Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O& #x27; Brien, James E.
2013-03-05
Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.
Carbon-Coated Current Collectors for High-Power Li-ion Secondary Batteries III
2013-12-02
surface. Electron-performance for use modified Al foil as current collector of the cathode. LiFePO4 (LFPO) was used as active materials for test...kinds of current collectors were shown in Fig. 4. It shows the rate capacity of LiFePO4 (LFPO) get poorer when using PAT-Al as current collector, and...commercial LiFePO4 (Ale84) on different current collector Figure 4. Rate capacities of LFPO electrodes with different current collectors. 0 20
Electrochemical cell having cylindrical electrode elements
Nelson, Paul A.; Shimotake, Hiroshi
1982-01-01
A secondary, high temperature electrochemical cell especially adapted for lithium alloy negative electrodes, transition metal chalcogenide positive electrodes and alkali metal halide or alkaline earth metal halide electrolyte is disclosed. The cell is held within an elongated cylindrical container in which one of the active materials is filled around the outside surfaces of a plurality of perforate tubular current collectors along the length of the container. Each of the current collector tubes contain a concentric tubular layer of electrically insulative ceramic as an interelectrode separator. The active material of opposite polarity in elongated pin shape is positioned longitudinally within the separator layer. A second electrically conductive tube with perforate walls can be swagged or otherwise bonded to the outer surface of the pin as a current collector and the electrically insulative ceramic layer can be coated or otherwise layered onto the outer surface of this second current collector. Alternatively, the central pin electrode can include an axial core as a current collector.
Internal-short-mitigating current collector for lithium-ion battery
NASA Astrophysics Data System (ADS)
Wang, Meng; Le, Anh V.; Noelle, Daniel J.; Shi, Yang; Meng, Y. Shirley; Qiao, Yu
2017-05-01
Mechanical abuse often causes thermal runaway of lithium-ion battery (LIB). When a LIB cell is impacted, radial cracks can be formed in the current collector, separating the electrode into petals. As separator ruptures, the petals on positive and negative electrodes may contact each other, forming internal short circuit (ISC). In this study, we conducted an experimental investigation on LIB coin cells with current collectors modified by surface notches. Our testing results showed that as the current collector contained appropriate surface notches, the cracking mode of electrode in a damaged LIB cell could be adjusted. Particularly, if a complete circumferential crack was generated, the petals would be cut off, which drastically reduced the area of electrode involved in ISC and the associated heat generation rate. A parameterized study was performed to analysis various surface-notch configurations. We identified an efficient surface-notch design that consistently led to trivial temperature increase of ISC.
Tubular solid oxide fuel cell current collector
Bischoff, Brian L.; Sutton, Theodore G.; Armstrong, Timothy R.
2010-07-20
An internal current collector for use inside a tubular solid oxide fuel cell (TSOFC) electrode comprises a tubular coil spring disposed concentrically within a TSOFC electrode and in firm uniform tangential electrical contact with the electrode inner surface. The current collector maximizes the contact area between the current collector and the electrode. The current collector is made of a metal that is electrically conductive and able to survive under the operational conditions of the fuel cell, i.e., the cathode in air, and the anode in fuel such as hydrogen, CO, CO.sub.2, H.sub.2O or H.sub.2S.
Fuel cell collector plate and method of fabrication
Braun, James C.; Zabriskie, Jr., John E.; Neutzler, Jay K.; Fuchs, Michel; Gustafson, Robert C.
2001-01-01
An improved molding composition is provided for compression molding or injection molding a current collector plate for a polymer electrolyte membrane fuel cell. The molding composition is comprised of a polymer resin combined with a low surface area, highly-conductive carbon and/or graphite powder filler. The low viscosity of the thermoplastic resin combined with the reduced filler particle surface area provide a moldable composition which can be fabricated into a current collector plate having improved current collecting capacity vis-a-vis comparable fluoropolymer molding compositions.
NASA Astrophysics Data System (ADS)
Wang, Meng; Noelle, Daniel J.; Shi, Yang; Le, Anh V.; Qiao, Yu
2018-01-01
Formation of internal short circuit (ISC) may result in catastrophic thermal runaway of lithium-ion battery (LIB). Among LIB cell components, direct contact between cathode and anode current collectors is most critical to the ISC behavior, yet is still relatively uninvestigated. In the current study, we analyze the effect of heterogeneity of current collector on the temperature increase of LIB cells subjected to mechanical abuse. The cathode current collector is modified by surface notches, so that it becomes effectively brittle and the ISC site can be isolated. Results from impact tests on LIB cells with modified current collectors suggest that their temperature increase can be negligible. The critical parameters include the failure strain and the failure work of modified current collector, both of which are related to the notch depth.
Basu, Swastik; Suresh, Shravan; Ghatak, Kamalika; Bartolucci, Stephen F; Gupta, Tushar; Hundekar, Prateek; Kumar, Rajesh; Lu, Toh-Ming; Datta, Dibakar; Shi, Yunfeng; Koratkar, Nikhil
2018-04-25
High specific capacity anode materials such as silicon (Si) are increasingly being explored for next-generation, high performance lithium (Li)-ion batteries. In this context, Si films are advantageous compared to Si nanoparticle based anodes since in films the free volume between nanoparticles is eliminated, resulting in very high volumetric energy density. However, Si undergoes volume expansion (contraction) under lithiation (delithiation) of up to 300%. This large volume expansion leads to stress build-up at the interface between the Si film and the current collector, leading to delamination of Si from the surface of the current collector. To prevent this, adhesion promotors (such as chromium interlayers) are often used to strengthen the interface between the Si and the current collector. Here, we show that such approaches are in fact counter-productive and that far better electrochemical stability can be obtained by engineering a van der Waals "slippery" interface between the Si film and the current collector. This can be accomplished by simply coating the current collector surface with graphene sheets. For such an interface, the Si film slips with respect to the current collector under lithiation/delithiation, while retaining electrical contact with the current collector. Molecular dynamics simulations indicate (i) less stress build-up and (ii) less stress "cycling" on a van der Waals slippery substrate as opposed to a fixed interface. Electrochemical testing confirms more stable performance and much higher Coulombic efficiency for Si films deposited on graphene-coated nickel (i.e., slippery interface) as compared to conventional nickel current collectors.
Positive electrode current collector for liquid metal cells
Shimotake, Hiroshi; Bartholme, Louis G.
1984-01-01
A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.
Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili
2010-08-27
Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 microg cm(-2)), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co(3)O(4) or Mn(2)O(3) nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (approximately 500 F g(-1), including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g(-1) at 155 A g(-1)).
NASA Astrophysics Data System (ADS)
Zhou, Ruifeng; Meng, Chuizhou; Zhu, Feng; Li, Qunqing; Liu, Changhong; Fan, Shoushan; Jiang, Kaili
2010-08-01
Nanoporous current collectors for supercapacitors have been fabricated by cross-stacking super-aligned carbon nanotube (SACNT) films as a replacement for heavy conventional metallic current collectors. The CNT-film current collectors have good conductivity, extremely low density (27 µg cm - 2), high specific surface area, excellent flexibility and good electrochemical stability. Nanosized active materials such as NiO, Co3O4 or Mn2O3 nanoparticles can be directly synthesized on the SACNT films by a straightforward one-step, in situ decomposition strategy that is both efficient and environmentally friendly. These composite films can be integrated into a pseudo-capacitor that does not use metallic current collectors, but nevertheless shows very good performance, including high specific capacitance (~500 F g - 1, including the current collector mass), reliable electrochemical stability (<4.5% degradation in 2500 cycles) and a very high rate capability (245 F g - 1 at 155 A g - 1).
NASA Astrophysics Data System (ADS)
Sung, Min-Feng; Kuan, Yean-Der; Chen, Bing-Xian; Lee, Shi-Min
The direct methanol fuel cell (DMFC) is suitable for portable applications. Therefore, a light weight and small size is desirable. The main objective of this paper is to design and fabricate a light weight current collector for DMFC usage. The light weight current collector mainly consists of a substrate with two thin film metal layers. The substrate of the current collector is an FR4 epoxy plate. The thin film metal layers are accomplished by the thermo coater technique to coat metal powders onto the substrate surfaces. The developed light weight current collectors are further assembled to a single cell DMFC test fixture to measure the cell performance. The results show that the proposed current collectors could even be applied to DMFCs because they are light, thin and low cost and have potential for mass production.
Huang, Yilun; Li, Yuyao; Gong, Qianming; Zhao, Guanlei; Zheng, Pengjie; Bai, Junfei; Gan, Jianning; Zhao, Ming; Shao, Yang; Wang, Dazhi; Liu, Lei; Zou, Guisheng; Zhuang, Daming; Liang, Ji; Zhu, Hongwei; Nan, Cewen
2018-05-16
Aluminum (Al) current collector is one of the most important components of supercapacitors, and its performance has vital effects on the electrochemical performance and cyclic stability of supercapacitors. In the present work, a scalable and low-cost, yet highly efficient, picosecond laser processing method of Al current collectors was developed to improve the overall performance of supercapacitors. The laser treatment resulted in hierarchical micro-nanostructures on the surface of the commercial Al foil and reduced the surface oxygen content of the foil. The electrochemical performance of the Al foil with the micro-nanosurface structures was examined in the symmetrical activated carbon-based coin supercapacitors with an organic electrolyte. The results suggest that the laser-treated Al foil (laser-Al) increased the capacitance density of supercapacitors up to 110.1 F g -1 and promoted the rate capability due to its low contact resistance with the carbonaceous electrode and high electrical conductivity derived from its larger specific surface areas and deoxidized surface. In addition, the capacitor with the laser-Al current collector exhibited high cyclic stability with 91.5% capacitance retention after 10 000 cycles, 21.3% higher than that with pristine-Al current collector due to its stronger bonding with the carbonaceous electrode that prevented any delamination during aging. Our work has provided a new strategy for improving the electrochemical performance of supercapacitors.
NASA Technical Reports Server (NTRS)
Jones, C. B.; Smetana, F. O.
1979-01-01
It was found that if the upper and lower ends of a collector were opened, large free convention currents may be set up between the collector surface and the cover glass(es) which can result in appreciable heat rejection. If the collector is so designed that both plates surfaces are exposed to convection currents when the upper and lower ends of the collector enclosure are opened, the heat rejection rate is 300 watts sq m when the plate is 13 C above ambient. This is sufficient to permit a collector array designed to provide 100 percent of the heating needs of a home to reject the accumulated daily air conditioning load during the course of a summer night. This also permits the overall energy requirements for cooling to be reduced by at least 15 percent and shift the load on the utility entirely to the nighttime hours.
Planar fuel cell utilizing nail current collectors for increased active surface area
George, Thomas J.; Meacham, G. B. Kirby
2002-03-26
A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.
Planar fuel cell utilizing nail current collectors for increased active surface area
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Thomas J.; Meacham, G.B. Kirby
1999-11-26
A plurality of nail current collector members are useful in the gas flow passages of an electrochemical device to optimize the active surfaces of the device and to provide structural support. In addition, the thicknesses of cathode and anode layers within the electrochemical device are varied according to current flow through the device to reduce resistance and increase operating efficiency.
Aqueous processing of composite lithium ion electrode material
Li, Jianlin; Armstrong, Beth L.; Daniel, Claus; Wood, III, David L.
2017-06-20
A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.
Aqueous processing of composite lithium ion electrode material
Li, Jianlin; Armstrong, Beth L; Daniel, Claus; Wood, III, David L
2015-02-17
A method of making a battery electrode includes the steps of dispersing an active electrode material and a conductive additive in water with at least one dispersant to create a mixed dispersion; treating a surface of a current collector to raise the surface energy of the surface to at least the surface tension of the mixed dispersion; depositing the dispersed active electrode material and conductive additive on a current collector; and heating the coated surface to remove water from the coating.
Beta particle monitor for surfaces
MacArthur, Duncan W.
1997-01-01
A beta radiation detector which is capable of reliably detecting beta radiation emitted from a surface. An electrically conductive signal collector is adjustably mounted inside an electrically conductive enclosure which may define a single large opening for placing against a surface. The adjustable mounting of the electrically conductive signal collector can be based on the distance from the surface or on the expected beta energy range. A voltage source is connected to the signal collector through an electrometer or other display means for creating an electric field between the signal collector and the enclosure. Air ions created by the beta radiation are collected and the current produced is indicated on the electrometer or other display means.
Beta particle monitor for surfaces
MacArthur, D.W.
1997-10-21
A beta radiation detector which is capable of reliably detecting beta radiation emitted from a surface. An electrically conductive signal collector is adjustably mounted inside an electrically conductive enclosure which may define a single large opening for placing against a surface. The adjustable mounting of the electrically conductive signal collector can be based on the distance from the surface or on the expected beta energy range. A voltage source is connected to the signal collector through an electrometer or other display means for creating an electric field between the signal collector and the enclosure. Air ions created by the beta radiation are collected and the current produced is indicated on the electrometer or other display means. 2 figs.
Hatch, George L.; Brummond, William A.; Barrus, Donald M.
1986-01-01
A temperature responsive thermionic gas switch having folded electron emitting surfaces. An ionizable gas is located between the emitter and an interior surface of a collector, coaxial with the emitter. In response to the temperature exceeding a predetermined level, sufficient electrons are derived from the emitter to cause the gas in the gap between the emitter and collector to become ionized, whereby a very large increase in current in the gap occurs. Due to the folded emitter surface area of the switch, increasing the "on/off" current ratio and adjusting the "on" current capacity is accomplished.
Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.
2016-07-28
Here, there is a strong incentive for increasing the operation voltage of Li-ion cells above 4.5 V in order to increase the density of stored energy. Aluminum is an inexpensive, lightweight metal that is commonly used as a positive electrode current collector in these cells. Imide LiX salts, such as lithium bis(trifluoromethylsulfonyl)imide (X = TFSI), and lithium bis(fluorosulfonyl)imide (X = FSI), are chemically stable on the energized lithiated transition metal oxide electrodes, but their presence in the electrolyte causes rapid anodic dissolution and pitting of Al current collectors at potentials exceeding 4.0 V versus Li/Li +. For LiBF 4 andmore » LiPF 6, the release of HF near the energized surfaces passivates the exposed Al metal, inhibiting this pitting corrosion, but it also causes the gradual degradation of the cathode active material, negating this important advantage. Here we report that in certain electrolytes containing fluorinated carbonate solvents and LiX salts, the threshold voltage for safe operation of Al current collectors can be increased to 5.5 V versus Li/Li +. Interestingly, the most efficient solvent also facilitates the formation of an insoluble gel when AlX 3 is introduced into this solvent. We suggest that this solvent promotes the aggregation of coordination polymers of AlX 3 at the exposed Al surface that isolate this surface from the electrolyte, thereby preventing further Al dissolution and corrosion. Other examples of Al collector protection may also involve this mechanism. Our study suggests that such “allotropic control” could be a way of widening the operation window of Li-ion cells without electrode deterioration, Al current collector corrosion, and electrolyte breakdown.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkrob, Ilya A.; Pupek, Krzysztof Z.; Abraham, Daniel P.
Here, there is a strong incentive for increasing the operation voltage of Li-ion cells above 4.5 V in order to increase the density of stored energy. Aluminum is an inexpensive, lightweight metal that is commonly used as a positive electrode current collector in these cells. Imide LiX salts, such as lithium bis(trifluoromethylsulfonyl)imide (X = TFSI), and lithium bis(fluorosulfonyl)imide (X = FSI), are chemically stable on the energized lithiated transition metal oxide electrodes, but their presence in the electrolyte causes rapid anodic dissolution and pitting of Al current collectors at potentials exceeding 4.0 V versus Li/Li +. For LiBF 4 andmore » LiPF 6, the release of HF near the energized surfaces passivates the exposed Al metal, inhibiting this pitting corrosion, but it also causes the gradual degradation of the cathode active material, negating this important advantage. Here we report that in certain electrolytes containing fluorinated carbonate solvents and LiX salts, the threshold voltage for safe operation of Al current collectors can be increased to 5.5 V versus Li/Li +. Interestingly, the most efficient solvent also facilitates the formation of an insoluble gel when AlX 3 is introduced into this solvent. We suggest that this solvent promotes the aggregation of coordination polymers of AlX 3 at the exposed Al surface that isolate this surface from the electrolyte, thereby preventing further Al dissolution and corrosion. Other examples of Al collector protection may also involve this mechanism. Our study suggests that such “allotropic control” could be a way of widening the operation window of Li-ion cells without electrode deterioration, Al current collector corrosion, and electrolyte breakdown.« less
Cathode Characterization with Steel and Copper Collector Bars in an Electrolytic Cell
NASA Astrophysics Data System (ADS)
Das, Subrat; Morsi, Yos; Brooks, Geoffrey
2013-12-01
This article presents finite-element method simulation results of current distribution in an aluminum electrolytic cell. The model uses one quarter of the cell as a computational domain assuming longitudinal (along the length of the cell) and transverse axes of symmetries. The purpose of this work is to closely examine the impact of steel and copper collector bars on the cell current distribution. The findings indicated that an inclined steel collector bar (φ = 1°) can save up to 10-12 mV from the cathode lining in comparison to a horizontal 100 mm × 150-mm steel collector bar. It is predicted that a copper collector bar has a much higher potential of saving cathode voltage drop (CVD) and has a greater impact on the overall current distribution in the cell. A copper collector bar with 72% of cathode length and size of 100 mm × 150 mm is predicted to have more than 150 mV savings in cathode lining. In addition, a significant improvement in current distribution over the entire cathode surface is achieved when compared with a similar size of steel collector bar. There is a reduction of more than 70% in peak current density value due to the higher conductivity of copper. Comparisons between steel and copper collector bars with different sizes are discussed in terms CVD and current density distribution. The most important aspect of the findings is to recognize the influence of copper collector bars on the current distribution in molten metal. Lorentz fields are evaluated at different sizes of steel and copper collector bars. The simulation predicts that there is 50% decrease in Lorentz force due to the improvement in current distribution in the molten metal.
Conducting polymer ultracapacitor
Shi, Steven Z.; Davey, John R.; Gottesfeld, Shimshon; Ren, Xiaoming
2002-01-01
A sealed ultracapacitor assembly is formed with first and second electrodes of first and second conducting polymers electrodeposited on porous carbon paper substrates, where the first and second electrodes each define first and second exterior surfaces and first and second opposing surfaces. First and second current collector plates are bonded to the first and second exterior surfaces, respectively. A porous membrane separates the first and second opposing surfaces, with a liquid electrolyte impregnating the insulating membrane. A gasket formed of a thermoplastic material surrounds the first and second electrodes and seals between the first and second current collector plates for containing the liquid electrolyte.
Characterisation of nanomaterial hydrophobicity using engineered surfaces
NASA Astrophysics Data System (ADS)
Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal
2017-03-01
Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.
Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng; Li, Nian-Wu; Guo, Yu-Guo
2015-01-01
Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li. Li anode is accommodated in the 3D structure without uncontrollable Li dendrites. With the growth of Li dendrites being effectively suppressed, the Li anode in the 3D current collector can run for 600 h without short circuit and exhibits low voltage hysteresis. The exceptional electrochemical performance of the Li-metal anode in the 3D current collector highlights the importance of rational design of current collectors and reveals a new avenue for developing Li anodes with a long lifespan. PMID:26299379
NASA Astrophysics Data System (ADS)
Yehezkel, Shani; Auinat, Mahmud; Sezin, Nina; Starosvetsky, David; Ein-Eli, Yair
2016-04-01
Carbon nanotubes (CNT) fabrics were studied and evaluated as anode current collectors, replacing the traditional copper foil current collector in Li-ion batteries. Glavanostatic measurements reveal high values of irreversible capacities (as high as 28%), resulted mainly from the formation of the solid electrolyte interphase (SEI) layer at the CNT fabric surface. Various pre-treatments to the CNT fabric prior to active anode material loading have shown that the lowest irreversible capacity is achieved by immersing and washing the CNT fabric with iso-propanol (IPA), which dramatically modified the fabric surface. Additionally, the use of very thin CNT fabrics (5 μm) results in a substantial irreversible capacity minimization. A combination of IPA rinse action and utilization of the thinnest CNT fabric provides the lowest irreversible capacity of 13%. The paper describes innovative and rather simple techniques towards a complete implementation of CNT fabric as an anode current collector in Li-ion batteries, instead of the relatively heavy and expensive copper foil, enabling an improvement in the gravimetric and volumetric energy densities of such advanced batteries.
Zhang, Daohong; Wu, Yunlong; Li, Ting; Huang, Yin; Zhang, Aiqing; Miao, Menghe
2015-11-25
Threadlike linear supercapacitors have demonstrated high potential for constructing fabrics to power electronic textiles (eTextiles). To improve the cyclic electrochemical performance and to produce power fabrics large enough for practical applications, a current collector has been introduced into the linear supercapcitors to transport charges produced by active materials along the length of the supercapacitor with high efficiency. Here, we first screened six candidate metal filaments (Pt, Au, Ag, AuAg, PtCu, and Cu) as current collectors for carbon nanotube (CNT) yarn-based linear supercapacitors. Although all of the metal filaments significantly improved the electrochemical performance of the linear supercapacitor, two supercapacitors constructed from Cu and PtCu filaments, respectively, demonstrate far better electrochemical performance than the other four supercapacitors. Further investigation shows that the surfaces of the two Cu-containing filaments are oxidized by the surrounding polymer electrolyte in the electrode. While the unoxidized core of the Cu-containing filaments remains highly conductive and functions as a current collector, the resulting CuO on the surface is an electrochemically active material. The linear supercapacitor architecture incorporating dual active materials CNT + Cu extends the potential window from 1.0 to 1.4 V, leading to significant improvement to the energy density and power density.
NASA Astrophysics Data System (ADS)
Wang, Meng; Shi, Yang; Noelle, Daniel J.; Le, Anh V.; Qiao, Yu
2017-10-01
In a lithium-ion battery (LIB), mechanical abuse often leads to internal short circuits (ISC) that trigger thermal runaway. We investigated a thermal-runaway mitigation (TRM) technique using a modified current collector. By generating surface grooves on the current collector, the area of electrodes directly involved in ISC could be largely reduced, which decreased the ISC current. The TRM mechanism took effect immediately after the LIB was damaged. The testing data indicate that the groove width is a critical factor. With optimized groove width, this technique may enable robust and multifunctional design of LIB cells for large-scale energy-storage units.
Method for making a high current fiber brush collector
NASA Astrophysics Data System (ADS)
Scuro, S. J.
1986-05-01
An axial-type homopolar motor having high density, high current fiber brush collectors affording efficient, low contact resistance and low operating temperatures is discussed. The collectors include a ring of concentric row of brushes in equally spaced beveled holes soldered in place using a fixture for heating the ring to just below the solder melting point at a soldering iron for the local application of additional heat at each brush. Prior to soldering, an oxide film is formed on the surfaces of the brushes and ring, and the bevels are burnished to form a wetting surface. Flux applied with the solder at each bevel removes to an effective soldering depth the oxide film on the brushes and the holes.
Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei
2018-05-15
Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors.
Wang, Rubing; Qian, Yuting; Li, Weiwei; Zhu, Shoupu; Liu, Fengkui; Guo, Yufen; Chen, Mingliang; Li, Qi; Liu, Liwei
2018-01-01
Graphene has been widely used in the active material, conductive agent, binder or current collector for supercapacitors, due to its large specific surface area, high conductivity, and electron mobility. However, works simultaneously employing graphene as conductive agent and current collector were rarely reported. Here, we report improved activated carbon (AC) electrodes (AC@G@NiF/G) simultaneously combining chemical vapor deposition (CVD) graphene-modified nickel foams (NiF/Gs) current collectors and high quality few-layer graphene conductive additive instead of carbon black (CB). The synergistic effect of NiF/Gs and graphene additive makes the performances of AC@G@NiF/G electrodes superior to those of electrodes with CB or with nickel foam current collectors. The performances of AC@G@NiF/G electrodes show that for the few-layer graphene addition exists an optimum value around 5 wt %, rather than a larger addition of graphene, works out better. A symmetric supercapacitor assembled by AC@G@NiF/G electrodes exhibits excellent cycling stability. We attribute improved performances to graphene-enhanced conductivity of electrode materials and NiF/Gs with 3D graphene conductive network and lower oxidation, largely improving the electrical contact between active materials and current collectors. PMID:29762528
Carbon-Coated Current Collectors for High-Power Lithium-Ion Secondary Batteries
2011-09-20
foils have been used as the current collectors for LiFePO4 and Li4Ti5O12. It was found that the C-coating has remarkably enhance the power performance...chemical vapor deposition (T-CVD) to produce surface C-coating, and the resulting foils were used as current collectors for LiFePO4 and Li4Ti5O12. The C...2 mm x 2 mm. Two types of active electrode materials have been used for test, and they are LiFePO4 (LFPO) and Li4Ti5O12 (LTO) as cathode and anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lihong, E-mail: huang.lihong@foxmail.com; Min, Zhonghua; Zhang, Qinyong
2015-06-15
Highlights: • We achieved a reversible capacity of 415 mAh g{sup −1} after 30 cycles for α-Fe{sub 2}O{sub 3} electrode in Li-ion battery. • Better electrical performance was obtained when using Cu foam as current collector. • As current collector for α-Fe{sub 2}O{sub 3} electrode, Cu foam is better than Cu foil and Ni foam. • It could avoid the active materials falling off from the current collector during cycling. • It is owe to smaller surface film resistance, charge-transfer resistance, etc. - Abstract: In this work, we reported a simple synthesis of submicron α-Fe{sub 2}O{sub 3} with rod-like structure.more » When it evaluated as electrode material for lithium ion battery, comparing with Cu foil and Ni foam, the as-prepared α-Fe{sub 2}O{sub 3} electrodes with Cu foam current collector exhibited higher reversible capacity of 415 mAh g{sup −1} and more stable cycle performance after 30 cycles. Comparative researches on electrochemical performances of the α-Fe{sub 2}O{sub 3} employing different current collectors (Cu foil, Cu foam and Ni foam) were discussed here in detail. According to our results, the improved electrochemical behaviors of α-Fe{sub 2}O{sub 3} electrode with Cu foam current collector could be attributed to its particular electrode structure, i.e., porous, good electric conductivity, closed adhere to the electrode materials. Just because of that, it may make sure an easy accessibility of electrolytes and fast transportation of lithium ions, importantly, it could avoid the active materials falling off from the current collector on account of volume expansion.« less
Zou, Yuqin; Wang, Shuangyin
2015-07-07
Flexible energy storage devices are highly demanded for various applications. Carbon cloth (CC) woven by carbon fibers (CFs) is typically used as electrode or current collector for flexible devices. The low surface area of CC and the presence of big gaps (ca. micro-size) between individual CFs lead to poor performance. Herein, we interconnect individual CFs through the in-situ exfoliated graphene with high surface area by the electrochemical intercalation method. The interconnected CFs are used as both current collector and electrode materials for flexible supercapacitors, in which the in-situ exfoliated graphene act as active materials and conductive "binders". The in-situ electrochemical intercalation technique ensures the low contact resistance between electrode (graphene) and current collector (carbon cloth) with enhanced conductivity. The as-prepared electrode materials show significantly improved performance for flexible supercapacitors.
Optimal nonimaging integrated evacuated solar collector
NASA Astrophysics Data System (ADS)
Garrison, John D.; Duff, W. S.; O'Gallagher, Joseph J.; Winston, Roland
1993-11-01
A non imaging integrated evacuated solar collector for solar thermal energy collection is discussed which has the lower portion of the tubular glass vacuum enveloped shaped and inside surface mirrored to optimally concentrate sunlight onto an absorber tube in the vacuum. This design uses vacuum to eliminate heat loss from the absorber surface by conduction and convection of air, soda lime glass for the vacuum envelope material to lower cost, optimal non imaging concentration integrated with the glass vacuum envelope to lower cost and improve solar energy collection, and a selective absorber for the absorbing surface which has high absorptance and low emittance to lower heat loss by radiation and improve energy collection efficiency. This leads to a very low heat loss collector with high optical collection efficiency, which can operate at temperatures up to the order of 250 degree(s)C with good efficiency while being lower in cost than current evacuated solar collectors. Cost estimates are presented which indicate a cost for this solar collector system which can be competitive with the cost of fossil fuel heat energy sources when the collector system is produced in sufficient volume. Non imaging concentration, which reduces cost while improving performance, and which allows efficient solar energy collection without tracking the sun, is a key element in this solar collector design.
Theoretical model of gravitational perturbation of current collector axisymmetric flow field
NASA Astrophysics Data System (ADS)
Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1989-03-01
Some designs of liquid metal collectors in homopolar motors and generators are essentially rotating liquid metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. The role of gravity in modifying this ejection instability is investigated. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical current collector ejection values neglecting gravity effects. The derivation of the mathematical model which determines the perturbation of the liquid metal base flow due to gravitational effects is documented. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector. A rederivation of the hydrodynamic instability threshold of a liquid metal current collector is presented.
Capacitors with low equivalent series resistance
NASA Technical Reports Server (NTRS)
Lakeman, Charles D. E. (Inventor); Fuge, Mark (Inventor); Fleig, Patrick Franz (Inventor)
2011-01-01
An electric double layer capacitor (EDLC) in a coin or button cell configuration having low equivalent series resistance (ESR). The capacitor comprises mesh or other porous metal that is attached via conducting adhesive to one or both the current collectors. The mesh is embedded into the surface of the adjacent electrode, thereby reducing the interfacial resistance between the electrode and the current collector, thus reducing the ESR of the capacitor.
High efficiency thermionic converter studies
NASA Technical Reports Server (NTRS)
Huffman, F. N.; Sommer, A. H.; Balestra, C. L.; Briere, D. P.; Oettinger, P. E.
1976-01-01
The objective is to improve thermionic converter performance by means of reduced interelectrode losses, greater emitter capabilities, and lower collector work functions until the converter performance level is suitable for out-of-core space reactors and radioisotope generators. Electrode screening experiments have identified several promising collector materials. Back emission work function measurements of a ZnO collector in a thermionic diode have given values less than 1.3 eV. Diode tests were conducted over the range of temperatures of interest for space power applications. Enhanced mode converter experiments have included triodes operated in both the surface ionization and plasmatron modes. Pulsed triodes were studied as a function of pulse length, pulse potential, inert gas fill pressure, cesium pressure, spacing, emitter temperature and collector temperature. Current amplifications (i.e., mean output current/mean grid current) of several hundred were observed up to output current densities of one amp/sq cm. These data correspond to an equivalent arc drop less than 0.1 eV.
Electrochemical Properties of Si Film Electrodes Containing TiNi Thin-Film Current Collectors
NASA Astrophysics Data System (ADS)
Im, Yeon-min; Noh, Jung-pil; Cho, Gyu-bong; Nam, Tea-hyun
2018-03-01
A 50.3Ti-49.7Ni thin film fabricated by DC sputtering was employed as a current collector of Si film electrode. The structural and electrochemical properties of Si/TiNi film electrode were compared with those of a Si/Cu film electrode. The TiNi film with cluster-like structures composed of B2 austenitic phase at room temperature displayed the high electrochemical stability for Li ions. The amorphous Si film deposited on the TiNi film also consisted of cluster-like structures on the surface. The Si film grown on the TiNi film current collector (Si/TiNi electrode) demonstrated a high columbic efficiency of 87% at the first cycle (363 μAh/cm2 of charge capacity and 314 μAh/cm2 of discharge capacity). The Si/TiNi electrode exhibited better electrochemical properties in terms of capacity, cycle performance, and structural stability compared to the Si electrode with a conventional Cu foil current collector.
Porous graphene current collectors filled with silicon as high-performance lithium battery anode
NASA Astrophysics Data System (ADS)
Ababtain, Khalid; Babu, Ganguli; Susarla, Sandhya; Gullapalli, Hemtej; Masurkar, Nirul; Ajayan, Pulickel M.; Mohana Reddy Arava, Leela
2018-01-01
Despite the massive success for high energy density, the charge-discharge current rate performance of the lithium-ion batteries are still a major concern owing to inherent sluggish Li-ion kinetics. Herein, we demonstrate three-dimensional porous electrodes engineered on highly conductive graphene current collectors to enhance the Li-ion conductivity, thereby c-rate performance. Such high-quality graphene provides surface area for loading a large amount of electrochemically active material and strong adhesion with the electrode. The synergism of porous structure and conductive current collector enables us to realize high-performance new-generation silicon anodes with a high energy density of 1.8 mAh cm-2. Further, silicon electrodes revealed with excellent current rates up to 5C with a capacity of 0.37 mAh cm-2 for 500 nm planar thickness.
Meister, Paul; Qi, Xin; Kloepsch, Richard; Krämer, Elisabeth; Streipert, Benjamin; Winter, Martin; Placke, Tobias
2017-02-22
The inability of imide salts to form a sufficiently effective passivation layer on aluminum current collectors is one of the main obstacles that limit their broad application in electrochemical energy-storage systems. However, under certain circumstances, the use of electrolytes with imide electrolyte salts in combination with the aluminum current collector is possible. In this contribution, the stability of the aluminum current collector in electrolytes containing either lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) or lithium fluorosulfonyl-(trifluoromethanesulfonyl) imide (LiFTFSI) as conductive salt was investigated by electrochemical techniques, that is, cyclic voltammetry (CV) and chronocoulometry (CC) in either room-temperature ionic liquids or in ethyl methyl sulfone. In particular, the influence of the solvent, operating temperature, and thickness of the native oxide layer of aluminum on the pit formation at the aluminum current collector surface was studied by means of scanning electron microscopy. In general, a more pronounced aluminum dissolution and pit formation was found at elevated temperatures as well as in solvents with a high dielectric constant. An enhanced thickness of the native aluminum oxide layer increases the oxidative stability versus dissolution. Furthermore, we found a different reaction rate depending on dwell time at the upper cut-off potential for aluminum dissolution in TFSI- and FTFSI-based electrolytes during the CC measurements; the use of LiFTFSI facilitated the dissolution of aluminum compared to LiTFSI. Overall, the mechanism of anodic aluminum dissolution is based on: i) the attack of the Al 2 O 3 surface by acidic species and ii) the dissolution of bare aluminum into the electrolyte, which, in turn, is influenced by the electrolyte's dielectric constant. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jeżowski, P.; Nowicki, M.; Grzeszkowiak, M.; Czajka, R.; Béguin, F.
2015-04-01
The main purpose of the study was to increase the surface roughness of stainless steel 301 current collectors by etching, in order to improve the electrochemical performance of electrical double-layer capacitors (EDLC) in 1 mol L-1 lithium sulphate electrolyte. Etching was realized in 1:3:30 (HNO3:HCl:H2O) solution with times varying up to 10 min. For the considered 15 μm thick foil and a mass loss around 0.4 wt.%, pitting was uniform, with diameter of pits ranging from 100 to 300 nm. Atomic force microscopy (AFM) showed an increase of average surface roughness (Ra) from 5 nm for the as-received stainless steel foil to 24 nm for the pitted material. Electrochemical impedance spectroscopy realized on EDLCs with coated electrodes either on as-received or pitted foil in 1 mol L-1 Li2SO4 gave equivalent distributed resistance (EDR) of 8 Ω and 2 Ω, respectively, demonstrating a substantial improvement of collector/electrode interface after pitting. Correlatively, the EDLCs with pitted collector displayed a better charge propagation and low ohmic losses even at relatively high current of 20 A g-1. Hence, chemical pitting of stainless steel current collectors is an appropriate method for optimising the performance of EDLCs in neutral aqueous electrolyte.
The importance of media roughness considerations for describing particle deposition in porous media
NASA Astrophysics Data System (ADS)
Jin, C.; Emelko, M.
2016-12-01
The morphology of media/collector surfaces (i.e., roughness) is one of the most important factors that has been recognized for decades; however, literature has been, for the most part, contradictory, non-mechanistic, and non-quantitative. A one-site kinetic model for attachment/detachment using a convection-diffusion model was used to evaluate particle deposition on collector surfaces in the packed beds. Rigorous controlled experiments addressing the impacts of surface roughness on particle deposition were conducted in parallel plate and packed bed systems; they demonstrated that a) surface roughness consistently influenced colloid deposition in a nonlinear, non-monotonic manner such that a critical roughness size associated with minimum particle deposition could be identified and b) collector surface roughness and background ionic strength concurrently influenced particle deposition. Excellent agreement between experimental data and numerical simulations was found when the most current knowledge representing hydrodynamic and interfacial forces associated with collector media roughness was represented. Although surface roughness also had a non-linear, non-monotonic impact on DLVO interaction energy at all separation distances, it was inadequate for describing and simulating particle deposition on surfaces with variable roughness. Notably, this work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with non-smooth collector surfaces.
Theoretical model of gravitational perturbation of current collector axisymmetric flow field
NASA Astrophysics Data System (ADS)
Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1990-05-01
Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.
Carbon-Coated Current Collectors for High-Power Li-Ion Secondary Batteries
2012-08-29
deposition condition. Surface analysis indicates that this thin C layer does not contain interfacial Al-carbide layer. LiFePO4 electrode using this C...layer does not contain an interfacial Al-carbide layer. LiFePO4 electrode using this C-coated Al current collector exhibits higher capacity under 10 C...cathode. LiFePO4 (LFPO) was used as active materials for test, and this cathode material was purchased from Aleees company. The LFPO active layer
Ion sputter textured graphite electrode plates
NASA Technical Reports Server (NTRS)
Curren, A. N.; Forman, R.; Sovey, J. S.; Wintucky, E. G. (Inventor)
1983-01-01
A specially textured surface of pyrolytic graphite exhibits extremely low yields of secondary electrons and reduced numbers of reflected primary electrons after impingement of high energy primary electrons. Electrode plates of this material are used in multistage depressed collectors. An ion flux having an energy between 500 iV and 1000 iV and a current density between 1.0 mA/sq cm and 6.0 mA/sq cm produces surface roughening or texturing which is in the form of needles or spires. Such textured surfaces are especially useful as anode collector plates in high tube devices.
Performance evaluation of two black nickel and two black chrome solar collectors
NASA Technical Reports Server (NTRS)
Losey, R.
1977-01-01
The test program was based on the evaluation of four unique solar collectors described below: (1) black nickel collector surface with a desiccant drying bed, (2) black nickel collector surface without a desiccant drying bed, (3) black chrome collector surface with a dessicant drying bed, and (4) black chrome collector surface without a desiccant drying bed. The test program included three distinct phases: Initial performance evaluation, natural environmental aging, and post-aging performance evaluation. Results of Phase III testing conclusively indicated a higher normalized efficiency for Black Chrome surfaces when compared to Black Nickel.
NASA Technical Reports Server (NTRS)
Ramins, P.; Ebihara, B. T.
1986-01-01
Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.
Method of making super capacitor with fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Joseph Collin; Kaschmitter, James
2016-08-23
An electrical cell apparatus includes a first current collector made of a multiplicity of fibers, a second current collector spaced from the first current collector; and a separator disposed between the first current collector and the second current collector. The fibers are contained in a foam.
Perry, Nicola H; Kim, Jae Jin; Tuller, Harry L
2018-01-01
We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi 0.65 Fe 0.35 O 3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe 4+ ) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The k chem values obtained by OTR were significantly lower than the AC-IS derived k chem values and k q values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in k chem and k q values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived k chem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ , and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films.
Perry, Nicola H.; Kim, Jae Jin; Tuller, Harry L.
2018-01-01
Abstract We compare approaches to measure oxygen surface exchange kinetics, by simultaneous optical transmission relaxation (OTR) and AC-impedance spectroscopy (AC-IS), on the same mixed conducting SrTi0.65Fe0.35O3-x film. Surface exchange coefficients were evaluated as a function of oxygen activity in the film, controlled by gas partial pressure and/or DC bias applied across the ionically conducting yttria-stabilized zirconia substrate. Changes in measured light transmission through the film over time (relaxations) resulted from optical absorption changes in the film corresponding to changes in its oxygen and oxidized Fe (~Fe4+) concentrations; such relaxation profiles were successfully described by the equation for surface exchange-limited kinetics appropriate for the film geometry. The kchem values obtained by OTR were significantly lower than the AC-IS derived kchem values and kq values multiplied by the thermodynamic factor (bulk or thin film), suggesting a possible enhancement in k by the metal current collectors (Pt, Au). Long-term degradation in kchem and kq values obtained by AC-IS was also attributed to deterioration of the porous Pt current collector, while no significant degradation was observed in the optically derived kchem values. The results suggest that, while the current collector might influence measurements by AC-IS, the OTR method offers a continuous, in situ, and contact-free method to measure oxygen exchange kinetics at the native surfaces of thin films. PMID:29511391
EUV near normal incidence collector development at SAGEM
NASA Astrophysics Data System (ADS)
Mercier Ythier, R.; Bozec, X.; Geyl, R.; Rinchet, A.; Hecquet, Christophe; Ravet-Krill, Marie-Françoise; Delmotte, Franck; Sassolas, Benoît; Flaminio, Raffaele; Mackowski, Jean-Marie; Michel, Christophe; Montorio, Jean-Luc; Morgado, Nazario; Pinard, Laurent; Roméo, Elodie
2008-03-01
Through its participation to European programs, SAGEM has worked on the design and manufacturing of normal incidence collectors for EUV sources. By opposition to grazing incidence, normal incidence collectors are expected to collect more light with a simpler and cheaper design. Designs are presented for the two current types of existing sources: Discharge Produced Plasma (DPP) and Laser Produced Plasma (LPP). Collection efficiency is calculated in both cases. It is shown that these collectors can achieve about 10 % efficiency for DPP sources and 40 % for LPP sources. SAGEM works on the collectors manufacturability are also presented, including polishing, coating and cooling. The feasibility of polishing has been demonstrated with a roughness better than 2 angstroms obtained on several materials (glass, silicon, Silicon Carbide, metals...). SAGEM is currently working with the Institut d'Optique and the Laboratoire des Materiaux Avancés on the design and the process of EUV coatings for large mirrors. Lastly, SAGEM has studied the design and feasibility of an efficient thermal control, based on a liquid cooling through slim channels machined close to the optical surface.
Integrated main rail, feed rail, and current collector
Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.
1994-01-01
A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.
Thermal management for high-capacity large format Li-ion batteries
Wang, Hsin; Kepler, Keith Douglas; Pannala, Sreekanth; Allu, Srikanth
2017-05-30
A lithium ion battery includes a cathode in electrical and thermal connection with a cathode current collector. The cathode current collector has an electrode tab. A separator is provided. An anode is in electrical and thermal connection with an anode current collector. The anode current collector has an electrode tab. At least one of the cathode current collector and the anode current collector comprises a thermal tab for heat transfer with the at least one current collector. The thermal tab is separated from the electrode tab. A method of operating a battery is also disclosed.
A quality monitor and monitoring technique employing optically stimulated electron emission
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Welch, Christopher S. (Inventor); Joe, Edmond J. (Inventor); Hefner, Bill Bryan, Jr. (Inventor)
1995-01-01
A light source directs ultraviolet light onto a test surface and a detector detects a current of photoelectrons generated by the light. The detector includes a collector which is positively biased with respect to the test surface. Quality is indicated based on the photoelectron current. The collector is then negatively biased to replace charges removed by the measurement of a nonconducting substrate to permit subsequent measurements. Also, the intensity of the ultraviolet light at a particular wavelength is monitored and the voltage of the light source varied to maintain the light a constant desired intensity. The light source is also cooled via a gas circulation system. If the test surface is an insulator, the surface is bombarded with ultraviolet light in the presence of an electron field to remove the majority of negative charges from the surface. The test surface is then exposed to an ion field until it possesses no net charge. The technique described above is then performed to assess quality.
Hobson, David O.; Snyder, Jr., William B.
1995-01-01
A method and system for manufacturing a thin-film battery and a battery structure formed with the method utilizes a plurality of deposition stations at which thin battery component films are built up in sequence upon a web-like substrate as the substrate is automatically moved through the stations. At an initial station, cathode and anode current collector film sections are deposited upon the substrate, and at another station, a thin cathode film is deposited upon the substrate so to overlie part of the cathode current collector section. At another station, a thin electrolyte film is deposited upon so as to overlie the cathode film and part of the anode current collector film, at yet another station, a thin lithium film is deposited upon so as to overlie the electrolyte film and an additional part of the anode current collector film. Such a method accommodates the winding of a layup of battery components into a spiral configuration to provide a thin-film, high capacity battery and also accommodates the build up of thin film battery components onto a substrate surface having any of a number of shapes.
Integrated main rail, feed rail, and current collector
Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.
1994-11-08
A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.
Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianyuan; Xu, Gui-Liang; Li, Yan
The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less
Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries
Ma, Tianyuan; Xu, Gui -Liang; Li, Yan; ...
2017-02-16
The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less
Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries.
Ma, Tianyuan; Xu, Gui-Liang; Li, Yan; Wang, Li; He, Xiangming; Zheng, Jianming; Liu, Jun; Engelhard, Mark H; Zapol, Peter; Curtiss, Larry A; Jorne, Jacob; Amine, Khalil; Chen, Zonghai
2017-03-02
The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable and readily undergo a deprotonation reaction that generates protons and promotes the dissolution of Al 3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.
Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tianyuan; Xu, Gui -Liang; Li, Yan
The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less
Some physicochemical aspects of water-soluble mineral flotation.
Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D
2016-09-01
Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.
High performance methanol-oxygen fuel cell with hollow fiber electrode
NASA Technical Reports Server (NTRS)
Lawson, Daniel D. (Inventor); Ingham, John D. (Inventor)
1983-01-01
A methanol/air-oxygen fuel cell including an electrode formed by open-ended ion-exchange hollow fibers having a layer of catalyst deposited on the inner surface thereof and a first current collector in contact with the catalyst layer. A second current collector external of said fibers is provided which is immersed along with the hollow fiber electrode in an aqueous electrolyte body. Upon passage of air or oxygen through the hollow fiber electrode and introduction of methanol into the aqueous electrolyte, a steady current output is obtained. Two embodiments of the fuel cell are disclosed. In the first embodiment the second metal electrode is displaced away from the hollow fiber in the electrolyte body while in the second embodiment a spiral-wrap electrode is provided about the outer surface of the hollow fiber electrode.
The influence of current collector corrosion on the performance of electrochemical capacitors
NASA Astrophysics Data System (ADS)
Wojciechowski, Jarosław; Kolanowski, Łukasz; Bund, Andreas; Lota, Grzegorz
2017-11-01
This paper discusses the effect of current collector (stainless steel 316L) corrosion on the performance of electrochemical capacitors operated in aqueous electrolytes. This topic seems to be often neglected in scientific research. The studied electrolytes were 1 M H2SO4, 1 M KI, 1 M Na2SO4, 1 M KOH and 6 M KOH. The corrosion process was investigated by means of selected direct and alternating current techniques. The surface of the current collectors as well as the corrosion products were characterised using scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy and atomic force microscopy. Stainless steel 316L in alkaline solutions is characterised by the lowest values of corrosion potentials whereas the potentials in acidic media become the most noble. Our studies show that corrosion potentials increase with decreasing pH value. This phenomenon can be explained with the formation of passive oxide films on the stainless steel current collectors. The passive oxide films are usually thicker and more porous in alkaline solutions than that in the other electrolytes. The processes occurring at the electrode/electrolyte interfaces strongly influence the working parameters of electrochemical capacitors such as voltage, working potentials of single electrodes, self-discharge as well as the internal resistance and cycling stability.
NASA Astrophysics Data System (ADS)
Salem, Talaat A.; Omar, Mohie El Din M.; El Gammal, H. A. A.
2017-11-01
Alternative clean water resources are needed in Egypt to face the current water shortage and water quality deterioration. Therefore, this research investigates the suitability of harvesting fog and rain water for irrigation using a pilot fog collector for water quantity, water quality, and economic aspects. A pilot fog collector was installed at one location at Delta Barrage, Egypt. Freeze liquid nitrogen was fixed at the back of the fiberglass sheet to increase the condensation rate. The experiment was conducted during the period from November 2015 to February 2016. In general, all physicochemical variables are observed with higher values in the majority of fog than rain water. The fog is assumed to contain higher concentrations of anthropogenic emissions. TDS in both waters collected are less than 700 mg/l at sodium content less than 60%, classifying these waters as good for various plants under most conditions. In addition, SAR calculated values are less than 3.0 in each of fog and rain water, which proves the water suitability for all irrigated agriculture. Al and Fe concentrations were found common in all samples with values less than the permissible limits of the guidelines. These metals originate from soil material, ash and metal surfaces. The sensitive heavy metals (Cd and Pb) were within the permissible limits of the guideline in fog water, indicating this water is suitable for irrigation. On the contrary, rain water that has heavy metals is not permitted in irrigation water as per the Egyptian law. As per WQI, the rain water is classified as good quality while fog is classified as medium quality. Regarding the water quantity, a significant increase in the harvested fog quantity was observed after cooling the collector surface with freeze liquid nitrogen. The current fog collector produced the lowest water quantity among different fog collectors worldwide. However, these comparative results confirmed that quantity is different from one location to another worldwide even in the same country. The cost of the unit water volume of harvested water by the current pilot collector is relatively low among different collectors worldwide. This study proves that fog harvesting in Egypt is feasible using the current pilot collector in terms of water quantity, water quality, and economy. But it recommends collection of fog at various locations and times, since both water quantity and water quality are variable in time and space. It is more or less viable solution to meet the shortage of water in Egypt.
Separator plate for a fuel cell
Petri, R.J.; Meek, J.; Bachta, R.P.; Marianowski, L.G.
1996-04-02
A separator plate is described for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced. 9 figs.
Separator plate for a fuel cell
Petri, Randy J.; Meek, John; Bachta, Robert P.; Marianowski, Leonard G.
1996-01-01
A separator plate for a fuel cell comprising an anode current collector, a cathode current collector and a main plate, the main plate disposed between the anode current collector and the cathode current collector. The anode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the anode side of the separator plate and the cathode current collector forms a flattened peripheral wet seal structure and manifold wet seal structure on the cathode side of the separator plate. In this manner, the number of components required to manufacture and assemble a fuel cell stack is reduced.
Solar collector mounting and support apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchison, J.A.
1981-12-22
A solar collector system is described of the type having a movable surface for receiving solar radiation having improved means for rotatably supporting the movable surface and for rotating the collector surface. A support axle for the collector includes a ball at one end which is carried within a cylindrical sleeve in the solar collector to support the weight of the collector. A torque transmitting arm comprising a flexible flat strip is connected at one end to the axle and at the other end to the collector surface. An improved rotational drive mechanism includes a first sprocket wheel carried onmore » the axle and a second sprocket wheel supported on a support pylon with a drive chain engaging both sprockets. A double acting piston also supported by the pylon is coupled to the chain so that the chain may be driven by a hydraulic control system to rotate the collector surfaces as required. An improved receiver tube support ring is also provided for use with the improved mounting and support apparatus to improve overall efficiency by reducing thermal losses.« less
Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm
2015-12-09
High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.
Surface-enhanced Raman scattering (SERS) dosimeter and probe
Vo-Dinh, Tuan
1995-01-01
A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devises, in probe array devices.
NASA Astrophysics Data System (ADS)
Li, Qiyuan; Zheng, Cheng; Mesgari, Sara; Hewakuruppu, Yasitha L.; Hjerrild, Natasha; Crisostomo, Felipe; Morrison, Karl; Woffenden, Albert; Rosengarten, Gary; Scott, Jason A.; Taylor, Robert A.
2015-12-01
Recent studies [1-3] have demonstrated that nanotechnology, in the form of nanoparticles suspended in water and organic liquids, can be employed to enhance solar collection via direct volumetric absorbers. However, current nanofluid solar collector experimental studies are either relevant to low-temperature flat plate solar collectors (<100 °C) [4] or higher temperature (>100 °C) indoor laboratory-scale concentrating solar collectors [1, 5]. Moreover, many of these studies involve in thermal properties of nanofluid (such as thermal conductivity) enhancement in solar collectors by using conventional selective coated steel/copper tube receivers [6], and no full-scale concentrating collector has been tested at outdoor condition by employing nanofluid absorber [2, 6]. Thus, there is a need of experimental researches to evaluate the exact performance of full-scale concentrating solar collector by employing nanofluids absorber at outdoor condition. As reported previously [7-9], a low profile (<10 cm height) solar thermal concentrating collector was designed and analysed which can potentially supply thermal energy in the 100-250 °C range (an application currently met by gas and electricity). The present study focuses on the design and experimental investigation of a nanofluid absorber employed in this newly designed collector. The nanofluid absorber consists of glass tubes used to contain chemically functionalized multi-walled carbon nanotubes (MWCNTs) dispersed in DI water. MWCNTs (average diameter of 6-13 nm and average length of 2.5-20 μm) were functionalized by potassium persulfate as an oxidant. The nanofluids were prepared with a MCWNT concentration of 50 +/- 0.1 mg/L to form a balance between solar absorption depth and viscosity (e.g. pumping power). Moreover, experimentally comparison of the thermal efficiency between two receivers (a black chrome-coated copper tube versus a MWCNT nanofluid contained within a glass tubetube) is investigated. Thermal experimentation reveals that while the collector efficiency reduced from 73% to 54% when operating temperature increased from ambient to 80 °C by employing a MWCNT nanofluid receiver, the efficiency decreased from 85% to 68% with same operating temperature range by employing black chrome-coated copper tube receiver. This difference can mainly be explained by the reflection optical loss off and higher thermal emission heat loss the front surface of the glass tube, yielding a 90% of transmittance to the MWCNT fluid and a 0.9 emissivity of glass pipe. Overall, an experimental investigation of the performance of a low profile solar collector with a direct volumetric absorber and conventional surface absorber is presented. In order to bring nanotechnology into industrial and commercial heating applications,
Manganese oxide micro-supercapacitors with ultra-high areal capacitance
NASA Astrophysics Data System (ADS)
Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See
2013-05-01
A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a
Surface-enhanced Raman scattering (SERS) dosimeter and probe
Vo-Dinh, T.
1995-03-21
A dosimeter and probe for measuring exposure to chemical and biological compounds is disclosed. The dosimeter or probe includes a collector which may be analyzed by surface-enhanced Raman spectroscopy. The collector comprises a surface-enhanced Raman scattering-active material having a coating applied thereto to improve the adsorption properties of the collector. The collector may also be used in automated sequential devices, in probe array devices. 10 figures.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Calaway, Michael J.; Hittle, J. D.; Rodriquez, M. C.; Stansbery, E. K.; McNamara, K. M.
2006-01-01
The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments.
NASA Technical Reports Server (NTRS)
Nagano, S. (Inventor)
1979-01-01
A module failure isolation circuit is described which senses and averages the collector current of each paralled inverter power transistor and compares the collector current of each power transistor the average collector current of all power transistors to determine when the sensed collector current of a power transistor in any one inverter falls below a predetermined ratio of the average collector current. The module associated with any transistor that fails to maintain a current level above the predetermined radio of the average collector current is then shut off. A separate circuit detects when there is no load, or a light load, to inhibit operation of the isolation circuit during no load or light load conditions.
Condenser optic with sacrificial reflective surface
Tichenor, Daniel A.; Kubiak, Glenn D.; Lee, Sang Hun
2006-07-25
Employing collector optics that have a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics are normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.
Condenser optic with sacrificial reflective surface
Tichenor, Daniel A [Castro Valley, CA; Kubiak, Glenn D [Livermore, CA; Lee, Sung Hun [Sunnyvale, CA
2007-07-03
Employing collector optics that has a sacrificial reflective surface can significantly prolong the useful life of the collector optics and the overall performance of the condenser in which the collector optics are incorporated. The collector optics is normally subject to erosion by debris from laser plasma source of radiation. The presence of an upper sacrificial reflective surface over the underlying reflective surface effectively increases the life of the optics while relaxing the constraints on the radiation source. Spatial and temporally varying reflectivity that results from the use of the sacrificial reflective surface can be accommodated by proper condenser design.
Carbon aerogel electrodes for direct energy conversion
Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.
1997-01-01
A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.
Ultracapacitor current collector
Jerabek, Elihu Calfin; Mikkor, Mati
2001-10-16
An ultracapacitor having two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. At least one of the current collectors comprises a conductive metal substrate coated with a metal nitride, carbide or boride coating.
Zeta potentials in the flotation of oxide and silicate minerals.
Fuerstenau, D W; Pradip
2005-06-30
Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems.
A high performance porous flat-plate solar collector
NASA Technical Reports Server (NTRS)
Lansing, F. L.; Clarke, V.; Reynolds, R.
1979-01-01
A solar collector employing a porous matrix as a solar absorber and heat exchanger is presented and its application in solar air heaters is discussed. The collector is composed of a metallic matrix with a porous surface which acts as a large set of cavity radiators; cold air flows through the matrix plate and exchanges heat with the thermally stratified layers of the matrix. A steady-state thermal analysis of the collector is used to determine collector temperature distributions for the cases of an opaque surface matrix with total absorption of solar energy at the surface, and a diathermanous matrix with successive solar energy absorption at each depth. The theoretical performance of the porous flat plate collector is shown to exceed greatly that of a solid flat plate collector using air as the working medium for any given set of operational conditions. An experimental collector constructed using commercially available, low cost steel wool as the matrix has been found to have thermal efficiencies from 73 to 86%.
Semi-solid electrode cell having a porous current collector and methods of manufacture
Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki
2017-11-21
An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waki, E.; Kobayashi, S.; Hashimoto, Y.
A flat battery is described comprising: an electrically insulative sheathing film including a first film portion and a second film portion on opposite sides of a fold line, the film having an outer surface and an inner surface opposite the outer surface, on both of the first and the second film portions. The fold line divides the inner surface into a first inner surface portion on the first film portion and a second inner surface portion on the second film portion, the film being folded along the fold line so that the first inner surface portion faces the second innermore » surface portion. The first and second film portions are sealed to one another along the entire peripheries thereof except along the fold line, the first film portion having first a first terminal hole and a second terminal hole formed therein; a first collector formed in a plane on the first inner surface portion and having a first terminal portion covering the first terminal hole, the first terminal portion being exposed to the exterior of the battery through the first terminal hole so as to define a first terminal; and a second collector consisting of a first part formed on the first inner surface portion and a second part continuous to the first part formed on the second inner surface portion. The second collector extends across and is folded along the fold line, the second part having a second terminal portion covering the second terminal hole, the second terminal portion being exposed to the exterior of the battery through the second terminal hole so as to define a second terminal. The second part is formed in the plane in spaced non-overlapping relation to the first collector, one of the first and second collectors consisting of a positive collector, the other of the first and second collectors consisting of a negative collector.« less
Carbon aerogel electrodes for direct energy conversion
Mayer, S.T.; Kaschmitter, J.L.; Pekala, R.W.
1997-02-11
A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes is described, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome. 1 fig.
NASA Technical Reports Server (NTRS)
Jefferies, K.
1994-01-01
OFFSET is a ray tracing computer code for optical analysis of a solar collector. The code models the flux distributions within the receiver cavity produced by reflections from the solar collector. It was developed to model the offset solar collector of the solar dynamic electric power system being developed for Space Station Freedom. OFFSET has been used to improve the understanding of the collector-receiver interface and to guide the efforts of NASA contractors also researching the optical components of the power system. The collector for Space Station Freedom consists of 19 hexagonal panels each containing 24 triangular, reflective facets. Current research is geared toward optimizing flux distribution inside the receiver via changes in collector design and receiver orientation. OFFSET offers many options for experimenting with the design of the system. The offset parabolic collector model configuration is determined by an input file of facet corner coordinates. The user may choose other configurations by changing this file, but to simulate collectors that have other than 19 groups of 24 triangular facets would require modification of the FORTRAN code. Each of the roughly 500 facets in the assembled collector may be independently aimed to smooth out, or tailor, the flux distribution on the receiver's wall. OFFSET simulates the effects of design changes such as in receiver aperture location, tilt angle, and collector facet contour. Unique features of OFFSET include: 1) equations developed to pseudo-randomly select ray originating sources on the Sun which appear evenly distributed and include solar limb darkening; 2) Cone-optics technique used to add surface specular error to the ray originating sources to determine the apparent ray sources of the reflected sun; 3) choice of facet reflective surface contour -- spherical, ideal parabolic, or toroidal; 4) Gaussian distributions of radial and tangential components of surface slope error added to the surface normals at the ten nodal points on each facet; and 5) color contour plots of receiver incident flux distribution generated by PATRAN processing of FORTRAN computer code output. OFFSET output includes a file of input data for confirmation, a PATRAN results file containing the values necessary to plot the flux distribution at the receiver surface, a PATRAN results file containing the intensity distribution on a 40 x 40 cm area of the receiver aperture plane, a data file containing calculated information on the system configuration, a file including the X-Y coordinates of the target points of each collector facet on the aperture opening, and twelve P/PLOT input data files to allow X-Y plotting of various results data. OFFSET is written in FORTRAN (70%) for the IBM VM operating system. The code contains PATRAN statements (12%) and P/PLOT statements (18%) for generating plots. Once the program has been run on VM (or an equivalent system), the PATRAN and P/PLOT files may be transferred to a DEC VAX (or equivalent system) with access to PATRAN for PATRAN post processing. OFFSET was written in 1988 and last updated in 1989. PATRAN is a registered trademark of PDA Engineering. IBM is a registered trademark of International Business Machines Corporation. DEC VAX is a registered trademark of Digital Equipment Corporation.
Base and collector resistances in heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Anholt, R.; Bozada, C.; Desalvo, G.; Dettmer, R.; Ebel, J.; Gillespie, J.; Jenkins, T.; Havasy, C.; Ito, C.; Nakano, K.; Pettiford, C.; Quach, T.; Sewell, J.; Via, D.
1997-11-01
In heterojunction bipolar transistors (HBTs), the reverse base currents flow from the outer base periphery to the collector. The reverse base and collector resistances are therefore dominated by contact resistance, which is inversely proportional to the outer base and inner collector periphery lengths which are larger than the emitter lengths when the base and collector electrodes surround the emitter element. These resistances can be extracted from reverse Gummel (current vs Vbc with Vbc = 0) and from measurements of output resistances at zero collector voltage sweeps. We compare models with measurements where the base and collector peripheries decrease with increasing emitter diameters.
Method of determining the x-ray limit of an ion gauge
Edwards, Jr., David; Lanni, Christopher P.
1981-01-01
An ion gauge having a reduced "x-ray limit" and means for measuring that limit. The gauge comprises an ion gauge of the Bayard-Alpert type having a short collector and having means for varying the grid-collector voltage. The "x-ray limit" (i.e. the collector current resulting from x-rays striking the collector) may then be determined by the formula: ##EQU1## where: I.sub.x ="x-ray limit", I.sub.l and I.sub.h =the collector current at the lower and higher grid voltage respectively; and, .alpha.=the ratio of the collector current due to positive ions at the higher voltage to that at the lower voltage.
Heterogeneous current collector in lithium-ion battery for thermal-runaway mitigation
NASA Astrophysics Data System (ADS)
Wang, Meng; Le, Anh V.; Shi, Yang; Noelle, Daniel J.; Qiao, Yu
2017-02-01
Current collector accounts for more than 90% of the electric conductivity and ˜90% of the mechanical strength of the electrode in lithium-ion battery (LIB). Usually, current collectors are smooth metallic thin films. In the current study, we show that if the current collector is heterogeneous, the heat generation becomes negligible when the LIB cell is subjected to mechanical abuse. The phenomenon is attributed to the guided strain concentration, which promotes the separation of the forward and the return paths of internal short circuit. As the internal impedance drastically increases, the stored electric energy cannot be dissipated as thermal energy. The modification of current collector does not affect the cycling performance of the LIB cell. This finding enables advanced thermal-runaway mitigation techniques for high-energy, large-scale energy storage systems.
Effect of collector molecular structure on the wettability of gold for froth flotation
NASA Astrophysics Data System (ADS)
Moncayo-Riascos, Ivan; Hoyos, Bibian A.
2017-10-01
Molecular dynamics simulations were conducted to evaluate the alteration of the hydrophilic state of gold surfaces caused by the adsorption of collectors with different molecular structures, using the contact angle of water droplets as an evaluation parameter. Four collectors were evaluated: SDS (with twelve hydrogenated carbon atoms), PAX (with five hydrogenated carbon atoms), DTP (with two branched aliphatic chains) and MBT (with an aromatic ring). The contact angle was evaluated for coatings of a monolayer (ML) and for surface densities of 2.89 μmol/m2 for each collector. For a ML, the hydrophobic effect generated by the aromatic ring of the MBT collector is comparable with the effect of the non-polar short chain of the PAX collector. The increase in hydrophobicity for the gold surfaces achieved by collectors with aliphatic chains is because the water-collector interaction energy is significantly higher (repulsive) than the water-gold interactions (attractive). The lowest increase in hydrophobicity was achieved with the MBT collector, since the carbon-water interaction energy of the aromatic ring is stronger than the interaction with the carbon atoms in the aliphatic chains. The calculated contact angles of the water droplets deviated less than 4% with respect to the experimental values.
Energy storage systems having an electrode comprising Li.sub.xS.sub.y
Xiao, Jie; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Wang, Wei; Zheng, Jianming; Xu, Wu; Shao, Yuyan; Yang, Zhenguo
2016-08-02
Improved lithium-sulfur energy storage systems can utilizes Li.sub.xS.sub.y as a component in an electrode of the system. For example, the energy storage system can include a first electrode current collector, a second electrode current collector, and an ion-permeable separator separating the first and second electrode current collectors. A second electrode is arranged between the second electrode current collector and the separator. A first electrode is arranged between the first electrode current collector and the separator and comprises a first condensed-phase fluid comprising Li.sub.xS.sub.y. The energy storage system can be arranged such that the first electrode functions as a positive or a negative electrode.
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2017-11-28
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Asymmetric battery having a semi-solid cathode and high energy density anode
Tan, Taison; Chiang, Yet-Ming; Ota, Naoki; Wilder, Throop; Duduta, Mihai
2016-09-06
Embodiments described herein relate generally to devices, systems and methods of producing high energy density batteries having a semi-solid cathode that is thicker than the anode. An electrochemical cell can include a positive electrode current collector, a negative electrode current collector and an ion-permeable membrane disposed between the positive electrode current collector and the negative electrode current collector. The ion-permeable membrane is spaced a first distance from the positive electrode current collector and at least partially defines a positive electroactive zone. The ion-permeable membrane is spaced a second distance from the negative electrode current collector and at least partially defines a negative electroactive zone. The second distance is less than the first distance. A semi-solid cathode that includes a suspension of an active material and a conductive material in a non-aqueous liquid electrolyte is disposed in the positive electroactive zone, and an anode is disposed in the negative electroactive zone.
Thin film absorber for a solar collector
Wilhelm, William G.
1985-01-01
This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
Hasnat, Mohammad A; Gross, Andrew J; Dale, Sara E C; Barnes, Edward O; Compton, Richard G; Marken, Frank
2014-02-07
Generator-collector electrode systems are based on two independent working electrodes with overlapping diffusion fields where chemically reversible redox processes (oxidation and reduction) are coupled to give amplified current signals. A generator-collector trench electrode system prepared from two tin-doped indium oxide (ITO) electrodes placed vis-à-vis with a 22 μm inter-electrode gap is employed here as a sensor in aqueous media. The reversible 2-electron anthraquinone-2-sulfonate redox system is demonstrated to give well-defined collector responses even in the presence of oxygen due to the irreversible nature of the oxygen reduction. For the oxidation of dopamine on ITO, novel "Piranha-activation" effects are observed and chemically reversible generator-collector feedback conditions are achieved at pH 7, by selecting a more negative collector potential, again eliminating possible oxygen interference. Finally, dopamine oxidation in the presence of ascorbate is demonstrated with the irreversible oxidation of ascorbate at the "mouth" of the trench electrode and chemically reversible oxidation of dopamine in the trench "interior". This spatial separation of chemically reversible and irreversible processes within and outside the trench is discussed as a potential in situ microscale sensing and separation tool.
NASA Astrophysics Data System (ADS)
Czerwiński, A.; Obrębowski, S.; Kotowski, J.; Rogulski, Z.; Skowroński, J.; Bajsert, M.; Przystałowski, M.; Buczkowska-Biniecka, M.; Jankowska, E.; Baraniak, M.; Rotnicki, J.; Kopczyk, M.
Bare reticulated vitreous carbon (RVC) plated electrochemically with thin layer of lead was investigated as a negative plate carrier- and current-collector material for lead-acid batteries. Hybrid flooded single cell lead-acid batteries containing one negative plate based on a new type (RVC or Pb/RVC) of carrier/current-collector and two positive plates based on Pb-Ca grid collectors were assembled and subjected to charge/discharge tests (at 20-h and 1-h discharge rates) and Peukert's dependences determination. The promising results show that application of RVC as carrier- and current-collector in negative plate will significantly increase the specific capacity of lead-acid battery.
Self-modulating pressure gauge
Edwards, D. Jr.; Lanni, C.P.
1979-08-07
An ion gauge is disclosed having a reduced x-ray limit and means for measuring that limit. The gauge comprises an ion gauge of the Bayard-Alpert type having a short collector and having means for varying the grid-collector voltage. The x-ray limit (i.e. the collector current resulting from x-rays striking the collector) may then be determined by the formula: I/sub x/ = ..cap alpha..I/sub l/ - I/sub h//..cap alpha.. - l where: I/sub x/ = x-ray limit, I/sub l/ and I/sub h/ = the collector current at the lower and higher grid voltage respectively; and, ..cap alpha.. = the ratio of the collector current due to positive ions at the higher voltage to that at the lower voltage.
NASA Astrophysics Data System (ADS)
Massengale, Alan Ross
1998-12-01
The discovery in 1990 that the wet thermal oxidation of AlAs can create a stable native oxide has added a new constituent, AlAs-oxide, to the AlGaAs/GaAs materials system. Native oxides of high Al mole-fraction AlGaAs are being used to confine electrical and/or optical fields in many types of electronic and optoelectronic structures with very promising results. Among these devices are collector-up heterojunction bipolar transistors (HBTs). Collector-up HBTs offer a means to reduce base-collector capacitance relative to their emitter-up counterparts, and thus to improve device performance. A novel method for fabricating collector-up AlGaAs/GaAs HBTs where an AlAs layer is inserted into the emitter layer and is oxidized in water vapor at 450sp°C has been developed. The resulting AlAs-oxide serves as a current confining layer that constricts collector current flow to the intrinsic portion of the device. Compared to previous methods of fabricating these devices, the process of converting AlAs into an insulator requires only one growth, and does not suffer from implant damage in the base. Because the lateral oxidation of AlAs is a process that proceeds at rates of microns per minute, one of the major challenges facing its implementation is the ability to accurately control the oxidation rate over the wafer, and from one wafer to the next. In the course of work on the oxidation of AlAs, a method to lithographically form lateral oxidation stop layers has been achieved. This technique utilizes impurity induced layer disordering (IILD) in heavily Si-doped buried planes, combined with selective surface patterning and thermal annealing, to create a lateral variation in the Al mole-fraction of the layer to be oxidized.
Axial motion of collector plasma in a relativistic backward wave oscillator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Renzhen; Chen, Changhua; Deng, Yuqun
2016-06-15
In this paper, it is proposed that plasma formed at the collector may drift back to the cathode and cause pulse shortening of the relativistic backward wave oscillator. Theoretical analysis shows that the axial drift velocity of plasma ions can be up to 5 mm/ns due to the presence of space charge potential provided by an intense relativistic electron beam. Particle-in-cell simulations indicate that the plasma electrons are initially trapped around the collector surface. With the accumulation of the plasma ions, a large electrostatic field forms and drives the plasma electrons to overcome the space charge potential and enter the beam-wavemore » interaction region along the magnetic field lines. As a result, the beam current modulation is disturbed and the output microwave power falls rapidly. The plasma ions move in the beam-wave interaction region with an average axial velocity of 5–8 mm/ns. After the plasma ions reach the diode region, the emitted current at the cathode rises due to the charge neutralizations by the ions. The impedance collapse leads to further decrease of the microwave power. In experiments, when the diode voltage and beam current were 850 kV and 9.2 kA, and the collector radius was 2.15 cm, the output microwave power was 2.4 GW with a pulse width of less than 20 ns. The ion drift velocity was estimated to be about 5 mm/ns. After an improved collector with 3.35 cm radius was adopted, the pulse width was prolonged to more than 30 ns.« less
1983-08-01
particular fabrication concerns, both the emitter and collector region were made of Al„ -Ga0 5As wide gap material. Devices with emitter area of 10 x 60...im and collector area of 50 x 60 (im exhi- bited current gains of 500 for a base doping of 10 cm and thickness of 500 A, and 1700 for a base...spreading over a large enough distance, it is usually necessary to heat the surface to a temperature at which not just diffusion, but also
Optimization of the functional domain of flat plate collectors
NASA Astrophysics Data System (ADS)
Ritoux, G.; Irigaray, J.-L.
1981-12-01
The variations of the extracted heat flux as function of the temperature of the heat transfer fluid in black and selective surface solar collectors are examined. The heat flux is calculated based on the difference of the initial to the stage of thermal equilibrium of the fluid. A nonlinear system of equations is developed and solved by a fast, iterative method to obtain the equilibrium temperatures. It is found that more flux can be extracted from the solar heat by a collector with only one glass cover than with more than one cover. The captured flux is proportional to the coefficient of transmission of the glass coverings, to the coefficient of absorption of the collector, and to the incident flux. Black painted surfaces were more absorbent than selective surfaces, and highest collection efficiencies were displayed by low temperature collectors. Charts of effective uses of the respective types of collectors for heating swimming pools, hot water, home heat, and for refrigeration and air-conditioning are provided.
Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.
2015-01-01
Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance. PMID:26043280
NASA Astrophysics Data System (ADS)
Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.
2015-06-01
Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance.
Adsorption of guanidinium collectors on aluminosilicate minerals - a density functional study.
Nulakani, Naga Venkateswara Rao; Baskar, Prathab; Patra, Abhay Shankar; Subramanian, Venkatesan
2015-10-07
In this density functional theory based investigation, we have modelled and studied the adsorption behaviour of guanidinium cations and substituted (phenyl, methoxy phenyl, nitro phenyl and di-nitro phenyl) guanidinium cationic collectors on the basal surfaces of kaolinite and goethite. The adsorption behaviour is assessed in three different media, such as gas, explicit water and pH medium, to understand the affinity of GC collectors to the SiO4 tetrahedral and AlO6 octahedral surfaces of kaolinite. The tetrahedral siloxane surface possesses a larger binding affinity to GC collectors than the octahedral sites due to the presence of surface exposed oxygen atoms that are active in the intermolecular interactions. Furthermore, the inductive electronic effects of substituted guanidinium cations also play a key role in the adsorption mechanism. Highly positive cations result in a stronger electrostatic interaction and preferential adsorption with the kaolinite surfaces than low positive cations. Computed interaction energies and electron densities at the bond critical points suggest that the adsorption of guanidinium cations on the surfaces of kaolinite and goethite is due to the formation of intra/inter hydrogen bonding networks. Also, the electrostatic interaction favours the high adsorption ability of GC collectors in the pH medium than gas phase and water medium. The structures and energies of GC collectors pave an intuitive view for future experimental studies on mineral flotation.
Method of making a current collector for a sodium/sulfur battery
Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.
1987-03-10
This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.
Method of making a current collector for a sodium/sulfur battery
Tischer, Ragnar P.; Winterbottom, Walter L.; Wroblowa, Halina S.
1987-01-01
This specification is directed to a method of making a current collector (14) for a sodium/sulfur battery (10). The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material (16) formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500-1000 angstroms.
Carbon Nanotube Tower-Based Supercapacitor
NASA Technical Reports Server (NTRS)
Meyyappan, Meyya (Inventor)
2012-01-01
A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.
NASA Astrophysics Data System (ADS)
Chye, Matthew B.
2011-12-01
Batteries and asymmetric electrochemical capacitors using nickel-based positive electrodes can provide high currents due to their defect structure and low internal resistance. Nickel-based positive electrodes, therefore, are ideal for high current applications such as power tools and electric vehicles (EVs). The positive electrodes prepared in this research are monolithic graphitic foams electrochemically impregnated with nickel oxyhydroxide active mass and select additives that enhance electrode performance. Carbon foam is a good current collector due to its light-weight, porous, and graphitic nature, which give its good electrical properties and the ability to be used as a current collector. Replacing sintered nickel current collectors in nickel-based batteries with a low cost, readily available material, carbon foam, can reduce the mass of a rechargeable battery. The goal of this research has been to contribute to fundamental science through better understanding of optimizing the deposition and formation processes of the active mass onto carbon foams as well as investigating the active mass behavior under deposition, formation, and cycling conditions. Flooded cells and a PFA sealed asymmetric capacitor have been used. The effects of carbon foam surface pretreatments and how they affect the active material/carbon foam performance are demonstrated. Also the feasibility of this positive electrode as a component in nickel-based batteries, a Ni-Zn cells and an asymmetric capacitor pouch cell, is demonstrated.
NASA Astrophysics Data System (ADS)
Chang, Hsin-Yueh; Huang, Yung-Jui; Chang, Hsuan-Chen; Su, Wei-Jhih; Shih, Yi-Ting; Chen, John L.; Honda, Shin-ichi; Huang, Ying-Sheng; Lee, Kuei-Yi
2015-01-01
Amorphous carbon nanorods (CNRs) were deposited directly using radio frequency magnetron sputtering. The synthesized CNR electrochemical properties were investigated using graphene as the current collector for an electric double layer capacitor. The CNRs were vertically aligned to the graphene to achieve higher specific surface area. The capacitor performance was characterized using electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge-discharge testing in 1 M KOH electrolyte at 30°C, 40°C, 50°C, and 60°C. The CNR specific capacitance was observed to increase with increasing measurement temperature and could reach up to 830 F/g at 60°C. Even after extensive measurements, the CNR electrode maintained good adhesion to the graphene current collector thereby suggesting electrode material stability.
NASA Astrophysics Data System (ADS)
Lee, Sang Ho; Jo, Yong-Ryun; Noh, Yuseong; Kim, Bong-Joong; Kim, Won Bae
2017-11-01
This paper reports hierarchically branched structures of tin dioxide nanowires for use in electrochemical energy conversion and storage electrode systems. The shallow tin dioxide branches are epitaxially grown on the tin dioxide nanowire backbones that are directly formed on current collectors. The branched tin dioxide nanowires are applied as anode electrodes for lithium-ion batteries, while palladium-incorporated branched nanowires are utilized as electrocatalysts for ethanol electrooxidation reactions. The structural benefits of these hierarchical platforms, such as enlarged electrochemical active surface area, void space formed between the branched structures, and conformal contact of the electroactive materials with current collectors, play important roles in improving the electrochemical Li-ion storage as well as electrocatalytic activity.
Curious Case of Positive Current Collectors: Corrosion and Passivation at High Temperature.
Sayed, Farheen N; Rodrigues, Marco-Tulio F; Kalaga, Kaushik; Gullapalli, Hemtej; Ajayan, P M
2017-12-20
In the evaluation of compatibility of different components of cell for high-energy and extreme-conditions applications, the highly focused are positive and negative electrodes and their interaction with electrolyte. However, for high-temperature application, the other components are also of significant influence and contribute toward the total health of battery. In present study, we have investigated the behavior of aluminum, the most common current collector for positive electrode materials for its electrochemical and temperature stability. For electrochemical stability, different electrolytes, organic and room temperature ionic liquids with varying Li salts (LiTFSI, LiFSI), are investigated. The combination of electrochemical and spectroscopic investigations reflects the varying mechanism of passivation at room and high temperature, as different compositions of decomposed complexes are found at the surface of metals.
NASA Astrophysics Data System (ADS)
Peng, Huiqing; Wu, Di; Abdelmonem, Mohamed
In this study, effects of the collector added before grinding and after grinding on the subsequent flotation and mineral surface properties were investigated. The pH was controlled at 10 during the grinding and flotation processes opened to the atmosphere. With enough amounts of sodium butyl xanthate addition, adding the collector before grinding recovered more chalcopyrite than adding it after grinding in single mineral flotation. The Eh of each ground pulp before and after conditioning were measured and it was found that adding collector before grinding obtained higher and relatively suitable pulp potential for chalcopyrite flotation. Particle size analyses of the flotation products indicate that the different flotation recoveries occurred due to the different flotation losses in fine particles (<20 μm). XPS analyses focused on the fine particles of flotation feedings and found that more carbon and oxygen, and less iron were remained on mineral surfaces when the collector was added before grinding, due to the higher collector adsorption capacity, larger free oxygen adsorbance and less iron oxide/hydroxide species.
Current collectors for improved safety
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdelmalak, Michael Naguib; Allu, Srikanth; Dudney, Nancy J.
A battery electrode assembly includes a current collector with conduction barrier regions having a conductive state in which electrical conductivity through the conduction barrier region is permitted, and a safety state in which electrical conductivity through the conduction barrier regions is reduced. The conduction barrier regions change from the conductive state to the safety state when the current collector receives a short-threatening event. An electrode material can be connected to the current collector. The conduction barrier regions can define electrical isolation subregions. A battery is also disclosed, and methods for making the electrode assembly, methods for making a battery, andmore » methods for operating a battery.« less
NASA Astrophysics Data System (ADS)
Liu, Lang; Li, Han-Yu; Yu, Yao; Liu, Lin; Wu, Yue
2018-02-01
The fabrication of a current collector-contained in-plane micro-supercapacitor (MSC) usually requires the patterning of the current collector first and then subsequent patterning of the active material with the assistance of a photoresist and mask. However, this two-step patterning process is too complicated and the photoresist used is harmful to the properties of nanomaterials. Here, we demonstrate a one-step, mask-free strategy to pattern the current collector and the active material at the same time, for the fabrication of an all-solid-state flexible in-plane MSC. Silver nanowires (AgNWs) are used as the current collector. An atmospheric pressure pulsed cold micro-plasma-jet is used to realize the one-step, mask-free production of interdigitated multi-walled carbon nanotube (MWCNT)/AgNW electrodes. Remarkably, the fabricated MWCNT/AgNW-based MSC shows good flexibility and excellent rate capability. Moreover, the performance of properties including cyclic stability, equivalent series resistance, relaxation time and energy/power densities of the MWCNT/AgNW-based MSC are significantly enhanced by the presence of the AgNW current collector.
Tunneling modulation of a quantum-well transistor laser
NASA Astrophysics Data System (ADS)
Feng, M.; Qiu, J.; Wang, C. Y.; Holonyak, N.
2016-11-01
Different than the Bardeen and Brattain transistor (1947) with the current gain depending on the ratio of the base carrier spontaneous recombination lifetime to the emitter-collector transit time, the Feng and Holonyak transistor laser current gain depends upon the base electron-hole (e-h) stimulated recombination, the base dielectric relaxation transport, and the collector stimulated tunneling. For the n-p-n transistor laser tunneling operation, the electron-hole pairs are generated at the collector junction under the influence of intra-cavity photon-assisted tunneling, with electrons drifting to the collector and holes drifting to the base. The excess charge in the base lowers the emitter junction energy barrier, allowing emitter electron injection into the base and satisfying charge neutrality via base dielectric relaxation transport (˜femtoseconds). The excess electrons near the collector junction undergo stimulated recombination at the base quantum-well or transport to the collector, thus supporting tunneling current amplification and optical modulation of the transistor laser.
Conductivity fuel cell collector plate and method of fabrication
Braun, James C.
2002-01-01
An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.
Interdigitated photovoltaic power conversion device
Ward, James Scott; Wanlass, Mark Woodbury; Gessert, Timothy Arthur
1999-01-01
A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device.
Interdigitated photovoltaic power conversion device
Ward, J.S.; Wanlass, M.W.; Gessert, T.A.
1999-04-27
A photovoltaic power conversion device has a top surface adapted to receive impinging radiation. The device includes at least two adjacent, serially connected cells. Each cell includes a semi-insulating substrate and a lateral conductivity layer of a first doped electrical conductivity disposed on the substrate. A base layer is disposed on the lateral conductivity layer and has the same electrical charge conductivity thereof. An emitter layer of a second doped electrical conductivity of opposite electrical charge is disposed on the base layer and forms a p-n junction therebetween. A plurality of spaced channels are formed in the emitter and base layers to expose the lateral conductivity layer at the bottoms thereof. A front contact grid is positioned on the top surface of the emitter layer of each cell. A first current collector is positioned along one outside edge of at least one first cell. A back contact grid is positioned in the channels at the top surface of the device for engagement with the lateral conductivity layer. A second current collector is positioned along at least one outside edge of at least one oppositely disposed second cell. Finally, an interdigitation mechanism is provided for serially connecting the front contact grid of one cell to the back contact grid of an adjacent cell at the top surface of the device. 15 figs.
Cosmic Dust Catalog. Volume 15; Particles from Collectors L2036 and L2021
NASA Technical Reports Server (NTRS)
Warren, J.; Watts, L.; Thomas-Keprta, K.; Wentworth , S.; Dodson , A.; Zolensky, Michael E.
1997-01-01
Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.
Design of a solar concentrator considering arbitrary surfaces
NASA Astrophysics Data System (ADS)
Jiménez-Rodríguez, Martín.; Avendaño-Alejo, Maximino; Verduzco-Grajeda, Lidia Elizabeth; Martínez-Enríquez, Arturo I.; García-Díaz, Reyes; Díaz-Uribe, Rufino
2017-10-01
We study the propagation of light in order to efficiently redirect the reflected light on photocatalytic samples placed inside a commercial solar simulator, and we have designed a small-scale prototype of Cycloidal Collectors (CCs), resembling a compound parabolic collector. The prototype consists of either cycloidal trough or cycloidal collector having symmetry of rotation, which has been designed considering an exact ray tracing assuming a bundle of rays propagating parallel to the optical axis and impinging on a curate cycloidal surface, obtaining its caustic surface produced by reflection.
Solar radiation on a catenary collector
NASA Technical Reports Server (NTRS)
Crutchik, M.; Appelbaum, J.
1992-01-01
A tent-shaped structure with a flexible photovoltaic blanket acting as a catenary collector is presented. The shadow cast by one side of the collector on the other side producing a self shading effect is analyzed. The direct beam, the diffuse and the albedo radiation on the collector are determined. An example is given for the insolation on the collector operating on the martian surface for the location of Viking Lander 1 (VL1).
Bo, Zheng; Zhu, Weiguang; Ma, Wei; Wen, Zhenhai; Shuai, Xiaorui; Chen, Junhong; Yan, Jianhua; Wang, Zhihua; Cen, Kefa; Feng, Xinliang
2013-10-25
Dense networks of graphene nanosheets standing vertically on a current collector can work as numerous electrically conductive bridges to facilitate charge transport and mitigate the constriction/spreading resistance at the interface between the active material and the current collector. The vertically oriented graphene-bridged supercapacitors present excellent rate and power capabilities. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rangom, Yverick; Tang, Xiaowu Shirley; Nazar, Linda F
2015-07-28
We report the fabrication of high-performance, self-standing composite sp(2)-carbon supercapacitor electrodes using single-walled carbon nanotubes (CNTs) as conductive binder. The 3-D mesoporous mesh architecture of CNT-based composite electrodes grants unimpaired ionic transport throughout relatively thick films and allows superior performance compared to graphene-based devices at an ac line frequency of 120 Hz. Metrics of 601 μF/cm(2) with a -81° phase angle and a rate capability (RC) time constant of 199 μs are obtained for thin carbon films. The free-standing carbon films were obtained from a chlorosulfonic acid dispersion and interfaced to stainless steel current collectors with various surface treatments. CNT electrodes were able to cycle at 200 V/s and beyond, still showing a characteristic parallelepipedic cyclic votammetry shape at 1 kV/s. Current densities are measured in excess of 6400 A/g, and the electrodes retain more than 98% capacity after 1 million cycles. These promising results are attributed to a reduction of series resistance in the film through the CNT conductive network and especially to the surface treatment of the stainless steel current collector.
AMTEC cell testing, optimization of rhodium/tungsten electrodes, and tests of other components
NASA Technical Reports Server (NTRS)
Williams, Roger M.; Ryan, Margaret A.; Jeffries-Nakamura, Barbara; Underwood, Mark L.; O'Connor, Dennis; Kikkert, Stan
1991-01-01
Electrodes, current collectors, ceramic to metal braze seals, and metallic components exposed to the high 'hot side' temperatures and sodium liquid and vapor environment have been tested and evaluated in laboratory cells running for hundreds of hours at 1100-1200 K. Rhodium/tungsten electrodes have been selected as the optimum electrodes based on performance parameters and durability. Current collectors have been evaluated under simulated and actual operating conditions. The microscopic effects of metal migration between electrode and current collector alloys as well as their thermal and electrical properties determined the suitability of current collector and lead materials. Braze seals suitable for long term application to AMTEC devices are being developed.
NASA Technical Reports Server (NTRS)
Wintucky, E. G.; Curren, A. N.; Sovey, J. S.
1981-01-01
Low secondary and reflected primary electron emission from the collector electrode surfaces is important for optimum collector efficiency and hence for high overall efficiency of microwave amplifier tubes used in communication satellites and in military systems. Ion sputter texturing of the surface effectively suppresses electron emission from pyrolytic graphite, which is a promising collector electrode material. Secondary and reflected primary electron emission characteristics of sputter textured pyrolytic graphite surfaces with microstructures of various sizes and densities are presented. The microstructure with the lowest electron emission levels, less than those of soot, consists of a dense array of tall, thin spires.
NASA Astrophysics Data System (ADS)
Busom, J.; Schreiber, A.; Tolosa, A.; Jäckel, N.; Grobelsek, I.; Peter, N. J.; Presser, V.
2016-10-01
Supercapacitors are devices for rapid and efficient electrochemical energy storage and commonly employ carbon coated aluminum foil as the current collector. However, the thickness of the metallic foil and the corresponding added mass lower the specific and volumetric performance on a device level. A promising approach to drastically reduce the mass and volume of the current collector is to directly sputter aluminum on the freestanding electrode instead of adding a metal foil. Our work explores the limitations and performance perspectives of direct sputter coating of aluminum onto carbon film electrodes. The tight and interdigitated interface between the metallic film and the carbon electrode enables high power handling, exceeding the performance and stability of a state-of-the-art carbon coated aluminum foil current collector. In particular, we find an enhancement of 300% in specific power and 186% in specific energy when comparing aluminum sputter coated electrodes with conventional electrodes with Al current collectors.
Stationary semi-solid battery module and method of manufacture
Slocum, Alexander; Doherty, Tristan; Bazzarella, Ricardo; Cross, III, James C.; Limthongkul, Pimpa; Duduta, Mihai; Disko, Jeffry; Yang, Allen; Wilder, Throop; Carter, William Craig; Chiang, Yet-Ming
2015-12-01
A method of manufacturing an electrochemical cell includes transferring an anode semi-solid suspension to an anode compartment defined at least in part by an anode current collector and an separator spaced apart from the anode collector. The method also includes transferring a cathode semi-solid suspension to a cathode compartment defined at least in part by a cathode current collector and the separator spaced apart from the cathode collector. The transferring of the anode semi-solid suspension to the anode compartment and the cathode semi-solid to the cathode compartment is such that a difference between a minimum distance and a maximum distance between the anode current collector and the separator is maintained within a predetermined tolerance. The method includes sealing the anode compartment and the cathode compartment.
Cleaner for Solar-Collector Covers
NASA Technical Reports Server (NTRS)
Frickland, P. O.; Cleland, E. L.
1983-01-01
Simple self-contained cleaning system proposed for solar collectors or solar-collector protective domes. Perforated transparent plastic cap attached to top of protective dome in heliostat solar-energy collection system distributes cleaning fluid over surface of dome without blocking significant fraction of solar radiation.
Processing on high efficiency solar collector coatings
NASA Technical Reports Server (NTRS)
Roberts, M.
1977-01-01
Wavelength selective coatings for solar collectors are considered. Substrates with good infrared reflectivity were examined along with their susceptibility to physical and environmental damage. Improvements of reflective surfaces were accomplished through buffing, chemical polishing and other surface processing methods.
High surface area, low weight composite nickel fiber electrodes
NASA Technical Reports Server (NTRS)
Johnson, Bradley A.; Ferro, Richard E.; Swain, Greg M.; Tatarchuk, Bruce J.
1993-01-01
The energy density and power density of light weight aerospace batteries utilizing the nickel oxide electrode are often limited by the microstructures of both the collector and the resulting active deposit in/on the collector. Heretofore, these two microstructures were intimately linked to one another by the materials used to prepare the collector grid as well as the methods and conditions used to deposit the active material. Significant weight and performance advantages were demonstrated by Britton and Reid at NASA-LeRC using FIBREX nickel mats of ca. 28-32 microns diameter. Work in our laboratory investigated the potential performance advantages offered by nickel fiber composite electrodes containing a mixture of fibers as small as 2 microns diameter (Available from Memtec America Corporation). These electrode collectors possess in excess of an order of magnitude more surface area per gram of collector than FIBREX nickel. The increase in surface area of the collector roughly translates into an order of magnitude thinner layer of active material. Performance data and advantages of these thin layer structures are presented. Attributes and limitations of their electrode microstructure to independently control void volume, pore structure of the Ni(OH)2 deposition, and resulting electrical properties are discussed.
Extraction of Solar Wind Nitrogen and Noble Gases From the Genesis Gold Foil Collector
NASA Astrophysics Data System (ADS)
Schlutter, D. J.; Pepin, R. O.
2005-12-01
The Genesis gold foil is a bulk solar wind collector, integrating fluences from all three of the wind regimes. Pyrolytic extraction of small foil samples at Minnesota yielded He fluences, corrected for backscatter, in good agreement with measurements by on-board spacecraft instruments, and He/Ne elemental ratios close to those implanted in collector foils deployed on the lunar surface during the Apollo missions. Isotopic distributions of He, Ne and Ar are under study. Pyrolysis to temperatures above the gold melting point generates nitrogen blanks large enough to obscure the solar-wind nitrogen component. An alternative technique for nitrogen and noble gas extraction, by room-temperature amalgamation of the gold foil surface, will be discussed. Ne and Ar releases in preliminary tests of this technique on small foil samples were close to 100% of the amounts expected from the high-temperature pyrolysis yields, indicating that amalgamation quantitatively liberates gases from several hundred angstroms deep in the gold, beyond the implantation depth of most of the solar wind. Present work is focused on two problems currently interfering with accurate nitrogen measurements at the required picogram to sub-picogram levels: a higher than expected blank likely due to tiny air bubbles rolled into the gold sheet during fabrication, and the presence of a refractory hydrocarbon film on Genesis collector surfaces (the "brown stain") that, if left in place on the foil, shields the underlying gold from mercury attack. We have found, however, that the film is efficiently removed within tens of seconds by oxygen plasma ashing. Potential nitrogen contaminants introduced during the crash of the sample return canister are inert in amalgamation, and so are not hazards to the measurements.
NASA Astrophysics Data System (ADS)
Warren, J.; Watts, L.; Thomas-Keprta, K.; Wentworth, S.; Dodson, A.; Zolensky, Michael E.
1997-07-01
Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsey, J.W.; Charmchi, M.
1980-11-01
The performance of several solar collector configurations has been predicted using both inappropriate and appropriate relations to evaluate the wind-related heat transfer coefficient. The combinations analyzed are: one or two covers and a selectively absorbing surface coating, and one or two covers and a nonselectively absorbing surface coating all collectors are of the basic liquid heating type. It is shown that the optimum results are obtained by using a global correlation equation proposed by Sparrow et al. (1979).
Metal-free current collectors based on graphene materials for supecapacitors produced by 3D printing
NASA Astrophysics Data System (ADS)
Baskakov, S. A.; Baskakova, Yu. V.; Lyskov, N. V.; Dremova, N. N.; Shul'ga, Yu. M.
2017-10-01
Supercapacitor (SC) current collectors with electrodes made of graphite oxide reduced during microwave exfoliation are produced from a commercial filament with a graphene component via layer-by-layer fusing with a 3D printer. The separator is made of a graphene oxide film. The current collectors are investigated by means of IR spectroscopy. Electrochemical tests are performed for the assembled SC that include tests of its cyclic stability up to 1000 cycles.
Initial Subdivision of Genesis Early Science Polished Aluminum Collector
NASA Technical Reports Server (NTRS)
Allton, J. H.; Stansbery, E. K.; McNamara, K. M.; Meshik, A.; See, T. H.; Bastien, R.
2005-01-01
A large surface, about 245 square centimeters, of highly polished aluminum 6061 T6 alloy was attached to the science canister thermal panel for the purpose of collecting solar wind noble gases. The analysis of this collector will be part of the Genesis Early Science results. The pre-launch configuration of the collector is shown. The collector sustained some damage during the recovery impact in Utah, September 8, 2004.
Metal-free, flexible triboelectric generator based on MWCNT mesh film and PDMS layers
NASA Astrophysics Data System (ADS)
Hwang, Hayoung; Lee, Kang Yeol; Shin, Dongjoon; Shin, Jungho; Kim, Sangtae; Choi, Wonjoon
2018-06-01
We demonstrate a metal-free triboelectric energy harvester consisted of MWCNT mesh film and PDMS layer. Upon touch from a finger, the single electrode-mode energy harvester generates up to 27.0 W/m2 output power at 10 MΩ matched impedance. The device generates stable power upon touch by bare fingers or gloved fingers. Using copper counter electrode results in decreased power output, due to the weaker tendency in triboelectrification. The power output also scales with the pressure applied by the finger. The intertwined, condensed MWCNT network acts as a flexible yet effective current collector, with resistance across the device less than 10 Ω. This current collector possesses strong corrosion resistance and stability against potential oxidation, while its metal counterpart may undergo oxidation over extended exposure to air or frequent fracture upon straining. The flexible device form may be applied to various curved or irregular surfaces that undergo frequent human touches.
Nonaqueous Electrical Storage Device
McEwen, Alan B.; Evans, David A.; Blakley, Thomas J.; Goldman, Jay L.
1999-10-26
An electrochemical capacitor is disclosed that features two, separated, high surface area carbon cloth electrodes sandwiched between two current collectors fabricated of a conductive polymer having a flow temperature greater than 130.degree. C., the perimeter of the electrochemical capacitor being sealed with a high temperature gasket to form a single cell device. The gasket material is a thermoplastic stable at temperatures greater than 100.degree. C., preferably a polyester or a polyurethane, and having a reflow temperature above 130.degree. C. but below the softening temperature of the current collector material. The capacitor packaging has good mechanical integrity over a wide temperature range, contributes little to the device equivalent series resistance (ESR), and is stable at high potentials. In addition, the packaging is designed to be easily manufacturable by assembly line methods. The individual cells can be stacked in parallel or series configuration to reach the desired device voltage and capacitance.
Optimized conditions for selective gold flotation by ToF-SIMS and ToF-LIMS
NASA Astrophysics Data System (ADS)
Chryssoulis, S. L.; Dimov, S. S.
2004-06-01
This work describes a comprehensive characterization of the factors controlling the floatability of free gold from flotation test using reagents (collectors) at plant concentration levels. A relationship between the collectors loadings on gold particles and their surface composition has been established. The findings of this study show that silver activates gold flotation and there is a strong correlation between the surface concentration of silver and the loading of certain collectors. The organic surface analysis was done by ToF-SIMS while the inorganic surface analysis was carried out by time-of-flight laser ionization mass spectrometry (ToF-LIMS). The developed testing protocol based on ToF-LIMS and ToF-SIMS complementary surface analysis allows for optimization of the flotation scheme and hence improved gold recovery.
Hierarchical Surface Architecture of Plants as an Inspiration for Biomimetic Fog Collectors.
Azad, M A K; Barthlott, W; Koch, K
2015-12-08
Fog collectors can enable us to alleviate the water crisis in certain arid regions of the world. A continuous fog-collection cycle consisting of a persistent capture of fog droplets and their fast transport to the target is a prerequisite for developing an efficient fog collector. In regard to this topic, a biological superior design has been found in the hierarchical surface architecture of barley (Hordeum vulgare) awns. We demonstrate here the highly wettable (advancing contact angle 16° ± 2.7 and receding contact angle 9° ± 2.6) barbed (barb = conical structure) awn as a model to develop optimized fog collectors with a high fog-capturing capability, an effective water transport, and above all an efficient fog collection. We compare the fog-collection efficiency of the model sample with other plant samples naturally grown in foggy habitats that are supposed to be very efficient fog collectors. The model sample, consisting of dry hydrophilized awns (DH awns), is found to be about twice as efficient (fog-collection rate 563.7 ± 23.2 μg/cm(2) over 10 min) as any other samples investigated under controlled experimental conditions. Finally, a design based on the hierarchical surface architecture of the model sample is proposed for the development of optimized biomimetic fog collectors.
Ellipsoid-conic radiation collector and method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunsting, A.; Hogg, W.R.
Disclosed is a radiation collector apparatus and method primarily for counting and analyzing a flow of dilute particulate material, such as blood cells, sperm cells and the like, through the use of light detection. The radiation collector apparatus comprises a reflector chamber having an ellipsoidal reflector surface with a pair of elipsoidal foci defining a first focus, f11, and second focus, f12, and a second reflector surface with a primary focus, f21, positioned at the same point as focus f12, and a secondary focus, f22. The second reflector surface has the configuration of one of the conic sections of revolution.more » In operation the radiation collector apparatus is provided with an intensifed beam of light and a stream of particulate material aligned to intersect the intensifed beam of light at focus f11. Detectable light signals, after two reflections, are received in a focused beam by a photosensitive detector.« less
High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector
NASA Astrophysics Data System (ADS)
Chu, Hsun-Chen; Tuan, Hsing-Yu
2017-04-01
Cu Foil, a thin sheet of Cu, is the common anode current collector in commercial lithium ion batteries (LIBs) which accounts for ∼ 10 wt% of the total cell weight. However, thickness reduction of LIB-based Cu foils below 6 μm has been limited by the incapability of conventional rolling annealing or electrodeposition process. We here report a new type of Cu foil, so called Cu nanowire foil (CuNW foil), for use as an LIB anode current collector. We fabricate Cu NW foils by rolling press Cu nanowire fabric to reduce the thickness down to ∼1.5 μm with an areal weight down to ∼1.2 mg cm-2 and a density approximately 96% to that of bulk Cu. The rough surface and porous structure of CuNW foil enable better wetting and adhering properties of graphite slurry on foil. In full cell examination, a cell of a areal capacity of 3 mAh cm-2 exhibits 83.6% capacity retention for 600 cycles at 0.6 C that meets the standard specification of most commercial LIBs. As a proof-of-concept of demonstration, we fabricate a 700 mA pouch-type battery implemented with graphite-Cu NWs foil anodes to serve as energy supply to operate electronic devices.
Heat pipes in solar collectors
NASA Astrophysics Data System (ADS)
Bairamov, R.; Toiliev, K.
The diode property of heat pipes is evaluated for use in solar collectors. Model experiments show that the effect of heat pipes in solar collectors is most pronounced during the nighttime, when solar radiation is zero, due to a significant reduction in the heat loss from the transparent cover surface of the collector compared to that for conventional collectors. For a solar collector with a glass cover area of one square meter during the summer season when the maximum water temperature is 60 C and the discharge is 85 l/sq m/day, the water temperature in the accumulator tank of the solar collector with a heat pipe is 10-11 C higher than in the solar collector lacking a heat pipe. In addition, the design of a solar house with passive systems in which heat pipes serve as the heat eliminating mechanism is discussed
Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite
Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Moorhead, Arthur J.
1998-01-01
In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process.
Advanced Current Collection Research
1978-04-19
GoPDId Goal Current Density (HA/M3) 7.8 b4. Collector Surface Velocity (m/s) 15-75 25-75 Brush Material Life (uax, 1400 1400 velocity) (hr/in...net power loss and longest life for brush operation. The development of a multi-fiber shunt was continued through two iterations in preparation fnr... life . Neither energy loss density nor wear were degraded as the number of test brushes was increased to the full complement level. Over one year average
Integrated function nonimaging concentrating collector tubes for solar thermal energy
NASA Astrophysics Data System (ADS)
Winston, R.; Ogallagher, J. J.
1981-08-01
A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors was achieved by integrating the reflector surface into the outer glass envelope. The design, fabrication and preliminary test results are described for a prototype collector based on this concept. Efficiencies above 40% up to nearly 300 C may be achieved.
Development and testing of the Shenandoah collector
NASA Technical Reports Server (NTRS)
Kinoshita, G. S.
1981-01-01
The test and development of the 7-meter Shenandoah parabolic dish collector incorporating an FEK-244 film reflective surface and cavity receiver are described. Four prototypes tested in the midtemperature Solar System Test Facility indicate, with changes incorporated from these development tests, that the improvements should lead to predicted performance levels in the production collectors.
Swimming Motility Reduces Deposition to Silica Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Nanxi; Massoudieh, Arash; Liang, Xiaomeng
The role of swimming motility on bacterial transport and fate in porous media was evaluated. We present microscopic evidence showing that strong swimming motility reduces attachment of Azotobacter vinelandii cells to silica surfaces. Applying global and cluster statistical analyses to microscopic videos taken under non-flow conditions, wild type, flagellated A. vinelandii strain DJ showed strong swimming ability with an average speed of 13.1 μm/s, DJ77 showed impaired swimming averaged at 8.7 μm/s, and both the non-flagellated JZ52 and chemically treated DJ cells were non-motile. Quantitative analyses of trajectories observed at different distances above the collector of a radial stagnation pointmore » flow cell (RSPF) revealed that both swimming and non-swimming cells moved with the flow when at a distance of at least 20 μm from the collector surface. Near the surface, DJ cells showed both horizontal and vertical movement diverging them from reaching surfaces, while chemically treated DJ cells moved with the flow to reach surfaces, suggesting that strong swimming reduced attachment. In agreement with the RSPF results, the deposition rates obtained for two-dimensional multiple-collector micromodels were also lowest for DJ, while DJ77 and JZ52 showed similar values. Strong swimming specifically reduced deposition on the upstream surfaces of the micromodel collectors.« less
Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin
1991-01-01
A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.
Work Station For Inverting Solar Cells
NASA Technical Reports Server (NTRS)
Feder, H.; Frasch, W.
1982-01-01
Final work station along walking-beam conveyor of solar-array assembly line turns each pretabbed solar cell over, depositing it back-side-up onto landing pad, which centers cell without engaging collector surface. Solar cell arrives at inverting work station collector-side-up with two interconnect tabs attached to collector side. Cells are inverted so that second soldering operation takes place in plain view of operator. Inversion protects collector from damage when handled at later stages of assembly.
Integrated Design of Undepressed Collector for Low Power Gyrotron
NASA Astrophysics Data System (ADS)
Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.
2011-06-01
A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.
Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors
NASA Astrophysics Data System (ADS)
He, Nanfei; Yildiz, Ozkan; Pan, Qin; Zhu, Jiadeng; Zhang, Xiangwu; Bradford, Philip D.; Gao, Wei
2017-03-01
Nowadays, the wide-spread adoption of supercapacitors has been hindered by their inferior energy density to that of batteries. Here we report the use of our pyrolytic-carbon-coated carbon nanotube foams as lightweight, compressible, porous, and highly conductive current collectors in supercapacitors, which are infiltrated with chemically-reduced graphene oxide and later compressed via mechanical and capillary forces to generate the active electrodes. The pyrolytic carbon coatings, introduced by chemical vapor infiltration, wrap around the CNT junctions and increase the surface roughness. When active materials are infiltrated, the pyrolytic-carbon coatings help prevent the π-stacking, enlarge the accessible surface area, and increase the electrical conductivity of the scaffold. Our best-performing device offers 48% and 57% higher gravimetric energy and power density, 14% and 23% higher volumetric energy and power density, respectively, and two times higher knee frequency, than the device with commercial current collectors, while the "true-performance metrics" are strictly followed in our measurements. We have further clarified the solution resistance, charge transfer resistance/capacitance, double-layer capacitance, and Warburg resistance in our system via comprehensive impedance analysis, which will shed light on the design and optimization of similar systems.
NASA Astrophysics Data System (ADS)
Lee, Dongkyoung; Mazumder, Jyotirmoy
2018-02-01
One of the challenges of the lithium-ion battery manufacturing process is the sizing of electrodes with good cut surface quality. Poor cut surface quality results in internal short circuits in the cells and significant heat generation. One of the solutions that may improve the cut quality with a high cutting speed is laser cutting due to its high energy concentration, fast processing time, high precision, small heat affected zone, flexible range of laser power and contact free process. In order to utilize the advantages of laser electrode cutting, understanding the physical phenomena for each material is crucial. Thus, this study focuses on the laser cutting of current collectors, such as pure copper and aluminum. A 3D self-consistent mathematical model for the laser cutting, including fluid flow, heat transfer, recoil pressure, multiple reflections, capillary and thermo-capillary forces, and phase changes, is presented and solved numerically. Simulation results for the laser cutting are analyzed in terms of penetration time, depth, width, and absorptivity, based on these selected laser parameters. In addition, melt pool flow, melt pool geometry and temperature distribution are investigated.
Collector surface for a microwave tube comprising a carbon-bonded carbon-fiber composite
Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Moorhead, A.J.
1998-07-28
In a microwave tube, an improved collector surface coating comprises a porous carbon composite material, preferably a carbon-bonded carbon fiber composite having a bulk density less than about 2 g/cc. Installation of the coating is readily adaptable as part of the tube manufacturing process. 4 figs.
NASA Technical Reports Server (NTRS)
Allton, J. H.; Gonzalez, C. P.; Allums, K. K.
2016-01-01
The Genesis mission collected solar wind for 27 months at Earth-Sun L1 on both passive and active collectors carried inside of a Science Canister, which was cleaned and assembled in an ISO Class 4 cleanroom prior to launch. The primary passive collectors, 271 individual hexagons and 30 half-hexagons of semiconductor materials, are described in. Since the hard landing reduced the 301 passive collectors to many thousand smaller fragments, characterization and posting in the online catalog remains a work in progress, with about 19% of the total area characterized to date. Other passive collectors, surfaces of opportunity, have been added to the online catalog. For species needing to be concentrated for precise measurement (e.g. oxygen and nitrogen isotopes) an energy-independent parabolic ion mirror focused ions onto a 6.2 cm diameter target. The target materials, as recovered after landing, are described in. The online catalog of these solar wind collectors, a work in progress, can be found at: http://curator.jsc.nasa.gov/gencatalog/index.cfm This paper describes the next step, the cataloging of pieces of the Science Canister, which were surfaces exposed to the solar wind or component materials adjacent to solar wind collectors which may have contributed contamination.
Breitung, Ben; Aguiló-Aguayo, Noemí; Bechtold, Thomas; Hahn, Horst; Janek, Jürgen; Brezesinski, Torsten
2017-10-12
Si holds great promise as an alloying anode material for Li-ion batteries with improved energy density because of its high theoretical specific capacity and favorable operation voltage range. However, the large volume expansion of Si during electrochemical reaction with Li and the associated adverse effects strongly limit its prospect for application. Here, we report on the use of three-dimensional instead of flat current collectors for high-capacity Si anodes in an attempt to mitigate the loss of electrical contact of active electrode regions as a result of structural disintegration with cycling. The current collectors were produced by technical embroidery and consist of interconnected Cu wires of diameter <150 µm. In comparison to Si/Li cells using a conventional Cu foil current collector, the embroidered microwire network-based cells show much enhanced capacity and reversibility due to a higher degree of tolerance to cycling.
Battery paste compositions and electrochemical cells for use therewith
Olson, J.B.
1999-02-16
An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition are disclosed. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinyl sulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness. 2 figs.
Battery paste compositions and electrochemical cells for use therewith
Olson, John B.
1999-12-07
An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.
Battery paste compositions and electrochemical cells for use therewith
Olson, John B.
1999-02-16
An improved battery paste composition and a lead-acid electrochemical cell which incorporates the composition. The cell includes a positive current collector and a negative current collector which are each coated with a paste containing one or more lead-containing compositions and a paste vehicle to form a positive plate and a negative plate. An absorbent electrolyte-containing separator member may also be positioned between the positive and negative plates. The paste on the positive current collector, the negative current collector, or both further includes a special additive consisting of polyvinylsulfonic acid or salts thereof which provides many benefits including improved battery cycle life, increased charge capacity, and enhanced overall stability. The additive also makes the pastes smoother and more adhesive, thereby improving the paste application process. The paste compositions of interest may be used in conventional flat-plate cells or in spirally wound batteries with equal effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-01-01
The mathematical modeling of 11 different concentrating collectors is documented and instructions are given for use of the computer code. The 11 concentrators modeled are: faceted mirror concentration; fixed mirror, two-axis tracking receiver; parabolic trough collector; linear Fresnel; incremental reflector; inflated cylindrical concentrator; CPC-involute reflector with evacuated receiver; CPC-parabolic/involute reflector; V trough collectors, imaging collapsing concentrator; and parabolic dish collector. (MHR)
Kang, Eunae; Jeon, Gumhye; Kim, Jin Kon
2013-07-21
The mesoporous carbon nanofiber arrays that stand on carbon-gold double-layer current collectors are synthesized by self-assembly of a PS-b-PEO copolymer and resol in AAO templates for a high-power micro-supercapacitor at high current densities.
Faber, D.M; Weiland, M.A.; Moursund, R.A.; Carlson, T.J.; Adams, N.; Rondorf, D.
2001-01-01
This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000. The studies used three-dimensional (3D) acoustic telemetry and computational fluid dynamics (CFD) hydraulic modeling techniques to evaluate the response of outmigrating juvenile steelhead (Oncorhynchus mykiss) and yearling chinook (O. tshawytscha) to the Prototype Surface Collector (PSC) installed at Powerhouse I of Bonneville Dam in 1998 to test the concept of using a deep-slot surface bypass collector to divert downstream migrating salmon from turbines. The study was conducted by Pacific Northwest National Laboratory (PNNL), the Waterways Experiment Station of the U.S. Army Corp of Engineers (COE), Asci Corporation, and the U.S. Geological Survey (USGS), and was sponsored by COE’s Portland District. The goal of the study was to observe the three-dimensional behavior of tagged fish (fish bearing ultrasonic micro-transmitters) within 100 meters (m) of the surface flow bypass structure to test hypotheses about the response of migrants to flow stimuli generated by the presence of the surface flow bypass prototype and its operation. Research was done in parallel with radio telemetry studies conducted by USGS and hydroacoustic studies conducted by WES & Asci to evaluate the prototype surface collector.
Thin film buried anode battery
Lee, Se-Hee [Lakewood, CO; Tracy, C Edwin [Golden, CO; Liu, Ping [Denver, CO
2009-12-15
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
The influence of negative current collector size on a liquid metal positive electrode
NASA Astrophysics Data System (ADS)
Mohammad, Ibrahim; Ashour, Rakan; Kelley, Douglas
2017-11-01
Fluid mixing in the positive electrode of a liquid metal battery (LMB) governs some performance-related factors such as the rate of charge and discharge of the battery. The negative current collector (NCC) of a LMB is always smaller than the positive current collector, implying that current is convergent at the NCC. Also, different NCC sizes introduce different thermal, electromagnetic, and flow boundary conditions. In this talk, I will show how our lab studies the influence of NCC diameter on the flow in a liquid metal positive electrode driven by electrical current. I will present measurements of the flow velocity taken via Ultrasonic Doppler Velocimetry (UDV) over a range of different currents, at different NCC diameters.
Survey and evaluation of current design of evacuated collectors. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, B. J.
The general development of these collectors, is described and a description of numerous evacuated collectors is given which vary from collectors that have been widely used in various applications to others which are still being developed in the laboratory. A table summarizing all of the available collectors, along with their characteristics, is presented. There are four evacuated collectors which have been tested, used in demonstration sites, and developed for the market. These collectors are described in detail, and they are compared in performance and cost with a well-engineered, double glazed, selectively coated, flat plate collector. A rather simple model systemmore » of about 2000 ft/sup 2/ of collector area for each of the four evacuated collectors and the flat plate collector is described, along with the support structure and the piping for each. Details of the cost are presented in order to compare collector costs with component costs. All of the available efficiency curves of collectors were plotted for comparison with the efficiency curve of a good, flat plate collector. To show the extent of use of evacuated collectors, a list according to manufacturers and to location of all of the sites at which these collectors are being used is presented.« less
The deposition behavior of cerium dioxide (CeO2) nanoparticles (NPs) in dilute NaCl solutions was investigated as a function of collector surface composition, pH, ionic strength, and organic matter (OM). Sensors coated separately with silica, iron oxide, and alumina were applied ...
Low work function silicon collector for thermionic converters
NASA Technical Reports Server (NTRS)
Chang, K. H.; Shimada, K.
1976-01-01
To improve the efficiency of present thermionic converters, single crystal silicon was investigated as a low work function collector material. The experiments were conducted in a test vehicle which resembled an actual thermionic converter. Work function as low as 1.0eV was obtained with an n-type silicon. The stabilities of the activated surfaces at elevated temperatures were tested by raising the collector temperature up to 829 K. By increasing the Cs arrival rate, it was possible to restore the originally activated low work function of the surface at elevated surface temperatures. These results, plotted in the form of Rasor-Warner curve, show a behavior similar to that of metal electrode except that the minimum work function was much lower with silicon than with metals.
Solar collector with improved thermal concentration
Barak, Amitzur Z.
1976-01-01
Reduced heat loss from the absorbing surface of the energy receiver of a cylindrical radiant energy collector is achieved by providing individual, insulated, cooling tubes for adjacent parallel longitudinal segments of the receiver. Control means allow fluid for removing heat absorbed by the tubes to flow only in those tubes upon which energy is then being directed by the reflective wall of the collector.
Heat Pumps With Direct Expansion Solar Collectors
NASA Astrophysics Data System (ADS)
Ito, Sadasuke
In this paper, the studies of heat pump systems using solar collectors as the evaporators, which have been done so far by reserchers, are reviwed. Usually, a solar collector without any cover is preferable to one with ac over because of the necessity of absorbing heat from the ambient air when the intensity of the solar energy on the collector is not enough. The performance of the collector depends on its area and the intensity of the convective heat transfer on the surface. Fins are fixed on the backside of the collector-surface or on the tube in which the refrigerant flows in order to increase the convective heat transfer. For the purpose of using a heat pump efficiently throughout year, a compressor with variable capacity is applied. The solar assisted heat pump can be used for air conditioning at night during the summer. Only a few groups of people have studied cooling by using solar assisted heat pump systems. In Japan, a kind of system for hot water supply has been produced commercially in a company and a kind of system for air conditioning has been installed in buildings commercially by another company.
Irwin, Patricia Chapman; Feist, Thomas Paul
2001-10-16
An ultracapacitor comprises at least one cell comprising two solid, nonporous current collectors, two porous electrodes separating the current collectors, a porous separator between the electrodes and an electrolyte occupying pores in the electrodes and separator. The cell is sealed with a reclosable hermetic closure.
Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong
2017-08-23
Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.
Current collection in an anisotropic plasma
NASA Technical Reports Server (NTRS)
Li, Wei-Wei
1990-01-01
A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.
ASHMET: A computer code for estimating insolation incident on tilted surfaces
NASA Technical Reports Server (NTRS)
Elkin, R. F.; Toelle, R. G.
1980-01-01
A computer code, ASHMET, was developed by MSFC to estimate the amount of solar insolation incident on the surfaces of solar collectors. Both tracking and fixed-position collectors were included. Climatological data for 248 U. S. locations are built into the code. The basic methodology used by ASHMET is the ASHRAE clear-day insolation relationships modified by a clearness index derived from SOLMET-measured solar radiation data to a horizontal surface.
Method of making a back contacted solar cell
Gee, James M.
1995-01-01
A back-contacted solar cell having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondeau, G.D.
1989-01-01
Magnetically insulated diodes (MIDs) are of interest as ion sources for inertial confinement fusion. The authors examined several issues that are of concern with MIDs, including ion turn-on delay and anode plasma production, and diode impedance history and particle current scaling with the applied magnetic field and gas spacing. The LION pulsed power generator (1.5 MV, 4 {Omega}, 40 ns pulse length) was used to power an extractor geometry magnetically insulated (radical magnetic field) ion beam diode. The diode was studied with three anode configurations. In the first, with epoxy-filled-groove (epoxy) anodes, scaling of the ion and electron currents withmore » the gap and the magnetic field was examined. He found that the observed ion current is consistent with a diode model that has been successful with barrel geometry MIDs. The electron leakage current scaled proportionally to 1/Bd{sup 2}, where d is the anode-cathode gap spacing and B is the magnetic field strength. Studies of ion beam propagation in vacuum showed that space charge non-neutrality near the magnetic field coils caused the beam to expand initially. Later in the ion pulse (20 to 30 ns), the beam expansion became much less severe. The second anode configuration utilized an electron collector protruding above an epoxy anode surface. With the collector, he observed less bremsstrahlung across the active anode region. The last anode configuration studied was the exploding metal film active anode plasma source (EMFAAPS). Current from the accelerator was directed by an electron collector or a plasma opening switch through a thin aluminum film, which exploded to form the anode plasma.« less
Otanicar, Todd P; Golden, Jay S
2009-08-01
This study compares environmental and economic impacts of using nanofluids to enhance solar collector efficiency as compared to conventional solar collectors for domestic hotwater systems. Results show that for the current cost of nanoparticles the nanofluid based solar collector has a slightly longer payback period but at the end of its useful life has the same economic savings as a conventional solar collector. The nanofluid based collector has a lower embodied energy (approximately 9%) and approximately 3% higher levels of pollution offsets than a conventional collector. In addition if 50% penetration of residential nanofluid based solar collector systems for hot water heating could be achieved in Phoenix, Arizona over 1 million metric tons of CO2 would be offset per year.
Research of thermionic converter collector properties in model experiments with surface control
NASA Astrophysics Data System (ADS)
Agafonov, Valerii R.; Vizgalov, Anatolii V.; Iarygin, Valerii I.
Consideration was given to a possible scheme of phenomena on electrodes leading to changes in emission properties (EP) of a thermionic converter (TEC) collector. It was based on technology and materials typical of the TOPAZ-type reactor-converter (TRC). The element composition (EC), near-surface layer (NSL) structure, and work function (WF) of a collector made from niobium-based polycrystal alloy were studied within this scheme experimentally. The influence of any media except for the interelectrode gap (IEG) medium was excluded when investigating the effect of thermovacuum treatment (TVT) as well as the influence of carbon monoxide, hydrogen, and methane on the NSL characteristics. Experimental data and analytical estimates of the impact of fission products of the nuclear fuel on collector EP are presented. The calculation of possible TRC electrical power decrease was also carried out.
NASA Astrophysics Data System (ADS)
Lin, Na; Jia, Zhe; Wang, Zhihui; Zhao, Hui; Ai, Guo; Song, Xiangyun; Bai, Ying; Battaglia, Vincent; Sun, Chengdong; Qiao, Juan; Wu, Kai; Liu, Gao
2017-10-01
The structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystalline graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.
Halogen-free boron based electrolyte solution for rechargeable magnesium batteries
NASA Astrophysics Data System (ADS)
Zhu, Jinjie; Guo, Yongsheng; Yang, Jun; Nuli, Yanna; Zhang, Fan; Wang, Jiulin; Hirano, Shin-ichi
2014-02-01
All halogen containing electrolytes for Mg battery are apt to corrode conventional metal current collectors. In this paper, a new type of halogen-free boron based electrolyte (Mg[Mes3BPh]2/THF) is designed and prepared. Electrochemical tests show that this electrolyte system possesses high ion conductivity (1.5 × 10-3 S cm-1) and good Mg deposition-dissolution reversibility. More importantly, the same electrochemical window (2.6 V vs. Mg RE) of the electrolyte on Pt and stainless steel electrodes indicates that halogen-free electrolyte indeed lessens the corrosion to conventional metal current collectors. The surface morphologies of stainless steel, aluminum and copper are further observed after their anodic potentiostatic polarization in 0.25 mol L-1 Mg[Mes3BPh]2/THF electrolyte solution for 2 days. A comparison with halogen containing electrolytes proves that the presence of halogen in electrolyte is the reason for corrosion. This work provides a stepping stone for developing new halogen-free electrolyte systems for rechargeable Mg batteries.
Attaching solar collectors to a structural framework utilizing a flexible clip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruse, John S
Methods and apparatuses described herein provide for the attachment of solar collectors to a structural framework in a solar array assembly. A flexible clip is attached to either end of each solar collector and utilized to attach the solar collector to the structural framework. The solar collectors are positioned to allow a member of the framework to engage a pair of flexible clips attached to adjacent solar collectors during assembly of the solar array. Each flexible clip may have multiple frame-engaging portions, each with a flange on one end to cause the flexible clip to deflect inward when engaged bymore » the framework member during assembly and to guide each of the frame-engaging portions into contact with a surface of the framework member for attachment.« less
The Thermal Collector With Varied Glass Covers
NASA Astrophysics Data System (ADS)
Luminosu, I.; Pop, N.
2010-08-01
The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collection area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.
Buried anode lithium thin film battery and process for forming the same
Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping
2004-10-19
A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).
NASA Technical Reports Server (NTRS)
Allton, Judith H.; Rodriquez, M. C.; Burkett, P. J.; Ross, D. K.; Gonzalez, C. P.; McNamara, K. M.
2013-01-01
One of the 4 Genesis solar wind concentrator collectors was a silicon substrate coated with diamond-like carbon (DLC) in which to capture solar wind. This material was designed for analysis of solar nitrogen and noble gases [1, 2]. This particular collector fractured during landing, but about 80% of the surface was recovered, including a large piece which was subdivided in 2012 [3, 4, 5]. The optical and SEM imaging and analysis described below supports the subdivision and allocation of the diamond-on-silicon (DOS) concentrator collector.
NASA Technical Reports Server (NTRS)
Smith, J. H.
1994-01-01
This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day during the month specified, along with the total insolation the collector surface will receive over an average 24-hour period. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer with a central memory requirement of approximately 46K of 8 bit bytes. The SOLINS routines were developed in 1979.
High temperature current mirror amplifier
Patterson, III, Raymond B.
1984-05-22
A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.
NASA Technical Reports Server (NTRS)
Manista, E. J.
1972-01-01
The effect of collector, guard-ring potential imbalance on the observed collector-current-density J, collector-to-emitter voltage V characteristic was evaluated in a planar, fixed-space, guard-ringed thermionic converter. The J,V characteristic was swept in a period of 15 msec by a variable load. A computerized data acquisition system recorded test parameters. The results indicate minimal distortion of the J,V curve in the power output quadrant for the nominal guard-ring circuit configuration. Considerable distortion, along with a lowering of the ignited-mode striking voltage, was observed for the configuration with the emitter shorted to the guard ring. A limited-range performance map of an etched-rhenium, niobium, planar converter was obtained by using an improved computer program for the data acquisition system.
Method of making a back contacted solar cell
Gee, J.M.
1995-11-21
A back-contacted solar cell is described having laser-drilled vias connecting the front-surface carrier-collector junction to an electrode grid on the back surface. The structure may also include a rear surface carrier-collector junction connected to the same grid. The substrate is connected to a second grid which is interdigitated with the first. Both grids are configured for easy series connection with neighboring cells. Several processes are disclosed to produce the cell. 2 figs.
NASA Astrophysics Data System (ADS)
Qiu, Huatan
A critical issue for EUV lithography is the minimization of collector degradation from intense plasma erosion and debris deposition. Reflectivity and lifetime of the collector optics will be heavily dependent on surface chemistry interactions between fuels and various mirror materials, in addition to high-energy ion and neutral particle erosion effects. An innovative Gibbsian segregation (GS) concept has been developed for being a self-healing, erosion-resistant collector optics. A Mo-Au GS alloy is developed on silicon using a DC dual-magnetron co-sputtering system in order for enhanced surface roughness properties, erosion resistance, and self-healing characteristics to maintain reflectivity over a longer period of mirror lifetime. A thin Au segregating layer will be maintained through segregation during exposure, even though overall erosion is taking place. The reflective material, Mo, underneath the segregating layer will be protected by this sacrificial layer which is lost due to preferential sputtering. The two dominant driving forces, thermal (temperature) and surface concentration gradient (surface removal flux), are the focus of this work. Both theoretical and experimental efforts have been performed to prove the effectiveness of the GS alloy used as EUV collection optics, and to elucidate the underlying physics behind it. The segregation diffusion, surface balance, erosion, and in-situ reflectivity will be investigated both qualitatively and quantitatively. Results show strong enhancement effect of temperature on GS performance, while only a weak effect of surface removal rate on GS performance. When equilibrium between GS and erosion is reached, the surface smoothness could be self-healed and reflectivity could be maintained at an equilibrium level, instead of continuously dropping down to an unacceptable level as conventional optic mirrors behave. GS process also shows good erosion resistance. The effectiveness of GS alloy as EUV mirror is dependent on the temperature and surface removal rate. The Mo-Au GS alloy could be effective at elevated temperature as the potential grazing mirror as EUV collector optics.
Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery.
Li, Hongbian; Shen, Fei; Luo, Wei; Dai, Jiaqi; Han, Xiaogang; Chen, Yanan; Yao, Yonggang; Zhu, Hongli; Fu, Kun; Hitz, Emily; Hu, Liangbing
2016-01-27
A simple one-step thermal pyrolysis route has been developed to prepare carbon membrane from a natural leaf. The carbonized leaf membrane possesses anisotropic surfaces and internal hierarchical porosity, exhibiting a high specific capacity of 360 mAh/g and a high initial Coulombic efficiency of 74.8% as a binder-free, current-collector-free anode for rechargeable sodium ion batteries. Moreover, large-area carbon membranes with low contact resistance are fabricated by simply stacking and carbonizing leaves, a promising strategy toward large-scale sodium-ion battery developments.
Carbon-Coated Current Collectors for High-Power Lithium Ion Secondary Batteries III
2014-02-11
performance for use modified Al foil as current collector of the cathode. LiFePO4 (LFPO) was used as active materials for test, and this cathode material was...shown in Fig. 4. It shows the rate capacity of LiFePO4 (LFPO) get poorer when using PAT-Al as current collector, and this might be attributed to...e c ap ac ity (m Ah /g ) C rate Al (3.01mg/cm2) PAT-Al (2.48mg/cm2) PBT-Al (2.86mg/cm2) PCT-Al (3.01mg/cm2) commercial LiFePO4 (Ale84) on
Diver, Jr., Richard B.; Grossman, James W [Albuquerque, NM; Reshetnik, Michael [Boulder, CO
2006-07-18
A solar collector comprising a glass mirror, and a composite panel, wherein the back of the mirror is affixed to a front surface of the composite panel. The composite panel comprises a front sheet affixed to a surface of a core material, preferably a core material comprising a honeycomb structure, and a back sheet affixed to an opposite surface of the core material. The invention may further comprise a sealing strip, preferably comprising EPDM, positioned between the glass mirror and the front surface of the composite panel. The invention also is of methods of making such solar collectors.
Generation of subnanosecond electron beams in air at atmospheric pressure
NASA Astrophysics Data System (ADS)
Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.
2009-11-01
Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.
Bolton, Richard D.; Bounds, John A.; Rawool-Sullivan, Mohini W.
1996-01-01
An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors.
Bolton, R.D.; Bounds, J.A.; Rawool-Sullivan, M.W.
1996-05-07
An alpha detector for application in areas of high velocity gas flows, such as smokestacks and air vents. A plurality of spaced apart signal collectors are placed inside an enclosure, which would include smokestacks and air vents, in sufficient numbers to substantially span said enclosure so that gas ions generated within the gas flow are electrostatically captured by the signal collector means. Electrometer means and a voltage source are connected to the signal collectors to generate an electrical field between adjacent signal collectors, and to indicate a current produced through collection of the gas ions by the signal collectors. 4 figs.
High temperature current mirror amplifier
Patterson, R.B. III.
1984-05-22
Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.
NASA Astrophysics Data System (ADS)
Byun, Segi; Yu, Jin
2016-03-01
When a reduced graphite oxide (RGO) freestanding film is fabricated on a supercapacitor cell via compression onto a current collector, there are gaps between the film and the current collector, even if the cell is carefully assembled. These gaps can induce increases in the electrical series resistance (ESR) of the cell, resulting in degradation of the cell's electrochemical performance. Here, to effectively reduce the ESR of the supercapacitor, metal sputtering deposition is introduced. This enables the direct formation of the current collector layer on a partially reduced GO (pRGO) film, the model system. Using metal sputtering, a nickel (Ni) layer with a thickness <1 μm can be created easily on one side of the pRGO film. Good electrical interconnection between the pRGO film and the current collector can be obtained using a Ni layer formed on the pRGO film. The pRGO film sustains its film form with high packing density (∼1.31 g cm-3). Furthermore, the Ni-sputtered pRGO film with optimized Ni thickness exhibits remarkable enhancement of its electrochemical performance. This includes a superior rate capability and semi-permanent cycle life compared with the untreated pRGO film. This is due to the significant decrease in the ESR of the film.
The Thermal Collector With Varied Glass Covers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luminosu, I.; Pop, N.
2010-08-04
The thermal collector with varied glass covers represents an innovation realized in order to build a collector able to reach the desired temperature by collecting the solar radiation from the smallest surface, with the highest efficiency. In the case of the thermal collector with variable cover glasses, the number of the glass plates covering the absorber increases together with the length of the circulation pipe for the working fluid. The thermal collector with varied glass covers compared to the conventional collector better meet user requirements because: for the same temperature increase, has the collecting area smaller; for the same collectionmore » area, realizes the highest temperature increase and has the highest efficiency. This works is addressed to researchers in the solar energy and to engineers responsible with air-conditioning systems design or industrial and agricultural products drying.« less
Alternative Energy Sources for United States Air Force Installations
1975-08-01
easy to maintain, and have a relatively long life expectancy. b. Linear Focus Parabolic trough collectors have been fabricated by two primary methods...engineered and economically manufactured and dis- tributed solar collectors . Development, optimization, production design, and manufacture of these units is...193 and domestic hnt water heating. These systems function by converting the solar energy incident on a collector surface to thermal energy in a working
A new concept of hybrid photovoltaic thermal (PVT) collector with natural circulation
NASA Astrophysics Data System (ADS)
Lu, Longsheng; Wang, Xiaowu; Wang, Shuai; Liu, Xiaokang
2017-07-01
Hybrid photovoltaic thermal (PVT) technology refers to the integration of a photovoltaic module into a conventional solar thermal collector. Generally, the traditional design of a PVT collector has solar cells fixed on the top surface of an absorber in a flat-plate solar thermal collector. In this work, we presented a new concept of water-based PVT collector in which solar cells were directly placed on the bottom surface of its glass cover. A dynamic numerical model of this new PVT is developed and validated by experimental tests. With numerical analysis, it is found that at same covering factor, the electricity conversion efficiency of solar cells of the new PVT exceed that of the traditional PVT by nearly 10% while its thermal efficiency is approximately 30% lower than that of the traditional PVT. When the covering factor changes from 0.05 to 1, the thermal efficiency of the new PVT drops nearly 70%. The thermal efficiency of both the new PVT and the traditional PVT rise up as the water mass in tank increases. Meanwhile, the final water temperature in tank of the traditional PVT collector declines more than 17 °C, whereas that of the new PVT declines less than 6 °C, when the water mass increases from 100 to 300 kg.
DOE/JPL advanced thermionic technology program
NASA Technical Reports Server (NTRS)
1979-01-01
Progress made in different tasks of the advanced thermionic technology program is described. The tasks include surface and plasma investigations (surface characterization, spectroscopic plasma experiments, and converter theory); low temperature converter development (tungsten emitter, tungsten oxide collector and tungsten emitter, nickel collector); component hardware development (hot shell development); flame-fired silicon carbide converters; high temperature and advanced converter studies; postoperational diagnostics; and correlation of design interfaces.
Liatard, S; Benhamouda, K; Fournier, A; Ramos, R; Barchasz, C; Dijon, J
2015-05-04
A light-weight, high specific surface current collector made of vertically-aligned carbon nanotubes grown on an aluminum substrate was fabricated and studied as a positive electrode in a semi-liquid lithium/polysulfide battery. This simple system delivered stable capacities over 1000 mA h gS(-1) and 2 mA h cm(-2) with almost no capacity loss over 50 cycles.
NASA Astrophysics Data System (ADS)
Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo
2013-02-01
Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.
Cooling water distribution system
Orr, Richard
1994-01-01
A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.
Photovoltaic radiation detector element
Agouridis, Dimitrios C.
1983-01-01
A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.
Design, fabrication, testing and delivery of a solar collector
NASA Technical Reports Server (NTRS)
Sims, W. H.; Ballheim, R. W.; Bartley, S. M.; Smith, G. W.
1976-01-01
A two phase program encompassing the redesign and fabrication of a solar collector which is low in cost and aesthetically appealing is described. Phase one work reviewed the current collector design and developed a low-cost design based on specific design/performance/cost requirements. Throughout this phase selected collector component materials were evaluated by testing and by considering cost, installation, maintainability and durability. The resultant collector design was composed of an absorber plate, insulation, frame, cover, desiccant and sealant. In Phase two, three collector prototypes were fabricated and evaluated for both nonthermal and thermal characteristics. Tests included static load tests of covers, burst pressure tests of absorber plates, and tests for optical characteristics of selective absorber plate coatings. The three prototype collectors were shipped to Marshall Space Flight Center for use in their solar heating and cooling test facility.
Effect of dividing daylight in symmetric prismatic daylight collector
NASA Astrophysics Data System (ADS)
Yeh, Shih-Chuan; Lu, Ju-Lin; Cheng, Yu-Chin
2017-04-01
This paper presented a symmetric prismatic daylight collector to collect daylight for the natural light illumination system. We analyzed the characteristics of the emerging light when the parallel light beam illuminate on the horizontally placed symmetric prismatic daylight collector. The ratio of the relative intensities of collected daylight that emerging from each surface of the daylight collector shown that the ratio is varied with the incident angle during a day. The simulation of the emerging light of the daylight collector shown that the ratio of emerging light is varied with the tilted angle when sunshine illuminated on a symmetric prismatic daylight collector which was not placed horizontally. The integration of normalized intensity is also varied with the tilted angle. The symmetric prismatic daylight collector with the benefits of reducing glare and dividing intensity of incident daylight, it is applicable to using in the natural light illumination system and hybrid system for improving the efficiency of utilizing of solar energy.
Theoretical studies of thermionic conversion of solar energy with graphene as emitter and collector
NASA Astrophysics Data System (ADS)
Olawole, Olukunle C.; De, Dilip Kumar
2018-01-01
Thermionic energy conversion (TEC) using nanomaterials is an emerging field of research. It is known that graphene can withstand temperatures as high as 4600 K in vacuum, and it has been shown that its work function can be engineered from a high value (for monolayer/bilayer) of 4.6 eV to as low as 0.7 eV. Such attractive electronic properties (e.g., good electrical conductivity and high dielectric constant) make engineered graphene a good candidate as an emitter and collector in a thermionic energy converter for harnessing solar energy efficiently. We have used a modified Richardson-Dushman equation and have adopted a model where the collector temperature could be controlled through heat extraction in a calculated amount and a magnet can be attached on the back surface of the collector for future control of the space-charge effect. Our work shows that the efficiency of solar energy conversion also depends on power density falling on the emitter surface, and that a power conversion efficiency of graphene-based solar TEC as high as 55% can be easily achieved (in the absence of the space-charge effect) through proper choice of work functions, collector temperature, and emissivity of emitter surfaces. Such solar energy conversion would reduce our dependence on silicon solar panels and offers great potential for future renewable energy utilization.
Cleaning Genesis Solar Wind Collectors with Ultrapure Water: Residual Contaminant Particle Analysis
NASA Technical Reports Server (NTRS)
Allton, J. H.; Wentworth, S. J.; Rodriquez, M. C.; Calaway, M. J.
2008-01-01
Additional experience has been gained in removing contaminant particles from the surface of Genesis solar wind collectors fragments by using megasonically activated ultrapure water (UPW)[1]. The curatorial facility has cleaned six of the eight array collector material types to date: silicon (Si), sapphire (SAP), silicon-on-sapphire (SOS), diamond-like carbon-on-silicon (DOS), gold-on-sapphire (AuOS), and germanium (Ge). Here we make estimates of cleaning effectiveness using image analysis of particle size distributions and an SEM/EDS reconnaissance of particle chemistry on the surface of UPW-cleaned silicon fragments (Fig. 1). Other particle removal techniques are reported by [2] and initial assessment of molecular film removal is reported by [3].
Installation package for air flat plate collector
NASA Technical Reports Server (NTRS)
1977-01-01
The Solar 2 dimensions are four feet by eight feet by two and one half inches. The collector weighs 130 pounds and has an effective solar collection area of over 29.5 square feet. This area represents 95 percent of the total surface of the collector. The installation, operation and maintenance manual, safety hazard analysis, special handling instructions, materials list, installation concept drawings, warranty and certification statement are included in the installation package.
NASA Astrophysics Data System (ADS)
Wang, Tao; Guo, Ying; Zhao, Bo; Yu, Shuhui; Yang, Hai-Peng; Lu, Daniel; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping
2015-07-01
Three dimensional interconnected hierarchical porous Ni films are easily fabricated as effective current collectors through hydrogen bubble template electrochemical deposition. The binder-free integrated electrodes of spinel NiCo2O4 nanosheets directly coated the three dimensional porous Ni films are facilely obtained through successively electrochemical co-deposition of Ni/Co alloy layer then followed by subsequent annealing at 350 °C in air. Compared with NiCo2O4 nanosheets on smooth Ni foil or porous NiO/Ni film electrodes, the porous NiCo2O4/Ni integrated film electrodes for supercapacitors demonstrate remarkably higher area specific capacitance. The porous NiCo2O4/Ni film electrodes also exhibit excellent rate capability and cycling stability. The super electrochemical capacitive performances are attributed to the unique integrated architecture of NiCo2O4 nanosheets in-situ grown on three dimensional continuous hierarchical porous Ni collector collectors, which could provide large electrode-electrolyte interface area, high active sites, low contact resistance between current collector and active materials, fast electron conduction and ion/electrolyte diffusion.
Evaluation of ion collection area in Faraday probes.
Brown, Daniel L; Gallimore, Alec D
2010-06-01
A Faraday probe with three concentric rings was designed and fabricated to assess the effect of gap width and collector diameter in a systematic study of the diagnostic ion collection area. The nested Faraday probe consisted of two concentric collector rings and an outer guard ring, which enabled simultaneous current density measurements on the inner and outer collectors. Two versions of the outer collector were fabricated to create gaps of 0.5 and 1.5 mm between the rings. Distribution of current density in the plume of a low-power Hall thruster ion source was measured in azimuthal sweeps at constant radius from 8 to 20 thruster diameters downstream of the exit plane with variation in facility background pressure. A new analytical technique is proposed to account for ions collected in the gap between the Faraday probe collector and guard ring. This method is shown to exhibit excellent agreement between all nested Faraday probe configurations, and to reduce the magnitude of integrated ion beam current to levels consistent with Hall thruster performance analyses. The technique is further studied by varying the guard ring bias potential with a fixed collector bias potential, thereby controlling ion collection in the gap. Results are in agreement with predictions based on the proposed analytical technique. The method is applied to a past study comparing the measured ion current density profiles of two Faraday probe designs. These findings provide new insight into the nature of ion collection in Faraday probe diagnostics, and lead to improved accuracy with a significant reduction in measurement uncertainty.
Structure that encapsulates lithium metal for high energy density battery anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Yi; Yan, Kai; Chu, Steven
A battery includes 1) an anode, 2) a cathode, and 3) an electrolyte disposed between the anode and the cathode. The anode includes a current collector and an interfacial layer disposed over the current collector, and the interfacial layer includes an array of interconnected, protruding regions that define spaces.
Pathways toward a low cost evacuated collector system
NASA Astrophysics Data System (ADS)
Hull, J. R.; Schertz, W. W.; Allen, J. W.; Ogallagher, J. J.; Winston, R.
The goal of widespread use of solar thermal collectors will only be achieved when they are proven to be economically superior to competing energy sources. Evacuated tubular collectors appear to have the potential to achieve this goal. An advanced evacuated collector using nonimaging concentration under development at the University of Chicago and Argonne can achieve a 50% seasonal efficiency at heat delivery temperatures in excess of 170C. The same collector has an optical efficiency so that low temperature performance is also excellent. In this advanced collector design all of the critical components are enclosed in the vacuum, and the collector has an inherently long lifetime. The current cost of evacuated systems is too high, mainly because the volume of production has been too low to realize economies of mass production. It appears that certain design features of evacuated collectors can be changed (e.g., use of heat pipe absorbers) so as to introduce new system design and market strategy options that can reduce the balance of system cost.
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1978-01-01
A method is provided for the fabrication of a photovoltaic device which possesses an efficient collector system for the conduction of the current generated by incident photons to the external circuitry of the device.
Metallic CoS2 nanowire electrodes for high cycling performance supercapacitors
NASA Astrophysics Data System (ADS)
Ren, Ren; Faber, Matthew S.; Dziedzic, Rafal; Wen, Zhenhai; Jin, Song; Mao, Shun; Chen, Junhong
2015-12-01
We report metallic cobalt pyrite (CoS2) nanowires (NWs) prepared directly on current collecting electrodes, e.g., carbon cloth or graphite disc, for high-performance supercapacitors. These CoS2 NWs have a variety of advantages for supercapacitor applications. Because the metallic CoS2 NWs are synthesized directly on the current collector, the good electrical connection enables efficient charge transfer between the active CoS2 materials and the current collector. In addition, the open spaces between the sea urchin structure NWs lead to a large accessible surface area and afford rapid mass transport. Moreover, the robust CoS2 NW structure results in high stability of the active materials during long-term operation. Electrochemical characterization reveals that the CoS2 NWs enable large specific capacitance (828.2 F g-1 at a scan rate of 0.01 V s-1) and excellent long term cycling stability (0-2.5% capacity loss after 4250 cycles at 5 A g-1) for pseudocapacitors. This example of metallic CoS2 NWs for supercapacitor applications expands the opportunities for transition metal sulfide-based nanostructures in emerging energy storage applications.
Metallic CoS₂ nanowire electrodes for high cycling performance supercapacitors.
Ren, Ren; Faber, Matthew S; Dziedzic, Rafal; Wen, Zhenhai; Jin, Song; Mao, Shun; Chen, Junhong
2015-12-11
We report metallic cobalt pyrite (CoS2) nanowires (NWs) prepared directly on current collecting electrodes, e.g., carbon cloth or graphite disc, for high-performance supercapacitors. These CoS2 NWs have a variety of advantages for supercapacitor applications. Because the metallic CoS2 NWs are synthesized directly on the current collector, the good electrical connection enables efficient charge transfer between the active CoS2 materials and the current collector. In addition, the open spaces between the sea urchin structure NWs lead to a large accessible surface area and afford rapid mass transport. Moreover, the robust CoS2 NW structure results in high stability of the active materials during long-term operation. Electrochemical characterization reveals that the CoS2 NWs enable large specific capacitance (828.2 F g(-1) at a scan rate of 0.01 V s(-1)) and excellent long term cycling stability (0-2.5% capacity loss after 4250 cycles at 5 A g(-1)) for pseudocapacitors. This example of metallic CoS2 NWs for supercapacitor applications expands the opportunities for transition metal sulfide-based nanostructures in emerging energy storage applications.
NASA Astrophysics Data System (ADS)
Wu, Chuanren; Pagonakis, Ioannis Gr.; Avramidis, Konstantinos A.; Gantenbein, Gerd; Illy, Stefan; Thumm, Manfred; Jelonnek, John
2018-03-01
Multistage Depressed Collectors (MDCs) are widely used in vacuum tubes to regain energy from the depleted electron beam. However, the design of an MDC for gyrotrons, especially for those deployed in fusion experiments and future power plants, is not trivial. Since gyrotrons require relatively high magnetic fields, their hollow annular electron beam is magnetically confined in the collector. In such a moderate magnetic field, the MDC concept based on E × B drift is very promising. Several concrete design approaches based on the E × B concept have been proposed. This paper presents a realizable design of a two-stage depressed collector based on the E × B concept. A collector efficiency of 77% is achievable, which will be able to increase the total gyrotron efficiency from currently 50% to more than 60%. Secondary electrons reduce the efficiency only by 1%. Moreover, the collector efficiency is resilient to the change of beam current (i.e., space charge repulsion) and beam misalignment as well as magnetic field perturbations. Therefore, compared to other E × B conceptual designs, this design approach is promising and fairly feasible.
Cell design for lithium alloy/metal sulfide battery
Kaun, Thomas D.
1985-01-01
The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.
Improved cell design for lithium alloy/metal sulfide battery
Kaun, T.D.
1984-03-30
The disclosed lithium alloy/iron sulfide cell design provides loop-like positive and negative sheet metal current collectors electrically insulated from one another by separator means, the positive collector being located outwardly of the negative collector. The collectors are initially secured within an open-ended cell housing, which allows for collector pretesting for electrical shorts prior to adding any electrode materials and/or electrolyte to the cell. Separate chambers are defined outwardly of the positive collector and inwardly of the negative collector open respectively in opposite directions toward the open ends of the cell housing; and positive and negative electrode materials can be extruded into these respective chambers via the opposite open housing ends. The chambers and cell housing ends can then be sealed closed. A cross wall structurally reinforces the cell housing and also thereby defines two cavities, and paired positive and negative collectors are disposed in each cavity and electrically connected in parallel. The cell design provides for a high specific energy output and improved operating life in that any charge-discharge cycle swelling of the positive electrode material will be inwardly against only the positive collector to minimize shorts caused by the collectors shifting relative to one another.
NASA Technical Reports Server (NTRS)
Shih, K.
1977-01-01
The test procedures used and the test results obtained from an evaluation test program conducted on a double-covered liquid solar collector under simulated conditions are presented. The test article was a flat plate solar collector using liquid as the heat transfer medium. The absorber plate was steel with the copper tubes bonded on the upper surface. The plate was coated with black chrome with an absorptivity factor of .95 and emissivity factor of .12. A time constant test and incident angle modifier test were conducted to determine the transient effect and the incident angle effect on the collector.
NASA Astrophysics Data System (ADS)
Roop, H. A.; Clow, D. W.; Mills, J.; Fenn, M. E.
2011-12-01
Recent increases in atmospheric deposition of nitrogen (N) in the western U.S. have adversely impacted surface water quality and changed the composition of aquatic biota in high-elevation lakes. Existing N deposition data are generally not spatially diverse; representation of remote wilderness areas and high-elevation watersheds is often lacking, making it difficult to assess the importance of variations in N deposition on water quality impacts. This study aims to better understand N deposition in remote environments, particularly in alpine environments, where both the quantity and environmental impact of atmospheric N deposition are poorly understood. Understanding the impacts of N deposition on these environments is important for National Park resource and water-quality managers. Using ion-exchange resin (IER) collectors, seasonal through-fall of nitrogen was measured at 29 sites in the Rocky Mountains and 21 sites in the Sierra Nevada from 2006-2011. The IER collectors, deployed in pairs, represent geographically diverse transects aimed to quantify the spatial distribution of nitrogen deposition. Placed on talus slopes or in areas of exposed bedrock, the IER collectors were installed immediately following snowmelt (June/July) and replaced with new collectors prior to the first snowfall (September). Following spring melt, the collectors deployed over the winter were exchanged with new collectors. These seasonal swaps capture winter/spring and summer/fall deposition. A majority of the sites were paired with seasonal surface-water quality samples, allowing for comparison with nitrate levels in surface waters. In the lab, N compounds are eluted from the resins, then diluted and analyzed on an ion- chromatograph. Preliminary data from 2006, representing 16 sites with uncontaminated samples in Rocky Mountain National Park, suggest higher nitrogen deposition on the east side of the park. Average summer N deposition for an 85-day exposure period at the eastern slope sites was 0.85 ± 0.21 kg/ha, and west-slope sites averaged 0.69 ± 0.12 kg/ha. Greater N deposition on the eastern slope may be related to seasonal upslope (easterly) winds, common during the spring and summer, which transport urban and agricultural pollutants into the mountains. However, an ANOVA analysis indicated that the difference in mean N deposition of the east- and west-sides were not statistically different at p < 0.05. Due to a small sample size, more data are currently being analyzed to determine if these results are representative. Ongoing analysis of samples collected from 2007-2011, in both Rocky Mountain and Yosemite National Parks, will help to place these preliminary results in context and build a more robust database from which the impacts of N deposition on high-elevation watersheds can be quantitatively determined.
A new algorithm for grid-based hydrologic analysis by incorporating stormwater infrastructure
NASA Astrophysics Data System (ADS)
Choi, Yosoon; Yi, Huiuk; Park, Hyeong-Dong
2011-08-01
We developed a new algorithm, the Adaptive Stormwater Infrastructure (ASI) algorithm, to incorporate ancillary data sets related to stormwater infrastructure into the grid-based hydrologic analysis. The algorithm simultaneously considers the effects of the surface stormwater collector network (e.g., diversions, roadside ditches, and canals) and underground stormwater conveyance systems (e.g., waterway tunnels, collector pipes, and culverts). The surface drainage flows controlled by the surface runoff collector network are superimposed onto the flow directions derived from a DEM. After examining the connections between inlets and outfalls in the underground stormwater conveyance system, the flow accumulation and delineation of watersheds are calculated based on recursive computations. Application of the algorithm to the Sangdong tailings dam in Korea revealed superior performance to that of a conventional D8 single-flow algorithm in terms of providing reasonable hydrologic information on watersheds with stormwater infrastructure.
NASA Astrophysics Data System (ADS)
König, S.; Suriyah, M. R.; Leibfried, T.
2017-08-01
A lumped-parameter model for vanadium redox flow batteries, which use metallic current collectors, is extended into a one-dimensional model using the plug flow reactor principle. Thus, the commonly used simplification of a perfectly mixed cell is no longer required. The resistances of the cell components are derived in the in-plane and through-plane directions. The copper current collector is the only component with a significant in-plane conductance, which allows for a simplified electrical network. The division of a full-scale flow cell into 10 layers in the direction of fluid flow represents a reasonable compromise between computational effort and accuracy. Due to the variations in the state of charge and thus the open circuit voltage of the electrolyte, the currents in the individual layers vary considerably. Hence, there are situations, in which the first layer, directly at the electrolyte input, carries a multiple of the last layer's current. The conventional model overestimates the cell performance. In the worst-case scenario, the more accurate 20-layer model yields a discharge capacity 9.4% smaller than that computed with the conventional model. The conductive current collector effectively eliminates the high over-potentials in the last layers of the plug flow reactor models that have been reported previously.
Beta ray flux measuring device
Impink, Jr., Albert J.; Goldstein, Norman P.
1990-01-01
A beta ray flux measuring device in an activated member in-core instrumentation system for pressurized water reactors. The device includes collector rings positioned about an axis in the reactor's pressure boundary. Activated members such as hydroballs are positioned within respective ones of the collector rings. A response characteristic such as the current from or charge on a collector ring indicates the beta ray flux from the corresponding hydroball and is therefore a measure of the relative nuclear power level in the region of the reactor core corresponding to the specific exposed hydroball within the collector ring.
Lightweight, durable lead-acid batteries
Lara-Curzio, Edgar [Lenoir City, TN; An, Ke [Knoxville, TX; Kiggans, Jr., James O.; Dudney, Nancy J [Knoxville, TN; Contescu, Cristian I [Knoxville, TN; Baker, Frederick S [Oak Ridge, TN; Armstrong, Beth L [Clinton, TN
2011-09-13
A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
Lightweight, durable lead-acid batteries
Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L
2013-05-21
A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
High energy density redox flow device
Chiang, Yet -Ming; Carter, W. Craig; Duduta, Mihai; Limthongkul, Pimpa
2015-10-06
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
High energy density redox flow device
Chiang, Yet-Ming; Carter, William Craig; Duduta, Mihai; Limthongkul, Pimpa
2014-05-13
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % of the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Na; Jia, Zhe; Wang, Zhihui
Here in this paper, the structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystallinemore » graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.« less
Lin, Na; Jia, Zhe; Wang, Zhihui; ...
2017-10-01
Here in this paper, the structure degradation of commercial Lithium-ion battery (LIB) graphite anodes with different cycling numbers and charge rates was investigated by focused ion beam (FIB) and scanning electron microscopy (SEM). The cross-section image of graphite anode by FIB milling shows that cracks, resulted in the volume expansion of graphite electrode during long-term cycling, were formed in parallel with the current collector. The crack occurs in the bulk of graphite particles near the lithium insertion surface, which might derive from the stress induced during lithiation and de-lithiation cycles. Subsequently, crack takes place along grain boundaries of the polycrystallinemore » graphite, but only in the direction parallel with the current collector. Furthermore, fast charge graphite electrodes are more prone to form cracks since the tensile strength of graphite is more likely to be surpassed at higher charge rates. Therefore, for LIBs long-term or high charge rate applications, the tensile strength of graphite anode should be taken into account.« less
An improved alkaline direct formate paper microfluidic fuel cell.
Galvan, Vicente; Domalaon, Kryls; Tang, Catherine; Sotez, Samantha; Mendez, Alex; Jalali-Heravi, Mehdi; Purohit, Krutarth; Pham, Linda; Haan, John; Gomez, Frank A
2016-02-01
Paper-based microfluidic fuel cells (MFCs) are a potential replacement for traditional FCs and batteries due to their low cost, portability, and simplicity to operate. In MFCs, separate solutions of fuel and oxidant migrate through paper due to capillary action and laminar flow and, upon contact with each other and catalyst, produce electricity. In the present work, we describe an improved microfluidic paper-based direct formate FC (DFFC) employing formate and hydrogen peroxide as the anode fuel and cathode oxidant, respectively. The dimensions of the lateral column, current collectors, and cathode were optimized. A maximum power density of 2.53 mW/cm(2) was achieved with a DFFC of surface area 3.0 cm(2) , steel mesh as current collector, 5% carbon to paint mass ratio for cathode electrode and, 30% hydrogen peroxide. The longevity of the MFC's detailed herein is greater than eight hours with continuous flow of streams. In a series configuration, the MFCs generate sufficient energy to power light-emitting diodes and a handheld calculator. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi
1983-01-01
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.
Systems and methods for separating a multiphase fluid
NASA Technical Reports Server (NTRS)
Weislogel, Mark M. (Inventor); Thomas, Evan A. (Inventor); Graf, John C. (Inventor)
2011-01-01
Apparatus and methods for separating a fluid are provided. The apparatus can include a separator and a collector having an internal volume defined at least in part by one or more surfaces narrowing toward a bottom portion of the volume. The separator can include an exit port oriented toward the bottom portion of the volume. The internal volume can receive a fluid expelled from the separator into a flow path in the collector and the flow path can include at least two directional transitions within the collector.
Unglazed transpired solar collector having a low thermal-conductance absorber
Christensen, Craig B.; Kutscher, Charles F.; Gawlik, Keith M.
1997-01-01
An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.
Unglazed transpired solar collector having a low thermal-conductance absorber
Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.
1997-12-02
An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.
Air solar collectors in building use - A review
NASA Astrophysics Data System (ADS)
Bejan, Andrei-Stelian; Labihi, Abdelouhab; Croitoru, Cristiana; Catalina, Tiberiu
2018-02-01
In the current energy and environmental context it is imperative to implement systems based on renewable energy sources in order to reduce energy consumptions worldwide. Solar collectors are studied by many years and many researchers are focusing their attention in order to increase their efficiency and cost-effectiveness. Water solar collectors are often implemented for domestic hot water, heating or industrial processes and already have a place on the market. A promising system which is not yet widely known is represented by air solar collectors that could represent an efficient way to use the solar energy with a lower investment cost, a system that can be used in order to preheat the fresh air required for heating, drying, or to maintain a minimum temperature during winter. This paper presents a comprehensive literature review on air solar collectors used mainly in buildings, acting as a solar wall. Air solar collectors are roughly classified into two types: glazed and opaque. The present study comprises the solar collector classification, applications and their main parameters with a special focus on opaque solar collectors.
NASA Astrophysics Data System (ADS)
He, G. C.; Ding, J.; Huang, C. H.; Kang, Q.
2018-01-01
Hydrophobic polystyrene nanoparticles bearing thiazole groups named HNP were used as collectors to improve recovery of microfine chalcopyrite in flotation. HNP adsorbs onto microfine particles selectively, which were modified hydrophobically to induce flotation effectively. Particle size and scanning electron microscope analysis for HNP show that HNP is a spherical nano particles with small size, uniform distribution and good dispersion. Infrared spectrum analysis for HNP proved that functional monomer 2-mercapto styrene acrylic thiazole was bonded chemically onto styrene. Flotation test results indicate that HNP is the right collector of chalcopyrite. Especially, the recovery of chalcopyrite is higher than 95% in neutral and acid media. FTIR results reveal that the flotation selectivity of collector HNP is due to strong chemical absorption onto chalcopyrite surface. Zeta potential analysis shows that the zeta potential of chalcopyrite decreased more quickly after interaction with HNP with the increase of pulp pH value, confirming that collector HNP is an anionic collector. Scanning electron microscope conform that HNP has good selective adsorption on chalcopyrite.
The Electrochemical Properties of Sr(Ti,Fe)O 3-δ for Anodes in Solid Oxide Fuel Cells
Nenning, Andreas; Volgger, Lukas; Miller, Elizabeth; ...
2017-02-18
Reduction-stable mixed ionic and electronic conductors such as Sr(Ti,Fe)O 3-δ (STF) are promising materials for application in anodes of solid oxide fuel cells. The defect chemistry of STF and its properties as solid oxide fuel cell (SOFC) cathode have been studied thoroughly, while mechanistic investigations of its electrochemical properties as SOFC anode material are still scarce. In this study, thin film model electrodes of STF with 30% and 70% Fe content were investigated in H 2+H 2O atmosphere by electrochemical impedance spectroscopy. Lithographically patterned thin film Pt current collectors were applied on top or beneath the STF thin films tomore » compensate for the low electronic conductivity under reducing conditions. Oxygen exchange resistances, electronic and ionic conductivities and chemical capacitances were quantified and discussed in a defect chemical model. Increasing Fe content increases the electro-catalytic activity of the STF surface as well as the electronic and ionic conductivity. Current collectors on top also increase the electrochemical activity due to a highly active Pt-atmosphere-STF triple phase boundary. Furthermore, the electrochemical activity depends decisively on the H 2:H 2O mixing ratio and the polarization. Lastly, Fe 0 nanoparticles may evolve on the surface in hydrogen rich atmospheres and increase the hydrogen adsorption rate.« less
Sun, Li; Kong, Weibang; Li, Mengya; Wu, Hengcai; Jiang, Kaili; Li, Qunqing; Zhang, Yihe; Wang, Jiaping; Fan, Shoushan
2016-02-19
Cross-stacked carbon nanotube (CNT) film is proposed as an additional built-in current collector and adsorption layer in sulfur cathodes for advanced lithium sulfur (Li-S) batteries. On one hand, the CNT film with high conductivity, microstructural rough surface, high flexibility and mechanical durability retains stable and direct electronic contact with the sulfur cathode materials, therefore decreasing internal resistivity and suppressing polarization of the cathode. On the other hand, the highly porous structure and the high surface area of the CNT film provide abundant adsorption points to support and confine sulfur cathode materials, alleviate their aggregation and promote high sulfur utilization. Moreover, the lightweight and compact structure of the CNT film adds no extra weight or volume to the sulfur cathode, benefitting the improvement of energy densities. Based on these characteristics, the sulfur cathode with a 100-layer cross-stacked CNT film presents excellent rate performances with capacities of 986, 922 and 874 mAh g(-1) at cycling rates of 0.2C, 0.5C and 1C for sulfur loading of 60 wt%, corresponding to an improvement of 52%, 109% and 146% compared to that without a CNT film. Promising cycling performances are also demonstrated, offering great potential for scaled-up production of sulfur cathodes for Li-S batteries.
Orbegoso, Elder Mendoza; Saavedra, Rafael; Marcelo, Daniel; La Madrid, Raúl
2017-12-01
In the northern coastal and jungle areas of Peru, cocoa beans are dried using artisan methods, such as direct exposure to sunlight. This traditional process is time intensive, leading to a reduction in productivity and, therefore, delays in delivery times. The present study was intended to numerically characterise the thermal behaviour of three configurations of solar air heating collectors in order to determine which demonstrated the best thermal performance under several controlled operating conditions. For this purpose, a computational fluid dynamics model was developed to describe the simultaneous convective and radiative heat transfer phenomena under several operation conditions. The constructed computational fluid dynamics model was firstly validated through comparison with the data measurements of a one-step solar air heating collector. We then simulated two further three-step solar air heating collectors in order to identify which demonstrated the best thermal performance in terms of outlet air temperature and thermal efficiency. The numerical results show that under the same solar irradiation area of exposition and operating conditions, the three-step solar air heating collector with the collector plate mounted between the second and third channels was 67% more thermally efficient compared to the one-step solar air heating collector. This is because the air exposition with the surface of the collector plate for the three-step solar air heating collector former device was twice than the one-step solar air heating collector. Copyright © 2017 Elsevier Ltd. All rights reserved.
High energy density redox flow device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, W. Craig; Chiang, Yet-Ming; Duduta, Mihai
2017-04-04
Redox flow devices are described including a positive electrode current collector, a negative electrode current collector, and an ion-permeable membrane separating said positive and negative current collectors, positioned and arranged to define a positive electroactive zone and a negative electroactive zone; wherein at least one of said positive and negative electroactive zone comprises a flowable semi-solid composition comprising ion storage compound particles capable of taking up or releasing said ions during operation of the cell, and wherein the ion storage compound particles have a polydisperse size distribution in which the finest particles present in at least 5 vol % ofmore » the total volume, is at least a factor of 5 smaller than the largest particles present in at least 5 vol % of the total volume.« less
Clean Assembly of Genesis Collector Canister for Flight: Lessons for Planetary Sample Return
NASA Technical Reports Server (NTRS)
Allton, J. H.; Stansbery, E. K.; Allen, C. C.; Warren, J. L.; Schwartz, C. M.
2007-01-01
Measurement of solar composition in the Genesis collectors requires not only high sensitivity but very low blanks; thus, very strict collector contamination minimization was required beginning with mission planning and continuing through hardware design, fabrication, assembly and testing. Genesis started with clean collectors and kept them clean inside of a canister. The mounting hardware and container for the clean collectors were designed to be cleanable, with access to all surfaces for cleaning. Major structural components were made of aluminum and cleaned with megasonically energized ultrapure water (UPW). The UPW purity was >18 M resistivity. Although aluminum is relatively difficult to clean, the Genesis protocol achieved level 25 and level 50 cleanliness on large structural parts; however, the experience suggests that surface treatments may be helpful on future missions. All cleaning was performed in an ISO Class 4 (Class 10) cleanroom immediately adjacent to an ISO Class 4 assembly room; thus, no plastic packaging was required for transport. Persons assembling the canister were totally enclosed in cleanroom suits with face shield and HEPA filter exhaust from suit. Interior canister materials, including fasteners, were installed, untouched by gloves, using tweezers and other stainless steel tools. Sealants/lubricants were not exposed inside the canister, but vented to the exterior and applied in extremely small amounts using special tools. The canister was closed in ISO Class 4, not to be opened until on station at Earth-Sun L1. Throughout the cleaning and assembly, coupons of reference materials that were cleaned at the same time as the flight hardware were archived for future reference and blanks. Likewise reference collectors were archived. Post-mission analysis of collectors has made use of these archived reference materials.
30 CFR 72.630 - Drill dust control at underground areas of underground mines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling...) Ventilation control. To adequately control dust from drilling rock, the air current shall be so directed that...
30 CFR 72.630 - Drill dust control at underground areas of underground mines.
Code of Federal Regulations, 2011 CFR
2011-07-01
... condition. Dust collectors approved under Part 33—Dust Collectors for Use in Connection with Rock Drilling...) Ventilation control. To adequately control dust from drilling rock, the air current shall be so directed that...
Integrated function nonimaging concentrating collector tubes for solar thermal energy
NASA Astrophysics Data System (ADS)
Winston, R.; Ogallagher, J. J.
1982-09-01
A substantial improvement in optical efficiency over contemporary external reflector evacuated tube collectors has been achieved by integrating the reflector surface into the outer glass envelope. Described are the design fabrication and test results for a prototype collector based on this concept. A comprehensive test program to measure performance and operational characteristics of a 2 sq m panel (45 tubes) has been completed. Efficiencies above 50% relative to beam at 200 C have been repeatedly demonstrated. Both the instantaneous and long term average performance of this totally stationary solar collector are comparable to those for tracking line focus parabolic troughs. The yield, reliability and stability of performance achieved have been excellent. Subcomponent assemblies and fabrication procedures have been used which are expected to be compatible with high volume production. The collector has a wide variety of applications in the 100 to 300 C range including industrial progress heat, air conditioning and Rankine engine operation.
Development of flat-plate solar collectors for the heating and cooling of buildings
NASA Technical Reports Server (NTRS)
Ramsey, J. W.; Borzoni, J. T.; Holland, T. H.
1975-01-01
The relevant design parameters in the fabrication of a solar collector for heating liquids were examined. The objective was to design, fabricate, and test a low-cost, flat-plate solar collector with high collection efficiency, high durability, and requiring little maintenance. Computer-aided math models of the heat transfer processes in the collector assisted in the design. The preferred physical design parameters were determined from a heat transfer standpoint and the absorber panel configuration, the surface treatment of the absorber panel, the type and thickness of insulation, and the number, spacing and material of the covers were defined. Variations of this configuration were identified, prototypes built, and performance tests performed using a solar simulator. Simulated operation of the baseline collector configuration was combined with insolation data for a number of locations and compared with a predicted load to determine the degree of solar utilization.
NASA Astrophysics Data System (ADS)
Veziroglu, T. N.
1982-10-01
Aspects of solar measurements, solar collectors, selective coatings, thermal storage, phase change storage, and heat exchangers are discussed. The analysis and testing of flat-plate solar collectors are addressed. The development and uses of plastic collectors, a solar water heating system, solar energy collecting oil barrels, a glass collector panel, and a two-phase thermosyphon system are considered. Studies of stratification in thermal storage, of packed bed and fluidized bed systems, and of thermal storage in solar towers, in wall passive systems, and in reversible chemical reactions are reported. Phase change storage by direct contact processes and in residential solar space heating and cooling is examined, as are new materials and surface characteristics for solar heat storage. The use of R-11 and Freon-113 in heat exchange is discussed. No individual items are abstracted in this volume
High Density Faraday Cup Array or Other Open Trench Structures and Method of Manufacture Thereof
NASA Technical Reports Server (NTRS)
Gilchrist, Kristin Hedgepath (Inventor); Bower, Christopher A. (Inventor); Stoner, Brian R. (Inventor)
2014-01-01
A detector array and method for making the detector array. The detector array includes a substrate including a plurality of trenches formed therein, and a plurality of collectors electrically isolated from each other, formed on the walls of the trenches, and configured to collect charged particles incident on respective ones of the collectors and to output from the collectors signals indicative of charged particle collection. In the detector array, adjacent ones of the plurality of trenches are disposed in a staggered configuration relative to one another. The method forms in a substrate a plurality of trenches across a surface of the substrate such that adjacent ones of the trenches are in a staggered sequence relative to one another, forms in the plurality of trenches a plurality of collectors, and connects a plurality of electrodes respectively to the collectors.
Comparison of indoor-outdoor thermal performance for the Sunpak evacuated tube liquid collector
NASA Technical Reports Server (NTRS)
1980-01-01
Performance data for current Sunpak production collectors is presented. The effects of an improved manifold are seen from the test results. The test results show excellent correlation between the solar simulator derived test results and outdoor test results. Also, because of different incident angle modifiers, the all-day efficiency of this collector with a diffuse reflector is comparable to the performance with the standard shaped specular reflector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayerovitch, M.D.
1980-03-25
A solar collector cell formed as an integral portion of a roof flashing is disclosed as comprising a flashing base having a dihedral surface including a larger base portion and a smaller ramp portion, and a solar collector cell container built integrally with the base portion of the flashing. The combination is designed to be installed in the roof of a dwelling or other building structure. The container portion of the flashing is substantially shorter in height above the roof line than conventional solar collector cell structures added to a roof subsequent to its construction. As a result, the inventionmore » gives the building constructor or owner, the option of either including the solar cell components at the time of construction of the roof to provide a solar heating device, or to fill the solar collector cell container with a temporary support structure, such as roof shakes or tiles. The shape of the solar collector cell and flashing assembly permits the solar collector cell structure to be camouflaged by overlying shakes or tiles of which the roof is constructed.« less
NASA Astrophysics Data System (ADS)
Xie, Jun; Li, Xianhai; Mao, Song; Li, Longjiang; Ke, Baolin; Zhang, Qin
2018-06-01
Effects of carbon chain length, carbon chain isomerism, Cdbnd C double bonds number on fatty acid adsorption on FAP (0 0 1) surface have been investigated based on DFT. The results revealed that fatty acid collector can form stable adsorption configuration at Ca1 (surf) site. Chemical adsorption was formed between O (mole) of fatty acid collector and the Ca1 (surf) of fluorapatite (0 0 1) surface; hydrogen bond adsorption was formed between the H (mole) of fatty acid and the O (surf) of-[PO4]- of FAP (0 0 1) surface. Fatty acid collectors and FAP (0 0 1) surface are bonding by means of the hybridization of O (mole) 2p and Ca (surf) 4d orbitals, H (mole) 1s and O (surf) 2p orbital. The analysis of adsorption energy, DOS, electron density, Mulliken charge population and Mulliken bond population revealed that with the carbon chain growing within certain limits, the absolute value of the adsorption energy and the overlapping area between the DOS curve of O (mole) and Ca (surf) was greater, while that of H (mole) 1s and O (surf) 2p basically remained unchanged. As Cdbnd C double bonds of fatty acids increased within certain limits, the adsorption energy and the overlapping area between the state density curve of O (mole) and Ca (surf), H (mole) and O (surf) basically remained unchanged. The substituent groups of fatty acid changed, the absolute value of the adsorption energy and the overlapping area between the state density curve had a major change. The influence of fatty acids adsorption on FAP (0 0 1) surface depends mainly on the interaction between O (mole) and Ca (surf).
Zheng, Y.; Reed, W.R.; Potts, J.D.; Li, M.; Rider, J.P.
2018-01-01
The National Institute for Occupational Safety and Health (NIOSH) recently developed a series of validated models utilizing computational fluid dynamics (CFD) to study the effects of air-blocking shelves on airflows and respirable dust distribution associated with medium-sized surface blasthole drill shrouds as part of a dry dust collector system. Using validated CFD models, three different air-blocking shelves were included in the present study: a 15.2-cm (6-in.)-wide shelf; a 7.6-cm (3-in.)-wide shelf; and a 7.6-cm (3-in.)-wide shelf at four different shelf heights. In addition, the dust-collector-to-bailing airflow ratios of 1.75:1, 1.5:1, 1.25:1 and 1:1 were evaluated for the 15.2-cm (6-in.)-wide air-blocking shelf. This paper describes the methodology used to develop the CFD models. The effects of air-blocking shelves and dust collector-to-bailing airflow ratios were identified by the study, and problem regions were revealed under certain conditions.
Biobriefcase aerosol collector
Bell, Perry M [Tracy, CA; Christian, Allen T [Madison, WI; Bailey, Christopher G [Pleasanton, CA; Willis, Ladona [Manteca, CA; Masquelier, Donald A [Tracy, CA; Nasarabadi, Shanavaz L [Livermore, CA
2009-09-22
A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.
Kavetskiy, A; Yakubova, G; Lin, Q; Chan, D; Yousaf, S M; Bower, K; Robertson, J D; Garnov, A; Meier, D
2009-06-01
Beta particle surface fluxes for tritium, Ni-63, Pm-147, and Sr-90 sources were calculated in this work. High current density was experimentally achieved from Pm-147 oxide in silica-titana glass. A 96 GBq (2.6 Ci) Pm-147 4pi-source with flux efficiency greater than 50% was used for constructing a direct charge capacitor with a polyimide coated collector and vacuum as electrical insulation. The capacitor connected to high resistance (TOmega) loads produced up to 35 kV. Overall conversion efficiency was over 10% (on optimal load).
Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries.
Cui, Li-Feng; Hu, Liangbing; Choi, Jang Wook; Cui, Yi
2010-07-27
Silicon is an attractive alloy-type anode material because of its highest known capacity (4200 mAh/g). However, lithium insertion into and extraction from silicon are accompanied by a huge volume change, up to 300%, which induces a strong strain on silicon and causes pulverization and rapid capacity fading due to the loss of the electrical contact between part of silicon and current collector. Si nanostructures such as nanowires, which are chemically and electrically bonded to the current collector, can overcome the pulverization problem, however, the heavy metal current collectors in these systems are larger in weight than Si active material. Herein we report a novel anode structure free of heavy metal current collectors by integrating a flexible, conductive carbon nanotube (CNT) network into a Si anode. The composite film is free-standing and has a structure similar to the steel bar reinforced concrete, where the infiltrated CNT network functions as both mechanical support and electrical conductor and Si as a high capacity anode material for Li-ion battery. Such free-standing film has a low sheet resistance of approximately 30 Ohm/sq. It shows a high specific charge storage capacity (approximately 2000 mAh/g) and a good cycling life, superior to pure sputtered-on silicon films with similar thicknesses. Scanning electron micrographs show that Si is still connected by the CNT network even when small breaking or cracks appear in the film after cycling. The film can also "ripple up" to release the strain of a large volume change during lithium intercalation. The conductive composite film can function as both anode active material and current collector. It offers approximately 10 times improvement in specific capacity compared with widely used graphite/copper anode sheets.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi.
1983-08-16
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.
NASA Technical Reports Server (NTRS)
Olsen, L. C.; Addis, F. W.; Miller, W. A.
1985-01-01
The MINP solar cell concept refers to a cell structure designed to be a base region dominated device. Thus, it is desirable that recombination losses are reduced to the point that they occur only in the base region. The most unique feature of the MINP cell design is that a tunneling contact is utilized for the metallic contact on the front surface. The areas under the collector grid and bus bar are passivated by a thin oxide of tunneling thickness. Efforts must also be taken to minimize recombination at the surface between grid lines, at the junction periphery and within the emitter. Results of both theoretical and experimental studies of silicon MINP cells are given. Performance calculations are described which give expected efficiencies as a function of base resistivity and junction depth. Fabrication and characterization of cells are discussed which are based on 0.2 ohm-cm substrates, diffused emitters on the order of 0.15 to 0.20 microns deep, and with Mg MIS collector grids. A total area AM 1 efficiency of 16.8% was achieved. Detailed analyses of photocurrent and current loss mechanisms are presented and utilized to discuss future directions of research. Finally, results reported by other workers are discussed.
NASA Astrophysics Data System (ADS)
Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.
2007-05-01
Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.
Electrochemical energy storage device based on carbon dioxide as electroactive species
Nemeth, Karoly; van Veenendaal, Michel Antonius; Srajer, George
2013-03-05
An electrochemical energy storage device comprising a primary positive electrode, a negative electrode, and one or more ionic conductors. The ionic conductors ionically connect the primary positive electrode with the negative electrode. The primary positive electrode comprises carbon dioxide (CO.sub.2) and a means for electrochemically reducing the CO.sub.2. This means for electrochemically reducing the CO.sub.2 comprises a conductive primary current collector, contacting the CO.sub.2, whereby the CO.sub.2 is reduced upon the primary current collector during discharge. The primary current collector comprises a material to which CO.sub.2 and the ionic conductors are essentially non-corrosive. The electrochemical energy storage device uses CO.sub.2 as an electroactive species in that the CO.sub.2 is electrochemically reduced during discharge to enable the release of electrical energy from the device.
Synthesis of Flexible Graphene/Polymer Composites for Supercapacitor Applications
NASA Astrophysics Data System (ADS)
Pal, Himangshu; Bhubna, Shuvam; Kumar, Praduman; Mahapatra, Rajat; Chatterjee, Somenath
2018-01-01
In this paper, the graphene was synthesized using biocompatible cellulosic component from onions. Onion epidermal cells were chosen as raw material. During heating at high temperature, the bonding among atoms in material was rearranged and forms two-dimensional hexagonal carbon layer (graphene). The characterization of synthesized graphene was done by x-ray diffractometer, Raman spectrometer and field emission scanning electron microscopy, respectively. An attempt has been taken to form the capacitors with two different current collector electrodes, anticipating the performance of the supercapacitors. The observed capacitance values as-obtained for Al and Au current collector were 1.3 μF and 6.08 μF, respectively. However, when thermally exfoliated graphene was used as an electrode on Al and Au current collector, the capacitance value was drastically increased and found to be 1.6 and 41.25 μF, respectively.
Internal absorber solar collector
Sletten, Carlyle J.; Herskovitz, Sheldon B.; Holt, F. S.; Sletten, E. J.
1981-01-01
Thin solar collecting panels are described made from arrays of small rod collectors consisting of a refracting dielectric rod lens with an absorber imbedded within it and a reflecting mirror coated on the back side of the dielectric rod. Non-tracking collector panels on vertical walls or roof tops receive approximately 90% of solar radiation within an acceptance zone 60.degree. in elevation angle by 120.degree. or more in the azimuth sectors with a collector concentration ratio of approximately 3.0. Miniaturized construction of the circular dielectric rods with internal absorbers reduces the weight per area of glass, plastic and metal used in the collector panels. No external parts or insulation are needed as heat losses are low due to partial vacuum or low conductivity gas surrounding heated portions of the collector. The miniature internal absorbers are generally made of solid copper with black selective surface and the collected solar heat is extracted at the collector ends by thermal conductivity along the absorber rods. Heat is removed from end fittings by use of liquid circulants. Several alternate constructions are provided for simplifying collector panel fabrication and for preventing the thermal expansion and contraction of the heated absorber or circulant tubes from damaging vacuum seals. In a modified version of the internal absorber collector, oil with temperature dependent viscosity is pumped through a segmented absorber which is now composed of closely spaced insulated metal tubes. In this way the circulant is automatically diverted through heated portions of the absorber giving higher collector concentration ratios than theoretically possible for an unsegmented absorber.
Lightweight diaphragm mirror module system for solar collectors
Butler, Barry L.
1985-01-01
A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.
Lightweight diaphragm mirror module system for solar collectors
Butler, B.L.
1984-01-01
A mirror module system is provided for accurately focusing solar radiation on a point or a line as defined by an array of solar collectors. Each mirror module includes a flexible membrane stretched over a frame in a manner similar to that of a drum or a trampoline and further includes a silvered glass or plastic mirror for forming an optical reflecting surface. The configuration of the optical reflecting surface is variably adjustable to provide for the accurate focusing of the solar energy on a given collector array, e.g., a point or a linear array arrangement. The flexible mirror-membrane combination is lightweight to facilitate installation and reduce system cost yet structurally strong enough to provide for the precise focusing of the incident solar radiation in a semi-rigid reflector system in which unwanted reflector displacement is minimized.
Stereomicroscope Inspection of Polished Aluminum Collector 50684.0
NASA Technical Reports Server (NTRS)
Rodriquez, M. C.; Calaway, M. J.; Allton, J. H.
2008-01-01
The Genesis polished aluminum "kidney" collector was damaged during the hard landing of the capsule on September 8, 2004 in the Utah desert. The kidney was introduced into the Genesis (ISO class 4) cleanroom laboratory on November 4, 2004 and stored under nitrogen cover gas. The collector is currently fastened to a highly polished stainless steel plate for secure handling. Curatorial work at JSC has made successful subdivision and subsequent allocation of samples from the kidney.
NASA Technical Reports Server (NTRS)
Ramins, P.
1984-01-01
Computer designed axisymmetric 2.4-cm-diameter three-, four-, and five-stage depressed collectors were evaluated in conjunction with an octave bandwidth, high-perveance, and high-electronic-efficiency, griddled-gun traveling wave tube (TWT). Spent-beam refocusing was used to condition the beam for optimum entry into the depressed collectors. Both the TWT and multistage depressed collector (MDC) efficiencies were measured, as well as the MDC current, dissipated thermal power, and DC input power distributions, for the TWT operating both at saturation over its bandwidth and over its full dynamic range. Relatively high collector efficiencies were obtained, leading to a very substantial improvement in the overall TWT efficiency. In spite of large fixed TWT body losses (due largely to the 6 to 8 percent beam interception), average overall efficiencies of 45 to 47 percent (for three to five collector stages) were obtained at saturation across the 2.5-, to 5.5-GHz operating band. For operation below saturation the collector efficiencies improved steadily, leading to reasonable ( 20 percent) overall efficiencies as far as 6 dB below saturation.
Ellison, Kenneth; Whike, Alan S.
1979-01-30
A solvent vapor collector is mounted on the upstream inlet end of an oven having a gas-circulating means and intended for curing a coating applied to a strip sheet metal at a coating station. The strip sheet metal may be hot and solvent vapors are evaporated at the coating station and from the strip as it passes from the coating station to the oven. Upper and lower plenums within a housing of the collector are supplied with oven gases or air from the gas-circulating means and such gases or air are discharged within the collector obliquely in a downstream direction against the strip passing through that collector to establish downstream gas flows along the top and under surfaces of the strip so as, in turn, to induct solvent vapors into the collector at the coating station. A telescopic multi-piece shroud is usefully provided on the housing for movement between an extended position in which it overlies the coating station to collect solvent vapors released thereat and a retracted position permitting ready cleaning and adjustment of that coating station.
Molecular design of flotation collectors: A recent progress.
Liu, Guangyi; Yang, Xianglin; Zhong, Hong
2017-08-01
The nature of froth flotation is to selectively hydrophobize valuable minerals by collector adsorption so that the hydrophobized mineral particles can attach air bubbles. In recent years, the increasing commercial production of refractory complex ores has been urgent to develop special collectors for enhancing flotation separation efficiency of valuable minerals from these ores. Molecular design methods offer an effective way for understanding the structure-property relationship of flotation collectors and developing new ones. The conditional stability constant (CSC), molecular mechanics (MM), quantitative structure-activity relationship (QSAR), and first-principle theory, especially density functional theory (DFT), have been adopted to build the criteria for designing flotation collectors. Azole-thiones, guanidines, acyl thioureas and thionocarbamates, amide-hydroxamates, and double minerophilic-group surfactants such as Gemini, dithiourea and dithionocarbamate molecules have been recently developed as high-performance collectors. To design hydrophobic groups, the hydrophilic-hydrophobic balance parameters have been extensively used as criteria. The replacement of aryl group with aliphatic group or CC single bond(s) with CC double bond(s), reduction of carbon numbers, introduction of oxygen atom(s) and addition of trisiloxane to the tail terminal have been proved to be useful approaches for adjusting the surface activity of collectors. The role of molecular design of collectors in practical flotation applications was also summarized. Based on the critical review, some comments and prospects for further research on molecular design of flotation collectors were also presented in the paper. Copyright © 2017 Elsevier B.V. All rights reserved.
Reactivities of some thiol collectors and their interactions with Ag (+1) ion by molecular modeling
NASA Astrophysics Data System (ADS)
Yekeler, Hulya; Yekeler, Meftuni
2004-09-01
The most commonly used collectors for sulfide minerals in the mining industry are the thiol collectors for the recovery of these minerals from their associated gangues by froth flotation. For this reason, a great deal of attention has been paid to understand the attachment mechanism of thiol collectors to metal sulfide surfaces. The density functional theory (DFT) calculations at the B3LYP/3-21G* and B3LYP/6-31++G** levels were employed to propose the flotation responses of these thiol collectors, namely, diethyl dithiocarbamate, ethyl dithiocarbamate, ethyl dithiocarbonate, ethyl trithiocarbonate and ethyl dithiophosphate ions, and to study the interaction energies of these collectors with Ag (+1) ion in connection to acanthite (Ag 2S) mineral. The calculated interaction energies, Δ E, were interpreted in terms of the highest occupied molecular orbital (HOMO) energies of the isolated collector ions. The results show that the HOMOs are strongly localized to the sulfur atoms and the HOMO energies can be used as a reactivity descriptor for the flotation ability of the thiol collectors. Using the HOMO and Δ E energies, the reactivity order of the collectors is found to be (C 2H 5) 2NCS 2- > C 2H 5NHCS 2- > C 2H 5OCS 2- > C 2H 5SCS 2- > (C 2H 5O)(OH)PS 2-. The theoretically obtained results are in good agreement with the experimental data reported.
PERFORMANCE OF SOLAR HOT WATER COLLECTORS FOR ELECTRICITY PRODUCTION AND CLIMATE CONTROL
We will systematically evaluate commercially available solar thermal collectors and thermal storage systems for use in residential scale co-generative heat and electrical power systems. Currently, reliable data is unavailable over the range of conditions and installations thes...
NASA Astrophysics Data System (ADS)
Dong, Liuyang; Jiao, Fen; Qin, Wenqing; Zhu, Hailing; Jia, Wenhao
2018-06-01
In this paper, the effect of acidified water glass (AWG) on the flotation separation of scheelite from calcite using mixed collector of dodecylamine (DDA) and sodium oleate (NaOL) was investigated. The flotation results show that AWG could selectively depress the flotation of calcite at pH 7. A series of mechanism experiments confirm that the chemisorption of AWG on calcite surface is more intense than scheelite. Although the chemisorption of NaOL on calcite surface is almost unaffected by the presence of AWG, the chemisorption of AWG hinders the adsorption of DDA on calcite surface.
Wei, Chang; Jerabek, Elihu Calvin; LeBlanc, Jr., Oliver Harris
2001-03-06
An ultracapacitor includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte is a polar aprotic organic solvent and a salt. The porous separator comprises a wet laid cellulosic material.
Highlights of recent balance of system research and evaluation
NASA Astrophysics Data System (ADS)
Thomas, M. G.; Stevens, J. W.
The cost of most photovoltaic (PV) systems is more a function of the balance of system (BOS) components than the collectors. The exception to this rule is the grid-tied system whose cost is related more directly to the collectors, and secondarily to the inverter/controls. In fact, recent procurements throughout the country document that collector costs for roof-mounted, utility-tied systems (Russell, PV Systems Workshop, 7/94) represent 60% to 70% of the system cost. This contrasts with the current market for packaged stand-alone all PV or PV-hybrid systems where collectors represent only 25% to 35% of the total. Not only are the BOS components the cost drivers in the current cost-effective PV system market place, they are also the least reliable components. This paper discusses the impact that BOS issues have on component performance, system performance, and system cost and reliability. We will also look at recent recommended changes in system design based upon performance evaluations of fielded PV systems.
Diminiode thermionic conversion with 111-iridium electrodes
NASA Technical Reports Server (NTRS)
Koeger, E. W.; Bair, V. L.; Morris, J. F.
1976-01-01
Preliminary data indicating thermionic-conversion potentialities for a 111-iridium emitter and collector spaced 0.2 mm apart are presented. These results comprise output densities of current and of power as functions of voltage for three sets of emitter, collector, and reservoir temperatures: 1553, 944, 561 K; 1605, 898, 533 K; and 1656, 1028, 586 K. For the 1605 K evaluation, estimates produced work-function values of 2.22 eV for the emitter and 1.63 eV for the collector with a 2.0-eV barrier index (collector work function plus interelectrode voltage drop) corresponding to the maximum output of 5.5 W/sq cm at 0.24 volt. The current, voltage curve for the 1656 K 111-iridium diminiode yields a 6.2 W/sq cm maximum at 0.25 volt and is comparable with the 1700 K envelope for a diode with an etched-rhenium emitter and a 0.025-mm electrode gap made by TECO and evaluated by NASA.
Cavity transport effects in generator-collector electrochemical analysis of nitrobenzene.
Lewis, Grace E M; Dale, Sara E C; Kasprzyk-Hordern, Barbara; Lubben, Anneke T; Barnes, Edward O; Compton, Richard G; Marken, Frank
2014-09-21
Two types of generator-collector electrode systems, (i) a gold-gold interdigitated microband array and (ii) a gold-gold dual-plate microtrench, are compared for nitrobenzene electroanalysis in aerated aqueous 0.1 M NaOH. The complexity of the nitrobenzene reduction in conjunction with the presence of ambient levels of oxygen in the analysis solution provide a challenging problem in which feedback-amplified generator-collector steady state currents provide the analytical signal. In contrast to the more openly accessible geometry of the interdigitated array electrode, where the voltammetric response for nitrobenzene is less well-defined and signals drift, the voltammetric response for the cavity-like microtrench electrode is stable and readily detectable at 1 μM level. Both types of electrode show oxygen-enhanced low concentration collector current responses due to additional feedback via reaction intermediates. The observations are rationalised in terms of a "cavity transport coefficient" which is beneficial in the dual-plate microtrench, where oxygen interference effects are suppressed and the analytical signal is amplified and stabilised.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGinniss, V.D.; Sliemers, F.A.; Landstrom, D.K.
1980-07-31
This report is intended to organize and summarize prior and current literature concerning the weathering, aging, durability, degradation, and testing methodologies as applied to materials for plastic solar thermal collectors. Topics covered include (1) rate of aging of polymeric materials; (2) environmental factors affecting performance; (3) evaluation and prediction of service life; (4) measurement of physical and chemical properties; (5) discussion of evaluation techniques and specific instrumentation; (6) degradation reactions and mechanisms; (7) weathering of specific polymeric materials; and (8) exposure testing methodology. Major emphasis has been placed on defining the current state of the art in plastics degradation andmore » on identifying information that can be utilized in applying appropriate and effective aging tests for use in projecting service life of plastic solar thermal collectors. This information will also be of value where polymeric components are utilized in the construction of conventional solar collectors or any application where plastic degradation and weathering are prime factors in material selection.« less
Harmonization of standards for parabolic trough collector testing in solar thermal power plants
NASA Astrophysics Data System (ADS)
Sallaberry, Fabienne; Valenzuela, Loreto; Palacin, Luis G.; Leon, Javier; Fischer, Stephan; Bohren, Andreas
2017-06-01
The technology of parabolic trough collectors (PTC) is used widely in concentrating Solar Power (CSP) plants worldwide. However this type of large-size collectors cannot be officially tested by an accredited laboratory and certified by an accredited certification body so far, as there is no standard adapted to its particularity, and the current published standard for solar thermal collectors are not completely applicable to them. Recently some standardization committees have been working on this technology. This paper aims to give a summary of the standardized testing methodology of large-size PTC for CSP plants, giving the physical model chosen for modeling the thermal performance of the collector in the new revision of standard ISO 9806 and the points still to be improved in the standard draft IEC 62862-3-2. In this paper, a summary of the testing validation performed on one parabolic trough collector installed in one of the test facilities at the Plataforma Solar de Almería (PSA) with this new model is also presented.
NASA Technical Reports Server (NTRS)
Dayton, J. A., Jr.; Kosmahl, H. G.; Ramins, P.; Stankiewicz, N.
1979-01-01
Experimental and analytical results are compared for two high performance, octave bandwidth TWT's that use depressed collectors (MDC's) to improve the efficiency. The computations were carried out with advanced, multidimensional computer programs that are described here in detail. These programs model the electron beam as a series of either disks or rings of charge and follow their multidimensional trajectories from the RF input of the ideal TWT, through the slow wave structure, through the magnetic refocusing system, to their points of impact in the depressed collector. Traveling wave tube performance, collector efficiency, and collector current distribution were computed and the results compared with measurements for a number of TWT-MDC systems. Power conservation and correct accounting of TWT and collector losses were observed. For the TWT's operating at saturation, very good agreement was obtained between the computed and measured collector efficiencies. For a TWT operating 3 and 6 dB below saturation, excellent agreement between computed and measured collector efficiencies was obtained in some cases but only fair agreement in others. However, deviations can largely be explained by small differences in the computed and actual spent beam energy distributions. The analytical tools used here appear to be sufficiently refined to design efficient collectors for this class of TWT. However, for maximum efficiency, some experimental optimization (e.g., collector voltages and aperture sizes) will most likely be required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagatomi, T.; Kuwayama, T.; Takai, Y.
2009-11-15
The application of ion scattering spectroscopy (ISS) to the in situ measurement of the surface potential developed on an insulator surface under positive ion irradiation was investigated. The ISS spectra measured for a MgO film of 600 nm thickness on a Si substrate by the irradiation of 950 eV He{sup +} ions revealed that the surface is positively charged by approximately 180 V. For accurate measurement of the surface potential, a correction to take into account the angular deflection of primary ions induced by the high surface potential is required. The dependence of the surface potential on the sample temperaturemore » revealed that no charging is induced above 700 deg. C, indicating that accumulated charges can be removed by heating to 700 deg. C. From the measurement of the ion-induced secondary electron yield using a collector electrode located in front of the sample surface, the surface potential and ion-induced secondary electron yield were found to be strongly affected by the experimental setup. Secondary electrons produced by the impact of slow positive secondary ions, the maximum energy of which corresponds to the surface potential, play an important role when the bias voltage applied to the collector electrode is positively high for the present experimental setup. The surface potential developed on the surface of MgO films of 600 and 200 nm thickness was measured in situ, revealing that the amount of accumulated charges and the time required to attain the steady state of charging are slightly dependent on the beam current of primary ions and strongly dependent on the thickness of the MgO film. The present results confirmed that the application of ISS has high potential for investigating charging phenomena and the secondary electron emission from insulator surfaces under positive ion irradiation.« less
NASA Astrophysics Data System (ADS)
Gyenge, Elod; Jung, Joey; Mahato, Basanta
Reticulated, open-cell structures based on vitreous carbon substrates electroplated with a Pb-Sn (1 wt.%) alloy were investigated as current collectors for lead-acid batteries. Scanning and backscattered electron microscopy, cyclic voltammetry, anodic polarization and flooded 2 V single-cell battery testing was employed to characterize the performance of the proposed collectors. A battery equipped with pasted electroplated reticulated vitreous carbon (RVC) electrodes of 137 cm 2 geometric area, at the time of manuscript submission, completed 500 cycles and over 1500 h of continuous operation. The cycling involved discharges at 63 A kg PAM-1 corresponding to a nominal 0.75 h rate and a positive active mass (PAM) utilization efficiency of 21%. The charging protocol was composed of two voltage limited (i.e. 2.6 V/cell), constant current steps of 35 and 9.5 A kg PAM-1, respectively, with a total duration of about 2 h. The charge factor was 1.05-1.15. The observed cycling behavior in conjunction with the versatility of electrodeposition to produce application-dependent optimized lead alloy coating thickness and composition shows promise for the development of lead-acid batteries using electroplated reticulated vitreous carbon collectors.
Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.
Jiang, Xinian
2010-04-26
Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80?C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented.
Study of Hot-Electron Effects, Breakdown and Reliability in FETS, HEMTS, and HBT’S
1998-08-01
10-20 V ) have been demonstrated, with power added efficiencies between 10% (around 1 W) and 50% (around 20 mW) at 60 GHz. For higher frequencies...IEDM98, pp. 695-698, S. Francisco, CA, December 6-9, 1998. G. Meneghesso, A. Neviani , R. Oesterholt, M. Matloubian, T. Liu, J. Brown, C. Canali and...8217 / / ’ ’ / / " / s / collector-to-emitter voltage VCE ( V ) Figure 1.1: Collector current, Ic vs. the collector to emitter voltage VCE at
SIMS prototype system 4: Design data brochure
NASA Technical Reports Server (NTRS)
1978-01-01
A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.
Development of Chemical and Mechanical Cleaning Procedures for Genesis Solar Wind Samples
NASA Technical Reports Server (NTRS)
Schmeling, M.; Jurewicz, A. J. G.; Gonzalez, C.; Allums, K. K.; Allton, J. H.
2018-01-01
The Genesis mission was the only mission returning pristine solar material to Earth since the Apollo program. Unfortunately, the return of the spacecraft on September 8, 2004 resulted in a crash landing shattering the solar wind collectors into smaller fragments and exposing them to desert soil and other debris. Thorough surface cleaning is required for almost all fragments to allow for subsequent analysis of solar wind material embedded within. However, each collector fragment calls for an individual cleaning approach, as contamination not only varies by collector material but also by sample itself.
Battery structures, self-organizing structures, and related methods
Chiang, Yet-Ming; Moorehead, William Douglas
2013-11-19
An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling forve on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionicaily conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
Battery Structures, self-organizing structures, and related methods
Chiang, Yet-Ming; Moorehead, William Douglas
2013-11-12
An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
Battery structures, self-organizing structures and related methods
Chiang, Yet-Ming [Framingham, MA; Moorehead, William Douglas [Virginia Beach, VA
2012-06-26
An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; Grant, Richard P.; Monson, Todd C.
2017-01-01
Many challenges must be overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. To begin addressing these challenges (and others), we report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers. The tethered array of nanoparticles, MnO in this case, bound directly to a gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). This strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles. PMID:28287183
Battery structures, self-organizing structures and related methods
Chiang, Yet Ming [Framingham, MA; Moorehead, William Douglas [Virginia Beach, VA; Gozdz, Antoni S [Marlborough, MA; Holman, Richard K [Belmont, MA; Loxley, Andrew [Somerville, MA; Riley, Jr., Gilbert N.; Viola, Michael S [Burlington, MA
2009-08-25
An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
Battery structures, self-organizing structures and related methods
Chiang, Yet-Ming [Framingham, MA; Moorehead, William D [Virginia Beach, VA; Gozdz, Antoni S [Marlborough, MA; Holman, Richard K [Belmont, MA; Loxley, Andrew L [Roslindale, MA; Riley, Jr., Gilbert N.; Viola, Michael S [Burlington, MA
2012-05-01
An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
Battery structures, self-organizing structures and related methods
Chiang, Yet-Ming [Framingham, MA; Moorehead, William D [Virginia Beach, VA; Gozdz, Antoni S [Marlborough, MA; Holman, Richard K [Belmont, MA; Loxley, Andrew L [Roslindale, MA; Riley, Jr., Gilbert N.; Viola, Michael S [Burlington, MA
2011-08-02
An energy storage device includes a first electrode comprising a first material and a second electrode comprising a second material, at least a portion of the first and second materials forming an interpenetrating network when dispersed in an electrolyte, the electrolyte, the first material and the second material are selected so that the first and second materials exert a repelling force on each other when combined. An electrochemical device, includes a first electrode in electrical communication with a first current collector; a second electrode in electrical communication with a second current collector; and an ionically conductive medium in ionic contact with said first and second electrodes, wherein at least a portion of the first and second electrodes form an interpenetrating network and wherein at least one of the first and second electrodes comprises an electrode structure providing two or more pathways to its current collector.
Thermionic converter performance with oxide collectors
NASA Technical Reports Server (NTRS)
Lieb, D.; Goodale, D.; Briere, T.; Balestra, C.
1977-01-01
Thermionic converters using a variety of metal oxide collector surfaces have been fabricated and tested. Both work function and power output data are presented and evaluated. Oxides of barium, strontium, zinc, tungsten and titanium have been incorporated into a variable spacing converter. Tungsten oxide was found to give the highest converter performance and to furnish oxygen for the emitter at the same time. Oxygenated emitters operate at reduced cesium pressure with an increase in electrode spacing. Electron spectroscopy for chemical analysis (ESCA) performed on several tungsten oxide collectors showed cesium penetration of the oxide layer, possibly forming a cesium tungstate bronze. Titanium oxide showed high performance but did not furnish oxygen for the emitter; strontium oxide, in the form of a sprayed layer, appeared to dissociate in the presence of cesium. Sprayed coatings of barium and zinc oxides produced collector work functions of about 1.3 eV, but had excessive series resistance. Lanthanum hexaboride, in combination with oxygen introduced through a silver tube, and cesium produced a low work function collector and better than average performance.
Wilhelm, William G.
1982-01-01
The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
NASA Technical Reports Server (NTRS)
1979-01-01
A reflectometer which can separately evaluate the spectral and diffuse reflectivities of surfaces is described. A phase locked detection system for the reflectometer is also described. A selective coating on aluminum potentially useful for flat plate solar collector applications is presented. The coating is composed of strongly bound copper oxide (divalent) and is formed by an etching process performed on an aluminum alloy with high copper content. Fabrication costs are expected to be small due to the one stop fabrication process. A number of conclusions gathered from the literature as to the required optical properties of flat plate solar collectors are discussed.
Solar Collector Design Optimization: A Hands-on Project Case Study
ERIC Educational Resources Information Center
Birnie, Dunbar P., III; Kaz, David M.; Berman, Elena A.
2012-01-01
A solar power collector optimization design project has been developed for use in undergraduate classrooms and/or laboratories. The design optimization depends on understanding the current-voltage characteristics of the starting photovoltaic cells as well as how the cell's electrical response changes with increased light illumination. Students…
NASA Astrophysics Data System (ADS)
Desilva, L. A.; Bandara, T. M. W. J.; Hettiarachchi, B. H.; Kumara, G. R. A.; Perera, A. G. U.; Rajapaksa, R. M. G.; Tennakone, K.
Dye-sensitized and perovskite solar cells and other nanostructured heterojunction electronic devices require securing intimate electronic contact between nanostructured surfaces. Generally, the strategy is solution phase coating of a hole -collector over a nano-crystalline high-band gap n-type oxide semiconductor film painted with a thin layer of the light harvesting material. The nano-crystallites of the hole - collector fills the pores of the painted oxide surface. Most ills of these devices are associated with imperfect contact and high resistance of the hole conducting layer constituted of nano-crystallites. Denaturing of the delicate light harvesting material forbid sintering at elevated temperatures to reduce the grain boundary resistance. It is found that the interfacial and grain boundary resistance can be significantly reduced via incorporation of redox species into the interfaces to form ultra-thin layers. Suitable redox moieties, preferably bonded to the surface, act as electron transfer relays greatly reducing the film resistance offerring a promising method of enhancing the effective hole mobility of nano-crystalline hole-collectors and developing hole conductor paints for application in nanostructured devices.
Electrochemical power-producing cell. [Li/Se
Cairns, E.J.; Chilenskas, A.A.; Steunenberg, R.K.; Shimotake, H.
1972-05-30
An electrochemical power-producing cell including a molten lithium metal anode, a molten selenium metal cathode, a paste electrolyte separating the anode from the cathode, an anode current collector, and a single layer of niobium expanded metal formed in corrugated shape as cathode current collector is described. In addition, means are provided for sealing the anode and the cathode from loss of lithium and selenium, respectively, and an insulator is provided between the anode housing and the paste electrolyte disk.
Asymmetric Electrochemical Capacitors - Stretching the Limits of Aqueous Electrolytes
2011-07-01
controlled atmosphere (no need for a dry room or glove box), simplifying the fabrication and packaging process. The use of a faradaic material with a fi...than the thin (25 μ m) aluminum foil current collectors used in nonaqueous EDLCs. The corrosion of these current collectors must also be minimized...valid OMB control number. 1. REPORT DATE JUL 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Asymmetric
Influence of nanofluids on the efficiency of Flat-Plate Solar Collectors (FPSC)
NASA Astrophysics Data System (ADS)
Nejad, Marjan B.; Mohammed, H. A.; Sadeghi, O.; Zubeer, Swar A.
2017-11-01
A numerical investigation is performed using finite volume method to study the laminar heat transfer in a three-dimensional flat-plate solar collector using different nanofluids as working fluids. Three nanofluids with different types of nanoparticles (Ag, MWCNT and Al2O3 dispersed in water) with 1-2 wt% volume fractions are analyzed. A constant heat flux, equivalent to solar radiation absorbed by the collector, is applied at the top surface of the absorber plate. In this study, several parameters including boundary conditions (different volume flow rates, different fluid inlet temperatures and different solar irradiance at Skudai, Malaysia), different types of nanoparticles, and different solar collector tilt angles are investigated to identify their effects on the heat transfer performance of FPSC. The numerical results reveal that the three types of nanofluid enhance the thermal performance of solar collector compared to pure water and FPSC with Ag nanofluid has the best thermal performance enhancement. For all the cases, the collector efficiency increased with the increase of volume flow rate while fluid outlet temperature decreased. It is found that FPSC with tilt angle of 10° and fluid inlet temperature of 301.15 K has the best thermal performance.
Wilhelm, W.G.
The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Cheng-Han; Wu, Chao-Hsin, E-mail: chaohsinwu@ntu.edu.tw; Graduate Institute of Photonics and Optoelectronics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan
The electrical and optical characteristics of tunnel junction light-emitting transistors (TJLETs) with different indium mole fractions (x = 5% and 2.5%) of the In{sub x}Ga{sub 1−x}As base-collector tunnel junctions have been investigated. Two electron tunneling mechanisms (photon-assisted or direct tunneling) provide additional currents to electrical output and resupply holes back to the base region, resulting in the upward slope of I-V curves and enhanced optical output under forward-active operation. The larger direct tunneling probability and stronger Franz-Keldysh absorption for 5% TJLET lead to higher collector current slope and less optical intensity enhancement when base-collector junction is under reverse-biased.
Adsorption mechanism of mixed cationic/anionic collectors in feldspar-quartz flotation system.
Vidyadhar, A; Hanumantha Rao, K
2007-02-15
The adsorption mechanism of mixed cationic alkyl diamine and anionic sulfonate/oleate collectors at acidic pH values was investigated on microcline and quartz minerals through Hallimond flotation, electrokinetic and diffuse reflectance FTIR studies. In the presence of anionic collectors, neither of the minerals responded to flotation but the diamine flotation of the minerals was observed to be pH and concentration dependent. The presence of sulfonate enhanced the diamine flotation of the minerals by its co-adsorption. The difference in surface charge between the minerals at pH 2 was found to be the basis for preferential feldspar flotation from quartz in mixed diamine/sulfonate collectors. The infrared spectra revealed no adsorption of sulfonate collector when used alone but displayed its co-adsorption as diamine-sulfonate complex when used with diamine. The presence of sulfonate increased the diamine adsorption due to a decrease in the electrostatic head-head repulsion between the adjacent surface ammonium ions and thereby increasing the lateral tail-tail hydrophobic bonds. The mole ratio of diamine/sulfonate was found to be an important factor in the orientation of alkyl chains and thus the flotation response of minerals. The increase in sulfonate concentration beyond diamine concentration leads to the formation of soluble 1:2 diamine-sulfonate complex or precipitate and the adsorption of these species decreased the flotation since the alkyl chains are in chaotical orientation with a conceivable number of head groups directing towards the solution phase.
Derivation and correction of the Tsu-Esaki tunneling current formula
NASA Astrophysics Data System (ADS)
Bandara, K. M. S. V.; Coon, D. D.
1989-07-01
The theoretical basis of the Tsu-Esaki tunneling current formula [Appl. Phys. Lett. 22, 562 (1973)] is examined in detail and corrections are found. The starting point is an independent particle picture with fully antisymmetrized N-electron wave functions. Unitarity is used to resolve an orthonormality issue raised in earlier work. A new set of mutually consistent equations is derived for bias voltage, tunneling current, and electron densities in the emitter and collector. Corrections include a previously noted kinematic factor and a modification of emitter and collector Fermi levels. The magnitude of the corrections is illustrated numerically for the case of a resonant tunneling current-voltage characteristic.
High efficiency SPS klystron design
NASA Technical Reports Server (NTRS)
Nalos, E. J.
1980-01-01
The most likely compact configuration to realize both high efficiency and high gain (approx. 40 dB) is a 5-6 cavity design focused by an electromagnet. The basic klystron efficiency cannot be expected to exceed 70-75% without collector depression. It was estimated that the net benefit of a 5 stage collector over a 2 stage collector is between 1.5 and 3.5 kW per tube. A modulating anode is incorporated in the design to enable rapid shutoff of the beam current in case the r.f. drive should be removed.
Metal glass vacuum tube solar collectors are approaching lower-medium temperature heat application.
Jiang, Xinian
2010-04-26
Solar thermal collectors are widely used worldwide mainly for hot water preparation at a low temperature (less than 80 degrees C). Applications including many industrial processes and central air conditioning with absorption chillers, instead require lower-medium temperature heat (between 90 degrees C and 150 degrees C) to be driven when using solar thermal energy. The metal absorber glass vacuum tube collectors (MGVT) are developed for this type of applications. Current state-of-art and possible future technology development of MGVT are presented.
Two Fixed, Evacuated, Glass, Solar Collectors Using Nonimaging Concentration
NASA Astrophysics Data System (ADS)
Garrison, John D.; Winston, Roland; O'Gallagher, Joseph; Ford, Gary
1984-01-01
Two fixed, evacuated, glass solar thermal collectors have been designed. The incorporation of nonimaging concentration, selective absorption and vacuum insulation into their design is essential for obtaining high efficiency through low heat loss, while operating at high temperatures. Nonimaging, approximately ideal concentration with wide acceptance angle permits solar radiation collection without tracking the sun, and insures collection of much of the diffuse radiation. It also minimizes the area of the absorbing surface, thereby reducing the radiation heat loss. Functional integration, where different parts of these two collectors serve more than one function, is also important in achieving high efficiency, and it reduces cost.
Rasor, Ned S.; Britt, Edward J.
1976-01-01
A gas-filled thermionic converter is provided with a collector and an emitter having a main emitter region and an auxiliary emitter region in electrical contact with the main emitter region. The main emitter region is so positioned with respect to the collector that a main gap is formed therebetween and the auxiliary emitter region is so positioned with respect to the collector that an auxiliary gap is formed therebetween partially separated from the main gap with access allowed between the gaps to allow ionizable gas in each gap to migrate therebetween. With heat applied to the emitter the work function of the auxiliary emitter region is sufficiently greater than the work function of the collector so that an ignited discharge occurs in the auxiliary gap and the work function of the main emitter region is so related to the work function of the collector that an unignited discharge occurs in the main gap sustained by the ions generated in the auxiliary gap. A current flows through a load coupled across the emitter and collector due to the unignited discharge in the main gap.
NASA Astrophysics Data System (ADS)
Gaos, Yogi Sirodz; Yulianto, Muhamad; Juarsa, Mulya; Nurrohman, Marzuki, Edi; Yuliaji, Dwi; Budiono, Kabul
2017-03-01
Indonesia is a tropical country that has potential energy of solar radiation worth of 4.5 until 4.8 kWh/m2. However, this potential has not been utilized regularly. This paper will discuss the performance of solar collector compound parabolic concentrator (CPC) type with water as the working fluid. This CPC solar collector utilized three pipes covered by glass tubes. This paper has contribution to provide the temperature achievement between three pipes covered by glass tubes with and without glass cover of solar collector CPC type. The research conducted by varying the water flow rate of 1 l/m up to 6 l/m with three pipes arranged in series and parallel. From the results, the used of solar collector CPC type in the current study shows that the decrease of solar radiation, which was caused by climate change, did not influence the heat absorbance by water in the pipe. Therefore, the design of the solar collector in this research has potential to be used in future when solar radiation are used as the energy source.
Blaik, Rita A; Lan, Esther; Huang, Yu; Dunn, Bruce
2016-01-26
Glucose oxidase-based biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving robust electrical contact between the redox enzymes and the current collector. This paper reports on the design of an electrode consisting of glucose oxidase covalently attached to gold nanoparticles that are assembled onto a genetically engineered M13 bacteriophage using EDC-NHS chemistry. The engineered phage is modified at the pIII protein to attach onto a gold substrate and serves as a high-surface-area template. The resulting "nanomesh" architecture exhibits direct electron transfer (DET) and achieves a higher peak current per unit area of 1.2 mA/cm(2) compared to most other DET attachment schemes. The final enzyme surface coverage on the electrode was calculated to be approximately 4.74 × 10(-8) mol/cm(2), which is a significant improvement over most current glucose oxidase (GOx) DET attachment methods.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Xu, Longhua; Wang, Jinming; Wang, Li; Xiao, Junhui
2017-12-01
The objective of this paper is to display the results of the flotation and adsorption behaviors of benzohydroxamic acid (BHA), potassium amyl xanthate (KAX), dodecylamine- hydrochloride (DDA), mixed BHA/DDA and KAX/DDA on smithsonite. The flotation results show a collecting ability sequence of BHA > KAX > DDA on smithsonite and the best flotation performance at mixing ratio of 1:4 mol fraction DDA/KAX for mixed collector on smithsonite. The enhancement of smithsonite recovery by co-adsorption of KAX and DDA, while no promotion effect as to mixed BHA/DDA catanionic system, are attributed to the difference in steric effect of absorbed head group. According to the results of zeta potential and contact angle (CA) measurements, a most negative charged and the highest hydrophobic smithsonite surface are attained using KAX with DDA as co-collector, which shows a good agreement with the flotation results. FTIR measurements display the stabilization against oxidation and decomposition of DDA on KAX and the inhibition of preferential adsorbed BHA ions on DDA adsorption. The interaction energies of single and mixed collectors with mineral surface also shows well consistency with experimental results. The adsorption models proposed illustrate the decrease in the electrostatic head-head repulsion and the increase in lateral tail-tail hydrophobic interaction between adjacent KAX anions due to the insertion of DDA cations, while almost no DDA could access to smithsonite surface through adjacent BHA owing to steric effect.
Electron beam simulation from gun to collector: Towards a complete solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertzig, R., E-mail: robert.mertzig@cern.ch; Shornikov, A., E-mail: robert.mertzig@cern.ch; Wenander, F.
An electron-beam simulation technique for high-resolution complete EBIS/T modelling is presented. The technique was benchmarked on the high compression HEC{sup 2} test-stand with an electron beam current, current density and energy of 10 A, 10 kA/cm{sup 2} and 49.2 keV, and on the immersed electron beam at REXEBIS for electron beam characteristics of 0.4 A, 200 A/cm{sup 2} and 4.5 keV. In both Brillouin-like and immersed beams the electron-beam radius varies from several millimeters at the gun, through some hundreds of micrometers in the ionization region to a few centimeters at the collector over a total length of several meters.more » We report on our approach for finding optimal meshing parameters, based on the local beam properties such as magnetic field-strength, electron energy and beam radius. This approach combined with dividing the problem domain into sub-domains, and subsequent splicing of the local solutions allowed us to simulate the beam propagation in EBISes from the gun to the collector using a conventional PC in about 24–36 h. Brillouin-like electron beams propagated through the complete EBIS were used to analyze the beam behavior within the collector region. We checked whether elastically reflected paraxial electrons from a Brillouin-like beam will escape from the collector region and add to the loss current. We have also studied the power deposition profiles as function of applied potentials using two electrode geometries for a Brillouin-like beam including the effects of backscattered electrons.« less
Ji, Bifa; Zhang, Fan; Sheng, Maohua; Tong, Xuefeng; Tang, Yongbing
2017-02-01
A novel battery configuration based on an aluminum foil anode and a conventional cathode is developed. The aluminum foil plays a dual role as both the active anode material and the current collector, which enhances the energy density of the packaged battery, and reduces the production cost. This generalized battery configuration has high potential for application in next-generation lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lithium compensation for full cell operation
Xiao, Jie; Zheng, Jianming; Chen, Xilin; Lu, Dongping; Liu, Jun; Jiguang, Jiguang
2016-05-17
Disclosed herein are embodiments of a lithium-ion battery system comprising an anode, an anode current collector, and a layer of lithium metal in contact with the current collector, but not in contact with the anode. The lithium compensation layer dissolves into the electrolyte to compensate for the loss of lithium ions during usage of the full cell. The specific placement of the lithium compensation layer, such that there is no direct physical contact between the lithium compensation layer and the anode, provides certain advantages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, T.D.
Sandia National Laboratories, Albuquerque (SNLA), is currently conducting a program to predict the performance and measure the characteristics of commercially available solar collectors that have the potential for use in industrial process heat and enhance oil recovery applications. The thermal performance predictions for the AAI solar line-focusing slat-type collector for five cities in the US are presented. (WHK)
Villevieille, Claire; Takeuchi, Yoji
2015-01-01
To understand inhomogeneous reactions perpendicular to the current collector in an electrode for batteries, a method combining operando synchrotron X‐ray diffraction and two‐layer electrodes with different porosities is developed. The two layers are built using two different active materials (LiNi0.80Co0.15Al0.05O2 and LiMn2O4), therefore, tracing each diffraction pattern reveals which active material is reacting during the electrochemical measurement in transmission mode. The results demonstrate that the active material close to the separator is obviously more active than that one close to the current collector in the case of low porosity electrodes. This inhomogeneity should be due to the rate‐limitation and especially to low average ionic conductivity of the electrolyte in the porous electrode because the current flows first mainly into the electrode regions close to the separator. The inhomogeneity is found to be mitigated by the adjustment of the electrode density and thus porosity. Hence, the novel operando method reveals a clear inhomogeneous reaction perpendicular to the current collector. PMID:27708998
Glass heat pipe evacuated tube solar collector
McConnell, Robert D.; Vansant, James H.
1984-01-01
A glass heat pipe is adapted for use as a solar energy absorber in an evacuated tube solar collector and for transferring the absorbed solar energy to a working fluid medium or heat sink for storage or practical use. A capillary wick is formed of granular glass particles fused together by heat on the inside surface of the heat pipe with a water glass binder solution to enhance capillary drive distribution of the thermal transfer fluid in the heat pipe throughout the entire inside surface of the evaporator portion of the heat pipe. Selective coatings are used on the heat pipe surface to maximize solar absorption and minimize energy radiation, and the glass wick can alternatively be fabricated with granular particles of black glass or obsidian.
Karagüzel, C; Can, M F; Sönmez, E; Celik, M S
2005-05-01
Application of the thin-layer wicking (TLW) technique on powdered minerals is useful for characterizing their surfaces. Albite (Na-feldspar) and orthoclase (K-feldspar) are feldspar minerals which are frequently found in the same matrix. Despite similarities in their physicochemical properties, separation of these minerals from each other by flotation is generally possible in the presence of monovalent salts such as NaCl. Both albite and orthoclase exhibit the same microflotation properties and rather close electrokinetic profiles in the absence of salt. In this study, contact angles of albite and orthoclase determined by the TLW technique yielded close values in the absence and presence of amine collector. While the calculated surface energies and their components determined using contact angle data reveal that the energy terms remain farther apart in the absence of the collector, the differences narrow down at collector concentrations where full flotation recoveries are obtained. However, the effect of addition of NaCl on contact angles and surface free energy components at constant amine concentration indicates that albite is significantly affected by salt addition, whereas orthoclase remains marginally affected. This interesting finding is explained on the basis of ion-exchange properties, the stability of the interface, flotation data, and zeta potential data in the presence of NaCl.
Effect of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid as a collector
NASA Astrophysics Data System (ADS)
Xu, Longhua; Tian, Jia; Wu, Houqin; Lu, Zhongyuan; Yang, Yaohui; Sun, Wei; Hu, Yuehua
2017-12-01
The effects of Pb2+ ions on ilmenite flotation and adsorption of benzohydroxamic acid (BHA) as a collector were investigated using microflotation tests, zeta potential measurements, adsorption analysis, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). The microflotation results indicate that the addition of Pb2+ significantly improves the recovery of ilmenite using BHA as a collector. A maximum recovery of 88.46% is obtained at pH 8.12 in the presence of Pb2+; a maximum recovery of 45% is obtained at the same pH using BHA alone. At pHs below 8.0, lead nitrate are mainly present in the solution as Pb2+ and PbOH+, while at pHs above 8.0, the predominant components are Pb(OH)2(s) and Pb(OH)3-. The adsorption of these lead species influences the zeta potential of ilmenite and the number of activated sites on the ilmenite surface. FTIR and XPS analyses reveal that lead species and BHA react with the metal sites on the ilmenite surface. The lead species in solution are either adsorbed onto the ilmenite surface, which increases the surface activity of ilmenite, or react with BHA in solution to form complexes of lead and BHA.
Solar absorption surface panel
Santala, Teuvo J.
1978-01-01
A composite metal of aluminum and nickel is used to form an economical solar absorption surface for a collector plate wherein an intermetallic compound of the aluminum and nickel provides a surface morphology with high absorptance and relatively low infrared emittance along with good durability.
Selective separation of pyrite and chalcopyrite by biomodulation.
Chandraprabha, M N; Natarajan, K A; Modak, Jayant M
2004-09-01
Selective separation of pyrite from other associated ferrous sulphides at acidic and neutral pH has been a challenging problem. This paper discusses the utility of Acidithiobacillus ferrooxidans for the selective flotation of chalcopyrite from pyrite. Consequent to interaction with bacterial cells, pyrite remained depressed even in the presence of potassium isopropyl xanthate collector while chalcopyrite exhibited significant flotability. However, when the minerals were conditioned together, the selectivity achieved was poor due to the activation of pyrite surface by the copper ions in solution. The selectivity was improved when the sequence of conditioning with bacterial cells and collector was reversed, since the bacterial cells were able to depress collector interacted pyrite effectively, while having negligible effect on chalcopyrite. The observed behaviour is analysed and discussed in detail. The separation obtained was significant both at acidic and alkaline pH. This selectivity achieved was retained when the minerals were interacted with both bacterial cells and collector simultaneously.
NASA Technical Reports Server (NTRS)
Ramins, P.; Fox, T. A.
1980-01-01
An axisymmetric, multistage, depressed collector of fixed geometric design was evaluated in conjunction with an octave bandwidth, dual mode traveling wave tube (TWT). The TWT was operated over a wide range of conditions to simulate different applications. The collector performance was optimized (within the constraint of fixed geometric design) over the range of TWT operating conditions covered. For operation of the TWT in the linear, low distortion range, 90 percent and greater collector efficiencies were obtained leading to TWT overall efficiencies of 20 to 35 percent, as compared with 2 to 5 percent with an undepressed collector. With collectors of this efficiency and minimized beam interception losses, it becomes practical to design dual mode TWT's such that the low mode can represent operation well below saturation. Consequently, the required pulse up in beam current can be reduced or eliminated, and this mitigates beam control and dual mode TWT circuit design problems. For operation of the dual mode TWT at saturation, average collector efficiencies in excess of 85 percent were obtained for both the low and high modes across an octave bandwidth, leading to a three to fourfold increase in the TWT overall efficiency.
Combined current collector and electrode separator
Gerenser, R.J.; Littauer, E.L.
1983-08-23
This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application. 6 figs.
Combined current collector and electrode separator
Gerenser, Robert J.; Littauer, Ernest L.
1983-01-01
This relates to reactive metal cells wherein there is a cathode and a consumable anode. It is necessary to separate the cathode from the anode so that an electrolyte may constantly flow over the face of the anode opposing the cathode. It has been found that this separator may also beneficially function as a current collector. The combined current collector and separator includes a peripheral supporting frame of which a portion may function as a bus-bar. A plurality of bars or ribs extend in parallel relation across the opening defined by the supporting frame and are electrically connected to the bus-bar portion. It is preferred that each bar or rib have a pointed or line edge which will engage and slightly bite into the associated anode to maintain the bar or rib in electrical contact with the anode. This abstract forms no part of the specification of this application and is not to be construed as limiting the claims of the application.
Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; ...
2017-03-13
There are many challenges to overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. We report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers, in order to begin addressing these challenges (and others). The tethered array of nanoparticles, MnO in this case, bound directly to amore » gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). Our strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles.« less
Surface water-ground water interaction: Herbicide transport into municipal collector wells
Verstraeten, Ingrid M.; Carr, J.D.; Steele, G.V.; Thurman, E.M.; Bastian, K.C.; Dormedy, D.F.
1999-01-01
During spring runoff events, herbicides in the Platte River are transported through an alluvial aquifer into collector wells located on an island in the river in 6 to 7 d. During two spring runoff events in 1995 and 1996, atrazine [2-chloro-4-ethylamino-6-isopropylamino-s-triazine] concentrations in water from these wells reached approximately 7 ??g/L, 70 times more than the background concentration in ground water. Concentrations of herbicides and metabolites in the collector wells generally were one-half to one-fifth the concentrations of herbicides in the river for atrazine, alachlor [2-chloro-2'-6'-diethyl-N-(methoxymethyl)-acetanilide], alachlor ethane-sulfonic acid (ESA) [2-((2,6-diethylphenyl) (methoxymethyl)amino)-2- oxoethane-sulfonic acid], metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N- (2-methoxy-1-methylethyl)acetamide], cyanazine [2-((4-chloro-6-(ethyl-amino)- 1,3,5 triazin-2-yl)-amino)-2-methylpropionitrile], and acetochlor [2-chloro- N-(ethoxymethyl)-N-(2-ethyl-6methyl-phenyl) acetamide], suggesting that 20 to 50% river water could be present in the water from the collector wells, assuming no degradation. The effect of the river on the quality of water from the collector wells can be reduced through selective management of horizontal laterals of the collector wells. The quality of the water from the collector wells is dependent on the (i) selection of the collector well used, (ii) number and selection of laterals used, (iii) chemical characteristics of the contaminant, and (iv) relative mixing of the Platte River and a major upstream tributary.
Graphene Double-Layer Capacitor with ac Line-Filtering Performance
NASA Astrophysics Data System (ADS)
Miller, John R.; Outlaw, R. A.; Holloway, B. C.
2010-09-01
Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.
Graphene double-layer capacitor with ac line-filtering performance.
Miller, John R; Outlaw, R A; Holloway, B C
2010-09-24
Electric double-layer capacitors (DLCs) can have high storage capacity, but their porous electrodes cause them to perform like resistors in filter circuits that remove ripple from rectified direct current. We have demonstrated efficient filtering of 120-hertz current with DLCs with electrodes made from vertically oriented graphene nanosheets grown directly on metal current collectors. This design minimized electronic and ionic resistances and produced capacitors with RC time constants of less than 200 microseconds, in contrast with ~1 second for typical DLCs. Graphene nanosheets have a preponderance of exposed edge planes that greatly increases charge storage as compared with that of designs that rely on basal plane surfaces. Capacitors constructed with these electrodes could be smaller than the low-voltage aluminum electrolyte capacitors that are typically used in electronic devices.
Computer acquired performance data from an etched-rhenium, molybdenum planar diode
NASA Technical Reports Server (NTRS)
Manista, E. J.
1972-01-01
Performance data from an etched-rhenium, molybdenum thermionic converter are presented. The planar converter has a guard-ringed collector and a fixed spacing of 0.254 mm (10 mils). The data were acquired by using a computer and are available on microfiche as individual or composite parametric current, voltage curves. The parameters are the temperatures of the emitter T sub E, collector T sub C and cesium reservoir T sub R. The composite plots have constant T sub E, and varying T sub C or T sub R, or both. The envelope and composite plots having constant I sub E are presented. The diode was tested at increments between 1500 and 2000 K for the emitter, 750 and 1100 K for the collector, and 540 and 640 K for the reservoir. In all, 774 individual current, voltage curves were obtained.
Ship Integration of Energy Scavenging Technology for Sea Base Operations
2009-07-01
operates similar to the common commercial refrigerating system in reverse like a heat pump.3 However, cold water pipes do pose a 12 Naval Surface...sunlight at the focal point in a solar collector , more light can be converted to electricity for less solar cell material. Solar concentrators come in...Kotter, D.K., et al. (2008). Proceeding from ES2008: Solar Nantenna Electromagnetic Collectors . Jacksonville, Florida: Energy Sustainability 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trushnikov, D. N., E-mail: trdimitr@yandex.ru; Mladenov, G. M., E-mail: gmmladenov@abv.bg; Koleva, E. G., E-mail: eligeorg@abv.bg
Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distancemore » between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup −3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup −2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.« less
NASA Astrophysics Data System (ADS)
Trushnikov, D. N.; Mladenov, G. M.; Belenkiy, V. Ya.; Koleva, E. G.; Varushkin, S. V.
2014-04-01
Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 1016 m-3, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A.m-2, i.e. 8 mA for a 3-10 cm2 collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.
Electron energy recovery system for negative ion sources
Dagenhart, William K.; Stirling, William L.
1982-01-01
An electron energy recovery system for negative ion sources is provided. The system, employs crossed electric and magnetic fields to separate the electrons from ions as they are extracted from a negative ion source plasma generator and before the ions are accelerated to their full kinetic energy. With the electric and magnetic fields oriented 90.degree. to each other, the electrons are separated from the plasma and remain at approximately the electrical potential of the generator in which they were generated. The electrons migrate from the ion beam path in a precessing motion out of the ion accelerating field region into an electron recovery region provided by a specially designed electron collector electrode. The electron collector electrode is uniformly spaced from a surface of the ion generator which is transverse to the direction of migration of the electrons and the two surfaces are contoured in a matching relationship which departs from a planar configuration to provide an electric field component in the recovery region which is parallel to the magnetic field thereby forcing the electrons to be directed into and collected by the electron collector electrode. The collector electrode is maintained at a potential slightly positive with respect to the ion generator so that the electrons are collected at a small fraction of the full accelerating supply voltage energy.
Photovoltaic-thermal collectors
Cox, III, Charles H.
1984-04-24
A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.
Alkali metal ionization detector
Bauerle, James E.; Reed, William H.; Berkey, Edgar
1978-01-01
Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.
NASA Astrophysics Data System (ADS)
Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan
2017-02-01
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkrob, Ilya A.; Pupek, Krzysztof Z.; Gilbert, James A.
Lithium hexafluorophosphate (LiPF 6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reducedmore » on lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li +, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphite electrode.« less
Moon, Hyunjin; Lee, Habeom; Kwon, Jinhyeong; Suh, Young Duk; Kim, Dong Kwan; Ha, Inho; Yeo, Junyeob; Hong, Sukjoon; Ko, Seung Hwan
2017-01-01
Transparent and stretchable energy storage devices have attracted significant interest due to their potential to be applied to biocompatible and wearable electronics. Supercapacitors that use the reversible faradaic redox reaction of conducting polymer have a higher specific capacitance as compared with electrical double-layer capacitors. Typically, the conducting polymer electrode is fabricated through direct electropolymerization on the current collector. However, no research have been conducted on metal nanowires as current collectors for the direct electropolymerization, even though the metal nanowire network structure has proven to be superior as a transparent, flexible, and stretchable electrode platform because the conducting polymer’s redox potential for polymerization is higher than that of widely studied metal nanowires such as silver and copper. In this study, we demonstrated a highly transparent and stretchable supercapacitor by developing Ag/Au/Polypyrrole core-shell nanowire networks as electrode by coating the surface of Ag NWs with a thin layer of gold, which provide higher redox potential than the electropolymerizable monomer. The Ag/Au/Polypyrrole core-shell nanowire networks demonstrated superior mechanical stability under various mechanical bending and stretching. In addition, proposed supercapacitors showed fine optical transmittance together with fivefold improved areal capacitance compared to pristine Ag/Au core-shell nanowire mesh-based supercapacitors. PMID:28155913
Innovative manufacturing and materials for low cost lithium ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Steven
2015-12-29
This project demonstrated entirely new manufacturing process options for lithium ion batteries with major potential for improved cost and performance. These new manufacturing approaches are based on the use of the new electrode-coated separators instead of the conventional electrode-coated metal current collector foils. The key enabler to making these electrode-coated separators is a new and unique all-ceramic separator with no conventional porous plastic separator present. A simple, low cost, and high speed manufacturing process of a single coating of a ceramic pigment and polymer binder onto a re-usable release film, followed by a subsequent delamination of the all-ceramic separator andmore » any layers coated over it, such as electrodes and metal current collectors, was utilized. A suitable all-ceramic separator was developed that demonstrated the following required features needed for making electrode-coated separators: (1) no pores greater than 100 nanometer (nm) in diameter to prevent any penetration of the electrode pigments into the separator; (2) no shrinkage of the separator when heated to the high oven heats needed for drying of the electrode layer; and (3) no significant compression of the separator layer by the high pressure calendering step needed to densify the electrodes by about 30%. In addition, this nanoporous all-ceramic separator can be very thin at 8 microns thick for increased energy density, while providing all of the performance features provided by the current ceramic-coated plastic separators used in vehicle batteries: improved safety, longer cycle life, and stability to operate at voltages up to 5.0 V in order to obtain even more energy density. The thin all-ceramic separator provides a cost savings of at least 50% for the separator component and by itself meets the overall goal of this project to reduce the cell inactive component cost by at least 20%. The all-ceramic separator also enables further cost savings by its excellent heat stability with no shrinkage at up to 220oC. This allows vacuum drying of the dry cell just before filling with the electrolyte and thereby can reduce the size of the cell assembly dry room by 50%. Once the electrode-coated separator is produced, there are many different approaches for adding the metal current collector layers and making and connecting the tabs of the cells. These approaches include: (1) laminating the electrode side of the electrode-coated separator to both sides of a metal current collector; and (2) making a full coated electrode stack by coating or depositing a current collector layer on the electrode side and then coating a second electrode layer onto the current collector. Further cost savings are available from using lower cost and/or thinner and lighter current collectors and from using a separator coating manufacturing process at widths of 1.5 meters (m) or more and at high production line speeds of up to 125 meters per minute (mpm), both of which are well above the conventional coating widths and line speeds presently used in manufacturing electrodes for lithium ion batteries.« less
NASA Astrophysics Data System (ADS)
Arumugam, S.; Ramakrishna, P.; Sangavi, S.
2018-02-01
Improvements in heating technology with solar energy is gaining focus, especially solar parabolic collectors. Solar heating in conventional parabolic collectors is done with the help of radiation concentration on receiver tubes. Conventional receiver tubes are open to atmosphere and loose heat by ambient air currents. In order to reduce the convection losses and also to improve the aperture area, we designed a tube with cavity. This study is a comparative performance behaviour of conventional tube and cavity model tube. The performance formulae were derived for the cavity model based on conventional model. Reduction in overall heat loss coefficient was observed for cavity model, though collector heat removal factor and collector efficiency were nearly same for both models. Improvement in efficiency was also observed in the cavity model’s performance. The approach towards the design of a cavity model tube as the receiver tube in solar parabolic collectors gave improved results and proved as a good consideration.
Hybrid thermoelectric solar collector design and analysis
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.; Shaheen, K. E.
1982-01-01
A flat-plate solar collector is conceived where energy cascades through thermoelectric power modules generating direct-current electricity. The intent of this work was to choose a collector configuration and to perform a steady-state thermal performance assessment. A set of energy balance equations were written and solved numerically for the purpose of optimizing collector thermal and electrical performance. The collector design involves finned columns of thermoelectric modules imbedded in the absorber plate (hot junction) over a parallel array of vertical tubes. The thermoelectric power output is limited by the small hot-junction/cold-junction temperature difference which can be maintained under steady-state conditions. The electric power per unit tube pass area is found to have a maximum as a function of a geometric parameter, while electric power is maximized with respect to an electric resistance ratio. Although the electric power efficiency is small, results indicate that there is sufficient electric power production to drive a coolant circulator, suggesting the potential for a stand-alone system.
DLVO interaction energies between hollow spherical particles and collector surfaces
USDA-ARS?s Scientific Manuscript database
The surface element integration technique was used to systematically study Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies/forces between hollow spherical particles (HPs) and a planar surface or two intercepting half planes under different ionic strength conditions. The inner and outer ...
The rise of non-imaging optics for rooftop solar collectors
NASA Astrophysics Data System (ADS)
Rosengarten, Gary; Stanley, Cameron; Ferrari, Dave; Blakers, Andrew; Ratcliff, Tom
2016-09-01
In this paper we explore the use of non-imaging optics for rooftop solar concentrators. Specifically, we focus on compound parabolic concentrators (CPCs), which form an ideal shape for cylindrical thermal absorbers, and for linear PV cells (allowing the use of more expensive but more efficient cells). Rooftops are ideal surfaces for solar collectors as they face the sky and are generally free, unused space. Concentrating solar radiation adds thermodynamic value to thermal collectors (allowing the attainment of higher temperature) and can add efficiency to PV electricity generation. CPCs allow that concentration over the day without the need for tracking. Hence they have become ubiquitous in applications requiring low concentration.
Development of selective solar absorbers on the basis of aluminum roll-bond heat exchangers
NASA Astrophysics Data System (ADS)
Moeller, M.
1981-11-01
A deposition technique comparable to two-stage anodizing and especially suited for solar absorber panels, using roll-bond Al 99.5 and AlMnZr alloys as a substrate, was developed. The coating is of the nickel structure filter type and provides average solar absorptivity values of 94% and thermal emission values of 14%. The setup of a production plant capable of coating surfaces up to 2 sq m is described as well as the development of corrosion resistent hermetically sealed collectors. By means of an appropriate surface treatment the same corrosion resistance was achieved for absorbers mounted in ventilated collectors.
Molecular Contamination on Anodized Aluminum Components of the Genesis Science Canister
NASA Technical Reports Server (NTRS)
Burnett, D. S.; McNamara, K. M.; Jurewicz, A.; Woolum, D.
2005-01-01
Inspection of the interior of the Genesis science canister after recovery in Utah, and subsequently at JSC, revealed a darkening on the aluminum canister shield and other canister components. There has been no such observation of film contamination on the collector surfaces, and preliminary spectroscopic ellipsometry measurements support the theory that the films observed on the anodized aluminum components do not appear on the collectors to any significant extent. The Genesis Science Team has made an effort to characterize the thickness and composition of the brown stain and to determine if it is associated with molecular outgassing.Detailed examination of the surfaces within the Genesis science canister reveals that the brown contamination is observed to varying degrees, but only on surfaces exposed in space to the Sun and solar wind hydrogen. In addition, the materials affected are primarily composed of anodized aluminum. A sharp line separating the sun and shaded portion of the thermal closeout panel is shown. This piece was removed from a location near the gold foil collector within the canister. Future plans include a reassembly of the canister components to look for large-scale patterns of contamination within the canister to aid in revealing the root cause.
This paper describes the development of a new artificial turf surrogate surface (ATSS) sampler for use in the measurement of mercury (Hg) dry deposition. In contrast to many existing surrogate surface designs, the ATSS utilizes a three-dimensional deposition surface that may more...
Dual membrane hollow fiber fuel cell and method of operating same
NASA Technical Reports Server (NTRS)
Ingham, J. D.; Lawson, D. D. (Inventor)
1978-01-01
A gaseous fuel cell is described which includes a pair of electrodes formed by open-ended, ion-exchange hollow fibers, each having a layer of metal catalyst deposited on the inner surface and large surface area current collectors such as braided metal mesh in contact with the metal catalyst layer. A fuel cell results when the electrodes are immersed in electrolytes and electrically connected. As hydrogen and oxygen flow through the bore of the fibers, oxidation and reduction reactions develop an electrical potential. Since the hollow fiber configuration provides large electrode area per unit volume and intimate contact between fuel and oxidizer at the interface, and due to the low internal resistance of the electrolyte, high power densities can be obtained.
Ultracapacitor having residual water removed under vacuum
Wei, Chang; Jerabek, Elihu Calvin; Day, James
2002-10-15
A multilayer cell is provided that comprises two solid, nonporous current collectors, two porous electrodes separating the current collectors, a porous separator between the electrodes and an electrolyte occupying pores in the electrodes and separator. The mutilayer cell is electrolyzed to disassociate water within the cell to oxygen gas and hydrogen gas. A vacuum is applied to the cell substantially at the same time as the electrolyzing step, to remove the oxygen gas and hydrogen gas. The cell is then sealed to form a ultracapacitor substantially free from water.
Gay, Eddie C.; Martino, Fredric J.
1976-01-01
Particulate electrode reactants, for instance transition metal sulfides for the positive electrodes and lithium alloys for the negative electrodes, are vibratorily compacted into porous, electrically conductive structures. Structures of high porosity support sufficient reactant material to provide high cell capacity per unit weight while serving as an electrical current collector to improve the utilization of reactant materials. Pore sizes of the structure and particle sizes of the reactant material are selected to permit uniform vibratory loading of the substrate without settling of the reactant material during cycling.
NASA Technical Reports Server (NTRS)
Williams, Roger M. (Inventor)
1989-01-01
An electrode having higher power output is formed of an open mesh current collector such as expanded nickel covering an electrode film applied to a tube of beta-alumina solid electrolyte (BASE). A plurality of cross-members such as spaced, parallel loops of molybdenum metal wire surround the BASE tube. The loops are electrically connected by a bus wire. As the AMTEC cell is heated, the grid of expanded nickel expands more than the BASE tube and the surrounding loop of wire and become diffusion welded to the electrode film and to the wire loops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tournier, J.M.; El-Genk, M.S.
1998-07-01
A two-dimensional electrical model of vapor-anode, multi-tube AMTEC cells was developed, which included four options of current collector configurations. Simulation results of several cells tested at AFRL showed that electrical losses in the current collector networks and the connecting leads were negligible. The polarization/concentration losses in the TiN electrodes were significant, amounting to 25%--50% of the cell theoretical power, while the contact and BASE ionic losses amounted to less than 16% of the cell theoretical power.
High-voltage electrode optimization towards uniform surface treatment by a pulsed volume discharge
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.; Pedos, M. S.; Scherbinin, S. V.; Mamontov, Y. I.; Ponomarev, S. V.
2015-11-01
In this study, the shape and material of the high-voltage electrode of an atmospheric pressure plasma generation system were optimised. The research was performed with the goal of achieving maximum uniformity of plasma treatment of the surface of the low-voltage electrode with a diameter of 100 mm. In order to generate low-temperature plasma with the volume of roughly 1 cubic decimetre, a pulsed volume discharge was used initiated with a corona discharge. The uniformity of the plasma in the region of the low-voltage electrode was assessed using a system for measuring the distribution of discharge current density. The system's low-voltage electrode - collector - was a disc of 100 mm in diameter, the conducting surface of which was divided into 64 radially located segments of equal surface area. The current at each segment was registered by a high-speed measuring system controlled by an ARM™-based 32-bit microcontroller. To facilitate the interpretation of results obtained, a computer program was developed to visualise the results. The program provides a 3D image of the current density distribution on the surface of the low-voltage electrode. Based on the results obtained an optimum shape for a high-voltage electrode was determined. Uniformity of the distribution of discharge current density in relation to distance between electrodes was studied. It was proven that the level of non-uniformity of current density distribution depends on the size of the gap between electrodes. Experiments indicated that it is advantageous to use graphite felt VGN-6 (Russian abbreviation) as the material of the high-voltage electrode's emitting surface.
Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.
Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad
2018-04-18
Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.
NASA Astrophysics Data System (ADS)
Vojak, B. A.; Alley, G. D.
1983-08-01
Two-dimensional numerical simulations are used to compare etched geometry and overgrown Si permeable base transistors (PTBs), considering both the etched collector and etched emitter biasing conditions made possible by the asymmetry of the etched structure. In PTB devices, the two-dimensional nature of the depletion region near the Schottky contact base grating results in a smaller electron barrier and, therefore, a larger collector current in the etched than in the overgrown structure. The parasitic feedback effects which result at high base-to-emitter bias levels lead to a deviation from the square-law behavior found in the collector characteristics of the overgrown PBT. These structures also have lower device capacitances and smaller transconductances at high base-to-emitter voltages. As a result, overgrown and etched structures have comparable predicted maximum values of the small signal unity short-circuit current gain frequency and maximum oscillation frequency.
Shape Control of Solar Collectors Using Shape Memory Alloy Actuators
NASA Technical Reports Server (NTRS)
Lobitz, D. W.; Grossman, J. W.; Allen, J. J.; Rice, T. M.; Liang, C.; Davidson, F. M.
1996-01-01
Solar collectors that are focused on a central receiver are designed with a mechanism for defocusing the collector or disabling it by turning it out of the path of the sun's rays. This is required to avoid damaging the receiver during periods of inoperability. In either of these two cases a fail-safe operation is very desirable where during power outages the collector passively goes to its defocused or deactivated state. This paper is principally concerned with focusing and defocusing the collector in a fail-safe manner using shape memory alloy actuators. Shape memory alloys are well suited to this application in that once calibrated the actuators can be operated in an on/off mode using a minimal amount of electric power. Also, in contrast to other smart materials that were investigated for this application, shape memory alloys are capable of providing enough stroke at the appropriate force levels to focus the collector. Design and analysis details presented, along with comparisons to test data taken from an actual prototype, demonstrate that the collector can be repeatedly focused and defocused within accuracies required by typical solar energy systems. In this paper the design, analysis and testing of a solar collector which is deformed into its desired shape by shape memory alloy actuators is presented. Computations indicate collector shapes much closer to spherical and with smaller focal lengths can be achieved by moving the actuators inward to a radius of approximately 6 inches. This would require actuators with considerably more stroke and some alternate SMA actuators are currently under consideration. Whatever SMA actuator is finally chosen for this application, repeatability and fatigue tests will be required to investigate the long term performance of the actuator.
VO2-based radiative thermal transistor with a semi-transparent base
NASA Astrophysics Data System (ADS)
Prod'homme, Hugo; Ordonez-Miranda, Jose; Ezzahri, Younès; Drévillon, Jérémie; Joulain, Karl
2018-05-01
We study a radiative thermal transistor analogous to an electronic one made of a VO2 base placed between two silica semi-infinite plates playing the roles of the transistor collector and emitter. The fact that VO2 exhibits an insulator to metal transition is exploited to modulate and/or amplify heat fluxes between the emitter and the collector, by applying a thermal current on the VO2 base. We extend the work of precedent studies considering the case where the base can be semi-transparent so that heat can be exchanged directly between the collector and the emitter. Both near and far field cases are considered leading to 4 typical regimes resulting from the fact that the emitter-base and base-collector separation distances can be larger or smaller than the thermal wavelength for a VO2 layer opaque or semi-transparent. Thermal currents variations with the base temperatures are calculated and analyzed. It is found that the transistor can operate in an amplification mode as already stated in [1] or in a switching mode as seen in [2]. An optimum configuration for the base thickness and separation distance maximizing the thermal transistor modulation factor is found.
Demonstration and properties of a planar heterojunction bipolar transistor with lateral current flow
NASA Astrophysics Data System (ADS)
Thornton, Robert L.; Mosby, William J.; Chung, Harlan F.
1989-10-01
The authors present fabrication techniques and device performance for a novel transistor structure, the lateral heterojunction bipolar transistor. The lateral heterojunctions are formed by impurity-induced disordering of a GaAs base layer sandwiched between two AlGaAs layers. These transistor structures exhibit current gains of 14 for base widths of 0.74 micron. Transistor action in this device occurs parallel to the surface of the device structure. The active base region of the structure is completely submerged, resulting in a reduction of surface recombination as a mechanism for gain reduction in the device. Impurity-induced disordering is used to widen the bandgap of the alloy in the emitter and collector, resulting in an improvement of the emitter injection efficiency. Since the device is based entirely on a surface diffusion process, the device is completely planar and has no steps involving etching of the III-V alloy material. These advantages lead this device to be considered as a candidate for optoelectronic integration applications. The transistor device functions as a buried heterostructure laser, with a threshold current as low as 6 mA for a 1.4-micron stripe.
Biswas, Sanjib; Drzal, Lawrence T
2010-08-01
The diverse physical and chemical aspects of graphene nanosheets such as particle size surface area and edge chemistry were combined to fabricate a new supercapacitor electrode architecture consisting of a highly aligned network of large-sized nanosheets as a series of current collectors within a multilayer configuration of bulk electrode. Capillary driven self-assembly of monolayers of graphene nanosheets was employed to create a flexible, multilayer, free-standing film of highly hydrophobic nanosheets over large macroscopic areas. This nanoarchitecture exhibits a high-frequency capacitative response and a nearly rectangular cyclic voltammogram at 1000 mV/s scanning rate and possesses a rapid current response, small equivalent series resistance (ESR), and fast ionic diffusion for high-power electrical double-layer capacitor (EDLC) application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaughnessy, D A; Gostic, J M; Moody, K J
2011-11-21
The ability to collect solid debris from the target chamber following a NIF shot has application for both capsule diagnostics, particularly for fuel-ablator mix, and measuring cross sections relevant to the Stockpile Stewardship program and nuclear astrophysics. Simulations have shown that doping the capsule with up to 10{sup 15} atoms of an impurity not otherwise found in the capsule does not affect its performance. The dopant is an element that will undergo nuclear activations during the NIF implosion, forming radioactive species that can be collected and measured after extraction from the target chamber. For diagnostics, deuteron or alpha induced reactionsmore » can be used to probe the fuel-ablator mix. For measuring neutron cross sections, the dopant should be something that is sensitive to the 14 MeV neutrons produced through the fusion of deuterium and tritium. Developing the collector is a challenge due to the extreme environment of the NIF chamber. The collector surface is exposed to a large photon flux from x-rays and unconverted laser light before it is exposed to a debris wind that is formed from vaporized material from the target chamber center. The photons will ablate the collector surface to some extent, possibly impeding the debris from reaching the collector and sticking. In addition, the collector itself must be mechanically strong enough to withstand the large amount of energy it will be exposed to, and it should be something that will be easy to count and chemically process. In order to select the best material for the collector, a variety of different metals have been tested in the NIF chamber. They were exposed to high-energy laser shots in order to evaluate their postshot surface characterization, morphology, degree of melt, and their ability to retain debris from the chamber center. The first set of samples consisted of 1 mm thick pieces of aluminum that had been fielded in the chamber as blast shields protecting the neutron activation diagnostic. Ten of these pieces were fielded at the equator and one was fielded on the pole. The shields were analyzed using a combination of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray fluorescence (XRF), neutron activation analysis (NAA) and chemical leaching followed by mass spectrometry. On each shield, gold debris originating from the gold hohlraum was observed, as well as large quantities of debris that were present in the center of the target chamber at the time of the shot (i.e., stainless steel, indium, copper, etc.) Debris was visible in the SEM as large blobs or splats of material that had encountered the surface of the aluminum and stuck. The aluminum itself had obviously melted and condensed, and some of the large debris splats arrived after the surface had already hardened. Melt depth was determined by cross sectioning the pieces and measuring the melted surface layers via SEM. After the SEM analysis was completed, the pieces were sent for NAA at the USGS reactor and were analyzed by U. Greife at the Colorado School of Mines. The NAA showed that the majority of gold mass present on the shields was not in the form of large blobs and splats, but was present as small particulates that had most likely formed as condensed vapor. Further analysis showed that the gold was entrained in the melted aluminum surface layers and did not extend down into the bulk of the aluminum. Once the gold mass was accounted for from the NAA, it was determined that the aluminum fielded at the equator was collecting a fraction of the total gold hohlraum mass equivalent to 120% {+-} 10% of the solid angle subtended by the shield. The attached presentation has more information on the results of the aluminum blast shield analysis. In addition to the information given in the presentation, the surfaces of the shields have been chemically leached and submitted for mass spectrometric analysis. The results from that analysis are expected to arrive after the due date of this report and will be written up at a later time. Based on the results of the aluminum blast shield analysis, it was determined that additional materials needed to be tested as potential collectors in the NIF chamber. 1-2 mm thick pieces of tantalum, niobium, vanadium, silver, titanium, molybdenum, and graphite foil were fielded in the Wedge Range Filter (WRF) mount at a distance of 50 cm from target chamber center during the shock timing campaign. The pieces were subsequently removed and analyzed in a similar fashion to the aluminum shields. As of this writing, the pieces are still under analysis, but initial results indicate that gold debris was collected on the various materials. Currently, the pieces are being cross-sectioned so that the melt depths of each material can be compared. In addition, NAA and/or mass spectrometry will be performed in order to determine the total gold mass that was collected on each surface.« less
An introduction to selective surfaces for solar applications
NASA Astrophysics Data System (ADS)
Neal, W. E. J.
1983-12-01
The desired characteristics of spectrally selective surfaces for solar thermal applications include a high-level absorption of radiation in the solar region of the spectrum (from 0.3 to 2.5 microns) combined with a low value of emission in the IR region (greater than two microns). There are three energy collector temperature ranges for specific solar applications, taking into account a range from 25 to 40 C for swimming pools, a range from 40 to 150 C for space and water heating and air conditioning, and temperatures above 150 C for the production of steam and the generation of electricity. Flat plate and low concentrating collectors with suitable selective surfaces can be employed in connection with the first two temperature ranges. Various types of selective surfaces are presented in a table, giving attention to the absorptive properties for solar radiation and the emissive properties in the IR region.
Zhang, Zailei; Wang, Zhong Lin; Lu, Xianmao
2018-04-24
Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO 2 , Si 3 N 4 , Ag, Ti, Ta, SnIn 2 O 5 , Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al 2 O 3 , HfO 2 , and TiO 2 ) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H 2 -reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm 2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO 4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.
Situ soil sampling probe system with heated transfer line
Robbat, Jr., Albert
2002-01-01
The present invention is directed both to an improved in situ penetrometer probe and to a heated, flexible transfer line. The line and probe may be implemented together in a penetrometer system in which the transfer line is used to connect the probe to a collector/analyzer at the surface. The probe comprises a heater that controls a temperature of a geologic medium surrounding the probe. At least one carrier gas port and vapor collection port are located on an external side wall of the probe. The carrier gas port provides a carrier gas into the geologic medium, and the collection port captures vapors from the geologic medium for analysis. In the transfer line, a flexible collection line that conveys a collected fluid, i.e., vapor, sample to a collector/analyzer. A flexible carrier gas line conveys a carrier gas to facilitate the collection of the sample. A system heating the collection line is also provided. Preferably the collection line is electrically conductive so that an electrical power source can generate a current through it so that the internal resistance generates heat.
Flow through PCR module of BioBriefcase
NASA Astrophysics Data System (ADS)
Arroyo, E.; Wheeler, E. K.; Shediac, R.; Hindson, B.; Nasarabadi, S.; Vrankovich, G.; Bell, P.; Bailey, C.; Sheppod, T.; Christian, A. T.
2005-11-01
The BioBriefcase is an integrated briefcase-sized aerosol collection and analysis system for autonomous monitoring of the environment, which is currently being jointly developed by Lawrence Livermore and Sandia National Laboratories. This poster presents results from the polymerase chain reaction (PCR) module of the system. The DNA must be purified after exiting the aerosol collector to prevent inhibition of the enzymatic reaction. Traditional solid-phase extraction results in a large loss of sample. In this flow-through system, we perform sample purification, concentration and amplification in one reactor, which minimizes the loss of material. The sample from the aerosol collector is mixed with a denaturation solution prior to flowing through a capillary packed with silica beads. The DNA adheres to the silica beads allowing the environmental contaminants to be flushed to waste while effectively concentrating the DNA on the silica matrix. The adhered DNA is amplified while on the surface of the silica beads, resulting in a lower limit of detection than an equivalent eluted sample. Thus, this system is beneficial since more DNA is available for amplification, less reagents are utilized, and contamination risks are reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jing; Peter Grünberg Institute; Zhang, Yi
2014-05-15
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mAmore » to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.« less
NASA Astrophysics Data System (ADS)
Zhao, Jing; Zhang, Yi; Lee, Yong-Ho; Krause, Hans-Joachim
2014-05-01
We investigated and optimized the low-frequency noise characteristics of a preamplifier used for readout of direct current superconducting quantum interference devices (SQUIDs). When the SQUID output was detected directly using a room-temperature low-voltage-noise preamplifier, the low-frequency noise of a SQUID system was found to be dominated by the input current noise of the preamplifiers in case of a large dynamic resistance of the SQUID. To reduce the current noise of the preamplifier in the low-frequency range, we investigated the dependence of total preamplifier noise on the collector current and source resistance. When the collector current was decreased from 8.4 mA to 3 mA in the preamplifier made of 3 parallel SSM2220 transistor pairs, the low-frequency total voltage noise of the preamplifier (at 0.1 Hz) decreased by about 3 times for a source resistance of 30 Ω whereas the white noise level remained nearly unchanged. Since the relative contribution of preamplifier's input voltage and current noise is different depending on the dynamic resistance or flux-to-voltage transfer of the SQUID, the results showed that the total noise of a SQUID system at low-frequency range can be improved significantly by optimizing the preamplifier circuit parameters, mainly the collector current in case of low-noise bipolar transistor pairs.
NASA Astrophysics Data System (ADS)
Ibrahim, Khalil; Taha, Hatem; Mahbubur Rahman, M.; Kabir, Humayun; Jiang, Zhong-Tao
2018-03-01
Since solar-thermal collectors are considered to be the most direct way of converting solar energy into usable forms, in the last few years growing attention has been paid to the development of transition metal nitride and metal oxynitride based thin film selective surfaces for solar-thermal collectors, in order to harvest more solar energy. A solar-thermal energy system, generally, shows very high solar absorption of incident solar radiation from the solar-thermal collectors in the visible range (0.3 to 2.5 μm) and extremely low thermal losses through emission (or high reflection) in the infrared region (≥2.5 μm). The efficiency of a solar-thermal energy conversion system can be improved by the use of solar selective surfaces consisting of novel metallic nanoparticles embedded in metal nitride/oxynitride systems. In order to enhance the effectiveness of solar-thermal devices, solar selective surfaces with high thermal stability are a prerequisite. Over the years, substantial efforts have been made in the field of solar selective surfaces to attain higher solar absorptance and lower thermal emittance in high temperature (above 400 °C) applications. In this article, we review the present state-of-the-art transition metal nitride and/or oxynitride based vacuum sputtered nanostructured thin film coatings, with respect to their optical and solar selective surface applications. We have also summarized the solar selectivity data from recently published investigations, including discussion on some potential applications for these materials.
NASA Astrophysics Data System (ADS)
Liu, Wengang; Liu, Wenbao; Dai, Shujuan; Wang, Benying
2018-06-01
In order to clarify the effect of polar group modification on flotation performance of amine collector, flotation properties of quartz and hematite using bis(2-hydroxy-3-chloropropyl) dodecylamine (N23) as a collector were investigated. And the adsorption mechanism of N23 on quartz surface was established by zeta potential measurements, SEM/EDS measurements, and molecular structure analysis. Single mineral flotation results indicated that N23 showed stronger collecting ability on quartz and hematite than DDA-CH3COOH. However, starch could depress the flotation of hematite. Flotation recovery of 98.10% for quartz could be achieved, when N23 concentration was 43.33 mg/L and starch concentration was 16.67 mg/L at natural slurry pH. Separation of artificially mixed minerals of hematite and quartz was achieved effectively using N23 as the collector. The optimized separation result with 66.29% iron grade and 90.06% iron recovery in concentrate was obtained when slurry pH was 7.34 with 43.33 mg/L N23 and 23.33 mg/L starch. The interaction energies of N23 with mineral surface also showed well consistency with flotation results. SEM/EDS analyses and zeta potential measurements revealed that N23 could absorb on quartz surface in the forms of strong electrostatic and hydrogen bonding interaction. Compared with DDA, N23 had a higher HLB value and better water-solubility, which resulted in better dispersion in water and stronger adsorption on mineral surface.
Cadmium telluride photovoltaic radiation detector
Agouridis, D.C.; Fox, R.J.
A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.
Cadmium telluride photovoltaic radiation detector
Agouridis, Dimitrios C.; Fox, Richard J.
1981-01-01
A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.
Computer acquired performance data from a chemically vapor-deposited-rhenium, niobium planar diode
NASA Technical Reports Server (NTRS)
Manista, E. J.; Morris, J. F.; Smith, A. L.; Lancashire, R. B.
1973-01-01
Performance data from a chemically vapor-deposited-rhenium, niobium thermionic converter are presented. The planar converter has a guard-ringed collector and a nominal fixed spacing of 0.25 mm (10 mils). The data were obtained by using a computerized acquisition system and are available on request to one of the authors on microfiche as individual and composite parametric current, voltage curves. The parameters are the temperatures of the emitter T sub E collector T sub C, and cesium reservoir T sub R. The composite plots have constant T sub E and varying T sub C or T sub R, or both. Current, voltage envelopes having constant T sub E with and without fixed T sub C appear in the present report. The diode was tested at increments between 1600 and 2000 K for the emitter Hohlraum, 800 to 1100 K for the collector, and 540 and 650 K for the reservoir. A total of 312 current, voltage curves were obtained in the present performance evaluation. Current, voltage envelopes from three rhenium emitter converters evaluated in the present program are also given. The data are compared at commom emitter Hohlraum temperatures.
Comparative investigation of InGaP/GaAs/GaAsBi and InGaP/GaAs heterojunction bipolar transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yi-Chen; Tsai, Jung-Hui, E-mail: jhtsai@nknucc.nknu.edu.tw; Chiang, Te-Kuang
2015-10-15
In this article the characteristics of In{sub 0.49}Ga{sub 0.51}P/GaAs/GaAs{sub 0.975}Bi{sub 0.025} and In{sub 0.49}Ga{sub 0.51}P/GaAs heterojunction bipolar transistor (HBTs) are demonstrated and compared by two-dimensional simulated analysis. As compared to the traditional InGaP/GaAs HBT, the studied InGaP/GaAs/GaAsBi HBT exhibits a higher collector current, a lower base-emitter (B–E) turn-on voltage, and a relatively lower collector-emitter offset voltage of only 7 mV. Because the more electrons stored in the base is further increased in the InGaP/GaAs/GaAsBi HBT, it introduces the collector current to increase and the B–E turn-on voltage to decrease for low input power applications. However, the current gain is slightlymore » smaller than the traditional InGaP/GaAs HBT attributed to the increase of base current for the minority carriers stored in the GaAsBi base.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody
2016-06-15
Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10{sup −3} S cm{sup −1}. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providingmore » flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g{sup −1} for standard metallic current collectors and (ii) 99.5 mAh g{sup −1} for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.« less
NASA Astrophysics Data System (ADS)
Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal
2016-06-01
Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.
Terrestrial photovoltaic collector technology trends
NASA Technical Reports Server (NTRS)
Shimada, K.; Costogue, E.
1984-01-01
Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.
Quevedo, Ivan R; Olsson, Adam L J; Tufenkji, Nathalie
2013-03-05
A clear understanding of the factors controlling the deposition behavior of engineered nanoparticles (ENPs), such as quantum dots (QDs), is necessary for predicting their transport and fate in natural subsurface environments and in water filtration processes. A quartz crystal microbalance with dissipation monitoring (QCM-D) was used to study the effect of particle surface coatings and water chemistry on the deposition of commercial QDs onto Al2O3. Two carboxylated QDs (CdSe and CdTe) with different surface coatings were compared with two model nanoparticles: sulfate-functionalized (sPL) and carboxyl-modified (cPL) polystyrene latex. Deposition rates were assessed over a range of ionic strengths (IS) in simple electrolyte (KCl) and in electrolyte supplemented with two organic molecules found in natural waters; namely, humic acid and rhamnolipid. The Al2O3 collector used here is selected to be representative of oxide patches found on the surface of aquifer or filter grains. Deposition studies showed that ENP deposition rates on bare Al2O3 generally decreased with increasing salt concentration, with the exception of the polyacrylic-acid (PAA) coated CdTe QD which exhibited unique deposition behavior due to changes in the conformation of the PAA coating. QD deposition rates on bare Al2O3 were approximately 1 order of magnitude lower than those of the polystyrene latex nanoparticles, likely as a result of steric stabilization imparted by the QD surface coatings. Adsorption of humic acid or rhamnolipid on the Al2O3 surface resulted in charge reversal of the collector and subsequent reduction in the deposition rates of all ENPs. Moreover, the ratio of the two QCM-D output parameters, frequency and dissipation, revealed key structural information of the ENP-collector interface; namely, on bare Al2O3, the latex particles were rigidly attached as compared to the more loosely attached QDs. This study emphasizes the importance of considering the nature of ENP coatings as well as organic molecule adsorption onto particle and collector surfaces to avoid underestimating ENP mobility in natural and engineered aquatic environments.
Understanding heterogeneity in Genesis diamond-like carbon film using SIMS analysis of implants
Jurewicz, Amy J. G.; Burnett, Don S.; Rieck, Karen D.; ...
2017-07-05
An amorphous diamond-like carbon film deposited on silicon made at Sandia National Laboratory by pulsed laser deposition was one of several solar wind (SW) collectors used by the Genesis Mission (NASA Discovery Class Mission #5). The film was ~1 μm thick, amorphous, anhydrous, and had a high ratio of sp 3–sp 2 bonds (>50%). For 27 months of exposure to space at the first We passively irradiated lagrange point, the collectors, with SW (H fluence ~2 × 10 16 ions cm -2; He fluence ~8 × 10 14 ions cm -2). The radiation damage caused by the implanted H ionsmore » peaked at 12–14 nm below the surface of the film and that of He about 20–23 nm. To enable quantitative measurement of the SW fluences by secondary ion mass spectroscopy, minor isotopes of Mg ( 25Mg and 26Mg) were commercially implanted into flight-spare collectors at 75 keV and a fluence of 1 × 10 14 ions cm -2. Furthermore, the shapes of analytical depth profiles, the rate at which the profiles were sputtered by a given beam current, and the intensity of ion yields are used to characterize the structure of the material in small areas (~200 × 200 ± 50 μm). Data were consistent with the hypothesis that minor structural changes in the film were induced by SW exposure.« less
Understanding heterogeneity in Genesis diamond-like carbon film using SIMS analysis of implants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jurewicz, Amy J. G.; Burnett, Don S.; Rieck, Karen D.
An amorphous diamond-like carbon film deposited on silicon made at Sandia National Laboratory by pulsed laser deposition was one of several solar wind (SW) collectors used by the Genesis Mission (NASA Discovery Class Mission #5). The film was ~1 μm thick, amorphous, anhydrous, and had a high ratio of sp 3–sp 2 bonds (>50%). For 27 months of exposure to space at the first We passively irradiated lagrange point, the collectors, with SW (H fluence ~2 × 10 16 ions cm -2; He fluence ~8 × 10 14 ions cm -2). The radiation damage caused by the implanted H ionsmore » peaked at 12–14 nm below the surface of the film and that of He about 20–23 nm. To enable quantitative measurement of the SW fluences by secondary ion mass spectroscopy, minor isotopes of Mg ( 25Mg and 26Mg) were commercially implanted into flight-spare collectors at 75 keV and a fluence of 1 × 10 14 ions cm -2. Furthermore, the shapes of analytical depth profiles, the rate at which the profiles were sputtered by a given beam current, and the intensity of ion yields are used to characterize the structure of the material in small areas (~200 × 200 ± 50 μm). Data were consistent with the hypothesis that minor structural changes in the film were induced by SW exposure.« less
NASA Technical Reports Server (NTRS)
Rodriquez, Melissa C.; Calaway, M. C.; McNamara, K. M.; Hittle, J. D.
2009-01-01
In addition to passive solar wind collector surfaces, the Genesis Discovery Mission science canister had on board an electrostatic concave mirror for concentrating the solar wind ions, known as the concentrator . The 30-mm-radius collector focal point (the target) was comprised of 4 quadrants: two of single crystal SiC, one of polycrystalline 13C diamond and one of diamond-like-carbon (DLC) on a silicon substrate. [DLC-on-silicon is also sometimes referenced as Diamond-on-silicon, DOS.] Three of target quadrants survived the hard landing intact, but the DLC-on-silicon quadrant fractured into numerous pieces (Fig. 1). This abstract reports the status of identifying the DLC target fragments and reconstructing their original orientation.
Method of manufacturing fibrous hemostatic bandages
Larsen, Gustavo; Spretz, Ruben; Velarde-Ortiz, Raffet
2012-09-04
A method of manufacturing a sturdy and pliable fibrous hemostatic dressing by making fibers that maximally expose surface area per unit weight of active ingredients as a means for aiding in the clot forming process and as a means of minimizing waste of active ingredients. The method uses a rotating object to spin off a liquid biocompatible fiber precursor, which is added at its center. Fibers formed then deposit on a collector located at a distance from the rotating object creating a fiber layer on the collector. An electrical potential difference is maintained between the rotating disk and the collector. Then, a liquid procoagulation species is introduced at the center of the rotating disk such that it spins off the rotating disk and coats the fibers.
Wide acceptance angle, high concentration ratio, optical collector
NASA Technical Reports Server (NTRS)
Kruer, Mark Arthur (Inventor)
1990-01-01
The invention is directed to an optical collector requiring a wide acceptance angle, and a high concentration ratio. The invention is particularly adapted for use in solar collectors of cassegrain design. The optical collector system includes a parabolic circular concave primary mirror and a hyperbolic circular convex secondary mirror. The primary mirror includes a circular hole located at its center wherein a solar collector is located. The mirrored surface of the secondary mirror has three distinct zones: a center circle, an on-axis annulus, and an off-axis section. The parabolic shape of the primary mirror is chosen so that the primary mirror reflects light entering the system on-axis onto the on-axis annulus. A substantial amount of light entering the system off-axis is reflected by the primary mirror onto either the off-axis section or onto the center circle. Subsequently, the off-axis sections reflect the off-axis light toward the solar collector. Thus, off-axis light is captured which would otherwise be lost to the system. The novelty of the system appears to lie in the configuration of the primary mirror which focuses off-axis light onto an annular portion of the secondary mirror to enable capture thereof. This feature results in wide acceptance angle and a high concentration ratio, and also compensates for the effects of non-specular reflection, and enables a cassegrain configuration to be used where such characteristics are required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J.M.
The feasibility of building a freeze-tolerant absorber for a solar water heater out of carbon-black-reinforced crosslinked polyethylene has been explored. Ten-foot tube specimens made from various crosslinked polyethylene formulations were filled with water at various pressures, and then placed into a deep freeze, then thawed and frozen again for 100 freeze-thaw cycles, or until the tube specimen failed. Tube diameters were measured before and after each freezing to determine how much distention the freezing caused, and how much permanent distention was caused by the strains of repeated freezings. Five tube specimens containing water at as high as 80 psi survivedmore » 100 freeze-thaw cycles. Also, a flat plate collector was fabricated using as absorber surface a single 400 ft tube of carbon-black-reinforced crosslinked polyethylene in the form of a flat spiral coil and this collector was tested for performance at the Los Alamos Scientific Laboratory. The performance test indicates that the absorbancy of such a flat spiral coil to solar radiation is similar to typical black surfaces used on solar absorbers. Thus, it does seem very feasible that domestic water can be directly heated in a solar collector having an absorber made from crosslinked polyethylene, and that this collector can safely withstand at least 100 freeze-thaw cycles.« less
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
NASA Astrophysics Data System (ADS)
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; Bingham, Philip R.; Allu, Srikanth; Turner, John A.
2017-10-01
Large, areal, brittle fracture of copper current collector foils has been observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture is hidden and non-catastrophic to a degree because the graphite layers deform plastically, and hold the materials together so that the cracks in the foils cannot be seen under optical and electron microscopy. The cracking of copper foils could not be immediately confirmed when the cell is opened for post-mortem examination. However, 3D XCT on the indented cell reveals ;mud cracks; within the copper layer and an X-ray radiograph on a single foil of the Cu anode shows clearly that the copper foil has broken into multiple pieces. This failure mode of anodes in Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. The fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.
Owens, C L; Nash, G R; Hadler, K; Fitzpatrick, R S; Anderson, C G; Wall, F
2018-06-01
Rare earth elements (REE) are critical to a wide range of technologies ranging from mobile phones to wind turbines. Processing and extraction of REE minerals from ore bodies is, however, both challenging and relatively poorly understood, as the majority of deposits contain only limited enrichment of REEs. An improved understanding of the surface properties of the minerals is important in informing and optimising their processing, in particular for separation by froth flotation. The measurement of zeta potential can be used to extract information regarding the electrical double layer, and hence surface properties of these minerals. There are over 34 REE fluorcarbonate minerals currently identified, however bastnäsite, synchysite and parisite are of most economic importance. Bastnäsite-(Ce), the most common REE fluorcarbonate, supplies over 50% of the world's REE. Previous studies of bastnäsite have showed a wide range of surface behaviour, with the iso-electric point (IEP), being measured between pH values of 4.6 and 9.3. In contrast, no values of IEP have been reported for parisite or synchysite. In this work, we review previous studies of the zeta potentials of bastnäsite to investigate the effects of different methodologies and sample preparation. In addition, measurements of zeta potentials of parisite under water, collector and supernatant conditions were conducted, the first to be reported. These results showed an iso-electric point for parisite of 5.6 under water, with a shift to a more negative zeta potential with both collector (hydroxamic and fatty acids) and supernatant conditions. The IEP with collectors and supernatant was <3.5. As zeta potential measurements in the presence of reagents and supernatants are the most rigorous way of determining the efficiency of a flotation reagent, the agreement between parisite zeta potentials obtained here and previous work on bastnäsite suggests that parisite may be processed using similar reagent schemes to bastnäsite. This is important for future processing of REE deposits, comprising of more complex REE mineralogy. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Analysis of Molecular Contamination on Genesis Collectors Through Spectroscopic Ellipsometry
NASA Technical Reports Server (NTRS)
McNamara, K. M.; Stansbery, Eileen K.
2005-01-01
Before the spacecraft returned to Earth in September, the Genesis mission had a preliminary assessment plan in place for the purpose of providing information on the condition and availability of collector materials to the science community as a basis for allocation requests. One important component of that plan was the evaluation of collector surfaces for molecular contamination. Sources of molecular contamination might be the on-orbit outgassing of spacecraft and science canister components, the condensation of thruster by-products during spacecraft maneuvers, or the condensation of volatile species associated with reentry. Although the non-nominal return of the Genesis spacecraft introduced particulate contamination to the collectors, such as dust and heatshield carbon-carbon, it is unlikely to have caused any molecular deposition. The contingency team's quick action in returning the damaged payload the UTTR cleanroom by 6 PM the evening of recovery help to ensure that exposure to weather conditions and the environment were kept to a minimum.
'Mister Badger' Pushing Mars Rock
NASA Technical Reports Server (NTRS)
1976-01-01
Viking's soil sampler collector arm successfully pushed a rock on the surface of Mars during the afternoon of Friday, October 8. The irregular-shaped rock was pushed several inches by the Lander's collector arm, which displaced the rock to the left of its original position, leaving it cocked slightly upward. Photographs and other information verified the successful rock push. Photo at left shows the soil sampler's collector head pushing against the rock, named 'Mister Badger' by flight controllers. Photo at right shows the displaced rock and the depression whence it came. Part of the soil displacement was caused by the collector s backhoe. A soil sample will be taken from the site Monday night, October 11. It will then be delivered to Viking s organic chemistry instrument for a series of analyses during the next few weeks. The sample is being sought from beneath a rock because scientists believe that, if there are life forms on Mars, they may seek rocks as shelter from the Sun s intense ultraviolet radiation.
Using Image Pro Plus Software to Develop Particle Mapping on Genesis Solar Wind Collector Surfaces
NASA Technical Reports Server (NTRS)
Rodriquez, Melissa C.; Allton, J. H.; Burkett, P. J.
2012-01-01
The continued success of the Genesis mission science team in analyzing solar wind collector array samples is partially based on close collaboration of the JSC curation team with science team members who develop cleaning techniques and those who assess elemental cleanliness at the levels of detection. The goal of this collaboration is to develop a reservoir of solar wind collectors of known cleanliness to be available to investigators. The heart and driving force behind this effort is Genesis mission PI Don Burnett. While JSC contributes characterization, safe clean storage, and benign collector cleaning with ultrapure water (UPW) and UV ozone, Burnett has coordinated more exotic and rigorous cleaning which is contributed by science team members. He also coordinates cleanliness assessment requiring expertise and instruments not available in curation, such as XPS, TRXRF [1,2] and synchrotron TRXRF. JSC participates by optically documenting the particle distributions as cleaning steps progress. Thus, optical document supplements SEM imaging and analysis, and elemental assessment by TRXRF.
Wei, Chang; LeBlanc, Jr., Oliver Harris; Jerabek, Elihu Calvin
2001-07-03
The invention relates to an ultracapacitor and to a method of making an ultracapacitor. The ultracapacitor of the invention includes two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. The electrolyte includes a cyclic carbonate solvent, a cyclic ester solvent and an electrolyte salt. The invention also relates to a stack of ultracapacitor cells.
Tang, Chun-hua; Yin, Xuesong; Gong, Hao
2013-11-13
Pseudocapacitors based on fast surface Faradaic reactions can achieve high energy densities together with high power densities. Usually, researchers develop a thin layer of active materials to increase the energy density by enhancing the surface area; meanwhile, this sacrifices the mass loading. In this work, we developed a novel 3D core-shell Co3O4@Ni(OH)2 electrode that can provide high energy density with very high mass loading. Core-shell porous nanowires (Co3O4@Ni(OH)2) were directly grown on a Ni current collector as an integrated electrode/collector for the supercapacitor anode. This Co3O4@Ni(OH)2 core-shell nanoarchitectured electrode exhibits an ultrahigh areal capacitance of 15.83 F cm(-2). The asymmetric supercapacitor prototypes, assembled using Co3O4@Ni(OH)2 as the anode, reduced graphene oxide (RGO) or active carbon (AC) as the cathode, and 6 M aqueous KOH as the electrolyte, exhibit very high energy densities falling into the energy-density range of Li-ion batteries. Because of the large mass loading and high energy density, the prototypes can drive a minifan or light a bulb even though the size is very small. These results indicate that our asymmetric supercapacitors have outstanding potential in commercial applications. Systematic study and scientific understanding were carried out.
Performance optimization of evacuated tube collector for solar cooling of a house in hot climate
NASA Astrophysics Data System (ADS)
Ghoneim, Adel A.
2018-02-01
Evacuating the space connecting cover and absorber significantly improves evacuated tube collector (ETC) performance. So, ETCs are progressively utilised all over the world. The main goal of current study is to explore ETC thermal efficiency in hot and severe climate like Kuwait weather conditions. A collector test facility was installed to record ETC thermal performance for one-year period. An extensively developed model for ETCs is presented, employing complete optical and thermal assessment. This study analyses separately optics and heat transfer in the evacuated tubes, allowing the analysis to be extended to different configurations. The predictions obtained are in agreement with experimental. The optimum collector parameters (collector tube length and diameter, mass flow rate and collector tilt angle) are determined. The present results indicate that the optimum tube length is 1.5 m, as at this length a significant improvement is achieved in efficiency for different tube diameters studied. Finally, the heat generated from ETCs is used for solar cooling of a house. Results of the simulation of cooling system indicate that an ETC of area 54 m2, tilt angle of 25° and storage tank volume of 2.1 m3 provides 80% of air-conditioning demand in a house located in Kuwait.
The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems.
Hancer, M.; Celik, M. S.; Miller, J. D.
2001-03-01
Flotation of soluble salts with dodecyl amine hydrochloride (DAH) and sodium dodecyl sulfate (SDS) collectors has demonstrated that the interfacial water structure and hydration states of soluble salt surfaces together with the precipitation tendency of the corresponding collector salts are of considerable importance in explaining their flotation behavior. In particular, the high concentration of ions in these soluble salt brines and their hydration appear to modify the bulk and interfacial structure of water as revealed by contact angle measurements and this effect is shown to be an important feature in the flotation chemistry of soluble salt minerals including alkali halide and alkali oxyanion salts. Depending on characteristic chemical features (salt type), the salt can serve either as a structure maker, in which intermolecular hydrogen bonding between water molecules is facilitated, or as a structure breaker, in which intermolecular hydrogen bonding between water molecules is disrupted. For structure making salts the brine completely wets the salt surface and no contact angle can be measured. For structure breaking salts the brine does not completely wet the salt surface and a finite contact angle is measured. In this regard it has been found that soluble salt flotation either with the cationic DAH or anionic SDS collector is possible only if the salt is a structure breaker. Copyright 2001 Academic Press.
Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazumder, Malay K.; Horenstein, Mark N.; Joglekar, Nitin R.
The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed thatmore » the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m 2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.« less
An optimized top contact design for solar cell concentrators
NASA Technical Reports Server (NTRS)
Desalvo, Gregory C.; Barnett, Allen M.
1985-01-01
A new grid optimization scheme is developed for point focus solar cell concentrators which employs a separated grid and busbar concept. Ideally, grid lines act as the primary current collectors and receive all of the current from the semiconductor region. Busbars are the secondary collectors which pick up current from the grids and carry it out of the active region of the solar cell. This separation of functions leads to a multithickness metallization design, where the busbars are made larger in cross section than the grids. This enables the busbars to carry more current per unit area of shading, which is advantageous under high solar concentration where large current densities are generated. Optimized grid patterns using this multilayer concept can provide a 1.6 to 20 percent increase in output power efficiency over optimized single thickness grids.
Methanol sensor operated in a passive mode
Ren, Xiaoming; Gottesfeld, Shimshon
2002-01-01
A sensor outputs a signal related to a concentration of methanol in an aqueous solution adjacent the sensor. A membrane electrode assembly (MEA) is included with an anode side and a cathode side. An anode current collector supports the anode side of the MEA and has a flow channel therethrough for flowing a stream of the aqueous solution and forms a physical barrier to control access of the methanol to the anode side of the MEA. A cathode current collector supports the cathode side of the MEA and is configured for air access to the cathode side of the MEA. A current sensor is connected to measure the current in a short circuit across the sensor electrodes to provide an output signal functionally related to the concentration of methanol in the aqueous solution.
Trauscht, Jacob; Pazmino, Eddy; Johnson, William P
2015-09-01
Despite several decades of research there currently exists no mechanistic theory to predict colloid attachment in porous media under environmental conditions where colloid-collector repulsion exists (unfavorable conditions for attachment). It has long been inferred that nano- to microscale surface heterogeneity (herein called discrete heterogeneity) drives colloid attachment under unfavorable conditions. Incorporating discrete heterogeneity into colloid-collector interaction calculations in particle trajectory simulations predicts colloid attachment under unfavorable conditions. As yet, discrete heterogeneity cannot be independently measured by spectroscopic or other approaches in ways directly relevant to colloid-surface interaction. This, combined with the fact that a given discrete heterogeneity representation will interact differently with differently sized colloids as well as different ionic strengths for a given sized colloid, suggests a strategy to back out representative discrete heterogeneity by a comparison of simulations to experiments performed across a range of colloid size, solution IS, and fluid velocity. This has recently been performed for interaction of carboxylate-modified polystyrene latex (CML) microsphere attachment to soda lime glass at pH 6.7 with NaCl electrolyte. However, extension to other surfaces, pH values, and electrolytes is needed. For this reason, the attachment of CML (0.25, 1.1, and 2.0 μm diameters) from aqueous suspension onto a variety of unfavorable mineral surfaces (soda lime glass, muscovite, and albite) was examined for pH values of 6.7 and 8.0), fluid velocities (1.71 × 10(-3) and 5.94 × 10(-3) m s(-1)), IS (6.0 and 20 mM), and electrolytes (NaCl, CaSO4, and multivalent mixtures). The resulting representative heterogeneities (heterodomain size and surface coverage, where heterodomain refers to nano- to microscale attractive domains) yielded colloid attachment predictions that were compared to predictions from existing applicable semiempirical expressions in order to examine the strengths and weaknesses of the discrete heterogeneity approach and opportunities for improvement.
NASA Astrophysics Data System (ADS)
Ryu, Ilhwan; Kim, Green; Park, Dasom; Yim, Sanggyu
2015-11-01
Metal oxide nanoparticles (NPs) provide a large surface area and short diffusion pathways for ions in supercapacitor electrode materials. However, binders and conductive additives used for tight connections with current collectors and improved conductivity hamper these benefits. In this work, we successfully fix manganese oxide (Mn3O4) NPs onto ITO current collectors by a simple 1,2-ethanedithiol (EDT) treatment without using any binders or conductive additives. As compared to the electrode fabricated using binder-mixed Mn3O4 NPs, the EDT-treated electrode shows significantly improved specific capacitance of 403 F g-1 at a scan rate of 10 mV s-1. The EDT-treatment is more effective at higher scan rates. The specific capacitances, 278 F g-1 at 100 mV s-1 and 202 F g-1 at 200 mV s-1, are larger than those reported so far at scan rates ≥100 mV s-1. The deconvolution of capacitive elements indicates that these improved capacitive properties are attributed to large insertion elements of the binder-free NP electrodes. Furthermore, this additive-free electrode is highly transparent and can be easily fabricated by simple spray-coating on various substrates including polymer films, implying that this new method is promising for the fabrication of large-area, transparent and flexible electrodes for next-generation supercapacitors.
NASA Astrophysics Data System (ADS)
Mahmoud, Lama; Singh Lalia, Boor; Hashaikeh, Raed
2016-12-01
Lithium iron phosphate (LiFePO4) battery cathode was fabricated without using any metallic current collector and polymeric binder. Carbon nanostructures (CNS) were used as microbinders for LiFePO4 particles and at the same time as a 3D current collector. A facile and cost effective method of fabricating composite cathodes of CNS and LiFePO4 was developed. Thick electrodes with high loading of active material (20-25 mg cm-2) were obtained that are almost 2-3 folds higher than commercial electrodes. SEM images confirm that the 3D CNS conductive network encapsulated the LiFePO4 particles homogenously facilitating the charge transfer at the electrode-CNS interface. The composition, scan rate and porosity of the paper-like cathode were sequentially varied and their influence was systematically monitored by means of linear sweep cyclic voltammetry and AC electrochemical impedance spectroscopy. Addition of CNS improved the electrode’s bulk electronic conductivity, mechanical integrity, surface area and double layer capacitance, yet compromised the charge transfer resistance at the electrode-electrolyte interface. Based on a range of the tested binder-free electrodes, this study proposes that electrodes with 20 wt% CNS having 49 ± 2.5% porosity had realized best improvements of two folds and four folds in the electronic conductivity and diffusion coefficient, respectively.
Shkrob, Ilya A.; Pupek, Krzysztof Z.; Gilbert, James A.; ...
2016-12-01
Lithium hexafluorophosphate (LiPF 6) is ubiquitous in commercial lithium-ion batteries, but it is hydrolytically unstable and corrosive on electrode surfaces. Using a more stable salt would confer multiple benefits for high-voltage operation, but many such electrolyte systems facilitate anodic dissolution and pitting corrosion of aluminum current collectors that negate their advantages. Lithium 2-trifluoromethyl-4,5-dicyanoimidazolide (LiTDI) is a new salt that was designed specifically for high-voltage cells. In this study we demonstrate that in carbonate electrolytes, LiTDI prevents anodic dissolution of Al current collectors, which places it into a select group of corrosion inhibitors. However, we also demonstrate that LiTDI becomes reducedmore » on lithiated graphite, undergoing sequential defluorination and yielding a thick and resistive solid-electrolyte interphase (SEI), which increases impedance and lowers electrode capacity. The mechanistic causes for this behavior are examined using computational chemistry methods in the light of recent spectroscopic studies. Here, we demonstrate that LiTDI reduction can be prevented by certain electrolyte additives, which include fluoroethylene carbonate, vinylene carbonate and lithium bis(oxalato)borate. This beneficial action is due to preferential reduction of these additives over LiTDI at a higher potential vs. Li/Li +, so the resulting SEI can prevent the direct reduction of LiTDI at lower potentials on the graphite electrode.« less
Research on Radiation Effects in Support of the Defense Nuclear Agency
1993-01-01
relationships between pertinent parameters,------------ n. which can guide device design and optimization, aid the inter - CColleclor pretation of results from...Handbook for Stopping Cross Sections for of the parasiti ( npn-structure is the most effective measure to Energetic Ions in all Elements, Vol. 5, Pergamon... inter - actions between collector current, electric field distribution, 35 2262 and avalanche multiplication in the collector depletion region N are
Collector modulation in high-voltage bipolar transistor in the saturation mode: Analytical approach
NASA Astrophysics Data System (ADS)
Dmitriev, A. P.; Gert, A. V.; Levinshtein, M. E.; Yuferev, V. S.
2018-04-01
A simple analytical model is developed, capable of replacing the numerical solution of a system of nonlinear partial differential equations by solving a simple algebraic equation when analyzing the collector resistance modulation of a bipolar transistor in the saturation mode. In this approach, the leakage of the base current into the emitter and the recombination of non-equilibrium carriers in the base are taken into account. The data obtained are in good agreement with the results of numerical calculations and make it possible to describe both the motion of the front of the minority carriers and the steady state distribution of minority carriers across the collector in the saturation mode.
Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor
LeVert, Francis E.; Cox, Samson A.
1978-01-01
A self-powered gamma monitor for placement near the core of a nuclear reactor comprises a lead prism surrounded by a coaxial thin nickel sheet, the combination forming a collector. A coaxial polyethylene electron barrier encloses the collector and is separated from the nickel sheet by a vacuum region. The electron barrier is enclosed by a coaxial stainless steel emitter which, in turn, is enclosed within a lead casing. When the detector is placed in a flux of gamma rays, a measure of the current flow in an external circuit between emitter and collector provides a measure of the power level of the reactor.
Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors
NASA Technical Reports Server (NTRS)
Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.
2014-01-01
Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).
Zhao, Qian; Zhu, Qizhen; Miao, Jiawei; Guan, Zhaoruxin; Liu, Huan; Chen, Renjie; An, Yabin; Wu, Feng; Xu, Bin
2018-04-04
With the high energy density of 2600 W h kg -1 , lithium-sulfur (Li-S) batteries have been considered as one of the most promising energy storage systems. However, the serious capacity fading resulting from the shuttle effect hinders its commercial application. Encapsulating small S 2-4 molecules into the pores of ultramicroporous carbon (UMC) can eliminate the dissolved polysulfides, thus completely inhibiting the shuttle effect. Nevertheless, the sulfur loading of S 2-4 /UMC is usually not higher than 1 mg cm -2 because of the limited pore volume of UMC, which is a great challenge for small sulfur cathode. In this paper, by applying ultralight 3D melamine formaldehyde-based carbon foam (MFC) as a current collector, we dramatically enhanced the areal sulfur loading of the S 2-4 electrode with good electrochemical performances. The 3D skeleton of MFC can hold massive S 2-4 /UMC composites and act as a conductive network for the fast transfer of electrons and Li + ions. Furthermore, it can serve as an electrolyte reservoir to make a sufficient contact between S 2-4 and electrolyte, enhancing the utilization of S 2-4 . With the MFC current collector, the S 2-4 electrode reaches an areal sulfur loading of 4.2 mg cm -2 and performs a capacity of 839.8 mA h g -1 as well as a capacity retention of 82.5% after 100 cycles. The 3D MFC current collector provides a new insight for the application of Li-S batteries with high areal small sulfur loading and excellent cycle stability.
High efficiency inductive output tubes with intense annular electron beams
NASA Astrophysics Data System (ADS)
Appanam Karakkad, J.; Matthew, D.; Ray, R.; Beaudoin, B. L.; Narayan, A.; Nusinovich, G. S.; Ting, A.; Antonsen, T. M.
2017-10-01
For mobile ionospheric heaters, it is necessary to develop highly efficient RF sources capable of delivering radiation in the frequency range from 3 to 10 MHz with an average power at a megawatt level. A promising source, which is capable of offering these parameters, is a grid-less version of the inductive output tube (IOT), also known as a klystrode. In this paper, studies analyzing the efficiency of grid-less IOTs are described. The basic trade-offs needed to reach high efficiency are investigated. In particular, the trade-off between the peak current and the duration of the current micro-pulse is analyzed. A particle in the cell code is used to self-consistently calculate the distribution in axial and transverse momentum and in total electron energy from the cathode to the collector. The efficiency of IOTs with collectors of various configurations is examined. It is shown that the efficiency of IOTs can be in the 90% range even without using depressed collectors.
NASA Astrophysics Data System (ADS)
Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.
2017-07-01
The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.
New adaptive method to optimize the secondary reflector of linear Fresnel collectors
Zhu, Guangdong
2017-01-16
Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less
NASA Technical Reports Server (NTRS)
Ebihara, Ben T.; Ramins, Peter
1987-01-01
Small multistage depressed collectors (MDC's) which used pyrolytic graphite, ion-beam-textured pyrolytic graphite, and isotropic graphite electrodes were designed, fabricated, and evaluated in conjuntion with 200-W, continuous wave (CW), 8- to 18-GHz traveling-wave tubes (TWT's). The design, construction, and performance of the MDC's are described. The bakeout performance of the collectors, in terms of gas evolution, was indistinguishable from that of typical production tubes with copper collectors. However, preliminary results indicate that some additional radiofrequency (RF) and dc beam processing time (and/or longer or higher temperature bakeouts) may be needed beyond that of typical copper electrode collectors. This is particularly true for pyrolytic graphite electrodes and for TWT's without appendage ion pumps. Extended testing indicated good long-term stability of the textured pyrolytic graphite and isotropic graphite electrode surfaces. The isotropic graphite in particular showed considerable promise as an MDC electrode material because of its high purity, low cost, simple construction, potential for very compact overall size, and relatively low secondary electron emission yield characteristics in the as-machined state. However, considerably more testing experience is required before definitive conclusions on its suitability for electronic countermeasure systems and space TWT's can be made.
New adaptive method to optimize the secondary reflector of linear Fresnel collectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guangdong
Performance of linear Fresnel collectors may largely depend on the secondary-reflector profile design when small-aperture absorbers are used. Optimization of the secondary-reflector profile is an extremely challenging task because there is no established theory to ensure superior performance of derived profiles. In this work, an innovative optimization method is proposed to optimize the secondary-reflector profile of a generic linear Fresnel configuration. The method correctly and accurately captures impacts of both geometric and optical aspects of a linear Fresnel collector to secondary-reflector design. The proposed method is an adaptive approach that does not assume a secondary shape of any particular form,more » but rather, starts at a single edge point and adaptively constructs the next surface point to maximize the reflected power to be reflected to absorber(s). As a test case, the proposed optimization method is applied to an industrial linear Fresnel configuration, and the results show that the derived optimal secondary reflector is able to redirect more than 90% of the power to the absorber in a wide range of incidence angles. Here, the proposed method can be naturally extended to other types of solar collectors as well, and it will be a valuable tool for solar-collector designs with a secondary reflector.« less
Solid-state current transformer
NASA Technical Reports Server (NTRS)
Farnsworth, D. L. (Inventor)
1976-01-01
A signal transformation network which is uniquely characterized to exhibit a very low input impedance while maintaining a linear transfer characteristic when driven from a voltage source and when quiescently biased in the low microampere current range is described. In its simplest form, it consists of a tightly coupled two transistor network in which a common emitter input stage is interconnected directly with an emitter follower stage to provide virtually 100 percent negative feedback to the base input of the common emitter stage. Bias to the network is supplied via the common tie point of the common emitter stage collector terminal and the emitter follower base stage terminal by a regulated constant current source, and the output of the circuit is taken from the collector of the emitter follower stage.
Application of Simulated Annealing and Related Algorithms to TWTA Design
NASA Technical Reports Server (NTRS)
Radke, Eric M.
2004-01-01
Simulated Annealing (SA) is a stochastic optimization algorithm used to search for global minima in complex design surfaces where exhaustive searches are not computationally feasible. The algorithm is derived by simulating the annealing process, whereby a solid is heated to a liquid state and then cooled slowly to reach thermodynamic equilibrium at each temperature. The idea is that atoms in the solid continually bond and re-bond at various quantum energy levels, and with sufficient cooling time they will rearrange at the minimum energy state to form a perfect crystal. The distribution of energy levels is given by the Boltzmann distribution: as temperature drops, the probability of the presence of high-energy bonds decreases. In searching for an optimal design, local minima and discontinuities are often present in a design surface. SA presents a distinct advantage over other optimization algorithms in its ability to escape from these local minima. Just as high-energy atomic configurations are visited in the actual annealing process in order to eventually reach the minimum energy state, in SA highly non-optimal configurations are visited in order to find otherwise inaccessible global minima. The SA algorithm produces a Markov chain of points in the design space at each temperature, with a monotonically decreasing temperature. A random point is started upon, and the objective function is evaluated at that point. A stochastic perturbation is then made to the parameters of the point to arrive at a proposed new point in the design space, at which the objection function is evaluated as well. If the change in objective function values (Delta)E is negative, the proposed new point is accepted. If (Delta)E is positive, the proposed new point is accepted according to the Metropolis criterion: rho((Delta)f) = exp((-Delta)E/T), where T is the temperature for the current Markov chain. The process then repeats for the remainder of the Markov chain, after which the temperature is decremented and the process repeats. Eventually (and hopefully), a near-globally optimal solution is attained as T approaches zero. Several exciting variants of SA have recently emerged, including Discrete-State Simulated Annealing (DSSA) and Simulated Tempering (ST). The DSSA algorithm takes the thermodynamic analogy one step further by categorizing objective function evaluations into discrete states. In doing so, many of the case-specific problems associated with fine-tuning the SA algorithm can be avoided; for example, theoretical approximations for the initial and final temperature can be derived independently of the case. In this manner, DSSA provides a scheme that is more robust with respect to widely differing design surfaces. ST differs from SA in that the temperature T becomes an additional random variable in the optimization. The system is also kept in equilibrium as the temperature changes, as opposed to the system being driven out of equilibrium as temperature changes in SA. ST is designed to overcome obstacles in design surfaces where numerous local minima are separated by high barriers. These algorithms are incorporated into the optimal design of the traveling-wave tube amplifier (TWTA). The area under scrutiny is the collector, in which it would be ideal to use negative potential to decelerate the spent electron beam to zero kinetic energy just as it reaches the collector surface. In reality this is not plausible due to a number of physical limitations, including repulsion and differing levels of kinetic energy among individual electrons. Instead, the collector is designed with multiple stages depressed below ground potential. The design of this multiple-stage collector is the optimization problem of interest. One remaining problem in SA and DSSA is the difficulty in determining when equilibrium has been reached so that the current Markov chain can be terminated. It has been suggested in recent literature that simulating the thermodynamic properties opecific heat, entropy, and internal energy from the Boltzmann distribution can provide good indicators of having reached equilibrium at a certain temperature. These properties are tested for their efficacy and implemented in SA and DSSA code with respect to TWTA collector optimization.
Genesis Solar Wind Array Collector Fragments Post-Recovery Status
NASA Astrophysics Data System (ADS)
Allton, J. H.
2005-12-01
The Genesis solar wind sample return mission spacecraft was launched with 271 whole and 30 half hexagonally-shaped collectors. At 65 cm2 per hexagon, the total collection area was 18,600 cm2. These 301 collectors were comprised of 9 materials mounted on 5 arrays, each of which was exposed to a specific regime of the solar wind. Thoughtfully, collectors exposed to a specific regime were made of a unique thickness: bulk solar wind (700 μm thick), transient solar wind associated with coronal mass ejection (650 μm), high speed solar wind from coronal holes (600 μm), and interstream low-speed solar wind (550 μm). Thus, it is easy to distinguish the solar wind regime sampled by measuring the fragment thickness. Nearly 10,000 fragments have been enumerated, constituting about 20% of the total area. The sapphire-based hexagons survived better than the silicon hexagons as seen in the percent pre-flight whole collectors compared to the percent of recovered fragments in 10 to 25 mm size range. Silicon-based collectors accounted for 57% of the hexagons flown but 18% of the recovered fragments. However, a) gold coating on sapphire accounted for 12% flown and 27% of the recovered; b) aluminum coating on sapphire for 9% flown and 25% of the recovered; c) silicon coating on sapphire for 7% flown and 18% of the recovered; and d) sapphire for 7% flown and 10% of the recovered. Due to the design of the array frames, many of the recovered fragments were trapped in baffles very near their original location and were relatively protected from outside debris. Collector fragments are coated with particulate debris, and there is evidence that a thin molecular film was deposited on collector surfaces during flight. Therefore, in addition to allocations distributed for solar wind science analysis, poorer quality samples have been used in specimen cleaning tests.
Thin films of aluminum nitride and aluminum gallium nitride for cold cathode applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowers, A.T.; Christman, J.A.; Bremser, M.D.
1997-10-01
Cold cathode structures have been fabricated using AlN and graded AlGaN structures (deposited on n-type 6H-SiC) as the thin film emitting layer. The cathodes consist of an aluminum grid layer separated from the nitride layer by a SiO{sub 2} layer and etched to form arrays of either 1, 3, or 5 {mu}m holes through which the emitting nitride surface is exposed. After fabrication, a hydrogen plasma exposure was employed to activate the cathodes. Cathode devices with 5 {mu}m holes displayed emission for up to 30 min before failing. Maximum emission currents ranged from 10{endash}100 nA and required grid voltages rangingmore » from 20{endash}110 V. The grid currents were typically 1 to 10{sup 4} times the collector currents. {copyright} {ital 1997 American Institute of Physics.}« less
Removal of Tin from Extreme Ultraviolet Collector Optics by an In-Situ Hydrogen Plasma
NASA Astrophysics Data System (ADS)
Elg, Daniel Tyler
Throughout the 1980s and 1990s, as the semiconductor industry upheld Moore's Law and continuously shrank device feature sizes, the wavelength of the lithography source remained at or below the resolution limit of the minimum feature size. Since 2001, however, the light source has been the 193nm ArF excimer laser. While the industry has managed to keep up with Moore's Law, shrinking feature sizes without shrinking the lithographic wavelength has required extra innovations and steps that increase fabrication time, cost, and error. These innovations include immersion lithography and double patterning. Currently, the industry is at the 14 nm technology node. Thus, the minimum feature size is an order of magnitude below the exposure wavelength. For the 10 nm node, triple and quadruple patterning have been proposed, causing potentially even more cost, fabrication time, and error. Such a trend cannot continue indefinitely in an economic fashion, and it is desirable to decrease the wavelength of the lithography sources. Thus, much research has been invested in extreme ultraviolet lithography (EUVL), which uses 13.5 nm light. While much progress has been made in recent years, some challenges must still be solved in order to yield a throughput high enough for EUVL to be commercially viable for high-volume manufacturing (HVM). One of these problems is collector contamination. Due to the 92 eV energy of a 13.5 nm photon, EUV light must be made by a plasma, rather than by a laser. Specifically, the industrially-favored EUV source topology is to irradiate a droplet of molten Sn with a laser, creating a dense, hot laser-produced plasma (LPP) and ionizing the Sn to (on average) the +10 state. Additionally, no materials are known to easily transmit EUV. All EUV light must be collected by a collector optic mirror, which cannot be guarded by a window. The plasmas used in EUV lithography sources expel Sn ions and neutrals, which degrade the quality of collector optics. The mitigation of this debris is one of the main problems facing potential manufacturers of EUV sources. which can damage the collector optic in three ways: sputtering, implantation, and deposition. The first two damage processes are irreversible and are caused by the high energies (1-10 keV) of the ion debris. Debris mitigation methods have largely managed to reduce this problem by using collisions with H2 buffer gas to slow down the energetic ions. However, deposition can take place at all ion and neutral energies, and no mitigation method can deterministically deflect all neutrals away from the collector. Thus, deposition still takes place, lowering the collector reflectivity and increasing the time needed to deliver enough EUV power to pattern a wafer. Additionally, even once EUV reaches HVM insertion, source power will need to be continually increased as feature sizes continue to shrink; this increase in source power may potentially come at a cost of increased debris. Thus, debris mitigation solutions that work for the initial generation of commercial EUVL systems may not be adequate for future generations. An in-situ technology to clean collector optics without source downtime is required. which will require an in-situ technology to clean collector optics. The novel cleaning solution described in this work is to create the radicals directly on the collector surface by using the collector itself to drive a capacitively-coupled hydrogen plasma. This allows for radical creation at the desired location without requiring any delivery system and without requiring any source downtime. Additionally, the plasma provides energetic radicals that aid in the etching process. This work will focus on two areas. First, it will focus on experimental collector cleaning and EUV reflectivity restoration. Second, it will focus on developing an understanding of the fundamental processes governing Sn removal. It will be shown that this plasma technique can clean an entire collector optic and restore EUV reflectivity to MLMs without damaging them. Additionally, it will be shown that, within the parameter space explored, the limiting factor in Sn etching is not hydrogen radical flux or SnH4 decomposition but ion energy flux. This will be backed up by experimental measurements, as well as a plasma chemistry model of the radical density and a 3D model of SnH4 transport and redeposition.
Magnesium-based methods, systems, and devices
Zhao, Yufeng; Ban, Chunmei; Ruddy, Daniel; Parilla, Philip A.; Son, Seoung-Bum
2017-12-12
An aspect of the present invention is an electrical device, where the device includes a current collector and a porous active layer electrically connected to the current collector to form an electrode. The porous active layer includes MgB.sub.x particles, where x.gtoreq.1, mixed with a conductive additive and a binder additive to form empty interstitial spaces between the MgB.sub.x particles, the conductive additive, and the binder additive. The MgB.sub.x particles include a plurality of boron sheets of boron atoms covalently bound together, with a plurality of magnesium atoms reversibly intercalated between the boron sheets and ionically bound to the boron atoms.
The use of alloy 117 as a liquid metal current collector
NASA Astrophysics Data System (ADS)
Maribo, David; Sondergaard, Neal
1987-09-01
Low melting point, bismuth based alloys are potential replacements for NaK78 as liquid metal slip ring material because of their lower reactivity and potentially greater hydrodynamic stability. This paper describes experiments with one such alloy in a model of a 300 kW superconducting homopolar motor using close clearance braid type collectors. Slip ring tip velocities varied from 5 to 20 m/s and currents ranging from 500 to 2000 A. Viscous power losses tend to follow a simple turbulent mode. In all, the data supports the use of low melting point alloys as an alternative to Na78.
Positive current collector for Li||Sb-Pb liquid metal battery
NASA Astrophysics Data System (ADS)
Ouchi, Takanari; Sadoway, Donald R.
2017-07-01
Corrosion in grid-scale energy storage devices adversely affects service lifetime and thus has a significant economic impact on their deployment. In this work, we investigate the corrosion of steel and stainless steels (SSs) as positive current collectors in the Li||Sb-Pb liquid metal battery. The erosion and formation of new phases on low-carbon steel, SS301, and SS430 were evaluated both in static conditions and under cell operating conditions. The cell performance is not adversely affected by the dissolution of iron or chromium but rather nickel. Furthermore, the in situ formation of a Fe-Cr-Sb layer helps mitigate the recession of SS430.
NASA Technical Reports Server (NTRS)
Hamlet, J. F. (Inventor)
1974-01-01
A stable excitation supply for measurement transducers is described. It consists of a single-transistor oscillator with a coil connected to the collector and a capacitor connected from the collector to the emitter. The output of the oscillator is rectified and the rectified signal acts as one input to a differential amplifier; the other input being a reference potential. The output of the amplifier is connected at a point between the emitter of the transistor and ground. When the rectified signal is greater than the reference signal, the differential amplifier produces a signal of polarity to reduce bias current and, consequently, amplification.
Cigarette continuity programs and social support for smoking.
Sumner, W; Dunaway, M; Dillman, D G
1998-01-01
To describe smokers' participation in cigarette continuity programs and the prevalence and structure of cooperative teams of smokers. Cross-sectional survey of smoking histories and continuity-program participation by individuals and their family members in a convenience sample of 176 current smokers at the University of Kentucky Chandler Medical Center, Lexington. Fisher exact test or chi2 tests were used to compare proportions. One of 3 smokers collected coupons for a continuity program. Three quarters of the collectors redeemed their own coupons, and one quarter gave coupons to another collector. Coupon collectors reported an average team size of more than 2 members. One fifth of collectors were teammates with another generation of family members, and one quarter of collectors aged 24 to 35 years were teammates with their children. Smokers were often aware of their relatives' coupon-collecting habits. Continuity programs have been a popular means of reinforcing smoking, especially within families and groups of friends. Continuity programs are novel in encouraging smoking and brand loyalty between generations. Continuity-program participants need to be aware of the risk of promoting smoking initiation by their children. Health advocates could use similar strategies to promote smoking cessation and prevention within families and other social groups.
Liquid electrolyte-free cylindrical Al polymer capacitor review: Materials and characteristics
NASA Astrophysics Data System (ADS)
Yoo, Jeeyoung; Kim, Jaegun; Kim, Youn Sang
2015-06-01
The manufacturing methods for liquid electrolyte-free Al polymer capacitors are introduced by using new materials like novel oxidants, separators and negative current collectors. The Al polymer capacitor is constructed by an Al foil as an anode, Al2O3 as a dielectric, and poly(3, 4-ethylenedioxythiophene) (PEDOT) as a cathode. There are also various synthetic methods of 3, 4-ethylenedioxythiophene (EDOT) and the chemical polymerization of PEDOT from EDOT using iron benzenesulfonate as a new oxidant and dopant. Furthermore, various cathodic current collectors such as conventional Al foils, carbon and titanium dioxide deposited on Al foils or substrates, as well as various separators with manila-esparto paper and synthetic fibers (series of acryl, PET, etc.) are studied. The Al polymer capacitors with the newly introduced oxidant (iron benzenesulfonate), separator (aramid based synthetic fibers) and current collector (TiO2) exhibit considerably enhanced capacitance values and the extremely low resistance (7 mΩ), so there is low power consumption and high reliability. Additionally, the newly developed Al polymer capacitor is guaranteed for 5,000 h at 125 °C, which means there is a long life time operation over ∼ 5 × 106 h at 65 °C.
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan
Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less
Fragmentation of copper current collectors in Li-ion batteries during spherical indentation
Wang, Hsin; Watkins, Thomas R.; Simunovic, Srdjan; ...
2017-08-29
Large, areal, brittle fracture of copper current collector foils was observed by 3D x-ray computed tomography (XCT) of a spherically indented Li-ion cell. This fracture was hidden and non-catastrophic to a degree because the graphite layers deformed plastically, and held the materials together so that the cracks in the foils could not be seen under optical and electron microscopy. 3D XCT on the indented cell showed “mud cracks” within the copper layer. The cracking of copper foils could not be immediately confirmed when the cell was opened for post-mortem examination. However, an X-ray radiograph on a single foil of themore » Cu anode showed clearly that the copper foil had broken into multiple pieces similar to the brittle cracking of a ceramic under indentation. This new failure mode of anodes on Li-ion cell has very important implications on the behavior of Li-ion cells under mechanical abuse conditions. Furthermore, the fragmentation of current collectors in the anode must be taken into consideration for the electrochemical responses which may lead to capacity loss and affect thermal runaway behavior of the cells.« less
Preparation and characterization of thick-film Ni/MH battery.
Do, Jing-Shan; Yu, Sen-Hao; Cheng, Suh-Fen
2004-07-30
Using the porous polypropylene (PP) films sputtered with gold and the Ni as current collectors, the electroactive materials (Ni(OH)2 and metal hydride (MH)) of positive and negative electrodes were prepared on the current collector using thick-film technology. Two types of cell configurations were prepared and the characteristics of these batteries were compared. The cycle number for the formation of batteries based on the porous PP film was found to be 2, which was significantly less than that of batteries based on the ceramic substrates. Using the porous PP film as substrate, the number of cycles for the formation of battery increased from 2 to 5 with the increase of the charge/discharge rate from 0.1C/0.025C to 2.0C/0.5C. The silver oxides dendrites formed by the oxidation of silver paste used to adhere the current collectors and the conducting wires in the charge/discharge process caused a short contact between the positive and negative electrodes, which then caused the battery failure. The cycle life of the battery based on the porous PP film was found to be greater than 400 when the charge/discharge rate was 2.0C/0.5C.
Epitaxial Welding of Carbon Nanotube Networks for Aqueous Battery Current Collectors.
Yao, Yonggang; Jiang, Feng; Yang, Chongyin; Fu, Kun Kelvin; Hayden, John; Lin, Chuan-Fu; Xie, Hua; Jiao, Miaolun; Yang, Chunpeng; Wang, Yilin; He, Shuaiming; Xu, Fujun; Hitz, Emily; Gao, Tingting; Dai, Jiaqi; Luo, Wei; Rubloff, Gary; Wang, Chunsheng; Hu, Liangbing
2018-05-17
Carbon nanomaterials are desirable candidates for lightweight, highly conductive, and corrosion-resistant current collectors. However, a key obstacle is their weak interconnection between adjacent nanostructures, which renders orders of magnitude lower electrical conductivity and mechanical strength in the bulk assemblies. Here we report an "epitaxial welding" strategy to engineer carbon nanotubes (CNTs) into highly crystalline and interconnected structures. Solution-based polyacrylonitrile was conformally coated on CNTs as "nanoglue" to physically join CNTs into a network, followed by a rapid high-temperature annealing (>2800 K, overall ∼30 min) to graphitize the polymer coating into crystalline layers that also bridge the adjacent CNTs to form an interconnected structure. The contact-welded CNTs (W-CNTs) exhibit both a high conductivity (∼1500 S/cm) and a high tensile strength (∼120 MPa), which are 5 and 20 times higher than the unwelded CNTs, respectively. In addition, the W-CNTs display chemical and electrochemical stabilities in strong acidic/alkaline electrolytes (>6 mol/L) when potentiostatically stressing at both cathodic and anodic potentials. With these exceptional properties, the W-CNT films are optimal as high-performance current collectors and were demonstrated in the state-of-the-art aqueous battery using a "water-in-salt" electrolyte.
Rocha, Victoria G; García-Tuñón, Esther; Botas, Cristina; Markoulidis, Foivos; Feilden, Ezra; D'Elia, Eleonora; Ni, Na; Shaffer, Milo; Saiz, Eduardo
2017-10-25
The current lifestyles, increasing population, and limited resources result in energy research being at the forefront of worldwide grand challenges, increasing the demand for sustainable and more efficient energy devices. In this context, additive manufacturing brings the possibility of making electrodes and electrical energy storage devices in any desired three-dimensional (3D) shape and dimensions, while preserving the multifunctional properties of the active materials in terms of surface area and conductivity. This paves the way to optimized and more efficient designs for energy devices. Here, we describe how three-dimensional (3D) printing will allow the fabrication of bespoke devices, with complex geometries, tailored to fit specific requirements and applications, by designing water-based thermoresponsive inks to 3D-print different materials in one step, for example, printing the active material precursor (reduced chemically modified graphene (rCMG)) and the current collector (copper) for supercapacitors or anodes for lithium-ion batteries. The formulation of thermoresponsive inks using Pluronic F127 provides an aqueous-based, robust, flexible, and easily upscalable approach. The devices are designed to provide low resistance interface, enhanced electrical properties, mechanical performance, packing of rCMG, and low active material density while facilitating the postprocessing of the multicomponent 3D-printed structures. The electrode materials are selected to match postprocessing conditions. The reduction of the active material (rCMG) and sintering of the current collector (Cu) take place simultaneously. The electrochemical performance of the rCMG-based self-standing binder-free electrode and the two materials coupled rCMG/Cu printed electrode prove the potential of multimaterial printing in energy applications.
Multidimensional Analysis of Copper Ore Flotation in Terms of Applied Hydrophobizing Agents
NASA Astrophysics Data System (ADS)
Pięta, Paulina; Niedoba, Tomasz; Surowiak, Agnieszka
2018-03-01
Flotation is a method of enrichment used to distribute particles, which differ in their surface properties. Hydrophobic solids intrinsically create contact at the solid-liquid-gas interface. However, not all minerals, including copper minerals, can be characterized by this crucial ability. In that case it is necessary to use the collector reagents which guarantees a high efficiency of the enrichment process. The main aim of the paper was to examine the impact of selected collector types and dosages on the results of Polish sandstone copper ore flotation and to find optimal parameter values for products that meet quality and quantity requirements. The laboratory tests were carried out with an application of two types of collectors (Hostaflot, sodium ethyl xanthate aqueous solution) in dosages 100 and 150 g/Mg. Data analysis was based on the use of the taxonomy methods in order to select optimal conditions of collector dosage and type. Based on the indexes, it was found that the best enrichment effects were obtained with a sodium ethyl xanthate aqueous solution 150 g/Mg.
Enhanced Cleaning of Genesis Solar Wind Sample 61348 for Film Residue Removal
NASA Technical Reports Server (NTRS)
Allums, K. K.; Gonzalez, C. P.; Kuhlman, K. R.; Allton, J. H.
2015-01-01
The Genesis mission returned to Earth on September 8, 2004, experiencing a nonnominal reentry. During the recovery of the collector materials from the capsule, many of the collector fragments were placed on the adhesive protion of post-it notes to prevent the fragments from moving during transport back to Johnson Space Center. This unknowingly provided an additional contaminate that would prove difficult to remove with the limited chemistries allowed in the Genesis Curation Laboratory. Generally when collector material samples are prepared for allocation to PIs, the samples are cleaned front side only with Ultra-Pure Water (UPW) via megasonic dispersion to the collector surface to remove crash debris and contamination. While this cleaning method works well on samples that were not placed on post-its during recovery, it has caused movement of the residue on the back of the sample to be deposited on the front in at least two examples. Therefore, samples placed on the adhesive portion on post-it note, require enhanced cleaning methods since post-it residue has proved resistant to UPW cleaning.
NASA Technical Reports Server (NTRS)
Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. E.
1984-01-01
Deposition rates on platinum-rhodium cylindrical collectors rotating in the cross streams of the combustion gases of a salt-seeded Mach 0.3 burner rig were determined. The collectors were internally air cooled so that their surface temperatures could be widely varied while they were exposed to constant combustion gas temperatures. The deposition rates were compared with those predicted by the chemically frozen boundary layer (CFBL) computer program, which is based on multicomponent vapor transport through the boundary layer. Excellent agreement was obtained between theory and experiment for the NaCl-seeded case, but the agreement lessened as the seed was changed to synthetic sea salt, NaNO3, and K2SO4, respectively, and was particularly poor in the case of Na2SO4. However, when inertial impaction was assumed to be the deposition mechanism for the Na2SO4 case, the predicted rates agreed well with the experimental rates. The former were calculated from a mean particle diameter that was derived from the measured intial droplet size distribution of the solution spray. Critical experiments showed that liquid phase deposits were blown off the smooth surface of the platinum-rhodium collectors by the aerodynamic shear forces of the high-velocity combustion gases but that rough or porous surfaces retained their liquid deposits.
Performance of a thermionic converter module utilizing emitter and collector heat pipes
NASA Technical Reports Server (NTRS)
Kroeger, E. W.; Morris, J. F.; Miskolczy, G.; Lieb, D. P.; Goodale, D. B.
1978-01-01
A thermionic converter module simulating a configuration for an out-of-core thermionic nuclear reactor was designed, fabricated, and tested. The module consists of three cylindrical thermionic converters. The tungsten emitter of the converter is heated by a tungsten, lithium heat pipe. The emitter heat pipes are immersed in a furnace, insulated by MULTI-FOIL thermal insulation, and heated by tungsten radiation filaments. The performance of each thermionic converter was characterized before assembly into the module. Dynamic voltage, current curves were taken using a 60 Hz sweep and computerized data acquisition over a range of emitter, collector, and cesium-reservoir temperatures. An output power of 215 W was observed at an emitter temperature of 1750 K and a collector temperature of 855 K for a two diode module. With a three diode module, an output power of 270 W was observed at an average emitter temperature of 1800 K and a Collector temperature of 875 K.
NASA Astrophysics Data System (ADS)
Doering, E.; Lippe, W.
1982-08-01
The technical and economic performances of a complementary solar heating installation for a new swimming pool added to a two-floor dwelling were examined after measurements were taken over a period of 12 months and analyzed. In particular, the heat absorption and utilization were measured and modifications were carried out to improve pipe insulation and regulation of mixer valve motor running and volume flow. The collector system efficiency was evaluated at 15.4%, the proportion of solar energy of the total consumption being 6.1%. The solar plant and the measuring instruments are described and recommendations are made for improved design and performance, including enlargement of the collector surface area, further modification of the regulation system, utilization of temperature stratification in the storage tanks and avoiding mutual overshadowing of the collectors.
Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications.
Stegmaier, Thomas; Linke, Michael; Planck, Heinrich
2009-05-13
Solar thermal collectors used at present consist of rigid and heavy materials, which are the reasons for their immobility. Based on the solar function of polar bear fur and skin, new collector systems are in development, which are flexible and mobile. The developed transparent heat insulation material consists of a spacer textile based on translucent polymer fibres coated with transparent silicone rubber. For incident light of the visible spectrum the system is translucent, but impermeable for ultraviolet radiation. Owing to its structure it shows a reduced heat loss by convection. Heat loss by the emission of long-wave radiation can be prevented by a suitable low-emission coating. Suitable treatment of the silicone surface protects it against soiling. In combination with further insulation materials and flow systems, complete flexible solar collector systems are in development.
Energy efficiency of a solar domestic hot water system
NASA Astrophysics Data System (ADS)
Zukowski, Miroslaw
2017-11-01
The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.
Fang, Yuanxing; Xu, Yuntao; Li, Xiaochun; Ma, Yiwen; Wang, Xinchen
2018-06-14
Solar-to-fuel conversion via photoelectrochemical (PEC) water splitting has the potential to ease current energy and environmental concerns. In pursuit of sustainability, polymeric carbon nitride (PCN) photosensitizers are receiving increasing attention as replacements for their inorganic counterparts. However, intense charge recombination, primarily because of the numerous surface defects, limits the use of PCN in PEC systems. Herein, photoanodes are designed by coating PCN films onto highly conductive yttrium (Y) doped zinc oxide (ZnO) nanorods (NRs) serving as charge collectors. The generation of charge carriers can therefore be promoted by this type II heterostructure. Accordingly, the charge collectors would be kept nearby for charge separation and transport to be used in the interfacial redox reactions. As such, the photocurrent density of the polymer electrode is improved to an exceptional value of 0.4 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE) in a Na2SO4 electrolyte solution under AM 1.5 illumination. The result reveals a more than 50-fold enhancement over the PCN films achieved by powder, and the efficiency can be preserved at ca. 95% for 160 minutes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermionic energy converter investigations
NASA Technical Reports Server (NTRS)
Goodale, D. B.; Lee, C.; Lieb, D.; Oettinger, P. E.
1979-01-01
This paper presents evaluation of a variety of thermionic converter configurations to obtain improved efficiency. A variable-spacing diode using an iridium emitter gave emission properties comparable to platinum, but the power output from a sintered LaB6 collector diode was not consistent with its work function. Reflectivities above 0.5 were measured at thermal energies on oxygenated-cesiated surfaces using a field emission retarding potential gun. Performance of converters with structured electrodes and the characteristics of a pulsed triode were studied as a function of emitter, collector, cesium reservoir, interelectrode spacing, xenon pressure, and pulsing parameters.
Large Area Solid Radiochemistry (LASR) collector at the National Ignition Facility
NASA Astrophysics Data System (ADS)
Waltz, Cory; Gharibyan, Narek; Hardy, Mike; Shaughnessy, Dawn; Jedlovec, Don; Smith, Cal
2017-08-01
The flux of neutrons and charged particles produced from inertial confinement fusion experiments at the National Ignition Facility (NIF) induces measurable concentrations of nuclear reaction products in various target materials. The collection and radiochemical analysis of the post-shot debris can be utilized as an implosion diagnostic to obtain information regarding fuel areal density and ablator-fuel mixing. Furthermore, assessment of the debris from specially designed targets, material doped in capsules or mounted on the external surface of the target assembly, can support experiments relevant to nuclear forensic research. To collect the shot debris, we have deployed the Large Area Solid Radiochemistry Collector (LASR) at NIF. LASR uses a main collector plate that contains a large collection foil with an exposed 20 cm diameter surface located ˜50 cm from the NIF target. This covers ˜0.12 steradians, or about 1% of the total solid angle. We will describe the design, analysis, and operation of this experimental platform as well as the initial results. To speed up the design process 3-dimensional printing was utilized. Design analysis includes the dynamic loading of the NIF target vaporized mass, which was modeled using LS-DYNA.
Hollow Polycaprolactone Microspheres with/without a Single Surface Hole by Co-Electrospraying
2017-01-01
We describe the co-electrospraying of hollow microspheres from a polycaprolactone (PCL) shell solution and various core solutions including water, cyclohexane, poly(ethylene oxide) (PEO), and polyethylene glycol (PEG), using different collectors. The morphologies of the resultant microspheres were characterized by scanning electron microscopy (SEM), confocal microscopy, and nano-X-ray computed tomography (nano-XCT). The core/shell solution miscibility played an important role in the co-electrospraying process and the formation of microsphere structures. Spherical particles were more likely to be produced from miscible combinations of core/shell solutions than from immiscible ones. Hollow PCL microspheres with a single hole in their surfaces were produced when an ethanol bath was used as the collector. The mechanism by which the core/shell structure is transformed into single-hole hollow microspheres is proposed to be primarily based on the evaporation through the shell and extraction by ethanol of the core solution and is described in detail. Additionally, we present a 3D macroscopic tubular structure composed of hollow PCL microspheres, directly assembled on a copper wire collector during co-electrospraying. SEM and nano-XCT confirm that microspheres in the 3D bulk structure remain hollow. PMID:28901145
NASA Astrophysics Data System (ADS)
Guo, Minghuan; Wang, Zhifeng; Sun, Feihu
2016-05-01
The optical efficiencies of a solar trough concentrator are important to the whole thermal performance of the solar collector, and the outer surface of the tube absorber is a key interface of energy flux. So it is necessary to simulate and analyze the concentrated solar flux density distributions on the tube absorber of a parabolic trough solar collector for various sun beam incident angles, with main optical errors considered. Since the solar trough concentrators are linear focusing, it is much of interest to investigate the solar flux density distribution on the cross-section profile of the tube absorber, rather than the flux density distribution along the focal line direction. Although a few integral approaches based on the "solar cone" concept were developed to compute the concentrated flux density for some simple trough concentrator geometries, all those integral approaches needed special integration routines, meanwhile, the optical parameters and geometrical properties of collectors also couldn't be changed conveniently. Flexible Monte Carlo ray trace (MCRT) methods are widely used to simulate the more accurate concentrated flux density distribution for compound parabolic solar trough concentrators, while generally they are quite time consuming. In this paper, we first mainly introduce a new backward ray tracing (BRT) method combined with the lumped effective solar cone, to simulate the cross-section flux density on the region of interest of the tube absorber. For BRT, bundles of rays are launched at absorber-surface points of interest, directly go through the glass cover of the absorber, strike on the uniformly sampled mirror segment centers in the close-related surface region of the parabolic reflector, and then direct to the effective solar cone around the incident sun beam direction after the virtual backward reflection. All the optical errors are convoluted into the effective solar cone. The brightness distribution of the effective solar cone is supposed to be circular Gaussian type. Then a parabolic trough solar collector of Euro Trough 150 is used as an example object to apply this BRT method. Euro Trough 150 is composed of RP3 mirror facets, with the focal length of 1.71m, aperture width of 5.77m, outer tube diameter of 0.07m. Also to verify the simulated flux density distributions, we establish a modified MCRT method. For this modified MCRT method, the random rays with weighted energy elements are launched in the close-related rectangle region in the aperture plane of the parabolic concentrator and the optical errors are statistically modeled in the stages of forward ray tracing process. Given the same concentrator geometric parameters and optical error values, the simulated results from these two ray tracing methods are in good consistence. The two highlights of this paper are the new optical simulation method, BRT, and figuring out the close-related mirror surface region for BRT and the close-related aperture region for MCRT in advance to effectively simulate the solar flux distribution on the absorber surface of a parabolic trough collector.
Establishment of design space for high current gain in III-N hot electron transistors
NASA Astrophysics Data System (ADS)
Gupta, Geetak; Ahmadi, Elaheh; Suntrup, Donald J., III; Mishra, Umesh K.
2018-01-01
This paper establishes the design space of III-N hot electron transistors (HETs) for high current gain by designing and fabricating HETs with scaled base thickness. The device structure consists of GaN-based emitter, base and collector regions where emitter and collector barriers are implemented using AlN and InGaN layers, respectively, as polarization-dipoles. Electrons tunnel through the AlN layer to be injected into the base at a high energy where they travel in a quasi-ballistic manner before being collected. Current gain increases from 1 to 3.5 when base thickness is reduced from 7 to 4 nm. The extracted mean free path (λ mfp) is 5.8 nm at estimated injection energy of 1.5 eV.
NASA Technical Reports Server (NTRS)
Mcavoy, William H; Schey, Oscar W; Young, Alfred W
1933-01-01
This report presents the results of flight tests with three different airplanes using several types of low-drag cowling for radial air-cooled engines. The greater part of the tests were made with a Curtiss XF7Cc-1 (Sea Hawk) with a 410 horsepower. Wasp engine, using three fuselage nose shapes and six types of outer cowling. The six cowlings were: a narrow ring, a wide ring, a wide cowling similar in the original NACA cowling, a thick ring incorporating an exhaust collector, a single-surface cowling shaped like the outer surface of the exhaust-collector cowling, and polygon-ring cowling, of which the angle of the straight sections with the thrust line could be varied over a wide range.
Liu, Sheng; Zhong, Hong; Liu, Guangyi; Xu, Zhenghe
2018-02-15
Hydroxamate and sulfhydryl surfactants are effective collectors for flotation of copper minerals. The combination application of hydroxamate and sulfhydryl collectors has been proved to be an effective approach for improving the flotation recovery of non-sulfide copper minerals. A surfactant owing both hydroxamate and dithiocarbamate groups might exhibit strong affinity to non-sulfide copper minerals through double sites adsorption, rendering an enhanced hydrophobization to non-sulfide copper minerals flotation. The flotation performance of S-[(2-hydroxyamino)-2-oxoethyl]- N,N-dibutyldithiocarbamate (HABTC) to malachite, calcite and quartz were first evaluated through systematic micro-flotation experiments. HABTC's hydrophobic mechanism to malachite was further investigated and analyzed by zeta potential, Fourier transform infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The micro-flotation results demonstrated HABTC was an excellent collector for malachite flotation and exhibited favorable selectivity for flotation separation of malachite from quartz or calcite under pH 8.5-10.3. Zeta potential and FTIR implied that HABTC might bond with the surface copper atoms of malachite, with releasing the H + ions of its hydroxamate group into pulp. ToF-SIMS provided clear evidences that the Cu-hydroxamate and Cu-dithiocarbamate groups were formed on malachite surfaces after HABTC adsorption. XPS revealed that Cu(I)/Cu(II) mixed-valence surface complexes of HABTC anchored on malachite through formation of Cu(I)S and Cu(II)O bonds, accompanying with reduction of partial surface Cu(II) to Cu(I). The Cu(I)/Cu(II) mixed-valence double chelating character and "chair"-shape N,N-dibutyldithiocarbamate hydrophobic group, resulting in an enhanced affinity and hydrophobization of HABTC to malachite flotation. Copyright © 2017 Elsevier Inc. All rights reserved.
MOD silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, G. M.; Vest, R. W.
1984-01-01
Photovoltaic cells require back side metallization and a collector grid system on the front surface. Both front and back surface metallizations should have good adhesion, low contact resistance, low sheet resistance, long term stability, and their deposition methods should not degrade the n-p junction. Advantages and disadvantages of different deposition methods are discussed.
Low-Cost, Light Weight, Thin Film Solar Concentrator
NASA Technical Reports Server (NTRS)
Ganapathi, G.; Palisoc, A.; Nesmith, B.; Greschik, G.; Gidanian, K.; Kindler, A.
2013-01-01
This research addresses a cost barrier towards achieving a solar thermal collector system with an installed cost of $75/sq m and meet the Department of Energy's (DOE's) performance targets for optical errors, operations during windy conditions and lifetime. Current concentrators can cost as much as 40-50% of the total installed costs for a CSP plant. In order to reduce the costs from current $200-$250/sq m, it is important to focus on the overall system. The reflector surface is a key cost driver, and our film-based polymer reflector will help significantly in achieving DOE's cost target of $75/sq m. The ease of manufacturability, installation and replacement make this technology a compelling one to develop. This technology can be easily modified for a variety of CSP options including heliostats, parabolic dishes and parabolic troughs.
Finders keepers: the features differentiating hoarding disorder from normative collecting.
Nordsletten, Ashley E; Fernández de la Cruz, Lorena; Billotti, Danielle; Mataix-Cols, David
2013-04-01
A new diagnostic category called Hoarding Disorder (HD) has been proposed for inclusion in DSM-5. It is paramount that this addition does not result in an over-pathologization of normative behavior. Collectors constitute a valid population within which to test the diagnostic boundaries of HD. The current study explored the features that differentiate pathological hoarding from normative collecting. Participants were 29 individuals with a diagnosis of HD and 20 individuals who self-identified as collectors who enrolled in the London Field Trial for HD. A series of semi-structured interviews (often in the participants' homes) were conducted, including a detailed assessment of the typical elements of the collecting process. Participants also completed a battery of self-report questionnaires. Collectors were more likely than those with HD to be male, partnered, and free of psychiatric conditions or medication. Like those with HD, collectors reported the acquisition of, attachment to, and reluctance to discarding objects. However, the resulting clutter and impairment were minimal in this group and ultimately insufficient to garner an HD diagnosis. Collectors were, additionally, more focused in their acquisitions (e.g., confining their accumulations to a narrow range of items), more selective (e.g., planning and purchasing only pre-determined items), more likely to organize their possessions and less likely to accumulate in an excessive manner. There are important quantitative and qualitative differences between HD and normative collecting. For this reason, collectors are unlikely to be inappropriately pathologized by the introduction of HD. Copyright © 2013 Elsevier Inc. All rights reserved.
Air cathode structure manufacture
Momyer, William R.; Littauer, Ernest L.
1985-01-01
An improved air cathode structure for use in primary batteries and the like. The cathode structure includes a matrix active layer, a current collector grid on one face of the matrix active layer, and a porous, nonelectrically conductive separator on the opposite face of the matrix active layer, the collector grid and separator being permanently bonded to the matrix active layer. The separator has a preselected porosity providing low IR losses and high resistance to air flow through the matrix active layer to maintain high bubble pressure during operation of the battery. In the illustrated embodiment, the separator was formed of porous polypropylene. A thin hydrophobic film is provided, in the preferred embodiment, on the current collecting metal grid.
Two-plateau rechargeable sodium/sulfur(IV) molten chloroaluminate cell
NASA Astrophysics Data System (ADS)
Mamantov, G.; Tanemoto, K.; Ogata, Y.
1983-07-01
Studies of the two-discharge plateau Na/S(IV) chloroaluminate cell are reported. Attention was given to reticulated vitreous carbon (RVC) as the positive electrode current collector instead of a tungsten spiral. A sulfur concentration on the order of 0.3 m was employed to avoid voltage oscillations by lowering the acidity changes during discharge. The ratio of the coulomb content of the first plateau to that at the second was determined to be about two. The second plateau was more discernible at 250 C than at 220 C. Voltage oscillations were eliminated with the RVC current collector and an energy density of 457 W-hr/kg was achieved with no deterioration of the materials being observed.
Jacobson, Craig; DeJonghe, Lutgard C.; Lu, Chun
2010-10-19
A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.
NASA Astrophysics Data System (ADS)
Elsharif, Asma M.
2018-01-01
Semiconductor photonic crystals (MSPhC) were used to convert solar energy into hot electrons. An experimental model was designed by using metallic semiconductor photonic crystals (MSPhC). The designed MSPhC is based on TiO2/Au schottky contact. The model has similar nanocavity structure for broad gold absorption, but the materials on top of the cavity were changed to a metal and a semiconductor in order to collect the hot electrons. Detailed design steps and characterization have shown a broadband sub-bandgap photoresponse at a wavelength of 590 nm. This is due to the surface plasmon absorption by the wafer-scale Au/TiO2 metallic-semiconductor photonic crystal. Analytical calculation of the hot electron transport from the Au thin layer to the TiO2 conduction band is discussed. This theoretical study is based on the quantum tunneling effect. The photo generation of the hot electrons was undertaken at different wavelengths in Au absorber followed by tunneling through a schottky barrier into a TiO2 collector. The presence of a tunnel current from the absorber to the collector under illumination, offers a method to extract carriers from a hot-electron distribution at few bias voltages is presented in this study. The effects of doping different concentrations of the semiconductor on the evolution of the current characteristics were also investigated and discussed. The electrical characteristics were found to be sensitive to any change in the thickness of the barrier.
NASA Astrophysics Data System (ADS)
Yavuz, Abdulcabbar; Yakup Hacıibrahimoğlu, M.; Bedir, Metin
2017-04-01
A Co-Co(OH)2 modified electrode on inexpensive Cu substrate was synthesized at room temperature and demonstrated to be a promising anode material for energy storage devices. A modified Co film was obtained potentiostatically and was then potentiodynamically treated with KOH solution to form Co(OH)2. Co-Co(OH)2 coatings were obtained and were dominated by Co(OH)2 at the oxidized side, whereas Co dominant Co-Co(OH)2 occurred at the reduced side (-1.1 V). As OH- ions were able to diffuse into (out of) the film during oxidation (reduction) and did not react with the Cu current collector, the Co-Co(OH)2 electrode can be used as an anode material in energy storage devices. Although the specific capacitance of the electrodes varied depending on thickness, the redox reaction between the modified electrode and KOH electrolyte remained the same consisting of a surface-controlled and diffusion-controlled mechanism which had a desirable fast charge and discharge property. Capacity values remained constant after 250 cycles as the film evolved. Overall capacity retention was 84% for the film after 450 scans. A specific capacitance of 549 F g-1 was obtained for the Co-Co(OH)2 composite electrode in 6 M KOH at a scan rate of 5 mV s-1 and 73% of capacitance was retained when the scan rate was increased to 100 mV s-1.
NASA Astrophysics Data System (ADS)
Galdin, Sylvie; Dollfus, Philippe; Hesto, Patrice
1994-03-01
A theoretical study of a Si/Si1-xGex/Si heterojunction bipolar transistor using Monte Carlo simulations is reported. The geometry and composition of the emitter-base junction are optimized using one-dimensional simulations with a view to improving electron transport in the base. It is proposed to introduce a thin Si-P spacer layer, between the Si-N emitter and the SiGe-P base, which allows launching hot electrons into the base despite the lack of natural conduction-band discontinuity between Si and strain SiGe. The high-frequency behavior of the complete transistor is then studied using 2D modeling. A method of microwave analysis using small signal Monte Carlo simulations that consists of expanding the terminal currents in Fourier series is presented. A cutoff frequency fT of 68 GHz has been extracted. Finally, the occurrence of a parasitic electron barrier at the collector-base junction is responsible for the fT fall-off at high collector current density. This parasitic barrier is lowered through the influence of the collector potential.
NASA Technical Reports Server (NTRS)
Vishida, J. M.; Brodersen, L. K.
1974-01-01
An analytical and experimental program is described, for studying design techniques for optimizing the conversion efficiency of klystron amplifiers, and to utilize these techniques in the development and fabrication of an X-band 4 kW cw klystron, for use in satellite-borne television broadcast transmitters. The design is based on a technique for increasing the RF beam current by using the second harmonic space charge forces in the bunched beam. Experimental analysis was also made of a method to enhance circuit efficiency in the klystron cavities. The design incorporates a collector which is demountable from the tube to facilitate multistage depressed collector experiments employing an axisymmetric, electrostatic collector for linear beam microwave tubes.
[Risk to employees in garbage collection and transport from pathogen exposure].
Becker, G; Mathys, W; Neumann, H D; Allmers, H; Balfanz, J
1999-01-01
In a current study funded by the Federal Institute of Occupational Safety and Hygiene the microbial exposure during waste collection and the health of waste collectors are being examined. The investigation of the exposure is carried out in standard experiments and in field studies. It should give information about the extent of emissions of bacteria and fungi spores und confounding factors. Medical examinations of waste collectors will show if there are special health risks attributable to waste collection.
Micro And Nanostructured Materials For Fluid And Ion Transport For Miniaturized Applications
2016-06-08
micromachined tip. The setup is shown in Figure 7(a). The RPA instrument consists of a Faraday cup collector and a set of grids placed in between the...collector. Therefore, by varying the retarding potential and measuring the current arriving to the Faraday cup, it is possible to obtain the beam energy...distribution. The instrument consists of seven grids followed by a Faraday cup. The first grid is a 90% transparent tungsten mesh, which is grounded
Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat
2015-05-13
Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.
NASA Astrophysics Data System (ADS)
Tammela, Petter; Olsson, Henrik; Strømme, Maria; Nyholm, Leif
2014-12-01
The influence of the cell design of symmetric polypyrrole and cellulose-based electric energy storage devices on the cell resistance was investigated using chronopotentiometric and ac impedance measurements with different separator and electrode thicknesses. The cell resistance was found to be dominated by the electrolyte and current collector resistances while the contribution from the composite electrode material was negligible. Due to the electrolyte within the porous electrodes thin separators could be used in combination with thick composite electrodes without loss of performance. The paper separator contributed with a resistance of ∼1.5 Ω mm-1 in a 1.0 M NaNO3 electrolyte and the tortuosity value for the separator was about 2.5. The contribution from the graphite foil current collectors was about ∼0.4-1.1 Ω and this contribution could not be reduced by using platinum foil current collectors due to larger contact resistances. The introduction of chopped carbon fibres into the electrode material or the application of pressure across the cells, however, decreased the charge transfer resistance significantly. As the present results demonstrate that cells with higher charge storage capacities but with the same cell resistance can be obtained by increasing the electrode thickness, the development of paper based energy storage devices is facilitated.
Wang, Mingzhan; Tang, Miao; Chen, Shulin; Ci, Haina; Wang, Kexin; Shi, Liurong; Lin, Li; Ren, Huaying; Shan, Jingyuan; Gao, Peng; Liu, Zhongfan; Peng, Hailin
2017-12-01
Aluminum (Al) foil, as the most accepted cathode current collector for lithium-ion batteries (LIBs), is susceptible to local anodic corrosions during long-term operations. Such corrosions could lead to the deterioration or even premature failure of the batteries and are generally believed to be a bottleneck for next-generation 5 V LIBs. Here, it is demonstrated that Al foil armored by conformal graphene coating exhibits significantly reinforced anodic corrosion resistance in both LiPF 6 and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI) based electrolytes. Moreover, LiMn 2 O 4 cells using graphene-armored Al foil as current collectors (LMO/GA) demonstrate enhanced electrochemical performance in comparison with those using pristine Al foil (LMO/PA). The long-term discharge capacity retention of LMO/GA cell after ≈950 h straight operations at low rate (0.5 C) reaches up to 91%, remarkably superior to LMO/PA cell (75%). The self-discharge propensity of LMO/GA is clearly relieved and the rate/power performance is also improved with graphene mediations. This work not only contributes to the long-term stable operations of LIBs but also might catalyze the deployment of 5 V LIBs in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genesis Contingency Planning and Mishap Recovery: The Sample Curation View
NASA Technical Reports Server (NTRS)
Stansbery, E. K.; Allton, J. H.; Allen, C. C.; McNamara, K. M.; Calaway, M.; Rodriques, M. C.
2007-01-01
Planning for sample preservation and curation was part of mission design from the beginning. One of the scientific objectives for Genesis included collecting samples of three regimes of the solar wind in addition to collecting bulk solar wind during the mission. Collectors were fabricated in different thicknesses for each regime of the solar wind and attached to separate frames exposed to the solar wind during specific periods of solar activity associated with each regime. The original plan to determine the solar regime sampled for specific collectors was to identify to which frame the collector was attached. However, the collectors were dislodged during the hard landing making identification by frame attachment impossible. Because regimes were also identified by thickness of the collector, the regime sampled is identified by measuring fragment thickness. A variety of collector materials and thin films applied to substrates were selected and qualified for flight. This diversity provided elemental measurement in more than one material, mitigating effects of diffusion rates and/or radiation damage. It also mitigated against different material and substrate strengths resulting in differing effects of the hard landing. For example, silicon crystal substrates broke into smaller fragments than sapphire-based substrates and diamond surfaces were more resilient to flying debris damage than gold. The primary responsibility of the curation team for recovery was process documentation. Contingency planning for the recovery phase expanded this responsibility to include not only equipment to document, but also gather, contain and identify samples from the landing area and the recovered spacecraft. The team developed contingency plans for various scenarios as part of mission planning that included topographic maps to aid in site recovery and identification of different modes of transport and purge capability depending on damage. A clean tent, set-up at Utah Test & Training Range to control the environment for processing the sample return capsule and cleanly installing a nitrogen purge to the canister, was used to control the environment for extracting collector fragments from the damaged canister and to document and package over 10,000 collector fragments.
Electrodes for microfluidic applications
Crocker, Robert W [Fremont, CA; Harnett, Cindy K [Livermore, CA; Rognlien, Judith L [Livermore, CA
2006-08-22
An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.
Marchant, David D.; Killpatrick, Don H.
1978-01-01
An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.
Ion extraction from a saddle antenna RF surface plasma source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudnikov, V., E-mail: vadim@muonsinc.com; Johnson, R. P.; Han, B.
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H{sup +} and H{sup −} ion generation around 3 to 5 mA/cm{sup 2} per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H{sup −} ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm{sup 2} per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed bymore » heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ∼1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ∼4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H{sup −} beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (∼1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (∼0.8 kW in the plasma) with production of Ic=5 mA, Iex ∼15 mA (Uex=8 kV, Uc=14 kV)« less
Ion extraction from a saddle antenna RF surface plasma source
NASA Astrophysics Data System (ADS)
Dudnikov, V.; Johnson, R. P.; Han, B.; Murray, S.; Pennisi, T.; Piller, C.; Santana, M.; Stockli, M.; Welton, R.; Breitschopf, J.; Dudnikova, G.
2015-04-01
Existing RF Surface Plasma Sources (SPS) for accelerators have specific efficiencies for H+ and H- ion generation around 3 to 5 mA/cm2 per kW, where about 50 kW of RF power is typically needed for 50 mA beam current production. The Saddle Antenna (SA) SPS described here was developed to improve H- ion production efficiency and SPS reliability and availability. At low RF power, the efficiency of positive ion generation in the plasma has been improved to 200 mA/cm2 per kW of RF power at 13.56 MHz. Initial cesiation of the SPS was performed by heating cesium chromate cartridges by discharge as was done in the very first versions of the SPS. A small oven to decompose cesium compounds and alloys was developed and tested. After cesiation, the current of negative ions to the collector was increased from 1 mA to 10 mA with RF power ˜1.5 kW in the plasma (6 mm diameter emission aperture) and up to 30 mA with ˜4 kW RF power in the plasma and 250 Gauss longitudinal magnetic field. The ratio of electron current to negative ion current was improved from 30 to 2. Stable generation of H- beam without intensity degradation was demonstrated in the AlN discharge chamber for a long time at high discharge power in an RF SPS with an external antenna. Continuous wave (CW) operation of the SA SPS has been tested on the small test stand. The general design of the CW SA SPS is based on the pulsed version. Some modifications were made to improve the cooling and cesiation stability. The extracted collector current can be increased significantly by optimizing the longitudinal magnetic field in the discharge chamber. CW operation with negative ion extraction was tested with RF power up to 1.8 kW from the generator (˜1.2 kW in the plasma) with production up to Ic=7 mA. Long term operation was tested with 1.2 kW from the RF generator (˜0.8 kW in the plasma) with production of Ic=5 mA, Iex ˜15 mA (Uex=8 kV, Uc=14 kV).
This study will quantify the daily surrogate surface dry deposition of mercury and nutrient species, and evaluate its relative importance to wet deposition at two sites in Florida over a two-year period. It will identify the major sources contributing to the observed mercury and...
Surface Plasmon Polariton Dependence on Metal Surface Morphology
2007-11-13
is equipped with a high efficiency collector consisting of a parabolic mirror and light guide (2, Fig. 8), which is directly coupled to the... compound of bφ = 0.7 eV and all other values as previously defined, a linear decrease in sheet charge is expected with a maximum value at Vg=0 and
Performance of droplet generator and droplet collector in liquid droplet radiator under microgravity
NASA Astrophysics Data System (ADS)
Totani, T.; Itami, M.; Nagata, H.; Kudo, I.; Iwasaki, A.; Hosokawa, S.
2002-06-01
The Liquid Droplet Radiator (LDR) has an advantage over comparable conventional radiators in terms of the rejected heat power-weight ratio. Therefore, the LDR has attracted attention as an advanced radiator for high-power space systems that will be prerequisite for large space structures. The performance of the LDR under microgravity condition has been studied from the viewpoint of operational space use of the LDR in the future. In this study, the performances of a droplet generator and a droplet collector in the LDR are investigated using drop shafts in Japan: MGLAB and JAMIC. As a result, it is considered that (1) the droplet generator can produce uniform droplet streams in the droplet diameter range from 200 to 280 [µm] and the spacing range from 400 to 950 [µm] under microgravity condition, (2) the droplet collector with the incidence angle of 35 degrees can prevent a uniform droplet stream, in which droplet diameter is 250 [µm] and the velocity is 16 [m/s], from splashing under microgravity condition, whereas splashes may occur at the surface of the droplet collector in the event that a nonuniform droplet stream collides against it.
Aguiló-Aguayo, Noemí; Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas
2017-12-11
New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts.
Nanoparticle flotation collectors--the influence of particle softness.
Yang, Songtao; Razavizadeh, Bi Bi Marzieh; Pelton, Robert; Bruin, Gerard
2013-06-12
The ability of polymeric nanoparticles to promote glass bead and pentlandite (Pn, nickel sulfide mineral) attachment to air bubbles in flotation was measured as a function of the nanoparticle glass transition temperature using six types of nanoparticles based on styrene/N-butylacrylate copolymers. Nanoparticle size, surface charge density, and hydrophobicity were approximately constant over the series. The ability of the nanoparticles to promote air bubble attachment and perform as flotation collectors was significantly greater for softer nanoparticles. We propose that softer nanoparticles were more firmly attached to the glass beads or mineral surface because the softer particles had a greater glass/polymer contact areas and thus stronger overall adhesion. The diameters of the contact areas between polymeric nanoparticles and glass surfaces were estimated with the Young-Laplace equation for soft, liquidlike particles, whereas JKR adhesion theory was applied to the harder polystyrene particles. The diameters of the contact areas were estimated to be more than an order of magnitude greater for the soft particles compared to harder polystyrene particles.
Hydrophobic/Hydrophilic Cooperative Janus System for Enhancement of Fog Collection.
Cao, Moyuan; Xiao, Jiasheng; Yu, Cunming; Li, Kan; Jiang, Lei
2015-09-09
Harvesting micro-droplets from fog is a promising method for solving global freshwater crisis. Different types of fog collectors have been extensively reported during the last decade. The improvement of fog collection can be attributed to the immediate transportation of harvested water, the effective regeneration of the fog gathering surface, etc. Through learning from the nature's strategy for water preservation, the hydrophobic/hydrophilic cooperative Janus system that achieved reinforced fog collection ability is reported here. Directional delivery of the surface water, decreased re-evaporation rate of the harvested water, and thinner boundary layer of the collecting surface contribute to the enhancement of collection efficiency. Further designed cylinder Janus collector can facilely achieve a continuous process of efficient collection, directional transportation, and spontaneous preservation of fog water. This Janus fog harvesting system should improve the understanding of micro-droplet collection system and offer ideas to solve water resource crisis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Majewski, Stanislaw; Weisenberger, Andrew G.
2004-06-15
In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.
Advanced evacuated tube collectors
NASA Astrophysics Data System (ADS)
Schertz, W. W.; Hull, J. R.; Winston, R.; Ogallagher, J.
1985-04-01
The essence of the design concept for these new collectors is the integration of moderate levels of nonimaging concentration inside the evacuated tube itself. This permanently protects the reflection surfaces and allows the use of highly reflecting front surface mirrors with reflectances greater than 95%. Previous fabrication and long term testing of a proof-of-concept prototype has established the technical success of the concept. Present work is directed toward the development of a manufacturable unit that will be suitable for the widest possible range of applications. Design alternatives include scaling up the original prototype's tube diameter from 5 cm to 10 cm, using an internal shaped metal concentrating reflector, using a variety of profile shapes to minimize so-called gap losses and accommodate both single ended and double-ended flow geometries, and allowing the use of heat pipes for the absorber tube.
Effect of work of adhesion on deep bed filtration process
NASA Astrophysics Data System (ADS)
Przekop, Rafał; Jackiewicz, Anna; WoŻniak, Michał; Gradoń, Leon
2016-06-01
Collection of aerosol particles in the particular steps of the technology of their production, and purification of the air at the workplace and atmospheric environment, requires the efficient method of separation of particulate matter from the carrier gas. There are many papers published in last few years in which the deposition of particles on fibrous collectors is considered, Most of them assume that collisions between particle and collector surface is 100% effective. In this work we study the influence of particles and fiber properties on the deposition efficiency. For the purpose of this work the lattice-Boltzmann model describes fluid dynamics, while the solid particle motion is modeled by the Brownian dynamics. The interactions between particles and surface are modelled using energy balanced oscillatory model. The work of adhesion was estimated using Atomic Force Microscopy.
Effect of work of adhesion on deep bed filtration process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Przekop, Rafał; Jackiewicz, Anna; Gradoń, Leon
2016-06-08
Collection of aerosol particles in the particular steps of the technology of their production, and purification of the air at the workplace and atmospheric environment, requires the efficient method of separation of particulate matter from the carrier gas. There are many papers published in last few years in which the deposition of particles on fibrous collectors is considered, Most of them assume that collisions between particle and collector surface is 100% effective. In this work we study the influence of particles and fiber properties on the deposition efficiency. For the purpose of this work the lattice-Boltzmann model describes fluid dynamics,more » while the solid particle motion is modeled by the Brownian dynamics. The interactions between particles and surface are modelled using energy balanced oscillatory model. The work of adhesion was estimated using Atomic Force Microscopy.« less
NASA Technical Reports Server (NTRS)
Selcuk, M. K.
1977-01-01
A test bed for experimental evaluation of a fixed solar collector which combines an evacuated glass tube solar receiver with a flat plate/black chrome plated copper absorber and an asymmetric vee-trough concentrator was designed and constructed. Earlier predictions of thermal performance were compared with test data acquired for a bare vacuum tube receiver; and receiver tubes with Alzak aluminum, aluminized FEP Teflon film laminated sheet metal and second surface ordinary mirror reflectors. Test results and system economics as well as objectives of an ongoing program to obtain long-term performance data are discussed.
A compact E × B filter: A multi-collector cycloidal focusing mass spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blase, Ryan C., E-mail: rblase@swri.edu; Miller, Greg; Brockwell, Tim
2015-10-15
A compact E × B mass spectrometer is presented. The mass spectrometer presented is termed a “perfect focus” mass spectrometer as the resolution of the device is independent of both the initial direction and energy of the ions (spatial and energy independent). The mass spectrometer is small in size (∼10.7 in.{sup 3}) and weight (∼2 kg), making it an attractive candidate for portability when using small, permanent magnets. A multi-collector Faraday cup design allows for the detection of multiple ion beams in discrete collectors simultaneously; providing the opportunity for isotope ratio monitoring. The mass resolution of the device is aroundmore » 400 through narrow collector slits and the sensitivity of the device follows expected theoretical calculations of the ion current produced in the electron impact ion source. Example mass spectra obtained from the cycloidal focusing mass spectrometer are presented as well as information on mass discrimination based on instrumental parameters and isotope ratio monitoring of certain ion signals in separate Faraday cups.« less
Textured carbon surfaces on copper by sputtering
NASA Technical Reports Server (NTRS)
Curren, A. N. (Inventor); Jensen, K. A. (Inventor); Roman, R. F. (Inventor)
1986-01-01
A very thin layer of highly textured carbon is applied to a copper surface by a triode sputtering process. A carbon target and a copper substrate are simultaneously exposed to an argon plasma in a vacuum chamber. The resulting carbon surface is characterized by a dense, random array of needle like spires or peaks which extend perpendicularly from the copper surface. The coated copper is especially useful for electrode plates in multistage depressed collectors.
NASA Astrophysics Data System (ADS)
Briggs, P. J.; Walker, A. B.; Herbert, D. C.
1998-05-01
A one-dimensional self-consistent bipolar Monte Carlo simulation code has been used to model carrier mobilities in strained doped SiGe and the base-collector region of Si/SiGe/Si and SiC/Si heterojunction bipolar transistors (HBTs) with wide collectors, to study the variation of the cutoff frequency 0268-1242/13/5/005/img6 with collector current density 0268-1242/13/5/005/img7. Our results show that while the presence of strain enhances the electron mobility, the scattering from alloy disorder and from ionized impurities reduces the electron mobility so much that it is less than that of Si at the same doping level, leading to larger base transit times 0268-1242/13/5/005/img8 and hence poorer 0268-1242/13/5/005/img6 performance for large 0268-1242/13/5/005/img7 for an Si/SiGe/Si HBT than for an SiC/Si HBT. At high values of 0268-1242/13/5/005/img7, we demonstrate the formation of a parasitic electron barrier at the base-collector interface which causes a sharp increase in 0268-1242/13/5/005/img8 and hence a dramatic reduction in 0268-1242/13/5/005/img6. Based on a comparison of the height of this parasitic barrier with estimates from an analytical model, we suggest a physical mechanism for base pushout after barrier formation that differs somewhat from that given for the analytical model.
Low temperature plasmas induced in SF6 by extreme ultraviolet (EUV) pulses
NASA Astrophysics Data System (ADS)
Bartnik, A.; Skrzeczanowski, W.; Czwartos, J.; Kostecki, J.; Fiedorowicz, H.; Wachulak, P.; Fok, T.
2018-06-01
In this work, a comparative study of extreme ultraviolet (EUV) induced low temperature SF6-based plasmas, created using two different irradiation systems, was performed. Both systems utilized laser-produced plasma (LPP) EUV sources. The essential difference between the systems concerned the formation of the driving EUV beam. The first one contained an efficient ellipsoidal EUV collector allowing for focusing of the EUV radiation at a large distance from the LPP source. The spectrum of focused radiation was limited to the long-wavelength part of the total LPP emission, λ > 8 nm, due to the reflective properties of the collector. The second system did not contain any EUV collector. The gas to be ionized was injected in the vicinity of the LPP, at a distance of the order of 10 mm. In both systems, energies of the driving photons were high enough for dissociative ionization of the SF6 molecules and ionization of atoms or even singly charged ions. Plasmas, created due to these processes, were investigated by spectral measurements in the EUV, ultraviolet (UV), and visible (VIS) spectral ranges. These low temperature plasmas were employed for preliminary experiments concerning surface treatment. The formation of pronounced nanostructures on the silicon surface after plasma treatment was demonstrated.
Analyses of Transistor Punchthrough Failures
NASA Technical Reports Server (NTRS)
Nicolas, David P.
1999-01-01
The failure of two transistors in the Altitude Switch Assembly for the Solid Rocket Booster followed by two additional failures a year later presented a challenge to failure analysts. These devices had successfully worked for many years on numerous missions. There was no history of failures with this type of device. Extensive checks of the test procedures gave no indication for a source of the cause. The devices were manufactured more than twenty years ago and failure information on this lot date code was not readily available. External visual exam, radiography, PEID, and leak testing were performed with nominal results Electrical testing indicated nearly identical base-emitter and base-collector characteristics (both forward and reverse) with a low resistance short emitter to collector. These characteristics are indicative of a classic failure mechanism called punchthrough. In failure analysis punchthrough refers to an condition where a relatively low voltage pulse causes the device to conduct very hard producing localized areas of thermal runaway or "hot spots". At one or more of these hot spots, the excessive currents melt the silicon. Heavily doped emitter material diffuses through the base region to the collector forming a diffusion pipe shorting the emitter to base to collector. Upon cooling, an alloy junction forms between the pipe and the base region. Generally, the hot spot (punch-through site) is under the bond and no surface artifact is visible. The devices were delidded and the internal structures were examined microscopically. The gold emitter lead was melted on one device, but others had anomalies in the metallization around the in-tact emitter bonds. The SEM examination confirmed some anomalies to be cosmetic defects while other anomalies were artifacts of the punchthrough site. Subsequent to these analyses, the contractor determined that some irregular testing procedures occurred at the time of the failures heretofore unreported. These testing irregularities involved the use of a breakout box and were the likely cause of the failures. There was no evidence to suggest a generic failure mechanism was responsible for the failure of these transistors.
Structural evaluation of a DTHR bundle divertor particle collector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prevenslik, T.V.
1980-09-01
The purpose of this report is to present a structural evaluation of the current bundle divertor particle collector BDPC design under a peak heat flux in relation to criteria that protect against coolant leakage into the plasma over replacement schedules planned during DTHR operation. In addition, an assessment of the BDPC structural integrity at higher heat fluxes is presented. Further, recommendations for modifications in the current BDPC design that would improve design reliability to be considered in future design studies are described. Finally, experimental test programs directed to establishing materials data necessary in providing greater confidence in subsequent structural evaluationsmore » of BDPC designs in relation to coolant leakage over planned replacement schedules are identified.« less
Liu, Gao
2017-07-11
Embodiments of the present invention disclose a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer. Another embodiment discloses a method for preparing a composition of matter comprising a plurality of silicon (Si) nanoparticles coated with a conductive polymer comprising providing Si nanoparticles, providing a conductive polymer, preparing a Si nanoparticle, conductive polymer, and solvent slurry, spraying the slurry into a liquid medium that is a non-solvent of the conductive polymer, and precipitating the silicon (Si) nanoparticles coated with the conductive polymer. Another embodiment discloses an anode comprising a current collector, and a composition of matter comprising a silicon (Si) nanoparticle coated with a conductive polymer.
A 13000-hour test of a mercury hollow cathode
NASA Technical Reports Server (NTRS)
Rawlin, V. K.
1973-01-01
A mercury-fed hollow cathode was tested for 12,979 hours in a bell jar at SERT 2 neutralizer operating conditions. The net electron current drawn to a collector was 0.25 ampere at average collector voltages between 21.8 and 36.7 volts. The mercury flow rate was varied from 5.6 to 30.8 equivalent milliamperes to give stable operation at the desired electrode voltages and currents. Variations with time in the neutralizer discharge characteristics were observed and hypothesized to be related to changes in the cathode orifice dimensions and the availability of electron emissive material. A facility failure caused abnormal test conditions for the last 876 hours and led to the cathode heater failure which concluded the test.
NASA Astrophysics Data System (ADS)
Feng, M.; Holonyak, N.; Wang, C. Y.
2017-09-01
Optical bistable devices are fundamental to digital photonics as building blocks of switches, logic gates, and memories in future computer systems. Here, we demonstrate both optical and electrical bistability and capability for switching in a single transistor operated at room temperature. The electro-optical hysteresis is explained by the interaction of electron-hole (e-h) generation and recombination dynamics with the cavity photon modulation in different switching paths. The switch-UP and switch-DOWN threshold voltages are determined by the rate difference of photon generation at the base quantum-well and the photon absorption via intra-cavity photon-assisted tunneling controlled by the collector voltage. Thus, the transistor laser electro-optical bistable switching is programmable with base current and collector voltage, and the basis for high speed optical logic processors.
NASA Astrophysics Data System (ADS)
Krumbholz, S.; Kaiser, J.; Weiland, M.; Hahn, R.; Reichl, H.
Even if many fuel cell applications are ready to start into the market, more research needs to be done to improve the currently achieved power density further. In the power range of about 10-20 W micro-PEM fuel cells have a high improvement potential concerning the current collector design and the design of the passive air supply. These two points have a high impact on the water management of a PEM fuel cell and allow a significant decrease of the fuel cell system in size and weight. The current work shows calculations for the fuel cell impedance based on a mathematical resistance model which was already presented for similarly constructed direct methanol fuel cells (DMFCs) [4]. Selected publications on water uptake and membrane humidification for the used Gore MEAs [6,7] are taken into account. The model is evaluated with realized versions of cathode side current collector designs, which influence the maximum power density and the self-heating of the fuel cell stack. Several measurement results are presented, which can confirm the validity of the used model. A very low opening ratio of less than 0.1 induces a very high concentration gradient of the generated water in relation to the net water outtake. From this it follows that the cell impedance is very low and the membrane has a very high ionic conductivity. Additionally it can be shown that the power density of these fuel cells is twice as high as for the cells with an opening ratio greater than 0.45.
Porous CoO nanostructures grown on three-dimension graphene foams for supercapacitors electrodes
NASA Astrophysics Data System (ADS)
Deng, Wei; Lan, Wei; Sun, Yaru; Su, Qing; Xie, Erqing
2014-06-01
Three-dimensional graphene foams with good conductivity, light weight and chemical stability were produced by chemical vapor deposition. Then porous CoO nanowalls were deposited on graphene foam by a simple hydrothermal process and subsequent thermal treatment. This hybrid structures possessing large surface area in which the CoO nanowalls are separated by graphene foam with robust adhesion can directly serve as supercapacitor electrode including current collector without the need of any other binder materials and conductive agents. Electrochemical tests manifest a high specific capacitance of 231.87 F/g scaled to the mass of CoO (139.47 F/g for total mass of electrodes) at 1 A/g current, good rate capability and excellent cycling performance of >98% capacitance retention over 1000 cycles at 7 A/g current. The high conductivity, light weight and rational architectures, which provide fast electron pathway and the low diffusion resistance of ions, are responsible for the high performance of the electrodes.
Integrated current collector and catalyst support
Bregoli, Lawrence J.
1985-10-22
An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.
Integrated current collector and catalyst support
Bregoli, L.J.
1984-10-17
An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer. The particulate material positioned within the gas flow channels may be a ceramic conductor such as a perovskite or a spinel for enhanced current collection.
Layered electrode for electrochemical cells
Swathirajan, Swathy; Mikhail, Youssef M.
2001-01-01
There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghasemi, Hadi; Marconnet, Amy Marie; Chen, Gang
A localized heating structure, and method of forming same, for use in solar systems includes a thermally insulating layer having interconnected pores, a density of less than about 3000 kg/m.sup.3, and a hydrophilic surface, and an expanded carbon structure adjacent to the thermally insulating layer. The expanded carbon structure has a porosity of greater than about 80% and a hydrophilic surface.
Naval electrochemical corrosion reducer
Clark, Howard L.
1991-10-01
A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.
Space-charge-limited solid-state triode
NASA Technical Reports Server (NTRS)
Shumka, A. (Inventor)
1975-01-01
A solid-state triode is provided from a wafer of nearinstrinsic semiconductor material sliced into filaments of rectangular cross section. Before slicing, emitter and collector regions are formed on the narrow sides of the filaments, and after slicing gate regions are formed in arrow strips extending longitudinally along the midsections of the wide sides of the filaments. Contacts are then formed on the emitter, collector and gate regions of each filament individually for a single filament device, or in parallel for an array of filament devices to increase load current.
A study of wind effects on collector performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onur, N.; Hewitt, J.C. Jr.
1980-08-01
Convective heat transfer experiments have been run on flat-plate collectors for tilt angles ranging from the horizontal to the vertical and for five different flow velocities. Experimental data are used to evaluate the currently used models, namely, those of Jurges (1924), Drake (1948), and Sparrow et al (1970-79), and it is shown that although none of these models provides an exact fit, they do represent bounds for the present data. It is also shown that the effect of flow from the northern quadrants provides an additional heat loss reduction of 10 to 20%.
Expansion of Lithium Ion Pouch Cell Batteries: Observations from Neutron Imaging
2012-12-21
98) Prescribed by ANSI Std Z39-18 2 In this paper we document the expansion of Lithium Iron Phosphate ( LiFePO4 ) pouch cells upon charging. The...Lithium Iron Phosphate ( LiFePO4 ) on an aluminum collector. The electrodes were hand stacked with a woven separator and banded together using Kapton tape...and finally re-sealed in a glovebox. The LiFePO4 active material is 54 μm thick applied to each side of a 20 μm aluminum current collector, yielding a
Verification of high efficient broad beam cold cathode ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel Reheem, A. M., E-mail: amreheem2009@yahoo.com; Radiation Physics Department, National Center for Radiation Research and Technology; Ahmed, M. M.
2016-08-15
An improved form of cold cathode ion source has been designed and constructed. It consists of stainless steel hollow cylinder anode and stainless steel cathode disc, which are separated by a Teflon flange. The electrical discharge and output characteristics have been measured at different pressures using argon, nitrogen, and oxygen gases. The ion exit aperture shape and optimum distance between ion collector plate and cathode disc are studied. The stable discharge current and maximum output ion beam current have been obtained using grid exit aperture. It was found that the optimum distance between ion collector plate and ion exit aperturemore » is equal to 6.25 cm. The cold cathode ion source is used to deposit aluminum coating layer on AZ31 magnesium alloy using argon ion beam current which equals 600 μA. Scanning electron microscope and X-ray diffraction techniques used for characterizing samples before and after aluminum deposition.« less
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
49 CFR 229.77 - Current collectors.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Electrical System § 229... engineer's normal position in the cab. Pantographs that automatically rise when released shall have an...
Chamsa-ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard
2017-01-01
The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented. PMID:28561802
Chamsa-Ard, Wisut; Brundavanam, Sridevi; Fung, Chun Che; Fawcett, Derek; Poinern, Gerrard
2017-05-31
The global demand for energy is increasing and the detrimental consequences of rising greenhouse gas emissions, global warming and environmental degradation present major challenges. Solar energy offers a clean and viable renewable energy source with the potential to alleviate the detrimental consequences normally associated with fossil fuel-based energy generation. However, there are two inherent problems associated with conventional solar thermal energy conversion systems. The first involves low thermal conductivity values of heat transfer fluids, and the second involves the poor optical properties of many absorbers and their coating. Hence, there is an imperative need to improve both thermal and optical properties of current solar conversion systems. Direct solar thermal absorption collectors incorporating a nanofluid offers the opportunity to achieve significant improvements in both optical and thermal performance. Since nanofluids offer much greater heat absorbing and heat transfer properties compared to traditional working fluids. The review summarizes current research in this innovative field. It discusses direct solar absorber collectors and methods for improving their performance. This is followed by a discussion of the various types of nanofluids available and the synthesis techniques used to manufacture them. In closing, a brief discussion of nanofluid property modelling is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somerville, L.; Bareno, J.; Trask, S.
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
Somerville, L.; Bareno, J.; Trask, S.; ...
2016-10-22
Increased charging rates negatively affect the lifetime of lithium-ion cells by increasing cell resistance and reducing capacity. This work is a post-mortem study of 18650 cells subjected to charge rates of 0.7-, 2-, 4-, and 6-C. For cells charged at 0.7-C to 4-C, this performance degradation is primarily related to surface film thickness with no observable change in surface film chemical composition. However, at charge rates of 6-C, the chemical composition of the surface film changes significantly, suggesting that this change is the reason for the sharper increase in cell resistance compared to the lower charge rates. In addition, wemore » found that surface film formation was not uniform across the electrode. Surface film was thicker and chemically different along the central band of the electrode “jelly roll”. This result is most likely attributable to an increase in temperature that results from non-uniform electrode wetting during manufacture. As a result, this non-uniform change further resulted in active material delamination from the current collector owing to chemical changes to the binder for the cell charged at 6-C.« less
Spatial variability of induced ground-water recharge beneath the Russian River, California
NASA Astrophysics Data System (ADS)
Rosenberry, D. O.; Hatch, C. E.; Cox, M. H.; Zamora, C.; Cloud, A.; Constantz, J. E.; Seymour, D.
2004-12-01
The Sonoma County Water Agency extracts water from the alluvial aquifer adjacent to and beneath the Russian River via large-volume Ranney-type collector wells. To aid in this extraction, the stage of the river is increased approximately 3 meters by an inflatable dam. In addition, raising the dam allows water to be diverted into infiltration basins that are located adjacent to the river. Removal of aquifer water induces large fluxes from surface water to ground water through the beds of the infiltration basins and the river. Total extraction during maximum summer withdrawals via five collector wells indicates an average flux from surface water to ground water through the riverbed and infiltration basins of 153 cm/d. Measurements of flux using in-river and in-pond piezometers, diurnal sediment-temperature data, and seepage meters, indicate that actual seepage fluxes are spatially variable and large seepage fluxes are concentrated in specific locations, some of which may not be intuitive. For example, we expected greatest induced seepage fluxes to occur above laterals that extend beneath the river and deliver water to a collector well. Seepage flux along a transverse transect of the riverbed that was located above laterals from one of the collector wells averaged 10 cm/d. At the same time, seepage flux along a transect that was 500 m upstream, and farther from the influence of the collector-well system, averaged 40 cm/d. Seepage fluxes from the central portion of one of the recharge basins averaged 3 cm/d whereas seepage fluxes near the margin of that infiltration basin averaged 250 cm/d. Seepage fluxes derived from in-stream-piezometer Darcy calculations were surprisingly consistent with seepage fluxes derived from seepage-meter measurements. Seepage fluxes derived from temperature measurements were slightly less comparable to the piezometer and seepage-meter measurements. The 121 cm/d average of all seepage-flux measurements was similar to the spatially-integrated rate (153 cm/d) based on the volume of water extracted from the river by the pumping wells divided by the affected area of the riverbed and the flooded infiltration ponds.
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice.
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L; Biermann, Klaus; Grahn, Holger T
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs/Al_{0.45}Ga_{0.55}As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
Noise-enhanced chaos in a weakly coupled GaAs/(Al,Ga)As superlattice
NASA Astrophysics Data System (ADS)
Yin, Zhizhen; Song, Helun; Zhang, Yaohui; Ruiz-García, Miguel; Carretero, Manuel; Bonilla, Luis L.; Biermann, Klaus; Grahn, Holger T.
2017-01-01
Noise-enhanced chaos in a doped, weakly coupled GaAs /Al0.45Ga0.55As superlattice has been observed at room temperature in experiments as well as in the results of the simulation of nonlinear transport based on a discrete tunneling model. When external noise is added, both the measured and simulated current-versus-time traces contain irregularly spaced spikes for particular applied voltages, which separate a regime of periodic current oscillations from a region of no current oscillations at all. In the voltage region without current oscillations, the electric-field profile consist of a low-field domain near the emitter contact separated by a domain wall consisting of a charge accumulation layer from a high-field regime closer to the collector contact. With increasing noise amplitude, spontaneous chaotic current oscillations appear over a wider bias voltage range. For these bias voltages, the domain boundary between the two electric-field domains becomes unstable and very small current or voltage fluctuations can trigger the domain boundary to move toward the collector and induce chaotic current spikes. The experimentally observed features are qualitatively very well reproduced by the simulations. Increased noise can consequently enhance chaotic current oscillations in semiconductor superlattices.
ENHANCED PRACTICAL PHOTOSYNTHETIC CO2 MITIGATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Gregory Kremer; Dr. David J. Bayless; Dr. Morgan Vis
2001-10-15
This report documents significant achievements in the Enhanced Practical Photosynthetic CO{sub 2} Mitigation project during the period from 10/03/2000 through 10/02/2001. Most of the achievements are milestones in our efforts to complete the tasks and subtasks that constitute the project objectives. This is the fourth quarterly report for this project, so it also serves as a year-1 project review. We have made significant progress on our Phase I objectives, and our current efforts are focused on fulfilling these research objectives ''on time'' relative to the project timeline. Overall, we believe that we are on schedule to complete Phase I activitiesmore » by 10/2002, which is the milestone date from the original project timeline. Our results to date concerning the individual factors which have the most significant effect on CO{sub 2} uptake are inconclusive, but we have gathered useful information about the effects of lighting, temperature and CO{sub 2} concentration on one particular organism (Nostoc) and significant progress has been made in identifying other organisms that are more suitable for use in the bioreactor due to their better tolerance for the high temperatures likely to be encountered in the flue gas stream. Our current tests are focused on one such thermophilic organism (Cyanidium), and an enlarged bioreactor system (CRF-2) has been prepared for testing this organism. Tests on the enhanced mass transfer CO{sub 2} absorption technique are underway and useful information is currently being collected concerning pressure drop. The solar collectors for the deep-penetration hybrid solar lighting system have been designed and a single solar collector tracking unit is being prepared for installation in the pilot scale bioreactor system currently under construction. Much progress has been made in designing the fiber optic light delivery system, but final selection of the ''optimum'' delivery system design depends on many factors, most significantly the configuration and orientation of the growth surfaces in the bioreactor. For the growth surface subsystem we have identified advantages and disadvantages for several candidate growth surface materials, we have built and tested various ''screen'' systems and fluid delivery systems, and we continue to test compatibility of the candidate materials with the organisms and with the moisture delivery and harvesting system designs. These tests will be ongoing until an ''optimum'' combination of growth surface material/organism type/harvesting system is identified. For the harvesting system, a nozzle-based water jet system has been shown to be effective, but it has disadvantages for the overall system design in terms of space utilization. A streamlined and integrated screen wetting/harvesting system design is currently under development and will be the focus of harvesting system tests in the foreseeable future. This report addresses each of the key project tasks as defined in the statement of work, giving both a summary of key accomplishments over the past year and a plan for future work.« less