern Mexico, one of the most vulnerable regions of the country. The climate records in two locations of the region are analyzed, including one of the cities with extreme climate in Mexico, Mexicali City in the state of Baja California and the Yaqui River basin at Sonora State using three different methodologies. Results showed clear trends on temperature increase and occurrence of heat waves in both of the study zones using the three methodologies proposed. As result, some policy making suggestion are included in order to increase the adaptability of the studied regions to climate change, particularly related with heat wave occurrence.
Agriculturally Relevant Climate Extremes and Their Trends in the World's Major Growing Regions
NASA Astrophysics Data System (ADS)
Zhu, Xiao; Troy, Tara J.
2018-04-01
Climate extremes can negatively impact crop production, and climate change is expected to affect the frequency and severity of extremes. Using a combination of in situ station measurements (Global Historical Climatology Network's Daily data set) and multiple other gridded data products, a derived 1° data set of growing season climate indices and extremes is compiled over the major growing regions for maize, wheat, soybean, and rice for 1951-2006. This data set contains growing season climate indices that are agriculturally relevant, such as the number of hot days, duration of dry spells, and rainfall intensity. Before 1980, temperature-related indices had few trends; after 1980, statistically significant warming trends exist for each crop in the majority of growing regions. In particular, crops have increasingly been exposed to extreme hot temperatures, above which yields have been shown to decline. Rainfall trends are less consistent compared to temperature, with some regions receiving more rainfall and others less. Anomalous temperature and precipitation conditions are shown to often occur concurrently, with dry growing seasons more likely to be hotter, have larger drought indices, and have larger vapor pressure deficits. This leads to the confluence of a variety of climate conditions that negatively impact crop yields. These results show a consistent increase in global agricultural exposure to negative climate conditions since 1980.
Zhang, Li; Guo, Huadong; Wang, Cuizhen; Ji, Lei; Li, Jing; Wang, Kun; Dai, Lin
2014-01-01
The increased rate of annual temperature in the Qinghai-Tibetan Plateau exceeded all other areas of the same latitude in recent decades. The influence of the warming climate on the alpine ecosystem of the plateau was distinct. An analysis of alpine vegetation under changes in climatic conditions was conducted in this study. This was done through an examination of vegetation greenness and its relationship with climate variability using the Advanced Very High Resolution Radiometer satellite imagery and climate datasets. Vegetation in the plateau experienced a positive trend in greenness, with 18.0 % of the vegetated areas exhibiting significantly positive trends, which were primarily located in the eastern and southwestern parts of the plateau. In grasslands, 25.8 % of meadows and 14.1 % of steppes exhibited significant upward trends. In contrast, the broadleaf forests experienced a trend of degradation. Temperature, particularly summer temperature, was the primary factor promoting the vegetation growth in the plateau. The wetter and warmer climate in the east contributed to the favorable conditions for vegetation. The alpine meadow was mostly sensitive to temperature, while the steppes were sensitive to both temperature and precipitation. Although a warming climate was expected to be beneficial to vegetation growth in the alpine region, the rising temperature coupled with reduced precipitation in the south did not favor vegetation growth due to low humidity and poor soil moisture conditions.
Ray B. Bryant; Haiming Lu; Kyle R. Elkin; Anthony R. Buda; Amy S. Collick; Gordon J. Folmar; Peter J. Kleinman
2016-01-01
Climate change has emerged as a key issue facing agriculture and water resources in the US. Long-term (1968-2012) temperature, precipitation and streamflow data from a small (7.3 km2) watershed in east-central Pennsylvania was used to examine climatic and hydrologic trends in the context of recent climate change. Annual mean temperatures increased 0.38°C per decade,...
Striking Seasonality in the Secular Warming of the Northern Continents: Structure and Mechanisms
NASA Astrophysics Data System (ADS)
Nigam, S.; Thomas, N. P.
2017-12-01
The linear trend in twentieth-century surface air temperature (SAT)—a key secular warming signal— exhibits striking seasonal variations over Northern Hemisphere continents; SAT trends are pronounced in winter and spring but notably weaker in summer and fall. The SAT trends in historical twentieth-century climate simulations informing the Intergovernmental Panel for Climate Change's Fifth Assessment show varied (and often unrealistic) strength and structure, and markedly weaker seasonal variation. The large intra-ensemble spread of winter SAT trends in some historical simulations was surprising, especially in the context of century-long linear trends, with implications for the detection of the secular warming signal. The striking seasonality of observed secular warming over northern continents warrants an explanation and the representation of related processes in climate models. Here, the seasonality of SAT trends over North America is shown to result from land surface-hydroclimate interactions and, to an extent, also from the secular change in low-level atmospheric circulation and related thermal advection. It is argued that the winter dormancy and summer vigor of the hydrologic cycle over middle- to high-latitude continents permit different responses to the additional incident radiative energy from increasing greenhouse gas concentrations. The seasonal cycle of climate, despite its monotony, provides an expanded phase space for the exposition of the dynamical and thermodynamical processes generating secular warming, and an exceptional cost-effective opportunity for benchmarking climate projection models.
Zhang, Tianyi; Wang, Hesong
2015-01-01
We identified the spatiotemporal patterns of the Normalized Difference Vegetation Index (NDVI) for the years 1982–2008 in the desert areas of Northwest China and quantified the impacts of climate and non-climate factors on NDVI changes. The results indicate that although the mean NDVI has improved in 24.7% of the study region; 16.3% among the region has been stagnating in recent years and only 8.4% had a significantly increasing trend. Additionally, 45.3% of the region has maintained a stable trend over the study period and 30.0% has declined. A multiple regression model suggests that a wetter climate (quantified by the Palmer Drought Severity Index, PDSI) is associated with higher NDVI in most areas (18.1% of significance) but these historical changes in PDSI only caused an average improvement of approximately 0.4% over the study region. Contrasting the regression results under different trend patterns, no significant differences in PDSI impacts were detected among the four trend patterns. Therefore, we conclude that climate is not the primary driver for vegetative coverage in Northwest China. Future studies will be required to identify the impacts of specific non-climatic factors on vegetative coverage based on high-resolution data, which will be beneficial in creating an effective strategy to combat the recent desertification trend in China. PMID:25961563
Extent of Night Warming Differentiates the Temporal Trend of Tropical Greenness over 2001-2015
NASA Astrophysics Data System (ADS)
Yu, M.; Gao, Q.; Gao, C.; Wang, C.
2016-12-01
Tropical forests have essential functions in global C dynamic but vulnerable to changes in land cover land use (LCLUC) and climate. The tropics of Caribbean are experiencing warming and drying climate and diverse LCLUC. However, large-scale studies to detect long-term trends of C and associated mechanisms are still rare. Using MODIS Enhanced Vegetation Index (EVI), we investigated trend of greenness in the Greater Antilles Caribbean during 2000 - 2015 and further analyzed the trend of vegetation patches without LCLUC to separate the climate impacts. We hypothesized that rainfall decrease or/and warming would reduce EVI in this tropical region. All five countries showed significantly decreasing EVI except Cuba of which EVI was increasing partly due to strong reforestation. Haiti has the steepest decreasing EVI due to its deforestation for charcoals. EVI trend varied greatly even for patches without LCLUC, tending to decrease in the windward but increase in the leeward of the island Puerto Rico. Contrary to our intuition, the rainfall was mostly increasing. However the rising night temperature significantly and negatively correlates with the spatial pattern of EVI trends. Although the cooled daytime and increased rainfall might enhance EVI, night warming dominated the climate impacts and differentiated the EVI trend.
Multi-scale modeling of relationships between forest health and climatic factors
Michael K. Crosby; Zhaofei Fan; Xingang Fan; Martin A. Spetich; Theodor D. Leininger
2015-01-01
Forest health and mortality trends are impacted by changes in climate. These trends can vary by species, plot location, forest type, and/or ecoregion. To assess the variation among these groups, Forest Inventory and Analysis (FIA) data were obtained for 10 states in the southeastern United States and combined with downscaled climate data from the Weather Research and...
Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi Bian
2018-01-01
Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...
NASA Astrophysics Data System (ADS)
Sarmah, S.; Jia, G.; Zhang, A.; Singha, M.
2017-12-01
South Asia (SA) is one of the most remarkable regions in changing vegetation greenness along with its major expansion of agricultural activity, especially irrigated farming. However, SA is predicted to be a vulnerable agricultural regions to future climate changes. The influence of monsoon climate on the seasonal trends and anomalies of vegetation greenness are not well understood in the region which can provide valuable information about climate-ecosystem interaction. This study analyzed the spatio-temporal patterns of seasonal vegetation trends and variability using satellite vegetation indices (VI) including AVHRR Normalized Difference Vegetation Index (NDVI) (1982-2013) and MODIS Enhanced Vegetation Index (EVI) (2000-2013) in summer monsoon (SM) (June-Sept) and winter monsoon (WM) (Dec-Apr) seasons among irrigated cropland (IC), rainfed cropland (RC) and natural vegetation (NV). Seasonal VI variations with climatic factors (precipitation and temperature) and LULC changes have been investigated to identify the forcings behind the vegetation trends and variability. We found that major greening occurred in the last three decades due to the increase in IC productivity noticeably in WM, however, recent (2000-2013) greening trends were lower than the previous decades (1982-1999) in both the IC and RC indicating the stresses on them. The browning trends, mainly concentrated in NV areas were prominent during WM and rigorous since 2000, confirmed from the moderate resolution EVI and LULC datasets. Winter time maximal temperature had been increasing tremendously whereas precipitation trend was not significant over SA. Both the climate variability and LULC changes had integrated effects on the vegetation changes in NV areas specifically in hilly regions. However, LULC impact was intensified since 2000, mostly in north east India. This study also revealed a distinct seasonal variation in spatial distribution of correlation between VI's and climate anomalies over SA. Concluding, so far SA has managed to get a decent productivity over croplands due to the advanced cultivation techniques which likely to be at risk under future warming climate. Also NV areas of SA are in constant threat from the anthropogenic activities and climate changes.
Ma, Qi Yun; Zhang, Ji Quan; Lai, Quan; Zhang, Feng; Dong, Zhen Hua; A, Lu Si
2017-06-18
Fourteen extreme climatic indices related with main regional meteorological disasters and vegetation growth were calculated based on daily data from 13 meteorological stations during 1960-2014 in Songnen Grassland, Northeast China. Then, the variation trend and the spatial and temporal patterns of climatic extreme events were analyzed by using regression analysis, break trend analy-sis, Mann-Kendall test, Sen's slope estimator and moving t-test method. The results indicated that summer days (SU25), warm days (TX90P), warm nights (TN90P) and warm spell duration (WSDI) representing extremely high temperatures showed significant increasing trends (P<0.05). Meanwhile, frost days (FD0), cold days (TX10P), cold nights (TN10P) and cold spell duration indicator (CSDI) representing extremely low temperatures showed obviously decreasing trends. The magnitudes of changes in cold indices (FD0, TX10P, TN10P and CSDI) were clearly greater than those of warm indices (SU25, TX90P, TN90P and WSDI), and that changes in night indices were larger than those of day indices. Regional climate warming trend was obvious from 1970 to 2009, and the most occurrences of the abrupt changes in these indices were identified in this period. The extreme precipitation indices did not show obvious trend, in general, SDII and CDD experienced a slightly decreasing trend while RX5D, R95P, PRCPTOT and CWD witnessed a mildly increasing trend. It may be concluded that regional climate changed towards warming and slightly wetting in Songnen Grassland. The most sensitive region for extreme temperature was distributed in the south and north region. Additionally, the extreme temperature indices showed clearly spatial difference between the south and the north. As for the spatial variations of extreme precipitation indices, the climate could be characterized by becoming wetter in northern region, and getting drier in southern region, especially in southwestern region with a high drought risk.
ARCSTONE: Accurate Calibration of Lunar Spectral Reflectance from space
NASA Astrophysics Data System (ADS)
Young, C. L.; Lukashin, C.; Jackson, T.; Cooney, M.; Ryan, N.; Beverly, J.; Davis, W.; Nguyen, T.; Rutherford, G.; Swanson, R.; Kehoe, M.; Kopp, G.; Smith, P.; Woodward, J.; Carvo, J.; Stone, T.
2017-12-01
Calibration accuracy and consistency are key on-orbit performance metrics for Earth observing sensors. The accuracy and consistency of measurements across multiple instruments in low Earth and geostationary orbits are directly connected to the scientific understanding of complex systems, such as Earth's weather and climate. Recent studies have demonstrated the quantitative impacts of observational accuracy on the science data products [1] and the ability to detect climate change trends for essential climate variables (e.g., Earth's radiation budget, cloud feedback, and long-term trends in cloud parameters) [2, 3]. It is common for sensors to carry references for calibration at various wavelengths onboard, but these can be subject to degradation and increase mass and risk. The Moon can be considered a natural solar diffuser in space. Establishing the Moon as an on-orbit high-accuracy calibration reference enables broad intercalibration opportunities, as the lunar reflectance is time-invariant and can be directly measured by most Earth-observing instruments. Existing approaches to calibrate sensors against the Moon can achieve stabilities of a tenth of a percent over a decade, as demonstrated by the SeaWIFS. However, the current lunar calibration quality, with 5 - 10% bias, depends on the photometric model of the Moon [4]. Significant improvements in the lunar reference are possible and are necessary for climate-level absolute calibrations using the Moon. The ARCSTONE instrument will provide a reliable reference for high-accuracy on-orbit calibration for reflected solar instruments. An orbiting spectrometer flying on a CubeSat in low Earth orbit will provide lunar spectral reflectance with accuracy < 0.5% (k = 1), sufficient to establish an SI-traceable absolute lunar calibration standard for past, current, and future Earth weather and climate sensors. The ARCSTONE team will present the instrument design status and path forward for development, building, calibration and testing. [1] Lyapustin, A. Y. et al., 2014, Atmos. Meas. Tech., 7, pp. 4353 - 4365. [2] Wielicki, B. A., et al., 2013, Bull. Amer. Meteor. Soc., 94, pp. 1519 - 1539. [3] Shea, Y. L., et al., 2017 J. of Climate. [4] Kieffer, H. H., et al., 2005, The Astronomical J., v. 129, pp. 2887 - 2901.
NASA Astrophysics Data System (ADS)
Murari, K. K.; Jayaraman, T.
2014-12-01
Modeling studies have indicated that global warming, in many regions, will increase the exposure of major crops to rainfall and temperature stress, leading to lower crop yields. Climate variability alone has a potential to decrease yield to an extent comparable to or greater than yield reductions expected due to rising temperature. For India, where agriculture is important, both in terms of food security as well as a source of livelihoods to a majority of its population, climate variability and climate change are subjects of serious concern. There is however a need to distinguish the impact of current climate variability and climate change on Indian agriculture, especially in relation to their socioeconomic impact. This differentiation is difficult to determine due to the secular trend of increasing production and yield of the past several decades. The current research in this aspect is in an initial stage and requires a multi-disciplinary effort. In this study, we assess the potential differential impacts of environmental stress and shock across different socioeconomic strata of the rural population, using village level survey data. The survey data from eight selected villages, based on the Project on Agrarian Relations in India conducted by the Foundation for Agrarian Studies, indicated that income from crop production of the top 20 households (based on the extent of operational land holding, employment of hired labour and asset holdings) is a multiple of the mean income of the village. In sharp contrast, the income of the bottom 20 households is a fraction of the mean and sometimes negative, indicating a net loss from crop production. The considerable differentials in output and incomes suggest that small and marginal farmers are far more susceptible to climate variability and climate change than the other sections. Climate change is effectively an immediate threat to small and marginal farmers, which is driven essentially by socioeconomic conditions. The impact of climate variability on smallholder agriculture in the present can therefore provide important insights into the nature of its vulnerability to future climate change.
NASA Astrophysics Data System (ADS)
Elias, E.; Rango, A.; James, D.; Maxwell, C.; Anderson, J.; Abatzoglou, J. T.
2016-12-01
Researchers evaluating climate projections across southwestern North America observed a decreasing precipitation trend. Aridification was most pronounced in the cold (non-monsoonal) season, whereas downward trends in precipitation were smaller in the warm (monsoonal) season. In this region, based upon a multimodel mean of 20 Coupled Model Intercomparison Project 5 models using a business-as-usual (Representative Concentration Pathway 8.5) trajectory, midcentury precipitation is projected to increase slightly during the monsoonal time period (July-September; 6%) and decrease slightly during the remainder of the year (October-June; -4%). We use observed long-term (1915-2015) monthly precipitation records from 16 weather stations to investigate how well measured trends corroborate climate model predictions during the monsoonal and non-monsoonal timeframe. Running trend analysis using the Mann-Kendall test for 15 to 101 year moving windows reveals that half the stations showed significant (p≤0.1), albeit small, increasing trends based on the longest term record. Trends based on shorter-term records reveal a period of significant precipitation decline at all stations representing the 1950s drought. Trends from 1930 to 2015 reveal significant annual, monsoonal and non-monsoonal increases in precipitation (Fig 1). The 1960 to 2015 time window shows no significant precipitation trends. The more recent time window (1980 to 2015) shows a slight, but not significant, increase in monsoonal precipitation and a larger, significant decline in non-monsoonal precipitation. GCM precipitation projections are consistent with more recent trends for the region. Running trends from the most recent time window (mid-1990s to 2015) at all stations show increasing monsoonal precipitation and decreasing Oct-Jun precipitation, with significant trends at 6 of 16 stations. Running trend analysis revealed that the long-term trends were not persistent throughout the series length, but depended on the period examined. Recent trends in Southwest precipitation are directionally consistent with anthropogenic climate change.
Variable Trends in High Peak Flow Generation Across the Swedish Sub-Arctic
NASA Astrophysics Data System (ADS)
Matti, B.; Dahlke, H. E.; Lyon, S. W.
2015-12-01
There is growing concern about increased frequency and severity of floods and droughts globally in recent years. Improving knowledge on the complexity of hydrological systems and their interactions with climate is essential to be able to determine drivers of these extreme events and to predict changes in these drivers under altered climate conditions. This is particularly true in cold regions such as the Swedish Sub-Arctic where independent shifts in both precipitation and temperature can have significant influence on extremes. This study explores changes in the magnitude and timing of the annual maximum daily flows in 18 Swedish sub-arctic catchments. The Mann-Kendall trend test was used to estimate changes in selected hydrological signatures. Further, a flood frequency analysis was conducted by fitting a Gumbel (Extreme Value type I) distribution whereby selected flood percentiles were tested for stationarity using a generalized least squares regression approach. Our results showed that hydrological systems in cold climates have complex, heterogeneous interactions with climate. Shifts from a snowmelt-dominated to a rainfall-dominated flow regime were evident with all significant trends pointing towards (1) lower flood magnitudes in the spring flood; (2) earlier flood occurrence; (3) earlier snowmelt onset; and (4) decreasing mean summer flows. Decreasing trends in flood magnitude and mean summer flows suggest permafrost thawing and are in agreement with the increasing trends in annual minimum flows. Trends in the selected flood percentiles showed an increase in extreme events over the entire period of record, while trends were variable under shorter periods. A thorough uncertainty analysis emphasized that the applied trend test is highly sensitive to the period of record considered. As such, no clear overall regional pattern could be determined suggesting that how catchments are responding to changes in climatic drivers is strongly influenced by their physical characteristics.
A Review of Recent Changes in Southern Ocean Sea Ice, Their Drivers and Forcings
NASA Technical Reports Server (NTRS)
Hobbs, William R.; Massom, Rob; Stammerjohn, Sharon; Reid, Phillip; Williams, Guy; Meier, Walter
2016-01-01
Over the past 37years, satellite records show an increase in Antarctic sea ice cover that is most pronounced in the period of sea ice growth. This trend is dominated by increased sea ice coverage in the western Ross Sea, and is mitigated by a strong decrease in the Bellingshausen and Amundsen seas. The trends in sea ice areal coverage are accompanied by related trends in yearly duration. These changes have implications for ecosystems, as well as global and regional climate. In this review, we summarize the researchto date on observing these trends, identifying their drivers, and assessing the role of anthropogenic climate change. Whilst the atmosphere is thought to be the primary driver, the ocean is also essential in explaining the seasonality of the trend patterns. Detecting an anthropogenic signal in Antarctic sea ice is particularly challenging for a number of reasons: the expected response is small compared to the very high natural variability of the system; the observational record is relatively short; and the ability of global coupled climate models to faithfully represent the complex Antarctic climate system is in doubt.
NASA Astrophysics Data System (ADS)
Matyasovszky, István; Makra, László; Csépe, Zoltán; Sümeghy, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Tusnády, Gábor
2015-10-01
After extreme dry (wet) summers or years, pollen production of different taxa may decrease (increase) substantially. Accordingly, studying effects of current and past meteorological conditions on current pollen concentrations for different taxa have of major importance. The purpose of this study is separating the weight of current and past weather conditions influencing current pollen productions of three taxa. Two procedures, namely multiple correlations and factor analysis with special transformation are used. The 11-year (1997-2007) data sets include daily pollen counts of Ambrosia (ragweed), Poaceae (grasses) and Populus (poplar), as well as daily values of four climate variables (temperature, relative humidity, global solar flux and precipitation). Multiple correlations of daily pollen counts with simultaneous values of daily meteorological variables do not show annual course for Ambrosia, but do show definite trends for Populus and Poaceae. Results received using the two methods revealed characteristic similarities. For all the three taxa, the continental rainfall peak and additional local showers in the growing season can strengthen the weight of the current meteorological elements. However, due to the precipitation, big amount of water can be stored in the soil contributing to the effect of the past climate elements during dry periods. Higher climate sensitivity (especially water sensitivity) of the herbaceous taxa ( Ambrosia and Poaceae) can be definitely established compared to the arboreal Populus. Separation of the weight of the current and past weather conditions for different taxa involves practical importance both for health care and agricultural production.
Pielke, R.A.; Stohlgren, T.; Schell, L.; Parton, W.; Doesken, N.; Redmond, K.; Moeny, J.; McKee, T.; Kittel, T.G.F.
2002-01-01
We evaluated long-term trends in average maximum and minimum temperatures, threshold temperatures, and growing season in eastern Colorado, USA, to explore the potential shortcomings of many climate-change studies that either: (1) generalize regional patterns from single stations, single seasons, or a few parameters over short duration from averaging dissimilar stations: or (2) generalize an average regional pattern from coarse-scale general circulation models. Based on 11 weather stations, some trends were weakly regionally consistent with previous studies of night-time temperature warming. Long-term (80 + years) mean minimum temperatures increased significantly (P < 0.2) in about half the stations in winter, spring, and autumn and six stations had significant decreases in the number of days per year with temperatures ??? - 17.8 ??C (???0??F). However, spatial and temporal variation in the direction of change was enormous for all the other weather parameters tested, and, in the majority of tests, few stations showed significant trends (even at P < 0.2). In summer, four stations had significant increases and three stations had significant decreases in minimum temperatures, producing a strongly mixed regional signal. Trends in maximum temperature varied seasonally and geographically, as did trends in threshold temperature days ???32.2??C (???90??F) or days ???37.8??C (???100??F). There was evidence of a subregional cooling in autumn's maximum temperatures, with five stations showing significant decreasing trends. There were many geographic anomalies where neighbouring weather stations differed greatly in the magnitude of change or where they had significant and opposite trends. We conclude that sub-regional spatial and seasonal variation cannot be ignored when evaluating the direction and magnitude of climate change. It is unlikely that one or a few weather stations are representative of regional climate trends, and equally unlikely that regionally projected climate change from coarse-scale general circulation models will accurately portray trends at sub-regional scales. However, the assessment of a group of stations for consistent more qualitative trends (such as the number of days less than - 17.8??C, such as we found) provides a reasonably robust procedure to evaluate climate trends and variability. Copyright ?? 2002 Royal Meteorological Society.
NASA Astrophysics Data System (ADS)
Rozenberg, J.; Hallegatte, S.
2016-12-01
There is a consensus on the fact that poor people are more vulnerable to climate change than the rest of the population, but, until recently, few quantified estimates had been proposed and few frameworks existed to design policies for addressing the issue. In this paper, we analyze the impacts of climate change on poverty using micro-simulation approaches. We start from household surveys that describe the current distribution of income and occupations, we project these households into the future and we look at the impacts of climate change on people's income. To project households into the future, we explore a large range of assumptions on future demographic changes (including on education), technological changes, and socio-economic trends (including redistribution policies). This approach allows us to identify the main combination of factors that lead to fast poverty reduction, and the ones that lead to high climate change impacts on the poor. Identifying these factors is critical for designing efficient policies to protect the poorest from climate change impacts and making economic growth more inclusive. Conclusions are twofold. First, by 2030 climate change can have a large impact on poverty, with between 3 and 122 million more people in poverty, but climate change remains a secondary driver of poverty trends within this time horizon. Climate change impacts do not only affect the poorest: in 2030, the bottom 40 percent lose more than 4 percent of income in many countries. The regional hotspots are Sub-Saharan Africa and - to a lesser extent - India and the rest of South Asia. The most important channel through which climate change increases poverty is through agricultural income and food prices. Second, by 2030 and in the absence of surprises on climate impacts, inclusive climate-informed development can prevent most of (but not all) the impacts on poverty. In a scenario with rapid, inclusive and climate-proof development, climate change impact on poverty is between 3 and 16 million, vs. between 35 and 122 million if development is delayed and less inclusive. Development and inclusive policies appears to reduce the impact of climate change on poverty much more than it reduces aggregated losses expressed in percentage of GDP.
Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,
2013-01-01
Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.
Ma, Jun; Bu, Rencang; Deng, Hua-Wei; Hu, Yuan-Man; Qin, Qin; Han, Feng-Lin
2014-09-01
LANDIS Pro 7.0 model was used to simulate the dynamics of aboveground biomass of ten broadleaved tree species in the Xiao Xing' an Mountains area under current and various climate change scenarios from 2000 to 2200, and carbon content coefficients (CCCs) were coupled to cal- culate the aboveground carbon sequestration rates (ACSRs) of these species. The results showed that in the initial year of simulation, the biomasses and their proportions of Fraxinus mandshurica, Phellodendron amurense, Quercus mongolica, Ulmus propinqua, and Acer mono were relatively low, while those of Betula costata, Betula platyphylla, and Populus davidiana were higher. A trend of rise after decline occurred in ACSR for pioneer species in the mid and late periods of simulation years, but ACSRs for the other broadleaved tree species were considerably complex. The ACSRs of Q. mongolica and Tilla amurensis fluctuated in the ranges of -0.05-0.25 t · hm(-2) · 10 a(-1) and 0.16-1.29 t · hm(-2) · 10 a(-1) in simulation years, respectively. The ACSRs of F. mandshurica, U. propinqua, A. mono, and B. costata showed a trend of decline after rise in late simulation years. There were significant differences in ACSR for P. amurense and B. davurica among various climate change scenarios in the periods of 2050-2100 and 2150-2200, while no significant difference in ACSR for the other species would be detected. Difference of sensitivity of various species in ACSR for future climate scenarios in the Small Khingan Mountains area existed. However, the un- certainty of future climates would not yield significant difference in ACSR for most broadleaved tree species. Moreover, a time lag would exist in the process of climate change effects on temperate forest's ACSR.
Stephanie K. Moore; Nathan J. Mantua; Barbara M. Hickey; Vera L. Trainer
2009-01-01
Temporal and spatial trends in paralytic shellfish toxins (PSTs) in Puget Sound shellfish and their relationships with climate are investigated using long-term monitoring data since 1957. Data are selected for trend analyses based on the sensitivity of shellfish species to PSTs and their depuration rates, and the frequency of sample collection at individual sites....
An archival examination of environment and disease in eastern Africa in recent history
NASA Astrophysics Data System (ADS)
Larsen, L.
2012-04-01
In order to better understand present interactions between climate and infectious disease incidence it is important to examine the history of disease outbreaks and burdens, and their likely links with the environment. This paper will present research that is currently being undertaken on the identification and mapping of historic incidences of malaria, schistosomiasis and Rift Valley fever (RVF) in eastern Africa in relation to possible environmental, social, economic and political contributing factors. The research covers the past one hundred years or so and primarily draws on a range of archival documentary sources located in the region and the former imperial centres. The paper will discuss the methodologies employed in the building of a comprehensive historical database. The research is part of a larger EU FP7-funded project which aims to map, examine and anticipate the future risks of the three diseases in eastern Africa in response to environmental change. The paper will outline how the construction of such a historic database allows the contextualization of current climate-disease relationships and can thus contribute to discussions on the effects of changing climate on future disease trends.
Forecasting conditional climate-change using a hybrid approach
Esfahani, Akbar Akbari; Friedel, Michael J.
2014-01-01
A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.
Yin, Ke; Hong, Hanlie; Algeo, Thomas J; Churchman, Gordon Jock; Li, Zhaohui; Zhu, Zongmin; Fang, Qian; Zhao, Lulu; Wang, Chaowen; Ji, Kaipeng; Lei, Weidong; Duan, Zhenggang
2018-02-26
Diffuse reflectance spectrophotometry (DRS) is a new, fast, and reliable method to characterize Fe-oxides in soils. The Fe-oxide mineralogy of the Jiujiang red earth sediments was investigated using DRS to investigate the climate evolution of southern China since the mid-Pleistocene. The DRS results show that hematite/(hematite + goethite) ratios [Hm/(Hm + Gt)] exhibit an upward decreasing trend within the Jiujiang section, suggesting a gradual climate change from warm and humid in the middle Pleistocene to cooler and drier in the late Pleistocene. Upsection trends toward higher (orthoclase + plagioclase)/quartz ratios [(Or + Pl)/Q] and magnetic susceptibility values (χ lf ) support this inference, which accords with global climate trends at that time. However, higher-frequency climatic subcycles observed in loess sections of northern China are not evident in the Jiujiang records, indicating a relatively lower climate sensitivity of the red earth sediments in southern China.
Strategies for Reforestation under Uncertain Future Climates: Guidelines for Alberta, Canada
Gray, Laura K.; Hamann, Andreas
2011-01-01
Background Commercial forestry programs normally use locally collected seed for reforestation under the assumption that tree populations are optimally adapted to local environments. However, in western Canada this assumption is no longer valid because of climate trends that have occurred over the last several decades. The objective of this study is to show how we can arrive at reforestation recommendations with alternative species and genotypes that are viable under a majority of climate change scenarios. Methodology/Principal Findings In a case study for commercially important tree species of Alberta, we use an ecosystem-based bioclimate envelope modeling approach for western North America to project habitat for locally adapted populations of tree species using multi-model climate projections for the 2020s, 2050s and 2080s. We find that genotypes of species that are adapted to drier climatic conditions will be the preferred planting stock over much of the boreal forest that is commercially managed. Interestingly, no alternative species that are currently not present in Alberta can be recommended with any confidence. Finally, we observe large uncertainties in projections of suitable habitat that make reforestation planning beyond the 2050s difficult for most species. Conclusion/Significance More than 50,000 hectares of forests are commercially planted every year in Alberta. Choosing alternative planting stock, suitable for expected future climates, could therefore offer an effective climate change adaptation strategy at little additional cost. Habitat projections for locally adapted tree populations under observed climate change conform well to projections for the 2020s, which suggests that it is a safe strategy to change current reforestation practices and adapt to new climatic realities through assisted migration prescriptions. PMID:21853061
Influence of long term climate change on net infiltration at Yucca Mountain, Nevada
Flint, Alan I.; Flint, Lorraine E.; Hevesi, Joseph A.
1993-01-01
Net infiltration and recharge at Yucca Mountain, Nevada, a potential site for a high level nuclear waste repository, are determined both by the rock properties and past and future changes in climate. A 1-dimensional model was constructed to represent a borehole being drilled through the unsaturated zone. The rock properties were matched to the lithologies expected to be encountered in the borehole. As current paleoclimate theory assumes that 18O increases with wetter and cooler global climates, a past climate scenario, built on depletion of 18O from ocean sediments was used as a basis for climate change over the past 700,000 years. The climate change was simulated by assigning net infiltration values as a linear function of 8O. Assuming the rock properties, lithologies and climate scenarios are correct, simulations indicated that Yucca Mountain is not in steady state equilibrium at the surface (250 meters. Based on the cyclic climate inputs, the near surface is currently in a long term drying trend (for the last 3,000 years) yet recharge into the water table is continuing to occur at an average rate equivalent to the average input rate of the climate model, indicating that conditions at depth are damped out over very long time periods. The Paintbrush Tuff nonwelded units, positioned between the Tiva Canyon and Topopah Spring welded Tuff Members, do not appear to act as capillary barrier and therefore would not perch water. The low porosity vitric caprock and basal vitrophyre of the Topopah Spring Member, however, act as restrictive layers. The higher porosity rock directly above the caprock reduces the potential for the caprock to perch water leaving the basal vitrophyre as the most likely location for perched water to develop.
The effects of variable biome distribution on global climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noever, D.A.; Brittain, A.; Matsos, H.C.
1996-12-31
In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. The authors develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed trend and order of magnitude change in global temperature. Once backtested in this way on historical data, the model is then used to generate an optimized future biome distribution which minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search anmore » artificial intelligence method, the genetic algorithm, was employed. The genetic algorithm assigns various biome distributions to the planet, then adjusts their percentage area and albedo effects to regulate or moderate temperature changes.« less
NASA Astrophysics Data System (ADS)
Matthews, E.
2008-12-01
Malaria is currently prevalent in many countries and has been for centuries. Primary controllers of the distribution and incidence of malaria in the past have been economic, social, military, political etc. with a modest contribution from local climate variations. Studies of potential impacts of climate change on the epidemiology of diseases such as malaria have focused on the impact of changing environmental conditions on vector physiology but little attention has been paid to factors that explain historical variations in spatial and temporal distributions of the disease. This talk reports results of three historical case studies from the US, Italy and Sri Lanka that bring together a breadth of information from varied sources in order to illustrate the value of including such information in studies of disease-climate connections.
Kukal, Meetpal S; Irmak, Suat
2018-02-22
Climate variability and trends affect global crop yields and are characterized as highly dependent on location, crop type, and irrigation. U.S. Great Plains, due to its significance in national food production, evident climate variability, and extensive irrigation is an ideal region of investigation for climate impacts on food production. This paper evaluates climate impacts on maize, sorghum, and soybean yields and effect of irrigation for individual counties in this region by employing extensive crop yield and climate datasets from 1968-2013. Variability in crop yields was a quarter of the regional average yields, with a quarter of this variability explained by climate variability, and temperature and precipitation explained these in singularity or combination at different locations. Observed temperature trend was beneficial for maize yields, but detrimental for sorghum and soybean yields, whereas observed precipitation trend was beneficial for all three crops. Irrigated yields demonstrated increased robustness and an effective mitigation strategy against climate impacts than their non-irrigated counterparts by a considerable fraction. The information, data, and maps provided can serve as an assessment guide for planners, managers, and policy- and decision makers to prioritize agricultural resilience efforts and resource allocation or re-allocation in the regions that exhibit risk from climate variability.
Macro Trends and the Future of Public Health Practice.
Erwin, Paul Campbell; Brownson, Ross C
2017-03-20
Public health practice in the twenty-first century is in a state of significant flux. Several macro trends are impacting the current practice of governmental public health and will likely have effects for many years to come. These macro trends are described as forces of change, which are changes that affect the context in which the community and its public health system operate. This article focuses on seven such forces of change: the Patient Protection and Affordable Care Act, public health agency accreditation, climate change, health in all policies, social media and informatics, demographic transitions, and globalized travel. Following the description of each of these, this article then turns to possible approaches to measuring, tracking, and understanding the impact of these forces of change on public health practice, including the use of evidence-based public health, practice-based research, and policy surveillance.
Contrasting effects of climate change on rabbit populations through reproduction.
Tablado, Zulima; Revilla, Eloy
2012-01-01
Climate change is affecting many physical and biological processes worldwide. Anticipating its effects at the level of populations and species is imperative, especially for organisms of conservation or management concern. Previous studies have focused on estimating future species distributions and extinction probabilities directly from current climatic conditions within their geographical ranges. However, relationships between climate and population parameters may be so complex that to make these high-level predictions we need first to understand the underlying biological processes driving population size, as well as their individual response to climatic alterations. Therefore, the objective of this study is to investigate the influence that climate change may have on species population dynamics through altering breeding season. We used a mechanistic model based on drivers of rabbit reproductive physiology together with demographic simulations to show how future climate-driven changes in breeding season result in contrasting rabbit population trends across Europe. In the Iberian Peninsula, where rabbits are a native species of high ecological and economic value, breeding seasons will shorten and become more variable leading to population declines, higher extinction risk, and lower resilience to perturbations. Whereas towards north-eastern countries, rabbit numbers are expected to increase through longer and more stable reproductive periods, which augment the probability of new rabbit invasions in those areas. Our study reveals the type of mechanisms through which climate will cause alterations at the species level and emphasizes the need to focus on them in order to better foresee large-scale complex population trends. This is especially important in species like the European rabbit whose future responses may aggravate even further its dual keystone/pest problematic. Moreover, this approach allows us to predict not only distribution shifts but also future population status and growth, and to identify the demographic parameters on which to focus to mitigate global change effects.
Contrasting Effects of Climate Change on Rabbit Populations through Reproduction
Tablado, Zulima; Revilla, Eloy
2012-01-01
Background Climate change is affecting many physical and biological processes worldwide. Anticipating its effects at the level of populations and species is imperative, especially for organisms of conservation or management concern. Previous studies have focused on estimating future species distributions and extinction probabilities directly from current climatic conditions within their geographical ranges. However, relationships between climate and population parameters may be so complex that to make these high-level predictions we need first to understand the underlying biological processes driving population size, as well as their individual response to climatic alterations. Therefore, the objective of this study is to investigate the influence that climate change may have on species population dynamics through altering breeding season. Methodology/Principal Findings We used a mechanistic model based on drivers of rabbit reproductive physiology together with demographic simulations to show how future climate-driven changes in breeding season result in contrasting rabbit population trends across Europe. In the Iberian Peninsula, where rabbits are a native species of high ecological and economic value, breeding seasons will shorten and become more variable leading to population declines, higher extinction risk, and lower resilience to perturbations. Whereas towards north-eastern countries, rabbit numbers are expected to increase through longer and more stable reproductive periods, which augment the probability of new rabbit invasions in those areas. Conclusions/Significance Our study reveals the type of mechanisms through which climate will cause alterations at the species level and emphasizes the need to focus on them in order to better foresee large-scale complex population trends. This is especially important in species like the European rabbit whose future responses may aggravate even further its dual keystone/pest problematic. Moreover, this approach allows us to predict not only distribution shifts but also future population status and growth, and to identify the demographic parameters on which to focus to mitigate global change effects. PMID:23152836
Continuing the Total and Spectral Solar Irradiance Climate Data Record
NASA Astrophysics Data System (ADS)
Coddington, O.; Pilewskie, P.; Kopp, G.; Richard, E. C.; Sparn, T.; Woods, T. N.
2017-12-01
Radiative energy from the Sun establishes the basic climate of the Earth's surface and atmosphere and defines the terrestrial environment that supports all life on the planet. External solar variability on a wide range of scales ubiquitously affects the Earth system, and combines with internal forcings, including anthropogenic changes in greenhouse gases and aerosols, and natural modes such as ENSO, and volcanic forcing, to define past, present, and future climates. Understanding these effects requires continuous measurements of total and spectrally resolved solar irradiance that meet the stringent requirements of climate-quality accuracy and stability over time. The current uninterrupted 39-year total solar irradiance (TSI) climate data record is the result of several overlapping instruments flown on different missions. Measurement continuity, required to link successive instruments to the existing data record to discern long-term trends makes this important climate data record susceptible to loss in the event of a gap in measurements. While improvements in future instrument accuracy will reduce the risk of a gap, the 2017 launch of TSIS-1 ensures continuity of the solar irradiance record into the next decade. There are scientific and programmatic motivations for addressing the challenges of maintaining the solar irradiance data record beyond TSIS-1. The science rests on well-founded requirements of establishing a trusted climate observing network that can monitor trends in fundamental climate variables. Programmatically, the long-term monitoring of solar irradiance must be balanced within the broader goals of NASA Earth Science. New concepts for a low-risk, cost efficient observing strategy is a priority. New highly capable small spacecraft, low-cost launch vehicles and a multi-decadal plan to provide overlapping TSI and SSI data records are components of a low risk/high reliability plan with lower annual cost than past implementations. This paper provides the justification for prioritizing solar irradiance observations and plans for extending the record into the next two decades that adheres to the rigors of quantifiable methods for meeting objectives.
Assessing the impact of climate variability on cropping patterns in Kenya
NASA Astrophysics Data System (ADS)
Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.
2017-12-01
Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.
Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah
2015-03-01
This study presents an analysis of climate change impacts on a large river located in Québec (Canada) used as a drinking water source. Combined sewer overflow (CSO) effluents are the primary source of fecal contamination of the river. An analysis of river flowrates was conducted using historical data and predicted flows from a future climate scenario. A spatio-temporal analysis of water quality trends with regard to fecal contamination was performed and the effects of changing flowrates on the dilution of fecal contaminants were analyzed. Along the river, there was a significant spatial trend for increasing fecal pollution downstream of CSO outfalls. Escherichia coli concentrations (upper 95th percentile) increased linearly from 2002 to 2012 at one drinking water treatment plant intake. Two critical periods in the current climate were identified for the drinking water intakes considering both potential contaminant loads and flowrates: local spring snowmelt that precedes river peak flow and extra-tropical storm events that occur during low flows. Regionally, climate change is expected to increase the intensity of the impacts of hydrological conditions on water quality in the studied basin. Based on climate projections, it is expected that spring snowmelt will occur earlier and extreme spring flowrates will increase and low flows will generally decrease. High and low flows are major factors related to the potential degradation of water quality of the river. However, the observed degradation of water quality over the past 10 years suggests that urban development and population growth may have played a greater role than climate. However, climate change impacts will likely be observed over a longer period. Source water protection plans should consider climate change impacts on the dilution of contaminants in addition to local land uses changes in order to maintain or improve water quality. Copyright © 2014 Elsevier B.V. All rights reserved.
Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia
Camarero, J. Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q.; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin
2017-01-01
Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950–2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells. PMID:29109266
Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia.
Sánchez-Salguero, Raúl; Camarero, J Julio; Carrer, Marco; Gutiérrez, Emilia; Alla, Arben Q; Andreu-Hayles, Laia; Hevia, Andrea; Koutavas, Athanasios; Martínez-Sancho, Elisabet; Nola, Paola; Papadopoulos, Andreas; Pasho, Edmond; Toromani, Ervin; Carreira, José A; Linares, Juan C
2017-11-21
Warmer and drier climatic conditions are projected for the 21st century; however, the role played by extreme climatic events on forest vulnerability is still little understood. For example, more severe droughts and heat waves could threaten quaternary relict tree refugia such as Circum-Mediterranean fir forests (CMFF). Using tree-ring data and a process-based model, we characterized the major climate constraints of recent (1950-2010) CMFF growth to project their vulnerability to 21st-century climate. Simulations predict a 30% growth reduction in some fir species with the 2050s business-as-usual emission scenario, whereas growth would increase in moist refugia due to a longer and warmer growing season. Fir populations currently subjected to warm and dry conditions will be the most vulnerable in the late 21st century when climatic conditions will be analogous to the most severe dry/heat spells causing dieback in the late 20th century. Quantification of growth trends based on climate scenarios could allow defining vulnerability thresholds in tree populations. The presented predictions call for conservation strategies to safeguard relict tree populations and anticipate how many refugia could be threatened by 21st-century dry spells.
Bhatti, Shammi; Jha, Gopaljee
2010-11-01
Apple (Malus domestica Borkh.), which is a widely cultivated, important economic fruit crop with nutritive and medicinal importance, has emerged as a model horticultural crop in this post-genomic era. Apple cultivation is heavily dependent on climatic condition and is susceptible to several diseases caused by fungi, bacteria, viruses, insects, etc. Extensive research work has been carried out to standardize tissue culture protocols and utilize them in apple improvement. We review the in vitro shoot multiplication, rooting, transformation and regeneration methodologies in apple and tabulate various such protocols for easy reference. The utility and limitation of transgenesis in apple improvement have also been summarized. The concepts of marker-free plants, use of non-antibiotic resistance selectable markers, and cisgenic and intragenic approaches are highlighted. Furthermore, the limitations, current trends and future prospects of tissue culture-mediated biotechnological interventions in apple improvement are discussed.
NASA Astrophysics Data System (ADS)
Martinez, B. S.; Ye, H.; Levy, R. C.; Fetzer, E. J.; Remer, L.
2017-12-01
Atmospheric aerosols expose high levels of uncertainty in regard to Earth's changing atmospheric energy budget. Continued exploration and analysis is necessary to obtain more complete understanding in which, and to what degree, aerosols contribute within climate feedbacks and global climate change. With the advent of global satellite retrievals, along with specific aerosol optical depth (AOD) Dark Target and Deep Blue algorithms, aerosols can now be better measured and analyzed. Aerosol effect on climate depends primarily on altitude, the reflectance albedo of the underlying surface, along with the presence of clouds and the dynamics thereof. As currently known, the majority of aerosol distribution and mixing occur in the lower troposphere from the surface upwards to around 2km. Additionally, being a primary greenhouse gas contributor, water vapor is significant to climate feedbacks and Earth's radiation budget. Feedbacks are generally reported from the top of atmosphere (TOA). Therefore, little is known of the relationship between water vapor and aerosols; specifically, in regional areas of the globe known for aerosol loading such as anthropogenic biomass burning in South America and naturally occurring dust blowing off the deserts in the African and Arabian peninsulas. Statistical regression and timeseries analysis are used in determining significant probabilities suggesting trends of both regional precipitable water (PW) and AOD increase and decrease over a 13-year time period from 2003-2015. Regions with statistically significant positive or negative trends of AOD and PW are analyzed in determining correlations, or lack thereof. This initial examination helps to deduce and better understand how aerosols contribute to the radiation budget and assessing climate change.
Detection time for global and regional sea level trends and accelerations
NASA Astrophysics Data System (ADS)
Jordà, G.
2014-10-01
Many studies analyze trends on sea level data with the underlying purpose of finding indications of a long-term change that could be interpreted as the signature of anthropogenic climate change. The identification of a long-term trend is a signal-to-noise problem where the natural variability (the "noise") can mask the long-term trend (the "signal"). The signal-to-noise ratio depends on the magnitude of the long-term trend, on the magnitude of the natural variability, and on the length of the record, as the climate noise is larger when averaged over short time scales and becomes smaller over longer averaging periods. In this paper, we evaluate the time required to detect centennial sea level linear trends and accelerations at global and regional scales. Using model results and tide gauge observations, we find that the averaged detection time for a centennial linear trend is 87.9, 76.0, 59.3, 40.3, and 25.2 years for trends of 0.5, 1.0, 2.0, 5.0, and 10.0 mm/yr, respectively. However, in regions with large decadal variations like the Gulf Stream or the Circumpolar current, these values can increase up to a 50%. The spatial pattern of the detection time for sea level accelerations is almost identical. The main difference is that the length of the records has to be about 40-60 years longer to detect an acceleration than to detect a linear trend leading to an equivalent change after 100 years. Finally, we have used a new sea level reconstruction, which provides a more accurate representation of interannual variability for the last century in order to estimate the detection time for global mean sea level trends and accelerations. Our results suggest that the signature of natural variability in a 30 year global mean sea level record would be less than 1 mm/yr. Therefore, at least 2.2 mm/yr of the recent sea level trend estimated by altimetry cannot be attributed to natural multidecadal variability. This article was corrected on 19 NOV 2014. See the end of the full text for details.
The impact of climate change on photovoltaic power generation in Europe
NASA Astrophysics Data System (ADS)
Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; María López-Romero, Jose; Thais, Françoise; Bartok, Blanka; Bøssing Christensen, Ole; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin
2016-04-01
Ambitious climate change mitigation plans call for a significant increase in use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared to the estimations made under current climate conditions should be in the range [-14%;+2%], with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. Reference: S. Jerez, I. Tobin, R. Vautard, J.P. Montávez, J.M. López-Romero, F. Thais, B. Bartok, O.B. Christensen, A. Colette, M. Déqué, G. Nikulin, S. Kotlarski, E. van Meijgaard, C. Teichmann and M. Wild (2015). The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 6, 10014, doi: 10.1038/ncomms10014.
Climatic trends over Ethiopia: regional signals and drivers
Jury, Mark R.; Funk, Christopher C.
2013-01-01
This study analyses observed and projected climatic trends over Ethiopia, through analysis of temperature and rainfall records and related meteorological fields. The observed datasets include gridded station records and reanalysis products; while projected trends are analysed from coupled model simulations drawn from the IPCC 4th Assessment. Upward trends in air temperature of + 0.03 °C year−1 and downward trends in rainfall of − 0.4 mm month−1 year−1 have been observed over Ethiopia's southwestern region in the period 1948-2006. These trends are projected to continue to 2050 according to the Geophysical Fluid Dynamics Lab model using the A1B scenario. Large scale forcing derives from the West Indian Ocean where significant warming and increased rainfall are found. Anticyclonic circulations have strengthened over northern and southern Africa, limiting moisture transport from the Gulf of Guinea and Congo. Changes in the regional Walker and Hadley circulations modulate the observed and projected climatic trends. Comparing past and future patterns, the key features spread westward from Ethiopia across the Sahel and serve as an early warning of potential impacts.
Combining satellite derived phenology with climate data for climate change impact assessment
NASA Astrophysics Data System (ADS)
Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F.
2012-05-01
The projected influence of climate change on the timing and volume of phytomass production is expected to affect a number of ecosystem services. In order to develop coherent and locally effective adaptation and mitigation strategies, spatially explicit information on the observed changes is needed. Long-term variations of the vegetative growing season in different environmental zones of Europe for 1982-2006 have been derived by analysing time series of GIMMS NDVI data. The associations of phenologically homogenous spatial clusters to time series of temperature and precipitation data were evaluated. North-east Europe showed a trend to an earlier and longer growing season, particularly in the northern Baltic areas. Despite the earlier greening up large areas of Europe exhibited rather stable season length indicating the shift of the entire growing season to an earlier period. The northern Mediterranean displayed a growing season shift towards later dates while some agglomerations of earlier and shorter growing season were also seen. The correlation of phenological time series with climate data shows a cause-and-effect relationship over the semi natural areas consistent with results in literature. Managed ecosystems however appear to have heterogeneous change pattern with less or no correlation to climatic trends. Over these areas climatic trends seemed to overlap in a complex manner with more pronounced effects of local biophysical conditions and/or land management practices. Our results underline the importance of satellite derived phenological observations to explain local nonconformities to climatic trends for climate change impact assessment.
Supporting NGSS-aligned Study of Authentic Data about Climate
NASA Astrophysics Data System (ADS)
Zalles, D. R.
2013-12-01
The subject of climate change holds tremendous opportunity for students to learn how scientists use data to develop and test theories of how the natural world works and appreciate how climate change instantiates cross-cutting NGSS science themes like stability and change, energy and matter, and cause and effect. To do so, students and teachers need help seeing in authentic Earth system data complex climate interactions and generate plans for building greater understanding of the complexities through further data investigation. With ever-growing repositories of global and regional public data and user friendly tools for their display, K-12 educators are challenged to help students study data independently rather than through the usual pre-filtered didactic presentations of data found in textbooks. The paper will describe strategies for facilitating critical thinking about authentic climate-related data in two climate change education projects funded by NASA and NSF, as well as learning outcomes. Data Enhanced Investigations for Climate Change Education (dicce.sri.com) brings data from NASA satellite missions to classrooms. Studying Topography, Orographic Rainfall, and Ecosystems with Geospatial Information Technology (store.sri.com) provides recent climatological and vegetation data about certain study areas in California and New York plus geospatially distributed projected values of temperature, precipitation, and land cover in 2050 and 2099, derived from NCAR's A2 climate change model. Supportive resources help students move from naïve conceptions of simple linear relationships between variables into critical analysis of what other variables could be mediating those relationships. DICCE contains guides for how to interpret multiyear trends that are evident in the NASA mission data in relation to what we know about current climate change. If a learner plots a line of best fit across multiple months or years of regional data and notices that the line is either sloping up or down, the trend guide suggests what this might mean and suggests what additional types of data to examine for verification. For example, the variable euphotic depth looks at ocean surface water clarity. If students notice that euphotic depth has decreased, the trend guide explains how this could be evidence of increased runoff from coastal lands. Yet, increased runoff may or may not be an effect of regional climate change; an effect if from increasingly severe storms, or not an effect if from increased deforestation in the coastal watershed. Or, perhaps both could be occurring. To investigate further, students are encouraged to study if other data about the region shows trends (e.g., accumulated precipitation, rainfall rate, and air temperature) and to see if the decreased euphotic depth is also occurring further from the coastline. This could indicate decreased phytoplankton, which in turn could result from climate change if the decrease is due to increased sea surface temperatures that mitigate upwelling of nutrients from colder depths. The STORE project also stimulates discovery of complex relationships in data. For example, students seeking confirmation of a linear relationship between increased elevation and increased precipitation study authentic data showing how the relationship is mediated by proximity to large bodies of water and storm paths.
Trend analysis of Arctic sea ice extent
NASA Astrophysics Data System (ADS)
Silva, M. E.; Barbosa, S. M.; Antunes, Luís; Rocha, Conceição
2009-04-01
The extent of Arctic sea ice is a fundamental parameter of Arctic climate variability. In the context of climate change, the area covered by ice in the Arctic is a particularly useful indicator of recent changes in the Arctic environment. Climate models are in near universal agreement that Arctic sea ice extent will decline through the 21st century as a consequence of global warming and many studies predict a ice free Arctic as soon as 2012. Time series of satellite passive microwave observations allow to assess the temporal changes in the extent of Arctic sea ice. Much of the analysis of the ice extent time series, as in most climate studies from observational data, have been focussed on the computation of deterministic linear trends by ordinary least squares. However, many different processes, including deterministic, unit root and long-range dependent processes can engender trend like features in a time series. Several parametric tests have been developed, mainly in econometrics, to discriminate between stationarity (no trend), deterministic trend and stochastic trends. Here, these tests are applied in the trend analysis of the sea ice extent time series available at National Snow and Ice Data Center. The parametric stationary tests, Augmented Dickey-Fuller (ADF), Phillips-Perron (PP) and the KPSS, do not support an overall deterministic trend in the time series of Arctic sea ice extent. Therefore, alternative parametrizations such as long-range dependence should be considered for characterising long-term Arctic sea ice variability.
2011-01-01
Background Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Methods Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. Results An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. Conclusion This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard. PMID:21241505
NASA Technical Reports Server (NTRS)
Molnar, Gyula I.; Susskind, Joel; Iredell, Lena F.
2010-01-01
Mainly due to their global nature, satellite observations can provide a very useful basis for GCM validations. In particular, satellite sounders such as AIRS provide 3-D spatial information (most useful for GCMs), so the question arises: can we use AIRS datasets for climate variability assessments? We show that the recent (September 2002 February 2010) CERES-observed negative trend in OLR of approx.-0.1 W/sq m/yr averaged over the globe is found in the AIRS OLR data as well. Most importantly, even minute details (down to 1 x 1 degree GCM-scale resolution) of spatial and temporal anomalies and trends of OLR as observed by CERES and computed based on AIRS-retrieved surface and atmospheric geophysical parameters over this time period are essentially the same. The correspondence can be seen even in the very large spatial variations of these trends with local values ranging from -2.6 W/sq m/yr to +3.0 W/sq m/yr in the tropics, for example. This essentially perfect agreement of OLR anomalies and trends derived from observations by two different instruments, in totally independent and different manners, implies that both sets of results must be highly accurate, and indirectly validates the anomalies and trends of other AIRS derived products as well. These products show that global and regional anomalies and trends of OLR, water vapor and cloud cover over the last 7+ years are strongly influenced by EI-Nino-La Nina cycles . We have created climate parameter anomaly datasets using AIRS retrievals which can be compared directly with coupled GCM climate variability assessments. Moreover, interrelationships of these anomalies and trends should also be similar between the observed and GCM-generated datasets, and, in cases of discrepancies, GCM parameterizations could be improved based on the relationships observed in the data. First, we assess spatial "trends" of variability of climatic parameter anomalies [since anomalies relative to the seasonal cycle are good proxies of climate variability] at the common 1x1 degree GCM grid-scale by creating spatial anomaly "trends" based on the first 7+ years of AIRS Version 5 Leve13 data. We suggest that modelers should compare these with their (coupled) GCM's performance covering the same period. We evaluate temporal variability and interrelations of climatic anomalies on global to regional e.g., deep Tropical Hovmoller diagrams, El-Nino-related variability scales, and show the effects of El-Nino-La Nina activity on tropical anomalies and trends of water vapor cloud cover and OLR. For GCMs to be trusted highly for long-term climate change predictions, they should be able to reproduce findings similar to these. In summary, the AIRS-based climate variability analyses provide high quality, informative and physically plausible interrelationships among OLR, temperature, humidity and cloud cover both on the spatial and temporal scales. GCM validations can use these results even directly, e. g., by creating 1x1 degree trendmaps for the same period in coupled climate simulations.
Bode, Antonio; Estévez, M Graciela; Varela, Manuel; Vilar, José A
2015-09-01
Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hao, Shaonan; Li, Xuyong; Jiang, Yan; Zhao, Hongtao; Yang, Lei
2016-09-01
The rapid growth of urbanization and industrialization, along with dramatic climate change, has strongly influenced hydrochemical characteristics in recent decades in China and thus could cause the variation of pH and general total hardness of a river. To explore such variations and their potential influencing factors in a river of the monsoon climate region, we analyzed a long-term monitoring dataset of pH, SO4 (2-), NOx, general total hardness (GH), Mg(2+), Ca(2+), and Cl(-) in surface water and groundwater in the Luan River basin from 1985 to 2009. The nonparametric Seasonal Kendall trend test was used to test the long-term trends of pH and GH. Relationship between the affecting factors, pH and GH were discussed. Results showed that pH showed a decreasing trend and that GH had an increasing trend in the long-term. Seasonal variation of pH and GH was mainly due to the typical monsoon climate. Results of correlation analysis showed that the unit area usage amounts of chemical fertilizer, NO3 (-), and SO4 (2-) were negatively correlated with pH in groundwater. In addition, mining activity affected GH spatial variation. Acid deposition, drought, and increasing the use of chemical fertilizers would contribute to the acidification trend, and mining activities would affect the spatial variation of GH. Variations of precipitation and runoff in semi-arid monsoon climate areas had significant influences on the pH and GH. Our findings implied that human activities played a critical role in river acidification in the semi-arid monsoon climate region of northern China.
Seasonal Responses of Terrestrial Ecosystem Water-use Efficiency to Climate Change
NASA Astrophysics Data System (ADS)
Huang, M.; Piao, S.; Zeng, Z.; Peng, S.; Ciais, P.; Cheng, L.; Mao, J.; Poulter, B.; Shi, X.; Yao, Y.; Yang, H.; Wang, Y.
2016-12-01
Ecosystem water-use efficiency (EWUE) is an indicator of carbon-water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long-term trend in annual EWUE over many regions, and is largely attributed to the physiological effects of rising CO2. The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982-2008. The seasonal cycle for two variants of EWUE, water-use efficiency (WUE, GPP/ET) and transpiration-based WUE (WUEt, the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process-based models and satellite-based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite-based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite-based products. Trend analysis, based on process-model factorial simulations separating effects of climate, CO2 and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid- and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m-2 mm-1 yr-1 for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2 and NDEP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Bruce T.
2015-12-11
Problem: The overall goal of this proposal is to detect observed seasonal-mean precipitation variations and extreme event occurrences over the United States. Detection, e.g. the process of demonstrating that an observed change in climate is unusual, first requires some means of estimating the range of internal variability absent any external drivers. Ideally, the internal variability would be derived from the observations themselves, however generally the observed variability is a confluence of both internal variability and variability in response to external drivers. Further, numerical climate models—the standard tool for detection studies—have their own estimates of intrinsic variability, which may differ substantiallymore » from that found in the observed system as well as other model systems. These problems are further compounded for weather and climate extremes, which as singular events are particularly ill-suited for detection studies because of their infrequent occurrence, limited spatial range, and underestimation within global and even regional numerical models. Rationale: As a basis for this research we will show how stochastic daily-precipitation models—models in which the simulated interannual-to-multidecadal precipitation variance is purely the result of the random evolution of daily precipitation events within a given time period—can be used to address many of these issues simultaneously. Through the novel application of these well-established models, we can first estimate the changes/trends in various means and extremes that can occur even with fixed daily-precipitation characteristics, e.g. that can occur simply as a result of the stochastic evolution of daily weather events within a given climate. Detection of a change in the observed climate—either naturally or anthropogenically forced—can then be defined as any change relative to this stochastic variability, e.g. as changes/trends in the means and extremes that could only have occurred through a change in the underlying climate. As such, this method is capable of detecting “hot spot” regions—as well as “flare ups” within the hot spot regions—that have experienced interannual to multi-decadal scale variations and trends in seasonal-mean precipitation and extreme events. Further by applying the same methods to numerical climate models we can discern the fidelity of the current-generation climate models in representing detectability within the observed climate system. In this way, we can objectively determine the utility of these model systems for performing detection studies of historical and future climate change.« less
Current and Future Effects of Climate Change on Montane Amphibians
NASA Astrophysics Data System (ADS)
Corn, S.
2002-05-01
Breeding phenology of amphibians in inextricably linked to weather, and change in the timing of breeding resulting from climate change may have consequences for the fitness of individuals and may affect persistence of amphibian populations. Amphibians in some north temperate locations have been observed to breed earlier in recent years in response to warmer spring temperatures, but this is not a universal phenomenon. In mountain populations, phenology is influenced by snow deposition as much as temperature. A trend towards earlier breeding, associated with increasing El Niño frequency, may be occurring in the Cascade Mountains in Oregon, but only at lower elevations. There is no evidence for changes in the dates of breeding activity by amphibians in the Rocky Mountains. Too few amphibian species have been studied, and those for which data exist have been studied for too brief a span of years to allow general conclusions about the effects of climate change. However, regardless of whether climate change has contributed to current amphibian declines, changes in temperature and the extent and duration of snow cover predicted for the next century will have increasingly severe consequences for the persistence of some species. Additional observations from amphibian populations, and spatial and temporal modeling of climate variables are needed to generate predictions of past and future breeding phenology, and the effects on amphibian population dynamics.
Current trends in biodegradable polyhydroxyalkanoates.
Chanprateep, Suchada
2010-12-01
The microbial polyesters known as polyhydroxyalkanoates (PHAs) positively impact global climate change scenarios by reducing the amount of non-degradable plastic used. A wide variety of different monomer compositions of PHAs has been described, as well as their future prospects for applications where high biodegradability or biocompatibility is required. PHAs can be produced from renewable raw materials and are degraded naturally by microorganisms that enable carbon dioxide and organic compound recycling in the ecosystem, providing a buffer to climate change. This review summarizes recent research on PHAs and addresses the opportunities as well as challenges for their place in the global market. Copyright © 2010 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Advancing drought monitoring using a Small Unmanned Aerial System (sUAS) in a changing climate
NASA Astrophysics Data System (ADS)
Ryu, J.
2016-12-01
Drought as a natural hazard, increasingly threatens the sustainability of regional water resources around the world. Given current trends in climate variability and change, droughts are likely to continue and increase. One of the effective ways to mitigate drought impacts may be to use a Small Unmanned Aerial System (sUAS) to improve understanding of the factors that drive the onset and development of drought conditions at local levels would enable planners and end users to more effectively manage and meter out limited water resources. During the presentation, the author will propose a methodological approach to apply sUAS for drought monitoring along with federal regulations and policies.
Impacts of Climate Trends and Variability on Livestock Production in Brazil
NASA Astrophysics Data System (ADS)
Cohn, A.; Munger, J.; Gibbs, H.
2015-12-01
Cattle systems of Brazil are of major economic and environmental importance. They occupy ¼ of the land surface of the country, account for over 15 billion USD of annual revenue through the sale of beef, leather, and milk, are closely associated with deforestation, and have been projected to substantially grow in the coming decades. Sustainable intensification of production in the sector could help to limit environmental harm from increased production, but productivity growth could be inhibited by climate change. Gauging the potential future impacts of climate change on the Brazilian livestock sector can be aided by examining past evidence of the link between climate and cattle production and productivity. We use statistical techniques to investigate the contribution of climate variability and climate change to variability in cattle system output in Brazil's municipalities over the period 1974 to 2013. We find significant impacts of both temperature and precipitation variability and temperature trends on municipality-level exports and the production of both milk and beef. Pasture productivity, represented by a vegetation index, also varies significantly with climate shocks. In some regions, losses from exposure to climate trends were of comparable magnitude to technology and/or market-driven productivity gains over the study period.
Role of land-surface changes in arctic summer warming
Chapin, F. S.; Sturm, M.; Serreze, Mark C.; McFadden, J.P.; Key, J.R.; Lloyd, A.H.; McGuire, A.D.; Rupp, T.S.; Lynch, A.H.; Schimel, Joshua P.; Beringer, J.; Chapman, W.L.; Epstein, H.E.; Euskirchen, E.S.; Hinzman, L.D.; Jia, G.; Ping, C.-L.; Tape, K.D.; Thompson, C.D.C.; Walker, D.A.; Welker, J.M.
2005-01-01
A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.
A climate trend analysis of Senegal
Funk, Christopher C.; Rowland, Jim; Adoum, Alkhalil; Eilerts, Gary; Verdin, James; White, Libby
2012-01-01
This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies modest declines in rainfall, accompanied by increases in air temperatures. These analyses are based on quality-controlled station observations. Conclusions: * Summer rains have remained steady in Senegal over the past 20 years but are 15 percent below the 1920-1969 average. * Temperatures have increased by 0.9° Celsius since 1975, amplifying the effect of droughts. * Cereal yields are low but have been improving. * The amount of farmland per person is low and declining rapidly. * Current population and agriculture trends could lead to a 30-percent reduction in per capita cereal production by 2025.
A hybrid-domain approach for modeling climate data time series
NASA Astrophysics Data System (ADS)
Wen, Qiuzi H.; Wang, Xiaolan L.; Wong, Augustine
2011-09-01
In order to model climate data time series that often contain periodic variations, trends, and sudden changes in mean (mean shifts, mostly artificial), this study proposes a hybrid-domain (HD) algorithm, which incorporates a time domain test and a newly developed frequency domain test through an iterative procedure that is analogue to the well known backfitting algorithm. A two-phase competition procedure is developed to address the confounding issue between modeling periodic variations and mean shifts. A variety of distinctive features of climate data time series, including trends, periodic variations, mean shifts, and a dependent noise structure, can be modeled in tandem using the HD algorithm. This is particularly important for homogenization of climate data from a low density observing network in which reference series are not available to help preserve climatic trends and long-term periodic variations, preventing them from being mistaken as artificial shifts. The HD algorithm is also powerful in estimating trend and periodicity in a homogeneous data time series (i.e., in the absence of any mean shift). The performance of the HD algorithm (in terms of false alarm rate and hit rate in detecting shifts/cycles, and estimation accuracy) is assessed via a simulation study. Its power is further illustrated through its application to a few climate data time series.
Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty
2012-01-01
Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream...
NASA Astrophysics Data System (ADS)
Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.
2018-02-01
Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.
Vegetation greenness trend (2000 to 2009) and the climate controls in the Qinghai-Tibetan Plateau
Zhang, Li; Guo, Huadong; Ji, Lei; Lei, Liping; Wang, Cuizhen; Yan, Dongmei; Li, Bin; Li, Jing
2013-01-01
The Qinghai-Tibetan Plateau has been experiencing a distinct warming trend, and climate warming has a direct and quick impact on the alpine grassland ecosystem. We detected the greenness trend of the grasslands in the plateau using Moderate Resolution Imaging Spectroradiometer data from 2000 to 2009. Weather station data were used to explore the climatic drivers for vegetation greenness variations. The results demonstrated that the region-wide averaged normalized difference vegetation index (NDVI) increased at a rate of 0.036 yr−1. Approximately 20% of the vegetation areas, which were primarily located in the northeastern plateau, exhibited significant NDVI increase trend (p-value <0.05). Only 4% of the vegetated area showed significant decrease trends, which were mostly in the central and southwestern plateau. A strong positive relationship between NDVI and precipitation, especially in the northeastern plateau, suggested that precipitation was a favorable factor for the grassland NDVI. Negative correlations between NDVI and temperature, especially in the southern plateau, indicated that higher temperature adversely affected the grassland growth. Although a warming climate was expected to be beneficial to the vegetation growth in cold regions, the grasslands in the central and southwestern plateau showed a decrease in trends influenced by increased temperature coupled with decreased precipitation.
Camp, Richard J.; Loh, Rhonda; Berkowitz, S. Paul; Brinck, Kevin W.; Jacobi, James D.; Price, Jonathan; McDaniel, Sierra; Fortini, Lucas B.
2018-01-01
Climate change will likely alter the seasonal and annual patterns of rainfall and temperature in Hawai`i. This is a major concern for resource managers at Hawai`i Volcanoes National Park where intensely managed Special Ecological Areas (SEAs), focal sites for managing rare and endangered plants, may no longer provide suitable habitat under future climate. Expanding invasive species’ distributions also may pose a threat to areas where native plants currently predominate. We combine recent climate modeling efforts for the state of Hawai`i with plant species distribution models to forecast changes in biodiversity in SEAs under future climate conditions. Based on this bioclimatic envelope model, we generated projected species range maps for four snapshots in time (2000, 2040, 2070, and 2090) to assess whether the range of 39 native and invasive species of management interest are expected to contract, expand, or remain the same under a moderately warmer and more variable precipitation scenario. Approximately two-thirds of the modeled native species were projected to contract in range, while one-third were shown to increase. Most of the park’s SEAs were projected to lose a majority of the native species modeled. Nine of the 10 modeled invasive species were projected to contract within the park; this trend occurred in most SEAs, including those at low, middle, and high elevations. There was good congruence in the current (2000) distribution of species richness and SEA configuration; however, the congruence between species richness hotspots and SEAs diminished by the end of this century. Over time the projected species-rich hotspots increasingly occurred outside of current SEA boundaries. Our research brought together managers and scientists to increase understanding of potential climate change impacts, and provide needed information to address how plants may respond under future conditions relative to current managed areas.
Sieck, Mungla; Ibisch, Pierre L; Moloney, Kirk A; Jeltsch, Florian
2011-05-03
Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades.Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research. Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably. The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the scientific literature. It is particularly true that existing models have been underutilized in testing different management options under climate change. Based on these findings we suggest a strategic framework for more effectively incorporating the impact of climate change in models exploring the effectiveness of protected areas.
NASA Astrophysics Data System (ADS)
Rigby, J.; Reba, M.
2011-12-01
The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.
Developing quantitative criteria to evaluate AOGCMs for application to regional climate assessments
NASA Astrophysics Data System (ADS)
Hayhoe, K.; Wake, C.; Bradbury, J.; Degaetano, A.; Hertel, A.
2006-12-01
Climate projections are the foundation for regional assessments of potential climate impacts. However, the soundness of regional assessments depends on the ability of global climate models to reproduce key processes responsible for regional climate trends. Here, we develop a systematic method to compare observed climate with historical atmosphere-ocean general circulation model (AOGCM) simulations, to assess the degree to which AOGCMs are able to reproduce regional circulation patterns. Applying this methodology to the U.S. Northeast (NE), we find that nearly all AOGCMs simulate a reasonable winter NAO pattern and seasonal positions of the Jet Stream and the East Coast Trough. However, not all models capture observed correlations between these circulation patterns and seasonal climate anomalies in the NE. Using only those AOGCMs that meet the criteria in each of these areas, we then develop projections of future climate change in the NE. The primary changes projected to occur over the next century - slightly greater temperature increases in summer than winter, and increases in winter precipitation - are consistent with projected trends in regional climate processes and are relatively independent of model or scale. These suggest confidence in the direction and potential range of the most notable regional climate trends, with the absolute magnitude of change depending on both the sensitivity of the climate system to human forcing as well as on human emissions over coming decades.
Human Land-Use Practices Lead to Global Long-Term Increases in Photosynthetic Capacity
NASA Technical Reports Server (NTRS)
Mueller, Thomas; Tucker, Compton J.; Dressler, Gunnar; Pinzon, Jorge E.; Leimgruber, Peter; Dubayah, Ralph O.; Hurtt, George C.; Boehning-Gaese, Katrin; Fagan, William F.
2014-01-01
Long-term trends in photosynthetic capacity measured with the satellite-derived Normalized Difference Vegetation Index (NDVI) are usually associated with climate change. Human impacts on the global land surface are typically not accounted for. Here, we provide the first global analysis quantifying the effect of the earth's human footprint on NDVI trends. Globally, more than 20% of the variability in NDVI trends was explained by anthropogenic factors such as land use, nitrogen fertilization, and irrigation. Intensely used land classes, such as villages, showed the greatest rates of increase in NDVI, more than twice than those of forests. These findings reveal that factors beyond climate influence global long-term trends in NDVI and suggest that global climate change models and analyses of primary productivity should incorporate land use effects.
Consistent response of vegetation dynamics to recent climate change in tropical mountain regions.
Krishnaswamy, Jagdish; John, Robert; Joseph, Shijo
2014-01-01
Global climate change has emerged as a major driver of ecosystem change. Here, we present evidence for globally consistent responses in vegetation dynamics to recent climate change in the world's mountain ecosystems located in the pan-tropical belt (30°N-30°S). We analyzed decadal-scale trends and seasonal cycles of vegetation greenness using monthly time series of satellite greenness (Normalized Difference Vegetation Index) and climate data for the period 1982-2006 for 47 mountain protected areas in five biodiversity hotspots. The time series of annual maximum NDVI for each of five continental regions shows mild greening trends followed by reversal to stronger browning trends around the mid-1990s. During the same period we found increasing trends in temperature but only marginal change in precipitation. The amplitude of the annual greenness cycle increased with time, and was strongly associated with the observed increase in temperature amplitude. We applied dynamic models with time-dependent regression parameters to study the time evolution of NDVI-climate relationships. We found that the relationship between vegetation greenness and temperature weakened over time or was negative. Such loss of positive temperature sensitivity has been documented in other regions as a response to temperature-induced moisture stress. We also used dynamic models to extract the trends in vegetation greenness that remain after accounting for the effects of temperature and precipitation. We found residual browning and greening trends in all regions, which indicate that factors other than temperature and precipitation also influence vegetation dynamics. Browning rates became progressively weaker with increase in elevation as indicated by quantile regression models. Tropical mountain vegetation is considered sensitive to climatic changes, so these consistent vegetation responses across widespread regions indicate persistent global-scale effects of climate warming and associated moisture stresses. © 2013 John Wiley & Sons Ltd.
Leedale, Joseph; Tompkins, Adrian M; Caminade, Cyril; Jones, Anne E; Nikulin, Grigory; Morse, Andrew P
2016-03-31
The effect of climate change on the spatiotemporal dynamics of malaria transmission is studied using an unprecedented ensemble of climate projections, employing three diverse bias correction and downscaling techniques, in order to partially account for uncertainty in climate- driven malaria projections. These large climate ensembles drive two dynamical and spatially explicit epidemiological malaria models to provide future hazard projections for the focus region of eastern Africa. While the two malaria models produce very distinct transmission patterns for the recent climate, their response to future climate change is similar in terms of sign and spatial distribution, with malaria transmission moving to higher altitudes in the East African Community (EAC) region, while transmission reduces in lowland, marginal transmission zones such as South Sudan. The climate model ensemble generally projects warmer and wetter conditions over EAC. The simulated malaria response appears to be driven by temperature rather than precipitation effects. This reduces the uncertainty due to the climate models, as precipitation trends in tropical regions are very diverse, projecting both drier and wetter conditions with the current state-of-the-art climate model ensemble. The magnitude of the projected changes differed considerably between the two dynamical malaria models, with one much more sensitive to climate change, highlighting that uncertainty in the malaria projections is also associated with the disease modelling approach.
Liu, Lingling; Zhang, Xiaoyang; Donnelly, Alison; Liu, Xinjie
2016-10-01
Land surface phenology has been widely used to evaluate the effects of climate change on terrestrial ecosystems in recent decades. Climate warming on the Tibetan Plateau (1960-2010, 0.2 °C/decade) has been found to be greater than the global average (1951-2012, 0.12 °C/decade), which has had a significant impact on the timing of spring greenup. However, the magnitude and direction of change in spring phenology and its response to warming temperature and precipitation are currently under scientific debate. In an attempt to explore this issue further, we detected the onset of greenup based on the time series of daily two-band enhanced vegetation index (EVI2) from the advanced very high resolution radiometer (AVHRR) long-term data record (LTDR; 1982-1999) and Moderate Resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG; 2000-2013) using hybrid piecewise logistic models. Further, we examined the temporal trend in greenup onset in both individual pixels and ecoregions across the entire Tibetan Plateau over the following periods: 1982-1999, 2000-2013, and 1982-2013. The interannual variation in greenup onset was linked to the mean temperature and cumulative precipitation in the preceding month, and total precipitation during winter and spring, respectively. Finally, we investigated the relationship between interannual variation in greenup onset dates and temperature and precipitation from 1982 to 2013 at different elevational zones for different ecoregions. The results revealed no significant trend in the onset of greenup from 1982 to 2013 in more than 86 % of the Tibetan Plateau. For each study period, statistically significant earlier greenup trends were observed mainly in the eastern meadow regions while later greenup trends mainly occurred in the southwestern steppe and meadow regions both with areal coverage of less than 8 %. Although spring phenology was negatively correlated with spring temperature and precipitation in the majority of pixels (>60 %), only 15 % and 10 % of these correlations were significant (P < 0.1), respectively. Climate variables had varying effects on the ecoregions with altitude. In the meadow ecoregion, greenup onset was significantly affected by both temperature and precipitation from 3500 to 4000 m altitude and by temperature alone from 4000 to 4500 m. In contrast, greenup onset across all elevational zones, in the steppe ecoregion, was not directly driven by either spring temperature or precipitation, which was likely impacted by soil moisture associated with warming temperature. These findings highlight the complex impacts of climate change on spring phenology in the Tibetan Plateau.
NASA Technical Reports Server (NTRS)
Guest, DeNeice C.
2006-01-01
The Nation uses water-level data for a variety of practical purposes, including hydrography, nautical charting, maritime navigation, coastal engineering, and tsunami and storm surge warnings (NOAA, 2002; Digby et al., 1999). Long-term applications include marine boundary determinations, tidal predictions, sea-level trend monitoring, oceanographic research, and climate research. Accurate and timely information concerning sea-level height, tide, and ocean current is needed to understand their impact on coastal management, disaster management, and public health. Satellite altimeter data products are currently used by hundreds of researchers and operational users to monitor ocean circulation and to improve scientists understanding of the role of the oceans in climate and weather. The NOAA (National Oceanic and Atmospheric Administration) National Ocean Service has been monitoring sea-level variations for many years (NOAA, 2006). NOAA s Tides & Currents DST (decision support tool, managed by the Center for Operational Oceanographic Products and Services, is the portal to a vast collection of oceanographic and meteorological data (historical and real-time), predictions, and nowcasts and forecasts. This report assesses the capacity of NASA s satellite altimeter data to meet societal decision support needs through incorporation into NOAA s Tides & Currents.
Preliminary lightning observations over Greece
NASA Astrophysics Data System (ADS)
Chronis, Themis G.
2012-02-01
The first Precision Lightning Network, monitoring the Cloud-to-Ground (CG) lightning stroke activity over Greece and surrounding waters is operated and maintained by the Hellenic National Meteorological Service. This paper studies the regional (land/water interface), seasonal and diurnal variability of the CG strokes as a function of density, polarity and peak current. Additional investigation uniquely links the CG stroke current to sea surface salinity and cloud electrical capacitance. In brief, this study's major findings area as follows: (1) The seasonal maps of thunder days agree well with the regional climatic convective characteristics of the study area, (2) the CG diurnal variability is consistent with the global lightning activity observations over land and ocean, (3) the maxima of monthly averaged CG counts are located over land and water during typical summer and fall months respectively for both polarities, (4) CG peak currents show a distinct seasonality with larger currents during relatively colder months and smaller currents during summer months, and (5) strong linear trends between -CGs and sea surface salinity; (6) this trend is absent for +CGs data analysis of the employed database relate to the thunderstorm's RC constant and agrees with previous numerical modeling studies.
Estimates of spatial and temporal variation of energy crops biomass yields in the US
NASA Astrophysics Data System (ADS)
Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.
2013-12-01
Perennial grasses, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus) have been identified for potential use as biomass feedstocks in the US. Current research on perennial grass biomass production has been evaluated on small-scale plots. However, the extent to which this potential can be realized at a landscape-scale will depend on the biophysical potential to grow these grasses with minimum possible amount of land that needs to be diverted from food to fuel production. To assess this potential three questions about the biomass yield for these grasses need to be answered: (1) how the yields for different grasses are varied spatially and temporally across the US; (2) whether the yields are temporally stable or not; and (3) how the spatial and temporal trends in yields of these perennial grasses are controlled by limiting factors, including soil type, water availability, climate, and crop varieties. To answer these questions, the growth processes of the perennial grasses are implemented into a coupled biophysical, physiological and biogeochemical model (ISAM). The model has been applied to quantitatively investigate the spatial and temporal trends in biomass yields for over the period 1980 -2010 in the US. The bioenergy grasses considered in this study include Miscanthus, Cave-in-Rock switchgrass and Alamo switchgrass. The effects of climate, soil and topography on the spatial and temporal trends of biomass yields are quantitatively analyzed using principal component analysis and GIS based geographically weighted regression. The spatial temporal trend results are evaluated further to classify each part of the US into four homogeneous potential yield zones: high and stable yield zone (HS), high but unstable yield zone (HU), low and stable yield zone (LS) and low but unstable yield zone (LU). Our preliminary results indicate that the yields for perennial grasses among different zones are strongly related to the different controlling factors. For example, the yield in HS zone is depended on soil and topography factors. However, the yields in HU zone are more controlled by climate factors, leading to a large uncertainty in yield potential of bioenergy grasses under future climate change.
Evaluating water quality ecosystem services of wetlands under historic and future climate
NASA Astrophysics Data System (ADS)
Records, R.; Arabi, M.; Fassnacht, S. R.; Duffy, W.; Ahmadi, M.; Hegewisch, K.
2013-12-01
Potential hydrologic effects of climate change have been assessed extensively; however, possible impacts of changing climate on in-stream water quality at the watershed scale have received little study. We assessed potential impacts of climate change on water quantity and quality in the mountainous Sprague River watershed, Oregon, USA, where high total phosphorus (TP) and sediment loads are associated with lake eutrophication and mortality of endangered fish species. Additionally, we analyzed water quality impacts of wetland and riparian zone loss and gain under present-day climate and future climate scenarios. We utilized the hydrologic model Soil and Water Assessment Tool (SWAT) forced with six distinct climate scenarios derived from Coupled Model Intercomparison Project 5 (CMIP5) General Circulation Models to assess magnitude and direction of trends in streamflow, sediment and TP fluxes in the mid-21st century (2030-2059). Model results showed little significant trend in average annual streamflow under most climate scenarios, but trends in annual and monthly streamflow, sediment, and TP fluxes were more pronounced and were generally increasing. Results also suggest that future loss of present-day wetlands and riparian zones under land use or climatic change could result in substantial increases in sediment and TP loads at the Sprague River outlet.
Coarse climate change projections for species living in a fine-scaled world.
Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R
2017-01-01
Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change. © 2016 John Wiley & Sons Ltd.
The changing spatio-temporal dynamics of thaw lake development, Seward Peninsula, Alaska.
NASA Astrophysics Data System (ADS)
Cooper, Michael; Rees, Gareth; Bartsch, Annett
2014-05-01
Contemporary anthropogenic climatic warming is having an accelerated, and more pronounced effect upon Arctic regions than any other environment on Earth. Increased surface temperatures have led to widespread permafrost degradation and a shift in dynamics. One landscape manifestation of localised permafrost decay, seen to be ubiquitous across low-lying tundra regions of Alaska, Canada and Siberia, is the thermokarst lake - or 'thaw' lake. These features are seen to be truly dynamic, with a relatively rapid evolution and decay. The exact impacts of climatic perturbation on thaw lake development are in contention; however, recent studies have suggested an increased vulnerability of these features, owing to the susceptibility of the fundamental processes of initiation, expansion and drainage to climatic variation. It is often hypothesised that with current trends, thaw lakes will see a net increase in expansion rate, and areal extent, with a potential for increased drainage events. Increased permafrost thaw and thermokarst activity has also led to shifts in biogeochemical cycles, leading to an amplified release from large carbon reservoirs currently sequestered within permafrost. An example of carbon release exhibited from thaw lakes is that of methane ebullition (gas bubble formation); this has been theorised to have the potential to initiate a major positive climatic feedback leading to a continued rise in global temperatures. Due to the remote nature and large area over which these landforms occur, remotely sensed data has been widely used in order to both accurately classify features and measure change over spatially large and great temporal extents. As well as studies interpreting data collected in the visible and near-infrared spectra, studies have recently made use of radar or microwave products in order to capture imagery avoiding adverse atmospheric conditions, most notably cloud cover. Data from Envisat ASAR operating in Wide Swath Mode was acquired for this study region; however, the core of this research relied upon the analysis of the changing lake morphology using visible and near-infrared spectra from MODIS and Landsat products. This research explored: (1) intra-annual variability of freeze-thaw cycles and resultant effects on thaw lake development; and (2) the spatio-temporal trends and changing dynamism of thaw lake activity. Research presented here within suggests that although climatic trends do indeed influence widespread changes within thaw lake characteristics, site-specific phenomena of sediment type and ice-content and fluvial activity also play integral roles. Understanding and observing changing spatio-temporal dynamics, particularly on an intra-annual basis, has helped to gather more information concerning complex lake processes, and increase the understanding of permafrost decay and thaw lake development.
A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change
NASA Astrophysics Data System (ADS)
Winslow, Anne
2011-06-01
The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels—particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittency of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a "nuclear renaissance", this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.
A Nuclear Renaissance: The Role of Nuclear Power in Mitigating Climate Change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winslow, Anne
2011-06-28
The U. N. Framework Convention on Climate Change calls for the stabilization of greenhouse gas (GHG) emissions at double the preindustrial atmospheric carbon dioxide concentration to avoid dangerous anthropogenic interference with the climate system. To achieve this goal, carbon emissions in 2050 must not exceed their current level, despite predictions of a dramatic increase in global electricity demand. The need to reduce GHG emissions and simultaneously provide for additional electricity demand has led to a renewed interest in the expansion of alternatives to fossil fuels--particularly renewable energy and nuclear power. As renewable energy sources are often constrained by the intermittencymore » of natural energy forms, scale-ability concerns, cost and environmental barriers, many governments and even prominent environmentalist turn to nuclear energy as a source of clean, reliable base-load electricity. Described by some as a ''nuclear renaissance'', this trend of embracing nuclear power as a tool to mitigate climate change will dramatically influence the feasibility of emerging nuclear programs around the world.« less
NASA Astrophysics Data System (ADS)
Ojima, D. S.; Chuluun, T.; Temirbekov, S. S.; Mahowald, N.; Hicke, J.
2004-12-01
Dramatic changes occurred in pastoral systems of Eurasia ranging from Mongolia, China and Central Asia for the past decades. Recently, evaluation of the pastoral systems has been conducted in the region. Pastoral systems, where humans depend on livestock, exist largely in arid or semi-arid ecosystems where climate is highly variable. Interaction between ecosystems and nomadic land use systems co-shaped them in mutual adaptive ways for hundreds of years, thus making both the Mongolian rangeland ecosystem and nomadic pastoral system resilient and sustainable. Current changes in environmental conditions are affecting land-atmosphere interactions. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which affect regional climate. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. This set of drivers is orthogonal to the above described climate drivers. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces.
1,500 year quantitative reconstruction of winter precipitation in the Pacific Northwest
Steinman, Byron A.; Abbott, Mark B.; Mann, Michael E.; Stansell, Nathan D.; Finney, Bruce P.
2012-01-01
Multiple paleoclimate proxies are required for robust assessment of past hydroclimatic conditions. Currently, estimates of drought variability over the past several thousand years are based largely on tree-ring records. We produced a 1,500-y record of winter precipitation in the Pacific Northwest using a physical model-based analysis of lake sediment oxygen isotope data. Our results indicate that during the Medieval Climate Anomaly (MCA) (900–1300 AD) the Pacific Northwest experienced exceptional wetness in winter and that during the Little Ice Age (LIA) (1450–1850 AD) conditions were drier, contrasting with hydroclimatic anomalies in the desert Southwest and consistent with climate dynamics related to the El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). These findings are somewhat discordant with drought records from tree rings, suggesting that differences in seasonal sensitivity between the two proxies allow a more compete understanding of the climate system and likely explain disparities in inferred climate trends over centennial timescales. PMID:22753510
Development of a pan-Arctic monitoring plan for polar bears: Background paper
Vongraven, Dag; Peacock, Lily
2011-01-01
Polar bears (Ursus maritimus), by their very nature, and the extreme, remote environment in which they live, are inherently difficult to study and monitor. Monitoring polar bear populations is both arduous and costly and, to be effective, must be a long-term commitment. There are few jurisdictional governments and management boards with a mandate for polar bear research and management, and many have limited resources. Although population monitoring of polar bears has been a focus to some degree within most jurisdictions around the Arctic, of the 19 subpopulations recognised by the IUCN/Species Survival Commission Polar Bear Specialist Group (PBSG), adequate scientific trend data exist for only three of the subpopulations, fair trend data for five and poor or no trend data for the remaining 11 subpopulations (PBSG 2010a). There are especially critical knowledge gaps for the subpopulations in East Greenland, in the Russian Kara and Laptev seas, and in the Chukchi Sea, which is shared between Russia and the United States. The range covered by these subpopulations represents a third of the total area (approx. 23 million km2) of polar bears’ current range, and more than half if the Arctic Basin is included. If we use popular terms, we know close to nothing about polar bears in this portion of their range.As summer sea-ice extent, and to a lesser degree, spring-time extent, continues to retreat, outpacing model forecasts (Stroeve et al. 2007, Pedersen et al. 2009), polar bears face the challenge of adapting to rapidly changing habitats. There is a need to use current and synthesised information across the Arctic, and to develop new methods that will facilitate monitoring to generate new knowledge at a pan-Arctic scale. The circumpolar dimension can be lost when efforts are channelled into regional monitoring. Developing and implementing a plan that harmonises local, regional and global efforts will increase our power to detect and understand important trends for polar bears, with particular emphasis on how climate warming may differentially affect populations and habitats. Current knowledge is inadequate for a comprehensive understanding of the present and future impact of climate warming and its interaction with other stressors. The cumulative effects are unknown (Laidre et al. 2008). An integrated pan-Arctic research and monitoring plan will improve the ability to detect future trends, identify the most vulnerable subpopulations and guide effective conservation. There is a need to direct attention and resources where data are deficient to understand the mechanisms that drive trends, and to facilitate more effective and timely conservation response.
Burkett, Ellen; Martin-Khan, Melinda G; Scott, Justin; Samanta, Mayukh; Gray, Leonard C
2017-07-01
Objectives The aim of the present study was to describe trends in and age and gender distributions of presentations of older people to Australian emergency departments (EDs) from July 2006 to June 2011, and to develop ED utilisation projections to 2050. Methods A retrospective analysis of data collected in the National Non-admitted Patient Emergency Department Care Database was undertaken to assess trends in ED presentations. Three standard Australian Bureau of Statistics population growth models, with and without adjustment for current trends in ED presentation growth and effects of climate change, were examined with projections of ED presentations across three age groups (0-64, 65-84 and ≥85 years) to 2050. Results From 2006-07 to 2010-11, ED presentations increased by 12.63%, whereas the Australian population over this time increased by only 7.26%. Rates of presentation per head of population were greatest among those aged ≥85 years. Projections of ED presentations to 2050 revealed that overall ED presentations are forecast to increase markedly, with the rate of increase being most marked for older people. Conclusion Growth in Australian ED presentations from 2006-07 to 2010-11 was greater than that expected from population growth alone. The predicted changes in demand for ED care will only be able to be optimally managed if Australian health policy, ED funding instruments and ED models of care are adjusted to take into account the specific care and resource needs of older people. What is known about the topic? Rapid population aging is anticipated over coming decades. International studies and specific local-level Australian studies have demonstrated significant growth in ED presentations. There have been no prior national-level Australian studies of ED presentation trends by age group. What does this paper add? The present study examined national ED presentation trends from July 2006 to June 2011, with specific emphasis on trends in presentation by age group. ED presentation growth was found to exceed population growth in all age groups. The rate of ED presentations per head of population was highest among those aged ≥85 years. ED utilisation projections to 2050, using standard Australian Bureau of Statistics population modelling, with and without adjustment for current ED growth, were developed. The projections demonstrated linear growth in ED presentation for those aged 0-84 years, with growth in ED presentations of the ≥85 year age group demonstrating marked acceleration after 2030. What are the implications for practitioners? Growth in ED presentations exceeding population growth suggests that current models of acute health care delivery require review to ensure that optimal care is delivered in the most fiscally efficient manner. Trends in presentation of older people emphasise the imperative for ED workforce planning and education in care of this complex patient cohort, and the requirement to review funding models to incentivise investment in ED avoidance and substitutive care models targeting older people.
What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay.
Gormezano, Linda J; Rockwell, Robert F
2013-09-01
Under current climate trends, spring ice breakup in Hudson Bay is advancing rapidly, leaving polar bears (Ursus maritimus) less time to hunt seals during the spring when they accumulate the majority of their annual fat reserves. For this reason, foods that polar bears consume during the ice-free season may become increasingly important in alleviating nutritional stress from lost seal hunting opportunities. Defining how the terrestrial diet might have changed since the onset of rapid climate change is an important step in understanding how polar bears may be reacting to climate change. We characterized the current terrestrial diet of polar bears in western Hudson Bay by evaluating the contents of passively sampled scat and comparing it to a similar study conducted 40 years ago. While the two terrestrial diets broadly overlap, polar bears currently appear to be exploiting increasingly abundant resources such as caribou (Rangifer tarandus) and snow geese (Chen caerulescens caerulescens) and newly available resources such as eggs. This opportunistic shift is similar to the diet mixing strategy common among other Arctic predators and bear species. We discuss whether the observed diet shift is solely a response to a nutritional stress or is an expression of plastic foraging behavior.
What to eat now? Shifts in polar bear diet during the ice-free season in western Hudson Bay
Gormezano, Linda J; Rockwell, Robert F
2013-01-01
Under current climate trends, spring ice breakup in Hudson Bay is advancing rapidly, leaving polar bears (Ursus maritimus) less time to hunt seals during the spring when they accumulate the majority of their annual fat reserves. For this reason, foods that polar bears consume during the ice-free season may become increasingly important in alleviating nutritional stress from lost seal hunting opportunities. Defining how the terrestrial diet might have changed since the onset of rapid climate change is an important step in understanding how polar bears may be reacting to climate change. We characterized the current terrestrial diet of polar bears in western Hudson Bay by evaluating the contents of passively sampled scat and comparing it to a similar study conducted 40 years ago. While the two terrestrial diets broadly overlap, polar bears currently appear to be exploiting increasingly abundant resources such as caribou (Rangifer tarandus) and snow geese (Chen caerulescens caerulescens) and newly available resources such as eggs. This opportunistic shift is similar to the diet mixing strategy common among other Arctic predators and bear species. We discuss whether the observed diet shift is solely a response to a nutritional stress or is an expression of plastic foraging behavior. PMID:24223286
USDA-ARS?s Scientific Manuscript database
Strategies to mitigate agricultural runoff must consider long-term changes in climate. We investigated temperature, precipitation and runoff trends over roughly four decades of monitoring an agricultural watershed in east central Pennsylvania (1968-2012). Temperature data confirmed significant expan...
Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.
Carvalho, B M; Rangel, E F; Vale, M M
2017-08-01
Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.
Mercuri, A M; Torri, P; Casini, E; Olmi, L
2013-01-01
Woody plant performance in a changing global environment has always been at the centre of palaeoenvironmental and long-term climate reconstructions carried out by means of pollen analysis. In Mediterranean regions, Taxus constitutes the highest percentage in past pollen diagrams from cold or cool periods, and therefore it is generally considered a good index to infer climate features from past records. However, a comparison of these inferences with the true current trends in pollen production has not been attemped until now. This study reports the decline of airborne pollen of Taxus observed in Emilia Romagna, a region of northern Italy, during the period 1990-2007. Phenological observations on four male specimens and microscopic examination of fresh pollen were made in order to check Taxus flowering time and pollen morphology. Airborne pollen was monitored through continuous sampling with a Hirst volumetric sampler. In the 18-year long period of investigation, Taxus pollen production has decreased, while total woody pollen abundance in air has increased. The trend of the Taxus pollen season shows a delay at the beginning, a shortening of the pollen period, and an advance of the end of the pollen season. This was interpreted as a response to climate warming. In particular, Taxus follows the behaviour of winter-flowering plants, and therefore earlier pollination is favoured at low autumn temperatures, while late pollination occurs more often, most likely after warm autumn temperatures. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Detecting changes in water limitation in the West using integrated ecosystem modeling approaches
NASA Astrophysics Data System (ADS)
Poulter, B.; Hoy, J.; Emmett, K.; Cross, M.; Maneta, M. P.; Al-Chokhachy, R.
2016-12-01
Water in the western United States is the critical currency for determining a range of ecosystem services, such as wildlife habitat, carbon sequestration, and timber and water resources for an expanding human population. The current generation of catchment models trades a detailed representation of hydrologic processes for a generalization of vegetation processes and thus ignores many land-surface feedbacks that are driven by physiological responses to atmospheric CO2 and changes in vegetation structure following disturbance and climate change. Here we demonstrate how catchment scale modeling can better couple vegetation dynamics and disturbance processes to reconstruct historic streamflow, stream temperature and vegetation greening for the Greater Yellowstone Ecosystem. Using a new catchment routing model coupled to the LPJ-GUESS dynamic global vegetation model, simulations are made at 1 km spatial resolution using two different climate products. Decreased winter snowpack has led to increasing spring runoff and declines in summertime slow, and increasing the likelihood that stream temperature exceeds thresholds for cold-water fish growth. Since the mid-1980s, vegetation greening is projected by both the model and detected from space-borne normalized difference vegetation index observations. These greening trends are superimposed on a landscape matrix defined by frequent disturbance and intensive land management, making the climate and CO2 fingerprint difficult to discern. Integrating dynamical vegetation models with in-situ and spaceborne measurements to understand and interpret catchment-scale trends in water availability has potential to better disentangle historical climate, CO2, and human drivers and their ecosystem consequences.
Adapting to warmer climate through prolonged maize grain filling period in the US Midwest
NASA Astrophysics Data System (ADS)
Zhu, P.; Zhuang, Q.; Jin, Z.
2017-12-01
Climate warming is expected to negatively impact the US food productivity. How to adapt to the future warmer environment and meet the rising food requirement becomes unprecedented urgent. Continuous satellite observational data provides an opportunity to examine the historic responses of crop plants to climate variation. Here 16 years crop growing phases information across US Midwest is generated based on satellite observations. We found a prolonged grain-filling period during 2000-2015, which could partly explain the increasing trend in Midwest maize yield. This longer grain-filling period might be resulted from the adoption of longer maturity group varieties or more resistant varieties to temperature variation. Other management practice changes like advance in planting date could be also an effective way of adapting future warmer climate through lowering the possibility of exposure to heat and drought stresses. If the progress in breeding technology enables the maize grain-filling period to prolong with the current rate, the maize grain filling length could be longer and maize yield in Midwest could adapt to future climate despite of the warming.
NASA Astrophysics Data System (ADS)
Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.
2018-03-01
Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.
Drivers of Antarctic sea-ice expansion and Southern Ocean surface cooling over the past four decades
NASA Astrophysics Data System (ADS)
Purich, Ariaan; England, Matthew
2017-04-01
Despite global warming, total Antarctic sea-ice coverage has increased overall during the past four decades. In contrast, the majority of CMIP5 models simulate a decline. In addition, Southern Ocean surface waters have largely cooled, in stark contrast to almost all historical CMIP5 simulations. Subantarctic Surface Waters have cooled and freshened while waters to the north of the Antarctic Circumpolar Current have warmed and increased in salinity. It remains unclear as to what extent the cooling and Antarctic sea-ice expansion is due to natural variability versus anthropogenic forcing; due for example to changes in the Southern Annular Mode (SAM). It is also unclear what the respective role of surface buoyancy fluxes is compared to internal ocean circulation changes, and what the implications are for longer-term climate change in the region. In this presentation we will outline three distinct drivers of recent Southern Ocean surface trends that have each made a significant contribution to regional cooling: (1) wind-driven surface cooling and sea-ice expansion due to shifted westerly winds, (2) teleconnections of decadal variability from the tropical Pacific, and (3) surface cooling and ice expansion due to large-scale Southern Ocean freshening, most likely driven by SAM-related precipitation trends over the open ocean. We will also outline the main reasons why climate models for the most part miss these Southern Ocean cooling trends, despite capturing overall trends in the SAM.
NASA Astrophysics Data System (ADS)
Modiri, Ehsan; Modiri, Sadegh
2015-04-01
Climatic hazards have complex nature that many of them are beyond human control. Earth's climate is constantly fluctuating and trying to balance itself. More than 75% of Iran has arid and semi-arid climate thus assessment of climate change induced threats and vulnerabilities is essential. In order to investigate the reason for the changes in amount and trend of precipitation parameter, 17 synoptic stations have been selected in the interval of the establishment time of the station until 2013. These stations are located in three regions: Northern, Razavi and Southern Khorasan. For quality control of data in Monthly, quarterly and annual total precipitation of data were tested and checked by run test. Then probable trends in each of the areas was assessed by Kendall-tau test. Total annual precipitation of each station is the important factor that increase the sensitivity of vulnerability in the area with low rainfall. Annual amount of precipitation moving from north to south has been declining, though in different fields that they have different geomorphologic characteristics controversies occur. But clearly can be observed average of precipitation decline with decreasing latitude. There were positive trends in the annual precipitation in 6 stations, negative trends in 10 stations, as well as one station, has no trend. The remarkable notice is that all stations have a positive trend were in the northern region in the case study. These stations had been in ranging from none to Moderate classification of threats and vulnerability. After the initialization parameters to classify levels of risks and vulnerability, the two measures of mean annual precipitation and the trends of this fluctuation were combined together. This classification was created in five level for stations. Accordingly Golmakan, Ghochan, Torbate heydarieh, Bojnord and Mashhad were in none threat level. Khoor of Birjand and Boshruyeh have had complete stage of the threat level and had the greatest meteorological perspective risk. Finally, after determining the degree of threats, meteorological vulnerability zoning map was produced by kriging interpolation method and utilizing geographic information systems (GIS). It showed most studied areas were in complete level of investigation. Keywords: Vulnerability, Climate threats, GIS, Zoning, Precipitation, Crisis management.
Brian J. Clough; Miranda T. Curzon; Grant M. Domke; Matthew B. Russell; Christopher W. Woodall
2017-01-01
Aim: For trees, wood density is linked to competing energetic demands and therefore reflects responses to the environment. Climatic trends in wood density are recognized, yet their contribution to regional biogeographical patterns or impact on forest biomass stocks is not understood. This study has the following two objectives: (O1) to characterize wood densityâclimate...
Icehouse Effect: A Selective Arctic Cooling Trend Current Models are Missing
NASA Technical Reports Server (NTRS)
Wetzel, Peter J.; Starr, David OC. (Technical Monitor)
2001-01-01
The icehouse effect is a hypothesized climate feedback mechanism which could result in human-caused surface cooling trends in polar regions. Once understood in detail, it becomes apparent that these trends, which are discernable in the literature, but have been largely dismissed, do not conflict with the consensus assessment of the evidence, which infers century-scale Arctic warming. In fact, confirmation of the hypothesis would substantially strengthen the argument that there is a detectable human influence on today's climate. This apparent enigma is resolved only through careful attention to the detail of the hypothesis and the data supporting it. The posited surface cooling is entirely dependent on the existence of climate warming in layers capping the stable boundary layer. Also, the cooling is not pandemic, but is selective. It is readily revealed in properly sorted data by making use of the principles of micrometeorological similarity. Specifically, the cooling is manifest under a range of favorable turbulence conditions which can develop and disappear locally on time scales of minutes to hours because of the intrinsically intermittent nature of stable boundary layer turbulence. Because of the fine-scale nature of the processes which produce the cooling, modeling it is a difficult proposition. Vertical resolution on the order of 1 meter is required. Adequate models of intermittent surface fluxes coupled with radiation exchange do not currently exist, not as parameterizations for aggregated systems, nor in large eddy simulation (LES) models. This presentation will introduce the theory. An important testable null hypothesis emerges: the icehouse effect produces a unique signature or "fingerprint" which could not be produced by any other known process. The presence of this signature will be demonstrated using nearly all available Arctic temperature observations. Its aggregate effect is clearly found in Arctic monthly surface temperature trends when sorted by climatological stability. Using all available Arctic rawinsonde ascents - about 1.1 million profiles, "frozen moments" of the icehouse processes are captured in various states. Because turbulent time scales are so short in the stable boundary layer. each of these snapshots can be treated as independent -- their chronology is irrelevant. Micrometeorological similarity is invoked to reassemble the soundings into bins of similar stability and it is in a wide, coherent range of these stability bins where the cooling effect is revealed.
The influence of internal climate variability on heatwave frequency trends
NASA Astrophysics Data System (ADS)
E Perkins-Kirkpatrick, S.; Fischer, E. M.; Angélil, O.; Gibson, P. B.
2017-04-01
Understanding what drives changes in heatwaves is imperative for all systems impacted by extreme heat. We examine short- (13 yr) and long-term (56 yr) heatwave frequency trends in a 21-member ensemble of a global climate model (Community Earth System Model; CESM), where each member is driven by identical anthropogenic forcings. To estimate changes dominantly due to internal climate variability, trends were calculated in the corresponding pre-industrial control run. We find that short-term trends in heatwave frequency are not robust indicators of long-term change. Additionally, we find that a lack of a long-term trend is possible, although improbable, under historical anthropogenic forcing over many regions. All long-term trends become unprecedented against internal variability when commencing in 2015 or later, and corresponding short-term trends by 2030, while the length of trend required to represent regional long-term changes is dependent on a given realization. Lastly, within ten years of a short-term decline, 95% of regional heatwave frequency trends have reverted to increases. This suggests that observed short-term changes of decreasing heatwave frequency could recover to increasing trends within the next decade. The results of this study are specific to CESM and the ‘business as usual’ scenario, and may differ under other representations of internal variability, or be less striking when a scenario with lower anthropogenic forcing is employed.
Climate-induced warming of lakes can be either amplified or suppressed by trends in water clarity
Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.
2016-01-01
Climate change is rapidly warming aquatic ecosystems including lakes and reservoirs. However, variability in lake characteristics can modulate how lakes respond to climate. Water clarity is especially important both because it influences the depth range over which heat is absorbed, and because it is changing in many lakes. Here, we show that simulated long-term water clarity trends influence how both surface and bottom water temperatures of lakes and reservoirs respond to climate change. Clarity changes can either amplify or suppress climate-induced warming, depending on lake depth and the direction of clarity change. Using a process-based model to simulate 1894 north temperate lakes from 1979 to 2012, we show that a scenario of decreasing clarity at a conservative yet widely observed rate of 0.92% yr−1 warmed surface waters and cooled bottom waters at rates comparable in magnitude to climate-induced warming. For lakes deeper than 6.5 m, decreasing clarity was sufficient to fully offset the effects of climate-induced warming on median whole-lake mean temperatures. Conversely, a scenario increasing clarity at the same rate cooled surface waters and warmed bottom waters relative to baseline warming rates. Furthermore, in 43% of lakes, increasing clarity more than doubled baseline bottom temperature warming rates. Long-term empirical observations of water temperature in lakes with and without clarity trends support these simulation results. Together, these results demonstrate that water clarity trends may be as important as rising air temperatures in determining how waterbodies respond to climate change.
NASA Astrophysics Data System (ADS)
Ring, Christoph; Pollinger, Felix; Kaspar-Ott, Irena; Hertig, Elke; Jacobeit, Jucundus; Paeth, Heiko
2018-03-01
A major task of climate science are reliable projections of climate change for the future. To enable more solid statements and to decrease the range of uncertainty, global general circulation models and regional climate models are evaluated based on a 2 × 2 contingency table approach to generate model weights. These weights are compared among different methodologies and their impact on probabilistic projections of temperature and precipitation changes is investigated. Simulated seasonal precipitation and temperature for both 50-year trends and climatological means are assessed at two spatial scales: in seven study regions around the globe and in eight sub-regions of the Mediterranean area. Overall, 24 models of phase 3 and 38 models of phase 5 of the Coupled Model Intercomparison Project altogether 159 transient simulations of precipitation and 119 of temperature from four emissions scenarios are evaluated against the ERA-20C reanalysis over the 20th century. The results show high conformity with previous model evaluation studies. The metrics reveal that mean of precipitation and both temperature mean and trend agree well with the reference dataset and indicate improvement for the more recent ensemble mean, especially for temperature. The method is highly transferrable to a variety of further applications in climate science. Overall, there are regional differences of simulation quality, however, these are less pronounced than those between the results for 50-year mean and trend. The trend results are suitable for assigning weighting factors to climate models. Yet, the implications for probabilistic climate projections is strictly dependent on the region and season.
Climate-driven longitudinal trends in pasture-borne helminth infections of dairy cattle.
Charlier, Johannes; Ghebretinsae, Aklilu H; Levecke, Bruno; Ducheyne, Els; Claerebout, Edwin; Vercruysse, Jozef
2016-12-01
Helminth parasites of grazing ruminants are highly prevalent globally and impact negatively on animal productivity and food security. There is a growing concern that climate change increases helminth disease frequency and intensity. In Europe, these concerns stem from case reports and theoretical life cycle models assessing the effects of climate change scenarios on helminth epidemiology. We believe this study is the first to investigate climate-driven trends in helminth infections of cattle on a cohort of randomly selected farms. One thousand, six hundred and eighty dairy farms were monitored over an 8year period for the two major helminth infections in temperate climate regions and climate-driven trends were investigated by multivariable linear mixed models. The general levels of exposure to Fasciola hepatica decreased over the study period while those to Ostertagia ostertagi increased, and this could at least be partially explained by meteorological factors (i.e. the number of rainy (precipitation >1mm) and warm days (average daily temperature >10°C) in a year). The longitudinal trends varied according to the altitude and the agricultural region of the farm. This study shows that longitudinal epidemiological data from sentinel farms combined with meteorological datasets can significantly contribute to understanding the effects of climate on infectious disease dynamics. When local environmental conditions are taken into account, the effects of climate change on disease dynamics can also be understood at more local scales. We recommend setting up a longitudinal sampling strategy across Europe in order to monitor climate-driven changes in helminth disease risk to inform adaptation strategies to promote animal health and productivity. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.
Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.
2017-01-01
Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.
Current Climate Variability & Change
NASA Astrophysics Data System (ADS)
Diem, J.; Criswell, B.; Elliott, W. C.
2013-12-01
Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and climate change. The next section guides students through the exploration of temporal changes in global temperature from the surface to the lower stratosphere. Students discover that there has been global warming over the past several decades, and the subsequent section allows them to consider solar radiation and greenhouse gases as possible causes of this warming. Students then zoom in on different latitudinal zones to examine changes in temperature for each zone and hypothesize about why one zone may have warmed more than others. The final section, prior to the answering of the essential questions, is an examination of the following effects of the current change in temperatures: loss of sea ice; rise of sea level; loss of permafrost loss; and moistening of the atmosphere. The lab addresses 14 climate-literacy concepts and all seven climate-literacy principles through data and images that are mainly NASA products. It focuses on the satellite era of climate data; therefore, 1979 is the typical starting year for most datasets used by students. Additionally, all time-series analysis end with the latest year with full-year data availability; thus, the climate variability and trends truly are 'current.'
Physical, Ecological, and Societal Indicators for the National Climate Assessment
NASA Technical Reports Server (NTRS)
Kenney, Melissa A.; Chen, Robert; Baptista, Sandra R.; Quattrochi, Dale; O'Brien, Sheila
2011-01-01
The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation s activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: How do we know that there is a changing climate and how is it expected to change in the future? Are important climate impacts and opportunities occurring or predicted to occur in the future? Are we adapting successfully? What are the vulnerabilities and resiliencies given a changing climate? Are we preparing adequately for extreme events? It is not expected that the NCA societal indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.
Physical, Ecological, and Societal Indicators for the National Climate Assessment
NASA Astrophysics Data System (ADS)
O'Brien, S.; Kenney, M.; Chen, R. S.; Baptista, S. R.; Quattrochi, D. A.
2011-12-01
The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation's activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: -How do we know that there is a changing climate and how is it expected to change in the future? -Are important climate impacts and opportunities occurring or predicted to occur in the future? -Are we adapting successfully? -What are the vulnerabilities and resiliencies given a changing climate? -Are we preparing adequately for extreme events? It is not expected that the NCA indicators would be linked directly to a single decision or portfolio of decisions, but subsets of indicators, or the data supporting the indicator, might be used to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region.
Climate Change and Agriculture in the U.S.: Effects and Adaptation (Invited)
NASA Astrophysics Data System (ADS)
Walsh, M. K.; Rippey, B.; Walthall, C. L.; Hatfield, J.; Backlund, P. W.; Lengnick, L.; Marshall, E.
2013-12-01
Agriculture in the United States has followed a path of continual adaptation to a wide range of factors throughout its history. However, observational evidence, supported by an understanding of the physical climate system, shows that human-induced climate change is underway in the U.S. and even now causing changes for which there is no historical reference for producers. Temperatures have increased and precipitation patterns have changed; the incidence, frequency, and extent of pest infestations have been altered, as well as the natural resource base (water, air, and soils) upon which production depends. Each factor challenges agricultural management as atmospheric concentrations of greenhouse gases rise. These trends are likely to continue over the next century. Importantly, a gap exists between U.S. agricultural producers and managers' needs related to climate-driven problems and the information that research currently offers them. In the past, agricultural research into climate change effects has largely focused on mean values of precipitation and temperature. Today's management requirements, however, often demand immediate response on shorter time scales to address abrupt, often novel needs. Further complicating this reality, future decisions will likely require even greater emphasis on managing under increasing levels of uncertainty, and planning for and adjusting to the extremes. Research is moving to better address these emerging issues for the relevant timescales and parameters in order to allow the formulation of improved and resilient management strategies that apply to a future in which past experience has become less applicable. A climate-ready U.S. agricultural system requires easy access to useable climate knowledge and technical resources, improved climate risk management strategies, new processes to support effective adaptive actions, and the development of sustainable production systems resilient to climate effects. Mainstreaming climate knowledge improves adaptive capacity of the agricultural system by ensuring that land managers, technical advisors, researchers, private businesspeople, government program managers, and policymakers are aware of current and projected climate impacts and can access best management practices to reduce risks and capture opportunities.
NASA Astrophysics Data System (ADS)
Choudhary, A.; Dimri, A. P.
2018-04-01
Precipitation is one of the important climatic indicators in the global climate system. Probable changes in monsoonal (June, July, August and September; hereafter JJAS) mean precipitation in the Himalayan region for three different greenhouse gas emission scenarios (i.e. representative concentration pathways or RCPs) and two future time slices (near and far) are estimated from a set of regional climate simulations performed under Coordinated Regional Climate Downscaling Experiment-South Asia (CORDEX-SA) project. For each of the CORDEX-SA simulations and their ensemble, projections of near future (2020-2049) and far future (2070-2099) precipitation climatology with respect to corresponding present climate (1970-2005) over Himalayan region are presented. The variability existing over each of the future time slices is compared with the present climate variability to determine the future changes in inter annual fluctuations of monsoonal mean precipitation. The long-term (1970-2099) trend (mm/day/year) of monsoonal mean precipitation spatially distributed as well as averaged over Himalayan region is analyzed to detect any change across twenty-first century as well as to assess model uncertainty in simulating the precipitation changes over this period. The altitudinal distribution of difference in trend of future precipitation from present climate existing over each of the time slices is also studied to understand any elevation dependency of change in precipitation pattern. Except for a part of the Hindu-Kush area in western Himalayan region which shows drier condition, the CORDEX-SA experiments project in general wetter/drier conditions in near future for western/eastern Himalayan region, a scenario which gets further intensified in far future. Although, a gradually increasing precipitation trend is seen throughout the twenty-first century in carbon intensive scenarios, the distribution of trend with elevation presents a very complex picture with lower elevations showing a greater trend in far-future under RCP8.5 when compared with higher elevations.
Tracking of climatic niche boundaries under recent climate change.
La Sorte, Frank A; Jetz, Walter
2012-07-01
1. Global climate has changed significantly during the past 30 years and especially in northern temperate regions which have experienced poleward shifts in temperature regimes. While there is evidence that some species have responded by moving their distributions to higher latitudes, the efficiency of this response in tracking species' climatic niche boundaries over time has yet to be addressed. 2. Here, we provide a continental assessment of the temporal structure of species responses to recent spatial shifts in climatic conditions. We examined geographic associations with minimum winter temperature for 59 species of winter avifauna at 476 Christmas Bird Count circles in North America from 1975 to 2009 under three sampling schemes that account for spatial and temporal sampling effects. 3. Minimum winter temperature associated with species occurrences showed an overall increase with a weakening trend after 1998. Species displayed highly variable responses that, on average and across sampling schemes, contained a strong lag effect that weakened in strength over time. In general, the conservation of minimum winter temperature was relevant when all species were considered together but only after an initial lag period (c. 35 years) was overcome. The delayed niche tracking observed at the combined species level was likely supported by the post1998 lull in the warming trend. 4. There are limited geographic and ecological explanations for the observed variability, suggesting that the efficiency of species' responses under climate change is likely to be highly idiosyncratic and difficult to predict. This outcome is likely to be even more pronounced and time lags more persistent for less vagile taxa, particularly during the periods of consistent or accelerating warming. Current modelling efforts and conservation strategies need to better appreciate the variation, strength and duration of lag effects and their association with climatic variability. Conservation strategies in particular will benefit through identifying and maintaining dispersal corridors that accommodate diverging dispersal strategies and timetables. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
NASA Astrophysics Data System (ADS)
Wahome, A.; Ndungu, L. W.; Ndubi, A. O.; Ellenburg, W. L.; Flores Cordova, A. I.
2016-12-01
Climate variability coupled with over-reliance on rain-fed agricultural production on already strained land that is facing degradation and declining soil fertility; highly impacts food security in Africa. In Kenya, dependence on the approximately 20% of land viable for agricultural production under climate stressors such as variations in amount and frequency of rainfall within the main growing season in March-April-May(MAM) and changing temperatures influence production. With time, cropping zones have changed with the changing climatic conditions. In response, the needs of decision makers to effectively assess the current cropped areas and the changes in cropping patterns, SERVIR East and Southern Africa developed updated crop maps and change maps. Specifically, the change maps depict the change in cropping patterns between 2000 and 2015 with a further assessment done on important food crops such as maize. Between 2001 and 2015 a total of 5394km2 of land was converted to cropland with 3370km2 being conversion to maize production. However, 318 sq km were converted from maize to other crops or conversion to other land use types. To assess the changes in climatic conditions, climate parameters such as precipitation trends, variation and averages over time were derived from CHIRPs (Climate Hazards Infra-red Precipitation with stations) which is a quasi-global blended precipitation dataset available at a resolution of approximately 5km. Water Requirements Satisfaction Index (WRSI) water balance model was used to assess long term trends in crop performance as a proxy for maize yields. From the results, areas experiencing declining and varying precipitation with a declining WRSI index during the long rains displayed agricultural expansion with new areas being converted to cropland. In response to climate variability, farmers have converted more land to cropland instead of adopting better farming methods such as adopting drought resistant cultivars and using better farm inputs.
NASA Technical Reports Server (NTRS)
Lucarini, Valerio; Russell, Gary L.; Hansen, James E. (Technical Monitor)
2002-01-01
Results are presented for two greenhouse gas experiments of the Goddard Institute for Space Studies Atmosphere-Ocean Model (AOM). The computed trends of surface pressure, surface temperature, 850, 500 and 200 mb geopotential heights and related temperatures of the model for the time frame 1960-2000 are compared to those obtained from the National Centers for Environmental Prediction observations. A spatial correlation analysis and mean value comparison are performed, showing good agreement. A brief general discussion about the statistics of trend detection is presented. The domain of interest is the Northern Hemisphere (NH) because of the higher reliability of both the model results and the observations. The accuracy that this AOM has in describing the observed regional and NH climate trends makes it reliable in forecasting future climate changes.
Role of internal variability in recent decadal to multidecadal tropical Pacific climate changes
NASA Astrophysics Data System (ADS)
Bordbar, Mohammad Hadi; Martin, Thomas; Latif, Mojib; Park, Wonsun
2017-05-01
While the Earth's surface has considerably warmed over the past two decades, the tropical Pacific has featured a cooling of sea surface temperatures in its eastern and central parts, which went along with an unprecedented strengthening of the equatorial trade winds, the surface component of the Pacific Walker Circulation (PWC). Previous studies show that this decadal trend in the trade winds is generally beyond the range of decadal trends simulated by climate models when forced by historical radiative forcing. There is still a debate on the origin of and the potential role that internal variability may have played in the recent decadal surface wind trend. Using a number of long control (unforced) integrations of global climate models and several observational data sets, we address the question as to whether the recent decadal to multidecadal trends are robustly classified as an unusual event or the persistent response to external forcing. The observed trends in the tropical Pacific surface climate are still within the range of the long-term internal variability spanned by the models but represent an extreme realization of this variability. Thus, the recent observed decadal trends in the tropical Pacific, though highly unusual, could be of natural origin. We note that the long-term trends in the selected PWC indices exhibit a large observational uncertainty, even hindering definitive statements about the sign of the trends.
NASA Astrophysics Data System (ADS)
Poulter, B.; Pederson, N.; Liu, H.; Zhu, Z.; D'Arrigo, R.; Ciais, P.; Davi, N.; Frank, D. C.; Leland, C.; Myneni, R.; Piao, S.; Wang, T.
2012-12-01
Semi-arid ecosystems play an important role in regulating global climate and their response to climate change will depend on interactions between temperature, precipitation, and CO2. However, in cool-arid environments, precipitation is not the only limitation to forest productivity. For example, interactions between changes in precipitation and air temperature may enhance soil moisture stress while simultaneously extending growing season length, with unclear consequences for net carbon uptake. This presentation evaluates recent trends in productivity and seasonality of forests located in Inner Asia (Mongolia and Northern China) using satellite remote sensing, dendrochronology, and dynamic global vegetation model (DGVM) simulations to quantify the sensitivity of forest dynamics to decadal climate variability and trends. Long-term trends from satellite observations of FPAR between 1982-2010 show a greening of 21% of the region in spring (March, April May), but with 10% of the area 'browning' during summertime (June, July, August), the results of which are corroborated by trends in NPP simulated by the LPJ DGVM. Spring greening trends in FPAR are mainly explained by long-term trends in precipitation whereas summer browning trends are correlated with decreasing precipitation. Tree ring data from 25 sites confirm annual growth increments are mainly limited by summer precipitation (June, July, August) in Mongolia, and spring precipitation in northern China (March, April, May), with relatively weak prior-year lag effects. An ensemble of climate projections from the IPCC CMIP3 models indicates that warming temperatures (spring, summer) are expected to be associated with higher summer precipitation, which combined with CO2 causes large increases in NPP and eventual increase in forest cover in the Mongolian steppe. In the absence of a strong direct CO2 fertilization effect on plant growth (e.g., due to nutrient limitation), water stress or decreased carbon gain from higher autotrophic respiration results in decreased productivity and loss of forest cover.
Climate change and public health policy: translating the science.
Braks, Marieta; van Ginkel, Rijk; Wint, William; Sedda, Luigi; Sprong, Hein
2013-12-19
Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character.
Isaac-Renton, Miriam G; Roberts, David R; Hamann, Andreas; Spiecker, Heinrich
2014-08-01
We evaluate genetic test plantations of North American Douglas-fir provenances in Europe to quantify how tree populations respond when subjected to climate regime shifts, and we examined whether bioclimate envelope models developed for North America to guide assisted migration under climate change can retrospectively predict the success of these provenance transfers to Europe. The meta-analysis is based on long-term growth data of 2800 provenances transferred to 120 European test sites. The model was generally well suited to predict the best performing provenances along north-south gradients in Western Europe, but failed to predict superior performance of coastal North American populations under continental climate conditions in Eastern Europe. However, model projections appear appropriate when considering additional information regarding adaptation of Douglas-fir provenances to withstand frost and drought, even though the model partially fails in a validation against growth traits alone. We conclude by applying the partially validated model to climate change scenarios for Europe, demonstrating that climate trends observed over the last three decades warrant changes to current use of Douglas-fir provenances in plantation forestry throughout Western and Central Europe. © 2014 John Wiley & Sons Ltd.
Climate Change and Public Health Policy: Translating the Science
Braks, Marieta; van Ginkel, Rijk; Wint, William; Sedda, Luigi; Sprong, Hein
2013-01-01
Public health authorities are required to prepare for future threats and need predictions of the likely impact of climate change on public health risks. They may get overwhelmed by the volume of heterogeneous information in scientific articles and risk relying purely on the public opinion articles which focus mainly on global warming trends, and leave out many other relevant factors. In the current paper, we discuss various scientific approaches investigating climate change and its possible impact on public health and discuss their different roles and functions in unraveling the complexity of the subject. It is not our objective to review the available literature or to make predictions for certain diseases or countries, but rather to evaluate the applicability of scientific research articles on climate change to evidence-based public health decisions. In the context of mosquito borne diseases, we identify common pitfalls to watch out for when assessing scientific research on the impact of climate change on human health. We aim to provide guidance through the plethora of scientific papers and views on the impact of climate change on human health to those new to the subject, as well as to remind public health experts of its multifactorial and multidisciplinary character. PMID:24452252
Climate modulates internal wave activity in the Northern South China Sea
NASA Astrophysics Data System (ADS)
DeCarlo, Thomas M.; Karnauskas, Kristopher B.; Davis, Kristen A.; Wong, George T. F.
2015-02-01
Internal waves (IWs) generated in the Luzon Strait propagate into the Northern South China Sea (NSCS), enhancing biological productivity and affecting coral reefs by modulating nutrient concentrations and temperature. Here we use a state-of-the-art ocean data assimilation system to reconstruct water column stratification in the Luzon Strait as a proxy for IW activity in the NSCS and diagnose mechanisms for its variability. Interannual variability of stratification is driven by intrusions of the Kuroshio Current into the Luzon Strait and freshwater fluxes associated with the El Niño-Southern Oscillation. Warming in the upper 100 m of the ocean caused a trend of increasing IW activity since 1900, consistent with global climate model experiments that show stratification in the Luzon Strait increases in response to radiative forcing. IW activity is expected to increase in the NSCS through the 21st century, with implications for mitigating climate change impacts on coastal ecosystems.
A climate trend analysis of Chad
Funk, Christopher C.; Rowland, Jim; Adoum, Alkhalil; Eilerts, Gary; White, Libby
2012-01-01
This brief report, drawing from a multi-year effort by the U.S. Agency for International Development (USAID) Famine Early Warning Systems Network (FEWS NET), identifies significant decreases in rainfall and increases in air temperature across Chad, especially in the eastern part of the country. These analyses are based on quality-controlled station observations. Conclusions:* Summer rains have decreased in eastern Chad during the past 20 years. * Temperatures have increased by 0.8 °Celsius since 1975, amplifying the effect of droughts. * Crop yields are very low and stagnant. * The amount of farmland per person is low, and decliningrapidly.* Population growth combined with stagnating yieldscould lead to a 30 percent reduction in per capita cereal production by 2025.* In many cases, areas with changing climate are coincident with zones of substantial conflict, indicating some degree of association; however, the contribution of climate change to these conflicts is not currently understood.
NASA Astrophysics Data System (ADS)
Lehner, Flavio; Wood, Andrew W.; Llewellyn, Dagmar; Blatchford, Douglas B.; Goodbody, Angus G.; Pappenberger, Florian
2017-12-01
Seasonal streamflow predictions provide a critical management tool for water managers in the American Southwest. In recent decades, persistent prediction errors for spring and summer runoff volumes have been observed in a number of watersheds in the American Southwest. While mostly driven by decadal precipitation trends, these errors also relate to the influence of increasing temperature on streamflow in these basins. Here we show that incorporating seasonal temperature forecasts from operational global climate prediction models into streamflow forecasting models adds prediction skill for watersheds in the headwaters of the Colorado and Rio Grande River basins. Current dynamical seasonal temperature forecasts now show sufficient skill to reduce streamflow forecast errors in snowmelt-driven regions. Such predictions can increase the resilience of streamflow forecasting and water management systems in the face of continuing warming as well as decadal-scale temperature variability and thus help to mitigate the impacts of climate nonstationarity on streamflow predictability.
NASA Astrophysics Data System (ADS)
Zhang, Min; Zhang, Yuanling; Shu, Qi; Zhao, Chang; Wang, Gang; Wu, Zhaohua; Qiao, Fangli
2017-04-01
Changes in marine phytoplankton are a vital component in global carbon cycling. Despite this far-reaching importance, the variable trend in phytoplankton and its response to climate variability remain unclear. This work presents the spatiotemporal evolution of the chlorophyll a trend in the North Atlantic Ocean by using merged ocean color products for the period 1997-2016. We find a dipole pattern between the subpolar gyre and the Gulf Stream path,and chlorophyll a trend signal propagatedalong the opposite direction of the North Atlantic Current. Such a dipole pattern and opposite propagation of chlorophyll a signal are consistent with the recent distinctive signature of the slowdown of the Atlantic MeridionalOverturning Circulation (AMOC). It is suggested that the spatiotemporal evolution of chlorophyll a during the two most recent decades is a part of the multidecadal variation and regulated byAMOC, which could be used as an indicator of AMOC variations.
Lackey, Jillian C; Peppley, B; Champagne, P; Maier, A
2015-08-01
A study was conducted to determine the current knowledge of biogas production and its use at municipal wastewater treatment plants (WWTPs) across North America. Information was provided by municipal WWTPs across Canada and the US. It was determined that hydrogen sulfide (H2S) and silicon (Si) compounds had sufficient variability to be of concern. The only biogas production trend that could be identified was a possible seasonal relationship with sludge input and biogas production. Secondary analysis was performed to observe trends in biogas usage in urban areas larger than 150,000 in the US and 50,000 in Canada; 66% of facilities had anaerobic digestion systems and, of those, only 35% had an energy recovery system. Climatic, population, and socio-political influences on the trends were considered. The primary conclusion was that more data is required to perform significant analyses on biogas production and composition variation. © The Author(s) 2015.
Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985-2012
NASA Astrophysics Data System (ADS)
Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark
2016-12-01
Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985-2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985-91 and 2006-12 - a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.
NASA Astrophysics Data System (ADS)
Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek
2018-04-01
The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.
Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012
Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark
2016-01-01
Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985–2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985–91 and 2006–12 – a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress. PMID:27922080
Warming Trends and Bleaching Stress of the World's Coral Reefs 1985-2012.
Heron, Scott F; Maynard, Jeffrey A; van Hooidonk, Ruben; Eakin, C Mark
2016-12-06
Coral reefs across the world's oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world's reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985-2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the 'winter' reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985-91 and 2006-12 - a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.
Li, Xiu Fen; Zhao, Hui Ying; Zhu, Hai Xia; Wang, Ping; Wang, Qiu Jing; Wang, Ming; Li, Yu Guang
2016-08-01
Under the background of climate change, revealing the change trend and spatial diffe-rence of maize climate productivity in-depth and understanding the regularity of maize climatic resources utilization can provide scientific basis for the macro-decision of agricultural production in Heilongjiang Province. Based on the 1981-2014 meteorological data of 72 weather stations and the corresponding maize yield data in Heilongjiang Province, by the methods of step by step revisal, spatial interpolation and linear trend analysis, this paper studied the photosynthetic productivity (PP), light-temperature productivity (LTP), and climatic productivity (CP) of spring maize, and their temporal and spatial variation characteristics, main influencing factors and light energy utilization efficiency, and evaluated the maize climate productivities under different climate scenarios in the future. The results showed that during the study period, the mean PP, LTP and CP in Heilongjiang Province were 26558, 19953, 18742 kg·hm -2 , respectively. Maize PP, LTP and CP were high in plains and low in mountains, and gradually decreased from southwest to northeast. PP, LTP and CP presented significantly increasing trends, and the increase rates were 378, 723 and 560 kg·hm -2 ·(10 a) -1 , respectively. The increase of radiation and temperature had positive effect on maize production in Heilongjiang Province. The potential productivity of maize presented significant response to climate change. The decrease of solar radiation led to the decline of PP in western Songnen Plain, but the increased temperature compensated the negative effect of solar radiation, so the downward trend of LTP was slowed. The response to climate warming was particularly evident in North and East, and LTP was significantly increased, which was sensitive to the change of precipitation in southwest of Songnen Plain and part of Sanjiang Plain. The average ratio of maize actual yield to its climate productivity was only 24.1%, there was still 75.9% to be developed. In the future, the warm and wet climate would benefit the improvement of maize climate productivity, while the cold and dry climate would make an adverse impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sicard, Pierre, E-mail: pierre.sicard@acri-st.fr; Dalstein-Richier, Laurence
The Mediterranean Basin is expected to be more strongly affected by ongoing climate change than most other regions of the earth. The South-eastern France can be considered as case study for assessing global change impacts on forests. Based on non-parametric statistical tests, the climatic parameters (temperature, relative humidity, rainfall, global radiation) and forest-response indicators (crown defoliation, discoloration and visible foliar ozone injury) of two pine species (Pinus halepensis and Pinus cembra) were analyzed. In the last 20 years, the trend analyses reveal a clear hotter and drier climate along the coastline and slightly rainier inland. In the current climate changemore » context, a reduction in ground-level ozone (O{sub 3}) was found at remote sites and the visible foliar O{sub 3} injury decreased while deterioration of the crown conditions was observed likely due to a drier and warmer climate. Clearly, if such climatic and ecological changes are now being detected when the climate, in South-eastern France, has warmed in the last 20 years (+0.46–1.08 °C), it can be expected that many more impacts on tree species will occur in response to predicted temperature changes by 2100 (+1.95–4.59 °C). Climate change is projected to reduce the benefits of O{sub 3} precursor emissions controls leading to a higher O{sub 3} uptake. However, the drier and warmer climate should induce a soil drought leading to a lower O{sub 3} uptake. These two effects, acting together in an opposite way, could mitigate the harmful impacts of O{sub 3} on forests. The development of coordinated emission abatement strategies is useful to reduce both climate change and O{sub 3} pollution. Climate change will create additional challenges for forest management with substantial socio-economic and biological diversity impacts. However, the development of future sustainable and adaptive forest management strategies has the potential to reduce the vulnerability of forest species to climate change. - Highlights: • We assess climate change impacts on forests: South-eastern France as case study in the last 20 years. • We detect and estimate trends for O{sub 3} concentrations, climatic parameters and visible injury. • We establish a state-of-the-art of the health of 2 common pine species in a context of climate change. • We use two valuable bio-indicator species for O{sub 3} stress: Pinus halepensis and Pinus cembra. • Deterioration of crown conditions: climate change creates additional challenges for forest.« less
Crop-climate relationships of cereals in Greece and the impacts of recent climate trends
NASA Astrophysics Data System (ADS)
Mavromatis, Theodoros
2015-05-01
Notwithstanding technological developments, agricultural production is still affected by uncontrollable factors, such weather and climate. Within this context, the present study aims at exploring the relative influence of growing season climate on the yields of major cereals (hard and soft wheat, maize, and barley) on a regional scale in Greece. To this end, crop-climate relationships and the impacts of climate trends over the period 1978-2005 were explored using linear regression and change point analysis (CPA). Climate data used include maximum (Tx) and minimum temperature (Tn), diurnal temperature range (Tr), precipitation (Prec), and solar radiation (Rad). Temperature effects were the most substantial. Yields reduced by 1.8-7.1 %/°C with increasing Tx and by 1.4-6.1 %/°C with decreasing Tr. The warming trends of Tn caused bilateral yield effects (from -3.7 to 8.4 %/°C). The fewer significantly increasing Rad and decreasing Prec anomalies were associated with larger yield decreases (within the range of 2.2 % MJ/m2/day (for maize) to 4.9 % MJ/m2/day (for hard wheat)) and smaller yield increases (from 0.04 to 1.4 %/mm per decade), respectively. Wheat and barley—the most vulnerable cereals—were most affected by the trends of extreme temperatures and least by Tr. On the contrary, solar radiation has proven to be the least affecting climate variable on all cereals. Despite the similarity in the direction of crop responses with both analyses, yield changes were much more substantial in the case of CPA analysis. In conclusion, regional climate change has affected Greek cereal productivity, in a few, but important for cereal production, regions. The results of this study are expected to be valuable in anticipating the effects of weather/climate on other warm regions worldwide, where the upper temperature limit for some cereals and further changes in climate may push them past suitability for their cultivation.
Organic Carbon Mobilisation Mechanisms: Evidence from Globally Distributed Stalagmite Records
NASA Astrophysics Data System (ADS)
Baldini, J. U. L.; Fairchild, I. J.; Wynn, P.; Bourdin, C.; Muller, W.; Hartland, A.; Perrette, Y.; Worrall, F.; Bartlett, R.
2017-12-01
Identifying the cause of widespread increases in surface water dissolved organic carbon (DOC) concentrations in recent years is the subject of a contentious debate. Although DOC trends may partially reflect climate change, in many catchments they may also result from increased soil carbon solubility associated with decreases in acid rain due to lower atmospheric sulphur emissions. However, the lack of long-term DOC records hampers constraining climate's role in modulating DOC trends versus that of recovery from acidification. Here we help clarify the causes of recent DOC increases by using a combination of laboratory soil experiments and new stalagmite geochemical data. Laboratory experiments with soils sampled from above several key caves simulate the effect of acidity, temperature, and soil microbial processes on DOC release. These experiments are used to inform records of DOC encoded within several stalagmites from currently acidified, previously acidified, and unacidified sites, and which collectively yield insights into the timing of DOC change in the past. These records of stalagmite DOC concentration and composition are discussed within the context of the ongoing debate regarding the mechanism responsible for DOC release.
McDonald, Robert I; Girvetz, Evan H
2013-01-01
Agricultural irrigation practices will likely be affected by climate change. In this paper, we use a statistical model relating observed water use by U.S. producers to the moisture deficit, and then use this statistical model to project climate changes impact on both the fraction of agricultural land irrigated and the irrigation rate (m³ ha⁻¹). Data on water withdrawals for US states (1985-2005) show that both quantities are highly positively correlated with moisture deficit (precipitation--PET). If current trends hold, climate change would increase agricultural demand for irrigation in 2090 by 4.5-21.9 million ha (B1 scenario demand: 4.5-8.7 million ha, A2 scenario demand: 9.1-21.9 million ha). Much of this new irrigated area would occur in states that currently have a wet climate and a small fraction of their agricultural land currently irrigated, posing a challenge to policymakers in states with less experience with strict regulation of agriculture water use. Moreover, most of this expansion will occur in states where current agricultural production has relatively low market value per hectare, which may make installation of irrigation uneconomical without significant changes in crops or practices by producers. Without significant increases in irrigation efficiency, climate change would also increase the average irrigation rate from 7,963 to 8,400-10,415 m³ ha⁻¹ (B1 rate: 8,400-9,145 m³ ha⁻¹, A2 rate: 9,380-10,415 m³ ha⁻¹). The irrigation rate will increase the most in states that already have dry climates and large irrigation rates, posing a challenge for water supply systems in these states. Accounting for both the increase in irrigated area and irrigation rate, total withdrawals might increase by 47.7-283.4 billion m³ (B1 withdrawal: 47.7-106.0 billion m³, A2 withdrawal: 117.4-283.4 billion m³). Increases in irrigation water-use efficiency, particularly by reducing the prevalence of surface irrigation, could eliminate the increase in total irrigation withdrawals in many states.
Ishida, K; Gorguner, M; Ercan, A; Trinh, T; Kavvas, M L
2017-08-15
The impacts of climate change on watershed-scale precipitation through the 21st century were investigated over eight study watersheds in Northern California based on dynamically downscaled CMIP5 future climate projections from three GCMs (CCSM4, HadGEM2-ES, and MIROC5) under the RCP4.5 and RCP8.5 future climate scenarios. After evaluating the modeling capability of the WRF model, the six future climate projections were dynamically downscaled by means of the WRF model over Northern California at 9km grid resolution and hourly temporal resolution during a 94-year period (2006-2100). The biases in the model simulations were corrected, and basin-average precipitation over the eight study watersheds was calculated from the dynamically downscaled precipitation data. Based on the dynamically downscaled basin-average precipitation, trends in annual depth and annual peaks of basin-average precipitation during the 21st century were analyzed over the eight study watersheds. The analyses in this study indicate that there may be differences between trends of annual depths and annual peaks of watershed-scale precipitation during the 21st century. Furthermore, trends in watershed-scale precipitation under future climate conditions may be different for different watersheds depending on their location and topography even if they are in the same region. Copyright © 2017 Elsevier B.V. All rights reserved.
Huntington, Thomas G.; Richardson, Andrew D.; McGuire, Kevin J.; Hayhoe, Katharine
2009-01-01
We review twentieth century and projected twenty-first century changes in climatic and hydrologic conditions in the northeastern United States and the implications of these changes for forest ecosystems. Climate warming and increases in precipitation and associated changes in snow and hydrologic regimes have been observed over the last century, with the most pronounced changes occurring since 1970. Trends in specific climatic and hydrologic variables differ in their responses spatially (e.g., coastal vs. inland) and temporally (e.g., spring vs. summer). Trends can differ depending on the period of record analyzed, hinting at the role of decadal-scale climatic variation that is superimposed over the longer-term trend. Model predictions indicate that continued increases in temperature and precipitation across the northeastern United States can be expected over the next century. Ongoing increases in growing season length (earlier spring and later autumn) will most likely increase evapotranspiration and frequency of drought. In turn, an increase in the frequency of drought will likely increase the risk of fire and negatively impact forest productivity, maple syrup production, and the intensity of autumn foliage coloration. Climate and hydrologic changes could have profound effects on forest structure, composition, and ecological functioning in response to the changes discussed here and as described in related articles in this issue of the Journal.
Changes in Landscape Greenness and Climatic Factors over ...
Monitoring and quantifying changes in vegetation cover over large areas using remote sensing can be achieved using the Normalized Difference Vegetation Index (NDVI), an indicator of greenness. However, distinguishing gradual shifts in NDVI (e.g. climate change) versus direct and rapid changes (e.g., fire, land development) is challenging as changes can be confounded by time-dependent patterns, and variation associated with climatic factors. In the present study we leveraged a method, that we previously developed for a pilot study, to address these confounding factors by evaluating NDVI change using autoregression techniques that compare results from univariate (NDVI vs. time) and multivariate analyses (NDVI vs. time and climatic factors) for ~7,660,636 1-km2 pixels comprising the 48 contiguous states of the USA, over a 25-year period (1989−2013). NDVI changed significantly for 48% of the nation over the 25-year in the univariate analyses where most significant trends (85%) indicated an increase in greenness over time. By including climatic factors in the multivariate analyses of NDVI over time, the detection of significant NDVI trends increased to 53% (an increase of 5%). Comparisons of univariate and multivariate analyses for each pixel showed that less than 4% of the pixels had a significant NDVI trend attributable to gradual climatic changes while the remainder of pixels with a significant NDVI trend indicated that changes were due to direct factors. Whi
NASA Astrophysics Data System (ADS)
Lorenz, Ruth; Argüeso, Daniel; Donat, Markus G.; Pitman, Andrew J.; van den Hurk, Bart; Berg, Alexis; Lawrence, David M.; Chéruy, Frédérique; Ducharne, Agnès.; Hagemann, Stefan; Meier, Arndt; Milly, P. C. D.; Seneviratne, Sonia I.
2016-01-01
We examine how soil moisture variability and trends affect the simulation of temperature and precipitation extremes in six global climate models using the experimental protocol of the Global Land-Atmosphere Coupling Experiment of the Coupled Model Intercomparison Project, Phase 5 (GLACE-CMIP5). This protocol enables separate examinations of the influences of soil moisture variability and trends on the intensity, frequency, and duration of climate extremes by the end of the 21st century under a business-as-usual (Representative Concentration Pathway 8.5) emission scenario. Removing soil moisture variability significantly reduces temperature extremes over most continental surfaces, while wet precipitation extremes are enhanced in the tropics. Projected drying trends in soil moisture lead to increases in intensity, frequency, and duration of temperature extremes by the end of the 21st century. Wet precipitation extremes are decreased in the tropics with soil moisture trends in the simulations, while dry extremes are enhanced in some regions, in particular the Mediterranean and Australia. However, the ensemble results mask considerable differences in the soil moisture trends simulated by the six climate models. We find that the large differences between the models in soil moisture trends, which are related to an unknown combination of differences in atmospheric forcing (precipitation, net radiation), flux partitioning at the land surface, and how soil moisture is parameterized, imply considerable uncertainty in future changes in climate extremes.
Statistical significance of seasonal warming/cooling trends
NASA Astrophysics Data System (ADS)
Ludescher, Josef; Bunde, Armin; Schellnhuber, Hans Joachim
2017-04-01
The question whether a seasonal climate trend (e.g., the increase of summer temperatures in Antarctica in the last decades) is of anthropogenic or natural origin is of great importance for mitigation and adaption measures alike. The conventional significance analysis assumes that (i) the seasonal climate trends can be quantified by linear regression, (ii) the different seasonal records can be treated as independent records, and (iii) the persistence in each of these seasonal records can be characterized by short-term memory described by an autoregressive process of first order. Here we show that assumption ii is not valid, due to strong intraannual correlations by which different seasons are correlated. We also show that, even in the absence of correlations, for Gaussian white noise, the conventional analysis leads to a strong overestimation of the significance of the seasonal trends, because multiple testing has not been taken into account. In addition, when the data exhibit long-term memory (which is the case in most climate records), assumption iii leads to a further overestimation of the trend significance. Combining Monte Carlo simulations with the Holm-Bonferroni method, we demonstrate how to obtain reliable estimates of the significance of the seasonal climate trends in long-term correlated records. For an illustration, we apply our method to representative temperature records from West Antarctica, which is one of the fastest-warming places on Earth and belongs to the crucial tipping elements in the Earth system.
NASA Astrophysics Data System (ADS)
Zaitchik, B. F.; Russell, A.; Gnanadesikan, A.
2016-12-01
Satellite-based products indicate that many parts of South America have been experiencing increases in outgoing longwave radiation (OLR) and corresponding decreases in cloudiness over the last few decades, with the strongest trends occurring in the subtropical Andes Mountains - an area that is highly vulnerable to climate change due to its reliance on glacial melt for dry-season runoff. Changes in cloudiness may be contributing to increases in atmospheric temperature, thereby raising the freezing level height (FLH) - a critical geophysical parameter. Yet these trends are only partially captured in reanalysis products, while AMIP climate models generally show no significant trend in OLR over this timeframe, making it difficult to determine the underlying drivers. Therefore, controlled numerical experiments with a regional climate model are performed in order to investigate drivers of the observed OLR and cloudiness trends. The Weather Research and Forecasting model (WRF) is used here because it offers several advantages over global models, including higher resolution - a critical asset in areas of complex topography - as well as flexible physics, parameterization, and data assimilation capabilities. It is likely that changes in the mean states and meridional gradients of SSTs in the Pacific and Atlantic oceans are driving regional trends in clouds. A series of lower boundary manipulations are performed with WRF to determine to what extent changes in SSTs influence regional OLR.
Are GRACE-era terrestrial water trends driven by anthropogenic climate change?
Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.
2016-01-01
To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less
Are GRACE-era terrestrial water trends driven by anthropogenic climate change?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasullo, J. T.; Lawrence, D. M.; Swenson, S. C.
To provide context for observed trends in terrestrial water storage (TWS) during GRACE (2003–2014), trends and variability in the CESM1-CAM5 Large Ensemble (LE) are examined. Motivated in part by the anomalous nature of climate variability during GRACE, the characteristics of both forced change and internal modes are quantified and their influences on observations are estimated. Trends during the GRACE era in the LE are dominated by internal variability rather than by the forced response, with TWS anomalies in much of the Americas, eastern Australia, Africa, and southwestern Eurasia largely attributable to the negative phases of the Pacific Decadal Oscillation (PDO)more » and Atlantic Multidecadal Oscillation (AMO). While similarities between observed trends and the model-inferred forced response also exist, it is inappropriate to attribute such trends mainly to anthropogenic forcing. For several key river basins, trends in the mean state and interannual variability and the time at which the forced response exceeds background variability are also estimated while aspects of global mean TWS, including changes in its annual amplitude and decadal trends, are quantified. Lastly, the findings highlight the challenge of detecting anthropogenic climate change in temporally finite satellite datasets and underscore the benefit of utilizing models in the interpretation of the observed record.« less
Wave climate and trends along the eastern Chukchi Arctic Alaska coast
Erikson, L.H.; Storlazzi, C.D.; Jensen, R.E.
2011-01-01
Due in large part to the difficulty of obtaining measurements in the Arctic, little is known about the wave climate along the coast of Arctic Alaska. In this study, numerical model simulations encompassing 40 years of wave hind-casts were used to assess mean and extreme wave conditions. Results indicate that the wave climate was strongly modulated by large-scale atmospheric circulation patterns and that mean and extreme wave heights and periods exhibited increasing trends in both the sea and swell frequency bands over the time-period studied (1954-2004). Model simulations also indicate that the upward trend was not due to a decrease in the minimum icepack extent. ?? 2011 ASCE.
Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling
2014-09-30
At the same time, the PIs participate in Australian efforts of developing wave-ocean- ice coupled models for Antarctica . Specific new physics modules...Wave Mixing in the Marginal Ice Zones of Arctic Seas, Observations and Modelling Alexander V. Babanin Swinburne University of Technology, PO Box...operational forecast. Altimeter climatology and the wave models will be used to study the current and future wind/wave and ice trends. APPROACH
NASA Astrophysics Data System (ADS)
Allen, C. D.; Williams, P.
2012-12-01
Increasing warmth and dry climate conditions have affected large portions of western North America in recent years, causing elevated levels of both chronic and acute forest drought stress. In turn, increases in drought stress amplify the incidence and severity of the most significant forest disturbances in this region, including wildfire, drought-induced tree mortality, and outbreaks of damaging insects and diseases. Regional patterns of drought stress and various forest disturbances are reviewed, including interactions among climate and the various disturbance processes; similar global-scale patterns and trends of drought-amplified forest die-off and high-severity wildfire also are addressed. New research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the three most widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii) in the southwestern US (Arizona, New Mexico), demonstrating nonlinear escalation of FDSI to levels unprecedented in the past 1000 years, in response to both drought and especially recent warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by ca. 2050 anticipated regional warming will cause mean FDSI levels to reach extreme levels that may exceed thresholds for the survival of current tree species in large portions of their current range. Given recent trends of forest disturbance and projections for substantially warmer temperatures and greater drought stress for much of western North America in coming years, the growing risks to western forest health are becoming clear. This emerging understanding suggests an urgent need to determine potentials and methods for managing water on-site to maintain the vigor and resilience of western forests in the face of increasing levels of climate-induced water stress.
Informing climate change adaptation with insights from famine early warning (Invited)
NASA Astrophysics Data System (ADS)
Funk, C. C.; Verdin, J. P.
2010-12-01
Famine early warning systems provide a unique viewpoint for understanding the implications of climate change on food security, identifying the locations and seasons where millions of food insecure people are dependent upon climate-sensitive agricultural systems. The Famine Early Warning Systems Network (FEWS NET) is a decision support system sponsored by the Office of Food for Peace of the U.S. Agency for International Development (USAID), which distributes over two billion dollars of food aid to more than 40 countries each year. FEWS NET identifies the times and places where food aid is required by the most climatically sensitive and consequently food insecure populations of the developing world. As result, FEWS NET has developed its own "climate service", implemented by USGS, NOAA, and NASA, to support its decision making processes. The foundation of this climate service is the monitoring of current growing conditions for early identification of agricultural drought that might impact food security. Since station networks are sparse in the countries monitored, FEWS NET has a tradition (dating back to 1985) of reliance on satellite remote sensing of vegetation and rainfall. In the last ten years, climate forecasts have become an additional tool for food security assessment, extending the early warning perspective to include expected agricultural outcomes for the season ahead. More recently, research has expanded to include detailed analyses of recent observed climate trends, combined with diagnostic ocean-atmosphere studies. These studies are then used to develop interpretations of GCM scenarios and their implications for future patterns of precipitation and temperature, revealing trends towards warmer/drier climate conditions and increases in the relative frequency of drought. In some regions, like Eastern Africa, such changes seem to be already occurring, with an associated increase in food insecurity. Sub-national analyses for Kenya, for example, point to the need for adaptation through improved agricultural practices, so that increased yields can offset the impacts of rising temperatures and declining rainfall. Future work will focus on assessing temperature-PET linkages, and evaluating pathways for agricultural development.
Impacts of Seed Dispersal on Future Vegetation Structure under Changing Climates
NASA Astrophysics Data System (ADS)
Lee, E.; Schlosser, C. A.; Gao, X.; Prinn, R. G.
2011-12-01
As the impacts between land cover change, future climates and ecosystems are expected to be substantial, there are growing needs for improving the capability of simulating the global vegetation structure and landscape as realistically as possible. Current DGVMs assume ubiquitous availability of seeds and do not consider any seed dispersal mechanisms in plant migration process, which may influence the assessment of impacts to the ecosystem that rely on the vegetation structure changes (i.e., change in albedo, runoff, and terrestrial carbon sequestration capacity). This study incorporates time-varying wind-driven seed dispersal (i.e., the SEED configuration) as a dynamic constraint to the migration process of natural vegetation in the Community Land Model (CLM)-DGVM. The SEED configuration is validated using a satellite-derived tree cover dataset. Then the configuration is applied to project future vegetation structures and their implications for carbon fluxes, albedo, and hydrology under two climate mitigation scenarios (No-policy vs. 450ppm CO2 stabilization) for the 21st century. Our results show that regional changes of vegetation structure under changing climates are expected to be significant. For example, Alaska and Siberia are expected to experience substantial shifts of forestry structure, characterized by expansion of needle-leaf boreal forest and shrinkage of C3 grass Arctic. A suggested vulnerability assessment shows that vegetation structures in Alaska, Greenland, Central America, southern South America, East Africa and East Asia are susceptible to changing climates, regardless of the two climate mitigation scenarios. Regions such as Greenland, Tibet, South Asia and Northern Australia, however, may substantially alleviate their risks of rapid change in vegetation structure, given a robust greenhouse gas stabilization target. Proliferation of boreal forests in the high latitudes is expected to amplify the warming trend (i.e., a positive feedback to climate), if no mitigation policy is implemented. In contrast, under the 450ppm scenario, vegetation structure may buffer the warming trend, which is a negative feedback to climate. Moreover, runoff changes due to vegetation shifts may offset or complement runoff changes under anthropogenic climate warming.
NASA Astrophysics Data System (ADS)
Kopp, R. E.; Mitrovica, J. X.; Griffies, S. M.; Yin, J.; Hay, C. C.; Stouffer, R. J.
2010-12-01
Regional sea level can deviate from mean global sea level because of both dynamic sea level (DSL) effects, resulting from oceanic and atmospheric circulation and temperature and salinity distributions, and changes in the static equilibrium (SE) sea level configuration, produced by the gravitational, elastic, and rotational effects of mass redistribution. Both effects will contribute to future sea level change, but because they are studied by two different subdisciplines -- climate modeling and glacial rebound modeling -- projections that attempt to combine both have to date been scarce. To compare their magnitude, we simulated the effects of Greenland Ice Sheet (GIS) melt by conducting idealized North Atlantic "water-hosing" experiments in a climate model unidirectionally coupled to a SE sea level model. At current rates of GIS melt, freshwater hosing experiments in fully coupled atmosphere-ocean general circulation models (AOGCMs) do not yield clear DSL trends but do generate DSL variability; comparing that variability to expected static equilibrium "fingerprints" suggests that at least about 40 years of observations are needed to detect the "fingerprints" of ice sheet melt at current Greenland melt rates of about 0.3 mm equivalent sea level (esl)/year. Accelerated melt rates of about 2--6 mm esl/y, as may occur later in the century, should be detectable above background DSL variability within less than a decade of their onset. At these higher melt rates, AOGCMs do yield clear DSL trends. In the GFDL CM 2.1 model, DSL trends are strongest in the western North Atlantic, while SE effects come to dominate in most of the ocean when melt exceeds about 20 cm esl.
Grotjahn, Richard; Black, Robert; Leung, Ruby; ...
2015-05-22
This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less
Remote Detection and Modeling of Abrupt and Gradual Tree Mortality in the Southwestern USA
NASA Astrophysics Data System (ADS)
Muss, J. D.; Xu, C.; McDowell, N. G.
2014-12-01
Current climate models predict a warming and drying trend that has a high probability of increasing the frequency and spatial extent of tree mortality events. Field surveys can be used to identify, date, and attribute a cause of mortality to specific trees, but monetary and time constraints prevent broad-scale surveys, which are necessary to establish regional or global trends in tree mortality. This is significant because widespread forest mortality will likely lead to radical changes in evapotranspiration and surface albedo, which could compound climate change. While understanding the causes and mechanisms of tree mortality events is crucial, it is equally important to be able to detect and monitor mortality and subsequent changes to the ecosystem at broad spatial- and temporal-scales. Over the past five years our ability to remotely detect abrupt forest mortality events has improved greatly, but gradual events—such as those caused by drought or certain types of insects—are still difficult to identify. Moreover, it is virtually impossible to quantify the amount of mortality that has occurred within a mixed pixel. We have developed a system that fuses climate and satellite-derived spectral data to identify both the date and the agent of forest mortality events. This system has been used with Landsat time series data to detect both abrupt and general trends in tree loss that have occurred during the past quarter-century in northern New Mexico. It has also been used with MODIS data to identify pixels with a high likelihood of drought-caused tree mortality in the Southwestern US. These candidate pixels were then fed to ED-FRT, a coupled forest dynamics-radiative transfer model, to generate estimates of drought-induced. We demonstrate a multi-scale approach that can produce results that will be instrumental in advancing our understanding of tree mortality-climate feedbacks, and improve our ability to predict what forests could look like in the future.
Paprocki, Neil; Heath, Julie A.; Novak, Stephen J.
2014-01-01
Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975–2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs) were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus) and Golden Eagles (Aquila chrysaetos) showed the fastest rate of change, with 8.41 km yr−1 and 7.74 km yr−1 shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally change as species experience changes in distribution in response to climate change. PMID:24466253
NASA Astrophysics Data System (ADS)
Skansi, María de los Milagros; Brunet, Manola; Sigró, Javier; Aguilar, Enric; Arevalo Groening, Juan Andrés; Bentancur, Oscar J.; Castellón Geier, Yaruska Rosa; Correa Amaya, Ruth Leonor; Jácome, Homero; Malheiros Ramos, Andrea; Oria Rojas, Clara; Pasten, Alejandro Max; Sallons Mitro, Sukarni; Villaroel Jiménez, Claudia; Martínez, Rodney; Alexander, Lisa V.; Jones, P. D.
2013-01-01
Here we show and discuss the results of an assessment of changes in both area-averaged and station-based climate extreme indices over South America (SA) for the 1950-2010 and 1969-2009 periods using high-quality daily maximum and minimum temperature and precipitation series. A weeklong regional workshop in Guayaquil (Ecuador) provided the opportunity to extend the current picture of changes in climate extreme indices over SA. Our results provide evidence of warming and wetting across the whole SA since the mid-20th century onwards. Nighttime (minimum) temperature indices show the largest rates of warming (e.g. for tropical nights, cold and warm nights), while daytime (maximum) temperature indices also point to warming (e.g. for cold days, summer days, the annual lowest daytime temperature), but at lower rates than for minimums. Both tails of night-time temperatures have warmed by a similar magnitude, with cold days (the annual lowest nighttime and daytime temperatures) seeing reductions (increases). Trends are strong and moderate (moderate to weak) for regional-averaged (local) indices, most of them pointing to a less cold SA during the day and warmer night-time temperatures. Regionally-averaged precipitation indices show clear wetting and a signature of intensified heavy rain events over the eastern part of the continent. The annual amounts of rainfall are rising strongly over south-east SA (26.41 mm/decade) and Amazonia (16.09 mm/decade), but north-east Brazil and the western part of SA have experienced non-significant decreases. Very wet and extremely days, the annual maximum 5-day and 1-day precipitation show the largest upward trends, indicating an intensified rainfall signal for SA, particularly over Amazonia and south-east SA. Local trends for precipitation extreme indices are in general less coherent spatially, but with more general spatially coherent upward trends in extremely wet days over all SA.
Estrada-Peña, Agustín; de la Fuente, José; Latapia, Tamara; Ortega, Carmelo
2015-01-01
The impact of climate trends during the period 1901–2009 on the life cycle of Hyalomma marginatum in Europe was modeled to assess changes in the physiological processes of this threat to public health. Monthly records of temperature and water vapour at a resolution of 0.5° and equations describing the life cycle processes of the tick were used. The climate in the target region affected the rates of the life cycle processes of H. marginatum: development rates increased, mortality rates in molting stages decreased, and the survival rates of questing ticks decreased in wide territories of the Mediterranean basin. The modeling framework indicated the existence of critical areas in the Balkans, central Europe, and the western coast of France, where the physiological processes of the tick improved to extents that are consistent with the persistence of populations if introduced. A spatially explicit risk assessment was performed to detect candidate areas where active surveys should be performed to monitor changes in tick density or persistence after a hypothetical introduction. We detected areas where the critical abiotic (climate) and biotic (host density) factors overlap, including most of the Iberian peninsula, the Mediterranean coast of France, eastern Turkey, and portions of the western Black Sea region. Wild ungulate densities are unavailable for large regions of the territory, a factor that might affect the outcome of the study. The risk of successfully establishing H. marginatum populations at northern latitudes of its current colonization range seems to be still low, even if the climate has improved the performance of the tick in these areas. PMID:25955315
Estrada-Peña, Agustín; de la Fuente, José; Latapia, Tamara; Ortega, Carmelo
2015-01-01
The impact of climate trends during the period 1901-2009 on the life cycle of Hyalomma marginatum in Europe was modeled to assess changes in the physiological processes of this threat to public health. Monthly records of temperature and water vapour at a resolution of 0.5° and equations describing the life cycle processes of the tick were used. The climate in the target region affected the rates of the life cycle processes of H. marginatum: development rates increased, mortality rates in molting stages decreased, and the survival rates of questing ticks decreased in wide territories of the Mediterranean basin. The modeling framework indicated the existence of critical areas in the Balkans, central Europe, and the western coast of France, where the physiological processes of the tick improved to extents that are consistent with the persistence of populations if introduced. A spatially explicit risk assessment was performed to detect candidate areas where active surveys should be performed to monitor changes in tick density or persistence after a hypothetical introduction. We detected areas where the critical abiotic (climate) and biotic (host density) factors overlap, including most of the Iberian peninsula, the Mediterranean coast of France, eastern Turkey, and portions of the western Black Sea region. Wild ungulate densities are unavailable for large regions of the territory, a factor that might affect the outcome of the study. The risk of successfully establishing H. marginatum populations at northern latitudes of its current colonization range seems to be still low, even if the climate has improved the performance of the tick in these areas.
Yang, Yuting; Guan, Huade; Shen, Miaogen; Liang, Wei; Jiang, Lei
2015-02-01
Vegetation phenology is a sensitive indicator of the dynamic response of terrestrial ecosystems to climate change. In this study, the spatiotemporal pattern of vegetation dormancy onset date (DOD) and its climate controls over temperate China were examined by analysing the satellite-derived normalized difference vegetation index and concurrent climate data from 1982 to 2010. Results show that preseason (May through October) air temperature is the primary climatic control of the DOD spatial pattern across temperate China, whereas preseason cumulative precipitation is dominantly associated with the DOD spatial pattern in relatively cold regions. Temporally, the average DOD over China's temperate ecosystems has delayed by 0.13 days per year during the past three decades. However, the delay trends are not continuous throughout the 29-year period. The DOD experienced the largest delay during the 1980s, but the delay trend slowed down or even reversed during the 1990s and 2000s. Our results also show that interannual variations in DOD are most significantly related with preseason mean temperature in most ecosystems, except for the desert ecosystem for which the variations in DOD are mainly regulated by preseason cumulative precipitation. Moreover, temperature also determines the spatial pattern of temperature sensitivity of DOD, which became significantly lower as temperature increased. On the other hand, the temperature sensitivity of DOD increases with increasing precipitation, especially in relatively dry areas (e.g. temperate grassland). This finding stresses the importance of hydrological control on the response of autumn phenology to changes in temperature, which must be accounted in current temperature-driven phenological models. © 2014 John Wiley & Sons Ltd.
Guo, Ming-ming; Zhang, Yuan-dong; Wang, Xiao-chun; Liu, Shi-rong
2015-08-01
To explore the responses of different tree species growth to climate change in the semi-humid region of the eastern Tibetan Plateau, we investigated climate-growth relationships of Tsuga chinensis, Abies faxoniana, Picea purpurea at an altitude of 3000 m (low altitude) and A. faxoniana and Larix mastersiana at an altitude of 4000 m (high altitude) using tree ring-width chronologies (total of 182 cores) developed from Miyaluo, western Sichuan, China. Five residual chronologies were developed from the cross-dated ring width series using the program ARSTAN, and the relationships between monthly climate variables and tree-ring index were analyzed. Results showed that the chronologies of trees at low altitudes were negatively correlated with air temperature but positively with precipitation in April and May. This indicated that drought stress limited tree growth at low altitude, but different tree species showed significant variations. T. chinensis was most severely affected by drought stress, followed by A. faxoniana and P. purpurea. Trees at high altitude were mainly affected by growing season temperature. Tree-ring index of A. faxoniana was positively correlated with monthly minimum temperature in February and July of the current year and monthly maximum temperature in October of the previous year. Radial growth of L. mastersiana was positively correlated with monthly maximum temperature in May, and negatively with monthly mean temperature in February and monthly minimum temperature in March. In recent decadal years, the climate in northeast Tibetan Plateau had a warming and drying trend. If this trend continues, we could deduce that P. purpurea should grow faster than T. chinensis and A. faxoniana at low altitudes, while A. faxoniana would benefit more from global warming at high altitudes.
Ray, Chris; Saracco, James; Jenkins, Kurt J.; Huff, Mark; Happe, Patricia J.; Ransom, Jason I.
2017-01-01
During 2015-2016, we completed development of a new analytical framework for landbird population monitoring data from the National Park Service (NPS) North Coast and Cascades Inventory and Monitoring Network (NCCN). This new tool for analysis combines several recent advances in modeling population status and trends using point-count data and is designed to supersede the approach previously slated for analysis of trends in the NCCN and other networks, including the Sierra Nevada Network (SIEN). Advances supported by the new model-based approach include 1) the use of combined data on distance and time of detection to estimate detection probability without assuming perfect detection at zero distance, 2) seamless accommodation of variation in sampling effort and missing data, and 3) straightforward estimation of the effects of downscaled climate and other local habitat characteristics on spatial and temporal trends in landbird populations. No changes in the current field protocol are necessary to facilitate the new analyses. We applied several versions of the new model to data from each of 39 species recorded in the three mountain parks of the NCCN, estimating trends and climate relationships for each species during 2005-2014. Our methods and results are also reported in a manuscript in revision for the journal Ecosphere (hereafter, Ray et al.). Here, we summarize the methods and results outlined in depth by Ray et al., discuss benefits of the new analytical framework, and provide recommendations for its application to synthetic analyses of long-term data from the NCCN and SIEN. All code necessary for implementing the new analyses is provided within the Appendices to this report, in the form of fully annotated scripts written in the open-access programming languages R and JAGS.
Emerging landscape degradation trends in the East African Horn
NASA Astrophysics Data System (ADS)
Pricope, N. G.; Michaelsen, J.; Husak, G. J.; Funk, C. C.; Lopez-Carr, D.
2012-12-01
Increasing climate variability along with declining trends in rainfall represent major risk factors affecting food security in many regions of the world. We identify Africa-wide regions where significant rainfall decreases from 1979-2011 are coupled with significant human population density increases. The rangelands of the East African Horn remain one of the world's most food insecure regions with significantly increasing human populations predominantly dependent on pastoralist and agro-pastoralist livelihoods. Widespread vegetation degradation is occurring, adversely impacting fragile ecosystems and human livelihoods. Using MODIS land cover and normalized difference vegetation index (NDVI) data collected since 2000, we observe significant changes in vegetation patterns and productivity over the last decade across the East African Horn and demonstrate that these two products can be used concurrently at large spatial scales to monitor vegetation dynamics at decadal time scales. Results demonstrate that a near doubling of the population in pastoral regions is linked with hotspots of degradation in vegetation condition. The most significant land cover change and browning trends are observed in areas experiencing drying precipitation trends in addition to increasing population pressures. These findings have serious implications for current and future regional food security monitoring and forecasting and for mitigation and adaptation strategies in a region where population is expected to continue increasing against a backdrop of drying climate trends.Fig.1(a)Change in standardized precipitation index in Africa between 1979-2010 (b)Change in population density at continental scale using the GRUMPv1 1990 and 2000 and AfriPop 2010 population density datasets Fig.2 Land cover change trajectories based on 2001-2009 MOD12Q1 Land Cover product for the East African Horn overlaid over aggregated FEWS Net Livelihoods Zones.
Ice core and climate reanalysis analogs to predict Antarctic and Southern Hemisphere climate changes
NASA Astrophysics Data System (ADS)
Mayewski, P. A.; Carleton, A. M.; Birkel, S. D.; Dixon, D.; Kurbatov, A. V.; Korotkikh, E.; McConnell, J.; Curran, M.; Cole-Dai, J.; Jiang, S.; Plummer, C.; Vance, T.; Maasch, K. A.; Sneed, S. B.; Handley, M.
2017-01-01
A primary goal of the SCAR (Scientific Committee for Antarctic Research) initiated AntClim21 (Antarctic Climate in the 21st Century) Scientific Research Programme is to develop analogs for understanding past, present and future climates for the Antarctic and Southern Hemisphere. In this contribution to AntClim21 we provide a framework for achieving this goal that includes: a description of basic climate parameters; comparison of existing climate reanalyses; and ice core sodium records as proxies for the frequencies of marine air mass intrusion spanning the past ∼2000 years. The resulting analog examples include: natural variability, a continuation of the current trend in Antarctic and Southern Ocean climate characterized by some regions of warming and some cooling at the surface of the Southern Ocean, Antarctic ozone healing, a generally warming climate and separate increases in the meridional and zonal winds. We emphasize changes in atmospheric circulation because the atmosphere rapidly transports heat, moisture, momentum, and pollutants, throughout the middle to high latitudes. In addition, atmospheric circulation interacts with temporal variations (synoptic to monthly scales, inter-annual, decadal, etc.) of sea ice extent and concentration. We also investigate associations between Antarctic atmospheric circulation features, notably the Amundsen Sea Low (ASL), and primary climate teleconnections including the SAM (Southern Annular Mode), ENSO (El Nîno Southern Oscillation), the Pacific Decadal Oscillation (PDO), the AMO (Atlantic Multidecadal Oscillation), and solar irradiance variations.
NASA Astrophysics Data System (ADS)
Dieppois, B.; Sidibe, M.; Mahe, G. M.; Paturel, J. E.; Anifowose, B. A.; Lawler, D.; Amoussou, E.
2017-12-01
Unprecedented drought episodes that struck western and central Africa between the late 1960s and 1980s, triggered many studies investigating rainfall variability and its impacts on water resources and food production systems. However, most studies were focused at the catchment scale. In this study, we aim at investigating the key large-scale controls determining and modulating climate-river flows relationships at the subcontinental scale between 1950 and 2005. Using the first complete monthly streamflow data set (1950-2005) over western and central Africa, streamflow trend and variability are seasonally assessed at this subcontinental scale and compared to those observed in other hydroclimatic variables (precipitation, temperature and potential evapotranspiration). Long-term trends and variability in streamflow are mainly consistent with trends in rainfall. In particular, the recent post-1990s partial recovery in Sahel rainfall could have, at least partially, positively impacted river flows (e.g. the Senegal and Niger rivers). However, these relationships may have been moderated by: i) changes in land use; and ii) contributions from groundwater resources. In addition, the time-evolution of river flows is shown to be primarily driven by very strong decadal fluctuations, which can be interpreted as modulations in the baseflow, as determined using multi-temporal trend and continuous wavelet analysis. These decadal fluctuations, which are also significantly detected in rainfall, are likely related to large-scale sea-surface temperature (SST) anomaly patterns (such as the tropical Atlantic SST variability, the Atlantic Multidecadal Oscillation, the Interdecadal Pacific Oscillation and the Pacific Decadal Oscillation), which are together modulating the West African monsoon. Furthermore, influences of the catchment properties (e.g. size, vegetation and land use cover, soil properties, direction of stream flow across climate zones) on these decadal fluctuations in river flows have been examined. This study therefore aims to improve the ability of current global to regional climate models to simulate such ranges of variability and understand regional hydroclimate, as a means for improving the development of future scenarios for water resources in western and central Africa.
Insights on drought and long-term climatic trends: Retrospective analyses of RMA cause of loss data
USDA-ARS?s Scientific Manuscript database
A modern trend among federal agencies, funding streams, and research projects involves the synthesis of existing data to increase the overall collective value and meaning of such knowledge. The creation of the U.S. Department of Agriculture (USDA) Climate Hubs follows this line of thought with infor...
Insights on drought and long-term climatic trends: Retrospective analyses of crop insurance data
USDA-ARS?s Scientific Manuscript database
A modern trend among federal agencies, funding streams, and research projects involves the synthesis of existing data to increase the overall collective value and meaning of such knowledge. The creation of the U.S. Department of Agriculture (USDA) Climate Hubs follows this line of thought with infor...
Princé, Karine; Lorrillière, Romain; Barbet-Massin, Morgane; Léger, François; Jiguet, Frédéric
2015-01-01
Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES) to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture) showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform sustainable agricultural policies for the future.
I'm Not a Warmist! Transcending Ideological Barriers in Climate Communication (Invited)
NASA Astrophysics Data System (ADS)
Denning, S.
2013-12-01
A wealth of social science research has shown that public perception of climate change is very strongly colored by ideological filters in which facts are evaluated based on their fit to previously held beliefs. Scientific discourse about climate change is well received by environmentalism, which confirms the fears and competitive impulses of libertarianism. When data and belief come into conflict in public discourse, belief nearly always dominates. Scientists, educators, and science communicators must acknowledge the cultural context of climate change in order to lift climate discourse out of its ideological gutter. Many communication strategies emerging from solid social-science research fail to acknowledge the ideological cultural filters through which people experience climate discourse. Emphasizing recent trends, current weather events and impacts, and especially argument from authority of expertise and consensus are effective with average audiences but trigger reflexive opposition from suspicious listeners. Beyond ideology, climate change is Simple, Serious, and Solvable. Effective communication of these three key ideas can succeed when the science argument is carefully framed to avoid attack of the audience's ethical identity. Simple arguments from common sense and everyday experience are more successful than data. Serious consequences to values that resonate with the audience can be avoided by solutions that don't threaten those values.
Conservation in the face of climate change: recent developments.
Lawler, Joshua; Watson, James; Game, Edward
2015-01-01
An increased understanding of the current and potential future impacts of climate change has significantly influenced conservation in practice in recent years. Climate change has necessitated a shift toward longer planning time horizons, moving baselines, and evolving conservation goals and targets. This shift has resulted in new perspectives on, and changes in, the basic approaches practitioners use to conserve biodiversity. Restoration, spatial planning and reserve selection, connectivity modelling, extinction risk assessment, and species translocations have all been reimagined in the face of climate change. Restoration is being conducted with a new acceptance of uncertainty and an understanding that goals will need to shift through time. New conservation targets, such as geophysical settings and climatic refugia, are being incorporated into conservation plans. Risk assessments have begun to consider the potentially synergistic impacts of climate change and other threats. Assisted colonization has gained acceptance in recent years as a viable and necessary conservation tool. This evolution has paralleled a larger trend in conservation-a shift toward conservation actions that benefit both people and nature. As we look forward, it is clear that more change is on the horizon. To protect biodiversity and essential ecosystem services, conservation will need to anticipate the human response to climate change and to focus not only on resistance and resilience but on transitions to new states and new ecosystems.
Seasonal responses of terrestrial ecosystem water-use efficiency to climate change.
Huang, Mengtian; Piao, Shilong; Zeng, Zhenzhong; Peng, Shushi; Ciais, Philippe; Cheng, Lei; Mao, Jiafu; Poulter, Ben; Shi, Xiaoying; Yao, Yitong; Yang, Hui; Wang, Yingping
2016-06-01
Ecosystem water-use efficiency (EWUE) is an indicator of carbon-water interactions and is defined as the ratio of carbon assimilation (GPP) to evapotranspiration (ET). Previous research suggests an increasing long-term trend in annual EWUE over many regions and is largely attributed to the physiological effects of rising CO2 . The seasonal trends in EWUE, however, have not yet been analyzed. In this study, we investigate seasonal EWUE trends and responses to various drivers during 1982-2008. The seasonal cycle for two variants of EWUE, water-use efficiency (WUE, GPP/ET), and transpiration-based WUE (WUEt , the ratio of GPP and transpiration), is analyzed from 0.5° gridded fields from four process-based models and satellite-based products, as well as a network of 63 local flux tower observations. WUE derived from flux tower observations shows moderate seasonal variation for most latitude bands, which is in agreement with satellite-based products. In contrast, the seasonal EWUE trends are not well captured by the same satellite-based products. Trend analysis, based on process-model factorial simulations separating effects of climate, CO2 , and nitrogen deposition (NDEP), further suggests that the seasonal EWUE trends are mainly associated with seasonal trends of climate, whereas CO2 and NDEP do not show obvious seasonal difference in EWUE trends. About 66% grid cells show positive annual WUE trends, mainly over mid- and high northern latitudes. In these regions, spring climate change has amplified the effect of CO2 in increasing WUE by more than 0.005 gC m(-2) mm(-1) yr(-1) for 41% pixels. Multiple regression analysis further shows that the increase in springtime WUE in the northern hemisphere is the result of GPP increasing faster than ET because of the higher temperature sensitivity of GPP relative to ET. The partitioning of annual EWUE to seasonal components provides new insight into the relative sensitivities of GPP and ET to climate, CO2, and NDEP. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lioubimtseva, Elena; Henebry, Geoffrey M.
2012-06-01
Grain production in the countries of the former USSR sharply declined during the past two decades and has only recently started to recover. In the context of the current economic and food-price crisis, Russia, Ukraine, and Kazakhstan might be presented with a window of opportunity to reemerge on the global agricultural market, if they succeed in increasing their productivity. The future of their agriculture, however, is highly sensitive to a combination of internal and external factors, such as institutional changes, land-use changes, climate variability and change, and global economic trends. The future of this region's grain production is likely to have a significant impact on the global and regional food security over the next decades.
Leptospirosis in the Asia Pacific region
2009-01-01
Background Leptospirosis is a worldwide zoonotic infection that has been recognized for decades, but the problem of the disease has not been fully addressed, particularly in resource-poor, developing countries, where the major burden of the disease occurs. This paper presents an overview of the current situation of leptospirosis in the region. It describes the current trends in the epidemiology of leptospirosis, the existing surveillance systems, and presents the existing prevention and control programs in the Asia Pacific region. Methods Data on leptospirosis in each member country were sought from official national organizations, international public health organizations, online articles and the scientific literature. Papers were reviewed and relevant data were extracted. Results Leptospirosis is highly prevalent in the Asia Pacific region. Infections in developed countries arise mainly from occupational exposure, travel to endemic areas, recreational activities, or importation of domestic and wild animals, whereas outbreaks in developing countries are most frequently related to normal daily activities, over-crowding, poor sanitation and climatic conditions. Conclusion In the Asia Pacific region, predominantly in developing countries, leptospirosis is largely a water-borne disease. Unless interventions to minimize exposure are aggressively implemented, the current global climate change will further aggravate the extent of the disease problem. Although trends indicate successful control of leptospirosis in some areas, there is no clear evidence that the disease has decreased in the last decade. The efficiency of surveillance systems and data collection varies significantly among the countries and areas within the region, leading to incomplete information in some instances. Thus, an accurate reflection of the true burden of the disease remains unknown. PMID:19732423
Climate-induced range contraction of a rare alpine aquatic invertebrate
Giersch, J. Joseph; Jordan, Steve; Luikart, Gordon; Jones, Leslie A.; Hauer, F. Richard; Muhlfeld, Clint C.
2015-01-01
Climate warming poses a serious threat to alpine-restricted species worldwide, yet few studies have empirically documented climate-induced changes in distributions. The rare stonefly, Zapada glacier (Baumann and Gaufin), endemic to alpine streams of Glacier National Park (GNP), Montana, was recently petitioned for listing under the US Endangered Species Act because of climate-change-induced glacier loss, yet little was known about its current status and distribution. We resampled streams throughout the historical distribution of Z. glacier to investigate trends in occurrence associated with changes in temperature and glacial extent. The current geographic distribution of the species was assessed using morphological characteristics of adults and DNA barcoding of nymphs. Bayesian phylogenetic analysis of mtDNA data revealed 8 distinct clades of the genus corresponding with 7 known species from GNP, and one potentially cryptic species. Climate model simulations indicate that average summer air temperature increased (0.67–1.00°C) during the study period (1960–2012), and glacial surface area decreased by ∼35% from 1966 to 2005. We detected Z. glacier in only 1 of the 6 historically occupied streams and at 2 new locations in GNP. These results suggest that an extremely restricted historical distribution of Z. glacierin GNP has been further reduced over the past several decades by an upstream retreat to higher, cooler sites as water temperatures increased and glacial masses decreased. More research is urgently needed to determine the status, distribution, and vulnerability of Z. glacier and other alpine stream invertebrates threatened by climate change in mountainous ecosystems.
The Communication Strategy of NASA's Earth Observatory
NASA Astrophysics Data System (ADS)
Simmon, R.; Ward, K.; Riebeek, H.; Allen, J.; Przyborski, P.; Scott, M.; Carlowicz, M. J.
2010-12-01
Climate change is a complex, multi-disciplinary subject. Accurately conveying this complexity to general audiences, while still communicating the basic facts, is challenging. Our approach is to combine climate change information with a wide range of Earth system science topics, illustrated by satellite imagery and data visualizations. NASA's Earth Observatory web site (earthobservatory.nasa.gov) uses the broad range of NASA's remote sensing technologies, data, and research to communicate climate change science. We serve two primary audiences: the "attentive public" --people interested in and willing to seek out information about science, technology, and the environment--and media. We cover the breadth of Earth science, with information about climate change integrated with stories about weather, geology, oceanography, and solar flares. Current event-driven imagery is used as a hook to draw readers. We then supply links to supplemental information, either about current research or the scientific basics. We use analogies, carefully explain jargon or acronyms, and build narratives which both attract readers and make information easier to remember. These narratives are accompanied by primers on topics like energy balance or the water cycle. Text is carefully integrated with illustrations and state-of-the-art data visualizations. Other site features include a growing list of climate questions and answers, addressing common misconceptions about global warming and climate change. Maps of global environmental parameters like temperature, rainfall, and vegetation show seasonal change and long-term trends. Blogs from researchers in the field provide a look at the day-to-day process of science. For the media, public domain imagery is supplied at full resolution and links are provided to primary sources.
Riera, Rodrigo; Becerro, Mikel A; Stuart-Smith, Rick D; Delgado, Juan D; Edgar, Graham J
2014-09-15
Lack of knowledge of the marine realm may bias our perception of the current status and threats to marine biodiversity. Less than 10% of all ecological literature is related to the ocean, and the information we have on marine species that are threatened or on the verge of extinction is scarce. This lack of information is particularly critical for isolated areas such as oceanic archipelagos. Here we review published and grey literature on the current status of marine organisms in the Canary Islands as a case description of the consequences that current out-of-sight out-of-mind attitudes may have on this unique environment. Global change, as represented by coastal development, pollution, exotic species and climate change, are currently affecting the distribution and abundance of Canarian marine organisms, and pose multiple threats to local species and communities. Environmental risks are significant at community and species levels, particularly for threatened species. Failure to address these trends will result in shifts in local biodiversity with important ecological, social, and economic consequences. Scientists, policy makers, educators, and relevant societal groups need to collaborate to reverse deleterious coastal biodiversity trends. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dynamical adjustment of Scandinavian glacier mass-balance time series
NASA Astrophysics Data System (ADS)
Bonan, D.; Christian, J. E.; Christianson, K. A.
2017-12-01
Glacier mass wastage is often cited as one of the most visible manifestations of anthropogenic climate change. Annual glacier mass-balance is related to local climate and atmospheric circulation, as it is defined as the yearly sum of accumulation and ablation—processes that are strongly influenced by year-to-year fluctuations in precipitation and temperature. Glacier response to a climatic trend can, however, be masked by internal variability in atmospheric circulation, and by non-climatic factors (such as topographic control, wind deposition, and incident solar radiation). Thus, unambiguous attribution of a negative glacier mass-balance trend to anthropogenic forcing remains challenging. Maritime glacier mass-balance records may be especially difficult to interpret due to the high winter balances from decadal-scale climate oscillations and the relatively short time series. Here we examine the influence of climate and atmospheric circulation variability on 14 Norwegian glaciers that span 20° of latitude, from southern Norway to Svalbard. We use dynamical adjustment—a statistical method based on partial least squares regression—to identify the components of variability within the mass-balance records that are associated with the time-varying sea level pressure (SLP) and sea surface temperature (SST) fields. We find that 30-50% of the variance in the winter mass-balance records of the glaciers in southern Norway is explained by using sea level pressure as a predictor. The leading SLP predictor pattern mimics the spatial signature of the North Atlantic Oscillation (NAO), indicating that winter balance is strongly influenced by the NAO. Moreover, the adjusted mass-balance records indicate a geographic trend: the southern Norwegian glaciers have significant negative trends in the summer balance that remain negative after adjustment, while the more northern glaciers have negative winter balance trends that only become significant after adjustment. We look into anthropogenic warming to explain the trends after dynamical adjustment.
Historical trends and high-resolution future climate projections in northern Tuscany (Italy)
NASA Astrophysics Data System (ADS)
D'Oria, Marco; Ferraresi, Massimo; Tanda, Maria Giovanna
2017-12-01
This paper analyzes the historical precipitation and temperature trends and the future climate projections with reference to the northern part of Tuscany (Italy). The trends are identified and quantified at monthly and annual scale at gauging stations with data collected for long periods (60-90 years). An ensemble of 13 Regional Climate Models (RCMs), based on two Representative Concentration Pathways (RCP4.5 and RCP8.5), was then used to assess local scale future precipitation and temperature projections and to represent the uncertainty in the results. The historical data highlight a general decrease of the annual rainfall at a mean rate of 22 mm per decade but, in many cases, the tendencies are not statistically significant. Conversely, the annual mean temperature exhibits an upward trend, statistically significant in the majority of cases, with a warming rate of about 0.1 °C per decade. With reference to the model projections and the annual precipitation, the results are not concordant; the deviations between models in the same period are higher than the future changes at medium- (2031-2040) and long-term (2051-2060) and highlight that the model uncertainty and variability is high. According to the climate model projections, the warming of the study area is unequivocal; a mean positive increment of 0.8 °C at medium-term and 1.1 °C at long-term is expected with respect to the reference period (2003-2012) and the scenario RCP4.5; the increments grow to 0.9 °C and 1.9 °C for the RCP8.5. Finally, in order to check the observed climate change signals, the climate model projections were compared with the trends based on the historical data. A satisfactory agreement is obtained with reference to the precipitation; a systematic underestimation of the trend values with respect to the models, at medium- and long-term, is observed for the temperature data.
Mahmoud, Shereif H; Gan, Thian Y
2018-08-15
The implications of anthropogenic climate change, human activities and land use change (LUC) on the environment and ecosystem services in the coastal regions of Saudi Arabia were analyzed. Earth observations data was used to drive land use categories between 1970 and 2014. Next, a Markov-CA model was developed to characterize the dynamic of LUC between 2014 and 2100 and their impacts on regions' climate and environment. Non-parametric change point and trend detection algorithms were applied to temperature, precipitation and greenhouse gases data to investigate the presence of anthropogenic climate change. Lastly, climate models were used to project future climate change between 2014 and 2100. The analysis of LUC revealed that between 1970 and 2014, built up areas experienced the greatest growth during the study period, leading to a significant monotonic trend. Urban areas increased by 2349.61km 2 between 1970 and 2014, an average increase of >53.4km 2 /yr. The projected LUC between 2014 and 2100 indicate a continued increase in urban areas and irrigated cropland. Human alteration of land use from natural vegetation and forests to other uses after 1970, resulted in a loss, degradation, and fragmentation, all of which usually have devastating effects on the biodiversity of the region. Resulting in a statistically significant change point in temperature anomaly after 1968 with a warming trend of 0.24°C/decade and a downward trend in precipitation anomaly of 12.2mm/decade. Total greenhouse gas emissions including all anthropogenic sources showed a statistically significant positive trend of 78,090Kt/decade after 1991. This is reflected in the future projection of temperature anomaly between 1900 and 2100 with a future warming trend of 0.19°C/decade. In conclusion, human activities, industrial revelation, deforestation, land use transformation and increase in greenhouse gases had significant implications on the environment and ecosystem services of the study area. Copyright © 2018 Elsevier B.V. All rights reserved.
Increasing risk of great floods in a changing climate
Milly, P.C.D.; Wetherald, R.T.; Dunne, K.A.; Delworth, T.L.
2002-01-01
Radiative effects of anthropogenic changes in atmospheric composition are expected to cause climate changes, in particular an intensification of the global water cycle with a consequent increase in flood risk. But the detection of anthropogenically forced changes in flooding is difficult because of the substantial natural variability; the dependence of streamflow trends on flow regime further complicates the issue. Here we investigate the changes in risk of great floods - that is, floods with discharges exceeding 100-year levels from basins larger than 200,000 km2 - using both streamflow measurements and numerical simulations of the anthropogenic climate change associated with greenhouse gases and direct radiative effects of sulphate aerosols. We find that the frequency of great floods increased substantially during the twentieth century. The recent emergence of a statistically significant positive trend in risk of great floods is consistent with results from the climate model, and the model suggests that the trend will continue.
Earth's changing global atmospheric energy cycle in response to climate change
Pan, Yefeng; Li, Liming; Jiang, Xun; Li, Gan; Zhang, Wentao; Wang, Xinyue; Ingersoll, Andrew P.
2017-01-01
The Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change. The total mechanical energy of the global atmosphere basically remains constant with time, but the global-average eddy energies show significant positive trends. The spatial investigations suggest that these positive trends are concentrated in the Southern Hemisphere. Significant positive trends are also found in the conversion, generation and dissipation rates of energies. The positive trends in the dissipation rates of kinetic energies suggest that the efficiency of the global atmosphere as a heat engine increased during the modern satellite era. PMID:28117324
Evapotranspiration trends over the eastern United States during the 20th century
Kramer, Ryan J.; Bounoua, Lahouari; Zhang, Ping; Wolfe, Robert E.; Huntington, Thomas G.; Imhoff, Marc L.; Thome, Kurtis; Noyce, Genevieve L.
2015-01-01
Most models evaluated by the Intergovernmental Panel for Climate change estimate projected increases in temperature and precipitation with rising atmospheric CO2 levels. Researchers have suggested that increases in CO2 and associated increases in temperature and precipitation may stimulate vegetation growth and increase evapotranspiration (ET), which acts as a cooling mechanism, and on a global scale, may slow the climate-warming trend. This hypothesis has been modeled under increased CO2 conditions with models of different vegetation-climate dynamics. The significance of this vegetation negative feedback, however, has varied between models. Here we conduct a century-scale observational analysis of the Eastern US water balance to determine historical evapotranspiration trends and whether vegetation greening has affected these trends. We show that precipitation has increased significantly over the twentieth century while runoff has not. We also show that ET has increased and vegetation growth is partially responsible.
Modeling the Effects of Climate Change on Whitebark Pine Along the Pacific Crest Trail
NASA Astrophysics Data System (ADS)
Anderson, R. S.; Nguyen, A.; Gill, N.; Kannan, S.; Patadia, N.; Meyer, M.; Schmidt, C.
2012-12-01
The Pacific Crest Trail (PCT), one of eight National Scenic Trails, stretches 2,650 miles from Mexico to the Canadian border. At high elevations along this trail, within Inyo and Sierra National Forests, populations of whitebark pine (Pinus albicaulis) have been diminishing due to infestation of the mountain pine beetle (Dendroctonus ponderosae) and are threatened due to a changing climate. Understanding the current and future condition of whitebark pine is a primary goal of forest managers due to its high ecological and economic importance, and it is currently a candidate for protection under the Endangered Species Act (ESA). Using satellite imagery, we analyzed the rate and spatial extent of whitebark pine tree mortality from 1984 to 2011 using the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) program. Climate data, soil properties, and biological features of the whitebark pine were incorporated in the Physiological Principles to Predict Growth (3-PG) model to predict future rates of growth and assess its applicability in modeling natural whitebark pine processes. Finally, the Random Forest algorithm was used with topographic data alongside recent and future climate data from the IPCC A2 and B1 climate scenarios for the years 2030, 2060, and 2090 to model the future distribution of whitebark pine. LandTrendr results indicate beetle related mortality covering 14,940 km2 of forest, 2,880 km2 of which are within whitebark pine forest. By 2090, our results show that under the A2 climate scenario, whitebark pine suitable habitat may be reduced by as much as 99.97% by the year 2090 within our study area. Under the B1 climate scenario, which has decreased CO2 emissions, 13.54% more habitat would be preserved in 2090.
NASA Astrophysics Data System (ADS)
Panitz, Sina; Salzmann, Ulrich; Risebrobakken, Bjørg; De Schepper, Stijn; Pound, Matthew J.; Haywood, Alan M.; Dolan, Aisling M.; Lunt, Daniel J.
2018-02-01
During the Pliocene Epoch, a stronger-than-present overturning circulation has been invoked to explain the enhanced warming in the Nordic Seas region in comparison to low to mid-latitude regions. While marine records are indicative of changes in the northward heat transport via the North Atlantic Current (NAC) during the Pliocene, the long-term terrestrial climate evolution and its driving mechanisms are poorly understood. We present the first two-million-year-long Pliocene pollen record for the Nordic Seas region from Ocean Drilling Program (ODP) Hole 642B, reflecting vegetation and climate in Arctic Norway, to assess the influence of oceanographic and atmospheric controls on Pliocene climate evolution. The vegetation record reveals a long-term cooling trend in northern Norway, which might be linked to a general decline in atmospheric CO2 concentrations over the studied interval, and climate oscillations primarily controlled by precession (23 kyr), obliquity (54 kyr) and eccentricity (100 kyr) forcing. In addition, the record identifies four major shifts in Pliocene vegetation and climate mainly controlled by changes in northward heat transport via the NAC. Cool temperate (warmer than present) conditions prevailed between 5.03-4.30 Ma, 3.90-3.47 Ma and 3.29-3.16 Ma and boreal (similar to present) conditions predominated between 4.30-3.90 Ma, 3.47-3.29 and after 3.16 Ma. A distinct decline in sediment and pollen accumulation rates at c. 4.65 Ma is probably linked to changes in ocean currents, marine productivity and atmospheric circulation. Climate model simulations suggest that changes in the strength of the Atlantic Meridional Overturning Circulation during the Early Pliocene could have affected atmospheric circulation in the Nordic Seas region, which would have affected the direction of pollen transport from Scandinavia to ODP Hole 642B.
Reduced arctic tundra productivity linked with landform and climate change interactions
Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A. David
2018-01-01
Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999–2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.
Unravelling Diurnal Asymmetry of Surface Temperature in Different Climate Zones.
Vinnarasi, R; Dhanya, C T; Chakravorty, Aniket; AghaKouchak, Amir
2017-08-04
Understanding the evolution of Diurnal Temperature Range (DTR), which has contradicting global and regional trends, is crucial because it influences environmental and human health. Here, we analyse the regional evolution of DTR trend over different climatic zones in India using a non-stationary approach known as the Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method, to explore the generalized influence of regional climate on DTR, if any. We report a 0.36 °C increase in overall mean of DTR till 1980, however, the rate has declined since then. Further, arid deserts and warm-temperate grasslands exhibit negative DTR trends, while the west coast and sub-tropical forest in the north-east show positive trends. This transition predominantly begins with a 0.5 °C increase from the west coast and spreads with an increase of 0.25 °C per decade. These changes are more pronounced during winter and post-monsoon, especially in the arid desert and warm-temperate grasslands, the DTR decreased up to 2 °C, where the rate of increase in minimum temperature is higher than the maximum temperature. We conclude that both maximum and minimum temperature increase in response to the global climate change, however, their rates of increase are highly local and depend on the underlying climatic zone.
Reduced arctic tundra productivity linked with landform and climate change interactions.
Lara, Mark J; Nitze, Ingmar; Grosse, Guido; Martin, Philip; McGuire, A David
2018-02-05
Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.
Robust global ocean cooling trend for the pre-industrial Common Era
NASA Astrophysics Data System (ADS)
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-09-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years -- a key interval for understanding the present and future climate response to these forcings -- global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CE that is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
Robust global ocean cooling trend for the pre-industrial Common Era
McGregor, Helen V.; Evans, Michael N.; Goosse, Hugues; Leduc, Guillaume; Martrat, Belen; Addison, Jason A.; Mortyn, P. Graham; Oppo, Delia W.; Seidenkrantz, Marit-Solveig; Sicre, Marie-Alexandrine; Phipps, Steven J.; Selvaraj, Kandasamy; Thirumalai, Kaustubh; Filipsson, Helena L.; Ersek, Vasile
2015-01-01
The oceans mediate the response of global climate to natural and anthropogenic forcings. Yet for the past 2,000 years — a key interval for understanding the present and future climate response to these forcings — global sea surface temperature changes and the underlying driving mechanisms are poorly constrained. Here we present a global synthesis of sea surface temperatures for the Common Era (CE) derived from 57 individual marine reconstructions that meet strict quality control criteria. We observe a cooling trend from 1 to 1800 CEthat is robust against explicit tests for potential biases in the reconstructions. Between 801 and 1800 CE, the surface cooling trend is qualitatively consistent with an independent synthesis of terrestrial temperature reconstructions, and with a sea surface temperature composite derived from an ensemble of climate model simulations using best estimates of past external radiative forcings. Climate simulations using single and cumulative forcings suggest that the ocean surface cooling trend from 801 to 1800 CE is not primarily a response to orbital forcing but arises from a high frequency of explosive volcanism. Our results show that repeated clusters of volcanic eruptions can induce a net negative radiative forcing that results in a centennial and global scale cooling trend via a decline in mixed-layer oceanic heat content.
The Fourth National Climate Assessment: Progress and Next Steps
NASA Astrophysics Data System (ADS)
Reidmiller, D.; Lewis, K.; Reeves, K.
2017-12-01
The Global Change Research Act of 1990 mandates the production of a quadrennial National Climate Assessment (NCA) that integrates, evaluates, and interprets global change science. The NCA analyzes observed and projected trends in global change and evaluates related impacts across a range of sectors and regions in the United States. The fourth assessment, NCA4, is currently under development by nearly 300 Federal and non-Federal experts and is expected to be available for public comment in Fall 2017 and released in late 2018. NCA4 is a key component of the US Global Change Research Program's Sustained Assessment process, which aims to advance the science of global change and provide authoritative, relevant information for decision makers. This talk will highlight the progress of NCA4, including an overview of the current draft of the assessment and advances since the third NCA, released in 2014. It will highlight the Climate Science Special Report, an essential component of NCA4, as well as provide insight into the public engagement process-including opportunities to participate-and identify scientific inputs and tools critical to its development, such as the 2nd State of the Carbon Cycle Report and USGCRP's new scenario products website.
Pattern of Glacier Recession in Indian Himalaya
NASA Astrophysics Data System (ADS)
Singh, Ajay; Patwardhan, Anand
All currently available climate models predict a near-surface warming trend under the influence of rising levels of greenhouse gases in the atmosphere. In addition to the direct effects on climate — for example, on the frequency of heat waves — this increase in surface temperatures has important consequences for the cryosphere subsequently hydrological cycle, particularly in regions where water supply is currently dominated by melting snow or ice. The Indian Himalayan region occupies a special place in the mountain ecosystems of the world. These geodynamically young mountains are not only important from the standpoint of climate and as a provider of life, giving water to a large part of the Indian subcontinent, but they also harbor a rich variety of flora, fauna, human communities and cultural diversity. Glaciers in this region are changing in area as well as in volume like those in other parts of the world. Studies have been carried out for recession in some of these glaciers using remote sensing as well as field observation techniques. Spatiotemporal pattern in the recession rate of the studied glaciers has been presented in this paper. Plausible causes for the recession have been also discussed. Finally, future scopes for observation and analysis in glaciers recession have been suggested.
Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Manyin, M.; Negri, Andrew
2004-01-01
Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.
Evidence of Urban Precipitation Anomalies from Satellite and Ground-Based Measurements
NASA Technical Reports Server (NTRS)
Shepherd, J. M.; Manyin, M.; Negri, A.
2004-01-01
Urbanization is one of the extreme cases of land use change. Most of world s population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025,60% of the world s population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause- effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.
How Cities Make Their Own Weather
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall
2004-01-01
Urbanization is one of the extreme cases of land use change. Most of world's population has moved to urban areas. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in d e near future. It is estimated that by the year 2025, 60% of the world's population will live in cities. Human activity in urban environments also alters weather and climate processes. However, our understanding of urbanization on the total Earth-weather-climate system is incomplete. Recent literature continues to provide evidence that anomalies in precipitation exist over and downwind of major cities. Current and future research efforts are actively seeking to verify these literature findings and understand potential cause-effect relationships. The novelty of this study is that it utilizes rainfall data from multiple satellite data sources (e.g. TRMM precipitation radar, TRMM-geosynchronous-rain gauge merged product, and SSM/I) and ground-based measurements to identify spatial anomalies and temporal trends in precipitation for cities around the world. We will also present results from experiments using a regional atmospheric-land surface modeling system. Early results will be presented and placed within the context of weather prediction, climate assessment, and societal applications.