The equivalent magnetizing method applied to the design of gradient coils for MRI.
Lopez, Hector Sanchez; Liu, Feng; Crozier, Stuart
2008-01-01
This paper presents a new method for the design of gradient coils for Magnetic Resonance Imaging systems. The method is based on the equivalence between a magnetized volume surrounded by a conducting surface and its equivalent representation in surface current/charge density. We demonstrate that the curl of the vertical magnetization induces a surface current density whose stream line defines the coil current pattern. This method can be applied for coils wounds on arbitrary surface shapes. A single layer unshielded transverse gradient coil is designed and compared, with the designs obtained using two conventional methods. Through the presented example we demonstrate that the generated unconventional current patterns obtained using the magnetizing current method produces a superior gradient coil performance than coils designed by applying conventional methods.
Inada, Satoshi; Masuda, Takanori; Maruyama, Naoya; Yamashita, Yukari; Sato, Tomoyasu; Imada, Naoyuki
2016-01-01
To evaluate the image quality and effect of radiation dose reduction by setting for computed tomography automatic exposure control system (CT-AEC) in computed tomographic angiography (CTA) of lower extremity artery. Two methods of setting were compared for CT-AEC [conventional and contrast-to-noise ratio (CNR) methods]. Conventional method was set noise index (NI): 14and tube current threshold: 10-750 mA. CNR method was set NI: 18, minimum tube current: (X+Y)/2 mA (X, Y: maximum X (Y)-axis tube current value of leg in NI: 14), and maximum tube current: 750 mA. The image quality was evaluated by CNR, and radiation dose reduction was evaluated by dose-length-product (DLP). In conventional method, mean CNRs for pelvis, femur, and leg were 19.9±4.8, 20.4±5.4, and 16.2±4.3, respectively. There was a significant difference between the CNRs of pelvis and leg (P<0.001), and between femur and leg (P<0.001). In CNR method, mean CNRs for pelvis, femur, and leg were 15.2±3.3, 15.3±3.2, and 15.3±3.1, respectively; no significant difference between pelvis, femur, and leg (P=0.973) in CNR method was observed. Mean DLPs were 1457±434 mGy⋅cm in conventional method, and 1049±434 mGy·cm in CNR method. There was a significant difference in the DLPs of conventional method and CNR method (P<0.001). CNR method gave equal CNRs for pelvis, femur, and leg, and was beneficial for radiation dose reduction in CTA of lower extremity artery.
Nilsson, Markus; Szczepankiewicz, Filip; van Westen, Danielle; Hansson, Oskar
2015-01-01
Conventional motion and eddy-current correction, where each diffusion-weighted volume is registered to a non diffusion-weighted reference, suffers from poor accuracy for high b-value data. An alternative approach is to extrapolate reference volumes from low b-value data. We aim to compare the performance of conventional and extrapolation-based correction of diffusional kurtosis imaging (DKI) data, and to demonstrate the impact of the correction approach on group comparison studies. DKI was performed in patients with Parkinson's disease dementia (PDD), and healthy age-matched controls, using b-values of up to 2750 s/mm2. The accuracy of conventional and extrapolation-based correction methods was investigated. Parameters from DTI and DKI were compared between patients and controls in the cingulum and the anterior thalamic projection tract. Conventional correction resulted in systematic registration errors for high b-value data. The extrapolation-based methods did not exhibit such errors, yielding more accurate tractography and up to 50% lower standard deviation in DKI metrics. Statistically significant differences were found between patients and controls when using the extrapolation-based motion correction that were not detected when using the conventional method. We recommend that conventional motion and eddy-current correction should be abandoned for high b-value data in favour of more accurate methods using extrapolation-based references.
REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS
The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...
First Order Reliability Application and Verification Methods for Semistatic Structures
NASA Technical Reports Server (NTRS)
Verderaime, Vincent
1994-01-01
Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored by conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments, its stress audits are shown to be arbitrary and incomplete, and it compromises high strength materials performance. A reliability method is proposed which combines first order reliability principles with deterministic design variables and conventional test technique to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety index expression. The application is reduced to solving for a factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and with the pace of semistatic structural designs.
2011-07-01
to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT...these innovative methods with conventional diagnostic tools that are currently used for assessing bioremediation performance. 132 Rula Deeb (510) 596...conventional diagnostic tools that are currently used for assessing bioremediation performance. DEMONSTRATION RESULTS 3-D multi-level systems
Conventional approaches to water quality characterization can provide data on individual chemical components of each water sample. This analyte-by-analyte approach currently serves many useful research and compliance monitoring needs. However these approaches, which require a ...
DOT National Transportation Integrated Search
1977-07-01
The workshop focused on current methods of assessing the effectiveness of crime and vandalism reduction methods that are used in conventional urban mass transit systems, and on how they might be applied to new AGT systems. Conventional as well as nov...
Adaptive Sampling using Support Vector Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. Mandelli; C. Smith
2012-11-01
Reliability/safety analysis of stochastic dynamic systems (e.g., nuclear power plants, airplanes, chemical plants) is currently performed through a combination of Event-Tress and Fault-Trees. However, these conventional methods suffer from certain drawbacks: • Timing of events is not explicitly modeled • Ordering of events is preset by the analyst • The modeling of complex accident scenarios is driven by expert-judgment For these reasons, there is currently an increasing interest into the development of dynamic PRA methodologies since they can be used to address the deficiencies of conventional methods listed above.
In vitro and in vivo comparisons of constant resistance AC iontophoresis and DC iontophoresis.
Li, S Kevin; Higuchi, William I; Zhu, Honggang; Kern, Steven E; Miller, David J; Hastings, Matthew S
2003-09-04
A previous in vitro constant electrical resistance alternating current (AC) iontophoresis study with human epidermal membrane (HEM) and a model neutral permeant has shown less inter- and intra-sample variability in iontophoretic transport relative to conventional constant direct current (DC) iontophoresis. The objectives of the present study were to address the following questions. (1) Can the skin electrical resistance be maintained at a constant level by AC in humans in vivo? (2) Are the in vitro data with HEM representative of those in vivo? (3) Does constant skin resistance AC iontophoresis have less inter- and intra-sample variability than conventional constant current DC iontophoresis in vivo? (4) What are the electrical and the barrier properties of skin during iontophoresis in vivo? In the present study, in vitro HEM experiments were carried out with the constant resistance AC and the conventional constant current DC methods using mannitol and glucose as the neutral model permeants. In vivo human experiments were performed using glucose as the permeant with a constant skin resistance AC only protocol and two conventional constant current DC methods (continuous constant current DC and constant current DC with its polarity alternated every 10 min with a 3:7 on:off duty cycle). Constant current DC iontophoresis was conducted with commercial constant current DC devices, and constant resistance AC iontophoresis was carried out by reducing and maintaining the skin resistance at a constant target value with AC supplied from a function generator. This study shows that (1) skin electrical resistance can be maintained at a constant level during AC iontophoresis in vivo; (2) HEM in vitro and human skin in vivo demonstrate similar electrical and barrier properties, and these properties are consistent with our previous findings; (3) there is general qualitative and semi-quantitative agreement between the HEM data in vitro and human skin data in vivo; and (4) constant skin resistance AC iontophoresis generally provides less inter- and intra-subject variability than conventional constant current DC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakanishi, Hidetoshi, E-mail: nakanisi@screen.co.jp; Ito, Akira, E-mail: a.ito@screen.co.jp; Takayama, Kazuhisa, E-mail: takayama.k0123@gmail.com
2015-11-15
A laser terahertz emission microscope (LTEM) can be used for noncontact inspection to detect the waveforms of photoinduced terahertz emissions from material devices. In this study, we experimentally compared the performance of LTEM with conventional analysis methods, e.g., electroluminescence (EL), photoluminescence (PL), and laser beam induced current (LBIC), as an inspection method for solar cells. The results showed that LTEM was more sensitive to the characteristics of the depletion layer of the polycrystalline solar cell compared with EL, PL, and LBIC and that it could be used as a complementary tool to the conventional analysis methods for a solar cell.
First-order reliability application and verification methods for semistatic structures
NASA Astrophysics Data System (ADS)
Verderaime, V.
1994-11-01
Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored in conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments; stress audits are shown to be arbitrary and incomplete, and the concept compromises the performance of high-strength materials. A reliability method is proposed that combines first-order reliability principles with deterministic design variables and conventional test techniques to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety-index expression. The application is reduced to solving for a design factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this design factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and the development of semistatic structural designs.
Hey, Hwee Weng Dennis; Lau, Eugene Tze-Chun; Lim, Joel-Louis; Choong, Denise Ai-Wen; Tan, Chuen-Seng; Liu, Gabriel Ka-Po; Wong, Hee-Kit
2017-03-01
Flexion radiographs have been used to identify cases of spinal instability. However, current methods are not standardized and are not sufficiently sensitive or specific to identify instability. This study aimed to introduce a new slump sitting method for performing lumbar spine flexion radiographs and comparison of the angular range of motions (ROMs) and displacements between the conventional method and this new method. This study used is a prospective study on radiological evaluation of the lumbar spine flexion ROMs and displacements using dynamic radiographs. Sixty patients were recruited from a single spine tertiary center. Angular and displacement measurements of lumbar spine flexion were carried out. Participants were randomly allocated into two groups: those who did the new method first, followed by the conventional method versus those who did the conventional method first, followed by the new method. A comparison of the angular and displacement measurements of lumbar spine flexion between the conventional method and the new method was performed and tested for superiority and non-inferiority. The measurements of global lumbar angular ROM were, on average, 17.3° larger (p<.0001) using the new slump sitting method compared with the conventional method. They were most significant at the levels of L3-L4, L4-L5, and L5-S1 (p<.0001, p<.0001 and p=.001, respectively). There was no significant difference between both methods when measuring lumbar displacements (p=.814). The new method of slump sitting dynamic radiograph was shown to be superior to the conventional method in measuring the angular ROM and non-inferior to the conventional method in the measurement of displacement. Copyright © 2016 Elsevier Inc. All rights reserved.
Intra prediction using face continuity in 360-degree video coding
NASA Astrophysics Data System (ADS)
Hanhart, Philippe; He, Yuwen; Ye, Yan
2017-09-01
This paper presents a new reference sample derivation method for intra prediction in 360-degree video coding. Unlike the conventional reference sample derivation method for 2D video coding, which uses the samples located directly above and on the left of the current block, the proposed method considers the spherical nature of 360-degree video when deriving reference samples located outside the current face to which the block belongs, and derives reference samples that are geometric neighbors on the sphere. The proposed reference sample derivation method was implemented in the Joint Exploration Model 3.0 (JEM-3.0) for the cubemap projection format. Simulation results for the all intra configuration show that, when compared with the conventional reference sample derivation method, the proposed method gives, on average, luma BD-rate reduction of 0.3% in terms of the weighted spherical PSNR (WS-PSNR) and spherical PSNR (SPSNR) metrics.
NASA Astrophysics Data System (ADS)
Iwaki, Sunao; Ueno, Shoogo
1998-06-01
The weighted minimum-norm estimation (wMNE) is a popular method to obtain the source distribution in the human brain from magneto- and electro- encephalograpic measurements when detailed information about the generator profile is not available. We propose a method to reconstruct current distributions in the human brain based on the wMNE technique with the weighting factors defined by a simplified multiple signal classification (MUSIC) prescanning. In this method, in addition to the conventional depth normalization technique, weighting factors of the wMNE were determined by the cost values previously calculated by a simplified MUSIC scanning which contains the temporal information of the measured data. We performed computer simulations of this method and compared it with the conventional wMNE method. The results show that the proposed method is effective for the reconstruction of the current distributions from noisy data.
Strained quantum well photovoltaic energy converter
NASA Technical Reports Server (NTRS)
Freundlich, Alexandre (Inventor); Renaud, Philippe (Inventor); Vilela, Mauro Francisco (Inventor); Bensaoula, Abdelhak (Inventor)
1998-01-01
An indium phosphide photovoltaic cell is provided where one or more quantum wells are introduced between the conventional p-conductivity and n-conductivity indium phosphide layer. The approach allows the cell to convert the light over a wider range of wavelengths than a conventional single junction cell and in particular convert efficiently transparency losses of the indium phosphide conventional cell. The approach hence may be used to increase the cell current output. A method of fabrication of photovoltaic devices is provided where ternary InAsP and InGaAs alloys are used as well material in the quantum well region and results in an increase of the cell current output.
Awareness and Use of Non-conventional Tobacco Products Among U.S. Students, 2012
Wang, Baoguang; King, Brian A.; Corey, Catherine G.; Arrazola, René A.; Johnson, Sarah E.
2015-01-01
Background Increasing diversity of the tobacco product landscape, including electronic cigarettes (e-cigarettes), hookah, snus, and dissolvable tobacco products (dissolvables), raises concerns about the public health impact of these non-conventional tobacco products among youth. Purpose This study assessed awareness, ever use, and current use of non-conventional tobacco products among U.S. students in 2012, overall and by demographic and tobacco use characteristics. Methods Data from the 2012 National Youth Tobacco Survey, a nationally representative survey of U.S. middle and high school students, were analyzed in 2013. Prevalence of awareness, ever use, and current use of e-cigarettes, hookah, snus, and dissolvables were calculated overall and by sex, school level, race/ethnicity, and conventional tobacco product use, including cigarettes, cigars, or smokeless tobacco (chewing tobacco, snuff, or dip). Results Overall, 50.3% of students were aware of e-cigarettes; prevalence of ever and current use of e-cigarettes was 6.8% and 2.1%, respectively. Awareness of hookah was 41.2% among all students, and that of ever and current use were 8.9% and 3.6%, respectively. Overall awareness; ever; and current use of snus (32%, 5.3%, 1.7%, respectively) and dissolvables (19.3%, 2.0%, 0.7%, respectively) were generally lower than those of e-cigarettes or hookah. Conventional tobacco product users were more likely to be aware of and to use non-conventional tobacco products. Conclusions Many U.S. students are aware of and use non-conventional tobacco products. Evidence-based interventions should be implemented to prevent and reduce all tobacco use among youth. PMID:25044194
Discharge measurements using a broad-band acoustic Doppler current profiler
Simpson, Michael R.
2002-01-01
The measurement of unsteady or tidally affected flow has been a problem faced by hydrologists for many years. Dynamic discharge conditions impose an unreasonably short time constraint on conventional current-meter discharge-measurement methods, which typically last a minimum of 1 hour. Tidally affected discharge can change more than 100 percent during a 10-minute period. Over the years, the U.S. Geological Survey (USGS) has developed moving-boat discharge-measurement techniques that are much faster but less accurate than conventional methods. For a bibliography of conventional moving-boat publications, see Simpson and Oltmann (1993, page 17). The advent of the acoustic Doppler current profiler (ADCP) made possible the development of a discharge-measurement system capable of more accurately measuring unsteady or tidally affected flow. In most cases, an ADCP discharge-measurement system is dramatically faster than conventional discharge-measurement systems, and has comparable or better accuracy. In many cases, an ADCP discharge-measurement system is the only choice for use at a particular measurement site. ADCP systems are not yet ?turnkey;? they are still under development, and for proper operation, require a significant amount of operator training. Not only must the operator have a rudimentary knowledge of acoustic physics, but also a working knowledge of ADCP operation, the manufacturer's discharge-measurement software, and boating techniques and safety.
Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted
2016-09-16
distribution. Simulation results, using both an optimized coil and a conventional coil, are generated using the finite element method (FEM) model...optimized coil and a conventional coil, are generated using the finite element method (FEM) model. The signal magnitude for an optimized coil is seen to be...optimized coil. 4. Model Based Performance Analysis A 3D finite element model (FEM) is used to analyze the performance of the optimized coil and
Measurement technology of RF interference current in high current system
NASA Astrophysics Data System (ADS)
Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei
2018-06-01
Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.
Management system to a photovoltaic panel based on the measurement of short-circuit currents
NASA Astrophysics Data System (ADS)
Dordescu, M.
2016-12-01
This article is devoted to fundamental issues arising from operation in terms of increased energy efficiency for photovoltaic panel (PV). By measuring the current from functioning cage determine the current value prescribed amount corresponding to maximum power point results obtained by requiring proof of pregnancy with this method are the maximum energy possible, thus justifying the usefulness of this process very simple and inexpensive to implement in practice. The proposed adjustment method is much simpler and more economical than conventional methods that rely on measuring power cut.
Current trends in endotoxin detection and analysis of endotoxin-protein interactions.
Dullah, Elvina Clarie; Ongkudon, Clarence M
2017-03-01
Endotoxin is a type of pyrogen that can be found in Gram-negative bacteria. Endotoxin can form a stable interaction with other biomolecules thus making its removal difficult especially during the production of biopharmaceutical drugs. The prevention of endotoxins from contaminating biopharmaceutical products is paramount as endotoxin contamination, even in small quantities, can result in fever, inflammation, sepsis, tissue damage and even lead to death. Highly sensitive and accurate detection of endotoxins are keys in the development of biopharmaceutical products derived from Gram-negative bacteria. It will facilitate the study of the intermolecular interaction of an endotoxin with other biomolecules, hence the selection of appropriate endotoxin removal strategies. Currently, most researchers rely on the conventional LAL-based endotoxin detection method. However, new methods have been and are being developed to overcome the problems associated with the LAL-based method. This review paper highlights the current research trends in endotoxin detection from conventional methods to newly developed biosensors. Additionally, it also provides an overview of the use of electron microscopy, dynamic light scattering (DLS), fluorescence resonance energy transfer (FRET) and docking programs in the endotoxin-protein analysis.
Single-incision Laparoscopic Surgery (SILS) in general surgery: a review of current practice.
Froghi, Farid; Sodergren, Mikael Hans; Darzi, Ara; Paraskeva, Paraskevas
2010-08-01
Single-incision laparoscopic surgery (SILS) aims to eliminate multiple port incisions. Although general operative principles of SILS are similar to conventional laparoscopic surgery, operative techniques are not standardized. This review aims to evaluate the current use of SILS published in the literature by examining the types of operations performed, techniques employed, and relevant complications and morbidity. This review considered a total of 94 studies reporting 1889 patients evaluating 17 different general surgical operations. There were 8 different access techniques reported using conventional laparoscopic instruments and specifically designed SILS ports. There is extensive heterogeneity associated with operating methods and in particular ways of overcoming problems with retraction and instrumentation. Published complications, morbidity, and hospital length of stay are comparable to conventional laparoscopy. Although SILS provides excellent cosmetic results and morbidity seems similar to conventional laparoscopy, larger randomized controlled trials are needed to assess the safety and efficacy of this novel technique.
Mata, Gardênia Márcia Silva Campos; Martins, Evandro; Machado, Solimar Gonçalves; Pinto, Maximiliano Soares; de Carvalho, Antônio Fernandes; Vanetti, Maria Cristina Dantas
2016-01-01
The ability of pathogens to survive cheese ripening is a food-security concern. Therefore, this study aimed to evaluate the performance of two alternative methods of analysis of Listeria during the ripening of artisanal Minas cheese. These methods were tested and compared with the conventional method: Lateral Flow System™, in cheeses produced on laboratory scale using raw milk collected from different farms and inoculated with Listeria innocua; and VIDAS(®)-LMO, in cheese samples collected from different manufacturers in Serro, Minas Gerais, Brazil. These samples were also characterized in terms of lactic acid bacteria, coliforms and physical-chemical analysis. In the inoculated samples, L. innocua was detected by Lateral Flow System™ method with 33% false-negative and 68% accuracy results. L. innocua was only detected in the inoculated samples by the conventional method at 60-days of cheese ripening. L. monocytogenes was not detected by the conventional and the VIDAS(®)-LMO methods in cheese samples collected from different manufacturers, which impairs evaluating the performance of this alternative method. We concluded that the conventional method provided a better recovery of L. innocua throughout cheese ripening, being able to detect L. innocua at 60-day, aging period which is required by the current legislation. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
A Shot Number Based Approach to Performance Analysis in Table Tennis
Yoshida, Kazuto; Yamada, Koshi
2017-01-01
Abstract The current study proposes a novel approach that improves the conventional performance analysis in table tennis by introducing the concept of frequency, or the number of shots, of each shot number. The improvements over the conventional method are as follows: better accuracy of the evaluation of skills and tactics of players, additional insights into scoring and returning skills and ease of understanding the results with a single criterion. The performance analysis of matches played at the 2012 Summer Olympics in London was conducted using the proposed method. The results showed some effects of the shot number and gender differences in table tennis. Furthermore, comparisons were made between Chinese players and players from other countries, what threw light on the skills and tactics of the Chinese players. The present findings demonstrate that the proposed method provides useful information and has some advantages over the conventional method. PMID:28210334
Intelligent control for PMSM based on online PSO considering parameters change
NASA Astrophysics Data System (ADS)
Song, Zhengqiang; Yang, Huiling
2018-03-01
A novel online particle swarm optimization method is proposed to design speed and current controllers of vector controlled interior permanent magnet synchronous motor drives considering stator resistance variation. In the proposed drive system, the space vector modulation technique is employed to generate the switching signals for a two-level voltage-source inverter. The nonlinearity of the inverter is also taken into account due to the dead-time, threshold and voltage drop of the switching devices in order to simulate the system in the practical condition. Speed and PI current controller gains are optimized with PSO online, and the fitness function is changed according to the system dynamic and steady states. The proposed optimization algorithm is compared with conventional PI control method in the condition of step speed change and stator resistance variation, showing that the proposed online optimization method has better robustness and dynamic characteristics compared with conventional PI controller design.
Design principles for shift current photovoltaics
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; ...
2017-01-25
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. Furthermore, by analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. This method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenidesmore » such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W -1 . Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.« less
Design principles for shift current photovoltaics
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando; Coh, Sinisa; Moore, Joel E.
2017-01-01
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. By analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. Our method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenides such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W−1. Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells. PMID:28120823
Design principles for shift current photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Ashley M.; M. Fregoso, Benjamin; de Juan, Fernando
While the basic principles of conventional solar cells are well understood, little attention has gone towards maximizing the efficiency of photovoltaic devices based on shift currents. Furthermore, by analysing effective models, here we outline simple design principles for the optimization of shift currents for frequencies near the band gap. This method allows us to express the band edge shift current in terms of a few model parameters and to show it depends explicitly on wavefunctions in addition to standard band structure. We use our approach to identify two classes of shift current photovoltaics, ferroelectric polymer films and single-layer orthorhombic monochalcogenidesmore » such as GeS, which display the largest band edge responsivities reported so far. Moreover, exploring the parameter space of the tight-binding models that describe them we find photoresponsivities that can exceed 100 mA W -1 . Our results illustrate the great potential of shift current photovoltaics to compete with conventional solar cells.« less
Bridson, R H; Santos, R C D; Al-Duri, B; McAllister, S M; Robertson, J; Alpar, H O
2006-06-01
Numerous strategies are currently available for preparing liposomes, although no single method is ideal in every respect. Two methods for producing liposomes using compressed carbon dioxide in either its liquid or supercritical state were therefore investigated as possible alternatives to the conventional techniques currently used. The first technique used modified compressed carbon dioxide as a solvent system. The way in which changes in pressure, temperature, apparatus geometry and solvent flow rate affected the size distributions of the formulations was examined. In general, liposomes in the nano-size range with an average diameter of 200 nm could be produced, although some micron-sized vesicles were also present. Liposomes were characterized according to their hydrophobic drug-loading capacity and encapsulated aqueous volumes. The latter were found to be higher than in conventional techniques such as high-pressure homogenization. The second method used compressed carbon dioxide as an anti-solvent to promote uniform precipitation of phospholipids from concentrated ethanolic solutions. Finely divided solvent-free phospholipid powders of saturated lipids could be prepared that were subsequently hydrated to produce liposomes with mean volume diameters of around 5 microm.
Conventionally cast and forged copper alloy for high-heat-flux thrust chambers
NASA Technical Reports Server (NTRS)
Kazaroff, John M.; Repas, George A.
1987-01-01
The combustion chamber liner of the space shuttle main engine is made of NARloy-Z, a copper-silver-zirconium alloy. This alloy was produced by vacuum melting and vacuum centrifugal casting; a production method that is currently now available. Using conventional melting, casting, and forging methods, NASA has produced an alloy of the same composition called NASA-Z. This report compares the composition, microstructure, tensile properties, low-cycle fatigue life, and hot-firing life of these two materials. The results show that the materials have similar characteristics.
Solenoid-free plasma start-up in spherical tokamaks
NASA Astrophysics Data System (ADS)
Raman, R.; Shevchenko, V. F.
2014-10-01
The central solenoid is an intrinsic part of all present-day tokamaks and most spherical tokamaks. The spherical torus (ST) confinement concept is projected to operate at high toroidal beta and at a high fraction of the non-inductive bootstrap current as required for an efficient reactor system. The use of a conventional solenoid in a ST-based fusion nuclear facility is generally believed to not be a possibility. Solenoid-free plasma start-up is therefore an area of extensive worldwide research activity. Solenoid-free plasma start-up is also relevant to steady-state tokamak operation, as the central transformer coil of a conventional aspect ratio tokamak reactor would be located in a high radiation environment but would be needed only during the initial discharge initiation and current ramp-up phases. Solenoid-free operation also provides greater flexibility in the selection of the aspect ratio and simplifies the reactor design. Plasma start-up methods based on induction from external poloidal field coils, helicity injection and radio frequency current drive have all made substantial progress towards meeting this important need for the ST. Some of these systems will now undergo the final stages of test in a new generation of large STs, which are scheduled to begin operations during the next two years. This paper reviews research to date on methods for inducing the initial start-up current in STs without reliance on the conventional central solenoid.
Linear and nonlinear dynamic analysis of redundant load path bearingless rotor systems
NASA Technical Reports Server (NTRS)
Murthy, V. R.
1985-01-01
The bearingless rotorcraft offers reduced weight, less complexity and superior flying qualities. Almost all the current industrial structural dynamic programs of conventional rotors which consist of single load path rotor blades employ the transfer matrix method to determine natural vibration characteristics because this method is ideally suited for one dimensional chain like structures. This method is extended to multiple load path rotor blades without resorting to an equivalent single load path approximation. Unlike the conventional blades, it isk necessary to introduce the axial-degree-of-freedom into the solution process to account for the differential axial displacements in the different load paths. With the present extension, the current rotor dynamic programs can be modified with relative ease to account for the multiple load paths without resorting to the equivalent single load path modeling. The results obtained by the transfer matrix method are validated by comparing with the finite element solutions. A differential stiffness matrix due to blade rotation is derived to facilitate the finite element solutions.
Apostol, Izydor; Kelner, Drew; Jiang, Xinzhao Grace; Huang, Gang; Wypych, Jette; Zhang, Xin; Gastwirt, Jessica; Chen, Kenneth; Fodor, Szilan; Hapuarachchi, Suminda; Meriage, Dave; Ye, Frank; Poppe, Leszek; Szpankowski, Wojciech
2012-12-01
To predict precision and other performance characteristics of chromatographic purity methods, which represent the most widely used form of analysis in the biopharmaceutical industry. We have conducted a comprehensive survey of purity methods, and show that all performance characteristics fall within narrow measurement ranges. This observation was used to develop a model called Uncertainty Based on Current Information (UBCI), which expresses these performance characteristics as a function of the signal and noise levels, hardware specifications, and software settings. We applied the UCBI model to assess the uncertainty of purity measurements, and compared the results to those from conventional qualification. We demonstrated that the UBCI model is suitable to dynamically assess method performance characteristics, based on information extracted from individual chromatograms. The model provides an opportunity for streamlining qualification and validation studies by implementing a "live validation" of test results utilizing UBCI as a concurrent assessment of measurement uncertainty. Therefore, UBCI can potentially mitigate the challenges associated with laborious conventional method validation and facilitates the introduction of more advanced analytical technologies during the method lifecycle.
Sfakianakis, Panagiotis; Tzia, Constatnina
2014-03-11
Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization) and further yogurt manufacture (fermentation) physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields), and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review.
Sfakianakis, Panagiotis; Tzia, Constatnina
2014-01-01
Milk and yogurt are important elements of the human diet, due to their high nutritional value and their appealing sensory properties. During milk processing (homogenization, pasteurization) and further yogurt manufacture (fermentation) physicochemical changes occur that affect the flavor and texture of these products while the development of standardized processes contributes to the development of desirable textural and flavor characteristics. The processes that take place during milk processing and yogurt manufacture with conventional industrial methods, as well as with innovative methods currently proposed (ultra-high pressure, ultrasound, microfluidization, pulsed electric fields), and their effect on the texture and flavor of the final conventional or probiotic/prebiotic products will be presented in this review. PMID:28234312
Sensor-less pseudo-sinusoidal drive for a permanent-magnet brushless ac motor
NASA Astrophysics Data System (ADS)
Liu, Li-Hsiang; Chern, Tzuen-Lih; Pan, Ping-Lung; Huang, Tsung-Mou; Tsay, Der-Min; Kuang, Jao-Hwa
2012-04-01
The precise rotor-position information is required for a permanent-magnet brushless ac motor (BLACM) drive. In the conventional sinusoidal drive method, either an encoder or a resolver is usually employed. For position sensor-less vector control schemes, the rotor flux estimation and torque components are obtained by complicated coordinate transformations. These computational intensive methods are susceptible to current distortions and parameter variations. To simplify the method complexity, this work presents a sensor-less pseudo-sinusoidal drive scheme with speed control for a three-phase BLACM. Based on the sinusoidal drive scheme, a floating period of each phase current is inserted for back electromotive force detection. The zero-crossing point is determined directly by the proposed scheme, and the rotor magnetic position and rotor speed can be estimated simultaneously. Several experiments for various active angle periods are undertaken. Furthermore, a current feedback control is included to minimize and compensate the torque fluctuation. The experimental results show that the proposed method has a competitive performance compared with the conventional drive manners for BLACM. The proposed scheme is straightforward, bringing the benefits of sensor-less drive and negating the need for coordinate transformations in the operating process.
Tracking B-Cell Repertoires and Clonal Histories in Normal and Malignant Lymphocytes.
Weston-Bell, Nicola J; Cowan, Graeme; Sahota, Surinder S
2017-01-01
Methods for tracking B-cell repertoires and clonal history in normal and malignant B-cells based on immunoglobulin variable region (IGV) gene analysis have developed rapidly with the advent of massive parallel next-generation sequencing (mpNGS) protocols. mpNGS permits a depth of analysis of IGV genes not hitherto feasible, and presents challenges of bioinformatics analysis, which can be readily met by current pipelines. This strategy offers a potential resolution of B-cell usage at a depth that may capture fully the natural state, in a given biological setting. Conventional methods based on RT-PCR amplification and Sanger sequencing are also available where mpNGS is not accessible. Each method offers distinct advantages. Conventional methods for IGV gene sequencing are readily adaptable to most laboratories and provide an ease of analysis to capture salient features of B-cell use. This chapter describes two methods in detail for analysis of IGV genes, mpNGS and conventional RT-PCR with Sanger sequencing.
Meta-analysis of Odds Ratios: Current Good Practices
Chang, Bei-Hung; Hoaglin, David C.
2016-01-01
Background Many systematic reviews of randomized clinical trials lead to meta-analyses of odds ratios. The customary methods of estimating an overall odds ratio involve weighted averages of the individual trials’ estimates of the logarithm of the odds ratio. That approach, however, has several shortcomings, arising from assumptions and approximations, that render the results unreliable. Although the problems have been documented in the literature for many years, the conventional methods persist in software and applications. A well-developed alternative approach avoids the approximations by working directly with the numbers of subjects and events in the arms of the individual trials. Objective We aim to raise awareness of methods that avoid the conventional approximations, can be applied with widely available software, and produce more-reliable results. Methods We summarize the fixed-effect and random-effects approaches to meta-analysis; describe conventional, approximate methods and alternative methods; apply the methods in a meta-analysis of 19 randomized trials of endoscopic sclerotherapy in patients with cirrhosis and esophagogastric varices; and compare the results. We demonstrate the use of SAS, Stata, and R software for the analysis. Results In the example, point estimates and confidence intervals for the overall log-odds-ratio differ between the conventional and alternative methods, in ways that can affect inferences. Programming is straightforward in the three software packages; an appendix gives the details. Conclusions The modest additional programming required should not be an obstacle to adoption of the alternative methods. Because their results are unreliable, use of the conventional methods for meta-analysis of odds ratios should be discontinued. PMID:28169977
Lee, Hyunyeol; Sohn, Chul-Ho; Park, Jaeseok
2017-07-01
To develop a current-induced, alternating reversed dual-echo-steady-state-based magnetic resonance electrical impedance tomography for joint estimation of tissue relaxation and electrical properties. The proposed method reverses the readout gradient configuration of conventional, in which steady-state-free-precession (SSFP)-ECHO is produced earlier than SSFP-free-induction-decay (FID) while alternating current pulses are applied in between the two SSFPs to secure high sensitivity of SSFP-FID to injection current. Additionally, alternating reversed dual-echo-steady-state signals are modulated by employing variable flip angles over two orthogonal injections of current pulses. Ratiometric signal models are analytically constructed, from which T 1 , T 2 , and current-induced B z are jointly estimated by solving a nonlinear inverse problem for conductivity reconstruction. Numerical simulations and experimental studies are performed to investigate the feasibility of the proposed method in estimating relaxation parameters and conductivity. The proposed method, if compared with conventional magnetic resonance electrical impedance tomography, enables rapid data acquisition and simultaneous estimation of T 1 , T 2 , and current-induced B z , yielding a comparable level of signal-to-noise ratio in the parameter estimates while retaining a relative conductivity contrast. We successfully demonstrated the feasibility of the proposed method in jointly estimating tissue relaxation parameters as well as conductivity distributions. It can be a promising, rapid imaging strategy for quantitative conductivity estimation. Magn Reson Med 78:107-120, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Solar thermal drum drying performance of prune and tomato pomaces
USDA-ARS?s Scientific Manuscript database
Fruit and vegetable pomaces are co-products of the food processing industry; they are underutilized in part because their high water activity (aw) renders them unstable. Drum drying is one method that can dry/stabilize pomaces, but current drum drying methods utilize conventional, high-environmental...
2018-01-01
Objective To compare radiation doses between conventional and chest pain protocols using dual-source retrospectively electrocardiography (ECG)-gated cardiothoracic computed tomography (CT) in children and adults and assess the effect of tube current saturation on radiation dose reduction. Materials and Methods This study included 104 patients (16.6 ± 7.7 years, range 5–48 years) that were divided into two groups: those with and those without tube current saturation. The estimated radiation doses of retrospectively ECG-gated spiral cardiothoracic CT were compared between conventional, uniphasic, and biphasic chest pain protocols acquired with the same imaging parameters in the same patients by using paired t tests. Dose reduction percentages, patient ages, volume CT dose index values, and tube current time products per rotation were compared between the two groups by using unpaired t tests. A p value < 0.05 was considered significant. Results The volume CT dose index values of the biphasic chest pain protocol (10.8 ± 3.9 mGy) were significantly lower than those of the conventional protocol (12.2 ± 4.7 mGy, p < 0.001) and those of the uniphasic chest pain protocol (12.9 ± 4.9 mGy, p < 0.001). The dose-saving effect of biphasic chest pain protocol was significantly less with a saturated tube current (4.5 ± 10.2%) than with unsaturated tube current method (14.8 ± 11.5%, p < 0.001). In 76 patients using 100 kVp, patient age showed no significant differences between the groups with and without tube current saturation in all protocols (p > 0.05); the groups with tube current saturation showed significantly higher volume CT dose index values (p < 0.01) and tube current time product per rotation (p < 0.001) than the groups without tube current saturation in all protocols. Conclusion The radiation dose of dual-source retrospectively ECG-gated spiral cardiothoracic CT can be reduced by approximately 15% by using the biphasic chest pain protocol instead of the conventional protocol in children and adults if radiation dose parameters are further optimized to avoid tube current saturation. PMID:29353996
NASA Technical Reports Server (NTRS)
Richards, W. Lance
1996-01-01
Significant strain-gage errors may exist in measurements acquired in transient-temperature environments if conventional correction methods are applied. As heating or cooling rates increase, temperature gradients between the strain-gage sensor and substrate surface increase proportionally. These temperature gradients introduce strain-measurement errors that are currently neglected in both conventional strain-correction theory and practice. Therefore, the conventional correction theory has been modified to account for these errors. A new experimental method has been developed to correct strain-gage measurements acquired in environments experiencing significant temperature transients. The new correction technique has been demonstrated through a series of tests in which strain measurements were acquired for temperature-rise rates ranging from 1 to greater than 100 degrees F/sec. Strain-gage data from these tests have been corrected with both the new and conventional methods and then compared with an analysis. Results show that, for temperature-rise rates greater than 10 degrees F/sec, the strain measurements corrected with the conventional technique produced strain errors that deviated from analysis by as much as 45 percent, whereas results corrected with the new technique were in good agreement with analytical results.
Negative Transference Numbers in Polymer Electrolytes
NASA Astrophysics Data System (ADS)
Pesko, Danielle; Timachova, Ksenia; Balsara, Nitash
Energy density and safety of conventional lithium-ion batteries is limited by the use of flammable organic liquids as a solvent for lithium salts. Polymer electrolytes have the potential to address both limitations. The poor performance of batteries with polymer electrolytes is generally attributed to low ionic conductivity. The purpose of our work is to show that another transport property, the cation transference number, t +, of polymer electrolytes is fundamentally different from that of conventional electrolytes. Our experimental approach, based on concentrated solution theory, indicates that t + of mixtures of poly(ethylene oxide) and LiTFSI salt are negative over most of the accessible concentration window. In contrast, approaches based on dilute solution theory suggest that t + in the same system is positive. In addition to presenting a new approach for determining t +, we also present data obtained from the steady-state current method, pulsed-field-gradient NMR, and the current-interrupt method. Discrepancies between different approaches are resolved. Our work implies that in the absence of concentration gradients, the net fluxes of both cations and anions are directed toward the positive electrode. Conventional liquid electrolytes do not suffer from this constraint.
Simpson, Michael R.; Oltmann, Richard N.
1993-01-01
Discharge measurement of large rivers and estuaries is difficult, time consuming, and sometimes dangerous. Frequently, discharge measurements cannot be made in tide-affected rivers and estuaries using conventional discharge-measurement techniques because of dynamic discharge conditions. The acoustic Doppler discharge-measurement system (ADDMS) was developed by the U.S. Geological Survey using a vessel-mounted acoustic Doppler current profiler coupled with specialized computer software to measure horizontal water velocity at 1-meter vertical intervals in the water column. The system computes discharge from water-and vessel-velocity data supplied by the ADDMS using vector-algebra algorithms included in the discharge-measurement software. With this system, a discharge measurement can be obtained by engaging the computer software and traversing a river or estuary from bank to bank; discharge in parts of the river or estuarine cross sections that cannot be measured because of ADDMS depth limitations are estimated by the system. Comparisons of ADDMS-measured discharges with ultrasonic-velocity-meter-measured discharges, along with error-analysis data, have confirmed that discharges provided by the ADDMS are at least as accurate as those produced using conventional methods. In addition, the advantage of a much shorter measurement time (2 minutes using the ADDMS compared with 1 hour or longer using conventional methods) has enabled use of the ADDMS for several applications where conventional discharge methods could not have been used with the required accuracy because of dynamic discharge conditions.
Supercritical Fluid Technologies to Fabricate Proliposomes.
Falconer, James R; Svirskis, Darren; Adil, Ali A; Wu, Zimei
2015-01-01
Proliposomes are stable drug carrier systems designed to form liposomes upon addition of an aqueous phase. In this review, current trends in the use of supercritical fluid (SCF) technologies to prepare proliposomes are discussed. SCF methods are used in pharmaceutical research and industry to address limitations associated with conventional methods of pro/liposome fabrication. The SCF solvent methods of proliposome preparation are eco-friendly (known as green technology) and, along with the SCF anti-solvent methods, could be advantageous over conventional methods; enabling better design of particle morphology (size and shape). The major hurdles of SCF methods include poor scalability to industrial manufacturing which may result in variable particle characteristics. In the case of SCF anti-solvent methods, another hurdle is the reliance on organic solvents. However, the amount of solvent required is typically less than that used by the conventional methods. Another hurdle is that most of the SCF methods used have complicated manufacturing processes, although once the setup has been completed, SCF technologies offer a single-step process in the preparation of proliposomes compared to the multiple steps required by many other methods. Furthermore, there is limited research into how proliposomes will be converted into liposomes for the end-user, and how such a product can be prepared reproducibly in terms of vesicle size and drug loading. These hurdles must be overcome and with more research, SCF methods, especially where the SCF acts as a solvent, have the potential to offer a strong alternative to the conventional methods to prepare proliposomes.
Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes
NASA Astrophysics Data System (ADS)
Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank
2017-05-01
In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO2 equivalent while it is 13.6 kg CO2 per kg of ammonia for coal-based electrolysis method.
Impact Assessment and Environmental Evaluation of Various Ammonia Production Processes.
Bicer, Yusuf; Dincer, Ibrahim; Vezina, Greg; Raso, Frank
2017-05-01
In the current study, conventional resources-based ammonia generation routes are comparatively studied through a comprehensive life cycle assessment. The selected ammonia generation options range from mostly used steam methane reforming to partial oxidation of heavy oil. The chosen ammonia synthesis process is the most common commercially available Haber-Bosch process. The essential energy input for the methods are used from various conventional resources such as coal, nuclear, natural gas and heavy oil. Using the life cycle assessment methodology, the environmental impacts of selected methods are identified and quantified from cradle to gate. The life cycle assessment outcomes of the conventional resources based ammonia production routes show that nuclear electrolysis-based ammonia generation method yields the lowest global warming and climate change impacts while the coal-based electrolysis options bring higher environmental problems. The calculated greenhouse gas emission from nuclear-based electrolysis is 0.48 kg CO 2 equivalent while it is 13.6 kg CO 2 per kg of ammonia for coal-based electrolysis method.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
1998-01-01
Flow and turbulence models applied to the problem of shock buffet onset are studied. The accuracy of the interactive boundary layer and the thin-layer Navier-Stokes equations solved with recent upwind techniques using similar transport field equation turbulence models is assessed for standard steady test cases, including conditions having significant shock separation. The two methods are found to compare well in the shock buffet onset region of a supercritical airfoil that involves strong trailing-edge separation. A computational analysis using the interactive-boundary layer has revealed a Reynolds scaling effect in the shock buffet onset of the supercritical airfoil, which compares well with experiment. The methods are next applied to a conventional airfoil. Steady shock-separated computations of the conventional airfoil with the two methods compare well with experiment. Although the interactive boundary layer computations in the shock buffet region compare well with experiment for the conventional airfoil, the thin-layer Navier-Stokes computations do not. These findings are discussed in connection with possible mechanisms important in the onset of shock buffet and the constraints imposed by current numerical modeling techniques.
Revising the lower statistical limit of x-ray grating-based phase-contrast computed tomography.
Marschner, Mathias; Birnbacher, Lorenz; Willner, Marian; Chabior, Michael; Herzen, Julia; Noël, Peter B; Pfeiffer, Franz
2017-01-01
Phase-contrast x-ray computed tomography (PCCT) is currently investigated as an interesting extension of conventional CT, providing high soft-tissue contrast even if examining weakly absorbing specimen. Until now, the potential for dose reduction was thought to be limited compared to attenuation CT, since meaningful phase retrieval fails for scans with very low photon counts when using the conventional phase retrieval method via phase stepping. In this work, we examine the statistical behaviour of the reverse projection method, an alternative phase retrieval approach and compare the results to the conventional phase retrieval technique. We investigate the noise levels in the projections as well as the image quality and quantitative accuracy of the reconstructed tomographic volumes. The results of our study show that this method performs better in a low-dose scenario than the conventional phase retrieval approach, resulting in lower noise levels, enhanced image quality and more accurate quantitative values. Overall, we demonstrate that the lower statistical limit of the phase stepping procedure as proposed by recent literature does not apply to this alternative phase retrieval technique. However, further development is necessary to overcome experimental challenges posed by this method which would enable mainstream or even clinical application of PCCT.
Remote sensing of ocean currents
NASA Technical Reports Server (NTRS)
Goldstein, R. M.; Zebker, H. A.; Barnett, T. P.
1989-01-01
A method of remotely measuring near-surface ocean currents with a synthetic aperture radar (SAR) is described. The apparatus consists of a single SAR transmitter and two receiving antennas. The phase difference between SAR image scenes obtained from the antennas forms an interferogram that is directly proportional to the surface current. The first field test of this technique against conventional measurements gives estimates of mean currents accurate to order 20 percent, that is, root-mean-square errors of 5 to 10 centimeters per second in mean flows of 27 to 56 centimeters per second. If the full potential of the method could be realized with spacecraft, then it might be possible to routinely monitor the surface currents of the world's oceans.
Kume, Teruyoshi; Kim, Byeong-Keuk; Waseda, Katsuhisa; Sathyanarayana, Shashidhar; Li, Wenguang; Teo, Tat-Jin; Yock, Paul G; Fitzgerald, Peter J; Honda, Yasuhiro
2013-02-01
The aim of this study was to evaluate a new fully automated lumen border tracing system based on a novel multifrequency processing algorithm. We developed the multifrequency processing method to enhance arterial lumen detection by exploiting the differential scattering characteristics of blood and arterial tissue. The implementation of the method can be integrated into current intravascular ultrasound (IVUS) hardware. This study was performed in vivo with conventional 40-MHz IVUS catheters (Atlantis SR Pro™, Boston Scientific Corp, Natick, MA) in 43 clinical patients with coronary artery disease. A total of 522 frames were randomly selected, and lumen areas were measured after automatically tracing lumen borders with the new tracing system and a commercially available tracing system (TraceAssist™) referred to as the "conventional tracing system." The data assessed by the two automated systems were compared with the results of manual tracings by experienced IVUS analysts. New automated lumen measurements showed better agreement with manual lumen area tracings compared with those of the conventional tracing system (correlation coefficient: 0.819 vs. 0.509). When compared against manual tracings, the new algorithm also demonstrated improved systematic error (mean difference: 0.13 vs. -1.02 mm(2) ) and random variability (standard deviation of difference: 2.21 vs. 4.02 mm(2) ) compared with the conventional tracing system. This preliminary study showed that the novel fully automated tracing system based on the multifrequency processing algorithm can provide more accurate lumen border detection than current automated tracing systems and thus, offer a more reliable quantitative evaluation of lumen geometry. Copyright © 2011 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Farassat, F.; Succi, G. P.
1980-01-01
A review of propeller noise prediction technology is presented which highlights the developments in the field from the successful attempt of Gutin to the current sophisticated techniques. Two methods for the predictions of the discrete frequency noise from conventional and advanced propellers in forward flight are described. These methods developed at MIT and NASA Langley Research Center are based on different time domain formulations. Brief description of the computer algorithms based on these formulations are given. The output of these two programs, which is the acoustic pressure signature, is Fourier analyzed to get the acoustic pressure spectrum. The main difference between the programs as they are coded now is that the Langley program can handle propellers with supersonic tip speed while the MIT program is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.
Lee, Hyun-Soo; Choi, Seung Hong; Park, Sung-Hong
2017-07-01
To develop single and double acquisition methods to compensate for artifacts from eddy currents and transient oscillations in balanced steady-state free precession (bSSFP) with centric phase-encoding (PE) order for magnetization-prepared bSSFP imaging. A single and four different double acquisition methods were developed and evaluated with Bloch equation simulations, phantom/in vivo experiments, and quantitative analyses. For the single acquisition method, multiple PE groups, each of which was composed of N linearly changing PE lines, were ordered in a pseudocentric manner for optimal contrast and minimal signal fluctuations. Double acquisition methods used complex averaging of two images that had opposite artifact patterns from different acquisition orders or from different numbers of dummy scans. Simulation results showed high sensitivity of eddy-current and transient-oscillation artifacts to off-resonance frequency and PE schemes. The artifacts were reduced with the PE-grouping with N values from 3 to 8, similar to or better than the conventional pairing scheme of N = 2. The proposed double acquisition methods removed the remaining artifacts significantly. The proposed methods conserved detailed structures in magnetization transfer imaging well, compared with the conventional methods. The proposed single and double acquisition methods can be useful for artifact-free magnetization-prepared bSSFP imaging with desired contrast and minimized dummy scans. Magn Reson Med 78:254-263, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Xu, Min; Fu, Wenwei; Zhang, Baojun; Tan, Hongsheng; Xiu, Yanfeng; Xu, Hongxi
2016-02-01
An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography for the first time. pH-zone-refining counter-current chromatography was performed with the solvent system composed of n-hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high-speed counter-current chromatography with a solvent system composed of n-hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n-hexane/methyl tert-butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β-morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high-performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH-zone-refining counter-current chromatography and conventional high-speed counter-current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Teschoviruses as Indicators of Porcine Fecal Contamination of Surface Water
Jiménez-Clavero, Miguel Angel; Fernández, Carlos; Ortiz, José Antonio; Pro, Javier; Carbonell, Gregoria; Tarazona, José Vicente; Roblas, Neftalí; Ley, Victoria
2003-01-01
Teschoviruses specifically infect pigs and are shed in pig feces. Hence, their presence in water should indicate contamination with pig fecal residues. To assess this hypothesis, we have developed a real-time reverse transcriptase PCR (RT-PCR) method that allows the quantitative detection of pig teschovirus (PTV) RNA. The method is able to detect 92 fg of PTV RNA per ml of sample. Using this method, we have detected the presence of PTV RNA in water and fecal samples from all pig farms examined (n = 5). Feces from other animal species (cattle, sheep, and goats) were negative in this test. To compare the PTV RNA detection method with conventional chemical determinations currently in use for evaluation of water contamination, we analyzed water samples collected downstream from a pig slurry spillage site. We have found a positive correlation within both types of determinations. The sensitivity of the PTV detection assay was similar to that achieved by unspecific organic matter determination and superior to all other conventional chemical analyses performed. Furthermore, the new method is highly specific, revealing the porcine origin of the contamination, a feature that is lacking in currently available methods for the assessment of water contamination. PMID:14532098
Novel Digital Driving Method Using Dual Scan for Active Matrix Organic Light-Emitting Diode Displays
NASA Astrophysics Data System (ADS)
Jung, Myoung Hoon; Choi, Inho; Chung, Hoon-Ju; Kim, Ohyun
2008-11-01
A new digital driving method has been developed for low-temperature polycrystalline silicon, transistor-driven, active-matrix organic light-emitting diode (AM-OLED) displays by time-ratio gray-scale expression. This driving method effectively increases the emission ratio and the number of subfields by inserting another subfield set into nondisplay periods in the conventional digital driving method. By employing the proposed modified gravity center coding, this method can be used to effectively compensate for dynamic false contour noise. The operation and performance were verified by current measurement and image simulation. The simulation results using eight test images show that the proposed approach improves the average peak signal-to-noise ratio by 2.61 dB, and the emission ratio by 20.5%, compared with the conventional digital driving method.
Yamashita, Tatsuya; Oida, Takenori; Hamada, Shoji; Kobayashi, Tetsuo
2012-02-01
In recent years, there has been considerable interest in developing an ultra-low-field magnetic resonance imaging (ULF-MRI) system using an optically pumped atomic magnetometer (OPAM). However, a precise estimation of the signal-to-noise ratio (SNR) of ULF-MRI has not been carried out. Conventionally, to calculate the SNR of an MR image, thermal noise, also called Nyquist noise, has been estimated by considering a resistor that is electrically equivalent to a biological-conductive sample and is connected in series to a pickup coil. However, this method has major limitations in that the receiver has to be a coil and that it cannot be applied directly to a system using OPAM. In this paper, we propose a method to estimate the thermal noise of an MRI system using OPAM. We calculate the thermal noise from the variance of the magnetic sensor output produced by current-dipole moments that simulate thermally fluctuating current sources in a biological sample. We assume that the random magnitude of the current dipole in each volume element of the biological sample is described by the Maxwell-Boltzmann distribution. The sensor output produced by each current-dipole moment is calculated either by an analytical formula or a numerical method based on the boundary element method. We validate the proposed method by comparing our results with those obtained by conventional methods that consider resistors connected in series to a pickup coil using single-layered sphere, multi-layered sphere, and realistic head models. Finally, we apply the proposed method to the ULF-MRI model using OPAM as the receiver with multi-layered sphere and realistic head models and estimate their SNR. Copyright © 2011 Elsevier Inc. All rights reserved.
Transgenic horticultural crops in Asia
USDA-ARS?s Scientific Manuscript database
Modern biotechnology applications, including genetic engineering, are a powerful tool to complement the conventional methods of crop improvement. Asia currently has three countries cultivating biotech/transgenic crops – China, India, and the Philippines, but only China commercially grows a transgen...
Current approaches for the assessment of in situ biodegradation.
Bombach, Petra; Richnow, Hans H; Kästner, Matthias; Fischer, Anko
2010-04-01
Considering the high costs and technical difficulties associated with conventional remediation strategies, in situ biodegradation has become a promising approach for cleaning up contaminated aquifers. To verify if in situ biodegradation of organic contaminants is taking place at a contaminated site and to determine if these processes are efficient enough to replace conventional cleanup technologies, a comprehensive characterization of site-specific biodegradation processes is essential. In recent years, several strategies including geochemical analyses, microbial and molecular methods, tracer tests, metabolite analysis, compound-specific isotope analysis, and in situ microcosms have been developed to investigate the relevance of biodegradation processes for cleaning up contaminated aquifers. In this review, we outline current approaches for the assessment of in situ biodegradation and discuss their potential and limitations. We also discuss the benefits of research strategies combining complementary methods to gain a more comprehensive understanding of the complex hydrogeological and microbial interactions governing contaminant biodegradation in the field.
Eddy current testing of composite pressure vessels
NASA Astrophysics Data System (ADS)
Casperson, R.; Pohl, R.; Munzke, D.; Becker, B.; Pelkner, M.
2018-04-01
The use of composite pressure vessels instead of conventional vessels made of steel or aluminum grew strongly over the last decade. The reason for this trend is the tremendous weight saving in the case of composite vessels. However, the long-time behavior is not fully understood for filling and discharging cycles and creep strength and their influence on the CFRP coating (carbon fiber reinforced plastics) and the internal liner (steel, aluminum, or plastics). The CFRP ensures the pressure resistance while the inner liner is used as a container for liquid or gas. To overcome the missing knowledge of aging, BAM started an internal project to investigate degradation of these material systems. Therefore, applicable testing methods like eddy current testing are needed. Normally, high-frequency eddy current testing (HF-ET, f > 10 MHz) is deployed for CFRP due to its low conductivity of the fiber, which is in the order of 0.01 MS/s, and the capacitive coupling between the fibers. Nevertheless, in some cases conventional ET can be applied. We show a concise summary of studies on the application of conventional ET of composite pressure vessels.
Johnson, Thomas M; Badovinac, Rachel; Shaefer, Jeffry
2007-09-01
Surveys were sent to Harvard School of Dental Medicine students and graduates from the classes of 2000 through 2006 to determine their current primary means of achieving mandibular anesthesia. Orthodontists and orthodontic residents were excluded. All subjects received clinical training in the conventional inferior alveolar nerve block and two alternative techniques (the Akinosi mandibular block and the Gow-Gates mandibular block) during their predoctoral dental education. This study tests the hypothesis that students and graduates who received training in the conventional inferior alveolar nerve block, the Akinosi mandibular block, and the Gow-Gates mandibular block will report more frequent current utilization of alternatives to the conventional inferior alveolar nerve block than clinicians trained in the conventional technique only. At the 95 percent confidence level, we estimated that between 3.7 percent and 16.1 percent (mean=8.5 percent) of clinicians trained in using the Gow-Gates technique use this injection technique primarily, and between 35.4 percent and 56.3 percent (mean=47.5 percent) of those trained in the Gow-Gates method never use this technique. At the same confidence level, between 0.0 percent and 3.8 percent (mean=0.0 percent) of clinicians trained in using the Akinosi technique use this injection clinical technique primarily, and between 62.2 percent and 81.1 percent (mean=72.3 percent) of those trained in the Akinosi method never use this technique. No control group that was completely untrained in the Gow-Gates or Akinosi techniques was available for comparison. However, we presume that zero percent of clinicians who have not been trained in a given technique will use the technique in clinical practice. The confidence interval for the Gow-Gates method excludes this value, while the confidence interval for the Akinosi technique includes zero percent. We conclude that, in the study population, formal clinical training in the Gow-Gates and Akinosi injection techniques lead to a small but significant increase in current primary utilization of the Gow-Gates technique. No significant increase in current primary utilization of the Akinosi technique was found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawler, J.S.
2001-10-29
The brushless dc motor (BDCM) has high-power density and efficiency relative to other motor types. These properties make the BDCM well suited for applications in electric vehicles provided a method can be developed for driving the motor over the 4 to 6:1 constant power speed range (CPSR) required by such applications. The present state of the art for constant power operation of the BDCM is conventional phase advance (CPA) [1]. In this paper, we identify key limitations of CPA. It is shown that the CPA has effective control over the developed power but that the current magnitude is relatively insensitivemore » to power output and is inversely proportional to motor inductance. If the motor inductance is low, then the rms current at rated power and high speed may be several times larger than the current rating. The inductance required to maintain rms current within rating is derived analytically and is found to be large relative to that of BDCM designs using high-strength rare earth magnets. Th us, the CPA requires a BDCM with a large equivalent inductance.« less
Robotic single port cholecystectomy: current data and future perspectives.
Angelou, Anastasios; Skarmoutsos, Athanasios; Margonis, Georgios A; Moris, Demetrios; Tsigris, Christos; Pikoulis, Emmanouil
2017-04-01
Minimally invasive techniques are used more and more frequently. Since conventional laparoscopic approach has been the gold standard, surgeons in their effort to further reduce the invasiveness of conventional laparoscopic cholecystectomy have adopted Single Incision approach. The widespread adoption of robotics has led to the inevitable hybridization of robotic technology with laparoendoscopic single-site surgery (LESS). As a result, employment of the da Vinci surgical system may allow greater surgical maneuverability, improving ergonomics. A review of the English literature was conducted to evaluate all robotic single port cholecystectomy performed till today. Demographic data, operative parameters, postoperative outcomes and materials used for the operation were collected and assessed. A total of 12 studies, including 501 patients were analyzed. Demographics and clinical characteristics of the patients was heterogeneous, but in most studies a mean BMI <30 was recorded. Intraoperative metrics like operative time, estimated blood loss and conversion rate were comparable with those in multiport conventional laparoscopy. Robotic single port cholecystectomy is a safe and feasible alternative to conventional multiport laparoscopic or manual robotic approach. However, current data do not suggest a superiority of robotic SILC over other established methods.
Calculation method of spin accumulations and spin signals in nanostructures using spin resistors
NASA Astrophysics Data System (ADS)
Torres, Williams Savero; Marty, Alain; Laczkowski, Piotr; Jamet, Matthieu; Vila, Laurent; Attané, Jean-Philippe
2018-02-01
Determination of spin accumulations and spin currents is essential for a deep understanding of spin transport in nanostructures and further optimization of spintronic devices. So far, they are easily obtained using different approaches in nanostructures composed of few elements; however their calculation becomes complicated as the number of elements increases. Here, we propose a 1-D spin resistor approach to calculate analytically spin accumulations, spin currents and magneto-resistances in heterostructures. Our method, particularly applied to multi-terminal metallic nanostructures, provides a fast and systematic mean to determine such spin properties in structures where conventional methods remain complex.
Comparison of conventional and self-consolidating concrete for drilled shaft construction.
DOT National Transportation Integrated Search
2015-04-01
Many entities currently use self-consolidating concrete (SCC), especially for drilled shaft construction. This project investigated the use of SCC : and various test methods to assess the suitability of SCC in underwater placement conditions. Eight m...
Fatania, Nita; Fraser, Mark; Savage, Mike; Hart, Jason; Abdolrasouli, Alireza
2015-12-01
Performance of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) was compared in a side-by side-analysis with conventional phenotypic methods currently in use in our laboratory for identification of yeasts in a routine diagnostic setting. A diverse collection of 200 clinically important yeasts (19 species, five genera) were identified by both methods using standard protocols. Discordant or unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene. MALDI-TOF and conventional methods were in agreement for 182 isolates (91%) with correct identification to species level. Eighteen discordant results (9%) were due to rarely encountered species, hence the difficulty in their identification using traditional phenotypic methods. MALDI-TOF MS enabled rapid, reliable and accurate identification of clinically important yeasts in a routine diagnostic microbiology laboratory. Isolates with rare, unusual or low probability identifications should be confirmed using robust molecular methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Design and control of the phase current of a brushless dc motor to eliminate cogging torque
NASA Astrophysics Data System (ADS)
Jang, G. H.; Lee, C. J.
2006-04-01
This paper presents a design and control method of the phase current to reduce the torque ripple of a brushless dc (BLDC) motor by eliminating cogging torque. The cogging torque is the main source of torque ripple and consequently of speed error, and it is also the excitation source to generate the vibration and noise of a motor. This research proposes a modified current wave form, which is composed of main and auxiliary currents. The former is the conventional current to generate the commutating torque. The latter generates the torque with the same magnitude and opposite sign of the corresponding cogging torque at the given position in order to eliminate the cogging torque. Time-stepping finite element method simulation considering pulse-width-modulation switching method has been performed to verify the effectiveness of the proposed method, and it shows that this proposed method reduces torque ripple by 36%. A digital-signal-processor-based controller is also developed to implement the proposed method, and it shows that this proposed method reduces the speed ripple significantly.
Comparison of nutritional quality between conventional and organic dairy products: a meta-analysis.
Palupi, Eny; Jayanegara, Anuraga; Ploeger, Angelika; Kahl, Johannes
2012-11-01
As a contribution to the debate on the comparison of nutritional quality between conventional versus organic products, the present study would like to provide new results on this issue specifically on dairy products by integrating the last 3 years' studies using a meta-analysis approach with Hedges' d effect size method. The current meta-analysis shows that organic dairy products contain significantly higher protein, ALA, total omega-3 fatty acid, cis-9,trans-11 conjugated linoleic acid, trans-11 vaccenic acid, eicosapentanoic acid, and docosapentanoic acid than those of conventional types, with cumulative effect size ( ± 95% confidence interval) of 0.56 ± 0.24, 1.74 ± 0.16, 0.84 ± 0.14, 0.68 ± 0.13, 0.51 ± 0.16, 0.42 ± 0.23, and 0.71 ± 0.3, respectively. It is also observed that organic dairy products have significantly (P < 0.001) higher omega-3 to -6 ratio (0.42 vs. 0.23) and Δ9-desaturase index (0.28 vs. 0.27) than the conventional types. The current regulation on organic farming indeed drives organic farms to production of organic dairy products with different nutritional qualities from conventional ones. The differences in feeding regime between conventional and organic dairy production is suspected as the reason behind this evidence. Further identical meta-analysis may be best applicable for summarizing a comparison between conventional and organic foodstuffs for other aspects and food categories. Copyright © 2012 Society of Chemical Industry.
Evaluation of Cone Penetrometer Testing (CPT) for Use with Transportation Projects Phase 1
DOT National Transportation Integrated Search
2008-07-01
The ODOT Office of Geotechnical Engineering (OGE) currently uses conventional drilling methods (e.g., hollow stem auger, solid stem auger) to perform subsurface investigations in unconsolidated materials. These techniques have been used for decades a...
Joint Contracture Orthosis (JCO)
NASA Technical Reports Server (NTRS)
Lunsford, Thomas R.; Parsons, Ken; Krouskop, Thomas; McGee, Kevin
1997-01-01
The purpose of this project was to develop an advanced orthosis which is effective in reducing upper and lower limb contractures in significantly less time than currently required with conventional methods. The team that developed the JCO consisted of an engineer, orthotist, therapist, and physician.
DOT National Transportation Integrated Search
2011-04-01
The ODOT Office of Geotechnical : Engineering (OGE) currently uses : conventional drilling methods (e.g., hollow : stem auger, solid stem auger) to perform : subsurface investigations in soil. These : techniques have been used for decades and : have ...
Study on factors affecting the droplet temperature in plasma MIG welding process
NASA Astrophysics Data System (ADS)
Mamat, Sarizam Bin; Tashiro, Shinichi; Tanaka, Manabu; Yusoff, Mahani
2018-04-01
In the present study, the mechanism to control droplet temperature in the plasma MIG welding was discussed based on the measurements of the droplet temperature for a wide range of MIG currents with different plasma electrode diameters. The measurements of the droplet temperatures were conducted using a two color temperature measurement method. The droplet temperatures in the plasma MIG welding were then compared with those in the conventional MIG welding. As a result, the droplet temperature in the plasma MIG welding was found to be reduced in comparison with the conventional MIG welding under the same MIG current. Especially when the small plasma electrode diameter was used, the decrease in the droplet temperature reached maximally 500 K. Also, for a particular WFS, the droplet temperatures in the plasma MIG welding were lower than those in the conventional MIG welding. It is suggested that the use of plasma contributes to reducing the local heat input into the base metal by the droplet. The presence of the plasma surrounding the wire is considered to increase the electron density in its vicinity, resulting in the arc attachment expanding upwards along the wire surface to disperse the MIG current. This dispersion of MIG current causes a decrease in current density on the droplet surface, lowering the droplet temperature. Furthermore, dispersed MIG current also weakens the electromagnetic pinch force acting on the neck of the wire above the droplet. This leads to a larger droplet diameter with increased surface area through lower frequency of droplet detachment to decrease the MIG current density on the droplet surface, as compared to the conventional MIG welding at the same MIG current. Thus, the lower droplet temperature is caused by the reduction of heat flux into the droplet. Consequently, the mechanism to control droplet temperature in the plasma MIG welding was clarified.
Computational dosimetry for grounded and ungrounded human models due to contact current
NASA Astrophysics Data System (ADS)
Chan, Kwok Hung; Hattori, Junya; Laakso, Ilkka; Hirata, Akimasa; Taki, Masao
2013-08-01
This study presents the computational dosimetry of contact currents for grounded and ungrounded human models. The uncertainty of the quasi-static (QS) approximation of the in situ electric field induced in a grounded/ungrounded human body due to the contact current is first estimated. Different scenarios of cylindrical and anatomical human body models are considered, and the results are compared with the full-wave analysis. In the QS analysis, the induced field in the grounded cylindrical model is calculated by the QS finite-difference time-domain (QS-FDTD) method, and compared with the analytical solution. Because no analytical solution is available for the grounded/ungrounded anatomical human body model, the results of the QS-FDTD method are then compared with those of the conventional FDTD method. The upper frequency limit for the QS approximation in the contact current dosimetry is found to be 3 MHz, with a relative local error of less than 10%. The error increases above this frequency, which can be attributed to the neglect of the displacement current. The QS or conventional FDTD method is used for the dosimetry of induced electric field and/or specific absorption rate (SAR) for a contact current injected into the index finger of a human body model in the frequency range from 10 Hz to 100 MHz. The in situ electric fields or SAR are compared with the basic restrictions in the international guidelines/standards. The maximum electric field or the 99th percentile value of the electric fields appear not only in the fat and muscle tissues of the finger, but also around the wrist, forearm, and the upper arm. Some discrepancies are observed between the basic restrictions for the electric field and SAR and the reference levels for the contact current, especially in the extremities. These discrepancies are shown by an equation that relates the current density, tissue conductivity, and induced electric field in the finger with a cross-sectional area of 1 cm2.
Shabzendedar, Mahbobeh; Moosavi, Horieh; Talbi, Maryam; Sharifi, Marjan
2011-11-01
The goal of the study was to evaluate the effect of caries removal by three various methods on the permeability of class II composite resin restorations in primary molar teeth. Forty-five recently extracted primary molars were randomly assigned to three groups for three different methods of caries removal; group 1-mechanical, group 2-caries detector dye, and group 3-Carisolv (n = 15). After that, class II cavities in all groups were restored with the adhesive (Opti Bond Solo Plus) that was applied according to the manufacturer's instruction and a posterior composite (Herculite XRV), which was used incrementally. After 24 hours the samples were thermocycled in water for 500 cycles between 5 and 55°C with a dwell time of 30 sec. Permeability was assessed by the fluid filtration method. The data were analyzed using the ANOVA test while study groups were compared with Tukey test for statistically significant differences at a 5% significance level. The evaluation of tested groups indicated that the highest (0.80) and least (0.37) mean of permeability was observed in group 2 and 3 respectively. Significant difference was revealed among the tested groups (p = 0.045). The comparison of Carisolv and caries detector dye groups indicated a statistically significant difference (p = 0.037). There was not any significant difference between Carisolv or caries dye in the conventional group. Using the chemomechanical and staining methods for caries removal had no more detrimental effect on permeability than the conventional technique. However, caries detection dye for caries removal could be more harmful than chemomechanical method. None of the current caries-excavation techniques could eliminate permeability in class II composite resin restorations. Furthermore, staining methods do not have an adverse effect on sealing ability in comparison to the conventional technique.
Zheng, Dandan; Todor, Dorin A
2011-01-01
In real-time trans-rectal ultrasound (TRUS)-based high-dose-rate prostate brachytherapy, the accurate identification of needle-tip position is critical for treatment planning and delivery. Currently, needle-tip identification on ultrasound images can be subject to large uncertainty and errors because of ultrasound image quality and imaging artifacts. To address this problem, we developed a method based on physical measurements with simple and practical implementation to improve the accuracy and robustness of needle-tip identification. Our method uses measurements of the residual needle length and an off-line pre-established coordinate transformation factor, to calculate the needle-tip position on the TRUS images. The transformation factor was established through a one-time systematic set of measurements of the probe and template holder positions, applicable to all patients. To compare the accuracy and robustness of the proposed method and the conventional method (ultrasound detection), based on the gold-standard X-ray fluoroscopy, extensive measurements were conducted in water and gel phantoms. In water phantom, our method showed an average tip-detection accuracy of 0.7 mm compared with 1.6 mm of the conventional method. In gel phantom (more realistic and tissue-like), our method maintained its level of accuracy while the uncertainty of the conventional method was 3.4mm on average with maximum values of over 10mm because of imaging artifacts. A novel method based on simple physical measurements was developed to accurately detect the needle-tip position for TRUS-based high-dose-rate prostate brachytherapy. The method demonstrated much improved accuracy and robustness over the conventional method. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Force analysis of magnetic bearings with power-saving controls
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.
1992-01-01
Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. For most operating conditions, the existence of the bias current requires more power than alternative methods that do not use conventional bias. Two such methods are examined which diminish or eliminate bias current. In the typical bias control scheme it is found that for a harmonic control force command into a voltage limited transconductance amplifier, the desired force output is obtained only up to certain combinations of force amplitude and frequency. Above these values, the force amplitude is reduced and a phase lag occurs. The power saving alternative control schemes typically exhibit such deficiencies at even lower command frequencies and amplitudes. To assess the severity of these effects, a time history analysis of the force output is performed for the bias method and the alternative methods. Results of the analysis show that the alternative approaches may be viable. The various control methods examined were mathematically modeled using nondimensionalized variables to facilitate comparison of the various methods.
Ion beam figuring of small optical components
NASA Astrophysics Data System (ADS)
Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.
1995-12-01
Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Sivasubramani, V.; Ramasamy, P.
2015-06-24
A transparent uniaxial L-arginine 4-nitrophenolate 4-nitrophenol dehydrate (LAPP) single crystal having dimension of 20 mm diameter and 45 mm length was grown by Sankaranarayanan-Ramasamy (SR) method with a growth rate of 1 mm per day. Using an identical solution the conventional crystal grown to a dimension of 8×5×5 mm{sup 3} was obtained over a period of 30 days. The crystal structure has been confirmed by single crystal X-ray diffraction measurement. The crystalline perfection of LAPP crystals grown by slow evaporation solution technique (SEST) and SR method were characterized using Vickers microhardness, UV-Vis NIR, chemical etching, dark and photo current measurements. The above study indicatesmore » that the crystal quality of the Sankaranarayanan-Ramasamy (SR) method grown LAPP is good compared to the conventional method grown crystal.« less
Method and apparatus for resonant frequency waveform modulation
Taubman, Matthew S [Richland, WA
2011-06-07
A resonant modulator device and process are described that provide enhanced resonant frequency waveforms to electrical devices including, e.g., laser devices. Faster, larger, and more complex modulation waveforms are obtained than can be obtained by use of conventional current controllers alone.
A risk assessment methodology using intuitionistic fuzzy set in FMEA
NASA Astrophysics Data System (ADS)
Chang, Kuei-Hu; Cheng, Ching-Hsue
2010-12-01
Most current risk assessment methods use the risk priority number (RPN) value to evaluate the risk of failure. However, conventional RPN methodology has been criticised as having five main shortcomings as follows: (1) the assumption that the RPN elements are equally weighted leads to over simplification; (2) the RPN scale itself has some non-intuitive statistical properties; (3) the RPN elements have many duplicate numbers; (4) the RPN is derived from only three factors mainly in terms of safety; and (5) the conventional RPN method has not considered indirect relations between components. To address the above issues, an efficient and comprehensive algorithm to evaluate the risk of failure is needed. This article proposes an innovative approach, which integrates the intuitionistic fuzzy set (IFS) and the decision-making trial and evaluation laboratory (DEMATEL) approach on risk assessment. The proposed approach resolves some of the shortcomings of the conventional RPN method. A case study, which assesses the risk of 0.15 µm DRAM etching process, is used to demonstrate the effectiveness of the proposed approach. Finally, the result of the proposed method is compared with the listing approaches of risk assessment methods.
USDA-ARS?s Scientific Manuscript database
Aims: Conventional phenotypic and genotypic analyses for the differentiation of phenotypically ambiguous Edwardsiella congeners was evaluated and historical E. tarda designations were linked to current taxonomic nomenclature. Methods and Results: Forty-seven Edwardsiella spp. isolates recovered over...
Multi-mounted X-ray cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Fu, Jian; Wang, Jingzheng; Guo, Wei; Peng, Peng
2018-04-01
As a powerful nondestructive inspection technique, X-ray computed tomography (X-CT) has been widely applied to clinical diagnosis, industrial production and cutting-edge research. Imaging efficiency is currently one of the major obstacles for the applications of X-CT. In this paper, a multi-mounted three dimensional cone-beam X-CT (MM-CBCT) method is reported. It consists of a novel multi-mounted cone-beam scanning geometry and the corresponding three dimensional statistical iterative reconstruction algorithm. The scanning geometry is the most iconic design and significantly different from the current CBCT systems. Permitting the cone-beam scanning of multiple objects simultaneously, the proposed approach has the potential to achieve an imaging efficiency orders of magnitude greater than the conventional methods. Although multiple objects can be also bundled together and scanned simultaneously by the conventional CBCT methods, it will lead to the increased penetration thickness and signal crosstalk. In contrast, MM-CBCT avoids substantially these problems. This work comprises a numerical study of the method and its experimental verification using a dataset measured with a developed MM-CBCT prototype system. This technique will provide a possible solution for the CT inspection in a large scale.
The Safety Course Design and Operations of Composite Overwrapped Pressure Vessels (COPV)
NASA Technical Reports Server (NTRS)
Saulsberry, Regor; Prosser, William
2015-01-01
Following a Commercial Launch Vehicle On-Pad COPV (Composite Overwrapped Pressure Vessels) failure, a request was received by the NESC (NASA Engineering and Safety Center) June 14, 2014. An assessment was approved July 10, 2014, to develop and assess the capability of scanning eddy current (EC) nondestructive evaluation (NDE) methods for mapping thickness and inspection for flaws. Current methods could not identify thickness reduction from necking and critical flaw detection was not possible with conventional dye penetrant (PT) methods, so sensitive EC scanning techniques were needed. Developmental methods existed, but had not been fully developed, nor had the requisite capability assessment (i.e., a POD (Probability of Detection) study) been performed.
NASA Technical Reports Server (NTRS)
Coy, J. J.; Townsend, D. P.; Zaretsky, E. V.
1985-01-01
Gearing technology in its modern form has a history of only 100 years. However, the earliest form of gearing can probably be traced back to fourth century B.C. Greece. Current gear practice and recent advances in the technology are drawn together. The history of gearing is reviewed briefly in the Introduction. Subsequent sections describe types of gearing and their geometry, processing, and manufacture. Both conventional and more recent methods of determining gear stress and deflections are considered. The subjects of life prediction and lubrication are additions to the literature. New and more complete methods of power loss predictions as well as an optimum design of spur gear meshes are described. Conventional and new types of power transmission systems are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Son, K; Lee, H; Kim, C
2016-06-15
Purpose: To reduce radiation dose to the patients, tube current modulation (TCM) method has been actively used in diagnostic CT systems. However, TCM method has not yet been applied to a kV-CBCT system on a LINAC machine. The purpose of this study is to investigate whether the use of TCM method is desirable in kV-CBCT system for IGRT. We have developed an attenuation-based tube current modulation (a-TCM) method using the prior knowledge of treatment CT image of a patient. Methods: Patients go through a diagnostic CT scan for RT planning; therefore, using this prior information of CT images, one canmore » estimate the total attenuation of an x-ray through the patient body in a CBCT setting for radiation therapy. We performed a numerical study incorporating major factors into account such as polychromatic x-ray, scatter, noise, and bow-tie filter to demonstrate that a-TCM method can produce equivalent quality of images at reduced imaging radiation doses. Using the CT projector program, 680 projection images of the pediatric XCAT phantom were obtained both in conventional scanning condition, i.e., without modulating the tube current, and in the proposed a-TCM scanning condition. FDK reconstruction algorithm was used for image reconstruction, and the organ dose due to imaging radiation has been calculated in both cases and compared using GATE/Geant4 simulation toolkit. Results: Reconstructed CT images in the a-TCM method showed similar SSIM values and noise properties to the reference images acquired by the conventional CBCT. In addition, reduction of organ doses ranged from 12% to 27%. Conclusion: We have successfully demonstrated the feasibility and dosimetric merit of the a-TCM method for kV-CBCT, and envision that it can be a useful option of CBCT scanning that provides patient dose reduction without degrading image quality.« less
Use of Conventional and Novel Smokeless Tobacco Products Among US Adolescents
Ayo-Yusuf, Olalekan A.; Vardavas, Constantine I.; Alpert, Hillel R.; Connolly, Gregory N.
2013-01-01
OBJECTIVES: To assess the prevalence and correlates of use of conventional and novel smokeless tobacco products among a national sample of US middle and high school students. METHODS: Data from the 2011 National Youth Tobacco Survey were analyzed to determine national estimates of current use of conventional (“chewing tobacco”, “snuff,” or “dip”), novel (“snus” and “dissolvable tobacco products”), and any smokeless tobacco products (novel and/or conventional products) within the past 30 days. RESULTS: The overall prevalence of current use of any smokeless tobacco product was 5.6% (n = 960). Among all students, 5.0% used chewing tobacco, snuff, or dip; 1.9% used snus; and 0.3% used dissolvable tobacco products. Among users of any smokeless tobacco, 64.0% used only conventional products, 26.8% were concurrent users of novel plus conventional products, whereas 9.2% exclusively used novel products. Approximately 72.1% of current any smokeless tobacco users concurrently smoked combustible tobacco products, and only 40.1% expressed an intention to quit all tobacco use. Regression analyses indicated that peer (adjusted odds ratio [aOR]: 9.56; 95% confidence interval [CI]: 7.14–12.80) and household (aOR: 3.32; 95% CI: 2.23–4.95) smokeless tobacco use were associated with smokeless tobacco use, whereas believing that all forms of tobacco are harmful was protective (aOR: 0.55; 95% CI: 0.38–0.79). CONCLUSIONS: Conventional smokeless tobacco products remain the predominant form of smokeless tobacco use. Most users of novel smokeless tobacco products also concurrently smoked combustible tobacco products. Smokeless tobacco use was associated with lower perception of harm from all tobacco products and protobacco social influences, indicating the need to change youth perceptions about the use of all tobacco products and to engage pediatricians in tobacco use prevention and cessation interventions. PMID:23918889
Review and evaluation of models that produce trip tables from ground counts : interim report.
DOT National Transportation Integrated Search
1996-01-01
This research effort was motivated by the desires of planning agencies to seek alternative methods of deriving current or base year Origin-Destination (O-D) trip tables without adopting conventional O-D surveys that are expensive, time consuming and ...
Vibrational spectroscopic determination of botanical trash samples
USDA-ARS?s Scientific Manuscript database
Cotton trash present with cotton lint can drastically affect the yarn properties and marketability of cotton. Cotton trash usually comes into contact with cotton lint from field to fabric processing operations of cotton. Conventional methods to determine cotton lint currently do not present the or...
A Drive Method for Small Inductance PM Motor Under No-Load Condition
NASA Astrophysics Data System (ADS)
Tanaka, Daisuke; Ohishi, Kiyoshi
The harmonic wave of the exciting current of the motor is generated by the pulsewidth modulated voltage of the inverter. The motors that have low inpedance genetate more harmonics and make larger iron loss. This paper describes an implementation of drive control for a small inductance permanent-magnet motor drive. A comparative experiment has been carried out with conventional methods and the utility of the proposed method has been verified.
Determinations of Vus using inclusive hadronic τ decay data
NASA Astrophysics Data System (ADS)
Maltman, Kim; Hudspith, Renwick James; Lewis, Randy; Izubuchi, Taku; Ohki, Hiroshi; Zanotti, James M.
2016-08-01
Two methods for determining |Vus| employing inclusive hadronic τ decay data are discussed. The first is the conventional flavor-breaking sum rule determination whose usual implementation produces results ˜ 3σ low compared to three-family unitary expectations. The second is a novel approach combining experimental strange hadronic τ distributions with lattice light-strange current-current two-point function data. Preliminary explorations of the latter show the method promises |Vus| determinations competitive with those from Kℓ3 and Γ[Kμ2]/Γ[πμ2]. For the former, systematic issues in the conventional implementation are investigated. Unphysical dependences of |Vus| on the choice of sum rule weight, w, and upper limit, s0, of the weighted experimental spectral integrals are observed, the source of these problems identified and a new implementation which overcomes these problems developed. Lattice results are shown to provide a tool for quantitatively assessing truncation uncertainties for the slowly converging D = 2 OPE series. The results for |Vus| from this new implementation are shown to be free of unphysical w- and s0-dependences, and ˜ 0.0020 higher than those produced by the conventional implementation. With preliminary new Kπ branching fraction results as input, we find |Vus| in excellent agreement with that obtained from Kℓ3, and compatible within errors with expectations from three-family unitarity.
NASA Astrophysics Data System (ADS)
Dehkordi, N. Mahdian; Sadati, N.; Hamzeh, M.
2017-09-01
This paper presents a robust dc-link voltage as well as a current control strategy for a bidirectional interlink converter (BIC) in a hybrid ac/dc microgrid. To enhance the dc-bus voltage control, conventional methods strive to measure and feedforward the load or source power in the dc-bus control scheme. However, the conventional feedforward-based approaches require remote measurement with communications. Moreover, conventional methods suffer from stability and performance issues, mainly due to the use of the small-signal-based control design method. To overcome these issues, in this paper, the power from DG units of the dc subgrid imposed on the BIC is considered an unmeasurable disturbance signal. In the proposed method, in contrast to existing methods, using the nonlinear model of BIC, a robust controller that does not need the remote measurement with communications effectively rejects the impact of the disturbance signal imposed on the BIC's dc-link voltage. To avoid communication links, the robust controller has a plug-and-play feature that makes it possible to add a DG/load to or remove it from the dc subgrid without distorting the hybrid microgrid stability. Finally, Monte Carlo simulations are conducted to confirm the effectiveness of the proposed control strategy in MATLAB/SimPowerSystems software environment.
NASA Technical Reports Server (NTRS)
Paknys, J. R.
1982-01-01
The reflector antenna may be thought of as an aperture antenna. The classical solution for the radiation pattern of such an antenna is found by the aperture integration (AI) method. Success with this method depends on how accurately the aperture currents are known beforehand. In the past, geometrical optics (GO) has been employed to find the aperture currents. This approximation is suitable for calculating the main beam and possibly the first few sidelobes. A better approximation is to use aperture currents calculated from the geometrical theory of diffraction (GTD). Integration of the GTD currents over and extended aperture yields more accurate results for the radiation pattern. This approach is useful when conventional AI and GTD solutions have no common region of validity. This problem arises in reflector antennas. Two dimensional models of parabolic reflectors are studied; however, the techniques discussed can be applied to any aperture antenna.
Current conduction in junction gate field effect transistors. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kim, C.
1970-01-01
The internal physical mechanism that governs the current conduction in junction-gate field effect transistors is studied. A numerical method of analyzing the devices with different length-to-width ratios and doping profiles is developed. This method takes into account the two dimensional character of the electric field and the field dependent mobility. Application of the method to various device models shows that the channel width and the carrier concentration in the conductive channel decrease with increasing drain-to-source voltage for conventional devices. It also shows larger differential drain conductances for shorter devices when the drift velocity is not saturated. The interaction of the source and the drain gives the carrier accumulation in the channel which leads to the space-charge-limited current flow. The important parameters for the space-charge-limited current flow are found to be the L/L sub DE ratio and the crossover voltage.
Woods, Scott W.; Morgenstern, Hal; Saksa, John R.; Walsh, Barbara C.; Sullivan, Michelle C.; Money, Roy; Hawkins, Keith A.; Gueorguieva, Ralitza V.; Glazer, William M.
2011-01-01
Objective Most previous studies of the incidence of tardive dyskinesia with atypical compared to conventional antipsychotics have not had tardive dyskinesia as their primary focus. The current study aimed to compare the incidence of tardive dyskinesia with atypical vs. conventional antipsychotics using methods similar to those from a previous prospective cohort study at our site in the 1980s. Method 352 initially tardive dyskinesia-free psychiatric outpatients were examined for a new diagnosis of tardive dyskinesia every 6 months for up to 4 years at a community mental health center. At baseline, subjects were receiving conventional antipsychotics only (23%), atypicals only (64%), or both (14%). Only 26 subjects had never received conventional antipsychotics. Results Compared with subjects treated with conventional antipsychotics alone since the previous visit, the adjusted tardive dyskinesia incidence rate-ratio for subjects treated with atypical antipsychotics alone was 0.68 (95% confidence interval 0.29 to 1.64). The incidence and prevalence of tardive dyskinesia was similar to previous findings at this site in the 1980s. Conclusion The incidence of tardive dyskinesia with recent exposure to atypical antipsychotics alone was more similar to that for conventional antipsychotics than in most previous studies. Despite high penetration of atypical antipsychotics into clinical practice, the incidence and prevalence of tardive dyskinesia appeared relatively unchanged since the 1980s. Clinicians should continue to monitor for tardive dyskinesia, and researchers should continue to pursue efforts to treat or prevent it. PMID:20156410
Video-based teleradiology for intraosseous lesions. A receiver operating characteristic analysis.
Tyndall, D A; Boyd, K S; Matteson, S R; Dove, S B
1995-11-01
Immediate access to off-site expert diagnostic consultants regarding unusual radiographic findings or radiographic quality assurance issues could be a current problem for private dental practitioners. Teleradiology, a system for transmitting radiographic images, offers a potential solution to this problem. Although much research has been done to evaluate feasibility and utilization of teleradiology systems in medical imaging, little research on dental applications has been performed. In this investigation 47 panoramic films with an equal distribution of images with intraosseous jaw lesions and no disease were viewed by a panel of observers with teleradiology and conventional viewing methods. The teleradiology system consisted of an analog video-based system simulating remote radiographic consultation between a general dentist and a dental imaging specialist. Conventional viewing consisted of traditional viewbox methods. Observers were asked to identify the presence or absence of 24 intraosseous lesions and to determine their locations. No statistically significant differences in modalities or observers were identified between methods at the 0.05 level. The results indicate that viewing intraosseous lesions of video-based panoramic images is equal to conventional light box viewing.
Application of ECT inspection to the first wall of a fusion reactor with wavelet analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G.; Yoshida, Y.; Miya, K.
1994-12-31
The first wall of a fusion reactor will be subjected to intensive loads during fusion operations. Since these loads may cause defects in the first wall, nondestructive evaluation techniques of the first wall should be developed. In this paper, we try to apply eddy current testing (ECT) technique to the inspection of the first wall. A method based on current vector potential and wavelet analysis is proposed. Owing to the use of wavelet analysis, a new theory developed recently, the accuracy of the present method is shown to be better than a conventional one.
Simultaneous distribution of AC and DC power
Polese, Luigi Gentile
2015-09-15
A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.
Andreev current for low temperature thermometry
NASA Astrophysics Data System (ADS)
Faivre, T.; Golubev, D. S.; Pekola, J. P.
2015-05-01
We demonstrate experimentally that disorder enhanced Andreev current in a tunnel junction between a normal metal and a superconductor provides a method to measure electronic temperature, specifically at temperatures below 200 mK when aluminum is used. This Andreev thermometer has some advantages over conventional quasiparticle thermometers: For instance, it does not conduct heat and its reading does not saturate until at lower temperatures. Another merit is that the responsivity is constant over a wide temperature range.
Cryopreservation: Vitrification and Controlled Rate Cooling.
Hunt, Charles J
2017-01-01
Cryopreservation is the application of low temperatures to preserve the structural and functional integrity of cells and tissues. Conventional cooling protocols allow ice to form and solute concentrations to rise during the cryopreservation process. The damage caused by the rise in solute concentration can be mitigated by the use of compounds known as cryoprotectants. Such compounds protect cells from the consequences of slow cooling injury, allowing them to be cooled at cooling rates which avoid the lethal effects of intracellular ice. An alternative to conventional cooling is vitrification. Vitrification methods incorporate cryoprotectants at sufficiently high concentrations to prevent ice crystallization so that the system forms an amorphous glass thus avoiding the damaging effects caused by conventional slow cooling. However, vitrification too can impose damaging consequences on cells as the cryoprotectant concentrations required to vitrify cells at lower cooling rates are potentially, and often, harmful. While these concentrations can be lowered to nontoxic levels, if the cells are ultra-rapidly cooled, the resulting metastable system can lead to damage through devitrification and growth of ice during subsequent storage and rewarming if not appropriately handled.The commercial and clinical application of stem cells requires robust and reproducible cryopreservation protocols and appropriate long-term, low-temperature storage conditions to provide reliable master and working cell banks. Though current Good Manufacturing Practice (cGMP) compliant methods for the derivation and banking of clinical grade pluripotent stem cells exist and stem cell lines suitable for clinical applications are available, current cryopreservation protocols, whether for vitrification or conventional slow freezing, remain suboptimal. Apart from the resultant loss of valuable product that suboptimal cryopreservation engenders, there is a danger that such processes will impose a selective pressure on the cells selecting out a nonrepresentative, freeze-resistant subpopulation. Optimizing this process requires knowledge of the fundamental processes that occur during the freezing of cellular systems, the mechanisms of damage and methods for avoiding them. This chapter draws together the knowledge of cryopreservation gained in other systems with the current state-of-the-art for embryonic and induced pluripotent stem cell preservation in an attempt to provide the background for future attempts to optimize cryopreservation protocols.
Electronic cigarette substitution in the experimental tobacco marketplace: A review.
Bickel, Warren K; Pope, Derek A; Kaplan, Brent A; Brady DeHart, W; Koffarnus, Mikhail N; Stein, Jeffrey S
2018-04-24
The evolution of science derives, in part, from the development and use of new methods and techniques. Here, we discuss one development that may have impact on the understanding of tobacco regulatory science: namely, the application of behavioral economics to the complex tobacco marketplace. The purpose of this paper is to review studies that examine conditions impacting the degree to which electronic nicotine delivery system (ENDS) products substitute for conventional cigarettes in the Experimental Tobacco Marketplace (ETM). Collectively, the following factors constitute the current experimental understanding of conditions that will affect ENDS use and substitution for conventional cigarettes: increasing the base price of conventional cigarettes, increasing taxation of conventional cigarettes, subsidizing the price of ENDS products, increasing ENDS nicotine strength, and providing narratives that illustrate the potential health benefits of ENDS consumption in lieu of conventional cigarettes. Each of these factors are likely moderated by consumer characteristics, which include prior ENDS use, ENDS use risk perception, and gender. Overall, the ETM provides a unique method to explore and identify the conditions by which various nicotine products may interact with one another that mimics the real world. In addition, the ETM permits the efficacy of a broad range of potential nicotine policies and regulations to be measured prior to governmental implementation. Copyright © 2017. Published by Elsevier Inc.
JPRS Report, Science & Technology, Japan: Symposium on Applications of Advanced Technology: Sensors
1992-03-02
attempted as a part of a movement proposed by the [Text] author and his coworkers in 1983. In principle, it is a method that forcibly electrolyzes the...value of the current flowing at that time. The detection and Technology method is similar to that of the conventional phosphorus pentoxide sensor, and...electrolytes 3 ’:.i/ from the standpoint of developing energy-related tech- • ........ !ii. 4 nology. This method of water electrolysis is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Panbao; Lu, Xiaonan; Yang, Xu
This paper proposes an improved distributed secondary control scheme for dc microgrids (MGs), aiming at overcoming the drawbacks of conventional droop control method. The proposed secondary control scheme can remove the dc voltage deviation and improve the current sharing accuracy by using voltage-shifting and slope-adjusting approaches simultaneously. Meanwhile, the average value of droop coefficients is calculated, and then it is controlled by an additional controller included in the distributed secondary control layer to ensure that each droop coefficient converges at a reasonable value. Hence, by adjusting the droop coefficient, each participating converter has equal output impedance, and the accurate proportionalmore » load current sharing can be achieved with different line resistances. Furthermore, the current sharing performance in steady and transient states can be enhanced by using the proposed method. The effectiveness of the proposed method is verified by detailed experimental tests based on a 3 × 1 kW prototype with three interface converters.« less
Scerbo, Michelle H; Kaplan, Heidi B; Dua, Anahita; Litwin, Douglas B; Ambrose, Catherine G; Moore, Laura J; Murray, Col Clinton K; Wade, Charles E; Holcomb, John B
2016-06-01
Sepsis from bacteremia occurs in 250,000 cases annually in the United States, has a mortality rate as high as 60%, and is associated with a poorer prognosis than localized infection. Because of these high figures, empiric antibiotic administration for patients with systemic inflammatory response syndrome (SIRS) and suspected infection is the second most common indication for antibiotic administration in intensive care units (ICU)s. However, overuse of empiric antibiotics contributes to the development of opportunistic infections, antibiotic resistance, and the increase in multi-drug-resistant bacterial strains. The current method of diagnosing and ruling out bacteremia is via blood culture (BC) and Gram stain (GS) analysis. Conventional and molecular methods for diagnosing bacteremia were reviewed and compared. The clinical implications, use, and current clinical trials of polymerase chain reaction (PCR)-based methods to detect bacterial pathogens in the blood stream were detailed. BC/GS has several disadvantages. These include: some bacteria do not grow in culture media; others do not GS appropriately; and cultures can require up to 5 d to guide or discontinue antibiotic treatment. PCR-based methods can be potentially applied to detect rapidly, accurately, and directly microbes in human blood samples. Compared with the conventional BC/GS, particular advantages to molecular methods (specifically, PCR-based methods) include faster results, leading to possible improved antibiotic stewardship when bacteremia is not present.
Development of an Ointment Formulation Using Hot-Melt Extrusion Technology.
Bhagurkar, Ajinkya M; Angamuthu, Muralikrishnan; Patil, Hemlata; Tiwari, Roshan V; Maurya, Abhijeet; Hashemnejad, Seyed Meysam; Kundu, Santanu; Murthy, S Narasimha; Repka, Michael A
2016-02-01
Ointments are generally prepared either by fusion or by levigation methods. The current study proposes the use of hot-melt extrusion (HME) processing for the preparation of a polyethylene glycol base ointment. Lidocaine was used as a model drug. A modified screw design was used in this process, and parameters such as feeding rate, barrel temperature, and screw speed were optimized to obtain a uniform product. The product characteristics were compared with an ointment of similar composition prepared by conventional fusion method. The rheological properties, drug release profile, and texture characteristics of the hot-melt extruded product were similar to the conventionally prepared product. This study demonstrates a novel application of the hot-melt extrusion process in the manufacturing of topical semi-solids.
Added, Marco Aurélio Nemitalla; Costa, Leonardo Oliveira Pena; Fukuda, Thiago Yukio; de Freitas, Diego Galace; Salomão, Evelyn Cassia; Monteiro, Renan Lima; Costa, Lucíola da Cunha Menezes
2013-10-24
Chronic nonspecific low back pain is a significant health condition with high prevalence worldwide and it is associated with enormous costs to society. Clinical practice guidelines show that many interventions are available to treat patients with chronic low back pain, but the vast majority of these interventions have a modest effect in reducing pain and disability. An intervention that has been widespread in recent years is the use of elastic bandages called Kinesio Taping. Although Kinesio Taping has been used extensively in clinical practice, current evidence does not support the use of this intervention; however these conclusions are based on a small number of underpowered studies. Therefore, questions remain about the effectiveness of the Kinesio Taping method as an additional treatment to interventions, such as conventional physiotherapy, that have already been recommended by the current clinical practice guidelines in robust and high-quality randomised controlled trials. We aim to determine the effectiveness of the addition of the use of Kinesio Taping in patients with chronic nonspecific low back pain who receive guideline-endorsed conventional physiotherapy. One hundred and forty-eight patients will be randomly allocated to receive either conventional physiotherapy, which consists of a combination of manual therapy techniques, general exercises, and specific stabilisation exercises (Guideline-Endorsed Conventional Physiotherapy Group) or to receive conventional physiotherapy with the addition of Kinesio Taping to the lumbar spine (Conventional Physiotherapy plus Kinesio Taping Group) over a period of 5 weeks (10 sessions of treatment). Clinical outcomes (pain intensity, disability and global perceived effect) will be collected at baseline and at 5 weeks, 3 months, and 6 months after randomisation. We will also collect satisfaction with care and adverse effects after treatment. Data will be collected by a blinded assessor. All statistical analysis will be conducted following the principles of intention to treat, and the effects of treatment will be calculated using Linear Mixed Models. The results of this study will provide new information about the usefulness of Kinesio Taping as an additional component of a guideline-endorsed physiotherapy program in patients with chronic nonspecific low back pain.
Fungicide residue identification and discrimination using a conducting polymer electronic-nose
Alphus D. Wilson
2013-01-01
The identification of fungicide residues on crop foliage is necessary to make periodic pest management decisions. The determination of fungicide residue identities currently is difficult and time consuming using conventional chemical analysis methods such as gas chromatography-mass spectroscopy. Different fungicide types produce unique electronic aroma signature...
DOT National Transportation Integrated Search
2011-12-01
Current AASHTO provisions for the conventional load rating of flat slab bridges rely on the equivalent strip method : of analysis for determining live load effects, this is generally regarded as overly conservative by many professional : engineers. A...
Novel Features for Brain-Computer Interfaces
Woon, W. L.; Cichocki, A.
2007-01-01
While conventional approaches of BCI feature extraction are based on the power spectrum, we have tried using nonlinear features for classifying BCI data. In this paper, we report our test results and findings, which indicate that the proposed method is a potentially useful addition to current feature extraction techniques. PMID:18364991
DOT National Transportation Integrated Search
2010-01-01
Current AASHTO provisions for the conventional load rating of flat slab bridges rely on the equivalent strip method : of analysis for determining live load effects, this is generally regarded as overly conservative by many professional : engineers. A...
Brodsky, Ethan K.; Klaers, Jessica L.; Samsonov, Alexey A.; Kijowski, Richard; Block, Walter F.
2014-01-01
Non-Cartesian imaging sequences and navigational methods can be more sensitive to scanner imperfections that have little impact on conventional clinical sequences, an issue which has repeatedly complicated the commercialization of these techniques by frustrating transitions to multi-center evaluations. One such imperfection is phase errors caused by resonant frequency shifts from eddy currents induced in the cryostat by time-varying gradients, a phenomemon known as B0 eddy currents. These phase errors can have a substantial impact on sequences that use ramp sampling, bipolar gradients, and readouts at varying azimuthal angles. We present a method for measuring and correcting phase errors from B0 eddy currents and examine the results on two different scanner models. This technique yields significant improvements in image quality for high-resolution joint imaging on certain scanners. The results suggest that correction of short time B0 eddy currents in manufacturer provided service routines would simplify adoption of non-Cartesian sampling methods. PMID:22488532
NASA Astrophysics Data System (ADS)
Ohara, Masaki; Noguchi, Toshihiko
This paper describes a new method for a rotor position sensorless control of a surface permanent magnet synchronous motor based on a model reference adaptive system (MRAS). This method features the MRAS in a current control loop to estimate a rotor speed and position by using only current sensors. This method as well as almost all the conventional methods incorporates a mathematical model of the motor, which consists of parameters such as winding resistances, inductances, and an induced voltage constant. Hence, the important thing is to investigate how the deviation of these parameters affects the estimated rotor position. First, this paper proposes a structure of the sensorless control applied in the current control loop. Next, it proves the stability of the proposed method when motor parameters deviate from the nominal values, and derives the relationship between the estimated position and the deviation of the parameters in a steady state. Finally, some experimental results are presented to show performance and effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Tsen, Shaw-Wei David; Donthi, Nisha; La, Victor; Hsieh, Wen-Han; Li, Yen-Der; Knoff, Jayne; Chen, Alexander; Wu, Tzyy-Choou; Hung, Chien-Fu; Achilefu, Samuel; Tsen, Kong-Thon
2015-05-01
There is an urgent need for rapid methods to develop vaccines in response to emerging viral pathogens. Whole inactivated virus (WIV) vaccines represent an ideal strategy for this purpose; however, a universal method for producing safe and immunogenic inactivated vaccines is lacking. Conventional pathogen inactivation methods such as formalin, heat, ultraviolet light, and gamma rays cause structural alterations in vaccines that lead to reduced neutralizing antibody specificity, and in some cases, disastrous T helper type 2-mediated immune pathology. We have evaluated the potential of a visible ultrashort pulsed (USP) laser method to generate safe and immunogenic WIV vaccines without adjuvants. Specifically, we demonstrate that vaccination of mice with laser-inactivated H1N1 influenza virus at about a 10-fold lower dose than that required using conventional formalin-inactivated influenza vaccines results in protection against lethal H1N1 challenge in mice. The virus, inactivated by the USP laser irradiation, has been shown to retain its surface protein structure through hemagglutination assay. Unlike conventional inactivation methods, laser treatment did not generate carbonyl groups in protein, thereby reducing the risk of adverse vaccine-elicited T helper type 2 responses. Therefore, USP laser treatment is an attractive potential strategy to generate WIV vaccines with greater potency and safety than vaccines produced by current inactivation techniques.
Song, Zhixin; Xie, Baoyuan; Ma, Huaian; Zhang, Rui; Li, Pengfei; Liu, Lihong; Yue, Yuhong; Zhang, Jianping; Tong, Qing; Wang, Qingtao
2016-09-01
The level of glycated hemoglobin (HbA1c ) has been recognized as an important indicator of long-term glycemic control. However, the HbA1c measurement is not currently included as a diagnostic determinant in China. Current study aims to assess a candidate modified International Federation of Clinical Chemistry reference method for the forthcoming standardization of HbA1c measurements in China. The HbA1c concentration was measured using a modified high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) method. The modified method replaces the propylcyanide column with a C18 reversed-phase column, which has a lower cost and is more commonly used in China, and uses 0.1% (26.5 mmol/l) formic acid instead of trifluoroacetic acid. Moreover, in order to minimize matrix interference and reduce the running time, a solid-phase extraction was employed. The discrepancies between HbA1c measurements using conventional methods and the HPLC-ESI-MS method were clarified in clinical samples from healthy people and diabetic patients. Corresponding samples were distributed to 89 hospitals in Beijing for external quality assessment. The linearity, reliability, and accuracy of the modified HPLC-ESI-MS method with a shortened running time of 6 min were successfully validated. Out of 89 hospitals evaluated, the relative biases of HbA1c concentrations were < 8% for 74 hospitals and < 5% for 60 hospitals. Compared with other conventional methods, HbA1c concentrations determined by HPLC methods were similar to the values obtained from the current HPLC-ESI-MS method. The HPLC-ESI-MS method represents an improvement over existing methods and provides a simple, stable, and rapid HbA1c measurement with strong signal intensities and reduced ion suppression. © 2015 Wiley Periodicals, Inc.
Monte Carlo modeling of a conventional X-ray computed tomography scanner for gel dosimetry purposes.
Hayati, Homa; Mesbahi, Asghar; Nazarpoor, Mahmood
2016-01-01
Our purpose in the current study was to model an X-ray CT scanner with the Monte Carlo (MC) method for gel dosimetry. In this study, a conventional CT scanner with one array detector was modeled with use of the MCNPX MC code. The MC calculated photon fluence in detector arrays was used for image reconstruction of a simple water phantom as well as polyacrylamide polymer gel (PAG) used for radiation therapy. Image reconstruction was performed with the filtered back-projection method with a Hann filter and the Spline interpolation method. Using MC results, we obtained the dose-response curve for images of irradiated gel at different absorbed doses. A spatial resolution of about 2 mm was found for our simulated MC model. The MC-based CT images of the PAG gel showed a reliable increase in the CT number with increasing absorbed dose for the studied gel. Also, our results showed that the current MC model of a CT scanner can be used for further studies on the parameters that influence the usability and reliability of results, such as the photon energy spectra and exposure techniques in X-ray CT gel dosimetry.
Removal of Giardia and Cryptosporidium in drinking water treatment: a pilot-scale study.
Hsu, Bing Mu; Yeh, Hsuan Hsien
2003-03-01
Giardia and Cryptosporidium have emerged as waterborne pathogens of concern for public health. The aim of this study is to examine both parasites in the water samples taken from three pilot-scale plant processes located in southern Taiwan, to upgrade the current facilities. Three processes include: conventional process without prechlorination (Process 1), conventional process plus ozonation and pellet softening (Process 2), and integrated membrane process (MF plus NF) followed conventional process (Process 3). The detection methods of both parasites are modified from USEPA Methods 1622 and 1623. Results indicated that coagulation, sedimentation and filtration removed the most percentage of both protozoan parasites. The pre-ozonation step can destruct both parasites, especially for Giardia cysts. The microfiltration systems can intercept Giardia cysts and Cryptosporidium oocysts completely. A significant correlation between water turbidity and Cryptosporidium oocysts was found in this study. The similar results were also found between three kinds of particles (phi=3-5,5-8 and 8-10 microm) and Cryptosporidium oocysts.
How to detect carbapenemase producers? A literature review of phenotypic and molecular methods.
Hammoudi, D; Moubareck, C Ayoub; Sarkis, D Karam
2014-12-01
This review describes the current state-of-art of carbapenemase detection methods. Identification of carbapenemases is first based on conventional phenotypic tests including antimicrobial susceptibility testing, modified-Hodge test and carbapenemase-inhibitor culture tests. Second, molecular characterization of carbapenemase genes by PCR sequencing is essential. Third, innovative biochemical and spectrometric detection may be applied. Copyright © 2014 Elsevier B.V. All rights reserved.
Layer by Layer Growth of 2D Quantum Superlattices (NBIT III)
2017-02-28
building quantum superlatticies using 2D materials as the building blocks. Specifically, we develop methods that allow i) large-scale growth of aligned...superlattice and heterostructures, iii) lateral and clean patterning of 2D materials for atomically-thin circuitry and iv) novel physical properties...high precision and flexibility beyond conventional methods. Moreover, it provides the solutions for current major barrier for 2D materials (e.g
Potential implementation of light steel housing system for affordable housing project in Malaysia
NASA Astrophysics Data System (ADS)
Saikah, M.; Kasim, N.; Zainal, R.; Sarpin, N.; Rahim, M. H. I. A.
2017-11-01
An unparalleled number between housing demand and housing supply in Malaysia has increased the housing prices, which gives consequences to the homeownership issue. One way to reduce the housing price is by faster increase the number of affordable housing, but the construction sector faces difficulties in delivering as expected number by using conventional and current industrialised building system (IBS) due to the issue related high project cost, time and labour. Therefore, light steel housing (LSH) system as one of another type of IBS method can be utilised in housing construction project. This method can replace the conventional method that was currently used in the construction of affordable housing project. The objectives of this study are to identify the potential of LSH and influencing factors of system implementation. This is an initial stage to review the previous study related to LSH implementation in developed and developing countries. The previous study will be analysed regarding advantages and disadvantages of LSH and factors that influence the implementation of the system. Based on the literature review it is expected to define the potential and influencing factors of the LSH system. The findings are meaningful in framing and enhance construction housing method of an affordable housing project in Malaysia.
Lee, Hyunyeol; Jeong, Woo Chul; Kim, Hyung Joong; Woo, Eung Je; Park, Jaeseok
2016-05-01
To develop a novel, current-controlled alternating steady-state free precession (SSFP)-based conductivity imaging method and corresponding MR signal models to estimate current-induced magnetic flux density (Bz ) and conductivity distribution. In the proposed method, an SSFP pulse sequence, which is in sync with alternating current pulses, produces dual oscillating steady states while yielding nonlinear relation between signal phase and Bz . A ratiometric signal model between the states was analytically derived using the Bloch equation, wherein Bz was estimated by solving a nonlinear inverse problem for conductivity estimation. A theoretical analysis on the signal-to-noise ratio of Bz was given. Numerical and experimental studies were performed using SSFP-FID and SSFP-ECHO with current pulses positioned either before or after signal encoding to investigate the feasibility of the proposed method in conductivity estimation. Given all SSFP variants herein, SSFP-FID with alternating current pulses applied before signal encoding exhibits the highest Bz signal-to-noise ratio and conductivity contrast. Additionally, compared with conventional conductivity imaging, the proposed method benefits from rapid SSFP acquisition without apparent loss of conductivity contrast. We successfully demonstrated the feasibility of the proposed method in estimating current-induced Bz and conductivity distribution. It can be a promising, rapid imaging strategy for quantitative conductivity imaging. © 2015 Wiley Periodicals, Inc.
SURGICAL TREATMENT OF HEMORRHOIDS: A CRITICAL APPRAISAL OF THE CURRENT OPTIONS
CERATO, Marlise Mello; CERATO, Nilo Luiz; PASSOS, Patrícia; TREIGUE, Alberto; DAMIN, Daniel C.
2014-01-01
Introduction Surgical treatment of hemorrhoids is still a dilemma. New techniques have been developed leading to a lower rate of postoperative pain; however, they are associated with a greater likelihood of recurrence. Aim To review current indications as well as the results and complications of the main techniques currently used in the surgical treatment of hemorrhoidal disease. Methods A systematic search of the published data on the options for treatment of hemorrhoids up to December 2012 was conducted using Medline/PubMed, Cochrane, and UpToDate. Results Currently available surgical treatment options include procedure for prolapse and hemorrhoids (PPH), transanal hemorrhoidal dearterialization (THD), and conventional hemorrhoidectomy techniques. Excisional techniques showed similar results regarding pain, time to return to normal activities, and complication rates. PPH and THD were associated with less postoperative pain and lower complication rates; however, both had higher postoperative recurrence rates. Conclusion Conventional surgical techniques yield better long-term results. Despite good results in the immediate postoperative period, PPH and THD have not shown consistent long-term favorable results. PMID:24676303
Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression
2017-01-01
Background. Depression is a recurrent, common, and potentially life-threatening psychiatric disease related to multiple assignable causes. Although conventional antidepressant therapy can help relieve symptoms of depression and prevent relapse of the illness, complementary therapies are required due to disadvantage of the current therapy such as adverse effects. Moreover, a number of studies have researched adjunctive therapeutic approaches to improve outcomes for depression patients. Purpose. One potential complementary method with conventional antidepressants involves the use of medicinal herbs and phytochemicals that provide therapeutic benefits. Studies have revealed beneficial effects of medical herbs and phytochemicals on depression and their central nervous system mechanism. Here, we summarize the current knowledge of the therapeutic benefits of phytochemicals and medicinal herbs against depression and describe their detailed mechanisms. Sections. There are two sections, phytochemicals against depression and medical herbs against depression, in this review. Conclusion. Use of phytomedicine may be an alternative option for the treatment of depression in case conventional drugs are not applicable due to their side effects, low effectiveness, or inaccessibility. However, the efficacy and safety of these phytomedicine treatments for depression have to be supported by clinical studies. PMID:28503571
Therapeutic Effects of Phytochemicals and Medicinal Herbs on Depression.
Lee, Gihyun; Bae, Hyunsu
2017-01-01
Background . Depression is a recurrent, common, and potentially life-threatening psychiatric disease related to multiple assignable causes. Although conventional antidepressant therapy can help relieve symptoms of depression and prevent relapse of the illness, complementary therapies are required due to disadvantage of the current therapy such as adverse effects. Moreover, a number of studies have researched adjunctive therapeutic approaches to improve outcomes for depression patients. Purpose . One potential complementary method with conventional antidepressants involves the use of medicinal herbs and phytochemicals that provide therapeutic benefits. Studies have revealed beneficial effects of medical herbs and phytochemicals on depression and their central nervous system mechanism. Here, we summarize the current knowledge of the therapeutic benefits of phytochemicals and medicinal herbs against depression and describe their detailed mechanisms. Sections . There are two sections, phytochemicals against depression and medical herbs against depression, in this review. Conclusion . Use of phytomedicine may be an alternative option for the treatment of depression in case conventional drugs are not applicable due to their side effects, low effectiveness, or inaccessibility. However, the efficacy and safety of these phytomedicine treatments for depression have to be supported by clinical studies.
Direct current hybrid breakers: A design and its realization
NASA Astrophysics Data System (ADS)
Atmadji, Ali Mahfudz Surya
2000-12-01
The use of semiconductors for electric power circuit breakers instead of conventional breakers remains a utopia when designing fault current interrupters for high power networks. The major problems concerning power semiconductor circuit breakers are the excessive heat losses and their sensitivity to transients. However, conventional breakers are capable of dealing with such matters. A combination of the two methods, or so-called `hybrid breakers', would appear to be a solution; however, hybrid breakers use separate parallel branches for conducting the main current and interrupting the short-circuit current. Such breakers are intended for protecting direct current (DC) traction systems. In this thesis hybrid switching techniques for current limitation and purely solidstate current interruption are investigated for DC breakers. This work analyzes the transient behavior of hybrid breakers and compares their operations with conventional breakers and similar solid-state devices in DC systems. Therefore a hybrid breaker was constructed and tested in a specially designed high power test circuit. A vacuum breaker was chosen as the main breaker in the main conducting path; then a commutation path was connected across the vacuum breaker where it provided current limitation and interruption. The commutation path operated only during any current interruption and the process required additional circuits. These included a certain energy storage, overvoltage suppressor and commutation switch. So that when discharging this energy, a controlled counter-current injection could be produced. That counter-current opposed the main current in the breaker by superposition in order to create a forced current-zero. One-stage and two-stage commutation circuits have been treated extensively. This study project contains both theoretical and experimental investigations. A direct current shortcircuit source was constructed capable of delivering power equivalent to a fault. It supplied a direct voltage of 1kVDC which was rectified having been obtained from a 3-phase lOkV/380V supply. The source was successfully tested to deliver a fault current of 7kA with a time constant of 5ms. The hybrid breaker that was developed could provide protection for 750VDC traction systems. The breaker was equipped with a fault- recognizing circuit based on a current level triggering. An electronic circuit was built for this need and was included in the system. It monitored the system continuously and took action by generating trip signals when a fault was recognized. Interruption was followed by a suitable timing of the fast contact separation in the main breaker and the current-zero creation. An electrodynamically driven mechanism was successfully tested having a dead-time of 300μs to separate the main breaker contacts. Furthermore, a maximum peak current injection of RA at a frequency of 500Hz could be obtained in order to produce an artificial current-zero in the vacuum breaker. A successful current interruption with a prospective value of RA was achieved by the hybrid switching technique. In addition, measures were taken to prevent overvoltages. Experimentally, the concept of a hybrid breaker was compared with the functioning of all mechanical (air breaker) and all electronical (IGCT breaker) versions. Although a single stage interrupting method was verified experimentally, two two-stage interrupting methods were analyzed theoretically.
Design of Current Leads for the MICE Coupling Magnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Li; Li, L.K.; Wu, Hong
2008-04-02
A pair of superconducting coupling magnets will be part of the Muon Ionization Cooling Experiment (MICE). They were designed and will be constructed by the Institute of Cryogenics and Superconductivity Technology, Harbin Institute of Technology, in collaboration with Lawrence Berkeley National Laboratory. The coupling magnet is to be cooled by using cryocoolers at 4.2K. In order to reduce the heat leak to the 4.2K cold mass from 300 K, a pair of current leads composed of conventional copper leads and high temperature superconductor (HTS) leads will be used to supply current to the magnet. This paper presents the optimization ofmore » the conventional conduction-cooled metal leads for the coupling magnet. Analyses on heat transfer down the leads using theoretical method and numerical simulation were carried out. The stray magnetic field around the HTS leads has been calculated and effects of the magnetic field on the performance of the HTS leads has also been analyzed.« less
Kaplan, Heidi B.; Dua, Anahita; Litwin, Douglas B.; Ambrose, Catherine G.; Moore, Laura J.; Murray, COL Clinton K.; Wade, Charles E.; Holcomb, John B.
2016-01-01
Abstract Background: Sepsis from bacteremia occurs in 250,000 cases annually in the United States, has a mortality rate as high as 60%, and is associated with a poorer prognosis than localized infection. Because of these high figures, empiric antibiotic administration for patients with systemic inflammatory response syndrome (SIRS) and suspected infection is the second most common indication for antibiotic administration in intensive care units (ICU)s. However, overuse of empiric antibiotics contributes to the development of opportunistic infections, antibiotic resistance, and the increase in multi-drug-resistant bacterial strains. The current method of diagnosing and ruling out bacteremia is via blood culture (BC) and Gram stain (GS) analysis. Methods: Conventional and molecular methods for diagnosing bacteremia were reviewed and compared. The clinical implications, use, and current clinical trials of polymerase chain reaction (PCR)-based methods to detect bacterial pathogens in the blood stream were detailed. Results: BC/GS has several disadvantages. These include: some bacteria do not grow in culture media; others do not GS appropriately; and cultures can require up to 5 d to guide or discontinue antibiotic treatment. PCR-based methods can be potentially applied to detect rapidly, accurately, and directly microbes in human blood samples. Conclusions: Compared with the conventional BC/GS, particular advantages to molecular methods (specifically, PCR-based methods) include faster results, leading to possible improved antibiotic stewardship when bacteremia is not present. PMID:26918696
High Aspect-Ratio Neural Probes using Conventional Blade Dicing
NASA Astrophysics Data System (ADS)
Goncalves, S. B.; Ribeiro, J. F.; Silva, A. F.; Correia, J. H.
2016-10-01
Exploring deep neural circuits has triggered the development of long penetrating neural probes. Moreover, driven by brain displacement, the long neural probes require also a high aspect-ratio shafts design. In this paper, a simple and reproducible method of manufacturing long-shafts neural probes using blade dicing technology is presented. Results shows shafts up to 8 mm long and 200 µm wide, features competitive to the current state-of-art, being its outline simply accomplished by a single blade dicing program. Therefore, conventional blade dicing presents itself as a viable option to manufacture long neural probes.
Detection of hyphomycetes in the upper respiratory tract of patients with cystic fibrosis.
Horré, R; Marklein, G; Siekmeier, R; Reiffert, S-M
2011-11-01
The respiratory tract of cystic fibrosis patients is colonised by bacteria and fungi. Although colonisation by slow growing fungi such as Pseudallescheria, Scedosporium and Exophiala species has been studied previously, the colonisation rate differs from study to study. Infections caused by these fungi have been recognised, especially after lung transplants. Monitoring of respiratory tract colonisation in cystic fibrosis patients includes the use of several semi-selective culture media to detect bacteria such as Pseudomonas aeruginosa and Burkholderia cepacia as well as Candida albicans. It is relevant to study whether conventional methods are sufficient for the detection of slow growing hyphomycetes or if additional semi-selective culture media should be used. In total, 589 respiratory specimens from cystic fibrosis patients were examined for the presence of slow growing hyphomycetes. For 439 samples from 81 patients, in addition to conventional methods, erythritol-chloramphenicol agar was used for the selective isolation of Exophiala dermatitidis and paraffin-covered liquid Sabouraud media for the detection of phaeohyphomycetes. For 150 subsequent samples from 42 patients, SceSel+ agar was used for selective isolation of Pseudallescheria and Scedosporium species,and brain-heart infusion bouillon containing a wooden stick for hyphomycete detection. Selective isolation techniques were superior in detecting non-Aspergillus hyphomycetes compared with conventional methods. Although liquid media detected fewer strains of Exophiala, Pseudallescheria and Scedosporium species, additional hyphomycete species not detected by other methods were isolated. Current conventional methods are insufficient to detect non-Aspergillus hyphomycetes, especially Exophiala, Pseudallescheria and Scedosporium species, in sputum samples of cystic fibrosis patients. © 2010 Blackwell Verlag GmbH.
Roussis; Fitzgerald
2000-04-01
The coupling of gas chromatographic simulated distillation with mass spectrometry for the determination of the distillation profiles of crude oils is reported. The method provides the boiling point distributions of both weight and volume percent amounts. The weight percent distribution is obtained from the measured total ion current signal. The total ion current signal is converted to weight percent amount by calibration with a reference crude oil of a known distillation profile. Knowledge of the chemical composition of the crude oil across the boiling range permits the determination of the volume percent distribution. The long-term repeatability is equivalent to or better than the short-term repeatability of the currently available American Society for Testing and Materials (ASTM) gas chromatographic method for simulated distillation. Results obtained by the mass spectrometric method are in very good agreement with results obtained by conventional methods of physical distillation. The compositional information supplied by the method can be used to extensively characterize crude oils.
Lakshmi, Rajagopalan; Ramachandran, Ranjani; Kumar, D Ravi; Sundar, A Syam; Radhika, G; Rahman, Fathima; Selvakumar, N; Kumar, Vanaja
2015-11-01
Increase in the isolation of drug resistant phenotypes of Mycobacterium tuberculosis necessitates accuracy in the testing methodology. Critical concentration defining resistance for ethionamide (ETO), needs re-evaluation in accordance with the current scenario. Thus, re-evaluation of conventional minimum inhibitory concentration (MIC) and proportion sensitivity testing (PST) methods for ETO was done to identify the ideal breakpoint concentration defining resistance. Isolates of M. tuberculosis (n=235) from new and treated patients were subjected to conventional MIC and PST methods for ETO following standard operating procedures. With breakpoint concentration set at 114 and 156 µg/ml, an increase in specificity was observed whereas sensitivity was high with 80 µg/ml as breakpoint concentration. Errors due to false resistant and susceptible isolates were least at 80 µg/ml concentration. Performance parameters at 80 µg/ml breakpoint concentration indicated significant association between PST and MIC methods.
Bidirectional composition on lie groups for gradient-based image alignment.
Mégret, Rémi; Authesserre, Jean-Baptiste; Berthoumieu, Yannick
2010-09-01
In this paper, a new formulation based on bidirectional composition on Lie groups (BCL) for parametric gradient-based image alignment is presented. Contrary to the conventional approaches, the BCL method takes advantage of the gradients of both template and current image without combining them a priori. Based on this bidirectional formulation, two methods are proposed and their relationship with state-of-the-art gradient based approaches is fully discussed. The first one, i.e., the BCL method, relies on the compositional framework to provide the minimization of the compensated error with respect to an augmented parameter vector. The second one, the projected BCL (PBCL), corresponds to a close approximation of the BCL approach. A comparative study is carried out dealing with computational complexity, convergence rate and frequence of convergence. Numerical experiments using a conventional benchmark show the performance improvement especially for asymmetric levels of noise, which is also discussed from a theoretical point of view.
Using Oral Exams to Assess Communication Skills in Business Courses
ERIC Educational Resources Information Center
Burke-Smalley, Lisa A.
2014-01-01
Business, like many other fields in higher education, continues to rely largely on conventional testing methods for assessing student learning. In the current article, another evaluation approach--the oral exam--is examined as a means for building and evaluating the professional communication and oral dialogue skills needed and utilized by…
ERIC Educational Resources Information Center
Hao, Haijing
2013-01-01
Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager 2 spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
SHARP: A multi-mission AI system for spacecraft telemetry monitoring and diagnosis
NASA Technical Reports Server (NTRS)
Lawson, Denise L.; James, Mark L.
1989-01-01
The Spacecraft Health Automated Reasoning Prototype (SHARP) is a system designed to demonstrate automated health and status analysis for multi-mission spacecraft and ground data systems operations. Telecommunications link analysis of the Voyager II spacecraft is the initial focus for the SHARP system demonstration which will occur during Voyager's encounter with the planet Neptune in August, 1989, in parallel with real-time Voyager operations. The SHARP system combines conventional computer science methodologies with artificial intelligence techniques to produce an effective method for detecting and analyzing potential spacecraft and ground systems problems. The system performs real-time analysis of spacecraft and other related telemetry, and is also capable of examining data in historical context. A brief introduction is given to the spacecraft and ground systems monitoring process at the Jet Propulsion Laboratory. The current method of operation for monitoring the Voyager Telecommunications subsystem is described, and the difficulties associated with the existing technology are highlighted. The approach taken in the SHARP system to overcome the current limitations is also described, as well as both the conventional and artificial intelligence solutions developed in SHARP.
Multi-loop control of UPS inverter with a plug-in odd-harmonic repetitive controller.
Razi, Reza; Karbasforooshan, Mohammad-Sadegh; Monfared, Mohammad
2017-03-01
This paper proposes an improved multi-loop control scheme for the single-phase uninterruptible power supply (UPS) inverter by using a plug-in odd-harmonic repetitive controller to regulate the output voltage. In the suggested control method, the output voltage and the filter capacitor current are used as the outer and inner loop feedback signals, respectively and the instantaneous value of the reference voltage feedforwarded to the output of the controller. Instead of conventional linear (proportional-integral/-resonant) and conventional repetitive controllers, a plug-in odd-harmonic repetitive controller is employed in the outer loop to regulate the output voltage, which occupies less memory space and offers faster tracking performance compared to the conventional one. Also, a simple proportional controller is used in the inner loop for active damping of possible resonances and improving the transient performance. The feedforward of the converter reference voltage enhances the robust performance of the system and simplifies the system modelling and the controller design. A step-by-step design procedure is presented for the proposed controller, which guarantees stability of the system under worst-case scenarios. Simulation and experimental results validate the excellent steady-state and transient performance of the proposed control scheme and provide the exact comparison of the proposed method with the conventional multi-loop control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Characterization of Organic and Conventional Coffee Using Neutron Activation Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. A. De Nadai Fernandes; P. Bode; F. S. Tagliaferro
2000-11-12
Countries importing organic coffee are facing the difficulty of assessing the quality of the product to distinguish original organic coffee from other coffees, thereby eliminating possible fraud. Many analytical methods are matrix sensitive and require matrix-matching reference materials for validation, which are currently nonexistent. This work aims to establish the trace element characterization of organic and conventional Brazilian coffees and to establish correlations with the related soil and the type of fertilizer and agrochemicals applied. It was observed that the variability in element concentrations between the various types of coffee is not so large, which emphasizes the need for analyticalmore » methods of high accuracy, reproducibility, and a well-known uncertainty. Moreover, the analyses indicate that sometimes the coffee packages may contain some soil remnants.« less
Khalid, Ashiq Hussain; Kontis, Konstantinos
2008-01-01
This paper reviews the state of phosphor thermometry, focusing on developments in the past 15 years. The fundamental principles and theory are presented, and the various spectral and temporal modes, including the lifetime decay, rise time and intensity ratio, are discussed. The entire phosphor measurement system, including relative advantages to conventional methods, choice of phosphors, bonding techniques, excitation sources and emission detection, is reviewed. Special attention is given to issues that may arise at high temperatures. A number of recent developments and applications are surveyed, with examples including: measurements in engines, hypersonic wind tunnel experiments, pyrolysis studies and droplet/spray/gas temperature determination. They show the technique is flexible and successful in measuring temperatures where conventional methods may prove to be unsuitable. PMID:27873836
Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization
NASA Astrophysics Data System (ADS)
Halloran, John W.
2016-07-01
Ceramic stereolithography and related additive manufacturing methods involving photopolymerization of ceramic powder suspensions are reviewed in terms of the capabilities of current devices. The practical fundamentals of the cure depth, cure width, and cure profile are related to the optical properties of the monomer, ceramic, and photo-active components. Postpolymerization steps, including harvesting and cleaning the objects, binder burnout, and sintering, are discussed and compared with conventional methods. The prospects for practical manufacturing are discussed.
2012-09-01
structures that are impossible with current methods . Using techniques to concurrently stain and three-dimensionally analyze many cell types and...new methods allowed us to visualize structures in these damaged samples that were not visible using conventional techniques allowing us modify our...AWARD NUMBER: W81XWH-11-1-0705 TITLE: The Generation of Novel MR Imaging Techniques to
Electronic Properties of DNA-Based Schottky Barrier Diodes in Response to Alpha Particles.
Al-Ta'ii, Hassan Maktuff Jaber; Periasamy, Vengadesh; Amin, Yusoff Mohd
2015-05-21
Detection of nuclear radiation such as alpha particles has become an important field of research in recent history due to nuclear threats and accidents. In this context; deoxyribonucleic acid (DNA) acting as an organic semiconducting material could be utilized in a metal/semiconductor Schottky junction for detecting alpha particles. In this work we demonstrate for the first time the effect of alpha irradiation on an Al/DNA/p-Si/Al Schottky diode by investigating its current-voltage characteristics. The diodes were exposed for different periods (0-20 min) of irradiation. Various diode parameters such as ideality factor, barrier height, series resistance, Richardson constant and saturation current were then determined using conventional, Cheung and Cheung's and Norde methods. Generally, ideality factor or n values were observed to be greater than unity, which indicates the influence of some other current transport mechanism besides thermionic processes. Results indicated ideality factor variation between 9.97 and 9.57 for irradiation times between the ranges 0 to 20 min. Increase in the series resistance with increase in irradiation time was also observed when calculated using conventional and Cheung and Cheung's methods. These responses demonstrate that changes in the electrical characteristics of the metal-semiconductor-metal diode could be further utilized as sensing elements to detect alpha particles.
Natural leathers from natural materials: progressing toward a new arena in leather processing.
Saravanabhavan, Subramani; Thanikaivelan, Palanisamy; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni; Ramasami, Thirumalachari
2004-02-01
Globally, the leather industry is currently undergoing radical transformation due to pollution and discharge legislations. Thus, the leather industry is pressurized to look for cleaner options for processing the raw hides and skins. Conventional methods of pre-tanning, tanning and post-tanning processes are known to contribute more than 98% of the total pollution load from the leather processing. The conventional method of the tanning process involves the "do-undo" principle. Furthermore, the conventional methods employed in leather processing subject the skin/ hide to a wide variation in pH (2.8-13.0). This results in the emission of huge amounts of pollution loads such as BOD, COD, TDS, TS, sulfates, chlorides and chromium. In the approach illustrated here, the hair and flesh removal as well as fiber opening have been achieved using biocatalysts at pH 8.0, pickle-free natural tanning employing vegetable tannins, and post-tanning using environmentally friendly chemicals. Hence, this process involves dehairing, fiber opening, and pickle-free natural tanning followed by ecofriendly post-tanning. It has been found that the extent of hair removal and opening up of fiber bundles is comparable to that of conventionally processed leathers. This has been substantiated through scanning electron microscopic analysis and softness measurements. Performance of the leathers is shown to be on par with conventionally chrome-tanned leathers through physical and hand evaluation. The process also exhibits zero metal (chromium) discharge and significant reduction in BOD, COD, TDS, and TS loads by 83, 69, 96, and 96%, respectively. Furthermore, the developed process seems to be economically viable.
Demographic estimation methods for plants with unobservable life-states
Kery, M.; Gregg, K.B.; Schaub, M.
2005-01-01
Demographic estimation of vital parameters in plants with an unobservable dormant state is complicated, because time of death is not known. Conventional methods assume that death occurs at a particular time after a plant has last been seen aboveground but the consequences of assuming a particular duration of dormancy have never been tested. Capture-recapture methods do not make assumptions about time of death; however, problems with parameter estimability have not yet been resolved. To date, a critical comparative assessment of these methods is lacking. We analysed data from a 10 year study of Cleistes bifaria, a terrestrial orchid with frequent dormancy, and compared demographic estimates obtained by five varieties of the conventional methods, and two capture-recapture methods. All conventional methods produced spurious unity survival estimates for some years or for some states, and estimates of demographic rates sensitive to the time of death assumption. In contrast, capture-recapture methods are more parsimonious in terms of assumptions, are based on well founded theory and did not produce spurious estimates. In Cleistes, dormant episodes lasted for 1-4 years (mean 1.4, SD 0.74). The capture-recapture models estimated ramet survival rate at 0.86 (SE~ 0.01), ranging from 0.77-0.94 (SEs # 0.1) in anyone year. The average fraction dormant was estimated at 30% (SE 1.5), ranging 16 -47% (SEs # 5.1) in anyone year. Multistate capture-recapture models showed that survival rates were positively related to precipitation in the current year, but transition rates were more strongly related to precipitation in the previous than in the current year, with more ramets going dormant following dry years. Not all capture-recapture models of interest have estimable parameters; for instance, without excavating plants in years when they do not appear aboveground, it is not possible to obtain independent timespecific survival estimates for dormant plants. We introduce rigorous computer algebra methods to identify the parameters that are estimable in principle. As life-states are a prominent feature in plant life cycles, multi state capture-recapture models are a natural framework for analysing population dynamics of plants with dormancy.
Soft-commutated direct current motor
Hsu, John S.
1999-01-01
A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A', B and B' to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation.
Soft-commutated direct current motor
Hsu, J.S.
1999-07-27
A method and circuit is disclosed for soft-commutation of a direct current (DC) motor. An attenuation circuit is connected through auxiliary brushes A, A[prime], B and B[prime] to the commutator (16) to drain circuit from successive armature coils (15) before the main brushes (27, 28) disconnects from each of the coils (15). This prevents the spark generation that normally occurs in conventional DC motors. The attenuation circuit may also be connected before energization of the coil (15) for a soft turning on operation. 13 figs.
Droplet Microarray Based on Superhydrophobic-Superhydrophilic Patterns for Single Cell Analysis.
Jogia, Gabriella E; Tronser, Tina; Popova, Anna A; Levkin, Pavel A
2016-12-09
Single-cell analysis provides fundamental information on individual cell response to different environmental cues and is a growing interest in cancer and stem cell research. However, current existing methods are still facing challenges in performing such analysis in a high-throughput manner whilst being cost-effective. Here we established the Droplet Microarray (DMA) as a miniaturized screening platform for high-throughput single-cell analysis. Using the method of limited dilution and varying cell density and seeding time, we optimized the distribution of single cells on the DMA. We established culturing conditions for single cells in individual droplets on DMA obtaining the survival of nearly 100% of single cells and doubling time of single cells comparable with that of cells cultured in bulk cell population using conventional methods. Our results demonstrate that the DMA is a suitable platform for single-cell analysis, which carries a number of advantages compared with existing technologies allowing for treatment, staining and spot-to-spot analysis of single cells over time using conventional analysis methods such as microscopy.
NASA Astrophysics Data System (ADS)
Deka, Jashmini; Mojumdar, Aditya; Parisse, Pietro; Onesti, Silvia; Casalis, Loredana
2017-03-01
Helicase are essential enzymes which are widespread in all life-forms. Due to their central role in nucleic acid metabolism, they are emerging as important targets for anti-viral, antibacterial and anti-cancer drugs. The development of easy, cheap, fast and robust biochemical assays to measure helicase activity, overcoming the limitations of the current methods, is a pre-requisite for the discovery of helicase inhibitors through high-throughput screenings. We have developed a method which exploits the optical properties of DNA-conjugated gold nanoparticles (AuNP) and meets the required criteria. The method was tested with the catalytic domain of the human RecQ4 helicase and compared with a conventional FRET-based assay. The AuNP-based assay produced similar results but is simpler, more robust and cheaper than FRET. Therefore, our nanotechnology-based platform shows the potential to provide a useful alternative to the existing conventional methods for following helicase activity and to screen small-molecule libraries as potential helicase inhibitors.
Manufacture and evaluation of Nb/sub 3/Sn conductors fabricated by the MJR method
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, W.K.; Curtis, C.W.; Scanlan, R.M.
1982-11-23
The bronze matrix/niobium filament process has become established as a commercially viable method for producing multifilamentary Nb/sub 3/Sn superconductors. This paper describes a new method, the Modified Jelly-Roll (MJR) approach, which can produce a structure similar to that in a conventionally fabricated multifilamentary Nb/sub 3/Sn conductor. This approach utilizes alternate sheets of niobium expanded metal and bronze, which are rolled into a jelly-roll configuration and then extruded. During extrusion and subsequent drawing, the junctures in the niobium are elongated and the material develops a filamentary structure. This method may offer significant advantages in terms of reduced fabrication time and costmore » over the conventional approach. Results of a manufacturing development program will be presented in which two lengths of conductor were made to High-Field Test Facility conductor specifications. In addition, critical current and transition temperature measurements of the sub-elements used to construct the HFTF-type lengths will be reported.« less
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2017-12-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
An Effective Electrical Resonance-Based Method to Detect Delamination in Thermal Barrier Coating
NASA Astrophysics Data System (ADS)
Kim, Jong Min; Park, Jae-Ha; Lee, Ho Girl; Kim, Hak-Joon; Song, Sung-Jin; Seok, Chang-Sung; Lee, Young-Ze
2018-02-01
This research proposes a simple yet highly sensitive method based on electrical resonance of an eddy-current probe to detect delamination of thermal barrier coating (TBC). This method can directly measure the mechanical characteristics of TBC compared to conventional ultrasonic testing and infrared thermography methods. The electrical resonance-based method can detect the delamination of TBC from the metallic bond coat by shifting the electrical impedance of eddy current testing (ECT) probe coupling with degraded TBC, and, due to this shift, the resonant frequencies near the peak impedance of ECT probe revealed high sensitivity to the delamination. In order to verify the performance of the proposed method, a simple experiment is performed with degraded TBC specimens by thermal cyclic exposure. Consequently, the delamination with growth of thermally grown oxide in a TBC system is experimentally identified. Additionally, the results are in good agreement with the results obtained from ultrasonic C-scanning.
Large exchange-dominated domain wall velocities in antiferromagnetically coupled nanowires
NASA Astrophysics Data System (ADS)
Kuteifan, Majd; Lubarda, M. V.; Fu, S.; Chang, R.; Escobar, M. A.; Mangin, S.; Fullerton, E. E.; Lomakin, V.
2016-04-01
Magnetic nanowires supporting field- and current-driven domain wall motion are envisioned for methods of information storage and processing. A major obstacle for their practical use is the domain-wall velocity, which is traditionally limited for low fields and currents due to the Walker breakdown occurring when the driving component reaches a critical threshold value. We show through numerical and analytical modeling that the Walker breakdown limit can be extended or completely eliminated in antiferromagnetically coupled magnetic nanowires. These coupled nanowires allow for large domain-wall velocities driven by field and/or current as compared to conventional nanowires.
Wei, Ting-Yen; Yen, Tzung-Hai; Cheng, Chao-Min
2018-01-01
Acute pesticide intoxication is a common method of suicide globally. This article reviews current diagnostic methods and makes suggestions for future development. In the case of paraquat intoxication, it is characterized by multi-organ failure, causing substantial mortality and morbidity. Early diagnosis may save the life of a paraquat intoxication patient. Conventional paraquat intoxication diagnostic methods, such as symptom review and urine sodium dithionite assay, are time-consuming and impractical in resource-scarce areas where most intoxication cases occur. Several experimental and clinical studies have shown the potential of portable Surface Enhanced Raman Scattering (SERS), paper-based devices, and machine learning for paraquat intoxication diagnosis. Portable SERS and new SERS substrates maintain the sensitivity of SERS while being less costly and more convenient than conventional SERS. Paper-based devices provide the advantages of price and portability. Machine learning algorithms can be implemented as a mobile phone application and facilitate diagnosis in resource-limited areas. Although these methods have not yet met all features of an ideal diagnostic method, the combination and development of these methods offer much promise.
Effects of High-Definition and Conventional tDCS on Response Inhibition.
Hogeveen, J; Grafman, J; Aboseria, M; David, A; Bikson, M; Hauner, K K
2016-01-01
Response inhibition is a critical executive function, enabling the adaptive control of behavior in a changing environment. The inferior frontal cortex (IFC) is considered to be critical for response inhibition, leading researchers to develop transcranial direct current stimulation (tDCS) montages attempting to target the IFC and improve inhibitory performance. However, conventional tDCS montages produce diffuse current through the brain, making it difficult to establish causality between stimulation of any one given brain region and resulting behavioral changes. Recently, high-definition tDCS (HD-tDCS) methods have been developed to target brain regions with increased focality relative to conventional tDCS. Remarkably few studies have utilized HD-tDCS to improve cognitive task performance, however, and no study has directly compared the behavioral effects of HD-tDCS to conventional tDCS. In the present study, participants received either HD-tDCS or conventional tDCS to the IFC during performance of a response inhibition task (stop-signal task, SST) or a control task (choice reaction time task, CRT). A third group of participants completed the same behavioral protocols, but received tDCS to a control site (mid-occipital cortex). Post-stimulation improvement in SST performance was analyzed as a function of tDCS group and the task performed during stimulation using both conventional and Bayesian parameter estimation analyses. Bayesian estimation of the effects of HD- and conventional tDCS to IFC relative to control site stimulation demonstrated enhanced response inhibition for both conditions. No improvements were found after control task (CRT) training in any tDCS condition. Results support the use of both HD- and conventional tDCS to the IFC for improving response inhibition, providing empirical evidence that HD-tDCS can be used to facilitate performance on an executive function task. Copyright © 2016 Elsevier Inc. All rights reserved.
Cross, Alan; Collard, Mark; Nelson, Andrew
2008-01-01
The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached. PMID:18560580
Cross, Alan; Collard, Mark; Nelson, Andrew
2008-06-18
The conventional method of estimating heat balance during locomotion in humans and other hominins treats the body as an undifferentiated mass. This is problematic because the segments of the body differ with respect to several variables that can affect thermoregulation. Here, we report a study that investigated the impact on heat balance during locomotion of inter-segment differences in three of these variables: surface area, skin temperature and rate of movement. The approach adopted in the study was to generate heat balance estimates with the conventional method and then compare them with heat balance estimates generated with a method that takes into account inter-segment differences in surface area, skin temperature and rate of movement. We reasoned that, if the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement affect heat balance during locomotion is correct, the estimates yielded by the two methods should be statistically significantly different. Anthropometric data were collected on seven adult male volunteers. The volunteers then walked on a treadmill at 1.2 m/s while 3D motion capture cameras recorded their movements. Next, the conventional and segmented methods were used to estimate the volunteers' heat balance while walking in four ambient temperatures. Lastly, the estimates produced with the two methods were compared with the paired t-test. The estimates of heat balance during locomotion yielded by the two methods are significantly different. Those yielded by the segmented method are significantly lower than those produced by the conventional method. Accordingly, the study supports the hypothesis that inter-segment differences in surface area, skin temperature and rate of movement impact heat balance during locomotion. This has important implications not only for current understanding of heat balance during locomotion in hominins but also for how future research on this topic should be approached.
Morishige, Ken-ichi; Yoshioka, Taku; Kawawaki, Dai; Hiroe, Nobuo; Sato, Masa-aki; Kawato, Mitsuo
2014-11-01
One of the major obstacles in estimating cortical currents from MEG signals is the disturbance caused by magnetic artifacts derived from extra-cortical current sources such as heartbeats and eye movements. To remove the effect of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) proposed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneously estimates cortical and extra-brain source currents by placing dipoles on cortical surfaces as well as extra-brain sources. This method requires EOG data for an EOG forward model that describes the relationship between eye dipoles and electric potentials. In contrast, our improved approach requires no EOG and less a priori knowledge about the current variance of extra-brain sources. We propose a new method, "extra-dipole," that optimally selects hyper-parameter values regarding current variances of the cortical surface and extra-brain source dipoles. With the selected parameter values, the cortical and extra-brain dipole currents were accurately estimated from the simulated MEG data. The performance of this method was demonstrated to be better than conventional approaches, such as principal component analysis and independent component analysis, which use only statistical properties of MEG signals. Furthermore, we applied our proposed method to measured MEG data during covert pursuit of a smoothly moving target and confirmed its effectiveness. Copyright © 2014 Elsevier Inc. All rights reserved.
Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy
NASA Astrophysics Data System (ADS)
Chirakkara, Saraswathi; Choudhury, Palash Roy; Nanda, K. K.; Krupanidhi, S. B.
2016-04-01
Undoped and In doped ZnO (IZO) thin films are grown on Pt coated silicon substrates Pt/Si by pulsed laser deposition to fabricate Pt/ZnO:In Schottky diodes. The Schottky diodes were investigated by conventional two-probe current-voltage (I-V) measurements and by the I-V spectroscopy tool of conductive atomic force microscopy (C-AFM). The large deviation of the ideality factor from unity and the temperature dependent Schottky barrier heights (SBHs) obtained from the conventional method imply the presence of inhomogeneous interfaces. The inhomogeneity of SBHs is confirmed by C-AFM. Interestingly, the I-V curves at different points are found to be different, and the SBHs deduced from the point diodes reveal inhomogeneity at the nanoscale at the metal-semiconductor interface. A reduction in SBH and turn-on voltage along with enhancement in forward current are observed with increasing indium concentration.
van der Voet, Hilko; Goedhart, Paul W; Schmidt, Kerstin
2017-11-01
An equivalence testing method is described to assess the safety of regulated products using relevant data obtained in historical studies with assumedly safe reference products. The method is illustrated using data from a series of animal feeding studies with genetically modified and reference maize varieties. Several criteria for quantifying equivalence are discussed, and study-corrected distribution-wise equivalence is selected as being appropriate for the example case study. An equivalence test is proposed based on a high probability of declaring equivalence in a simplified situation, where there is no between-group variation, where the historical and current studies have the same residual variance, and where the current study is assumed to have a sample size as set by a regulator. The method makes use of generalized fiducial inference methods to integrate uncertainties from both the historical and the current data. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Method for surface treatment of a cadmium zinc telluride crystal
James, Ralph; Burger, Arnold; Chen, Kuo-Tong; Chang, Henry
1999-01-01
A method for treatment of the surface of a CdZnTe (CZT) crystal that reduces surface roughness (increases surface planarity) and provides an oxide coating to reduce surface leakage currents and thereby, improve resolution. A two step process is disclosed, etching the surface of a CZT crystal with a solution of lactic acid and bromine in ethylene glycol, following the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, oxidizing the CZT crystal surface.
Wen, Huan Fei; Li, Yan Jun; Arima, Eiji; Naitoh, Yoshitaka; Sugawara, Yasuhiro; Xu, Rui; Cheng, Zhi Hai
2017-03-10
We propose a new multi-image method for obtaining the frequency shift, tunneling current and local contact potential difference (LCPD) on a TiO 2 (110) surface with atomic resolution. The tunneling current image reveals rarely observed surface oxygen atoms contrary to the conventional results. We analyze how the surface and subsurface defects affect the distribution of the LCPD. In addition, the subsurface defects are observed clearly in the tunneling current image, in contrast to a topographic image. To clarify the origin of the atomic contrast, we perform site-dependent spectroscopy as a function of the tip-sample distance. The multi-image method is expected to be widely used to investigate the charge transfer phenomena between the nanoparticles and surface sites, and it is useful for elucidating the mechanisms of catalytic reactions.
Motion-induced eddy current thermography for high-speed inspection
NASA Astrophysics Data System (ADS)
Wu, Jianbo; Li, Kongjing; Tian, Guiyun; Zhu, Junzhen; Gao, Yunlai; Tang, Chaoqing; Chen, Xiaotian
2017-08-01
This letter proposes a novel motion-induced eddy current based thermography (MIECT) for high-speed inspection. In contrast to conventional eddy current thermography (ECT) based on a time-varying magnetic field created by an AC coil, the motion-induced eddy current is induced by the relative motion between magnetic field and inspected objects. A rotating magnetic field created by three-phase windings is used to investigate the heating principle and feasibility of the proposed method. Firstly, based on Faraday's law the distribution of MIEC is investigated, which is then validated by numerical simulation. Further, experimental studies are conducted to validate the proposed method by creating rotating magnetic fields at different speeds from 600 rpm to 6000 rpm, and it is verified that rotating speed will increase MIEC intensity and thereafter improve the heating efficiency. The conclusion can be preliminarily drawn that the proposed MIECT is a platform suitable for high-speed inspection.
Nanostructured bioactive polymers used in food-packaging.
Mateescu, Andreea L; Dimov, Tatiana V; Grumezescu, Alexandru M; Gestal, Monica C; Chifiriuc, Mariana C
2015-01-01
The development of effective packaging materials is crucial, because food microorganisms determine economic and public health issues. The current paper describes some of the most recent findings in regards of food preservation through novel packaging methods, using biodegradable polymers, efficient antimicrobial agents and nanocomposites with improved mechanical and oxidation stability, increased biodegradability and barrier effect comparatively with conventional polymeric matrices.
Knowledge-Base Semantic Gap Analysis for the Vulnerability Detection
NASA Astrophysics Data System (ADS)
Wu, Raymond; Seki, Keisuke; Sakamoto, Ryusuke; Hisada, Masayuki
Web security became an alert in internet computing. To cope with ever-rising security complexity, semantic analysis is proposed to fill-in the gap that the current approaches fail to commit. Conventional methods limit their focus to the physical source codes instead of the abstraction of semantics. It bypasses new types of vulnerability and causes tremendous business loss.
USDA-ARS?s Scientific Manuscript database
Gray Leaf Spot [(GLS), causal agent Cercospora zeae-maydis and Cercospora zeina] is an important maize disease in the United States. Current control methods for GLS include using resistant cultivars, crop rotation, chemical applications, and conventional tillage to reduce inoculum levels. Teosinte ...
A review of double-diffusion wood preservation suitable for Alaska.
K. Josephine Pavia
2006-01-01
Currently, all treated lumber used in Alaska is imported from the 48 contiguous states and Canada because there are no wood-treating facilities in Alaska. This report explores conventional and alternative wood-treating methods and reviews previous studies and laboratory tests on treated wood. In investigating wood treatment as a possible processing option for Alaska...
NASA Astrophysics Data System (ADS)
Lu, Zheng; Huang, Biao; Zhang, Qi; Lu, Xilin
2018-05-01
Eddy-current tuned mass dampers (EC-TMDs) are non-contacting passive control devices and are developed on the basis of conventional tuned mass dampers. They comprise a solid mass, a stiffness element, and a damping element, wherein the damping mechanism originates from eddy currents. By relative motion between a non-magnetic conductive metal and a permanent magnet in a dynamic system, a time-varying magnetic field is induced in the conductor, thereby generating eddy currents. The eddy currents induce a magnetic field with opposite polarity, causing repulsive forces, i.e., damping forces. This technology can overcome the drawbacks of conventional tuned mass dampers, such as limited service life, deterioration of mechanical properties, and undesired additional stiffness. The experimental and analytical study of this system installed on a multi-degree-of-freedom structure is presented in this paper. A series of shaking table tests were conducted on a five-story steel-frame model with/without an EC-TMD to evaluate the effectiveness and performance of the EC-TMD in suppressing the vibration of the model under seismic excitations. The experimental results show that the EC-TMD can effectively reduce the displacement response, acceleration response, interstory drift ratio, and maximum strain of the columns under different earthquake excitations. Moreover, an analytical method was proposed on the basis of electromagnetic and structural dynamic theories. A comparison between the test and simulation results shows that the simulation method can be used to estimate the response of structures with an EC-TMD under earthquake excitations with acceptable accuracy.
Li, Zheng-Wei; Xi, Xiao-Li; Zhang, Jin-Sheng; Liu, Jiang-fan
2015-12-14
The unconditional stable finite-difference time-domain (FDTD) method based on field expansion with weighted Laguerre polynomials (WLPs) is applied to model electromagnetic wave propagation in gyrotropic materials. The conventional Yee cell is modified to have the tightly coupled current density components located at the same spatial position. The perfectly matched layer (PML) is formulated in a stretched-coordinate (SC) system with the complex-frequency-shifted (CFS) factor to achieve good absorption performance. Numerical examples are shown to validate the accuracy and efficiency of the proposed method.
Radiation shielding design of a new tomotherapy facility.
Zacarias, Albert; Balog, John; Mills, Michael
2006-10-01
It is expected that intensity modulated radiation therapy (IMRT) and image guided radiation therapy (IGRT) will replace a large portion of radiation therapy treatments currently performed with conventional MLC-based 3D conformal techniques. IGRT may become the standard of treatment in the future for prostate and head and neck cancer. Many established facilities may convert existing vaults to perform this treatment method using new or upgraded equipment. In the future, more facilities undoubtedly will be considering de novo designs for their treatment vaults. A reevaluation of the design principles used in conventional vault design is of benefit to those considering this approach with a new tomotherapy facility. This is made more imperative as the design of the TomoTherapy system is unique in several aspects and does not fit well into the formalism of NCRP 49 for a conventional linear accelerator.
Current status and biotechnological advances in genetic engineering of ornamental plants.
Azadi, Pejman; Bagheri, Hedayat; Nalousi, Ayoub Molaahmad; Nazari, Farzad; Chandler, Stephen F
2016-11-01
Cut flower markets are developing in many countries as the international demand for cut flowers is rapidly growing. Developing new varieties with modified characteristics is an important aim in floriculture. Production of transgenic ornamental plants can shorten the time required in the conventional breeding of a cultivar. Biotechnology tools in combination with conventional breeding methods have been used by cut flower breeders to change flower color, plant architecture, post-harvest traits, and disease resistance. In this review, we describe advances in genetic engineering that have led to the development of new cut flower varieties. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel
2001-01-01
Present structural concepts for hot static structures are conventional "sheet & stringer" or truss core construction. More weight-efficient concepts such as honeycomb and lattice block are being investigated, in combination with both conventional superalloys and TiAl. Development efforts for components made from TiAl sheet are centered on lower cost methods for sheet and foil production, plus alloy development for higher temperature capability. A low-cost casting technology recently developed for aluminum and steel lattice blocks has demonstrated the required higher strength and stiffness, with weight efficiency approach- ing honeycombs. The current effort is based on extending the temperature capability by developing lattice block materials made from IN-718 and Mar-M247.
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Freedman, Matthew T.; Gelish, Anthony; de Treville, Robert E.; Sheehy, Monet R.; Hansen, Mark; Hill, Mac; Zacharia, Elisabeth; Sullivan, Michael J.; Sebera, C. Wayne
1993-01-01
Image management and communications (IMAC) network, also known as picture archiving and communication system (PACS) consists of (1) digital image acquisition, (2) image review station (3) image storage device(s), image reading workstation, and (4) communication capability. When these subsystems are integrated over a high speed communication technology, possibilities are numerous in improving the timeliness and quality of diagnostic services within a hospital or at remote clinical sites. Teleradiology system uses basically the same hardware configuration together with a long distance communication capability. Functional characteristics of components are highlighted. Many medical imaging systems are already in digital form. These digital images constitute approximately 30% of the total volume of images produced in a radiology department. The remaining 70% of images include conventional x-ray films of the chest, skeleton, abdomen, and GI tract. Unless one develops a method of handling these conventional film images, global improvement in productivity in image management and radiology service throughout a hospital cannot be achieved. Currently, there are two method of producing digital information representing these conventional analog images for IMAC: film digitizers that scan the conventional films, and computed radiography (CR) that captures x-ray images using storage phosphor plate that is subsequently scanned by a laser beam.
Interactive-predictive detection of handwritten text blocks
NASA Astrophysics Data System (ADS)
Ramos Terrades, O.; Serrano, N.; Gordó, A.; Valveny, E.; Juan, A.
2010-01-01
A method for text block detection is introduced for old handwritten documents. The proposed method takes advantage of sequential book structure, taking into account layout information from pages previously transcribed. This glance at the past is used to predict the position of text blocks in the current page with the help of conventional layout analysis methods. The method is integrated into the GIDOC prototype: a first attempt to provide integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. Results are given in a transcription task on a 764-page Spanish manuscript from 1891.
Genome engineering in ornamental plants: Current status and future prospects.
Kishi-Kaboshi, Mitsuko; Aida, Ryutaro; Sasaki, Katsutomo
2018-03-13
Ornamental plants, like roses, carnations, and chrysanthemums, are economically important and are sold all over the world. In addition, numerous cut and garden flowers add colors to homes and gardens. Various strategies of plant breeding have been employed to improve traits of many ornamental plants. These approaches span from conventional techniques, such as crossbreeding and mutation breeding, to genetically modified plants. Recently, genome editing has become available as an efficient means for modifying traits in plant species. Genome editing technology is useful for genetic analysis and is poised to become a common breeding method for ornamental plants. In this review, we summarize the benefits and limitations of conventional breeding techniques and genome editing methods and discuss their future potential to accelerate the rate breeding programs in ornamental plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Adaptive skin detection based on online training
NASA Astrophysics Data System (ADS)
Zhang, Ming; Tang, Liang; Zhou, Jie; Rong, Gang
2007-11-01
Skin is a widely used cue for porn image classification. Most conventional methods are off-line training schemes. They usually use a fixed boundary to segment skin regions in the images and are effective only in restricted conditions: e.g. good lightness and unique human race. This paper presents an adaptive online training scheme for skin detection which can handle these tough cases. In our approach, skin detection is considered as a classification problem on Gaussian mixture model. For each image, human face is detected and the face color is used to establish a primary estimation of skin color distribution. Then an adaptive online training algorithm is used to find the real boundary between skin color and background color in current image. Experimental results on 450 images showed that the proposed method is more robust in general situations than the conventional ones.
Measurement of ciliary beat frequency using ultra-high resolution optical coherence tomography
NASA Astrophysics Data System (ADS)
Chen, Jason J.; Jing, Joseph C.; Su, Erica; Badger, Christopher; Coughlan, Carolyn A.; Chen, Zhongping; Wong, Brian J. F.
2016-02-01
Ciliated epithelial cells populate up to 80% of the surface area of the human airway and are responsible for mucociliary transport, which is the key protective mechanism that provides the first line of defense in the respiratory tract. Cilia beat in a rhythmic pattern and may be easily affected by allergens, pollutants, and pathogens, altering ciliary beat frequency (CBF) subsequently. Diseases including cystic fibrosis, chronic obstructive pulmonary disease, and primary ciliary dyskinesia may also decrease CBF. CBF is therefore a critical component of respiratory health. The current clinical method of measuring CBF is phase-contrast microscopy, which involves a tissue biopsy obtained via brushing of the nasal cavity. While this method is minimally invasive, the tissue sample must be oriented to display its profile view, making the visualization of a single layer of cilia challenging. In addition, the conventional method requires subjective analysis of CBF, e.g., manually counting by visual inspection. On the contrary, optical coherence tomography (OCT) has been used to study the retina in ophthalmology as well as vasculature in cardiology, and offers higher resolution than conventional computed tomography and magnetic resonance imaging. Based on this technology, our lab specifically developed an ultra-high resolution OCT system to image the microstructure of the ciliated epithelial cells. Doppler analysis was also performed to determine CBF. Lastly, we also developed a program that utilizes fast Fourier transform to determine CBF under phase-contrast microscopy, providing a more objective method compared to the current method.
Adaptive Variable Bias Magnetic Bearing Control
NASA Technical Reports Server (NTRS)
Johnson, Dexter; Brown, Gerald V.; Inman, Daniel J.
1998-01-01
Most magnetic bearing control schemes use a bias current with a superimposed control current to linearize the relationship between the control current and the force it delivers. With the existence of the bias current, even in no load conditions, there is always some power consumption. In aerospace applications, power consumption becomes an important concern. In response to this concern, an alternative magnetic bearing control method, called Adaptive Variable Bias Control (AVBC), has been developed and its performance examined. The AVBC operates primarily as a proportional-derivative controller with a relatively slow, bias current dependent, time-varying gain. The AVBC is shown to reduce electrical power loss, be nominally stable, and provide control performance similar to conventional bias control. Analytical, computer simulation, and experimental results are presented in this paper.
Innovations in diagnostic imaging of localized prostate cancer.
Pummer, Karl; Rieken, Malte; Augustin, Herbert; Gutschi, Thomas; Shariat, Shahrokh F
2014-08-01
In recent years, various imaging modalities have been developed to improve diagnosis, staging, and localization of early-stage prostate cancer (PCa). A MEDLINE literature search of the time frame between 01/2007 and 06/2013 was performed on imaging of localized PCa. Conventional transrectal ultrasound (TRUS) is mainly used to guide prostate biopsy. Contrast-enhanced ultrasound is based on the assumption that PCa tissue is hypervascularized and might be better identified after intravenous injection of a microbubble contrast agent. However, results on its additional value for cancer detection are controversial. Computer-based analysis of the transrectal ultrasound signal (C-TRUS) appears to detect cancer in a high rate of patients with previous biopsies. Real-time elastography seems to have higher sensitivity, specificity, and positive predictive value than conventional TRUS. However, the method still awaits prospective validation. The same is true for prostate histoscanning, an ultrasound-based method for tissue characterization. Currently, multiparametric MRI provides improved tissue visualization of the prostate, which may be helpful in the diagnosis and targeting of prostate lesions. However, most published series are small and suffer from variations in indication, methodology, quality, interpretation, and reporting. Among ultrasound-based techniques, real-time elastography and C-TRUS seem the most promising techniques. Multiparametric MRI appears to have advantages over conventional T2-weighted MRI in the detection of PCa. Despite these promising results, currently, no recommendation for the routine use of these novel imaging techniques can be made. Prospective studies defining the value of various imaging modalities are urgently needed.
BAYESIAN META-ANALYSIS ON MEDICAL DEVICES: APPLICATION TO IMPLANTABLE CARDIOVERTER DEFIBRILLATORS
Youn, Ji-Hee; Lord, Joanne; Hemming, Karla; Girling, Alan; Buxton, Martin
2012-01-01
Objectives: The aim of this study is to describe and illustrate a method to obtain early estimates of the effectiveness of a new version of a medical device. Methods: In the absence of empirical data, expert opinion may be elicited on the expected difference between the conventional and modified devices. Bayesian Mixed Treatment Comparison (MTC) meta-analysis can then be used to combine this expert opinion with existing trial data on earlier versions of the device. We illustrate this approach for a new four-pole implantable cardioverter defibrillator (ICD) compared with conventional ICDs, Class III anti-arrhythmic drugs, and conventional drug therapy for the prevention of sudden cardiac death in high risk patients. Existing RCTs were identified from a published systematic review, and we elicited opinion on the difference between four-pole and conventional ICDs from experts recruited at a cardiology conference. Results: Twelve randomized controlled trials were identified. Seven experts provided valid probability distributions for the new ICDs compared with current devices. The MTC model resulted in estimated relative risks of mortality of 0.74 (0.60–0.89) (predictive relative risk [RR] = 0.77 [0.41–1.26]) and 0.83 (0.70–0.97) (predictive RR = 0.84 [0.55–1.22]) with the new ICD therapy compared to Class III anti-arrhythmic drug therapy and conventional drug therapy, respectively. These results showed negligible differences from the preliminary results for the existing ICDs. Conclusions: The proposed method incorporating expert opinion to adjust for a modification made to an existing device may play a useful role in assisting decision makers to make early informed judgments on the effectiveness of frequently modified healthcare technologies. PMID:22559753
NASA Astrophysics Data System (ADS)
El-Zoghby, Helmy M.; Bendary, Ahmed F.
2016-10-01
Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.
Method for surface treatment of a cadmium zinc telluride crystal
James, R.; Burger, A.; Chen, K.T.; Chang, H.
1999-08-03
A method for treatment of the surface of a CdZnTe (CZT) crystal is disclosed that reduces surface roughness (increases surface planarity) and provides an oxide coating to reduce surface leakage currents and thereby, improve resolution. A two step process is disclosed, etching the surface of a CZT crystal with a solution of lactic acid and bromine in ethylene glycol, following the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, oxidizing the CZT crystal surface. 3 figs.
NASA Astrophysics Data System (ADS)
Angel, Erin
Advances in Computed Tomography (CT) technology have led to an increase in the modality's diagnostic capabilities and therefore its utilization, which has in turn led to an increase in radiation exposure to the patient population. As a result, CT imaging currently constitutes approximately half of the collective exposure to ionizing radiation from medical procedures. In order to understand the radiation risk, it is necessary to estimate the radiation doses absorbed by patients undergoing CT imaging. The most widely accepted risk models are based on radiosensitive organ dose as opposed to whole body dose. In this research, radiosensitive organ dose was estimated using Monte Carlo based simulations incorporating detailed multidetector CT (MDCT) scanner models, specific scan protocols, and using patient models based on accurate patient anatomy and representing a range of patient sizes. Organ dose estimates were estimated for clinical MDCT exam protocols which pose a specific concern for radiosensitive organs or regions. These dose estimates include estimation of fetal dose for pregnant patients undergoing abdomen pelvis CT exams or undergoing exams to diagnose pulmonary embolism and venous thromboembolism. Breast and lung dose were estimated for patients undergoing coronary CTA imaging, conventional fixed tube current chest CT, and conventional tube current modulated (TCM) chest CT exams. The correlation of organ dose with patient size was quantified for pregnant patients undergoing abdomen/pelvis exams and for all breast and lung dose estimates presented. Novel dose reduction techniques were developed that incorporate organ location and are specifically designed to reduce close to radiosensitive organs during CT acquisition. A generalizable model was created for simulating conventional and novel attenuation-based TCM algorithms which can be used in simulations estimating organ dose for any patient model. The generalizable model is a significant contribution of this work as it lays the foundation for the future of simulating TCM using Monte Carlo methods. As a result of this research organ dose can be estimated for individual patients undergoing specific conventional MDCT exams. This research also brings understanding to conventional and novel close reduction techniques in CT and their effect on organ dose.
Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H
2015-08-01
Electroconvulsive therapy (ECT) at conventional current amplitudes (800-900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112-174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST.
A novel electron accelerator for MRI-Linac radiotherapy
Whelan, Brendan; Gierman, Stephen; Holloway, Lois; Schmerge, John; Keall, Paul; Fahrig, Rebecca
2016-01-01
Purpose: MRI guided radiotherapy is a rapidly growing field; however, current electron accelerators are not designed to operate in the magnetic fringe fields of MRI scanners. As such, current MRI-Linac systems require magnetic shielding, which can degrade MR image quality and limit system flexibility. The purpose of this work was to develop and test a novel medical electron accelerator concept which is inherently robust to operation within magnetic fields for in-line MRI-Linac systems. Methods: Computational simulations were utilized to model the accelerator, including the thermionic emission process, the electromagnetic fields within the accelerating structure, and resulting particle trajectories through these fields. The spatial and energy characteristics of the electron beam were quantified at the accelerator target and compared to published data for conventional accelerators. The model was then coupled to the fields from a simulated 1 T superconducting magnet and solved for cathode to isocenter distances between 1.0 and 2.4 m; the impact on the electron beam was quantified. Results: For the zero field solution, the average current at the target was 146.3 mA, with a median energy of 5.8 MeV (interquartile spread of 0.1 MeV), and a spot size diameter of 1.5 mm full-width-tenth-maximum. Such an electron beam is suitable for therapy, comparing favorably to published data for conventional systems. The simulated accelerator showed increased robustness to operation in in-line magnetic fields, with a maximum current loss of 3% compared to 85% for a conventional system in the same magnetic fields. Conclusions: Computational simulations suggest that replacing conventional DC electron sources with a RF based source could be used to develop medical electron accelerators which are robust to operation in in-line magnetic fields. This would enable the development of MRI-Linac systems with no magnetic shielding around the Linac and reduce the requirements for optimization of magnetic fringe field, simplify design of the high-field magnet, and increase system flexibility. PMID:26936713
ERIC Educational Resources Information Center
Gloria, Adedoja; Oluwadara, Abimbade
2016-01-01
Current instructional deliveries favour the use of mobile technology because of its inherent potentials and benefits such as portability, ease of use cost and others. Despite these benefits, many teachers especially in Sub-Saharan Africa still prefer the conventional method and use mobile phones for social engagements such as texting, chatting,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lord, David; Allen, Ray; Rudeen, David
The Crude Oil Characterization Research Study is designed to evaluate whether crude oils currently transported in North America, including those produced from "tight" formations, exhibit physical or chemical properties that are distinct from conventional crudes, and how these properties associate with combustion hazards with may be realized during transportation and handling.
NASA Astrophysics Data System (ADS)
Plastun, A. T.; Tikhonova, O. V.; Malygin, I. V.
2018-02-01
The paper presents methods of making a periodically varying different-pole magnetic field in low-power electrical machines. Authors consider classical designs of electrical machines and machines with ring windings in armature, structural features and calculated parameters of magnetic circuit for these machines.
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M. A.
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods. PMID:24883374
Daud, Muhamad Zalani; Mohamed, Azah; Hannan, M A
2014-01-01
This paper presents an evaluation of an optimal DC bus voltage regulation strategy for grid-connected photovoltaic (PV) system with battery energy storage (BES). The BES is connected to the PV system DC bus using a DC/DC buck-boost converter. The converter facilitates the BES power charge/discharge to compensate for the DC bus voltage deviation during severe disturbance conditions. In this way, the regulation of DC bus voltage of the PV/BES system can be enhanced as compared to the conventional regulation that is solely based on the voltage-sourced converter (VSC). For the grid side VSC (G-VSC), two control methods, namely, the voltage-mode and current-mode controls, are applied. For control parameter optimization, the simplex optimization technique is applied for the G-VSC voltage- and current-mode controls, including the BES DC/DC buck-boost converter controllers. A new set of optimized parameters are obtained for each of the power converters for comparison purposes. The PSCAD/EMTDC-based simulation case studies are presented to evaluate the performance of the proposed optimized control scheme in comparison to the conventional methods.
Structural Deterministic Safety Factors Selection Criteria and Verification
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Though current deterministic safety factors are arbitrarily and unaccountably specified, its ratio is rooted in resistive and applied stress probability distributions. This study approached the deterministic method from a probabilistic concept leading to a more systematic and coherent philosophy and criterion for designing more uniform and reliable high-performance structures. The deterministic method was noted to consist of three safety factors: a standard deviation multiplier of the applied stress distribution; a K-factor for the A- or B-basis material ultimate stress; and the conventional safety factor to ensure that the applied stress does not operate in the inelastic zone of metallic materials. The conventional safety factor is specifically defined as the ratio of ultimate-to-yield stresses. A deterministic safety index of the combined safety factors was derived from which the corresponding reliability proved the deterministic method is not reliability sensitive. The bases for selecting safety factors are presented and verification requirements are discussed. The suggested deterministic approach is applicable to all NASA, DOD, and commercial high-performance structures under static stresses.
Guelpa, Anina; Bevilacqua, Marta; Marini, Federico; O'Kennedy, Kim; Geladi, Paul; Manley, Marena
2015-04-15
It has been established in this study that the Rapid Visco Analyser (RVA) can describe maize hardness, irrespective of the RVA profile, when used in association with appropriate multivariate data analysis techniques. Therefore, the RVA can complement or replace current and/or conventional methods as a hardness descriptor. Hardness modelling based on RVA viscograms was carried out using seven conventional hardness methods (hectoliter mass (HLM), hundred kernel mass (HKM), particle size index (PSI), percentage vitreous endosperm (%VE), protein content, percentage chop (%chop) and near infrared (NIR) spectroscopy) as references and three different RVA profiles (hard, soft and standard) as predictors. An approach using locally weighted partial least squares (LW-PLS) was followed to build the regression models. The resulted prediction errors (root mean square error of cross-validation (RMSECV) and root mean square error of prediction (RMSEP)) for the quantification of hardness values were always lower or in the same order of the laboratory error of the reference method. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alarcón, Gonzalo; Barraza, Gabriela; Vera, Andrea; Wozniak, Aniela; García, Patricia
2016-02-01
Trichomonas vaginalis, Mycoplasma hominis and Ureaplasma spp. are microorganisms responsible for genitourinary and pregnancy pathologies. Nucleic acid amplification methods have shown several advantages, but have not been widely studied for the detection of these microorganisms. To implement a conventional polymerase chain reaction (PCR) for the detection of the microorganisms and to compare its results versus the methods currently used at our laboratory. 91 available samples were processed by PCR, culture (M. hominis y Ureaplasma spp.) and wet mount (T vaginalis). Results were compared and statistically analyzed by kappa agreement test. 85, 80 and 87 samples resulted in agreement for the detection of M. hominis, Ureaplasma spp. y T. vaginalis, respectively. For M. hominis and Ureaplasma spp., agreement was substantial, whereas for T. vaginalis it was moderate, however, for the latter, PCR detected more cases than wet mount. We recommend the implementation of PCR for detection of T. vaginalis whereas culture kit is still a useful method for the other microorganisms.
NASA Astrophysics Data System (ADS)
Jung, I. I.; Lee, J. H.; Lee, C. S.; Choi, Y.-W.
2011-02-01
We propose a novel circuit to be applied to the front-end integrated circuits of gamma-ray spectroscopy systems. Our circuit is designed as a type of current conveyor (ICON) employing a constant- gm (transconductance) method which can significantly improve the linearity in the amplified signals by using a large time constant and the time-invariant characteristics of an amplifier. The constant- gm method is obtained by a feedback control which keeps the transconductance of the input transistor constant. To verify the performance of the propose circuit, the time constant variations for the channel resistances are simulated with the TSMC 0.18 μm transistor parameters using HSPICE, and then compared with those of a conventional ICON. As a result, the proposed ICON shows only 0.02% output linearity variation and 0.19% time constant variation for the input amplitude up to 100 mV. These are significantly small values compared to a conventional ICON's 1.39% and 19.43%, respectively, for the same conditions.
Evaluation of counting methods for oceanic radium-228
NASA Astrophysics Data System (ADS)
Orr, James C.
1988-07-01
Measurement of open ocean 228Ra is difficult, typically requiring at least 200 L of seawater. The burden of collecting and processing these large-volume samples severely limits the widespread use of this promising tracer. To use smaller-volume samples, a more sensitive means of analysis is required. To seek out new and improved counting method(s), conventional 228Ra counting methods have been compared with some promising techniques which are currently used for other radionuclides. Of the conventional methods, α spectrometry possesses the highest efficiency (3-9%) and lowest background (0.0015 cpm), but it suffers from the need for complex chemical processing after sampling and the need to allow about 1 year for adequate ingrowth of 228Th granddaughter. The other two conventional counting methods measure the short-lived 228Ac daughter while it remains supported by 228Ra, thereby avoiding the complex sample processing and the long delay before counting. The first of these, high-resolution γ spectrometry, offers the simplest processing and an efficiency (4.8%) comparable to α spectrometry; yet its high background (0.16 cpm) and substantial equipment cost (˜30,000) limit its widespread use. The second no-wait method, β-γ coincidence spectrometry, also offers comparable efficiency (5.3%), but it possesses both lower background (0.0054 cpm) and lower initial cost (˜12,000). Three new (i.e., untried for 228Ra) techniques all seem to promise about a fivefold increase in efficiency over conventional methods. By employing liquid scintillation methods, both α spectrometry and β-γ coincidence spectrometry can improve their counter efficiency while retaining low background. The third new 228Ra counting method could be adapted from a technique which measures 224Ra by 220Rn emanation. After allowing for ingrowth and then counting for the 224Ra great-granddaughter, 228Ra could be back calculated, thereby yielding a method with high efficiency, where no sample processing is required. The efficiency and background of each of the three new methods have been estimated and are compared with those of the three methods currently employed to measure oceanic 228Ra. From efficiency and background, the relative figure of merit and the detection limit have been determined for each of the six counters. These data suggest that the new counting methods have the potential to measure most 228Ra samples with just 30 L of seawater, to better than 5% precision. Not only would this reduce the time, effort, and expense involved in sample collection, but 228Ra could then be measured on many small-volume samples (20-30 L) previously collected with only 226Ra in mind. By measuring 228Ra quantitatively on such small-volume samples, three analyses (large-volume 228Ra, large-volume 226Ra, and small-volume 226Ra) could be reduced to one, thereby dramatically improving analytical precision.
Validation of a Prototype Optical Computed Tomography System
Zakariaee, Seyed Salman; Molazadeh, Mikaeil; Takavar, Abbas; Shirazi, Alireza; Mesbahi, Asghar; Zeinali, Ahad
2015-01-01
In radiation cancer treatments, the most of the side effects could be minimized using a proper dosimeter. Gel dosimeter is the only three-dimensional dosimeter and magnetic resonance imaging (MRI) is the gold standard method for gel dosimeter readout. Because of hard accessibility and high cost of sample reading by MRI systems, some other alternative methods were developed. The optical computed tomography (OCT) method could be considered as the most promising alternative method that has been studied widely. In the current study, gel dosimeter scanning using a prototype optical scanner and validation of this optical scanner was performed. Optical absorbance of the irradiated gel samples was determined by both of conventional spectrophotometer and the fabricated OCT system at 632 nm. Furthermore, these irradiated vials were scanned by a 1.5 T MRI. The slope of the curves was extracted as the dose-response sensitivity. The R2-dose sensitivity measured by MRI method was 0.1904 and 0.113 for NIPAM and PAGAT gels, respectively. The optical dose sensitivity obtained by conventional spectrophotometer and the fabricated optical scanner was 0.0453 and 0.0442 for NIPAM gels and 0.0244 and 0.0242 for PAGAT gels, respectively. The scanning results of the absorbed dose values showed that the new OCT and conventional spectrophotometer were in fair agreement. From the results, it could be concluded that the fabricated system is able to quantize the absorbed dose values in polymer gel samples with acceptable accuracy. PMID:26120572
Micrometastases in neuroblastoma: are they clinically important?
Burchill, S A
2004-01-01
Despite advances in the treatment of neuroblastoma (NBL), recurrence and metastases continue to pose major problems in clinical management. The relation between micrometastases and the development of secondary disease is not fully understood. However, accurate methods to detect low numbers of tumour cells may allow the evaluation of their role in the disease process, and by implication the possible benefits of eliminating them. Although there is substantial evidence for the increased sensitivity of current molecular methods for the detection of NBL cells compared with more conventional cytology, the clinical relevance and usefulness of detecting this disease remain controversial. The primary goal of current translational research must be to evaluate the clinical relevance of micrometastatic disease detected by these methods in multicentre prospective clinical outcome studies. Only then can the clinical usefulness of these methods be defined so that they may be introduced into relevant clinical practice. PMID:14693828
Minion, Jessica; Pai, Madhukar; Ramsay, Andrew; Menzies, Dick; Greenaway, Christina
2011-01-01
Introduction Light emitting diode fluorescence microscopes have many practical advantages over conventional mercury vapour fluorescence microscopes, which would make them the preferred choice for laboratories in both low- and high-resource settings, provided performance is equivalent. Methods In a nested case-control study, we compared diagnostic accuracy and time required to read slides with the Zeiss PrimoStar iLED, LW Scientific Lumin, and a conventional fluorescence microscope (Leica DMLS). Mycobacterial culture was used as the reference standard, and subgroup analysis by specimen source and organism isolated were performed. Results There was no difference in sensitivity or specificity between the three microscopes, and agreement was high for all comparisons and subgroups. The Lumin and the conventional fluorescence microscope were equivalent with respect to time required to read smears, but the Zeiss iLED was significantly time saving compared to both. Conclusions Light emitting diode microscopy should be considered by all tuberculosis diagnostic laboratories, including those in high income countries, as a replacement for conventional fluorescence microscopes. Our findings provide support to the recent World Health Organization policy recommending that conventional fluorescence microscopy be replaced by light emitting diode microscopy using auramine staining in all settings where fluorescence microscopy is currently used. PMID:21811622
Awareness and use of non-conventional tobacco products among U.S. students, 2012.
Wang, Baoguang; King, Brian A; Corey, Catherine G; Arrazola, René A; Johnson, Sarah E
2014-08-01
Increasing diversity of the tobacco product landscape, including electronic cigarettes (e-cigarettes), hookah, snus, and dissolvable tobacco products (dissolvables), raises concerns about the public health impact of these non-conventional tobacco products among youth. This study assessed awareness, ever use, and current use of non-conventional tobacco products among U.S. students in 2012, overall and by demographic and tobacco use characteristics. Data from the 2012 National Youth Tobacco Survey, a nationally representative survey of U.S. middle and high school students, were analyzed in 2013. Prevalence of awareness, ever use, and current use of e-cigarettes, hookah, snus, and dissolvables were calculated overall and by sex, school level, race/ethnicity, and conventional tobacco product use, including cigarettes, cigars, or smokeless tobacco (chewing tobacco, snuff, or dip). Overall, 50.3% of students were aware of e-cigarettes; prevalence of ever and current use of e-cigarettes was 6.8% and 2.1%, respectively. Awareness of hookah was 41.2% among all students, and that of ever and current use were 8.9% and 3.6%, respectively. Overall awareness; ever; and current use of snus (32%, 5.3%, 1.7%, respectively) and dissolvables (19.3%, 2.0%, 0.7%, respectively) were generally lower than those of e-cigarettes or hookah. Conventional tobacco product users were more likely to be aware of and to use non-conventional tobacco products. Many U.S. students are aware of and use non-conventional tobacco products. Evidence-based interventions should be implemented to prevent and reduce all tobacco use among youth. Published by Elsevier Inc.
Bischof Vukušić, Sandra; Flinčec Grgac, Sandra; Budimir, Ana; Kalenić, Smilja
2011-01-01
Aim To study the antimicrobial activity of citric acid (CA) and sodium hypophosphite monohydrate (SHP) against gram-positive and gram-negative bacteria, and to determine the influence of conventional and microwave thermal treatments on the effectiveness of antimicrobial treatment of cotton textiles. Method Textile material was impregnated with CA and SHP solution and thermally treated by either conventional or microwave drying/curing treatment. Antibacterial effectiveness was tested according to the ISO 20743:2009 standard, using absorption method. The surfaces were morphologically observed by scanning electron microscopy, while physical characteristics were determined by wrinkle recovery angles method (DIN 53 891), tensile strength (DIN 53 837), and whiteness degree method (AATCC 110-2000). Results Cotton fabric treated with CA and SHP showed significant antibacterial activity against MRSA (6.38 log10 treated by conventional drying and 6.46 log10 treated by microwave drying before washing, and 6.90 log10 and 7.86 log10, respectively, after 1 cycle of home domestic laundering washing [HDLW]). Antibacterial activity was also remarkable against S. aureus (4.25 log10 by conventional drying, 4.58 log10 by microwave drying) and against P. aeruginosa (1.93 log10 by conventional and 4.66 log10 by microwave drying). Antibacterial activity against P. aeruginosa was higher in samples subjected to microwave drying/curing than in those subjected to conventional drying/curing. As expected, antibacterial activity was reduced after 10 HDLW cycles but the compound was still effective. The surface of the untreated cotton polymer was smooth, while minor erosion stripes appeared on the surfaces treated with antimicrobial agent, and long and deep stripes were found on the surface of the washed sample. Conclusion CA can be used both for the disposable (non-durable) materials (gowns, masks, and cuffs for blood pressure measurement) and the materials that require durability to laundering. The current protocols and initiatives in infection control could be improved by the use of antimicrobial agents applied on cotton carbohydrate polymer. PMID:21328723
Complementary and conventional medicine: a concept map
Baldwin, Carol M; Kroesen, Kendall; Trochim, William M; Bell, Iris R
2004-01-01
Background Despite the substantive literature from survey research that has accumulated on complementary and alternative medicine (CAM) in the United States and elsewhere, very little research has been done to assess conceptual domains that CAM and conventional providers would emphasize in CAM survey studies. The objective of this study is to describe and interpret the results of concept mapping with conventional and CAM practitioners from a variety of backgrounds on the topic of CAM. Methods Concept mapping, including free sorts, ratings, and multidimensional scaling was used to organize conceptual domains relevant to CAM into a visual "cluster map." The panel consisted of CAM providers, conventional providers, and university faculty, and was convened to help formulate conceptual domains to guide the development of a CAM survey for use with United States military veterans. Results Eight conceptual clusters were identified: 1) Self-assessment, Self-care, and Quality of Life; 2) Health Status, Health Behaviors; 3) Self-assessment of Health; 4) Practical/Economic/ Environmental Concerns; 5) Needs Assessment; 6) CAM vs. Conventional Medicine; 7) Knowledge of CAM; and 8) Experience with CAM. The clusters suggest panelists saw interactions between CAM and conventional medicine as a critical component of the current medical landscape. Conclusions Concept mapping provided insight into how CAM and conventional providers view the domain of health care, and was shown to be a useful tool in the formulation of CAM-related conceptual domains. PMID:15018623
Kawashima, Hiroki; Hayashi, Norio; Ohno, Naoki; Matsuura, Yukihiro; Sanada, Shigeru
2015-08-01
To evaluate the patient identification ability of radiographers, previous and current chest radiographs were assessed with observer study utilizing a receiver operating characteristics (ROCs) analysis. This study included portable and conventional chest radiographs from 43 same and 43 different patients. The dataset used in this study was divided into the three following groups: (1) a pair of portable radiographs, (2) a pair of conventional radiographs, and (3) a combination of each type of radiograph. Seven observers participated in this ROC study, which aimed to identify same or different patients, using these datasets. ROC analysis was conducted to calculate the average area under ROC curve obtained by each observer (AUCave), and a statistical test was performed using the multi-reader multi-case method. Comparable results were obtained with pairs of portable (AUCave: 0.949) and conventional radiographs (AUCave: 0.951). In a comparison between the same modality, there were no significant differences. In contrast, the ability to identify patients by comparing a portable and conventional radiograph (AUCave: 0.873) was lower than with the matching datasets (p=0.002 and p=0.004, respectively). In conclusion, the use of different imaging modalities reduces radiographers' ability to identify their patients.
Modified ADALINE algorithm for harmonic estimation and selective harmonic elimination in inverters
NASA Astrophysics Data System (ADS)
Vasumathi, B.; Moorthi, S.
2011-11-01
In digital signal processing, algorithms are very well developed for the estimation of harmonic components. In power electronic applications, an objective like fast response of a system is of primary importance. An effective method for the estimation of instantaneous harmonic components, along with conventional harmonic elimination technique, is presented in this article. The primary function is to eliminate undesirable higher harmonic components from the selected signal (current or voltage) and it requires only the knowledge of the frequency of the component to be eliminated. A signal processing technique using modified ADALINE algorithm has been proposed for harmonic estimation. The proposed method stays effective as it converges to a minimum error and brings out a finer estimation. A conventional control based on pulse width modulation for selective harmonic elimination is used to eliminate harmonic components after its estimation. This method can be applied to a wide range of equipment. The validity of the proposed method to estimate and eliminate voltage harmonics is proved with a dc/ac inverter as a simulation example. Then, the results are compared with existing ADALINE algorithm for illustrating its effectiveness.
Abreu, Paolla M V; Piccin, João G; Rodrigues, Silas P; Buss, David S; Ventura, José A; Fernandes, Patricia M B
2012-03-01
Papaya meleira virus (PMeV) is the causal agent of papaya sticky disease. This study describes two methods for molecular diagnosis of PMeV using conventional and real-time PCR. These methods were shown to be more efficient than current methods of viral detection using extraction of PMeV dsRNA and observation of symptoms in the field. The methods described here were used to evaluate the effect of inoculation of papaya plants with purified PMeV dsRNA on the progress of PMeV infection. A single inoculation with PMeV dsRNA was observed to delay the progress of the virus infection by several weeks. The possibility of vertical transmission of PMeV was also investigated. No evidence was found for PMeV transmission through seeds collected from diseased fruit. The implications of these results for the epidemiology of PMeV and the management of papaya sticky disease are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.
Vaughan, Patrick E; Orth, Michael W; Haut, Roger C; Karcher, Darrin M
2016-01-01
While conventional mechanical testing has been regarded as a gold standard for the evaluation of bone heath in numerous studies, with recent advances in medical imaging, virtual methods of biomechanics are rapidly evolving in the human literature. The objective of the current study was to evaluate the feasibility of determining the elastic and failure properties of poultry long bones using established methods of analysis from the human literature. In order to incorporate a large range of bone sizes and densities, a small number of specimens were utilized from an ongoing study of Regmi et al. (2016) that involved humeri and tibiae from 3 groups of animals (10 from each) including aviary, enriched, and conventional housing systems. Half the animals from each group were used for 'training' that involved the development of a regression equation relating bone density and geometry to bending properties from conventional mechanical tests. The remaining specimens from each group were used for 'testing' in which the mechanical properties from conventional tests were compared to those predicted by the regression equations. Based on the regression equations, the coefficients of determination for the 'test' set of data were 0.798 for bending bone stiffness and 0.901 for the yield (or failure) moment of the bones. All regression slopes and intercepts values for the tests versus predicted plots were not significantly different from 1 and 0, respectively. The study showed the feasibility of developing future methods of virtual biomechanics for the evaluation of poultry long bones. With further development, virtual biomechanics may have utility in future in vivo studies to assess laying hen bone health over time without the need to sacrifice large groups of animals at each time point. © 2016 Poultry Science Association Inc.
Atalay, Altay; Koc, Ayse Nedret; Suel, Ahmet; Sav, Hafize; Demir, Gonca; Elmali, Ferhan; Cakir, Nuri; Seyedmousavi, Seyedmojtaba
2016-09-01
Aspergillus species cause a wide range of diseases in humans, including allergies, localized infections, or fatal disseminated diseases. Rapid detection and identification of Aspergillus spp. facilitate effective patient management. In the current study we compared conventional morphological methods with PCR sequencing, rep-PCR, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) for the identification of Aspergillus strains. A total of 24 consecutive clinical isolates of Aspergillus were collected during 2012-2014. Conventional morphology and rep-PCR were performed in our Mycology Laboratory. The identification, evaluation, and reporting of strains using MALDI-TOF-MS were performed by BioMérieux Diagnostic, Inc. in Istanbul. DNA sequence analysis of the clinical isolates was performed by the BMLabosis laboratory in Ankara. Samples consisted of 18 (75%) lower respiratory tract specimens, 3 otomycosis (12.5%) ear tissues, 1 sample from keratitis, and 1 sample from a cutaneous wound. According to DNA sequence analysis, 12 (50%) specimens were identified as A. fumigatus, 8 (33.3%) as A. flavus, 3 (12.5%) as A. niger, and 1 (4.2%) as A. terreus. Statistically, there was good agreement between the conventional morphology and rep-PCR and MALDI-TOF methods; kappa values were κ = 0.869, 0.871, and 0.916, respectively (P < 0.001). The good level of agreement between the methods included in the present study and sequence method could be due to the identification of Aspergillus strains that were commonly encountered. Therefore, it was concluded that studies conducted with a higher number of isolates, which include other Aspergillus strains, are required. © 2016 Wiley Periodicals, Inc.
Koubaa, Mohamed; Roselló-Soto, Elena; Šic Žlabur, Jana; Režek Jambrak, Anet; Brnčić, Mladen; Grimi, Nabil; Boussetta, Nadia; Barba, Francisco J
2015-08-12
The South American plant Stevia rebaudiana Bertoni is a great source of noncaloric sweeteners (steviol glycosides), mainly concentrated in its leaves, but also has important antioxidant compounds (vitamin C, polyphenols, chlorophylls, and carotenoids) and other important macro- and micronutrients such as folic acid and all of the essential amino acids except tryptophan. Traditionally, conventional methods have been used to recover nutritionally valuable compounds from plant food matrices. However, nowadays, the need for obtaining greener, sustainable, and viable processes has led both food industries and food scientists to develop new processes in full correspondence with the green extraction concept. This review focuses on some of the most promising nonconventional and emerging technologies, which may constitute a potential alternative to conventional methods or even could be combined to obtain a synergistic effect, thus reducing extraction time as well as solvent consumption and avoiding the use of toxic solvents.
Smelting Magnesium Metal using a Microwave Pidgeon Method
Wada, Yuji; Fujii, Satoshi; Suzuki, Eiichi; Maitani, Masato M.; Tsubaki, Shuntaro; Chonan, Satoshi; Fukui, Miho; Inazu, Naomi
2017-01-01
Magnesium (Mg) is a lightweight metal with applications in transportation and sustainable battery technologies, but its current production through ore reduction using the conventional Pidgeon process emits large amounts of CO2 and particulate matter (PM2.5). In this work, a novel Pidgeon process driven by microwaves has been developed to produce Mg metal with less energy consumption and no direct CO2 emission. An antenna structure consisting of dolomite as the Mg source and a ferrosilicon antenna as the reducing material was used to confine microwave energy emitted from a magnetron installed in a microwave oven to produce a practical amount of pure Mg metal. This microwave Pidgeon process with an antenna configuration made it possible to produce Mg with an energy consumption of 58.6 GJ/t, corresponding to a 68.6% reduction when compared to the conventional method. PMID:28401910
NASA Technical Reports Server (NTRS)
Niederer, P. G.; Mihora, D. J.
1972-01-01
The current design and hardware components of the patented 14 sqm Stokes flow parachute are described. The Stokes-flow parachute is a canopy of open mesh material, which is kept deployed by braces. Because of the light weight of its mesh material, and the high drag on its mesh elements when they operate in the Stokes-flow flight regime, this parachute has an extremely low ballistic coefficient. It provides a stable aerodynamic platform superior to conventional nonporous billowed parachutes, is exceptionally packable, and is easily contained within the canister of the Sidewinder Arcas or the RDT and E rockets. Thus, it offers the potential for gathering more meteorological data, especially at high altitudes, than conventional billowed parachutes. Methods for packaging the parachute are also recommended. These methods include schemes for folding the canopy and for automatically releasing the pressurizing fluid as the packaged parachute unfolds.
Wang, Xiang-Hua; Yin, Wen-Yan; Chen, Zhi Zhang David
2013-09-09
The one-step leapfrog alternating-direction-implicit finite-difference time-domain (ADI-FDTD) method is reformulated for simulating general electrically dispersive media. It models material dispersive properties with equivalent polarization currents. These currents are then solved with the auxiliary differential equation (ADE) and then incorporated into the one-step leapfrog ADI-FDTD method. The final equations are presented in the form similar to that of the conventional FDTD method but with second-order perturbation. The adapted method is then applied to characterize (a) electromagnetic wave propagation in a rectangular waveguide loaded with a magnetized plasma slab, (b) transmission coefficient of a plane wave normally incident on a monolayer graphene sheet biased by a magnetostatic field, and (c) surface plasmon polaritons (SPPs) propagation along a monolayer graphene sheet biased by an electrostatic field. The numerical results verify the stability, accuracy and computational efficiency of the proposed one-step leapfrog ADI-FDTD algorithm in comparison with analytical results and the results obtained with the other methods.
Brokaw, Elizabeth B; Nichols, Diane; Holley, Rahsaan J; Lum, Peter S
2014-05-01
Individuals with chronic stroke often have long-lasting upper extremity impairments that impede function during activities of daily living. Rehabilitation robotics have shown promise in improving arm function, but current systems do not allow realistic training of activities of daily living. We have incorporated the ARMin III and HandSOME device into a novel robotic therapy modality that provides functional training of reach and grasp tasks. To compare the effects of equal doses of robotic and conventional therapy in individuals with chronic stroke. Subjects were randomized to 12 hours of robotic or conventional therapy and then crossed over to the other therapy type after a 1-month washout period. Twelve moderate to severely impaired individuals with chronic stroke were enrolled, and 10 completed the study. Across the 3-month study period, subjects showed significant improvements in the Fugl-Meyer (P = .013) and Box and Blocks tests (P = .028). The robotic intervention produced significantly greater improvements in the Action Research Arm Test than conventional therapy (P = .033). Gains in the Box and Blocks test from conventional therapy were larger than from robotic therapy in subjects who received conventional therapy after robotic therapy (P = .044). Data suggest that robotic therapy can elicit improvements in arm function that are distinct from conventional therapy and supplements conventional methods to improve outcomes. Results from this pilot study should be confirmed in a larger study.
NASA Astrophysics Data System (ADS)
Lin, Chih-Lung; Chou, Kuan-Wen; Chang, Fu-Chieh; Hung, Chia-Che
2011-10-01
This work demonstrates the feasibility of a novel pixel circuit by using three a-Si:H TFTs. The proposed circuit can stabilize the OLED current and provide an additional driving current to ameliorate the brightness degradation of the AMOLED. Measurement results indicate that the current degradation of the proposed circuit, caused by V TH variations, is less than 5% over more than 50,000 s at 60 °C, whereas that of a conventional 2T1C pixel circuit is larger than 34%. Furthermore, to ameliorate the decrease in luminance owing to the OLED degradation, the OLED current can be increased by 10% by analyzing the current degradation and modulating the detected voltage appropriately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-01
Broad Funding Opportunity Announcement Project: Two faculty members at Lehigh University created a new technique called supercapacitive swing adsorption (SSA) that uses electrical charges to encourage materials to capture and release CO2. Current CO2 capture methods include expensive processes that involve changes in temperature or pressure. Lehigh University’s approach uses electric fields to improve the ability of inexpensive carbon sorbents to trap CO2. Because this process uses electric fields and not electric current, the overall energy consumption is projected to be much lower than conventional methods. Lehigh University is now optimizing the materials to maximize CO2 capture and minimize themore » energy needed for the process.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S; Chao, C; Columbia University, NY, NY
2014-06-01
Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as amore » detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect potential calibration errors due to inaccurate positioning. This work was partially supported by a DOD Grant No.; DOD W81XWH1010862.« less
NASA Astrophysics Data System (ADS)
Fan, Tiantian; Yu, Hongbin
2018-03-01
A novel shape from focus method combining 3D steerable filter for improved performance on treating textureless region was proposed in this paper. Different from conventional spatial methods focusing on the search of maximum edges' response to estimate the depth map, the currently proposed method took both of the edges' response and the axial imaging blur degree into consideration during treatment. As a result, more robust and accurate identification for the focused location can be achieved, especially when treating textureless objects. Improved performance in depth measurement has been successfully demonstrated from both of the simulation and experiment results.
Surveyor assay to diagnose persistent Müllerian duct syndrome in Miniature Schnauzers.
Kim, Young June; Kwon, Hyuk Jin; Byun, Hyuk Soo; Yeom, Donguk; Choi, Jea-Hong; Kim, Joong-Hyun; Shim, Hosup
2017-12-31
Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS.
Surveyor assay to diagnose persistent Müllerian duct syndrome in Miniature Schnauzers
Kim, Young June; Kwon, Hyuk Jin; Byun, Hyuk Soo; Yeom, Donguk; Choi, Jea-Hong; Kim, Joong-Hyun
2017-01-01
Persistent Müllerian duct syndrome (PMDS) is a pseudohermaphroditism in males characterized by the presence of Müllerian duct derivatives. As PMDS dogs often lack clinical symptoms, a molecular diagnosis is essential to identify the syndrome in these animals. In this study, a new molecular method using DNA mismatch-specific Surveyor nuclease was developed. The Surveyor nuclease assay identified the AMHR2 mutation that produced PMDS in a Miniature Schnauzer as accurately as that obtained by using the conventional method based on restriction digestion. As an alternative to the current molecular diagnostic method, the new method may result in increased accuracy when detecting PMDS. PMID:27515263
Huang, Yanfei; Wang, Jinglin; Zhang, Mingxin; Zhu, Min; Wang, Mei; Sun, Yufeng; Gu, Haitong; Cao, Jingjing; Li, Xue; Zhang, Shaoya; Lu, Xinxin
2017-03-01
Filamentous fungi are among the most important pathogens, causing fungal rhinosinusitis (FRS). Current laboratory diagnosis of FRS pathogens mainly relies on phenotypic identification by culture and microscopic examination, which is time consuming and expertise dependent. Although matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS has been employed to identify various fungi, its efficacy in the identification of FRS fungi is less clear. A total of 153 FRS isolates obtained from patients were analysed at the Clinical Laboratory at the Beijing Tongren Hospital affiliated to the Capital Medical University, between January 2014 and December 2015. They were identified by traditional phenotypic methods and Bruker MALDI-TOF MS (Bruker, Biotyper version 3.1), respectively. Discrepancies between the two methods were further validated by sequencing. Among the 153 isolates, 151 had correct species identification using MALDI-TOF MS (Bruker, Biot 3.1, score ≥2.0 or 2.3). MALDI-TOF MS enabled identification of some very closely related species that were indistinguishable by conventional phenotypic methods, including 1/10 Aspergillus versicolor, 3/20 Aspergillus flavus, 2/30 Aspergillus fumigatus and 1/20 Aspergillus terreus, which were misidentified by conventional phenotypic methods as Aspergillus nidulans, Aspergillus oryzae, Aspergillus japonicus and Aspergillus nidulans, respectively. In addition, 2/2 Rhizopus oryzae and 1/1 Rhizopus stolonifer that were identified only to the genus level by the phenotypic method were correctly identified by MALDI-TOF MS. MALDI-TOF MS is a rapid and accurate technique, and could replace the conventional phenotypic method for routine identification of FRS fungi in clinical microbiology laboratories.
Application of anhydrobiosis and dehydration of yeasts for non-conventional biotechnological goals.
Rapoport, Alexander; Turchetti, Benedetta; Buzzini, Pietro
2016-06-01
Dehydration of yeast cells causes them to enter a state of anhydrobiosis in which their metabolism is temporarily and reversibly suspended. This unique state among organisms is currently used in the production of active dry yeasts, mainly used in baking and winemaking. In recent decades non-conventional applications of yeast dehydration have been proposed for various modern biotechnologies. This mini-review briefly summarises current information on the application of dry yeasts in traditional and innovative fields. It has been shown that dry yeast preparations can be used for the efficient protection, purification and bioremediation of the environment from heavy metals. The high sorption activity of dehydrated yeasts can be used as an interesting tool in winemaking due to their effects on quality and taste. Dry yeasts are also used in agricultural animal feed. Another interesting application of yeast dehydration is as an additional stage in new methods for the stable immobilisation of microorganisms, especially in cases when biotechnologically important strains have no affinity with the carrier. Such immobilisation methods also provide a new approach for the successful conservation of yeast strains that are very sensitive to dehydration. In addition, the application of dehydration procedures opens up new possibilities for the use of yeast as a model system. Separate sections of this review also discuss possible uses of dry yeasts in biocontrol, bioprotection and biotransformations, in analytical methods as well as in some other areas.
NASA Astrophysics Data System (ADS)
Yuan, Jiaxin; Zhou, Hang; Gan, Pengcheng; Zhong, Yongheng; Gao, Yanhui; Muramatsu, Kazuhiro; Du, Zhiye; Chen, Baichao
2018-05-01
To develop mechanical circuit breaker in high voltage direct current (HVDC) system, a fault current limiter is required. Traditional method to limit DC fault current is to use superconducting technology or power electronic devices, which is quite difficult to be brought to practical use under high voltage circumstances. In this paper, a novel concept of high voltage DC transmission system fault current limiter (DCSFCL) based on saturable core was proposed. In the DCSFCL, the permanent magnets (PM) are added on both up and down side of the core to generate reverse magnetic flux that offset the magnetic flux generated by DC current and make the DC winding present a variable inductance to the DC system. In normal state, DCSFCL works as a smoothing reactor and its inductance is within the scope of the design requirements. When a fault occurs, the inductance of DCSFCL rises immediately and limits the steepness of the fault current. Magnetic field simulations were carried out, showing that compared with conventional smoothing reactor, DCSFCL can decrease the high steepness of DC fault current by 17% in less than 10ms, which verifies the feasibility and effectiveness of this method.
Techniques for transparent lattice measurement and correction
NASA Astrophysics Data System (ADS)
Cheng, Weixing; Li, Yongjun; Ha, Kiman
2017-07-01
A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.
Modified coaxial wire method for measurement of transfer impedance of beam position monitors
NASA Astrophysics Data System (ADS)
Kumar, Mukesh; Babbar, L. K.; Deo, R. K.; Puntambekar, T. A.; Senecha, V. K.
2018-05-01
The transfer impedance is a very important parameter of a beam position monitor (BPM) which relates its output signal with the beam current. The coaxial wire method is a standard technique to measure transfer impedance of the BPM. The conventional coaxial wire method requires impedance matching between coaxial wire and external circuits (vector network analyzer and associated cables). This paper presents a modified coaxial wire method for bench measurement of the transfer impedance of capacitive pickups like button electrodes and shoe box BPMs. Unlike the conventional coaxial wire method, in the modified coaxial wire method no impedance matching elements have been used between the device under test and the external circuit. The effect of impedance mismatch has been solved mathematically and a new expression of transfer impedance has been derived. The proposed method is verified through simulation of a button electrode BPM using cst studio suite. The new method is also applied to measure transfer impedance of a button electrode BPM developed for insertion devices of Indus-2 and the results are also compared with its simulations. Close agreement between measured and simulation results suggests that the modified coaxial wire setup can be exploited for the measurement of transfer impedance of capacitive BPMs like button electrodes and shoe box BPM.
Development of a novel cell sorting method that samples population diversity in flow cytometry.
Osborne, Geoffrey W; Andersen, Stacey B; Battye, Francis L
2015-11-01
Flow cytometry based electrostatic cell sorting is an important tool in the separation of cell populations. Existing instruments can sort single cells into multi-well collection plates, and keep track of cell of origin and sorted well location. However currently single sorted cell results reflect the population distribution and fail to capture the population diversity. Software was designed that implements a novel sorting approach, "Slice and Dice Sorting," that links a graphical representation of a multi-well plate to logic that ensures that single cells are sampled and sorted from all areas defined by the sort region/s. Therefore the diversity of the total population is captured, and the more frequently occurring or rarer cell types are all sampled. The sorting approach was tested computationally, and using functional cell based assays. Computationally we demonstrate that conventional single cell sorting can sample as little as 50% of the population diversity dependant on the population distribution, and that Slice and Dice sorting samples much more of the variety present within a cell population. We then show by sorting single cells into wells using the Slice and Dice sorting method that there are cells sorted using this method that would be either rarely sorted, or not sorted at all using conventional single cell sorting approaches. The present study demonstrates a novel single cell sorting method that samples much more of the population diversity than current methods. It has implications in clonal selection, stem cell sorting, single cell sequencing and any areas where population heterogeneity is of importance. © 2015 International Society for Advancement of Cytometry.
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P.; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition– and photolithography-based conventional metal patterning processes. The “digital” nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays. PMID:22900011
Yeo, Junyeob; Hong, Sukjoon; Lee, Daehoo; Hotz, Nico; Lee, Ming-Tsang; Grigoropoulos, Costas P; Ko, Seung Hwan
2012-01-01
Flexible electronics opened a new class of future electronics. The foldable, light and durable nature of flexible electronics allows vast flexibility in applications such as display, energy devices and mobile electronics. Even though conventional electronics fabrication methods are well developed for rigid substrates, direct application or slight modification of conventional processes for flexible electronics fabrication cannot work. The future flexible electronics fabrication requires totally new low-temperature process development optimized for flexible substrate and it should be based on new material too. Here we present a simple approach to developing a flexible electronics fabrication without using conventional vacuum deposition and photolithography. We found that direct metal patterning based on laser-induced local melting of metal nanoparticle ink is a promising low-temperature alternative to vacuum deposition- and photolithography-based conventional metal patterning processes. The "digital" nature of the proposed direct metal patterning process removes the need for expensive photomask and allows easy design modification and short turnaround time. This new process can be extremely useful for current small-volume, large-variety manufacturing paradigms. Besides, simple, scalable, fast and low-temperature processes can lead to cost-effective fabrication methods on a large-area polymer substrate. The developed process was successfully applied to demonstrate high-quality Ag patterning (2.1 µΩ·cm) and high-performance flexible organic field effect transistor arrays.
A modified Elek test for detection of toxigenic corynebacteria in the diagnostic laboratory.
Engler, K H; Glushkevich, T; Mazurova, I K; George, R C; Efstratiou, A
1997-02-01
The detection of toxigenicity among Corynebacterium diphtheriae and Corynebacterium ulcerans strains is the most important test for the microbiological diagnosis of diphtheria. Difficulties with current methods, in particular the Elek test, are well documented. We therefore describe a modified Elek test which provides an accurate result after only 16 h of incubation, in contrast to 48 h for the conventional test.
Unicompartmental knee arthroplasties: robot vs. patient specific instrumentation.
Jaffry, Zahra; Masjedi, Milad; Clarke, Susannah; Harris, Simon; Karia, Monil; Andrews, Barry; Cobb, Justin
2014-03-01
The technical reliability demonstrated by semi active robots in implant placement could render unicompartmental knee arthroplasties (UKAs) more favourable than they are currently. The relatively untested method using patient specific instrumentation (PSI), however, has the potential to match the accuracy produced by robots but without the barriers that have prevented them from being used more widely in clinical practice, namely operative time. Therefore this study took a step towards comparing the accuracy and time taken between the two technologies. Thirty-six UKAs were carried out on identical knee models, 12 with the Sculptor, 12 with PSI and 12 conventionally under timed conditions. Implant placement in these knees was then judged against that in a pre-operative plan. Tibial implant orientations and femoral implant positions and orientations were significantly more accurate in the PSI group with mean errors of 6°, 2 mm and 4° respectively, than the conventional group which had means of 9°, 4 mm and 10°. There was no significant difference between the robot and PSI generally except in tibial implant orientation (mean robotic error 3°) and tibial implant position did not vary significantly across all three groups. It was also found that use of PSI and conventional methods took half the time taken by the robot (p<0.001). With further development, PSI can match and possibly surpass the accuracy of the robot, as it does with the conventional method, and achieve planned surgery in less time. This work sets the foundation for clinical trials involving PSI. Copyright © 2013 Elsevier B.V. All rights reserved.
Solenoid-free plasma startup in NSTX using transient CHI
NASA Astrophysics Data System (ADS)
Raman, R.; Jarboe, T. R.; Mueller, D.; Nelson, B. A.; Bell, M. G.; Bell, R.; Gates, D.; Gerhardt, S.; Hosea, J.; Kaita, R.; Kugel, H.; LeBlanc, B.; Maingi, R.; Maqueda, R.; Menard, J.; Nagata, M.; Ono, M.; Paul, S.; Roquemore, L.; Sabbagh, S.; Soukhanovskii, V.; Taylor, G.
2009-06-01
Experiments in NSTX have now demonstrated the coupling of toroidal plasmas produced by the technique of coaxial helicity injection (CHI) to inductive sustainment and ramp-up of the toroidal plasma current. In these discharges, the central Ohmic transformer was used to apply an inductive loop voltage to discharges with a toroidal current of about 100 kA created by CHI. The coupled discharges have ramped up to >700 kA and transitioned into an H-mode demonstrating compatibility of this startup method with conventional operation. The electron temperature in the coupled discharges reached over 800 eV and the resulting plasma had low inductance, which is preferred for long-pulse high-performance discharges. These results from NSTX in combination with the previously obtained record 160 kA non-inductively generated startup currents in an ST or tokamak in NSTX demonstrate that CHI is a viable solenoid-free plasma startup method for future STs and tokamaks.
A special ionisation chamber for quality control of diagnostic and mammography X ray equipment.
Costa, A M; Caldas, L V E
2003-01-01
A quality control program for X ray equipment used for conventional radiography and mammography requires the constancy check of the beam qualities in terms of the half-value layers. In this work, a special double-faced parallel-plate ionisation chamber was developed with inner electrodes of different materials, in a tandem system. Its application will be in quality control programs of diagnostic and mammography X ray equipment for confirmation of half-value layers previously determined by the conventional method. Moreover, the chamber also may be utilised for measurements of air kerma values (and air kerma rates) in X radiation fields used for conventional radiography and mammography. The chamber was studied in relation to the characteristics of saturation, ion collection efficiency, polarity effects, leakage current, and short-term stability. The energy dependence in response of each of the two faces of the chamber was determined over the conventional radiography and mammography X ray ranges (unattenuated beams). The different energy response of the two faces of the chamber allowed the formation of a tandem system useful for the constancy check of beam qualities.
NASA Astrophysics Data System (ADS)
Bhattarai, Arjun; Wai, Nyunt; Schweiss, Rüdiger; Whitehead, Adam; Scherer, Günther G.; Ghimire, Purna C.; Nguyen, Tam D.; Hng, Huey Hoon
2017-08-01
Uniform flow distribution through the porous electrodes in a flow battery cell is very important for reducing Ohmic and mass transport polarization. A segmented cell approach can be used to obtain in-situ information on flow behaviour, through the local voltage or current mapping. Lateral flow of current within the thick felts in the flow battery can hamper the interpretation of the data. In this study, a new method of segmenting a conventional flow cell is introduced, which for the first time, splits up both the porous felt as well as the current collector. This dual segmentation results in higher resolution and distinct separation of voltages between flow inlet to outlet. To study the flow behavior for an undivided felt, monitoring the OCV is found to be a reliable method, instead of voltage or current mapping during charging and discharging. Our approach to segmentation is simple and applicable to any size of the cell.
Fine-Filament MgB2 Superconductor Wire
NASA Technical Reports Server (NTRS)
Cantu, Sherrie
2015-01-01
Hyper Tech Research, Inc., has developed fine-filament magnesium diboride (MgB2) superconductor wire for motors and generators used in turboelectric aircraft propulsion systems. In Phase I of the project, Hyper Tech demonstrated that MgB2 multifilament wires (<10 micrometers) could reduce alternating current (AC) losses that occur due to hysteresis, eddy currents, and coupling losses. The company refined a manufacturing method that incorporates a magnesium-infiltration process and provides a tenfold enhancement in critical current density over wire made by a conventional method involving magnesium-boron powder mixtures. Hyper Tech also improved its wire-drawing capability to fabricate fine multifilament strands. In Phase II, the company developed, manufactured, and tested the wire for superconductor and engineering current density and AC losses. Hyper Tech also fabricated MgB2 rotor coil packs for a superconducting generator. The ultimate goal is to enable low-cost, round, lightweight, low-AC-loss superconductors for motor and generator stator coils operating at 25 K in next-generation turboelectric aircraft propulsion systems.
Evaluation of direct and indirect additive manufacture of maxillofacial prostheses.
Eggbeer, Dominic; Bibb, Richard; Evans, Peter; Ji, Lu
2012-09-01
The efficacy of computer-aided technologies in the design and manufacture of maxillofacial prostheses has not been fully proven. This paper presents research into the evaluation of direct and indirect additive manufacture of a maxillofacial prosthesis against conventional laboratory-based techniques. An implant/magnet-retained nasal prosthesis case from a UK maxillofacial unit was selected as a case study. A benchmark prosthesis was fabricated using conventional laboratory-based techniques for comparison against additive manufactured prostheses. For the computer-aided workflow, photogrammetry, computer-aided design and additive manufacture (AM) methods were evaluated in direct prosthesis body fabrication and indirect production using an additively manufactured mould. Qualitative analysis of position, shape, colour and edge quality was undertaken. Mechanical testing to ISO standards was also used to compare the silicone rubber used in the conventional prosthesis with the AM material. Critical evaluation has shown that utilising a computer-aided work-flow can produce a prosthesis body that is comparable to that produced using existing best practice. Technical limitations currently prevent the direct fabrication method demonstrated in this paper from being clinically viable. This research helps prosthesis providers understand the application of a computer-aided approach and guides technology developers and researchers to address the limitations identified.
Oxide Heteroepitaxy for Flexible Optoelectronics.
Bitla, Yugandhar; Chen, Ching; Lee, Hsien-Chang; Do, Thi Hien; Ma, Chun-Hao; Qui, Le Van; Huang, Chun-Wei; Wu, Wen-Wei; Chang, Li; Chiu, Po-Wen; Chu, Ying-Hao
2016-11-30
The emerging technological demands for flexible and transparent electronic devices have compelled researchers to look beyond the current silicon-based electronics. However, fabrication of devices on conventional flexible substrates with superior performance are constrained by the trade-off between processing temperature and device performance. Here, we propose an alternative strategy to circumvent this issue via the heteroepitaxial growth of transparent conducting oxides (TCO) on the flexible mica substrate with performance comparable to that of their rigid counterparts. With the examples of ITO and AZO as a case study, a strong emphasis is laid upon the growth of flexible yet epitaxial TCO relying muscovite's superior properties compared to those of conventional flexible substrates and its compatibility with the present fabrication methods. Besides excellent optoelectro-mechanical properties, an additional functionality of high-temperature stability, normally lacking in the current state-of-the-art transparent flexitronics, is provided by these heterostructures. These epitaxial TCO electrodes with good chemical and thermal stabilities as well as mechanical durability can significantly contribute to the field of flexible, light-weight, and portable smart electronics.
MO-FG-CAMPUS-TeP3-04: Deliverable Robust Optimization in IMPT Using Quadratic Objective Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, J; Liu, W; Bues, M
Purpose: To find and evaluate the way of applying deliverable MU constraints into robust spot intensity optimization in Intensity-Modulated- Proton-Therapy (IMPT) to prevent plan quality and robustness from degrading due to machine deliverable MU-constraints. Methods: Currently, the influence of the deliverable MU-constraints is retrospectively evaluated by post-processing immediately following optimization. In this study, we propose a new method based on the quasi-Newton-like L-BFGS-B algorithm with which we turn deliverable MU-constraints on and off alternatively during optimization. Seven patients with two different machine settings (small and large spot size) were planned with both conventional and new methods. For each patient, threemore » kinds of plans were generated — conventional non-deliverable plan (plan A), conventional deliverable plan with post-processing (plan B), and new deliverable plan (plan C). We performed this study with both realistic (small) and artificial (large) deliverable MU-constraints. Results: With small minimum MU-constraints considered, new method achieved a slightly better plan quality than conventional method (D95% CTV normalized to the prescription dose: 0.994[0.992∼0.996] (Plan C) vs 0.992[0.986∼0.996] (Plan B)). With large minimum MU constraints considered, results show that the new method maintains plan quality while plan quality from the conventional method is degraded greatly (D95% CTV normalized to the prescription dose: 0.987[0.978∼0.994] (Plan C) vs 0.797[0.641∼1.000] (Plan B)). Meanwhile, plan robustness of these two method’s results is comparable. (For all 7 patients, CTV DVH band gap at D95% normalized to the prescription dose: 0.015[0.005∼0.043] (Plan C) vs 0.012[0.006∼0.038] (Plan B) with small MU-constraints and 0.019[0.009∼0.039] (Plan C) vs 0.030[0.015∼0.041] (Plan B) with large MU-constraints) Conclusion: Positive correlation has been found between plan quality degeneration and magnitude of deliverable minimal MU. Compared to conventional post-processing method, our new method of incorporating deliverable minimal MU-constraints directly into plan optimization, can produce machine-deliverable plans with better plan qualities and non-compromised plan robustness. This research was supported by the National Cancer Institute Career Developmental Award K25CA168984, by the Fraternal Order of Eagles Cancer Research Fund Career Development Award, by The Lawrence W. and Marilyn W. Matteson Fund for Cancer Research, by Mayo Arizona State University Seed Grant and by The Kemper Marley Foundation.« less
Sacconi, Alessio; Moncelli, Maria Rosa; Margheri, Giancarlo; Tadini-Buoninsegni, Francesco
2013-11-12
A convenient model system for a biological membrane is a solid-supported membrane (SSM), which consists of a gold-supported alkanethiol|phospholipid bilayer. In combination with a concentration jump method, SSMs have been used for the investigation of several membrane transporters. Vesicles incorporating sarcoplasmic reticulum Ca-ATPase (SERCA) were adsorbed on a negatively charged SSM (octadecanethiol|phosphatidylserine bilayer). The current signal generated by the adsorbed vesicles following an ATP concentration jump was compared to that produced by SERCA-containing vesicles adsorbed on a conventional SSM (octadecanethiol|phosphatidylcholine bilayer). A significantly higher current amplitude was recorded on the serine-based SSM. The adsorption of SERCA-incorporating vesicles on the SSM was then characterized by surface plasmon resonance (SPR). The SPR measurements clearly indicate that in the presence of Ca(2+) and Mg(2+), the amount of adsorbed vesicles on the serine-based SSM is about twice that obtained using the conventional SSM, thereby demonstrating that the higher current amplitude recorded on the negatively charged SSM is correlated with a greater quantity of adsorbed vesicles. The enhanced adsorption of membrane vesicles on the PS-based SSM may be useful to study membrane preparations with a low concentration of transport protein generating small current signals, as in the case of various recombinantly expressed proteins.
Seino, Junji; Nakai, Hiromi
2012-10-14
The local unitary transformation (LUT) scheme at the spin-free infinite-order Douglas-Kroll-Hess (IODKH) level [J. Seino and H. Nakai, J. Chem. Phys. 136, 244102 (2012)], which is based on the locality of relativistic effects, has been extended to a four-component Dirac-Coulomb Hamiltonian. In the previous study, the LUT scheme was applied only to a one-particle IODKH Hamiltonian with non-relativistic two-electron Coulomb interaction, termed IODKH/C. The current study extends the LUT scheme to a two-particle IODKH Hamiltonian as well as one-particle one, termed IODKH/IODKH, which has been a real bottleneck in numerical calculation. The LUT scheme with the IODKH/IODKH Hamiltonian was numerically assessed in the diatomic molecules HX and X(2) and hydrogen halide molecules, (HX)(n) (X = F, Cl, Br, and I). The total Hartree-Fock energies calculated by the LUT method agree well with conventional IODKH/IODKH results. The computational cost of the LUT method is reduced drastically compared with that of the conventional method. In addition, the LUT method achieves linear-scaling with respect to the system size and a small prefactor.
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jufeng; Xia, Bing; Shang, Yunlong
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Improved battery parameter estimation method considering operating scenarios for HEV/EV applications
Yang, Jufeng; Xia, Bing; Shang, Yunlong; ...
2016-12-22
This study presents an improved battery parameter estimation method based on typical operating scenarios in hybrid electric vehicles and pure electric vehicles. Compared with the conventional estimation methods, the proposed method takes both the constant-current charging and the dynamic driving scenarios into account, and two separate sets of model parameters are estimated through different parts of the pulse-rest test. The model parameters for the constant-charging scenario are estimated from the data in the pulse-charging periods, while the model parameters for the dynamic driving scenario are estimated from the data in the rest periods, and the length of the fitted datasetmore » is determined by the spectrum analysis of the load current. In addition, the unsaturated phenomenon caused by the long-term resistor-capacitor (RC) network is analyzed, and the initial voltage expressions of the RC networks in the fitting functions are improved to ensure a higher model fidelity. Simulation and experiment results validated the feasibility of the developed estimation method.« less
Filho, Herton Luiz Alves Sales; da Mata Sousa, Luiz Claudio Demes; von Glehn, Cristina de Queiroz Carrascosa; da Silva, Adalberto Socorro; dos Santos Neto, Pedro de Alcântara; do Nascimento, Ferraz; de Castro, Adail Fonseca; do Nascimento, Liliane Machado; Kneib, Carolina; Bianchi Cazarote, Helena; Mayumi Kitamura, Daniele; Torres, Juliane Roberta Dias; da Cruz Lopes, Laiane; Barros, Aryela Loureiro; da Silva Edlin, Evelin Nildiane; de Moura, Fernanda Sá Leal; Watanabe, Janine Midori Figueiredo; do Monte, Semiramis Jamil Hadad
2012-06-01
The HLAMatchmaker algorithm, which allows the identification of “safe” acceptable mismatches (AMMs) for recipients of solid organ and cell allografts, is rarely used in part due to the difficulty in using it in the current Excel format. The automation of this algorithm may universalize its use to benefit the allocation of allografts. Recently, we have developed a new software called EpHLA, which is the first computer program automating the use of the HLAMatchmaker algorithm. Herein, we present the experimental validation of the EpHLA program by showing the time efficiency and the quality of operation. The same results, obtained by a single antigen bead assay with sera from 10 sensitized patients waiting for kidney transplants, were analyzed either by conventional HLAMatchmaker or by automated EpHLA method. Users testing these two methods were asked to record: (i) time required for completion of the analysis (in minutes); (ii) number of eplets obtained for class I and class II HLA molecules; (iii) categorization of eplets as reactive or non-reactive based on the MFI cutoff value; and (iv) determination of AMMs based on eplets' reactivities. We showed that although both methods had similar accuracy, the automated EpHLA method was over 8 times faster in comparison to the conventional HLAMatchmaker method. In particular the EpHLA software was faster and more reliable but equally accurate as the conventional method to define AMMs for allografts. The EpHLA software is an accurate and quick method for the identification of AMMs and thus it may be a very useful tool in the decision-making process of organ allocation for highly sensitized patients as well as in many other applications.
Peterchev, Angel V; Krystal, Andrew D; Rosa, Moacyr A; Lisanby, Sarah H
2015-01-01
Electroconvulsive therapy (ECT) at conventional current amplitudes (800–900 mA) is highly effective but carries the risk of cognitive side effects. Lowering and individualizing the current amplitude may reduce side effects by virtue of a less intense and more focal electric field exposure in the brain, but this aspect of ECT dosing is largely unexplored. Magnetic seizure therapy (MST) induces a weaker and more focal electric field than ECT; however, the pulse amplitude is not individualized and the minimum amplitude required to induce a seizure is unknown. We titrated the amplitude of long stimulus trains (500 pulses) as a means of determining the minimum current amplitude required to induce a seizure with ECT (bilateral, right unilateral, bifrontal, and frontomedial electrode placements) and MST (round coil on vertex) in nonhuman primates. Furthermore, we investigated a novel method of predicting this amplitude-titrated seizure threshold (ST) by a non-convulsive measurement of motor threshold (MT) using single pulses delivered through the ECT electrodes or MST coil. Average STs were substantially lower than conventional pulse amplitudes (112–174 mA for ECT and 37.4% of maximum device amplitude for MST). ST was more variable in ECT than in MST. MT explained 63% of the ST variance and is hence the strongest known predictor of ST. These results indicate that seizures can be induced with less intense electric fields than conventional ECT that may be safer; efficacy and side effects should be evaluated in clinical studies. MT measurement could be a faster and safer alternative to empirical ST titration for ECT and MST. PMID:25920013
Head-cloaca controlled current stunning: assessment of brain and heart activity and meat quality.
Lambooij, E; Reimert, H G M; Workel, L D; Hindle, V A
2012-01-01
1. Behavioural and neural responses of 65 broilers to head-to-cloaca electrical stunning were evaluated and meat quality was assessed on two groups of 25 broilers stunned either head to cloaca, or in a conventional water bath method. 2. On the EEG recordings, a general epileptiform insult was observed when applying a current of 100 mA (100 Hz) or 70 mA (70 Hz) for 1·5 s. This general epileptiform insult shows a tonic, clonic and exhaustion phase followed by spikes of alpha, beta, theta and delta waves with duration of on average 34 ± 12 s and 39 ± 23 s respectively. These birds may have been unconscious for 20 s or longer, according to the correlation dimension analyses. 3. The heart rate decreased significantly (P < 0·05) after stunning and recovered after 60 s. 4. Within a confidence limit of 95%, taking into account the number of animals with a reliable EEG, the chance of an effective stun of all broilers lies between 0·9 and 1·0 with a current of 70 mA (100 Hz for 1·5 s; n = 28) and with 100 mA (100 Hz for 1·5 s; n = 27). 5. The shear force of breast fillets was slightly lower (P < 0·01) 4 d post mortem compared with the conventional water bath stunned group (set at 100 mA, 100 Hz for 10 s). The percentage of fillets and legs without blood splashes was higher, and the percentage with severe blood splashes lower-to-none, for carcases stunned head-cloaca. 6. It can be concluded that broilers are effectively stunned with the head-cloaca method by using a controlled current of 70 mA or 100 mA for 1·5 s. The fillets and legs of bird stunned head-cloaca showed fewer blood splashes in the muscles compared with birds stunned in a conventional water bath.
Wind Stress Variability Observed Over Coastal Waters
NASA Astrophysics Data System (ADS)
Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.
2016-02-01
The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these processes facilitate strong wave-current interaction, which may also affect the surface topography and thus play a role in air-sea exchanges. The Columbia River Mouth system showcases a complex coastal environment and future avenues for investigating these dynamics will be discussed.
Nanocrystal synthesis in microfluidic reactors: where next?
Phillips, Thomas W; Lignos, Ioannis G; Maceiczyk, Richard M; deMello, Andrew J; deMello, John C
2014-09-07
The past decade has seen a steady rise in the use of microfluidic reactors for nanocrystal synthesis, with numerous studies reporting improved reaction control relative to conventional batch chemistry. However, flow synthesis procedures continue to lag behind batch methods in terms of chemical sophistication and the range of accessible materials, with most reports having involved simple one- or two-step chemical procedures directly adapted from proven batch protocols. Here we examine the current status of microscale methods for nanocrystal synthesis, and consider what role microreactors might ultimately play in laboratory-scale research and industrial production.
Surface Treatment And Protection Method For Cadium Zinc Telluride Crystals
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2006-02-21
A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH4F and 10 w/o H2O2 in water.
Updates on Force Limiting Improvements
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Scharton, Terry
2013-01-01
The following conventional force limiting methods currently practiced in deriving force limiting specifications assume one-dimensional translation source and load apparent masses: Simple TDOF model; Semi-empirical force limits; Apparent mass, etc.; Impedance method. Uncorrelated motion of the mounting points for components mounted on panels and correlated, but out-of-phase, motions of the support structures are important and should be considered in deriving force limiting specifications. In this presentation "rock-n-roll" motions of the components supported by panels, which leads to a more realistic force limiting specifications are discussed.
Imaging flaws in thin metal plates using a magneto-optic device
NASA Technical Reports Server (NTRS)
Wincheski, B.; Prabhu, D. R.; Namkung, M.; Birt, E. A.
1992-01-01
An account is given of the capabilities of the magnetooptic/eddy-current imager (MEI) apparatus in the case of aging aircraft structure-type flaws in 2024-T3 Al alloy plates. Attention is given to images of cyclically grown fatigue cracks from rivetted joints in fabricated lap-joint structures, electrical discharge machining notches, and corrosion spots. Although conventional eddy-current methods could have been used, the speed and ease of MEI's use in these tests is unmatched by such means. Results are displayed in real time as a test piece is scanned, furnishing easily interpreted flaw images.
Heavy doping effects in high efficiency silicon solar cells
NASA Technical Reports Server (NTRS)
Lindholm, F. A.; Neugroschel, A.
1985-01-01
The use of a (silicon)/(heavily doped polysilicon)/(metal) structure to replace the conventional high-low junction (or back-surface-field, BSF) structure of silicon solar cells was examined. The results of an experimental study designed to explore both qualitatively and quantitatively the mechanism of the improved current gain in bipolar transistors with polysilicon emitter contact are presented. A reciprocity theorem is presented that relates the short circuit current of a device, induced by a carrier generation source, to the minority carrier Fermi level in the dark. A method for accurate measurement of minority-carrier diffusion coefficients in silicon is described.
Antimicrobial susceptibility of Helicobacter pylori to six antibiotics currently used in Spain.
Cuadrado-Lavín, Antonio; Salcines-Caviedes, J Ramón; Carrascosa, Miguel F; Mellado, Purificación; Monteagudo, Idoia; Llorca, Javier; Cobo, Marta; Campos, M Rosario; Ayestarán, Blanca; Fernández-Pousa, Antonio; González-Colominas, Elena
2012-01-01
Antibiotic resistance is directly related to the loss of efficacy of currently accepted Helicobacter pylori therapies. Knowledge of the antibiotic susceptibility in a local area can contribute to the design of specific 'à la carte' treatments. The aim of this study was to analyse the susceptibility of H. pylori isolates to six conventional antibiotics currently used in a northern region of Spain. Seventy-one isolates were obtained from gastric biopsies of 76 consecutive adult patients suffering from peptic ulcer disease, dyspepsia or familial gastric cancer and known to be infected with H. pylori by conventional methods. Susceptibility testing was performed for amoxicillin, ciprofloxacin, levofloxacin, clarithromycin, metronidazole and tetracycline using the Etest method. The prevalence rates of resistance were as follows: amoxicillin, 1.4% [95% confidence interval (CI) 0.0-7.6]; clarithromycin, 14.7% (95% CI 7.3-25.4); ciprofloxacin, 14.3% (95% CI 7.1-24.7); levofloxacin, 14.5% (95% CI 7.2-25.0); metronidazole, 45.1% (95% CI 33.2-57.3); and tetracycline, 0% (95% CI 0.0-5.1). Our study confirms an increasing rate of resistance to levofloxacin that equals that of clarithromycin in our healthcare area. This fact may reflect a wide and indiscriminate use of the former antibiotic and could account for a loss of clinical effectiveness of levofloxacin-containing regimens. Moreover, clarithromycin resistance rates remain stable, which could allow us to maintain its use in our area.
Ion beam activation for materials analysis: Methods and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlon, T.W.
1981-04-01
A number of ion beam methods for materials analysis have been developed using Harwell's high voltage accelerators and these are currently being exploited for applications 'in house' and in industry. Ion beam activation is a relatively new area which has exhibited exceptional growth over the last few years. Activation by ion beams to produce a single dominant radioisotope as a surface label (thin layer activation or TLA) is becoming a mature technology offering ever increasing sensitivity for surface loss measurement (currently better than 0.1 ..mu..m or 10/sup -7/ cm/sup 3/ depending on the method of measurement) and remote monitoring ofmore » inaccessible components during studies of wear/erosion/ corrosion/sputtering and the like. With the increasingly established credibility of the method has come the realisation that: (i) more complex and even multiple activation profiles can be used to extract more information on the characteristics of the surface loss process, (ii) that an analogous method can be used even on radiation sensitive materials through the newly established indirect recoil implantation process. (iii) that there is scope for treatment of truly immovable objects through the implantation of fission fragments, (iv) there is vast potential in the area of activation analysis. The current state of development of these methods which greatly extend the scope of conventional TLA will be briefly reviewed. Current applications of these and TLA in industry are discussed.« less
Current perspectives on biomedical waste management: Rules, conventions and treatment technologies.
Capoor, Malini R; Bhowmik, Kumar Tapas
2017-01-01
Unregulated biomedical waste management (BMWM) is a public health problem. This has posed a grave threat to not only human health and safety but also to the environment for the current and future generations. Safe and reliable methods for handling of biomedical waste (BMW) are of paramount importance. Effective BMWM is not only a legal necessity but also a social responsibility. This article reviews the current perspectives on BMWM and rules, conventions and the treatment technologies used worldwide. BMWM should ideally be the subject of a national strategy with dedicated infrastructure, cradle-to-grave legislation, competent regulatory authority and trained personnel. Improving the management of biomedical waste begins with waste minimisation. These standards, norms and rules on BMWM in a country regulate the disposal of various categories of BMW to ensure the safety of the health-care workers, patients, public and environment. Furthermore, developing models for the monitoring of hospital health-care waste practices and research into non-burn eco-friendly sustainable technologies, recycling and polyvinyl chloride-free devices will go in long way for safe carbon environment. Globally, greater research in BMWM is warranted to understand its growing field of public health importance.
Vivek Narayanan, N; Ganesan, Mahesh
2009-01-15
The present work deals with removal of hexavalent chromium from synthetic effluents in a batch stirred electrocoagulation cell with iron-aluminium electrode pair coupled with adsorption using granular activated carbon (GAC). Several working parameters such as pH, current density, adsorbent concentration and operating time were studied in an attempt to achieve higher removal capacity. Results obtained with synthetic wastewater revealed that most effective removal capacities of chromium (VI) could be achieved when the initial pH was near 8. The removal of chromium (VI) during electrocoagulation, is due to the combined effect of chemical precipitation, coprecipitation, sweep coagulation and adsorption. In addition, increasing current density in a range of 6.7-26.7mA/cm2 and operating time from 20 to 100min enhanced the treatment rate to reduce metal ion concentration below admissible legal levels. The addition of GAC as adsorbent resulted in remarkable increase in the removal rate of chromium at lower current densities and operating time, than the conventional electrocoagulation process. The method was found to be highly efficient and relatively fast compared to existing conventional techniques.
NASA Astrophysics Data System (ADS)
Du, X.; Savich, G. R.; Marozas, B. T.; Wicks, G. W.
2017-02-01
The conventional processing of the III-V nBn photodetectors defines mesa devices by etching the contact n-layer and stopping immediately above the barrier, i.e., a shallow etch. This processing enables great suppression of surface leakage currents without having to explore surface passivation techniques. However, devices that are made with this processing scheme are subject to lateral diffusion currents. To address the lateral diffusion current, we compare the effects of different processing approaches and epitaxial structures of nBn detectors. The conventional solution for eliminating lateral diffusion current, a deep etch through the barrier and the absorber, creates increased dark currents and an increased device failure rate. To avoid deep etch processing, a new device structure is proposed, the inverted-nBn structure. By comparing with the conventional nBn structure, the results show that the lateral diffusion current is effectively eliminated in the inverted-nBn structure without elevating the dark currents.
Sahm, Maik; Otto, Ronny; Pross, Matthias; Mantke, Rene
2018-06-25
Approximately 90,000 thyroid operations are performed in Germany each year. Minimally invasive video-assisted thyroidectomy (MIVAT) accounts for 5 - 10% of these operations. There are few data that compare long-term cosmetic results after MIVAT to those after conventional surgery. Current systematic reviews show no advantage for MIVAT. The goal of this study was to analyse the long-term postoperative results in both procedures and the evaluation of relevant factors. The analysis of the long-term results is based on follow-up examinations using a validated method for scar appraisal (POSAS). Cohort analysis was performed on MIVAT operations in our hospital between 2004 and 2011 and conventional thyroid operations in 2011. Follow-up examination data were analysed from 117 patients from the MIVAT group and 102 patients from the conventional group. The follow-up examination was performed with a mean of 23.1 vs. 23.6 months postoperatively (MIVAT vs. conventional). The Friedman Test showed that scar pigmentation (mean rank 4.79) and scar surface structure (mean rank 3.62) were the deciding factors influencing the long-term cosmetic results. Both MIVAT and conventional surgery gave very good long-term cosmetic results. From the patient's perspective, there is no significant advantage with conventional surgery. The evaluation of the long-term results largely depends on factors such as scar pigmentation and surface structure that can only be influenced to a limited extent by the surgical procedure. Georg Thieme Verlag KG Stuttgart · New York.
Parallel imaging of knee cartilage at 3 Tesla.
Zuo, Jin; Li, Xiaojuan; Banerjee, Suchandrima; Han, Eric; Majumdar, Sharmila
2007-10-01
To evaluate the feasibility and reproducibility of quantitative cartilage imaging with parallel imaging at 3T and to determine the impact of the acceleration factor (AF) on morphological and relaxation measurements. An eight-channel phased-array knee coil was employed for conventional and parallel imaging on a 3T scanner. The imaging protocol consisted of a T2-weighted fast spin echo (FSE), a 3D-spoiled gradient echo (SPGR), a custom 3D-SPGR T1rho, and a 3D-SPGR T2 sequence. Parallel imaging was performed with an array spatial sensitivity technique (ASSET). The left knees of six healthy volunteers were scanned with both conventional and parallel imaging (AF = 2). Morphological parameters and relaxation maps from parallel imaging methods (AF = 2) showed comparable results with conventional method. The intraclass correlation coefficient (ICC) of the two methods for cartilage volume, mean cartilage thickness, T1rho, and T2 were 0.999, 0.977, 0.964, and 0.969, respectively, while demonstrating excellent reproducibility. No significant measurement differences were found when AF reached 3 despite the low signal-to-noise ratio (SNR). The study demonstrated that parallel imaging can be applied to current knee cartilage quantification at AF = 2 without degrading measurement accuracy with good reproducibility while effectively reducing scan time. Shorter imaging times can be achieved with higher AF at the cost of SNR. (c) 2007 Wiley-Liss, Inc.
Detection of heavy metal by paper-based microfluidics.
Lin, Yang; Gritsenko, Dmitry; Feng, Shaolong; Teh, Yi Chen; Lu, Xiaonan; Xu, Jie
2016-09-15
Heavy metal pollution has shown great threat to the environment and public health worldwide. Current methods for the detection of heavy metals require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Various microfluidic paper-based analytical devices have been developed recently as simple, cheap and disposable alternatives to conventional ones for on-site detection of heavy metals. In this review, we first summarize current development of paper-based analytical devices and discuss the selection of paper substrates, methods of device fabrication, and relevant theories in these devices. We then compare and categorize recent reports on detection of heavy metals using paper-based microfluidic devices on the basis of various detection mechanisms, such as colorimetric, fluorescent, and electrochemical methods. To finalize, the future development and trend in this field are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
[Current macro-diagnostic trends of forensic medicine in the Czech Republic].
Frišhons, Jan; Kučerová, Štěpánka; Jurda, Mikoláš; Sokol, Miloš; Vojtíšek, Tomáš; Hejna, Petr
2017-01-01
Over the last few years, advanced diagnostic methods have penetrated in the realm of forensic medicine in addition to standard autopsy techniques supported by traditional X-ray examination and macro-diagnostic laboratory tests. Despite the progress of imaging methods, the conventional autopsy has remained basic and essential diagnostic tool in forensic medicine. Postmortem computed tomography and magnetic resonance imaging are far the most progressive modern radio diagnostic methods setting the current trend of virtual autopsies all over the world. Up to now, only two institutes of forensic medicine have available postmortem computed tomography for routine diagnostic purposes in the Czech Republic. Postmortem magnetic resonance is currently unattainable for routine diagnostic use and was employed only for experimental purposes. Photogrammetry is digital method focused primarily on body surface imaging. Recently, the most fruitful results have been yielded from the interdisciplinary cooperation between forensic medicine and forensic anthropology with the implementation of body scanning techniques and 3D printing. Non-invasive and mini-invasive investigative methods such as postmortem sonography and postmortem endoscopy was unsystematically tested for diagnostic performance with good outcomes despite of limitations of these methods in postmortem application. Other futuristic methods, such as the use of a drone to inspect the crime scene are still experimental tools. The authors of the article present a basic overview of the both routinely and experimentally used investigative methods and current macro-diagnostic trends of the forensic medicine in the Czech Republic.
Development of 3D pseudo pin-by-pin calculation methodology in ANC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B.; Mayhue, L.; Huria, H.
2012-07-01
Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000{sup R} plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. Themore » mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)« less
NASA Technical Reports Server (NTRS)
Molino, J. A.
1982-01-01
A review of 34 studies indicates that several factors or variables might be important in providing a psychoacoustic foundation for measurements of the noise from helicopters. These factors are phase relations, tail rotor noise, repetition rate, crest level, and generic differences between conventional aircraft and helicopters. Particular attention was given to the impulsive noise known as blade slap. Analysis of the evidence for and against each factor reveals that, for the present state of scientific knowledge, none of these factors should be regarded as the basis for a significant noise measurement correction due to impulsive blade slap. The current method of measuring effective perceived noise level for conventional aircraft appears to be adequate for measuring helicopter noise as well.
The multiple decrement life table: a unifying framework for cause-of-death analysis in ecology.
Carey, James R
1989-01-01
The multiple decrement life table is used widely in the human actuarial literature and provides statistical expressions for mortality in three different forms: i) the life table from all causes-of-death combined; ii) the life table disaggregated into selected cause-of-death categories; and iii) the life table with particular causes and combinations of causes eliminated. The purpose of this paper is to introduce the multiple decrement life table to the ecological literature by applying the methods to published death-by-cause information on Rhagoletis pomonella. Interrelations between the current approach and conventional tools used in basic and applied ecology are discussed including the conventional life table, Key Factor Analysis and Abbott's Correction used in toxicological bioassay.
Parikh, Harshal R; De, Anuradha S; Baveja, Sujata M
2012-07-01
Physicians and microbiologists have long recognized that the presence of living microorganisms in the blood of a patient carries with it considerable morbidity and mortality. Hence, blood cultures have become critically important and frequently performed test in clinical microbiology laboratories for diagnosis of sepsis. To compare the conventional blood culture method with the lysis centrifugation method in cases of sepsis. Two hundred nonduplicate blood cultures from cases of sepsis were analyzed using two blood culture methods concurrently for recovery of bacteria from patients diagnosed clinically with sepsis - the conventional blood culture method using trypticase soy broth and the lysis centrifugation method using saponin by centrifuging at 3000 g for 30 minutes. Overall bacteria recovered from 200 blood cultures were 17.5%. The conventional blood culture method had a higher yield of organisms, especially Gram positive cocci. The lysis centrifugation method was comparable with the former method with respect to Gram negative bacilli. The sensitivity of lysis centrifugation method in comparison to conventional blood culture method was 49.75% in this study, specificity was 98.21% and diagnostic accuracy was 89.5%. In almost every instance, the time required for detection of the growth was earlier by lysis centrifugation method, which was statistically significant. Contamination by lysis centrifugation was minimal, while that by conventional method was high. Time to growth by the lysis centrifugation method was highly significant (P value 0.000) as compared to time to growth by the conventional blood culture method. For the diagnosis of sepsis, combination of the lysis centrifugation method and the conventional blood culture method with trypticase soy broth or biphasic media is advocable, in order to achieve faster recovery and a better yield of microorganisms.
Wong, M S; Cheng, J C Y; Wong, M W; So, S F
2005-04-01
A study was conducted to compare the CAD/CAM method with the conventional manual method in fabrication of spinal orthoses for patients with adolescent idiopathic scoliosis. Ten subjects were recruited for this study. Efficiency analyses of the two methods were performed from cast filling/ digitization process to completion of cast/image rectification. The dimensional changes of the casts/ models rectified by the two cast rectification methods were also investigated. The results demonstrated that the CAD/CAM method was faster than the conventional manual method in the studied processes. The mean rectification time of the CAD/CAM method was shorter than that of the conventional manual method by 108.3 min (63.5%). This indicated that the CAD/CAM method took about 1/3 of the time of the conventional manual to finish cast rectification. In the comparison of cast/image dimensional differences between the conventional manual method and the CAD/CAM method, five major dimensions in each of the five rectified regions namely the axilla, thoracic, lumbar, abdominal and pelvic regions were involved. There were no significant dimensional differences (p < 0.05) in 19 out of the 25 studied dimensions. This study demonstrated that the CAD/CAM system could save the time in the rectification process and offer a relatively high resemblance in cast rectification as compared with the conventional manual method.
Health need and the use of alternative medicine among adults who do not use conventional medicine
2010-01-01
Background We hypothesize that a substantial portion of individuals who forgo conventional care in a given year turn to some form of alternative medicine. This study also examines whether individuals who use only alternative medicine will differ substantially in health and sociodemographic status from individuals using neither alternative medicine nor conventional care in a given year. To identify those factors that predict alternative medicine use in those not using conventional care, we employed the socio-behavioral model of healthcare utilization. Methods The current study is a cross-sectional regression analysis using data from the 2002 National Health Interview Survey. Data were collected in-person from 31,044 adults throughout the 50 states and the District of Columbia. Results 19.3% of adults (38.3 million) did not use conventional care in a 12 month period, although 39.5% of these individuals (14.7 million) reported having one or more problems with their health. Of those not using conventional care, 24.8% (9.5 million) used alternative medicine. Users of alternative medicine had more health needs and were more likely to delay conventional care because of both cost and non-cost factors compared to those not using alternative medicine. While individual predisposing factors (gender, education) were positively associated with alternative medicine use, enabling factors (poverty status, insurance coverage) were not. Conclusions We found that a quarter of individuals who forgo conventional care in a given year turn towards alternative medicine. Our study suggests that the potential determinants of using only alternative medicine are multifactorial. Future research is needed to examine the decision process behind an individual's choice to use alternative medicine but not conventional medicine and the clinical outcomes of this choice. PMID:20670418
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santi, C. de; Meneghini, M., E-mail: matteo.meneghini@dei.unipd.it; Meneghesso, G.
2014-08-18
With this paper we propose a test method for evaluating the dynamic performance of GaN-based transistors, namely, gate-frequency sweep measurements: the effectiveness of the method is verified by characterizing the dynamic performance of Gate Injection Transistors. We demonstrate that this method can provide an effective description of the impact of traps on the transient performance of Heterojunction Field Effect Transistors, and information on the properties (activation energy and cross section) of the related defects. Moreover, we discuss the relation between the results obtained by gate-frequency sweep measurements and those collected by conventional drain current transients and double pulse characterization.
A Carrier Estimation Method Based on MLE and KF for Weak GNSS Signals.
Zhang, Hongyang; Xu, Luping; Yan, Bo; Zhang, Hua; Luo, Liyan
2017-06-22
Maximum likelihood estimation (MLE) has been researched for some acquisition and tracking applications of global navigation satellite system (GNSS) receivers and shows high performance. However, all current methods are derived and operated based on the sampling data, which results in a large computation burden. This paper proposes a low-complexity MLE carrier tracking loop for weak GNSS signals which processes the coherent integration results instead of the sampling data. First, the cost function of the MLE of signal parameters such as signal amplitude, carrier phase, and Doppler frequency are used to derive a MLE discriminator function. The optimal value of the cost function is searched by an efficient Levenberg-Marquardt (LM) method iteratively. Its performance including Cramér-Rao bound (CRB), dynamic characteristics and computation burden are analyzed by numerical techniques. Second, an adaptive Kalman filter is designed for the MLE discriminator to obtain smooth estimates of carrier phase and frequency. The performance of the proposed loop, in terms of sensitivity, accuracy and bit error rate, is compared with conventional methods by Monte Carlo (MC) simulations both in pedestrian-level and vehicle-level dynamic circumstances. Finally, an optimal loop which combines the proposed method and conventional method is designed to achieve the optimal performance both in weak and strong signal circumstances.
Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga
2018-01-01
In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.
Kim, E J; Amezcua, C Martinez; Utterback, P L; Parsons, C M
2008-04-01
There is currently much ongoing research and interest for developing new processing technologies to produce corn distillers dried grains with solubles (DDGS). The current study evaluated a high protein (HP) distillers dried grains (DDG) and a dehydrated corn germ, which are products that can be produced by a modified dry milling process. Two chick experiments were conducted to determine the P bioavailability based on tibia ash. In addition, precision-fed rooster assays were conducted to determine TME(n) and amino acid digestibility. In the first chick assay, a P-deficient cornstarch-dextrose-soybean meal basal diet containing 0.10 to 0.13% nonphytate P was supplemented with 0.0, 0.05, and 0.10% P from KH(2)PO(4) or 7 and 14% conventional DDGS, HP DDG, and corn germ. In the second experiment, the P-deficient basal was supplemented with 7 and 14% conventional DDGS and 12.5 and 25% HP DDG. New Hampshire x Columbian female chicks were fed the experimental diets from 9 to 22 d posthatch, and bioavailability of P was estimated using the slope-ratio method where tibia ash was regressed on P intake. The total P content (90% DM basis) of the conventional DDGS, HP DDG, and corn germ were 0.76, 0.33, and 1.29%, respectively. Bioavailabilities of the P in conventional DDGS, HP DDG, and corn germ relative to KH(2)PO(4) were found to be 60, 56, and 25%, respectively. The TME(n) in conventional roosters was found to be significantly reduced for HP DDG and increased for the corn germ when compared with the conventional DDGS. The protein content (90% DM basis) of the HP DDG and corn germ was 33 and 14%, respectively, and the total lysine as a % of CP was approximately 2 times greater for the corn germ than for the HP DDG. Amino acid digestibilities in cecectomized roosters were consistently higher for the corn germ than for the HP DDG, which was similar to conventional DDGS.
NASA Astrophysics Data System (ADS)
Wang, Andong; Li, Xiaowei; Qu, Lianti; Lu, Yongfeng; Jiang, Lan
2017-03-01
Metal nanowire fabrication has drawn tremendous attention in recent years due to its wide application in electronics, optoelectronics, and plasmonics. However, conventional laser fabrication technologies are limited by diffraction limit thus the fabrication resolution cannot meet the increasingly high demand of modern devices. Herein we report on a novel method for high-resolution high-quality metal nanowire fabrication by using Hermite-Gaussian beam to ablate metal thin film. The nanowire is formed due to the intensity valley in the center of the laser beam while the surrounding film is ablated. Arbitrary nanowire can be generated on the substrate by dynamically adjusting the orientation of the intensity valley. This method shows obvious advantages compared to conventional methods. First, the minimum nanowire has a width of 60 nm (≍1/13 of the laser wavelength), which is much smaller than the diffraction limit. The high resolution is achieved by combining the ultrashort nature of the femtosecond laser and the low thermal conductivity of the thin film. In addition, the fabricated nanowires have good inside qualities. No inner nanopores and particle intervals are generated inside the nanowire, thus endowing the nanowire with good electronic characteristics: the conductivity of the nanowires is as high as 1.2×107 S/m (≍1/4 of buck material), and the maximum current density is up to 1.66×108 A/m2. Last, the nanowire has a good adhesion to the substrates, which can withstand ultrasonic bath for a long time. These advantages make our method a good approach for high-resolution high-quality nanowire fabrication as a complementary method to conventional lithography methods.
High-precision Non-Contact Measurement of Creep of Ultra-High Temperature Materials for Aerospace
NASA Technical Reports Server (NTRS)
Rogers, Jan R.; Hyers, Robert
2008-01-01
For high-temperature applications (greater than 2,000 C) such as solid rocket motors, hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines, creep becomes one of the most important design factors to be considered. Conventional creep-testing methods, where the specimen and test apparatus are in contact with each other, are limited to temperatures approximately 1,700 C. Development of alloys for higher-temperature applications is limited by the availability of testing methods at temperatures above 2000 C. Development of alloys for applications requiring a long service life at temperatures as low as 1500 C, such as the next generation of jet turbine superalloys, is limited by the difficulty of accelerated testing at temperatures above 1700 C. For these reasons, a new, non-contact creep-measurement technique is needed for higher temperature applications. A new non-contact method for creep measurements of ultra-high-temperature metals and ceramics has been developed and validated. Using the electrostatic levitation (ESL) facility at NASA Marshall Space Flight Center, a spherical sample is rotated quickly enough to cause creep deformation due to centrifugal acceleration. Very accurate measurement of the deformed shape through digital image analysis allows the stress exponent n to be determined very precisely from a single test, rather than from numerous conventional tests. Validation tests on single-crystal niobium spheres showed excellent agreement with conventional tests at 1985 C; however the non-contact method provides much greater precision while using only about 40 milligrams of material. This method is being applied to materials including metals and ceramics for non-eroding throats in solid rockets and next-generation superalloys for turbine engines. Recent advances in the method and the current state of these new measurements will be presented.
Analysis of International Space Station Materials on MISSE-3 and MISSE-4
NASA Technical Reports Server (NTRS)
Finckenor, Miria M.; Golden, Johnny L.; O'Rourke, Mary Jane
2008-01-01
For high-temperature applications (> 2,000 C) such as solid rocket motors, hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines, creep becomes one of the most important design factors to be considered. Conventional creep-testing methods, where the specimen and test apparatus are in contact with each other, are limited to temperatures 1,700 deg. C. Development of alloys for higher-temperature applications is limited by the availability of testing methods at temperatures above 2000 C. Development of alloys for applications requiring a long service life at temperatures as low as 1500 C, such as the next generation of jet turbine superalloys, is limited by the difficulty of accelerated testing at temperatures above 1700 0c. For these reasons, a new, non-contact creep-measurement technique is needed for higher temperature applications. A new non-contact method for creep measurements of ultra-high-temperature metals and ceramics has been developed and validated. Using the electrostatic levitation (ESL) facility at NASA Marshall Space Flight Center, a spherical sample is rotated quickly enough to cause creep deformation due to centrifugal acceleration. Very accurate measurement of the deformed shape through digital image analysis allows the stress exponent n to be determined very precisely from a single test, rather than from numerous conventional tests. Validation tests on single-crystal niobium spheres showed excellent agreement with conventional tests at 1985 C; however the non-contact method provides much greater precision while using only about 40 milligrams of material. This method is being applied to materials including metals and ceramics for noneroding throats in solid rockets and next-generation superalloys for turbine engines. Recent advances in the method and the current state of these new measurements will be presented.
Tuna, Süleyman Hakan; Özçiçek Pekmez, Nuran; Kürkçüoğlu, Işin
2015-11-01
The effects of fabrication methods on the corrosion resistance of frameworks produced with Co-Cr alloys are not clear. The purpose of this in vitro study was to evaluate the electrochemical corrosion resistance of Co-Cr alloy specimens that were fabricated by conventional casting, milling, and laser sintering. The specimens fabricated with 3 different methods were investigated by potentiodynamic tests and electrochemical impedance spectroscopy in an artificial saliva. Ions released into the artificial saliva were estimated with inductively coupled plasma-mass spectrometry, and the results were statistically analyzed. The specimen surfaces were investigated with scanning electron microscopy before and after the tests. In terms of corrosion current and Rct properties, statistically significant differences were found both among the means of the methods and among the means of the material groups (P<.05). With regard to ions released, a statistically significant difference was found among the material groups (P<.05); however, no difference was found among the methods. Scanning electron microscopic imaging revealed that the specimens produced by conventional casting were affected to a greater extent by etching and electrochemical corrosion than those produced by milling and laser sintering. The corrosion resistance of a Co-Cr alloy specimens fabricated by milling or laser sintering was greater than that of the conventionally cast alloy specimens. The Co-Cr specimens produced by the same method also differed from one another in terms of corrosion resistance. These differences may be related to the variations in the alloy compositions. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Jitian, Simion; White, Samuel R; Yang, H-H Wendy; Weisz, Adrian
2014-01-10
Specifications in the U.S. Code of Federal Regulations for the color additive D&C Green No. 8 (Colour Index No. 59040) limit the levels of the subsidiary colors 1,3,6-pyrenetrisulfonic acid trisodium salt (P3S) and 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (P4S). The present paper describes a comparative study of two possible methods to replace the currently used multi-step TLC/spectrophotometry method of separating and quantifying the minor components P3S and P4S in G8. One of the new approaches uses conventional high-performance liquid chromatography (HPLC) and the other, derivative spectrophotometry. While the derivative spectrophotometric method was shown to be inadequate for the analysis of minor components overwhelmed by components of much higher concentration, the HPLC method was proven highly effective. The closely related, very polar compounds P3S and P4S were separated by the new HPLC method in less than 4 min using a conventional HPLC instrument. P3S and P4S were quantified by using five-point calibration curves with data points that ranged from 0.45 to 7.63% and from 0.13 to 1.82%, by weight, for P3S and P4S, respectively. The HPLC method was applied to the analysis of test portions from 20 batches of D&C Green No. 8 submitted to the U.S. Food and Drug Administration for certification. Published by Elsevier B.V.
Breast EIT using a new projected image reconstruction method with multi-frequency measurements.
Lee, Eunjung; Ts, Munkh-Erdene; Seo, Jin Keun; Woo, Eung Je
2012-05-01
We propose a new method to produce admittivity images of the breast for the diagnosis of breast cancer using electrical impedance tomography(EIT). Considering the anatomical structure of the breast, we designed an electrode configuration where current-injection and voltage-sensing electrodes are separated in such a way that internal current pathways are approximately along the tangential direction of an array of voltage-sensing electrodes. Unlike conventional EIT imaging methods where the number of injected currents is maximized to increase the total amount of measured data, current is injected only twice between two pairs of current-injection electrodes attached along the circumferential side of the breast. For each current injection, the induced voltages are measured from the front surface of the breast using as many voltage-sensing electrodes as possible. Although this electrode configurational lows us to measure induced voltages only on the front surface of the breast,they are more sensitive to an anomaly inside the breast since such an injected current tends to produce a more uniform internal current density distribution. Furthermore, the sensitivity of a measured boundary voltage between two equipotential lines on the front surface of the breast is improved since those equipotential lines are perpendicular to the primary direction of internal current streamlines. One should note that this novel data collection method is different from those of other frontal plane techniques such as the x-ray projection and T-scan imaging methods because we do not get any data on the plane that is perpendicular to the current flow. To reconstruct admittivity images using two measured voltage data sets, a new projected image reconstruction algorithm is developed. Numerical simulations demonstrate the frequency-difference EIT imaging of the breast. The results show that the new method is promising to accurately detect and localize small anomalies inside the breast.
Whole genome sequencing in the prevention and control of Staphylococcus aureus infection.
Price, J R; Didelot, X; Crook, D W; Llewelyn, M J; Paul, J
2013-01-01
Staphylococcus aureus remains a leading cause of hospital-acquired infection but weaknesses inherent in currently available typing methods impede effective infection prevention and control. The high resolution offered by whole genome sequencing has the potential to revolutionise our understanding and management of S. aureus infection. To outline the practicalities of whole genome sequencing and discuss how it might shape future infection control practice. We review conventional typing methods and compare these with the potential offered by whole genome sequencing. In contrast with conventional methods, whole genome sequencing discriminates down to single nucleotide differences and allows accurate characterisation of transmission events and outbreaks and additionally provides information about the genetic basis of phenotypic characteristics, including antibiotic susceptibility and virulence. However, translating its potential into routine practice will depend on affordability, acceptable turnaround times and on creating a reliable standardised bioinformatic infrastructure. Whole genome sequencing has the potential to provide a universal test that facilitates outbreak investigation, enables the detection of emerging strains and predicts their clinical importance. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Numerical Simulation of Tethered Underwater Kites for Power Generation
NASA Astrophysics Data System (ADS)
Ghasemi, Amirmahdi; Olinger, David; Tryggvason, Gretar
2015-11-01
An emerging renewable energy technology, tethered undersea kites (TUSK), which is used to extract hydrokinetic energy from ocean and tidal currents, is studied. TUSK systems consist of a rigid-winged ``kite,'' or glider, moving in an ocean current which is connected by tethers to a floating buoy on the ocean surface. The TUSK kite is a current speed enhancement device since the kite can move in high-speed, cross-current motion at 4-6 times the current velocity, thus producing more power than conventional marine turbines. A computational simulation is developed to simulate the dynamic motion of an underwater kite and extendable tether. A two-step projection method within a finite volume formulation, along with an Open MP acceleration method, is employed to solve the Navier-Stokes equations. An immersed boundary method is incorporated to model the fluid-structure interaction of the rigid kite (with NACA 0012 airfoil shape in 2D and NACA 0021 airfoil shape in 3D simulations) and the fluid flow. PID control methods are used to adjust the kite angle of attack during power (tether reel-out) and retraction (reel-in) phases. Two baseline simulations (for kite motions in two and three dimensions) are studied, and system power output, flow field vorticity, tether tension, and hydrodynamic coefficients (lift and drag) for the kite are determined. The simulated power output shows good agreement with established theoretical results for a kite moving in two-dimensions.
Wang, Fang; Ouyang, Guang; Zhou, Changsong; Wang, Suiping
2015-01-01
A number of studies have explored the time course of Chinese semantic and syntactic processing. However, whether syntactic processing occurs earlier than semantics during Chinese sentence reading is still under debate. To further explore this issue, an event-related potentials (ERPs) experiment was conducted on 21 native Chinese speakers who read individually-presented Chinese simple sentences (NP1+VP+NP2) word-by-word for comprehension and made semantic plausibility judgments. The transitivity of the verbs was manipulated to form three types of stimuli: congruent sentences (CON), sentences with a semantically violated NP2 following a transitive verb (semantic violation, SEM), and sentences with a semantically violated NP2 following an intransitive verb (combined semantic and syntactic violation, SEM+SYN). The ERPs evoked from the target NP2 were analyzed by using the Residue Iteration Decomposition (RIDE) method to reconstruct the ERP waveform blurred by trial-to-trial variability, as well as by using the conventional ERP method based on stimulus-locked averaging. The conventional ERP analysis showed that, compared with the critical words in CON, those in SEM and SEM+SYN elicited an N400-P600 biphasic pattern. The N400 effects in both violation conditions were of similar size and distribution, but the P600 in SEM+SYN was bigger than that in SEM. Compared with the conventional ERP analysis, RIDE analysis revealed a larger N400 effect and an earlier P600 effect (in the time window of 500-800 ms instead of 570-810ms). Overall, the combination of conventional ERP analysis and the RIDE method for compensating for trial-to-trial variability confirmed the non-significant difference between SEM and SEM+SYN in the earlier N400 time window. Converging with previous findings on other Chinese structures, the current study provides further precise evidence that syntactic processing in Chinese does not occur earlier than semantic processing.
Clinical applications of cell-based approaches in alveolar bone augmentation: a systematic review.
Shanbhag, Siddharth; Shanbhag, Vivek
2015-01-01
Cell-based approaches, utilizing adult mesenchymal stem cells (MSCs), are reported to overcome the limitations of conventional bone augmentation procedures. The study aims to systematically review the available evidence on the characteristics and clinical effectiveness of cell-based ridge augmentation, socket preservation, and sinus-floor augmentation, compared to current evidence-based methods in human adult patients. MEDLINE, EMBASE, and CENTRAL databases were searched for related literature. Both observational and experimental studies reporting outcomes of "tissue engineered" or "cell-based" augmentation in ≥5 adult patients alone, or in comparison with non-cell-based (conventional) augmentation methods, were eligible for inclusion. Primary outcome was histomorphometric analysis of new bone formation. Effectiveness of cell-based augmentation was evaluated based on outcomes of controlled studies. Twenty-seven eligible studies were identified. Of these, 15 included a control group (8 randomized controlled trials [RCTs]), and were judged to be at a moderate-to-high risk of bias. Most studies reported the combined use of cultured autologous MSCs with an osteoconductive bone substitute (BS) scaffold. Iliac bone marrow and mandibular periosteum were frequently reported sources of MSCs. In vitro culture of MSCs took between 12 days and 1.5 months. A range of autogenous, allogeneic, xenogeneic, and alloplastic scaffolds was identified. Bovine bone mineral scaffold was frequently reported with favorable outcomes, while polylactic-polyglycolic acid copolymer (PLGA) scaffold resulted in graft failure in three studies. The combination of MSCs and BS resulted in outcomes similar to autogenous bone (AB) and BS. Three RCTs and one controlled trial reported significantly greater bone formation in cell-based than conventionally grafted sites after 3 to 8 months. Based on limited controlled evidence at a moderate-to-high risk of bias, cell-based approaches are comparable, if not superior, to current evidence-based bone grafting methods, with a significant advantage of avoiding AB harvesting. Future clinical trials should additionally evaluate patient-based outcomes and the time-/cost-effectiveness of these approaches. © 2013 Wiley Periodicals, Inc.
Novel optical strategies for biodetection
NASA Astrophysics Data System (ADS)
Sakamuri, Rama M.; Wolfenden, Mark S.; Anderson, Aaron S.; Swanson, Basil I.; Schmidt, Jurgen S.; Mukundan, Harshini
2013-09-01
Although bio-detection strategies have significantly evolved in the past decade, they still suffer from many disadvantages. For one, current approaches still require confirmation of pathogen viability by culture, which is the `gold-standard' method, and can take several days to result. Second, current methods typically target protein and nucleic acid signatures and cannot be applied to other biochemical categories of biomarkers (e.g.; lipidated sugars). Lipidated sugars (e.g.; lipopolysaccharide, lipoarabinomannan) are bacterial virulence factors that are significant to pathogenicity. Herein, we present two different optical strategies for biodetection to address these two limitations. We have exploited bacterial iron sequestration mechanisms to develop a simple, specific assay for the selective detection of viable bacteria, without the need for culture. We are currently working on the use of this technology for the differential detection of two different bacteria, using siderophores. Second, we have developed a novel strategy termed `membrane insertion' for the detection of amphiphilic biomarkers (e.g. lipidated glycans) that cannot be detected by conventional approaches. We have extended this technology to the detection of small molecule amphiphilic virulence factors, such as phenolic glycolipid-1 from leprosy, which could not be directly detected before. Together, these strategies address two critical limitations in current biodetection approaches. We are currently working on the optimization of these methods, and their extension to real-world clinical samples.
Improving colorectal cancer screening: fact and fantasy
NASA Astrophysics Data System (ADS)
Van Dam, Jacques
2008-02-01
Premalignant diseases of the gastrointestinal tract, such as Barrett's esophagus, long-standing ulcerative colitis, and adenomatous polyps, have a significantly increased risk for development of adenocarcinoma, most often through an intermediate stage of dysplasia. Adenocarcinoma of the colon is the second most common cancer in the United States. Because patients with colorectal cancer often present with advanced disease, the outcomes are associated with significant morbidity and mortality. Effective methods of early detection are essential. As non-polypoid dysplasia is not visible using conventional endoscopy, surveillance of patients with Barrett's esophagus and ulcerative colitis is performed via a system in which multiple random biopsies are obtained at prescribed intervals. Sampling error and missed diagnoses occur frequently and render current screening methods inadequate. Also, the examination of a tissue biopsy is time consuming and costly, and significant intra- and inter-observer variation may occur. The newer methods discussed herein demonstrate the potential to solve these problems by early detection of disease with high sensitivity and specificity. Conventional endoscopy is based on the observation of white light reflected off the tissue surface. Subtle changes in color and shadow reveal structural changes. New developments in optical imaging go beyond white light, exploiting other properties of light. Several promising methods will be discussed at this meeting and shall be briefly discussed below. However, few such imaging modalities have arrived at our clinical practice. Some much more practical methods to improve colorectal cancer screening are currently being evaluated for their clinical impact. These methods seek to overcome limitations other than those of detecting dysplasia not visible under white light endoscopy. The current standard practice of colorectal cancer screening utilizes colonoscopy, an uncomfortable, sometimes difficult medical procedure. Efforts to improve the practice of colonoscopy will be described. Another limitation of the current practice is the inability to detect polypoid neoplasia that is hidden from view under white light imaging by the natural folds that occur within the colon. A device to overcome this limitation will also be described. Efforts to improve colorectal cancer screening (and thereby decrease the death rate of this second leading cause of cancer death in the United States) are progressing in many arenas. The researcher, basic or clinical, should maintain an up to date overview of the field and how each new technological advance is likely to have a role in the screening and early detection of colorectal cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Sokolov, Mikhail A; Nanstad, Randy K
Material fracture toughness in the fully ductile region can be described by a J-integral vs. crack growth resistance curve (J-R curve). As a conventional J-R curve measurement method, the elastic unloading compliance (EUC) method becomes impractical for elevated temperature testing due to relaxation of the material and friction induced back-up shape of the J-R curve. One alternative solution of J-R curve testing applies the Direct Current Potential Drop (DCPD) technique for measuring crack extension. However, besides crack growth, potential drop can also be influenced by plastic deformation, crack tip blunting, etc., and uncertainties exist in the current DCPD methodology especiallymore » in differentiating potential drop due to stable crack growth and due to material deformation. Thus, using DCPD for J-R curve determination remains a challenging task. In this study, a new adjustment procedure for applying DCPD to derive the J-R curve has been developed for conventional fracture toughness specimens, including compact tension, three-point bend, and disk-shaped compact specimens. Data analysis has been performed on Oak Ridge National Laboratory (ORNL) and American Society for Testing and Materials (ASTM) interlaboratory results covering different specimen thicknesses, test temperatures, and materials, to evaluate the applicability of the new DCPD adjustment procedure for J-R curve characterization. After applying the newly-developed procedure, direct comparison between the DCPD method and the normalization method on the same specimens indicated close agreement for the overall J-R curves, as well as the provisional values of fracture toughness near the onset of ductile crack extension, Jq, and of tearing modulus.« less
Cost and detection rate of glaucoma screening with imaging devices in a primary care center
Anton, Alfonso; Fallon, Monica; Cots, Francesc; Sebastian, María A; Morilla-Grasa, Antonio; Mojal, Sergi; Castells, Xavier
2017-01-01
Purpose To analyze the cost and detection rate of a screening program for detecting glaucoma with imaging devices. Materials and methods In this cross-sectional study, a glaucoma screening program was applied in a population-based sample randomly selected from a population of 23,527. Screening targeted the population at risk of glaucoma. Examinations included optic disk tomography (Heidelberg retina tomograph [HRT]), nerve fiber analysis, and tonometry. Subjects who met at least 2 of 3 endpoints (HRT outside normal limits, nerve fiber index ≥30, or tonometry ≥21 mmHg) were referred for glaucoma consultation. The currently established (“conventional”) detection method was evaluated by recording data from primary care and ophthalmic consultations in the same population. The direct costs of screening and conventional detection were calculated by adding the unit costs generated during the diagnostic process. The detection rate of new glaucoma cases was assessed. Results The screening program evaluated 414 subjects; 32 cases were referred for glaucoma consultation, 7 had glaucoma, and 10 had probable glaucoma. The current detection method assessed 677 glaucoma suspects in the population, of whom 29 were diagnosed with glaucoma or probable glaucoma. Glaucoma screening and the conventional detection method had detection rates of 4.1% and 3.1%, respectively, and the cost per case detected was 1,410 and 1,435€, respectively. The cost of screening 1 million inhabitants would be 5.1 million euros and would allow the detection of 4,715 new cases. Conclusion The proposed screening method directed at population at risk allows a detection rate of 4.1% and a cost of 1,410 per case detected. PMID:28243057
Hybrid Technology of Hard Coal Mining from Seams Located at Great Depths
NASA Astrophysics Data System (ADS)
Czaja, Piotr; Kamiński, Paweł; Klich, Jerzy; Tajduś, Antoni
2014-10-01
Learning to control fire changed the life of man considerably. Learning to convert the energy derived from combustion of coal or hydrocarbons into another type of energy, such as steam pressure or electricity, has put him on the path of scientific and technological revolution, stimulating dynamic development. Since the dawn of time, fossil fuels have been serving as the mankind's natural reservoir of energy in an increasingly great capacity. A completely incomprehensible refusal to use fossil fuels causes some local populations, who do not possess a comprehensive knowledge of the subject, to protest and even generate social conflicts as an expression of their dislike for the extraction of minerals. Our times are marked by the search for more efficient ways of utilizing fossil fuels by introducing non-conventional technologies of exploiting conventional energy sources. During apartheid, South Africa demonstrated that cheap coal can easily satisfy total demand for liquid and gaseous fuels. In consideration of current high prices of hydrocarbon media (oil and gas), gasification or liquefaction of coal seems to be the innovative technology convergent with contemporary expectations of both energy producers as well as environmentalists. Known mainly from literature reports, underground coal gasification technologies can be brought down to two basic methods: - shaftless method - drilling, in which the gasified seam is uncovered using boreholes drilled from the surface, - shaft method, in which the existing infrastructure of underground mines is used to uncover the seams. This paper presents a hybrid shaft-drilling approach to the acquisition of primary energy carriers (methane and syngas) from coal seams located at great depths. A major advantage of this method is the fact that the use of conventional coal mining technology requires the seams located at great depths to be placed on the off-balance sheet, while the hybrid method of underground gasification enables them to become a source of additional energy for the economy. It should be noted, however, that the shaft-drilling method cannot be considered as an alternative to conventional methods of coal extraction, but rather as a complementary and cheaper way of utilizing resources located almost beyond the technical capabilities of conventional extraction methods due to the associated natural hazards and high costs of combating them. This article presents a completely different approach to the issue of underground coal gasification. Repurposing of the already fully depreciated mining infrastructure for the gasification process may result in a large value added of synthesis gas production and very positive economic effect.
Janardhanan, Jeshina; Prakash, John Antony Jude; Abraham, Ooriapadickal C; Varghese, George M
2014-05-01
A nested polymerase chain reaction (PCR) targeting the 56-kDa antigen gene is currently the most commonly used molecular technique for confirmation of scrub typhus and genotyping of Orientia tsutsugamushi. In this study, we have compared the commonly used nested PCR (N-PCR) with a single-step conventional PCR (C-PCR) for amplification and genotyping. Eschar samples collected from 24 patients with scrub typhus confirmed by IgM enzyme-linked immunosorbent assay were used for DNA extraction following which amplifications were carried out using nested and C-PCR methods. The amplicons were sequenced and compared to other sequences in the database using BLAST. Conventional PCR showed a high positivity rate of 95.8% compared to the 75% observed using N-PCR. On sequence analysis, the N-PCR amplified region showed more variation among strains than the C-PCR amplified region. The C-PCR, which is more economical, provided faster and better results compared to N-PCR. Copyright © 2014 Elsevier Inc. All rights reserved.
Vascular applications of telepresence surgery: initial feasibility studies in swine.
Bowersox, J C; Shah, A; Jensen, J; Hill, J; Cordts, P R; Green, P S
1996-02-01
Telepresence surgery is a novel technology that will allow procedures to be performed on a patient at locations that are physically remote from the operating surgeon. This new method provides the sensory illusion that the surgeon's hands are in direct contact with the patient. We studied the feasibility of the use of telepresence surgery to perform basic operations in vascular surgery, including tissue dissection, vessel manipulation, and suturing. A prototype telepresence surgery system with bimanual force-reflective manipulators, interchangeable surgical instruments, and stereoscopic video input was used. Arteriotomies created ex vivo in segments of bovine aortae or in vivo in femoral arteries of anesthetized swine were closed with telepresence surgery or by conventional techniques. Time required, technical quality (patency, integrity of suture line), and subjective difficulty were compared for the two methods. All attempted procedures were successfully completed with telepresence surgery. Arteriotomy closures were completed in 192+/-24 sec with conventional techniques and 483+/-118 sec with telepresence surgery, but the precision attained with telepresence surgery was equal to that of conventional techniques. Telepresence surgery was described as intuitive and natural by the surgeons who used the system. Blood-vessel manipulation and suturing with telepresence surgery are feasible. Further instrument development (to increase degrees of freedom) is required to achieve operating times comparable to conventional open surgery, but the system has great potential to extend the expertise of vascular surgeons to locations where specialty care is currently unavailable.
Xu, Junzhong; Li, Ke; Smith, R. Adam; Waterton, John C.; Zhao, Ping; Ding, Zhaohua; Does, Mark D.; Manning, H. Charles; Gore, John C.
2016-01-01
Background Diffusion-weighted MRI (DWI) signal attenuation is often not mono-exponential (i.e. non-Gaussian diffusion) with stronger diffusion weighting. Several non-Gaussian diffusion models have been developed and may provide new information or higher sensitivity compared with the conventional apparent diffusion coefficient (ADC) method. However the relative merits of these models to detect tumor therapeutic response is not fully clear. Methods Conventional ADC, and three widely-used non-Gaussian models, (bi-exponential, stretched exponential, and statistical model), were implemented and compared for assessing SW620 human colon cancer xenografts responding to barasertib, an agent known to induce apoptosis via polyploidy. Bayesian Information Criterion (BIC) was used for model selection among all three non-Gaussian models. Results All of tumor volume, histology, conventional ADC, and three non-Gaussian DWI models could show significant differences between control and treatment groups after four days of treatment. However, only the non-Gaussian models detected significant changes after two days of treatment. For any treatment or control group, over 65.7% of tumor voxels indicate the bi-exponential model is strongly or very strongly preferred. Conclusion Non-Gaussian DWI model-derived biomarkers are capable of detecting tumor earlier chemotherapeutic response of tumors compared with conventional ADC and tumor volume. The bi-exponential model provides better fitting compared with statistical and stretched exponential models for the tumor and treatment models used in the current work. PMID:27919785
Efficient integration method for fictitious domain approaches
NASA Astrophysics Data System (ADS)
Duczek, Sascha; Gabbert, Ulrich
2015-10-01
In the current article, we present an efficient and accurate numerical method for the integration of the system matrices in fictitious domain approaches such as the finite cell method (FCM). In the framework of the FCM, the physical domain is embedded in a geometrically larger domain of simple shape which is discretized using a regular Cartesian grid of cells. Therefore, a spacetree-based adaptive quadrature technique is normally deployed to resolve the geometry of the structure. Depending on the complexity of the structure under investigation this method accounts for most of the computational effort. To reduce the computational costs for computing the system matrices an efficient quadrature scheme based on the divergence theorem (Gauß-Ostrogradsky theorem) is proposed. Using this theorem the dimension of the integral is reduced by one, i.e. instead of solving the integral for the whole domain only its contour needs to be considered. In the current paper, we present the general principles of the integration method and its implementation. The results to several two-dimensional benchmark problems highlight its properties. The efficiency of the proposed method is compared to conventional spacetree-based integration techniques.
NASA Astrophysics Data System (ADS)
Yi, Yong; Chen, Zhengying; Wang, Liming
2018-05-01
Corona-originated discharge of DC transmission lines is the main reason for the radiated electromagnetic interference (EMI) field in the vicinity of transmission lines. A joint time-frequency analysis technique was proposed to extract the radiated EMI current (excitation current) of DC corona based on corona current statistical measurements. A reduced-scale experimental platform was setup to measure the statistical distributions of current waveform parameters of aluminum conductor steel reinforced. Based on the measured results, the peak value, root-mean-square value and average value with 9 kHz and 200 Hz band-with of 0.5 MHz radiated EMI current were calculated by the technique proposed and validated with conventional excitation function method. Radio interference (RI) was calculated based on the radiated EMI current and a wire-to-plate platform was built for the validity of the RI computation results. The reason for the certain deviation between the computations and measurements was detailed analyzed.
Gender-Specific Correlates of Complementary and Alternative Medicine Use for Knee Osteoarthritis
Yang, Shibing; Eaton, Charles B.; McAlindon, Timothy; Lapane, Kate L.
2012-01-01
Abstract Background Knee osteoarthritis (OA) increases healthcare use and cost. Women have higher pain and lower quality of life measures compared to men even after accounting for differences in age, body mass index (BMI), and radiographic OA severity. Our objective was to describe gender-specific correlates of complementary and alternative medicine (CAM) use among persons with radiographically confirmed knee OA. Methods Using data from the Osteoarthritis Initiative, 2,679 women and men with radiographic tibiofemoral OA in at least one knee were identified. Treatment approaches were classified as current CAM therapy (alternative medical systems, mind-body interventions, manipulation and body-based methods, energy therapies, and three types of biologically based therapies) or conventional medication use (over-the-counter or prescription). Gender-specific multivariable logistic regression models identified sociodemographic and clinical/functional correlates of CAM use. Results CAM use, either alone (23.9% women, 21.9% men) or with conventional medications (27.3% women, 19.0% men), was common. Glucosamine use (27.2% women, 28.2% men) and chondroitin sulfate use (24.8% women; 25.7% men) did not differ by gender. Compared to men, women were more likely to report use of mind-body interventions (14.1% vs. 5.7%), topical agents (16.1% vs. 9.5%), and concurrent CAM strategies (18.0% vs. 9.9%). Higher quality of life measures and physical function indices in women were inversely associated with any therapy, and higher pain scores were positively associated with conventional medication use. History of hip replacement was a strong correlate of conventional medication use in women but not in men. Conclusions Women were more likely than men to use CAM alone or concomitantly with conventional medications. PMID:22946630
Light manipulation for organic optoelectronics using bio-inspired moth's eye nanostructures.
Zhou, Lei; Ou, Qing-Dong; Chen, Jing-De; Shen, Su; Tang, Jian-Xin; Li, Yan-Qing; Lee, Shuit-Tong
2014-02-10
Organic-based optoelectronic devices, including light-emitting diodes (OLEDs) and solar cells (OSCs) hold great promise as low-cost and large-area electro-optical devices and renewable energy sources. However, further improvement in efficiency remains a daunting challenge due to limited light extraction or absorption in conventional device architectures. Here we report a universal method of optical manipulation of light by integrating a dual-side bio-inspired moth's eye nanostructure with broadband anti-reflective and quasi-omnidirectional properties. Light out-coupling efficiency of OLEDs with stacked triple emission units is over 2 times that of a conventional device, resulting in drastic increase in external quantum efficiency and current efficiency to 119.7% and 366 cd A(-1) without introducing spectral distortion and directionality. Similarly, the light in-coupling efficiency of OSCs is increased 20%, yielding an enhanced power conversion efficiency of 9.33%. We anticipate this method would offer a convenient and scalable way for inexpensive and high-efficiency organic optoelectronic designs.
Quantifying Cancer Risk from Radiation.
Keil, Alexander P; Richardson, David B
2017-12-06
Complex statistical models fitted to data from studies of atomic bomb survivors are used to estimate the human health effects of ionizing radiation exposures. We describe and illustrate an approach to estimate population risks from ionizing radiation exposure that relaxes many assumptions about radiation-related mortality. The approach draws on developments in methods for causal inference. The results offer a different way to quantify radiation's effects and show that conventional estimates of the population burden of excess cancer at high radiation doses are driven strongly by projecting outside the range of current data. Summary results obtained using the proposed approach are similar in magnitude to those obtained using conventional methods, although estimates of radiation-related excess cancers differ for many age, sex, and dose groups. At low doses relevant to typical exposures, the strength of evidence in data is surprisingly weak. Statements regarding human health effects at low doses rely strongly on the use of modeling assumptions. © 2017 Society for Risk Analysis.
Koedrith, Preeyaporn; Thasiphu, Thalisa; Weon, Jong-Il; Boonprasert, Rattana; Tuitemwong, Kooranee; Tuitemwong, Pravate
2015-01-01
Of global concern, environmental pollution adversely affects human health and socioeconomic development. The presence of environmental contaminants, especially bacterial, viral, and parasitic pathogens and their toxins as well as chemical substances, poses serious public health concerns. Nanoparticle-based biosensors are considered as potential tools for rapid, specific, and highly sensitive detection of the analyte of interest (both biotic and abiotic contaminants). In particular, there are several limitations of conventional detection methods for water-borne pathogens due to low concentrations and interference with various enzymatic inhibitors in the environmental samples. The increase of cells to detection levels requires long incubation time. This review describes current state of biosensor nanotechnology, the advantage over conventional detection methods, and the challenges due to testing of environmental samples. The major approach is to use nanoparticles as signal reporter to increase output rather than spending time to increase cell concentrations. Trends in future development of novel detection devices and their advantages over other environmental monitoring methodologies are also discussed. PMID:25884032
NASA Astrophysics Data System (ADS)
Birk, Udo; Szczurek, Aleksander; Cremer, Christoph
2017-12-01
Current approaches to overcome the conventional limit of the resolution potential of light microscopy (of about 200 nm for visible light), often suffer from non-linear effects, which render the quantification of the image intensities in the reconstructions difficult, and also affect the quantification of the biological structure under investigation. As an attempt to face these difficulties, we discuss a particular method of localization microscopy which is based on photostable fluorescent dyes. The proposed method can potentially be implemented as a fast alternative for quantitative localization microscopy, circumventing the need for the acquisition of thousands of image frames and complex, highly dye-specific imaging buffers. Although the need for calibration remains in order to extract quantitative data (such as the number of emitters), multispectral approaches are largely facilitated due to the much less stringent requirements on imaging buffers. Furthermore, multispectral acquisitions can be readily obtained using commercial instrumentation such as e.g. the conventional confocal laser scanning microscope.
Wu, Qifang; Xie, Lijuan; Xu, Huirong
2018-06-30
Nuts and dried fruits contain rich nutrients and are thus highly vulnerable to contamination with toxigenic fungi and aflatoxins because of poor weather, processing and storage conditions. Imaging and spectroscopic techniques have proven to be potential alternative tools to wet chemistry methods for efficient and non-destructive determination of contamination with fungi and toxins. Thus, this review provides an overview of the current developments and applications in frequently used food safety testing techniques, including near infrared spectroscopy (NIRS), mid-infrared spectroscopy (MIRS), conventional imaging techniques (colour imaging (CI) and hyperspectral imaging (HSI)), and fluorescence spectroscopy and imaging (FS/FI). Interesting classification and determination results can be found in both static and on/in-line real-time detection for contaminated nuts and dried fruits. Although these techniques offer many benefits over conventional methods, challenges remain in terms of heterogeneous distribution of toxins, background constituent interference, model robustness, detection limits, sorting efficiency, as well as instrument development. Copyright © 2018 Elsevier Ltd. All rights reserved.
Some opinions on the review process of research papers destined for publication.
Roohi, Ehsan; Mahian, Omid
2015-06-01
The current paper discusses the peer review process in journals that publish research papers purveying new science and understandings (scientific journals). Different aspects of peer review including the selection of reviewers, the review process and the decision policy of editor are discussed in details. Here, the pros and cons of different conventional methods of review processes are mentioned. Finally, a suggestion is presented for the review process of scientific papers.
Spiral counter-current chromatography: Design, development, application, and challenges.
Huang, Xin-Yi; Sun, Xiao-Ming; Pei, Dong; Di, Duo-Long
2017-01-01
Depending on the rapid growth in the radial gradient of the centrifugal force, spiral counter-current chromatography can greatly improve the retention of stationary phase, especially for the aqueous two-phase systems with ultra-polar and high viscosity that are not well retained in the conventional multilayer coils counter-current chromatography. As a result, it is an attractive and alternative technology that is suited for separation of hydrophilic compounds and has led to many exciting progress in recent years. This review presents the recent advances and applications of spiral counter-current chromatography, including its major benefits and limitations, some novel methods to improve the separation efficiency and its applications in separation of real samples. In addition, the remaining challenges and future perspectives on development of spiral counter-current chromatography also are proposed in this article. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Yousefi, Taher; Torab-Mostaedi, Meisam; Mobtaker, Hossein Ghasemi; Keshtkar, Ali Reza
2016-10-01
The strategy developed in this study, offers significant advantages (simplicity and cleanness of method and also a product purity and new morphology of the product) over the conventional routes for the synthesis of ThO2 nanostructure. The effect of current density on morphology was studied. The synthesized powder was characterized by means of Powder X-ray Diffraction (PXRD), Transmission Electron Microscopy (TEM, Phillips EM 2085) Brunauer-Emmett-Teller (BET) and Fourier Transform Infrared (FT-IR) spectroscopy. The results show that the current density has a great effect on the morphology of the samples. The average size of the particles decreases as the applied current density increases and the average size of the samples decreases from 50 to 15 nm when the current density increases from 2 to 5 mA cm-2.
NASA Technical Reports Server (NTRS)
Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.
1975-01-01
Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.
Simultaneous measurement of temperature and strain using four connecting wires
NASA Technical Reports Server (NTRS)
Parker, Allen R., Jr.
1993-01-01
This paper describes a new signal-conditioning technique for measuring strain and temperature which uses fewer connecting wires than conventional techniques. Simultaneous measurement of temperature and strain has been achieved by using thermocouple wire to connect strain gages to signal conditioning. This signal conditioning uses a new method for demultiplexing sampled analog signals and the Anderson current loop circuit. Theory is presented along with data to confirm that strain gage resistance change is sensed without appreciable error because of thermoelectric effects. Furthermore, temperature is sensed without appreciable error because of voltage drops caused by strain gage excitation current flowing through the gage resistance.
Rasmussen Hellberg, Rosalee S; Morrissey, Michael T; Hanner, Robert H
2010-09-01
The purpose of this study was to develop a species-specific multiplex polymerase chain reaction (PCR) method that allows for the detection of salmon species substitution on the commercial market. Species-specific primers and TaqMan® probes were developed based on a comprehensive collection of mitochondrial 5' cytochrome c oxidase subunit I (COI) deoxyribonucleic acid (DNA) "barcode" sequences. Primers and probes were combined into multiplex assays and tested for specificity against 112 reference samples representing 25 species. Sensitivity and linearity tests were conducted using 10-fold serial dilutions of target DNA (single-species samples) and DNA admixtures containing the target species at levels of 10%, 1.0%, and 0.1% mixed with a secondary species. The specificity tests showed positive signals for the target DNA in both real-time and conventional PCR systems. Nonspecific amplification in both systems was minimal; however, false positives were detected at low levels (1.2% to 8.3%) in conventional PCR. Detection levels were similar for admixtures and single-species samples based on a 30 PCR cycle cut-off, with limits of 0.25 to 2.5 ng (1% to 10%) in conventional PCR and 0.05 to 5.0 ng (0.1% to 10%) in real-time PCR. A small-scale test with food samples showed promising results, with species identification possible even in heavily processed food items. Overall, this study presents a rapid, specific, and sensitive method for salmon species identification that can be applied to mixed-species and heavily processed samples in either conventional or real-time PCR formats. This study provides a newly developed method for salmon and trout species identification that will assist both industry and regulatory agencies in the detection and prevention of species substitution. This multiplex PCR method allows for rapid, high-throughput species identification even in heavily processed and mixed-species samples. An inter-laboratory study is currently being carried out to assess the ability of this method to identify species in a variety of commercial salmon and trout products.
Surface treatment and protection method for cadmium zinc telluride crystals
Wright, Gomez W.; James, Ralph B.; Burger, Arnold; Chinn, Douglas A.
2003-01-01
A method for treatment of the surface of a CdZnTe (CZT) crystal that provides a native dielectric coating to reduce surface leakage currents and thereby, improve the resolution of instruments incorporating detectors using CZT crystals. A two step process is disclosed, etching the surface of a CZT crystal with a solution of the conventional bromine/methanol etch treatment, and after attachment of electrical contacts, passivating the CZT crystal surface with a solution of 10 w/o NH.sub.4 F and 10 w/o H.sub.2 O.sub.2 in water.
Improving FMEA risk assessment through reprioritization of failures
NASA Astrophysics Data System (ADS)
Ungureanu, A. L.; Stan, G.
2016-08-01
Most of the current methods used to assess the failure and to identify the industrial equipment defects are based on the determination of Risk Priority Number (RPN). Although conventional RPN calculation is easy to understand and use, the methodology presents some limitations, such as the large number of duplicates and the difficulty of assessing the RPN indices. In order to eliminate the afore-mentioned shortcomings, this paper puts forward an easy and efficient computing method, called Failure Developing Mode and Criticality Analysis (FDMCA), which takes into account the failures and the defect evolution in time, from failure appearance to a breakdown.
Discrete square root filtering - A survey of current techniques.
NASA Technical Reports Server (NTRS)
Kaminskii, P. G.; Bryson, A. E., Jr.; Schmidt, S. F.
1971-01-01
Current techniques in square root filtering are surveyed and related by applying a duality association. Four efficient square root implementations are suggested, and compared with three common conventional implementations in terms of computational complexity and precision. It is shown that the square root computational burden should not exceed the conventional by more than 50% in most practical problems. An examination of numerical conditioning predicts that the square root approach can yield twice the effective precision of the conventional filter in ill-conditioned problems. This prediction is verified in two examples.
Chen, Minghao; Wei, Shiyou; Hu, Junyan; Yuan, Jing; Liu, Fenghua
2017-01-01
The present study aimed to undertake a review of available evidence assessing whether time-lapse imaging (TLI) has favorable outcomes for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization (IVF). Using PubMed, EMBASE, Cochrane library and ClinicalTrial.gov up to February 2017 to search for randomized controlled trials (RCTs) comparing TLI versus conventional methods. Both studies randomized women and oocytes were included. For studies randomized women, the primary outcomes were live birth and ongoing pregnancy, the secondary outcomes were clinical pregnancy and miscarriage; for studies randomized oocytes, the primary outcome was blastocyst rate, the secondary outcome was good quality embryo on Day 2/3. Subgroup analysis was conducted based on different incubation and embryo selection between groups. Ten RCTs were included, four randomized oocytes and six randomized women. For oocyte-based review, the pool-analysis observed no significant difference between TLI group and control group for blastocyst rate [relative risk (RR) 1.08, 95% CI 0.94-1.25, I2 = 0%, two studies, including 1154 embryos]. The quality of evidence was moderate for all outcomes in oocyte-based review. For woman-based review, only one study provided live birth rate (RR 1,23, 95% CI 1.06-1.44,I2 N/A, one study, including 842 women), the pooled result showed no significant difference in ongoing pregnancy rate (RR 1.04, 95% CI 0.80-1.36, I2 = 59%, four studies, including 1403 women) between two groups. The quality of the evidence was low or very low for all outcomes in woman-based review. Currently there is insufficient evidence to support that TLI is superior to conventional methods for human embryo incubation and selection. In consideration of the limitations and flaws of included studies, more well designed RCTs are still in need to comprehensively evaluate the effectiveness of clinical TLI use.
Giannaki, Christoforos D; Aphamis, George; Sakkis, Panikos; Hadjicharalambous, Marios
2016-04-01
High intensity interval training (HIIT) has been recently promoted as an effective, low volume and time-efficient training method for improving fitness and health related parameters. The aim of the current study was to examine the effect of a combination of a group-based HIIT and conventional gym training on physical fitness and body composition parameters in healthy adults. Thirty nine healthy adults volunteered to participate in this eight-week intervention study. Twenty three participants performed regular gym training 4 days a week (C group), whereas the remaining 16 participants engaged twice a week in HIIT and twice in regular gym training (HIIT-C group) as the other group. Total body fat and visceral adiposity levels were calculated using bioelectrical impedance analysis. Physical fitness parameters such as cardiorespiratory fitness, speed, lower limb explosiveness, flexibility and isometric arm strength were assessed through a battery of field tests. Both exercise programs were effective in reducing total body fat and visceral adiposity (P<0.05) and improving handgrip strength, sprint time, jumping ability and flexibility (P<0.05) whilst only the combination of HIIT and conventional training improved cardiorespiratory fitness levels (P<0.05). A between of group changes analysis revealed that HIIT-C resulted in significantly greater reduction in both abdominal girth and visceral adiposity compared with conventional training (P<0.05). Eight weeks of combined group-based HIIT and conventional training improve various physical fitness parameters and reduce both total and visceral fat levels. This type of training was also found to be superior compared with conventional exercise training alone in terms of reducing more visceral adiposity levels. Group-based HIIT may consider as a good methods for individuals who exercise in gyms and craving to acquire significant fitness benefits in relatively short period of time.
Gate-Driven Pure Spin Current in Graphene
NASA Astrophysics Data System (ADS)
Lin, Xiaoyang; Su, Li; Si, Zhizhong; Zhang, Youguang; Bournel, Arnaud; Zhang, Yue; Klein, Jacques-Olivier; Fert, Albert; Zhao, Weisheng
2017-09-01
The manipulation of spin current is a promising solution for low-power devices beyond CMOS. However, conventional methods, such as spin-transfer torque or spin-orbit torque for magnetic tunnel junctions, suffer from large power consumption due to frequent spin-charge conversions. An important challenge is, thus, to realize long-distance transport of pure spin current, together with efficient manipulation. Here, the mechanism of gate-driven pure spin current in graphene is presented. Such a mechanism relies on the electrical gating of carrier-density-dependent conductivity and spin-diffusion length in graphene. The gate-driven feature is adopted to realize the pure spin-current demultiplexing operation, which enables gate-controllable distribution of the pure spin current into graphene branches. Compared with the Elliott-Yafet spin-relaxation mechanism, the D'yakonov-Perel spin-relaxation mechanism results in more appreciable demultiplexing performance. The feature of the pure spin-current demultiplexing operation will allow a number of logic functions to be cascaded without spin-charge conversions and open a route for future ultra-low-power devices.
Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro
2010-07-08
A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.
NASA Astrophysics Data System (ADS)
Watanabe, Takashi; Yoshida, Toshiya; Ohniwa, Katsumi
This paper discusses a new control strategy for photovoltaic power generation systems with consideration of dynamic characteristics of the photovoltaic cells. The controller estimates internal currents of an equivalent circuit for the cells. This estimated, or the virtual current and the actual voltage of the cells are fed to a conventional Maximum-Power-Point-Tracking (MPPT) controller. Consequently, this MPPT controller still tracks the optimum point even though it is so designed that the seeking speed of the operating point is extremely high. This system may suit for applications, which are installed in rapidly changeable insolation and temperature-conditions e.g. automobiles, trains, and airplanes. The proposed method is verified by experiment with a combination of this estimating function and the modified Boehringer's MPPT algorithm.
Semiconductor laser using multimode interference principle
NASA Astrophysics Data System (ADS)
Gong, Zisu; Yin, Rui; Ji, Wei; Wu, Chonghao
2018-01-01
Multimode interference (MMI) structure is introduced in semiconductor laser used in optical communication system to realize higher power and better temperature tolerance. Using beam propagation method (BPM), Multimode interference laser diode (MMI-LD) is designed and fabricated in InGaAsP/InP based material. As a comparison, conventional semiconductor laser using straight single-mode waveguide is also fabricated in the same wafer. With a low injection current (about 230 mA), the output power of the implemented MMI-LD is up to 2.296 mW which is about four times higher than the output power of the conventional semiconductor laser. The implemented MMI-LD exhibits stable output operating at the wavelength of 1.52 μm and better temperature tolerance when the temperature varies from 283.15 K to 293.15 K.
Multisource energy system project
NASA Astrophysics Data System (ADS)
Dawson, R. W.; Cowan, R. A.
1987-03-01
The mission of this project is to investigate methods of providing uninterruptible power to Army communications and navigational facilities, many of which have limited access or are located in rugged terrain. Two alternatives are currently available for deploying terrestrial stand-alone power systems: (1) conventional electric systems powered by diesel fuel, propane, or natural gas, and (2) alternative power systems using renewable energy sources such as solar photovoltaics (PV) or wind turbines (WT). The increased cost of fuels for conventional systems and the high cost of energy storage for single-source renewable energy systems have created interest in the hybrid or multisource energy system. This report will provide a summary of the first and second interim reports, final test results, and a user's guide for software that will assist in applying and designing multi-source energy systems.
Abrahamson, Joseph P; Zelina, Joseph; Andac, M Gurhan; Vander Wal, Randy L
2016-11-01
The first order approximation (FOA3) currently employed to estimate BC mass emissions underpredicts BC emissions due to inaccuracies in measuring low smoke numbers (SNs) produced by modern high bypass ratio engines. The recently developed Formation and Oxidation (FOX) method removes the need for and hence uncertainty associated with (SNs), instead relying upon engine conditions in order to predict BC mass. Using the true engine operating conditions from proprietary engine cycle data an improved FOX (ImFOX) predictive relation is developed. Still, the current methods are not optimized to estimate cruise emissions nor account for the use of alternative jet fuels with reduced aromatic content. Here improved correlations are developed to predict engine conditions and BC mass emissions at ground and cruise altitude. This new ImFOX is paired with a newly developed hydrogen relation to predict emissions from alternative fuels and fuel blends. The ImFOX is designed for rich-quench-lean style combustor technologies employed predominately in the current aviation fleet.
Khang, Hyun Soo; Lee, Byung Il; Oh, Suk Hoon; Woo, Eung Je; Lee, Soo Yeol; Cho, Min Hyoung; Kwon, Ohin; Yoon, Jeong Rock; Seo, Jin Keun
2002-06-01
Recently, a new static resistivity image reconstruction algorithm is proposed utilizing internal current density data obtained by magnetic resonance current density imaging technique. This new imaging method is called magnetic resonance electrical impedance tomography (MREIT). The derivation and performance of J-substitution algorithm in MREIT have been reported as a new accurate and high-resolution static impedance imaging technique via computer simulation methods. In this paper, we present experimental procedures, denoising techniques, and image reconstructions using a 0.3-tesla (T) experimental MREIT system and saline phantoms. MREIT using J-substitution algorithm effectively utilizes the internal current density information resolving the problem inherent in a conventional EIT, that is, the low sensitivity of boundary measurements to any changes of internal tissue resistivity values. Resistivity images of saline phantoms show an accuracy of 6.8%-47.2% and spatial resolution of 64 x 64. Both of them can be significantly improved by using an MRI system with a better signal-to-noise ratio.
The role of modern diagnostic imaging in diagnosing and differentiating kidney diseases in children.
Maliborski, Artur; Zegadło, Arkadiusz; Placzyńska, Małgorzata; Sopińska, Małgorzata; Lichosik, Marianna; Jobs, Katarzyna
2018-01-01
Urinary tract diseases are in the group of the most commonly diagnosed medical conditions in pediatric patients. Many diseases with different etiologies are accompanied by pain, fever, hematuria, or urinary tract dysfunction. Those most common ones in children are urinary tract infections and congenital malformation. They can also represent tumors or changes caused by systemic diseases. Clinical tests and even more often additional imaging studies are required to make a proper diagnosis of urinary tract diseases. Just a few decades ago urography, cystography or voiding cystourethrography were the main methods in diagnostic imaging of the urinary tract. Today's imaging methods supported by digital radiographic and fluoroscopy systems, high sensitivity detectors with quantum detection, advanced algorithms eliminating motion artifacts, modern medical imaging monitors with a resolution of three or even eight megapixels significantly differ from conventional radiographic methods. The methods that are currently usually performed are: computed tomography, magnetic resonance imaging, isotopic methods and ultrasonography using elastography and new solutions in Doppler imaging. Modern techniques are currently focused on reducing radiation exposure with better imaging capabilities. The development of these techniques became an essential diagnostic aid in nephrological and urological practice. The aim of this paper is to present the latest solutions that are currently used in the diagnostic imaging of urinary tract diseases.
PROJECT HEAVEN: Preoperative Training in Virtual Reality
Iamsakul, Kiratipath; Pavlovcik, Alexander V.; Calderon, Jesus I.; Sanderson, Lance M.
2017-01-01
A cephalosomatic anastomosis (CSA; also called HEAVEN: head anastomosis venture) has been proposed as an option for patients with neurological impairments, such as spinal cord injury (SCI), and terminal medical illnesses, for which medicine is currently powerless. Protocols to prepare a patient for life after CSA do not currently exist. However, methods used in conventional neurorehabilitation can be used as a reference for developing preparatory training. Studies on virtual reality (VR) technologies have documented VR's ability to enhance rehabilitation and improve the quality of recovery in patients with neurological disabilities. VR-augmented rehabilitation resulted in increased motivation towards performing functional training and improved the biopsychosocial state of patients. In addition, VR experiences coupled with haptic feedback promote neuroplasticity, resulting in the recovery of motor functions in neurologically-impaired individuals. To prepare the recipient psychologically for life after CSA, the development of VR experiences paired with haptic feedback is proposed. This proposal aims to innovate techniques in conventional neurorehabilitation to implement preoperative psychological training for the recipient of HEAVEN. Recipient's familiarity to body movements will prevent unexpected psychological reactions from occurring after the HEAVEN procedure. PMID:28540125
PROJECT HEAVEN: Preoperative Training in Virtual Reality.
Iamsakul, Kiratipath; Pavlovcik, Alexander V; Calderon, Jesus I; Sanderson, Lance M
2017-01-01
A cephalosomatic anastomosis (CSA; also called HEAVEN: head anastomosis venture) has been proposed as an option for patients with neurological impairments, such as spinal cord injury (SCI), and terminal medical illnesses, for which medicine is currently powerless. Protocols to prepare a patient for life after CSA do not currently exist. However, methods used in conventional neurorehabilitation can be used as a reference for developing preparatory training. Studies on virtual reality (VR) technologies have documented VR's ability to enhance rehabilitation and improve the quality of recovery in patients with neurological disabilities. VR-augmented rehabilitation resulted in increased motivation towards performing functional training and improved the biopsychosocial state of patients. In addition, VR experiences coupled with haptic feedback promote neuroplasticity, resulting in the recovery of motor functions in neurologically-impaired individuals. To prepare the recipient psychologically for life after CSA, the development of VR experiences paired with haptic feedback is proposed. This proposal aims to innovate techniques in conventional neurorehabilitation to implement preoperative psychological training for the recipient of HEAVEN. Recipient's familiarity to body movements will prevent unexpected psychological reactions from occurring after the HEAVEN procedure.
NASA Astrophysics Data System (ADS)
Kim, Do-Kyung; Jeong, Hyeon-Seok; Kwon, Hyeok Bin; Kim, Young-Rae; Kang, Shin-Won; Bae, Jin-Hyuk
2018-05-01
We propose a simple hydroxyl group transfer method to improve the electrical characteristics of solution-processed amorphous InGaZnO (IGZO) thin-film transistors (TFTs). Tuned poly(dimethylsiloxane) elastomer, which has a hydroxyl group as a terminal chemical group, was adhered temporarily to an IGZO thin-film during the solidification step to transfer and supply sufficient hydroxyl groups to the IGZO thin-film. The transferred hydroxyl groups led to efficient hydrolysis and condensation reactions, resulting in a denser metal–oxygen–metal network being achieved in the IGZO thin-film compared to the conventional IGZO thin-film. In addition, it was confirmed that there was no morphological deformation, including to the film thickness and surface roughness. The hydroxyl group transferred IGZO based TFTs exhibited enhanced electrical properties (field-effect mobility of 2.21 cm2 V‑1 s‑1, and on/off current ratio of 106) compared to conventional IGZO TFTs (field-effect mobility of 0.73 cm2 V‑1 s‑1 and on/off current ratio of 105).
A high performance pMOSFET with two-step recessed SiGe-S/D structure for 32 nm node and beyond
NASA Astrophysics Data System (ADS)
Yasutake, Nobuaki; Azuma, Atsushi; Ishida, Tatsuya; Ohuchi, Kazuya; Aoki, Nobutoshi; Kusunoki, Naoki; Mori, Shinji; Mizushima, Ichiro; Morooka, Tetsu; Kawanaka, Shigeru; Toyoshima, Yoshiaki
2007-11-01
A novel SiGe-S/D structure for high performance pMOSFET called two-step recessed SiGe-source/drain (S/D) is developed with careful optimization of recessed SiGe-S/D structure. With this method, hole mobility, short channel effect and S/D resistance in pMOSFET are improved compared with conventional recessed SiGe-S/D structure. To enhance device performance such as drain current drivability, SiGe region has to be closer to channel region. Then, conventional deep SiGe-S/D region with carefully optimized shallow SiGe SDE region showed additional device performance improvement without SCE degradation. As a result, high performance 24 nm gate length pMOSFET was demonstrated with drive current of 451 μA/μm at ∣ Vdd∣ of 0.9 V and Ioff of 100 nA/μm (552 μA/μm at ∣ Vdd∣ of 1.0 V). Furthermore, by combining with Vdd scaling, we indicate the extendability of two-step recessed SiGe-S/D structure down to 15 nm node generation.
Preparation of alpha sources using magnetohydrodynamic electrodeposition for radionuclide metrology.
Panta, Yogendra M; Farmer, Dennis E; Johnson, Paula; Cheney, Marcos A; Qian, Shizhi
2010-02-01
Expanded use of nuclear fuel as an energy resource and terrorist threats to public safety clearly require the development of new state-of-the-art technologies and improvement of safety measures to minimize the exposure of people to radiation and the accidental release of radiation into the environment. The precision in radionuclide metrology is currently limited by the source quality rather than the detector performance. Electrodeposition is a commonly used technique to prepare massless radioactive sources. Unfortunately, the radioactive sources prepared by the conventional electrodeposition method produce poor resolution in alpha spectrometric measurements. Preparing radioactive sources with better resolution and higher yield in the alpha spectrometric range by integrating magnetohydrodynamic convection with the conventional electrodeposition technique was proposed and tested by preparing mixed alpha sources containing uranium isotopes ((238)U, (234)U), plutonium ((239)Pu), and americium ((241)Am) for alpha spectrometric determination. The effects of various parameters such as magnetic flux density, deposition current and time, and pH of the sample solution on the formed massless radioactive sources were also experimentally investigated. Copyright 2009 Elsevier Inc. All rights reserved.
Silicon coupled with plasmon nanocavities generates bright visible hot luminescence
NASA Astrophysics Data System (ADS)
Cho, Chang-Hee; Aspetti, Carlos O.; Park, Joohee; Agarwal, Ritesh
2013-04-01
To address the limitations in device speed and performance in silicon-based electronics, there have been extensive studies on silicon optoelectronics with a view to achieving ultrafast optical data processing. The biggest challenge has been to develop an efficient silicon-based light source, because the indirect bandgap of silicon gives rise to extremely low emission efficiencies. Although light emission in quantum-confined silicon at sub-10 nm length scales has been demonstrated, there are difficulties in integrating quantum structures with conventional electronics. It is desirable to develop new concepts to obtain emission from silicon at length scales compatible with current electronic devices (20-100 nm), which therefore do not utilize quantum-confinement effects. Here, we demonstrate an entirely new method to achieve bright visible light emission in `bulk-sized' silicon coupled with plasmon nanocavities at room temperature, from non-thermalized carrier recombination. The highly enhanced emission (internal quantum efficiency of >1%) in plasmonic silicon, together with its size compatibility with current silicon electronics, provides new avenues for developing monolithically integrated light sources on conventional microchips.
A spiral, bi-planar gradient coil design for open magnetic resonance imaging.
Zhang, Peng; Shi, Yikai; Wang, Wendong; Wang, Yaohui
2018-01-01
To design planar gradient coil for MRI applications without discretization of continuous current density and loop-loop connection errors. In the new design method, the coil current is represented using a spiral curve function described by just a few control parameters. Using a proper parametric equation set, an ensemble of spiral contours is reshaped to satisfy the coil design requirements, such as gradient linearity, inductance and shielding. In the given case study, by using the spiral coil design, the magnetic field errors in the imaging area were reduced from 5.19% (non-spiral design) to 4.47% (spiral design) for the transverse gradient coils, and for the longitudinal gradient coil design, the magnetic field errors were reduced to 5.02% (spiral design). The numerical evaluation shows that when compared with conventional wire loop, the inductance and resistance of spiral coil was reduced by 11.55% and 8.12% for x gradient coil, respectively. A novel spiral gradient coil design for biplanar MRI systems, the new design offers better magnetic field gradients, smooth contours than the conventional connected counterpart, which improves manufacturability.
NASA Astrophysics Data System (ADS)
Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.
2017-06-01
Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.
Preparation of alpha-emitting nuclides by electrodeposition
NASA Astrophysics Data System (ADS)
Lee, M. H.; Lee, C. W.
2000-06-01
A method is described for electrodepositing the alpha-emitting nuclides. To determine the optimum conditions for plating plutonium, the effects of electrolyte concentration, chelating reagent, current, pH of electrolyte and the time of plating on the electrodeposition were investigated on the base of the ammonium oxalate-ammonium sulfate electrolyte containing diethyl triamino pentaacetic acid. An optimized electrodeposition procedure for the determination of plutonium was validated by application to environmental samples. The chemical yield of the optimized method of electrodeposition step in the environmental sample was a little higher than that of Talvitie's method. The developed electrodeposition procedure in this study was applied to determine the radionuclides such as thorium, uranium and americium that the electrodeposition yields were a little higher than those of the conventional method.
Huys, Isabelle; Van Overwalle, Geertrui; Matthijs, Gert
2011-01-01
The paper focuses on the fundamental debate that is going on in Europe and the United States about whether genes and genetic diagnostic methods are to be regarded as inventions or subject matter eligible for patent protection, or whether they are discoveries or principles of nature and thus excluded from patentability. The study further explores some possible scenarios of American influences on European patent applications with respect to genetic diagnostic methods. Our analysis points out that patent eligibility for genes and genetic diagnostic methods, as discussed in the United States in the Association of Molecular Pathology versus US Patent and Trademark Office decision, is based on a different reasoning compared with the European Patent Convention. PMID:21654725
Huys, Isabelle; Van Overwalle, Geertrui; Matthijs, Gert
2011-10-01
The paper focuses on the fundamental debate that is going on in Europe and the United States about whether genes and genetic diagnostic methods are to be regarded as inventions or subject matter eligible for patent protection, or whether they are discoveries or principles of nature and thus excluded from patentability. The study further explores some possible scenarios of American influences on European patent applications with respect to genetic diagnostic methods. Our analysis points out that patent eligibility for genes and genetic diagnostic methods, as discussed in the United States in the Association of Molecular Pathology versus US Patent and Trademark Office decision, is based on a different reasoning compared with the European Patent Convention.
Flores-Montero, J; Sanoja-Flores, L; Paiva, B; Puig, N; García-Sánchez, O; Böttcher, S; van der Velden, V H J; Pérez-Morán, J-J; Vidriales, M-B; García-Sanz, R; Jimenez, C; González, M; Martínez-López, J; Corral-Mateos, A; Grigore, G-E; Fluxá, R; Pontes, R; Caetano, J; Sedek, L; Del Cañizo, M-C; Bladé, J; Lahuerta, J-J; Aguilar, C; Bárez, A; García-Mateo, A; Labrador, J; Leoz, P; Aguilera-Sanz, C; San-Miguel, J; Mateos, M-V; Durie, B; van Dongen, J J M; Orfao, A
2017-10-01
Flow cytometry has become a highly valuable method to monitor minimal residual disease (MRD) and evaluate the depth of complete response (CR) in bone marrow (BM) of multiple myeloma (MM) after therapy. However, current flow-MRD has lower sensitivity than molecular methods and lacks standardization. Here we report on a novel next generation flow (NGF) approach for highly sensitive and standardized MRD detection in MM. An optimized 2-tube 8-color antibody panel was constructed in five cycles of design-evaluation-redesign. In addition, a bulk-lysis procedure was established for acquisition of ⩾10 7 cells/sample, and novel software tools were constructed for automatic plasma cell gating. Multicenter evaluation of 110 follow-up BM from MM patients in very good partial response (VGPR) or CR showed a higher sensitivity for NGF-MRD vs conventional 8-color flow-MRD -MRD-positive rate of 47 vs 34% (P=0.003)-. Thus, 25% of patients classified as MRD-negative by conventional 8-color flow were MRD-positive by NGF, translating into a significantly longer progression-free survival for MRD-negative vs MRD-positive CR patients by NGF (75% progression-free survival not reached vs 7 months; P=0.02). This study establishes EuroFlow-based NGF as a highly sensitive, fully standardized approach for MRD detection in MM which overcomes the major limitations of conventional flow-MRD methods and is ready for implementation in routine diagnostics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jon; Booten, Chuck
Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity.more » The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.« less
Zongyi, Yin; Funian, Zou; Hao, Li; Ying, Cheng; Jialin, Zhang
2017-01-01
Rapid, efficient, and economic method for the isolation and purification of islets has been pursued by numerous islet-related researchers. In this study, we compared the advantages and disadvantages of our developed patented method with those of commonly used conventional methods (Ficoll-400, 1077, and handpicking methods). Cell viability was assayed using Trypan blue, cell purity and yield were assayed using diphenylthiocarbazone, and islet function was assayed using acridine orange/ethidium bromide staining and enzyme-linked immunosorbent assay-glucose stimulation testing 4 days after cultivation. The results showed that our islet isolation and purification method required 12 ± 3 min, which was significantly shorter than the time required in Ficoll-400, 1077, and HPU groups (34 ± 3, 41 ± 4, and 30 ± 4 min, respectively; P < 0.05). There was no significant difference in islet viability among the four groups. The islet purity, function, yield, and cost of our method were superior to those of the Ficoll-400 and 1077 methods, but inferior to the handpicking method. However, the handpicking method may cause wrist injury and visual impairment in researchers during large-scale islet isolation (>1000 islets). In summary, the MCT method is a rapid, efficient, and economic method for isolating and purifying murine islet cell clumps. This method overcomes some of the shortcomings of conventional methods, showing a relatively higher quality and yield of islets within a shorter duration at a lower cost. Therefore, the current method provides researchers with an alternative option for islet isolation and should be widely generalized. PMID:28207765
Zongyi, Yin; Funian, Zou; Hao, Li; Ying, Cheng; Jialin, Zhang; Baifeng, Li
2017-01-01
Rapid, efficient, and economic method for the isolation and purification of islets has been pursued by numerous islet-related researchers. In this study, we compared the advantages and disadvantages of our developed patented method with those of commonly used conventional methods (Ficoll-400, 1077, and handpicking methods). Cell viability was assayed using Trypan blue, cell purity and yield were assayed using diphenylthiocarbazone, and islet function was assayed using acridine orange/ethidium bromide staining and enzyme-linked immunosorbent assay-glucose stimulation testing 4 days after cultivation. The results showed that our islet isolation and purification method required 12 ± 3 min, which was significantly shorter than the time required in Ficoll-400, 1077, and HPU groups (34 ± 3, 41 ± 4, and 30 ± 4 min, respectively; P < 0.05). There was no significant difference in islet viability among the four groups. The islet purity, function, yield, and cost of our method were superior to those of the Ficoll-400 and 1077 methods, but inferior to the handpicking method. However, the handpicking method may cause wrist injury and visual impairment in researchers during large-scale islet isolation (>1000 islets). In summary, the MCT method is a rapid, efficient, and economic method for isolating and purifying murine islet cell clumps. This method overcomes some of the shortcomings of conventional methods, showing a relatively higher quality and yield of islets within a shorter duration at a lower cost. Therefore, the current method provides researchers with an alternative option for islet isolation and should be widely generalized.
Wong, M S; Cheng, C Y; Ng, B K W; Lam, T P; Chiu, S W
2006-01-01
Spinal orthoses are commonly prescribed to patients with moderate AIS for prevention of further deterioration. In a conventional manufacturing method, plaster bandages are used to get patient's body contour and plaster cast is rectified manually. With the introduction of CAD/CAM system, a series of automated processes from body scanning to digital rectification and milling of positive model can be performed in a fast and accurate fashion. This project is to study the impact of CAD/CAM method as compared with the conventional method. In assessing the 147 recruited subjects fitted with spinal orthoses (43 subjects using conventional method and 104 subjects using CAD/CAM method), significant decreases (p<0.05) were found in the Cobb angles when comparing the pre-intervention data with that of the first year of intervention. Regarding the learning curve, Orthotists are getting more competent with the CAD/CAM technique in four years time. The mean productivity of the CAD/CAM method is 2.75 times higher than that of the conventional method. The CAD/CAM method could achieve similar clinical outcomes and with its high efficiency, could be considered as substitute for conventional methods in fabricating spinal orthoses for patients with AIS.
Xu, Xiaojie; Liu, Ming; Zhang, Zhanbin; Jia, Yueling
2014-01-01
Remote field eddy current is an effective non-destructive testing method for ferromagnetic tubular structures. In view of conventional sensors' disadvantages such as low signal-to-noise ratio and poor sensitivity to axial cracks, a novel high sensitivity sensor based on orthogonal magnetic field excitation is proposed. Firstly, through a three-dimensional finite element simulation, the remote field effect under orthogonal magnetic field excitation is determined, and an appropriate configuration which can generate an orthogonal magnetic field for a tubular structure is developed. Secondly, optimized selection of key parameters such as frequency, exciting currents and shielding modes is analyzed in detail, and different types of pick-up coils, including a new self-differential mode pick-up coil, are designed and analyzed. Lastly, the proposed sensor is verified experimentally by various types of defects manufactured on a section of a ferromagnetic tube. Experimental results show that the proposed novel sensor can largely improve the sensitivity of defect detection, especially for axial crack whose depth is less than 40% wall thickness, which are very difficult to detect and identify by conventional sensors. Another noteworthy advantage of the proposed sensor is that it has almost equal sensitivity to various types of defects, when a self-differential mode pick-up coil is adopted. PMID:25615738
Kaminski, Clemens F.; Kaminski Schierle, Gabriele S.
2016-01-01
Abstract. The misfolding and self-assembly of intrinsically disordered proteins into insoluble amyloid structures are central to many neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Optical imaging of this self-assembly process in vitro and in cells is revolutionizing our understanding of the molecular mechanisms behind these devastating conditions. In contrast to conventional biophysical methods, optical imaging and, in particular, optical superresolution imaging, permits the dynamic investigation of the molecular self-assembly process in vitro and in cells, at molecular-level resolution. In this article, current state-of-the-art imaging methods are reviewed and discussed in the context of research into neurodegeneration. PMID:27413767
NASA Astrophysics Data System (ADS)
Viswanathan, V. K.
1980-11-01
The optical design and analysis of the LASL carbon dioxide laser fusion systems required the use of techniques that are quite different from the currently used method in conventional optical design problems. The necessity for this is explored and the method that has been successfully used at Los Alamos to understand these systems is discussed with examples. This method involves characterization of the various optical components in their mounts by a Zernike polynomial set and using fast Fourier transform techniques to propagate the beam, taking diffraction and other nonlinear effects that occur in these types of systems into account. The various programs used for analysis are briefly discussed.
Overlap junctions for high coherence superconducting qubits
NASA Astrophysics Data System (ADS)
Wu, X.; Long, J. L.; Ku, H. S.; Lake, R. E.; Bal, M.; Pappas, D. P.
2017-07-01
Fabrication of sub-micron Josephson junctions is demonstrated using standard processing techniques for high-coherence, superconducting qubits. These junctions are made in two separate lithography steps with normal-angle evaporation. Most significantly, this work demonstrates that it is possible to achieve high coherence with junctions formed on aluminum surfaces cleaned in situ by Ar plasma before junction oxidation. This method eliminates the angle-dependent shadow masks typically used for small junctions. Therefore, this is conducive to the implementation of typical methods for improving margins and yield using conventional CMOS processing. The current method uses electron-beam lithography and an additive process to define the top and bottom electrodes. Extension of this work to optical lithography and subtractive processes is discussed.
Niece, Krista L.
2015-01-01
Colistin use has increased in response to the advent of infections caused by multidrug-resistant organisms. It is administered parenterally as an inactive prodrug, colistin methanesulfonate (CMS). Various formulations of CMS and labeling conventions can lead to confusion about colistin dosing, and questions remain about the pharmacokinetics of CMS. Since CMS does not have strong UV absorbance, current methods employ a laborious process of chemical conversion to colistin followed by precolumn derivatization to detect formed colistin by high-performance liquid chromatography. Here, we report a method for direct quantification of colistin methanesulfonate by attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). PMID:26124160
Pongsachareonnont, Pear; Honglertnapakul, Worawalun; Chatsuwan, Tanittha
2017-02-21
Identification of bacterial pathogens in endophthalmitis is important to inform antibiotic selection and treatment decisions. Hemoculture bottles and polymerase chain reaction (PCR) analysis have been proposed to offer good detection sensitivity. This study compared the sensitivity and accuracy of a blood culture system, a PCR approach, and conventional culture methods for identification of causative bacteria in cases of acute endophthalmitis. Twenty-nine patients with a diagnosis of presumed acute bacterial endophthalmitis who underwent vitreous specimen collection at King Chulalongkorn Memorial Hospital were enrolled in this study. Forty-one specimens were collected. Each specimen was divided into three parts, and each part was analyzed using one of three microbial identification techniques: conventional plate culture, blood culture, and polymerase chain reaction and sequencing. The results of the three methods were then compared. Bacteria were identified in 15 of the 41 specimens (36.5%). Five (12.2%) specimens were positive by conventional culture methods, 11 (26.8%) were positive by hemoculture, and 11 (26.8%) were positive by PCR. Cohen's kappa analysis revealed p-values for conventional methods vs. hemoculture, conventional methods vs. PCR, and hemoculture vs. PCR of 0.057, 0.33, and 0.009, respectively. Higher detection rates of Enterococcus faecalis were observed for hemoculture and PCR than for conventional methods. Blood culture bottles and PCR detection may facilitate bacterial identification in cases of presumed acute endophthalmitis. These techniques should be used in addition to conventional plate culture methods because they provide a greater degree of sensitivity than conventional plate culture alone for the detection of specific microorganisms such as E. faecalis. Thai Clinical Trial Register No. TCTR20110000024 .
ERIC Educational Resources Information Center
Eshleman, Winston Hull
Compared were programed materials and conventional methods for teaching two units of eighth grade science. Programed materials used were linear programed books requiring constructed responses. The conventional methods included textbook study, written exercises, lectures, discussions, demonstrations, experiments, chalkboard drawings, films,…
The potential of digital dental radiography in recording the adductor sesamoid and the MP3 stages.
Abdel-Kader, H M
1999-12-01
The current study was undertaken to evaluate the reliability of using a recent advance in clinical radiographic technique, digital dental radiography, in recording two growth indicators: the adductor sesamoid and MP3 stages. With an exposure time five times less than that used in the conventional approach, this method shows greatest flexibility in providing a high quality digitized radiographic images of the two growth indicators under investigation. Refereed Paper
MTPA control of mechanical sensorless IPMSM based on adaptive nonlinear control.
Najjar-Khodabakhsh, Abbas; Soltani, Jafar
2016-03-01
In this paper, an adaptive nonlinear control scheme has been proposed for implementing maximum torque per ampere (MTPA) control strategy corresponding to interior permanent magnet synchronous motor (IPMSM) drive. This control scheme is developed in the rotor d-q axis reference frame using adaptive input-output state feedback linearization (AIOFL) method. The drive system control stability is supported by Lyapunov theory. The motor inductances are online estimated by an estimation law obtained by AIOFL. The estimation errors of these parameters are proved to be asymptotically converged to zero. Based on minimizing the motor current amplitude, the MTPA control strategy is performed by using the nonlinear optimization technique while considering the online reference torque. The motor reference torque is generated by a conventional rotor speed PI controller. By performing MTPA control strategy, the generated online motor d-q reference currents were used in AIOFL controller to obtain the SV-PWM reference voltages and the online estimation of the motor d-q inductances. In addition, the stator resistance is online estimated using a conventional PI controller. Moreover, the rotor position is detected using the online estimation of the stator flux and online estimation of the motor q-axis inductance. Simulation and experimental results obtained prove the effectiveness and the capability of the proposed control method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Robert, Hillard; William, Howland; Bryan, Snyder
2002-03-01
Determination of the electrical properties of semiconductor materials and dielectrics is highly desirable since these correlate best to final device performance. The properties of SiO2 and high k dielectrics such as Equivalent Oxide Thickness(EOT), Interface Trap Density(Dit), Oxide Effective Charge(Neff), Flatband Voltage Hysteresis(Delta Vfb), Threshold Voltage(VT) and, bulk properties such as carrier density profile and channel dose are all important parameters that require monitoring during front end processing. Conventional methods for determining these parameters involve the manufacturing of polysilicon or metal gate MOS capacitors and subsequent measurements of capacitance-voltage(CV) and/or current-voltage(IV). These conventional techniques are time consuming and can introduce changes to the materials being monitored. Also, equivalent circuit effects resulting from excessive leakage current, series resistance and stray inductance can introduce large errors in the measured results. In this paper, a new method is discussed that provides rapid determination of these critical parameters and is robust against equivalent circuit errors. This technique uses a small diameter(30 micron), elastically deformed probe to form a gate for MOSCAP CV and IV and can be used to measure either monitor wafers or test areas within scribe lines on product wafers. It allows for measurements of dielectrics thinner than 10 Angstroms. A detailed description and applications such as high k dielectrics, will be presented.
León-Vargas, Fabian; Calm, Remei; Bondia, Jorge; Vehí, Josep
2012-01-01
Objective Set-inversion-based prandial insulin delivery is a new model-based bolus advisor for postprandial glucose control in type 1 diabetes mellitus (T1DM). It automatically coordinates the values of basal–bolus insulin to be infused during the postprandial period so as to achieve some predefined control objectives. However, the method requires an excessive computation time to compute the solution set of feasible insulin profiles, which impedes its integration into an insulin pump. In this work, a new algorithm is presented, which reduces computation time significantly and enables the integration of this new bolus advisor into current processing features of smart insulin pumps. Methods A new strategy was implemented that focused on finding the combined basal–bolus solution of interest rather than an extensive search of the feasible set of solutions. Analysis of interval simulations, inclusion of physiological assumptions, and search domain contractions were used. Data from six real patients with T1DM were used to compare the performance between the optimized and the conventional computations. Results In all cases, the optimized version yielded the basal–bolus combination recommended by the conventional method and in only 0.032% of the computation time. Simulations show that the mean number of iterations for the optimized computation requires approximately 3.59 s at 20 MHz processing power, in line with current features of smart pumps. Conclusions A computationally efficient method for basal–bolus coordination in postprandial glucose control has been presented and tested. The results indicate that an embedded algorithm within smart insulin pumps is now feasible. Nonetheless, we acknowledge that a clinical trial will be needed in order to justify this claim. PMID:23294789
A New Finite Difference Q-compensated RTM Algorithm in Tilted Transverse Isotropic (TTI) Media
NASA Astrophysics Data System (ADS)
Zhou, T.; Hu, W.; Ning, J.
2017-12-01
Attenuating anisotropic geological body is difficult to image with conventional migration methods. In such kind of scenarios, recorded seismic data suffer greatly from both amplitude decay and phase distortion, resulting in degraded resolution, poor illumination and incorrect migration depth in imaging results. To efficiently obtain high quality images, we propose a novel TTI QRTM algorithm based on Generalized Standard Linear Solid model combined with a unique multi-stage optimization technique to simultaneously correct the decayed amplitude and the distorted phase velocity. Numerical tests (shown in the figure) demonstrate that our TTI QRTM algorithm effectively corrects migration depth, significantly improves illumination, and enhances resolution within and below the low Q regions. The result of our new method is very close to the reference RTM image, while QRTM without TTI cannot get a correct image. Compared to the conventional QRTM method based on a pseudo-spectral operator for fractional Laplacian evaluation, our method is more computationally efficient for large scale applications and more suitable for GPU acceleration. With the current multi-stage dispersion optimization scheme, this TTI QRTM method best performs in the frequency range 10-70 Hz, and could be used in a wider frequency range. Furthermore, as this method can also handle frequency dependent Q, it has potential to be applied in imaging deep structures where low Q exists, such as subduction zones, volcanic zones or fault zones with passive source observations.
NASA Astrophysics Data System (ADS)
Tichý, Ondřej; Šmídl, Václav; Hofman, Radek; Stohl, Andreas
2016-11-01
Estimation of pollutant releases into the atmosphere is an important problem in the environmental sciences. It is typically formalized as an inverse problem using a linear model that can explain observable quantities (e.g., concentrations or deposition values) as a product of the source-receptor sensitivity (SRS) matrix obtained from an atmospheric transport model multiplied by the unknown source-term vector. Since this problem is typically ill-posed, current state-of-the-art methods are based on regularization of the problem and solution of a formulated optimization problem. This procedure depends on manual settings of uncertainties that are often very poorly quantified, effectively making them tuning parameters. We formulate a probabilistic model, that has the same maximum likelihood solution as the conventional method using pre-specified uncertainties. Replacement of the maximum likelihood solution by full Bayesian estimation also allows estimation of all tuning parameters from the measurements. The estimation procedure is based on the variational Bayes approximation which is evaluated by an iterative algorithm. The resulting method is thus very similar to the conventional approach, but with the possibility to also estimate all tuning parameters from the observations. The proposed algorithm is tested and compared with the standard methods on data from the European Tracer Experiment (ETEX) where advantages of the new method are demonstrated. A MATLAB implementation of the proposed algorithm is available for download.
Review of spectral imaging technology in biomedical engineering: achievements and challenges.
Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin
2013-10-01
Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.
NASA Astrophysics Data System (ADS)
Qi, Chenglin; Huang, Yang; Zhan, Teng; Wang, Qinjin; Yi, Xiaoyan; Liu, Zhiqiang
2017-08-01
GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (EIS) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs. Project supported by the Natural Science Foundation of China (Nos. 61306051, 61306050) and the National High Technology Program of China (No. 2014AA032606).
Oh, Yoonbae; Park, Cheonho; Kim, Do Hyoung; Shin, Hojin; Kang, Yu Min; DeWaele, Mark; Lee, Jeyeon; Min, Hoon-Ki; Blaha, Charles D; Bennet, Kevin E; Kim, In Young; Lee, Kendall H; Jang, Dong Pyo
2016-11-15
Dopamine (DA) modulates central neuronal activity through both phasic (second to second) and tonic (minutes to hours) terminal release. Conventional fast-scan cyclic voltammetry (FSCV), in combination with carbon fiber microelectrodes, has been used to measure phasic DA release in vivo by adopting a background subtraction procedure to remove background capacitive currents. However, measuring tonic changes in DA concentrations using conventional FSCV has been difficult because background capacitive currents are inherently unstable over long recording periods. To measure tonic changes in DA concentrations over several hours, we applied a novel charge-balancing multiple waveform FSCV (CBM-FSCV), combined with a dual background subtraction technique, to minimize temporal variations in background capacitive currents. Using this method, in vitro, charge variations from a reference time point were nearly zero for 48 h, whereas with conventional background subtraction, charge variations progressively increased. CBM-FSCV also demonstrated a high selectivity against 3,4-dihydroxyphenylacetic acid and ascorbic acid, two major chemical interferents in the brain, yielding a sensitivity of 85.40 ± 14.30 nA/μM and limit of detection of 5.8 ± 0.9 nM for DA while maintaining selectivity. Recorded in vivo by CBM-FSCV, pharmacological inhibition of DA reuptake (nomifensine) resulted in a 235 ± 60 nM increase in tonic extracellular DA concentrations, while inhibition of DA synthesis (α-methyl-dl-tyrosine) resulted in a 72.5 ± 4.8 nM decrease in DA concentrations over a 2 h period. This study showed that CBM-FSCV may serve as a unique voltammetric technique to monitor relatively slow changes in tonic extracellular DA concentrations in vivo over a prolonged time period.
NASA Astrophysics Data System (ADS)
Fathurrohman, Maman; Porter, Anne; Worthy, Annette L.
2014-07-01
In this paper, the use of guided hyperlearning, unguided hyperlearning, and conventional learning methods in mathematics are compared. The design of the research involved a quasi-experiment with a modified single-factor multiple treatment design comparing the three learning methods, guided hyperlearning, unguided hyperlearning, and conventional learning. The participants were from three first-year university classes, numbering 115 students in total. Each group received guided, unguided, or conventional learning methods in one of the three different topics, namely number systems, functions, and graphing. The students' academic performance differed according to the type of learning. Evaluation of the three methods revealed that only guided hyperlearning and conventional learning were appropriate methods for the psychomotor aspects of drawing in the graphing topic. There was no significant difference between the methods when learning the cognitive aspects involved in the number systems topic and the functions topic.
NASA Astrophysics Data System (ADS)
Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas
2013-11-01
The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.
Lee, Jung-Ju; Lee, Sang Kun; Choi, Jang Wuk; Kim, Dong-Wook; Park, Kyung Il; Kim, Bom Sahn; Kang, Hyejin; Lee, Dong Soo; Lee, Seo-Young; Kim, Sung Hun; Chung, Chun Kee; Nam, Hyeon Woo; Kim, Kwang Ki
2009-12-01
Ictal single-photon emission computed tomography (SPECT) is a valuable method for localizing the ictal onset zone in the presurgical evaluation of patients with intractable epilepsy. Conventional methods used to localize the ictal onset zone have problems with time lag from seizure onset to injection. To evaluate the clinical usefulness of a method that we developed, which involves an attachable automated injector (AAI), in reducing time lag and improving the ability to localize the zone of seizure onset. Patients admitted to the epilepsy monitoring unit (EMU) between January 1, 2003, and June 30, 2008, were included. The definition of ictal onset zone was made by comprehensive review of medical records, magnetic resonance imaging (MRI), data from video electroencephalography (EEG) monitoring, and invasive EEG monitoring if available. We comprehensively evaluated the time lag to injection and the image patterns of ictal SPECT using traditional visual analysis, statistical parametric mapping-assisted, and subtraction ictal SPECT coregistered to an MRI-assisted means of analysis. Image patterns were classified as localizing, lateralizing, and nonlateralizing. The whole number of patients was 99: 48 in the conventional group and 51 in the AAI group. The mean (SD) delay time to injection from seizure onset was 12.4+/-12.0 s in the group injected by our AAI method and 40.4+/-26.3 s in the group injected by the conventional method (P=0.000). The mean delay time to injection from seizure detection was 3.2+/-2.5 s in the group injected by the AAI method and 21.4+/-9.7 s in the group injected by the conventional method (P=0.000). The AAI method was superior to the conventional method in localizing the area of seizure onset (36 out of 51 with AAI method vs. 21 out of 48 with conventional method, P=0.009), especially in non-temporal lobe epilepsy (non-TLE) patients (17 out of 27 with AAI method vs. 3 out of 13 with conventional method, P=0.041), and in lateralizing the seizure onset hemisphere (47 out of 51 with AAI method vs. 33 out of 48 with conventional method, P=0.004). The AAI method was superior to the conventional method in reducing the time lag of tracer injection and in localizing and lateralizing the ictal onset zone, especially in patients with non-TLE.
From current-driven to neoclassically driven tearing modes.
Reimerdes, H; Sauter, O; Goodman, T; Pochelon, A
2002-03-11
In the TCV tokamak, the m/n = 2/1 island is observed in low-density discharges with central electron-cyclotron current drive. The evolution of its width has two distinct growth phases, one of which can be linked to a "conventional" tearing mode driven unstable by the current profile and the other to a neoclassical tearing mode driven by a perturbation of the bootstrap current. The TCV results provide the first clear observation of such a destabilization mechanism and reconcile the theory of conventional and neoclassical tearing modes, which differ only in the dominant driving term.
WE-EF-207-10: Striped Ratio Grids: A New Concept for Scatter Estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, S
2015-06-15
Purpose: To propose a new method for estimating scatter in x-ray imaging. We propose the “striped ratio grid,” an anti-scatter grid with alternating stripes of high scatter rejection (attained, for example, by high grid ratio) and low scatter rejection. To minimize artifacts, stripes are oriented parallel to the direction of the ramp filter. Signal discontinuities at the boundaries between stripes provide information on local scatter content, although these discontinuities are contaminated by variation in primary radiation. Methods: We emulated a striped ratio grid by imaging phantoms with two sequential CT scans, one with and one without a conventional grid, andmore » processed them together to mimic a striped ratio grid. Two phantoms were scanned with the emulated striped ratio grid and compared with a conventional anti-scatter grid and a fan-beam acquisition, which served as ground truth. A nonlinear image processing algorithm was developed to mitigate the problem of primary variation. Results: The emulated striped ratio grid reduced scatter more effectively than the conventional grid alone. Contrast is thereby improved in projection imaging. In CT imaging, cupping is markedly reduced. Artifacts introduced by the striped ratio grid appear to be minimal. Conclusion: Striped ratio grids could be a simple and effective evolution of conventional anti-scatter grids. Unlike several other approaches currently under investigation for scatter management, striped ratio grids require minimal computation, little new hardware (at least for systems which already use removable grids) and impose few assumptions on the nature of the object being scanned.« less
NASA Astrophysics Data System (ADS)
Yusa, Yasunori; Okada, Hiroshi; Yamada, Tomonori; Yoshimura, Shinobu
2018-04-01
A domain decomposition method for large-scale elastic-plastic problems is proposed. The proposed method is based on a quasi-Newton method in conjunction with a balancing domain decomposition preconditioner. The use of a quasi-Newton method overcomes two problems associated with the conventional domain decomposition method based on the Newton-Raphson method: (1) avoidance of a double-loop iteration algorithm, which generally has large computational complexity, and (2) consideration of the local concentration of nonlinear deformation, which is observed in elastic-plastic problems with stress concentration. Moreover, the application of a balancing domain decomposition preconditioner ensures scalability. Using the conventional and proposed domain decomposition methods, several numerical tests, including weak scaling tests, were performed. The convergence performance of the proposed method is comparable to that of the conventional method. In particular, in elastic-plastic analysis, the proposed method exhibits better convergence performance than the conventional method.
The space-time solution element method: A new numerical approach for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Scott, James R.; Chang, Sin-Chung
1995-01-01
This paper is one of a series of papers describing the development of a new numerical method for the Navier-Stokes equations. Unlike conventional numerical methods, the current method concentrates on the discrete simulation of both the integral and differential forms of the Navier-Stokes equations. Conservation of mass, momentum, and energy in space-time is explicitly provided for through a rigorous enforcement of both the integral and differential forms of the governing conservation laws. Using local polynomial expansions to represent the discrete primitive variables on each cell, fluxes at cell interfaces are evaluated and balanced using exact functional expressions. No interpolation or flux limiters are required. Because of the generality of the current method, it applies equally to the steady and unsteady Navier-Stokes equations. In this paper, we generalize and extend the authors' 2-D, steady state implicit scheme. A general closure methodology is presented so that all terms up through a given order in the local expansions may be retained. The scheme is also extended to nonorthogonal Cartesian grids. Numerous flow fields are computed and results are compared with known solutions. The high accuracy of the scheme is demonstrated through its ability to accurately resolve developing boundary layers on coarse grids. Finally, we discuss applications of the current method to the unsteady Navier-Stokes equations.
Precursor-Based Synthesis of Porous Colloidal Particles towards Highly Efficient Catalysts.
Zheng, Yun; Geng, Hongbo; Zhang, Yufei; Chen, Libao; Li, Cheng Chao
2018-04-02
In recent years, porous colloidal particles have found promising applications in catalytic fields, such as photocatalysis, electrocatalysis, industrial and automotive byproducts removal, as well as biomass upgrading. These applications are critical for alleviating the energy crisis and environmental pollution. Porous colloidal particles have remarkable specific areas and abundant reactive sites, which can significantly improve the mass/charge transport and reaction rate in catalysis. Precursor-based synthesis is among the most facile and widely-adopted methods to achieve monodisperse and homogeneous porous colloidal particles. In the current review, we briefly introduce the general catalytic applications of porous colloidal particles. The conventional precursor-based methods are reviewed to design state-of-the-art porous colloidal particles as highly efficient catalysts. The recent development of porous colloidal particles derived from metal-organic frameworks (MOFs), glycerates, carbonate precursors, and ion exchange methods are reviewed. In the end, the current concerns and future development of porous colloidal particles are outlined. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Izumi, Tatsuya; Hagiwara, Manabu; Hoshina, Takuya; Takeda, Hiroaki; Tsurumi, Takaaki
2012-08-01
We developed a possible method to determine both coefficients of piezoelectricity (d) and electrostriction (M) at the same time by a waveform analysis of current and vibration velocity in the resonance state. The waveforms of the current and vibration velocity were theoretically described using the equations of motion and piezoelectric constitutive equations, considering the dissipation effect. The dissipation factor of the d coefficient and M coefficient is dielectric loss tangent tan δ. The waveforms measured in all of the ceramics, such as Pb(Zr,Ti)O(3) (PZT), Pb(Mg,Nb)O(3) (PMN), and 0.8Pb(Mg(1/3)Nb2/3)O(3)-0.2PbTiO(3) (PMN-PT), were well fitted with the calculated waveform. This fitting produced both the d and M coefficients, which agreed with those determined via the conventional methods. Moreover, the respective contributions of both piezoelectricity and electrostriction to the d value determined in the resonance-antiresonance method were clarified.
NASA Astrophysics Data System (ADS)
Okawa, Tsutomu; Kaminishi, Tsukasa; Kojima, Yoshiyuki; Hirabayashi, Syuichi; Koizumi, Hisao
Business process modeling (BPM) is gaining attention as a measure of analysis and improvement of the business process. BPM analyses the current business process as an AS-IS model and solves problems to improve the current business and moreover it aims to create a business process, which produces values, as a TO-BE model. However, researches of techniques that connect the business process improvement acquired by BPM to the implementation of the information system seamlessly are rarely reported. If the business model obtained by BPM is converted into UML, and the implementation can be carried out by the technique of UML, we can expect the improvement in efficiency of information system implementation. In this paper, we describe a method of the system development, which converts the process model obtained by BPM into UML and the method is evaluated by modeling a prototype of a parts procurement system. In the evaluation, comparison with the case where the system is implemented by the conventional UML technique without going via BPM is performed.
Quick, Jacob A; MacIntyre, Allan D; Barnes, Stephen L
2014-02-01
Surgical airway creation has a high potential for disaster. Conventional methods can be cumbersome and require special instruments. A simple method utilizing three steps and readily available equipment exists, but has yet to be adequately tested. Our objective was to compare conventional cricothyroidotomy with the three-step method utilizing high-fidelity simulation. Utilizing a high-fidelity simulator, 12 experienced flight nurses and paramedics performed both methods after a didactic lecture, simulator briefing, and demonstration of each technique. Six participants performed the three-step method first, and the remaining 6 performed the conventional method first. Each participant was filmed and timed. We analyzed videos with respect to the number of hand repositions, number of airway instrumentations, and technical complications. Times to successful completion were measured from incision to balloon inflation. The three-step method was completed faster (52.1 s vs. 87.3 s; p = 0.007) as compared with conventional surgical cricothyroidotomy. The two methods did not differ statistically regarding number of hand movements (3.75 vs. 5.25; p = 0.12) or instrumentations of the airway (1.08 vs. 1.33; p = 0.07). The three-step method resulted in 100% successful airway placement on the first attempt, compared with 75% of the conventional method (p = 0.11). Technical complications occurred more with the conventional method (33% vs. 0%; p = 0.05). The three-step method, using an elastic bougie with an endotracheal tube, was shown to require fewer total hand movements, took less time to complete, resulted in more successful airway placement, and had fewer complications compared with traditional cricothyroidotomy. Published by Elsevier Inc.
Yuan, Jing; Liu, Fenghua
2017-01-01
Objective The present study aimed to undertake a review of available evidence assessing whether time-lapse imaging (TLI) has favorable outcomes for embryo incubation and selection compared with conventional methods in clinical in vitro fertilization (IVF). Methods Using PubMed, EMBASE, Cochrane library and ClinicalTrial.gov up to February 2017 to search for randomized controlled trials (RCTs) comparing TLI versus conventional methods. Both studies randomized women and oocytes were included. For studies randomized women, the primary outcomes were live birth and ongoing pregnancy, the secondary outcomes were clinical pregnancy and miscarriage; for studies randomized oocytes, the primary outcome was blastocyst rate, the secondary outcome was good quality embryo on Day 2/3. Subgroup analysis was conducted based on different incubation and embryo selection between groups. Results Ten RCTs were included, four randomized oocytes and six randomized women. For oocyte-based review, the pool-analysis observed no significant difference between TLI group and control group for blastocyst rate [relative risk (RR) 1.08, 95% CI 0.94–1.25, I2 = 0%, two studies, including 1154 embryos]. The quality of evidence was moderate for all outcomes in oocyte-based review. For woman-based review, only one study provided live birth rate (RR 1,23, 95% CI 1.06–1.44,I2 N/A, one study, including 842 women), the pooled result showed no significant difference in ongoing pregnancy rate (RR 1.04, 95% CI 0.80–1.36, I2 = 59%, four studies, including 1403 women) between two groups. The quality of the evidence was low or very low for all outcomes in woman-based review. Conclusions Currently there is insufficient evidence to support that TLI is superior to conventional methods for human embryo incubation and selection. In consideration of the limitations and flaws of included studies, more well designed RCTs are still in need to comprehensively evaluate the effectiveness of clinical TLI use. PMID:28570713
An overview of nanomaterials applied for removing dyes from wastewater.
Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie
2017-07-01
Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.
Managing Sustainable Demand-side Infrastructure for Power System Ancillary Services
NASA Astrophysics Data System (ADS)
Parkinson, Simon Christopher
Widespread access to renewable electricity is seen as a viable method to mitigate carbon emissions, although problematic are the issues associated with the integration of the generation systems within current power system configurations. Wind power plants are the primary large-scale renewable generation technology applied globally, but display considerable short-term supply variability that is difficult to predict. Power systems are currently not designed to operate under these conditions, and results in the need to increase operating reserve in order to guarantee stability. Often, operating conventional generation as reserve is both technically and economically inefficient, which can overshadow positive benefits associated with renewable energy exploitation. The purpose of this thesis is to introduce and assess an alternative method of enhancing power system operations through the control of electric loads. In particular, this thesis focuses on managing highly-distributed sustainable demand-side infrastructure, in the form of heat pumps, electric vehicles, and electrolyzers, as dispatchable short-term energy balancing resources. The main contribution of the thesis is an optimal control strategy capable of simultaneously balancing grid- and demand-side objectives. The viability of the load control strategy is assessed through model-based simulations that explicitly track end-use functionality of responsive devices within a power systems analysis typically implemented to observe the effects of integrated wind energy systems. Results indicate that there is great potential for the proposed method to displace the need for increased reserve capacity in systems considering a high penetration of wind energy, thereby allowing conventional generation to operate more efficiently and avoid the need for possible capacity expansions.
Speckle-modulation for speckle reduction in optical coherence tomography
NASA Astrophysics Data System (ADS)
Liba, Orly; Lew, Matthew D.; SoRelle, Elliott D.; Dutta, Rebecca; Sen, Debasish; Moshfeghi, Darius M.; Chu, Steven; de la Zerda, Adam
2018-02-01
Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise, known as speckle noise, which imposes significant limitations on its diagnostic capabilities. Here we show Speckle- Modulating OCT (SM-OCT), a method based purely on light manipulation, which can remove speckle noise, including noise originating from sample multiple back-scattering. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns, without compromising spatial resolution. The uncorrelated speckle patterns are created by scrambling the phase of the light with sub-resolution features using a moving ground-glass diffuser in the optical path of the sample arm. This method can be implemented in existing OCTs as a relatively low-cost add-on. SM-OCT speckle statistics follow the expected decrease in speckle contrast as the number of averaged scans increases. Within a scattering phantom, SM-OCT provides a 2.5-fold increase in effective resolution compared to conventional OCT. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin - features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods. Our results indicate that SM-OCT has the potential to improve the current diagnostic and intra-operative capabilities of OCT.
The integration of astro-geodetic data observed with ACSYS to the local geoid models Istanbul-Turkey
NASA Astrophysics Data System (ADS)
Halicioglu, Kerem; Ozludemir, M. Tevfik; Deniz, Rasim; Ozener, Haluk; Albayrak, Muge; Ulug, Rasit; Basoglu, Burak
2017-04-01
Astro-geodetic deflections of the vertical components provide accurate and valuable information of Earth's gravity filed. Conventional methods require considerable effort and time whereas new methods, namely digital zenith camera systems (DZCS), have been designed to eliminate drawbacks of the conventional methods, such as observer dependent errors, long observation times, and to improve the observation accuracy. The observation principle is based on capturing star images near zenithal direction to determine astronomical coordinates of the station point with the integration of CCD, telescope, tiltmeters, and GNSS devices. In Turkey a new DZCS have been designed and tested on control network located in Istanbul, of which the geoid height differences were known with the accuracy of ±3.5 cm. Astro-geodetic Camera System (ACSYS) was used to determine the deflections of the vertical components with an accuracy of ±0.1 - 0.3 arc seconds, and results were compared with geoid height differences using astronomical levelling procedure. The results have also been compared with the ones calculated from global geopotential models. In this study the recent results of the first digital zenith camera system of Turkey are presented and the future studies are introduced such as the current developments of the system including hardware and software upgrades as well as the new observation strategy of the ACSYS. We also discuss the contribution and integration of the astro-geodetic deflections of the vertical components to the geoid determination studies in the light of information of current ongoing projects being operated in Turkey.
Dynamical sensitivity control of a single-spin quantum sensor.
Lazariev, Andrii; Arroyo-Camejo, Silvia; Rahane, Ganesh; Kavatamane, Vinaya Kumar; Balasubramanian, Gopalakrishnan
2017-07-26
The Nitrogen-Vacancy (NV) defect in diamond is a unique quantum system that offers precision sensing of nanoscale physical quantities at room temperature beyond the current state-of-the-art. The benchmark parameters for nanoscale magnetometry applications are sensitivity, spectral resolution, and dynamic range. Under realistic conditions the NV sensors controlled by conventional sensing schemes suffer from limitations of these parameters. Here we experimentally show a new method called dynamical sensitivity control (DYSCO) that boost the benchmark parameters and thus extends the practical applicability of the NV spin for nanoscale sensing. In contrast to conventional dynamical decoupling schemes, where π pulse trains toggle the spin precession abruptly, the DYSCO method allows for a smooth, analog modulation of the quantum probe's sensitivity. Our method decouples frequency selectivity and spectral resolution unconstrained over the bandwidth (1.85 MHz-392 Hz in our experiments). Using DYSCO we demonstrate high-accuracy NV magnetometry without |2π| ambiguities, an enhancement of the dynamic range by a factor of 4 · 10 3 , and interrogation times exceeding 2 ms in off-the-shelf diamond. In a broader perspective the DYSCO method provides a handle on the inherent dynamics of quantum systems offering decisive advantages for NV centre based applications notably in quantum information and single molecule NMR/MRI.
Wu, John Z; Cutlip, Robert G; Welcome, Daniel; Dong, Ren G
2006-01-01
Knowledge of viscoelastic properties of soft tissues is essential for the finite element modelling of the stress/strain distributions in finger-pad during vibratory loading, which is important in exploring the mechanism of hand-arm vibration syndrome. In conventional procedures, skin and subcutaneous tissue have to be separated for testing the viscoelastic properties. In this study, a novel method has been proposed to simultaneously determine the viscoelastic properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. A mathematical approach has been derived to obtain the creep and relaxation characteristics of skin and subcutaneous tissue using uniaxial stress relaxation data of skin/subcutaneous composite specimens. The micro-structures of collagen fiber networks in the soft tissue, which underline the tissue mechanical characteristics, will be intact in the proposed method. Therefore, the viscoelastic properties of soft tissues obtained using the proposed method would be more physiologically relevant than those obtained using the conventional method. The proposed approach has been utilized to measure the viscoelastic properties of soft tissues of pig. The relaxation curves of pig skin and subcutaneous tissue obtained in the current study agree well with those in literature. Using the proposed approach, reliable material properties of soft tissues can be obtained in a cost- and time-efficient manner, which simultaneously improves the physiological relevance.
Rapid column heating method for subcritical water chromatography.
Fogwill, Michael O; Thurbide, Kevin B
2007-01-19
A novel resistive heating method is presented for subcritical water chromatography (SWC) that provides higher column heating rates than those conventionally obtained from temperature-programmed gas chromatography (GC) convection ovens. Since the polarity of water reduces dramatically with increasing temperature, SWC employs column heating to achieve gradient elution. As such, the rate at which the mobile phase is heated directly impacts the magnitude of such gradients applied in SWC. Data from the current study demonstrate that the maximum column heating rate attainable in a typical SWC apparatus (i.e. using a GC convection oven) is around 10 degrees C/min, even at instrument oven settings of over three times this value. Conversely, by wrapping the separation column with ceramic insulation and a resistively heated wire, the column heating rates are increased five-fold. As a result, elution times can be greatly decreased in SWC employing gradients. Separations of standard alcohol test mixtures demonstrate that the retention time of the latest eluting component decreases by 35 to 50% using the prototype method. Additionally, solute retention times in this mode deviate by less than 1% RSD over several trials, which compares very well to those obtained using a conventional GC convection oven. Results suggest that the developed method can be a useful alternative heating technique in SWC.
Particle image velocimetry of a flow at a vaulted wall.
Kertzscher, U; Berthe, A; Goubergrits, L; Affeld, K
2008-05-01
The assessment of flow along a vaulted wall (with two main finite radii of curvature) is of general interest; in biofluid mechanics, it is of special interest. Unlike the geometry of flows in engineering, flow geometry in nature is often determined by vaulted walls. Specifically the flow adjacent to the wall of blood vessels is particularly interesting since this is where either thrombi are formed or atherosclerosis develops. Current measurement methods have problems assessing the flow along vaulted walls. In contrast with conventional particle image velocimetry (PIV), this new method, called wall PIV, allows the investigation of a flow adjacent to transparent flexible surfaces with two finite radii of curvature. Using an optical method which allows the observation of particles up to a predefined depth enables the visualization solely of the boundary layer flow. This is accomplished by adding a specific dye to the fluid which absorbs the monochromatic light used to illuminate the region of observation. The obtained images can be analysed with the methods of conventional PIV and result in a vector field of the velocities along the wall. With wall PIV, the steady flow adjacent to the vaulted wall of a blood pump was investigated and the resulting velocity field as well as the velocity fluctuations were assessed.
Woolley, Torres; Cristobal, Fortunato; Siega-Sur, Jusie; Ross, Simone; Neusy, Andre-Jacques; Halili, Servando; Reeve, Carole
2018-02-01
Hundreds of millions of people worldwide lack access to quality health services, largely because of geographic and socioeconomic maldistribution of qualified practitioners. This study describes differences between the practice locations of Philippines medical graduates from two 'socially accountable, community-engaged' health professional education (SAHPE) schools and the practice locations of graduates from two 'conventionally trained' medical schools located in the same respective geographic regions. Licensed medical graduates were currently practising in the Philippines and had been practising for at least 6 months. Graduates were from two Philippines SAHPE schools (Ateneo de Zamboanga University-School of Medicine (ADZU-SOM) on the Zamboanga Peninsula (n=212) and the University of the Philippines Manila-School of Health Sciences (SHS-Palo) in Eastern Visayas (n=71), and from two 'conventional' medical schools Methods: Current graduate practice locations in municipalities or cities were linked with their respective population size and socioeconomic income class, and geocoded using Geographical Information System software onto a geospatial map of the Philippines. Bivariate analysis compared the population size and socioeconomic class of communities where the SAHPE medical graduates practised to communities where 'conventional' medical school graduates practised. Thirty-one percent of ADZU-SOM medical graduates practised in communities <100 000 population versus 7% of graduates from the conventional school in the Zamboanga region (p<0.001), while 61% of SHS-Palo medical graduates practised in communities <100 000 population versus 12% of graduates from the conventional school in the Visayas region (p<0.001). Twenty-seven percent of ADZU-SOM graduates practised in lower income category communities (categories 2-6) versus 8% of graduates from the conventional school in the same region (p<0.001), while 49% of SHS-Palo graduates practised in lower income category communities (categories 2-6) versus 11% of graduates from the conventional school in the same region (p<0.001). SAHPE has contributed to increased medical coverage across rural and/or economically disadvantaged areas in two Philippines regions. The extensive community-based medical student placements associated with SAHPE likely play a significant role in graduates choosing to practice in rural and/or economically disadvantaged communities. Governments experiencing medical workforce maldistributions similar to those in the Philippines should consider SAHPE as a potentially cost-effective strategy in recruiting and retaining health graduates to underserved areas.
Momose, Mitsuhiro; Takaki, Akihiro; Matsushita, Tsuyoshi; Yanagisawa, Shin; Yano, Kesato; Miyasaka, Tadashi; Ogura, Yuka; Kadoya, Masumi
2011-01-01
AQCEL enables automatic reconstruction of single-photon emission computed tomogram (SPECT) without image degradation and quantitative analysis of cerebral blood flow (CBF) after the input of simple parameters. We ascertained the usefulness and quality of images obtained by the application software AQCEL in clinical practice. Twelve patients underwent brain perfusion SPECT using technetium-99m ethyl cysteinate dimer at rest and after acetazolamide (ACZ) loading. Images reconstructed using AQCEL were compared with those reconstructed using conventional filtered back projection (FBP) method for qualitative estimation. Two experienced nuclear medicine physicians interpreted the image quality using the following visual scores: 0, same; 1, slightly superior; 2, superior. For quantitative estimation, the mean CBF values of the normal hemisphere of the 12 patients using ACZ calculated by the AQCEL method were compared with those calculated by the conventional method. The CBF values of the 24 regions of the 3-dimensional stereotaxic region of interest template (3DSRT) calculated by the AQCEL method at rest and after ACZ loading were compared to those calculated by the conventional method. No significant qualitative difference was observed between the AQCEL and conventional FBP methods in the rest study. The average score by the AQCEL method was 0.25 ± 0.45 and that by the conventional method was 0.17 ± 0.39 (P = 0.34). There was a significant qualitative difference between the AQCEL and conventional methods in the ACZ loading study. The average score for AQCEL was 0.83 ± 0.58 and that for the conventional method was 0.08 ± 0.29 (P = 0.003). During quantitative estimation using ACZ, the mean CBF values of 12 patients calculated by the AQCEL method were 3-8% higher than those calculated by the conventional method. The square of the correlation coefficient between these methods was 0.995. While comparing the 24 3DSRT regions of 12 patients, the squares of the correlation coefficient between AQCEL and conventional methods were 0.973 and 0.986 for the normal and affected sides at rest, respectively, and 0.977 and 0.984 for the normal and affected sides after ACZ loading, respectively. The quality of images reconstructed using the application software AQCEL were superior to that obtained using conventional method after ACZ loading, and high correlations were shown in quantity at rest and after ACZ loading. This software can be applied to clinical practice and is a useful tool for improvement of reproducibility and throughput.
Machining and characterization of self-reinforced polymers
NASA Astrophysics Data System (ADS)
Deepa, A.; Padmanabhan, K.; Kuppan, P.
2017-11-01
This Paper focuses on obtaining the mechanical properties and the effect of the different machining techniques on self-reinforced composites sample and to derive the best machining method with remarkable properties. Each sample was tested by the Tensile and Flexural tests, fabricated using hot compaction test and those loads were calculated. These composites are machined using conventional methods because of lack of advanced machinery in most of the industries. The advanced non-conventional methods like Abrasive water jet machining were used. These machining techniques are used to get the better output for the composite materials with good mechanical properties compared to conventional methods. But the use of non-conventional methods causes the changes in the work piece, tool properties and more economical compared to the conventional methods. Finding out the best method ideal for the designing of these Self Reinforced Composites with and without defects and the use of Scanning Electron Microscope (SEM) analysis for the comparing the microstructure of the PP and PE samples concludes our process.
ERIC Educational Resources Information Center
Woods, Kevin; Bond, Caroline
2014-01-01
In 2014, the 25th anniversary of the United Nations Convention on the Rights of the Child presents an opportunity for school psychology to evaluate its achievements relevant to the Convention, as well as its current and future strategic adherence to the Convention's principles. With analysis of key school psychology documentation from the UK, it…
The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges.
Masneuf-Pomarede, Isabelle; Bely, Marina; Marullo, Philippe; Albertin, Warren
2015-01-01
Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines.
Human health implications of organic food and organic agriculture: a comprehensive review.
Mie, Axel; Andersen, Helle Raun; Gunnarsson, Stefan; Kahl, Johannes; Kesse-Guyot, Emmanuelle; Rembiałkowska, Ewa; Quaglio, Gianluca; Grandjean, Philippe
2017-10-27
This review summarises existing evidence on the impact of organic food on human health. It compares organic vs. conventional food production with respect to parameters important to human health and discusses the potential impact of organic management practices with an emphasis on EU conditions. Organic food consumption may reduce the risk of allergic disease and of overweight and obesity, but the evidence is not conclusive due to likely residual confounding, as consumers of organic food tend to have healthier lifestyles overall. However, animal experiments suggest that identically composed feed from organic or conventional production impacts in different ways on growth and development. In organic agriculture, the use of pesticides is restricted, while residues in conventional fruits and vegetables constitute the main source of human pesticide exposures. Epidemiological studies have reported adverse effects of certain pesticides on children's cognitive development at current levels of exposure, but these data have so far not been applied in formal risk assessments of individual pesticides. Differences in the composition between organic and conventional crops are limited, such as a modestly higher content of phenolic compounds in organic fruit and vegetables, and likely also a lower content of cadmium in organic cereal crops. Organic dairy products, and perhaps also meats, have a higher content of omega-3 fatty acids compared to conventional products. However, these differences are likely of marginal nutritional significance. Of greater concern is the prevalent use of antibiotics in conventional animal production as a key driver of antibiotic resistance in society; antibiotic use is less intensive in organic production. Overall, this review emphasises several documented and likely human health benefits associated with organic food production, and application of such production methods is likely to be beneficial within conventional agriculture, e.g., in integrated pest management.
Woods, Scott W; Morgenstern, Hal; Saksa, John R; Walsh, Barbara C; Sullivan, Michelle C; Money, Roy; Hawkins, Keith A; Gueorguieva, Ralitza V; Glazer, William M
2010-04-01
Most previous studies of the incidence of tardive dyskinesia with atypical antipsychotics compared with conventional antipsychotics have not had tardive dyskinesia as their primary focus. The current study aimed to compare the incidence of tardive dyskinesia with atypical vs conventional antipsychotics using methods similar to those from a previous prospective cohort study at our site in the 1980s. Three hundred fifty-two initially tardive dyskinesia-free psychiatric outpatients (diagnosed at baseline using the Structured Clinical Interview for DSM-IV) were examined for a new diagnosis of tardive dyskinesia (using the Abnormal Involuntary Movement Scale and Glazer-Morgenstern criteria) every 6 months for up to 4 years at a community mental health center. At baseline, subjects were receiving conventional antipsychotics only (23%), atypicals only (64%), or both (14%). Only 26 subjects had never received conventional antipsychotics. Baseline evaluations were conducted from November 2000 through May 2003. Follow-ups were conducted through February 2005. Compared with subjects treated with conventional antipsychotics alone since the previous visit, the adjusted tardive dyskinesia incidence rate-ratio for subjects treated with atypical antipsychotics alone was 0.68 (95% CI, 0.29-1.64). The incidence and prevalence of tardive dyskinesia was similar to previous findings at this site in the 1980s. The incidence of tardive dyskinesia with recent exposure to atypical antipsychotics alone was more similar to that for conventional antipsychotics than in most previous studies. Despite high penetration of atypical antipsychotics into clinical practice, the incidence and prevalence of tardive dyskinesia appeared relatively unchanged since the 1980s. Clinicians should continue to monitor for tardive dyskinesia, and researchers should continue to pursue efforts to treat or prevent it. Copyright 2010 Physicians Postgraduate Press, Inc.
Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach.
Moura, S; Cerqueira, L; Almeida, A
2018-05-13
The fungus Aspergillus fumigatus is the main pathogenic agent responsible for invasive pulmonary aspergillosis. Immunocompromised patients are more likely to develop this pathology due to a decrease in the immune system's defense capacity. Despite of the low occurrence of invasive pulmonary aspergillosis, this pathology presents high rates of mortality, mostly due to late and unspecific diagnosis. Currently, the diagnostic methods used to detect this fungal infection are conventional mycological examination (direct microscopic examination, histological examination, and culture), imaging, non-culture-based tests for the detection of galactomannan, β(1,3)-glucan and an extracellular glycoprotein, and molecular tests based on PCR. However, most of these methods do not detect the species A. fumigatus; they only allow the identification of genus Aspergillus. The development of more specific detection methods is of extreme importance. Fluorescent in situ hybridization-based molecular methods can be a good alternative to achieve this purpose. In this review, it is intended to point out that most of the methods used for the diagnosis of invasive pulmonary aspergillosis do not allow to detect the fungus at the species level and that fluorescence in situ hybridization-based molecular method will be a promising approach in the A. fumigatus detection.
Rotating Reverse Osmosis for Wastewater Reuse
NASA Technical Reports Server (NTRS)
Lueptow, Richard M.; Yoon, Yeomin; Pederson, Cynthia
2004-01-01
Membrane filtration such as Reverse Osmosis (RO) removes ions, proteins, and organic chemicals which are generally very difficult to remove using conventional treatment. Moreover, membrane is an absolute filtration method, so its treatment efficiency and performance are stable and predictable. We are currently working on the development of rotating RO membrane system. Dynamic rotating membrane filtration, which can produce a high shear rate, may be helpful to obtain high rejection of organic pollutants.The goal of our current work is to improve the flux of the device by increasing pressure by a factor of 3 to 4. In addition, the rejections for a wider variety of inorganic and organic compounds typically found in space mission wastewater are measured.
Bowler, Russell P; Hansel, Nadia N; Jacobson, Sean; Graham Barr, R; Make, Barry J; Han, MeiLan K; O'Neal, Wanda K; Oelsner, Elizabeth C; Casaburi, Richard; Barjaktarevic, Igor; Cooper, Chris; Foreman, Marilyn; Wise, Robert A; DeMeo, Dawn L; Silverman, Edwin K; Bailey, William; Harrington, Kathleen F; Woodruff, Prescott G; Drummond, M Bradley
2017-12-01
Electronic cigarettes (e-cigarettes) are battery-operated nicotine-delivery devices used by some smokers as a cessation tool as well as by never smokers. To determine the usage of e-cigarettes in older adults at risk for or with chronic obstructive pulmonary disease (COPD). Prospective cohorts. COPDGene (N = 3536) and SPIROMICS (N = 1060) subjects who were current or former smokers aged 45-80. Participants were surveyed to determine whether e-cigarette use was associated with longitudinal changes in COPD progression or smoking habits. From 2010 to 2016, participants who had ever used e-cigarettes steadily increased to 12-16%, but from 2014 to 2016 current use was stable at ~5%. E-cigarette use in African-Americans (AA) and whites was similar; however, AA were 1.8-2.9 times as likely to use menthol-flavored e-cigarettes. Current e-cigarette and conventional cigarette users had higher nicotine dependence and consumed more nicotine than those who smoked only conventional cigarettes. E-cigarette users had a heavier conventional cigarette smoking history and worse respiratory health, were less likely to reduce or quit conventional cigarette smoking, had higher nicotine dependence, and were more likely to report chronic bronchitis and exacerbations. Ever e-cigarette users had more rapid decline in lung function, but this trend did not persist after adjustment for persistent conventional cigarette smoking. E-cigarette use, which is common in adults with or at risk for COPD, was associated with worse pulmonary-related health outcomes, but not with cessation of smoking conventional cigarettes. Although this was an observational study, we find no evidence supporting the use of e-cigarettes as a harm reduction strategy among current smokers with or at risk for COPD.
Volumetric measurement of human red blood cells by MOSFET-based microfluidic gate.
Guo, Jinhong; Ai, Ye; Cheng, Yuanbing; Li, Chang Ming; Kang, Yuejun; Wang, Zhiming
2015-08-01
In this paper, we present a MOSFET-based (metal oxide semiconductor field-effect transistor) microfluidic gate to characterize the translocation of red blood cells (RBCs) through a gate. In the microfluidic system, the bias voltage modulated by the particles or biological cells is connected to the gate of MOSFET. The particles or cells can be detected by monitoring the MOSFET drain current instead of DC/AC-gating method across the electronic gate. Polystyrene particles with various standard sizes are utilized to calibrate the proposed device. Furthermore, RBCs from both adults and newborn blood sample are used to characterize the performance of the device in distinguishing the two types of RBCs. As compared to conventional DC/AC current modulation method, the proposed device demonstrates a higher sensitivity and is capable of being a promising platform for bioassay analysis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mallet, Laurent; Gisonni-Lex, Lucy
2014-01-01
From an industrial perspective, the conventional in vitro and in vivo assays used for detection of viral contaminants have shown their limitations, as illustrated by the unfortunate detection of porcine circovirus contamination in a licensed rotavirus vaccine. This contamination event illustrates the gaps within the existing adventitious agent strategy and the potential use of new broader molecular detection methods. This paper serves to summarize current testing approaches and challenges, along with opportunities for the use of these new technologies. Testing of biological products is required to ensure the safety of patients. Recently, a licensed vaccine was found to be contaminated with a virus. This contamination did not cause a safety concern to the patients; however, it highlights the need for using new testing methods to control our biological products. This paper introduces the benefits of these new tests and outlines the challenges with the current tests. © PDA, Inc. 2014.
Gamazo-Real, José Carlos; Vázquez-Sánchez, Ernesto; Gómez-Gil, Jaime
2010-01-01
This paper provides a technical review of position and speed sensorless methods for controlling Brushless Direct Current (BLDC) motor drives, including the background analysis using sensors, limitations and advances. The performance and reliability of BLDC motor drivers have been improved because the conventional control and sensing techniques have been improved through sensorless technology. Then, in this paper sensorless advances are reviewed and recent developments in this area are introduced with their inherent advantages and drawbacks, including the analysis of practical implementation issues and applications. The study includes a deep overview of state-of-the-art back-EMF sensing methods, which includes Terminal Voltage Sensing, Third Harmonic Voltage Integration, Terminal Current Sensing, Back-EMF Integration and PWM strategies. Also, the most relevant techniques based on estimation and models are briefly analysed, such as Sliding-mode Observer, Extended Kalman Filter, Model Reference Adaptive System, Adaptive observers (Full-order and Pseudoreduced-order) and Artificial Neural Networks.
Measurement of Creep Properties of Ultra-High-Temperature Materials by a Novel Non-Contact Technique
NASA Technical Reports Server (NTRS)
Hyers, Robert W.; Lee, Jonghyun; Rogers, Jan R.; Liaw, Peter K.
2007-01-01
A non-contact technique for measuring the creep properties of materials has been developed and validated as part of a collaboration among the University of Massachusetts, NASA Marshall Space Flight Center Electrostatic Levitation Facility (ESL), and the University of Tennessee. This novel method has several advantages over conventional creep testing. The sample is deformed by the centripetal acceleration from the rapid rotation, and the deformed shapes are analyzed to determine the strain. Since there is no contact with grips, there is no theoretical maximum temperature and no concern about chemical compatibility. Materials may be tested at the service temperature even for extreme environments such as rocket nozzles, or above the service temperature for accelerated testing of materials for applications such as jet engines or turbopumps for liquid-fueled engines. The creep measurements have been demonstrated to 2400 C with niobium, while the test facility, the NASA MSFC ESL, has processed materials up to 3400 C. Furthermore, the ESL creep method employs a distribution of stress to determine the stress exponent from a single test, versus the many tests required by conventional methods. Determination of the stress exponent from the ESL creep tests requires very precise measurement of the surface shape of the deformed sample for comparison to deformations predicted by finite element models for different stress exponents. An error analysis shows that the stress exponent can be determined to about 1% accuracy with the current methods and apparatus. The creep properties of single-crystal niobium at 1985 C showed excellent agreement with conventional tests performed according to ASTM Standard E-139. Tests on other metals, ceramics, and composites relevant to rocket propulsion and turbine engines are underway.
NASA Astrophysics Data System (ADS)
Green, S. J.; Tamburello, N.; Miller, S. E.; Akins, J. L.; Côté, I. M.
2013-06-01
A standard approach to improving the accuracy of reef fish population estimates derived from underwater visual censuses (UVCs) is the application of species-specific correction factors, which assumes that a species' detectability is constant under all conditions. To test this assumption, we quantified detection rates for invasive Indo-Pacific lionfish ( Pterois volitans and P. miles), which are now a primary threat to coral reef conservation throughout the Caribbean. Estimates of lionfish population density and distribution, which are essential for managing the invasion, are currently obtained through standard UVCs. Using two conventional UVC methods, the belt transect and stationary visual census (SVC), we assessed how lionfish detection rates vary with lionfish body size and habitat complexity (measured as rugosity) on invaded continuous and patch reefs off Cape Eleuthera, the Bahamas. Belt transect and SVC surveys performed equally poorly, with both methods failing to detect the presence of lionfish in >50 % of surveys where thorough, lionfish-focussed searches yielded one or more individuals. Conventional methods underestimated lionfish biomass by ~200 %. Crucially, detection rate varied significantly with both lionfish size and reef rugosity, indicating that the application of a single correction factor across habitats and stages of invasion is unlikely to accurately characterize local populations. Applying variable correction factors that account for site-specific lionfish size and rugosity to conventional survey data increased estimates of lionfish biomass, but these remained significantly lower than actual biomass. To increase the accuracy and reliability of estimates of lionfish density and distribution, monitoring programs should use detailed area searches rather than standard visual survey methods. Our study highlights the importance of accounting for sources of spatial and temporal variation in detection to increase the accuracy of survey data from coral reef systems.
Amor, Aranzazu; Rodriguez, Esperanza; Saugar, José M; Arroyo, Ana; López-Quintana, Beatriz; Abera, Bayeh; Yimer, Mulat; Yizengaw, Endalew; Zewdie, Derejew; Ayehubizu, Zimman; Hailu, Tadesse; Mulu, Wondemagegn; Echazú, Adriana; Krolewieki, Alejandro J; Aparicio, Pilar; Herrador, Zaida; Anegagrie, Melaku; Benito, Agustín
2016-12-01
Soil-transmitted helminthiases (hookworms, Ascaris lumbricoides and Trichuris trichiura) are extremely prevalent in school-aged children living in poor sanitary conditions. Recent epidemiological data suggest that Strongyloides stercoralis is highly unreported. However, accurate data are essential for conducting interventions aimed at introducing control and elimination programmes. We conducted a cross-sectional survey of 396 randomly selected school-aged children in Amhara region in rural area in north-western Ethiopia, to assess the prevalence of S. stercoralis and other intestinal helminths. We examined stools using three techniques: conventional stool concentration; and two S. stercoralis-specific methods, i.e. the Baermann technique and polymerase chain reaction. The diagnostic accuracy of these three methods was then compared. There was an overall prevalence of helminths of 77.5%, with distribution differing according to school setting. Soil-transmitted helminths were recorded in 69.2%. Prevalence of S. stercoralis and hookworm infection was 20.7 and 54.5%, respectively, and co-infection was detected in 16.3% of cases. Schistosoma mansoni had a prevalence of 15.7%. Prevalence of S. stercoralis was shown 3.5% by the conventional method, 12.1% by the Baermann method, and 13.4% by PCR, which thus proved to be the most sensitive. Our results suggest that S. stercoralis could be overlooked and neglected in Ethiopia, if studies of soil-transmitted helminths rely on conventional diagnostic techniques alone. A combination of molecular and stool microscopy techniques yields a significantly higher prevalence. In view of the fact that current control policies for triggering drug administration are based on parasite prevalence levels, a comprehensive diagnostic approach should instead be applied to ensure comprehensive control of helminth infections.
Gallo, Monica; Vitulano, Manuela; Andolfi, Anna; DellaGreca, Marina; Conte, Esterina; Ciaravolo, Martina; Naviglio, Daniele
2017-06-01
Stevioside and rebaudioside A are the main diterpene glycosides present in the leaves of the Stevia rebaudiana plant, which is used in the production of foods and low-calorie beverages. The difficulties associated with their extraction and purification are currently a problem for the food processing industries. The objective of this study was to develop an effective and economically viable method to obtain a high-quality product while trying to overcome the disadvantages derived from the conventional transformation processes. For this reason, extractions were carried out using a conventional maceration (CM) and a cyclically pressurized extraction known as rapid solid-liquid dynamic extraction (RSLDE) by the Naviglio extractor (NE). After only 20 min of extraction using the NE, a quantity of rebaudioside A and stevioside equal to 1197.8 and 413.6 mg/L was obtained, respectively, while for the CM, the optimum time was 90 min. From the results, it can be stated that the extraction process by NE and its subsequent purification developed in this study is a simple, economical, environmentally friendly method for producing steviol glycosides. Therefore, this method constitutes a valid alternative to conventional extraction by reducing the extraction time and the consumption of toxic solvents and favouring the use of the extracted metabolites as food additives and/or nutraceuticals. As an added value and of local interest, the experiment was carried out on stevia leaves from the Benevento area (Italy), where a high content of rebaudioside A was observed, which exhibits a sweet taste compared to stevioside, which has a significant bitter aftertaste.
Intelligent voltage control strategy for three-phase UPS inverters with output LC filter
NASA Astrophysics Data System (ADS)
Jung, J. W.; Leu, V. Q.; Dang, D. Q.; Do, T. D.; Mwasilu, F.; Choi, H. H.
2015-08-01
This paper presents a supervisory fuzzy neural network control (SFNNC) method for a three-phase inverter of uninterruptible power supplies (UPSs). The proposed voltage controller is comprised of a fuzzy neural network control (FNNC) term and a supervisory control term. The FNNC term is deliberately employed to estimate the uncertain terms, and the supervisory control term is designed based on the sliding mode technique to stabilise the system dynamic errors. To improve the learning capability, the FNNC term incorporates an online parameter training methodology, using the gradient descent method and Lyapunov stability theory. Besides, a linear load current observer that estimates the load currents is used to exclude the load current sensors. The proposed SFNN controller and the observer are robust to the filter inductance variations, and their stability analyses are described in detail. The experimental results obtained on a prototype UPS test bed with a TMS320F28335 DSP are presented to validate the feasibility of the proposed scheme. Verification results demonstrate that the proposed control strategy can achieve smaller steady-state error and lower total harmonic distortion when subjected to nonlinear or unbalanced loads compared to the conventional sliding mode control method.
Transverse tripolar spinal cord stimulation: theoretical performance of a dual channel system.
Struijk, J J; Holsheimer, J
1996-07-01
A new approach to spinal cord stimulation is presented, by which several serious problems of conventional methods can be solved. A transverse tripolar electrode with a dual-channel voltage stimulator is evaluated theoretically by means of a volume conductor model, combined with nerve fibre models. The simulations predict that a high degree of freedom in the control of activation of dorsal spinal pathways may be obtained with the described system. This implies an easier control of paraesthesia coverage of skin areas and the possibility to correct undesired paraesthesia patterns, caused by lead migration, tissue growth, or anatomical asymmetries, for example, without surgical intervention. It will also be possible to preferentially activate either dorsal column or dorsal root fibres, which has some important clinical advantages. Compared to conventional stimulation systems, the new system has a relatively high current drain.
AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications
NASA Astrophysics Data System (ADS)
Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.
2017-12-01
This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.
Elliptic surface grid generation in three-dimensional space
NASA Technical Reports Server (NTRS)
Kania, Lee
1992-01-01
A methodology for surface grid generation in three dimensional space is described. The method solves a Poisson equation for each coordinate on arbitrary surfaces using successive line over-relaxation. The complete surface curvature terms were discretized and retained within the nonhomogeneous term in order to preserve surface definition; there is no need for conventional surface splines. Control functions were formulated to permit control of grid orthogonality and spacing. A method for interpolation of control functions into the domain was devised which permits their specification not only at the surface boundaries but within the interior as well. An interactive surface generation code which makes use of this methodology is currently under development.
NASA Astrophysics Data System (ADS)
Laubscher, Markus; Bourquin, Stéphane; Froehly, Luc; Karamata, Boris; Lasser, Theo
2004-07-01
Current spectroscopic optical coherence tomography (OCT) methods rely on a posteriori numerical calculation. We present an experimental alternative for accessing spectroscopic information in OCT without post-processing based on wavelength de-multiplexing and parallel detection using a diffraction grating and a smart pixel detector array. Both a conventional A-scan with high axial resolution and the spectrally resolved measurement are acquired simultaneously. A proof-of-principle demonstration is given on a dynamically changing absorbing sample. The method's potential for fast spectroscopic OCT imaging is discussed. The spectral measurements obtained with this approach are insensitive to scan non-linearities or sample movements.
A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol.
Granström, Tom Birger; Izumori, Ken; Leisola, Matti
2007-02-01
Xylitol is the first rare sugar that has global markets. It has beneficial health properties and represents an alternative to current conventional sweeteners. Industrially, xylitol is produced by chemical hydrogenation of D-xylose into xylitol. The biotechnological method of producing xylitol by metabolically engineered yeasts, Saccharomyces cerevisiae or Candida, has been studied as an alternative to the chemical method. Due to the industrial scale of production, xylitol serves as an inexpensive starting material for the production of other rare sugars. The second part of this mini-review on xylitol will look more closely at the biotechnological production and future applications of the rare sugar, xylitol.
The lab without walls: a deployable approach to tropical infectious diseases.
Inglis, Timothy J J
2013-04-01
The Laboratory Without Walls is a modular field application of molecular biology that provides clinical laboratory support in resource-limited, remote locations. The current repertoire arose from early attempts to deliver clinical pathology and public health investigative services in remote parts of tropical Australia, to address the shortcomings of conventional methods when faced with emerging infectious diseases. Advances in equipment platforms and reagent chemistry have enabling rapid progress, but also ensure the Laboratory Without Walls is subject to continual improvement. Although new molecular biology methods may lead to more easily deployable clinical laboratory capability, logistic and technical governance issues continue to act as important constraints on wider implementation.
Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye; ...
2018-02-20
Using additive manufacturing (AM) technology, a fundamental material and structure innovation was proposed to significantly increase the energy efficiency, and to reduce the weight, volume and component quantity of proton exchange membrane electrolyzer cells (PEMECs). Four conventional parts (liquid/gas diffusion layer, bipolar plate, gasket, and current distributor) in a PEMEC were integrated into one multifunctional AM plate without committing to tools or molds for the first time. In addition, since the interfacial contact resistances between those parts were eliminated, the comprehensive in-situ characterizations of AM cells showed that an excellent energy efficiency of up to 86.48% was achieved at 2more » A/cm2 and 80 degrees C, and the hydrogen generation rate was increased by 61.81% compared to the conventional cell. More importantly, the highly complex inner structures of the AM integrated multifunctional plates also exhibit the potential to break limitations of conventional manufacture methods for hydrogen generation and to open a door for the development of other energy conversion devices, including fuel cells, solar cells and batteries.« less
Leadless Pacing: Current State and Future Direction.
Merkel, Matthias; Grotherr, Philipp; Radzewitz, Andrea; Schmitt, Claus
2017-12-01
Leadless pacing is now an established alternative to conventional pacing with subcutaneous pocket and transvenous lead for patients with class I or II single-chamber pacing indication. Available 12-month follow-up data shows a 48% fewer major complication rate in patients with Micra™ compared to a historical control group in a nonrandomized study [1]. There is one system with Food and Drug Administration (FDA) approval and two with the Communauté Européenne (CE) mark. The OPS code for the implantation is 8-83d.3 and the procedure has recently been rated as a "new Examination and Treatment Method (NUB)" in the German DRG system, meaning adequate reimbursement is negotiable with health insurance providers. The systems offer similar generator longevity and programming possibilities as conventional pacemaker systems, including rate response, remote monitoring, and MRI safety. The biggest downsides to date are limitations to single-chamber stimulation, lack of long-time data, and concerns of handling of the system at the end of its life span. However, implant procedure complication rates and procedure times do not exceed conventional pacemaker operations, and proper training and patient selection is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye
Using additive manufacturing (AM) technology, a fundamental material and structure innovation was proposed to significantly increase the energy efficiency, and to reduce the weight, volume and component quantity of proton exchange membrane electrolyzer cells (PEMECs). Four conventional parts (liquid/gas diffusion layer, bipolar plate, gasket, and current distributor) in a PEMEC were integrated into one multifunctional AM plate without committing to tools or molds for the first time. In addition, since the interfacial contact resistances between those parts were eliminated, the comprehensive in-situ characterizations of AM cells showed that an excellent energy efficiency of up to 86.48% was achieved at 2more » A/cm2 and 80 degrees C, and the hydrogen generation rate was increased by 61.81% compared to the conventional cell. More importantly, the highly complex inner structures of the AM integrated multifunctional plates also exhibit the potential to break limitations of conventional manufacture methods for hydrogen generation and to open a door for the development of other energy conversion devices, including fuel cells, solar cells and batteries.« less
One device, one equation: the simplest way to objectively evaluate psoriasis severity.
Choi, Jae Woo; Kim, Bo Ri; Choi, Chong Won; Youn, Sang Woong
2015-02-01
The erythema, scale and thickness of psoriasis lesions could be converted to bioengineering parameters. An objective psoriasis severity assessment is advantageous in terms of accuracy and reproducibility over conventional severity assessment. We aimed to formulate an objective psoriasis severity index with a single bioengineering device that can possibly substitute the conventional subjective Psoriasis Severity Index. A linear regression analysis was performed to derive the formula with the subjective Psoriasis Severity Index as the dependent variable and various bioengineering parameters determined from 157 psoriasis lesions as independent variables. The construct validity of the objective Psoriasis Severity Index was evaluated with an additional 30 psoriasis lesions through a Pearson correlation analysis. The formula is composed of hue and brightness, which are sufficiently obtainable with a Colorimeter alone. A very strong positive correlation was found between the objective and subjective psoriasis severity indexes. The objective Psoriasis Severity Index is a novel, practical and valid assessment method that can substitute the conventional one. Combined with subjective area assessment, it could further replace the Psoriasis Area and Severity Index which is currently most popular. © 2014 Japanese Dermatological Association.
Fabrication and characterization of the organic rectifying junctions by electrolysis
NASA Astrophysics Data System (ADS)
Karimov, Khasan; Ahmad, Zubair; Ali, Rashid; Noor, Adnan; Akmal, M.; Najeeb, M. A.; Shakoor, R. A.
2017-08-01
Unlike the conventional solution processable deposition techniques, in this study, we propose a novel and economical method for the fabrication of organic rectifying junctions. The solutions of the orange dye, copper phthalocyanine and NaCl were deposited on the surface-type interdigitated silver electrodes using electrolysis technique. Using the current-voltage (I-V) characteristics, the presence of rectifying behavior in the samples has been confirmed. This phenomenon, in principle, can be used for fabrication of the diodes, transistors and memory devices.
Effects of an Air-Powder Abrasive Device When Used during Periodontal Flap Surgery in Dogs.
1983-01-01
instru- ments, ultrasonic devices, air driven reciprocating hand- pieces, and air driven rotary handpieces (Schaffer, 1967). None of these techniques...system, the Prophy-Jet Mark IV C-100 , may be an alternative to conventional mechanical and chemical methods of detoxifying roots. The handpiece is...electric current and uses inlet air pressure of 65 to 100 p.s.i. and inlet water pressure of 25 to 60 p.s.i. The handpiece propels particles of the
[Bases and methods of suturing].
Vogt, P M; Altintas, M A; Radtke, C; Meyer-Marcotty, M
2009-05-01
If pharmaceutic modulation of scar formation does not improve the quality of the healing process over conventional healing, the surgeon must rely on personal skill and experience. Therefore a profound knowledge of wound healing based on experimental and clinical studies supplemented by postsurgical means of scar management and basic techniques of planning incisions, careful tissue handling, and thorough knowledge of suturing remain the most important ways to avoid abnormal scarring. This review summarizes the current experimental and clinical bases of surgical scar management.
Ganesan, K.; Raza, S. K.; Vijayaraghavan, R.
2010-01-01
Among the Weapons of Mass Destruction, chemical warfare (CW) is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided. PMID:21829312
Launch vehicle systems design analysis
NASA Technical Reports Server (NTRS)
Ryan, Robert; Verderaime, V.
1993-01-01
Current launch vehicle design emphasis is on low life-cycle cost. This paper applies total quality management (TQM) principles to a conventional systems design analysis process to provide low-cost, high-reliability designs. Suggested TQM techniques include Steward's systems information flow matrix method, quality leverage principle, quality through robustness and function deployment, Pareto's principle, Pugh's selection and enhancement criteria, and other design process procedures. TQM quality performance at least-cost can be realized through competent concurrent engineering teams and brilliance of their technical leadership.
Quality assessment of digital X-ray chest images using an anthropomorphic chest phantom
NASA Astrophysics Data System (ADS)
Vodovatov, A. V.; Kamishanskaya, I. G.; Drozdov, A. A.; Bernhardsson, C.
2017-02-01
The current study is focused on determining the optimal tube voltage for the conventional X-ray digital chest screening examinations, using a visual grading analysis method. Chest images of an anthropomorphic phantom were acquired in posterior-anterior projection on four digital X-ray units with different detector types. X-ray images obtained with an anthropomorphic phantom were accepted by the radiologists as corresponding to a normal human anatomy, hence allowing using phantoms in image quality trials without limitations.
Expert systems for real-time monitoring and fault diagnosis
NASA Technical Reports Server (NTRS)
Edwards, S. J.; Caglayan, A. K.
1989-01-01
Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.
Chen, Xi; Yip, Ngai Yin
2018-02-20
Current practice of using thermally driven methods to treat hypersaline brines is highly energy-intensive and costly. While conventional reverse osmosis (RO) is the most efficient desalination technique, it is confined to purifying seawater and lower salinity sources. Hydraulic pressure restrictions and elevated energy demand render RO unsuitable for high-salinity streams. Here, we propose an innovative cascading osmotically mediated reverse osmosis (COMRO) technology to overcome the limitations of conventional RO. The innovation utilizes the novel design of bilateral countercurrent reverse osmosis stages to depress the hydraulic pressure needed by lessening the osmotic pressure difference across the membrane, and simultaneously achieve energy savings. Instead of the 137 bar required by conventional RO to desalinate 70 000 ppm TDS hypersaline feed, the highest operating pressure in COMRO is only 68.3 bar (-50%). Furthermore, up to ≈17% energy saving is attained by COMRO (3.16 kWh/m 3 , compared to 3.79 kWh/m 3 with conventional RO). When COMRO is employed to boost the recovery of seawater desalination to 70% from the typical 35-50%, energy savings of up to ≈33% is achieved (2.11 kWh/m 3 , compared to 3.16 kWh/m 3 with conventional RO). Again, COMRO can operate at a moderate hydraulic pressure of 80 bar (25% lower than 113 bar of conventional RO). This study highlights the encouraging potential of energy-efficient COMRO to access unprecedented high recovery rates and treat hypersaline brines at moderate hydraulic pressures, thus extending the capabilities of membrane-based technologies for high-salinity desalination.
Pai, Vishwas D.; Engineer, Reena; Patil, Prachi S.; Arya, Supreeta; Desouza, Ashwin L.
2016-01-01
Background To compare extra levator abdomino perineal resection (ELAPER) with conventional abdominoperineal resection (APER) in terms of short-term oncological and clinical outcomes. Methods This is a retrospective review of a prospectively maintained database including all the patients of rectal cancer who underwent APER at Tata Memorial Center between July 1, 2013, and January 31, 2015. Short-term oncological parameters evaluated included circumferential resection margin involvement (CRM), tumor site perforation, and number of nodes harvested. Peri operative outcomes included blood loss, length of hospital stay, postoperative perineal wound complications, and 30-day mortality. The χ2-test was used to compare the results between the two groups. Results Forty-two cases of ELAPER and 78 cases of conventional APER were included in the study. Levator involvement was significantly higher in the ELAPER compared with the conventional group; otherwise, the two groups were comparable in all the aspects. CRM involvement was seen in seven patients (8.9%) in the conventional group compared with three patients (7.14%) in the ELAPER group. Median hospital stay was significantly longer with ELAPER. The univariate analysis of the factors influencing CRM positivity did not show any significance. Conclusions ELAPER should be the preferred approach for low rectal tumors with involvement of levators. For those cases in which levators are not involved, as shown in preoperative magnetic resonance imaging (MRI), the current evidence is insufficient to recommend ELAPER over conventional APER. This stresses the importance of preoperative MRI in determining the best approach for an individual patient. PMID:27284466
NASA Astrophysics Data System (ADS)
Guo, Yuran; Wu, Di; Omoumi, Farid H.; Li, Yuhua; Wong, Molly Donovan; Ghani, Muhammad U.; Zheng, Bin; Liu, Hong
2018-02-01
The objective of this study was to demonstrate the capability of the high-energy in-line phase contrast imaging in detecting the breast tumors which are undetectable by conventional x-ray imaging but detectable by ultrasound. Experimentally, a CIRS multipurpose breast phantom with heterogeneous 50% glandular and 50% adipose breast tissue was imaged by high-energy in-line phase contrast system, conventional x-ray system and ultrasonography machine. The high-energy in-line phase contrast projection was acquired at 120 kVp, 0.3 mAs with the focal spot size of 18.3 μm. The conventional x-ray projection was acquired at 40 kVp, 3.3 mAs with the focal spot size of 22.26 μm. Both of the x-ray imaging acquisitions were conducted with a unique mean glandular dose of 0.08 mGy. As the result, the high-energy in-line phase contrast system was able to detect one lesion-like object which was also detected by the ultrasonography. This object was spherical shape with the length of about 12.28 mm. Also, the conventional x-ray system was not able to detect any objects. This result indicated the advantages provided by high-energy in-line phase contrast over conventional x-ray system in detecting lesion-like object under the same radiation dose. To meet the needs of current clinical strategies for high-density breasts screening, breast phantoms with higher glandular densities will be employed in future studies.
Sleeth, Darrah K; Balthaser, Susan A; Collingwood, Scott; Larson, Rodney R
2016-03-07
Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET₁) and the posterior nasal and oral passages (ET₂). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm-44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device.
Sleeth, Darrah K.; Balthaser, Susan A.; Collingwood, Scott; Larson, Rodney R.
2016-01-01
Extrathoracic deposition of inhaled particles (i.e., in the head and throat) is an important exposure route for many hazardous materials. Current best practices for exposure assessment of aerosols in the workplace involve particle size selective sampling methods based on particle penetration into the human respiratory tract (i.e., inhalable or respirable sampling). However, the International Organization for Standardization (ISO) has recently adopted particle deposition sampling conventions (ISO 13138), including conventions for extrathoracic (ET) deposition into the anterior nasal passage (ET1) and the posterior nasal and oral passages (ET2). For this study, polyurethane foam was used as a collection substrate inside an inhalable aerosol sampler to provide an estimate of extrathoracic particle deposition. Aerosols of fused aluminum oxide (five sizes, 4.9 µm–44.3 µm) were used as a test dust in a low speed (0.2 m/s) wind tunnel. Samplers were placed on a rotating mannequin inside the wind tunnel to simulate orientation-averaged personal sampling. Collection efficiency data for the foam insert matched well to the extrathoracic deposition convention for the particle sizes tested. The concept of using a foam insert to match a particle deposition sampling convention was explored in this study and shows promise for future use as a sampling device. PMID:26959046
Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A Denene; Noble, Rachel
2015-01-01
Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods.
Verhougstraete, Marc Paul; Brothers, Sydney; Litaker, Wayne; Blackwood, A. Denene; Noble, Rachel
2015-01-01
Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods. PMID:25822486
Bulk Enthalpy Calculations in the Arc Jet Facility at NASA ARC
NASA Technical Reports Server (NTRS)
Thompson, Corinna S.; Prabhu, Dinesh; Terrazas-Salinas, Imelda; Mach, Jeffrey J.
2011-01-01
The Arc Jet Facilities at NASA Ames Research Center generate test streams with enthalpies ranging from 5 MJ/kg to 25 MJ/kg. The present work describes a rigorous method, based on equilibrium thermodynamics, for calculating the bulk enthalpy of the flow produced in two of these facilities. The motivation for this work is to determine a dimensionally-correct formula for calculating the bulk enthalpy that is at least as accurate as the conventional formulas that are currently used. Unlike previous methods, the new method accounts for the amount of argon that is present in the flow. Comparisons are made with bulk enthalpies computed from an energy balance method. An analysis of primary facility operating parameters and their associated uncertainties is presented in order to further validate the enthalpy calculations reported herein.
Experimental verification of gain drop due to general ion recombination for a carbon-ion pencil beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tansho, Ryohei, E-mail: r-tansho@nirs.go.jp; Furukawa, Takuji; Hara, Yousuke
Purpose: Accurate dose measurement in radiotherapy is critically dependent on correction for gain drop, which is the difference of the measured current from the ideal saturation current due to general ion recombination. Although a correction method based on the Boag theory has been employed, the theory assumes that ionized charge density in an ionization chamber (IC) is spatially uniform throughout the irradiation volume. For particle pencil beam scanning, however, the charge density is not uniform, because the fluence distribution of a pencil beam is not uniform. The aim of this study was to verify the effect of the nonuniformity ofmore » ionized charge density on the gain drop due to general ion recombination. Methods: The authors measured the saturation curve, namely, the applied voltage versus measured current, using a large plane-parallel IC and 24-channel parallel-plate IC with concentric electrodes. To verify the effect of the nonuniform ionized charge density on the measured saturation curve, the authors calculated the saturation curve using a method which takes into account the nonuniform ionized charge density and compared it with the measured saturation curves. Results: Measurement values of the different saturation curves in the different channels of the concentric electrodes differed and were consistent with the calculated values. The saturation curves measured by the large plane-parallel IC were also consistent with the calculation results, including the estimation error of beam size and of setup misalignment. Although the impact of the nonuniform ionized charge density on the gain drop was clinically negligible with the conventional beam intensity, it was expected that the impact would increase with higher ionized charge density. Conclusions: For pencil beam scanning, the assumption of the conventional Boag theory is not valid. Furthermore, the nonuniform ionized charge density affects the prediction accuracy of gain drop when the ionized charge density is increased by a higher dose rate and/or lower beam size.« less
Han, Yang; Hou, Shao-Yang; Ji, Shang-Zhi; Cheng, Juan; Zhang, Meng-Yue; He, Li-Juan; Ye, Xiang-Zhong; Li, Yi-Min; Zhang, Yi-Xuan
2017-11-15
A novel method, real-time reverse transcription PCR (real-time RT-PCR) coupled with probe-melting curve analysis, has been established to detect two kinds of samples within one fluorescence channel. Besides a conventional TaqMan probe, this method employs another specially designed melting-probe with a 5' terminus modification which meets the same label with the same fluorescent group. By using an asymmetric PCR method, the melting-probe is able to detect an extra sample in the melting stage effectively while it almost has little influence on the amplification detection. Thus, this method allows the availability of united employment of both amplification stage and melting stage for detecting samples in one reaction. The further demonstration by simultaneous detection of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in one channel as a model system is presented in this essay. The sensitivity of detection by real-time RT-PCR coupled with probe-melting analysis was proved to be equal to that detected by conventional real-time RT-PCR. Because real-time RT-PCR coupled with probe-melting analysis can double the detection throughputs within one fluorescence channel, it is expected to be a good solution for the problem of low-throughput in current real-time PCR. Copyright © 2017 Elsevier Inc. All rights reserved.
Momose, Haruka; Mizukami, Takuo; Kuramitsu, Madoka; Takizawa, Kazuya; Masumi, Atsuko; Araki, Kumiko; Furuhata, Keiko; Yamaguchi, Kazunari; Hamaguchi, Isao
2015-01-01
We have previously identified 17 biomarker genes which were upregulated by whole virion influenza vaccines, and reported that gene expression profiles of these biomarker genes had a good correlation with conventional animal safety tests checking body weight and leukocyte counts. In this study, we have shown that conventional animal tests showed varied and no dose-dependent results in serially diluted bulk materials of influenza HA vaccines. In contrast, dose dependency was clearly shown in the expression profiles of biomarker genes, demonstrating higher sensitivity of gene expression analysis than the current animal safety tests of influenza vaccines. The introduction of branched DNA based-concurrent expression analysis could simplify the complexity of multiple gene expression approach, and could shorten the test period from 7 days to 3 days. Furthermore, upregulation of 10 genes, Zbp1, Mx2, Irf7, Lgals9, Ifi47, Tapbp, Timp1, Trafd1, Psmb9, and Tap2, was seen upon virosomal-adjuvanted vaccine treatment, indicating that these biomarkers could be useful for the safety control of virosomal-adjuvanted vaccines. In summary, profiling biomarker gene expression could be a useful, rapid, and highly sensitive method of animal safety testing compared with conventional methods, and could be used to evaluate the safety of various types of influenza vaccines, including adjuvanted vaccine. PMID:25909814
Determinations of Vus using inclusive hadronic τ decay data
Maltman, Kim; Hudspith, Renwick James; Lewis, Randy; ...
2016-08-30
Two methods for determining |V us| employing inclusive hadronic ττ decay data are discussed. The first is the conventional flavor-breaking sum rule determination whose usual implementation produces results ~3σ low compared to three-family unitary expectations. The second is a novel approach combining experimental strange hadronic ττ distributions with lattice light-strange current–current two-point function data. In preliminary explorations of the latter show the method promises |V us| determinations are competitive with those from K ℓ3 and Γ[π μ2]/Γ[π μ2]. For the former, systematic issues in the conventional implementation are investigated. Unphysical dependences of |V us| on the choice of sum rulemore » weight, w, and upper limit, s 0, of the weighted experimental spectral integrals are observed, the source of these problems identified and a new implementation which overcomes these problems developed. The lattice results are shown to provide a tool for quantitatively assessing truncation uncertainties for the slowly converging D=2 OPE series. Our results for |V us| from this new implementation are shown to be free of unphysical w- and s0-dependences, and ~0.0020 higher than those produced by the conventional implementation. With preliminary new Kπ branching fraction results as input, we find |V us| in excellent agreement with that obtained from K ℓ3, and compatible within errors with expectations from three-family unitarity.« less
Proposal for a new categorization of aseptic processing facilities based on risk assessment scores.
Katayama, Hirohito; Toda, Atsushi; Tokunaga, Yuji; Katoh, Shigeo
2008-01-01
Risk assessment of aseptic processing facilities was performed using two published risk assessment tools. Calculated risk scores were compared with experimental test results, including environmental monitoring and media fill run results, in three different types of facilities. The two risk assessment tools used gave a generally similar outcome. However, depending on the tool used, variations were observed in the relative scores between the facilities. For the facility yielding the lowest risk scores, the corresponding experimental test results showed no contamination, indicating that these ordinal testing methods are insufficient to evaluate this kind of facility. A conventional facility having acceptable aseptic processing lines gave relatively high risk scores. The facility showing a rather high risk score demonstrated the usefulness of conventional microbiological test methods. Considering the significant gaps observed in calculated risk scores and in the ordinal microbiological test results between advanced and conventional facilities, we propose a facility categorization based on risk assessment. The most important risk factor in aseptic processing is human intervention. When human intervention is eliminated from the process by advanced hardware design, the aseptic processing facility can be classified into a new risk category that is better suited for assuring sterility based on a new set of criteria rather than on currently used microbiological analysis. To fully benefit from advanced technologies, we propose three risk categories for these aseptic facilities.
Orgun, Nural; Hamlin, Donald K.; Wilbur, D. Scott; Gooley, Theodore A.; Gopal, Ajay K.; Park, Steven I.; Green, Damian J.; Lin, Yukang; Press, Oliver W.
2009-01-01
Relapsed B-cell lymphomas are currently incurable with conventional chemotherapy and radiation treatments. Radiolabeled antibodies directed against B-cell surface antigens have emerged as effective and safe therapies for relapsed lymphomas. We therefore investigated the potential utility of both directly radiolabeled 1F5 (anti-CD20), HD39 (anti-CD22), and Lym-1 (anti-DR) antibodies (Abs) and of pretargeted radioimmunotherapy (RIT) using Ab-streptavidin (SA) conjugates, followed by an N-acetylgalactosamine dendrimeric clearing agent and radiometal-labeled DOTA-biotin, for treatment of lymphomas in mouse models using Ramos, Raji, and FL-18 human lymphoma xenografts. This study demonstrates the marked superiority of pretargeted RIT for each of the antigenic targets with more complete tumor regressions and longer mouse survival compared with conventional one-step RIT. The Ab-SA conjugate yielding the best tumor regression and progression-free survival after pretargeted RIT varied depending upon the lymphoma cell line used, with 1F5 Ab-SA and Lym-1 Ab-SA conjugates yielding the most promising results overall. Contrary to expectations, the best rates of mouse survival were obtained using optimal single Ab-SA conjugates rather than combinations of conjugates targeting different antigens. We hypothesize that clinical implementation of pretargeted RIT methods will provide a meaningful prolongation of survival for patients with relapsed lymphomas compared with currently available treatment strategies. PMID:19124831
WE-EF-207-09: Single-Scan Dual-Energy CT Using Primary Modulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrongolo, M; Zhu, L
Purpose: Compared with conventional CT, dual energy CT (DECT) provides better material differentiation but requires projection data with two different effective x-ray spectra. Current DECT scanners use either a two-scan setting or costly imaging components, which are not feasible or available on open-gantry cone-beam CT systems. We propose a hardware-based method which utilizes primary modulation to enable single-scan DECT on a conventional CT scanner. The CT imaging geometry of primary modulation is identical to that used in our previous method for scatter removal, making it possible for future combination with effective scatter correction on the same CT scanner. Methods: Wemore » insert an attenuation sheet with a spatially-varying pattern - primary modulator-between the x-ray source and the imaged object. During the CT scan, the modulator selectively hardens the x-ray beam at specific detector locations. Thus, the proposed method simultaneously acquires high and low energy data. High and low energy CT images are then reconstructed from projections with missing data via an iterative CT reconstruction algorithm with gradient weighting. Proof-of-concept studies are performed using a copper modulator on a cone-beam CT system. Results: Our preliminary results on the Catphan(c) 600 phantom indicate that the proposed method for single-scan DECT is able to successfully generate high-quality high and low energy CT images and distinguish different materials through basis material decomposition. By applying correction algorithms and using all of the acquired projection data, we can reconstruct a single CT image of comparable image quality to conventional CT images, i.e., without primary modulation. Conclusion: This work shows great promise in using a primary modulator to perform high-quality single-scan DECT imaging. Future studies will test method performance on anthropomorphic phantoms and perform quantitative analyses on image qualities and DECT decomposition accuracy. We will use simulations to optimize the modulator material and geometry parameters.« less
Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub
2017-01-07
BACKGROUND In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. MATERIAL AND METHODS The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A - conventional TENS, B - acupuncture-like TENS, C - high-voltage electrical stimulation, D - interferential current stimulation, E - diadynamic current, and F - control group. RESULTS The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. CONCLUSIONS Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain.
Rajfur, Joanna; Pasternok, Małgorzata; Rajfur, Katarzyna; Walewicz, Karolina; Fras, Beata; Bolach, Bartosz; Dymarek, Robert; Rosinczuk, Joanna; Halski, Tomasz; Taradaj, Jakub
2017-01-01
Background In the currently available research publications on electrical therapy of low back pain, generally no control groups or detailed randomization were used, and such studies were often conducted with relatively small groups of patients, based solely on subjective questionnaires and pain assessment scales (lacking measurement methods to objectify the therapeutic progress). The available literature also lacks a comprehensive and large-scale clinical study. The purpose of this study was to assess the effects of treating low back pain using selected electrotherapy methods. The study assesses the influence of individual electrotherapeutic treatments on reduction of pain, improvement of the range of movement in lower section of the spine, and improvement of motor functions and mobility. Material/Methods The 127 patients qualified for the therapy (ultimately, 123 patients completed the study) and assigned to 6 comparison groups: A – conventional TENS, B – acupuncture-like TENS, C – high-voltage electrical stimulation, D – interferential current stimulation, E – diadynamic current, and F – control group. Results The research showed that using electrical stimulation with interferential current penetrating deeper into the tissues results in a significant and more efficient elimination of pain, and an improvement of functional ability of patients suffering from low back pain on the basis of an analysis of both subjective and objective parameters. The TENS currents and high voltage were helpful, but not as effective. The use of diadynamic currents appears to be useless. Conclusions Selected electrical therapies (interferential current, TENS, and high voltage) appear to be effective in treating chronic low back pain. PMID:28062862
Development of optimized segmentation map in dual energy computed tomography
NASA Astrophysics Data System (ADS)
Yamakawa, Keisuke; Ueki, Hironori
2012-03-01
Dual energy computed tomography (DECT) has been widely used in clinical practice and has been particularly effective for tissue diagnosis. In DECT the difference of two attenuation coefficients acquired by two kinds of X-ray energy enables tissue segmentation. One problem in conventional DECT is that the segmentation deteriorates in some cases, such as bone removal. This is due to two reasons. Firstly, the segmentation map is optimized without considering the Xray condition (tube voltage and current). If we consider the tube voltage, it is possible to create an optimized map, but unfortunately we cannot consider the tube current. Secondly, the X-ray condition is not optimized. The condition can be set empirically, but this means that the optimized condition is not used correctly. To solve these problems, we have developed methods for optimizing the map (Method-1) and the condition (Method-2). In Method-1, the map is optimized to minimize segmentation errors. The distribution of the attenuation coefficient is modeled by considering the tube current. In Method-2, the optimized condition is decided to minimize segmentation errors depending on tube voltagecurrent combinations while keeping the total exposure constant. We evaluated the effectiveness of Method-1 by performing a phantom experiment under the fixed condition and of Method-2 by performing a phantom experiment under different combinations calculated from the total exposure constant. When Method-1 was followed with Method-2, the segmentation error was reduced from 37.8 to 13.5 %. These results demonstrate that our developed methods can achieve highly accurate segmentation while keeping the total exposure constant.
A real-time PCR diagnostic method for detection of Naegleria fowleri.
Madarová, Lucia; Trnková, Katarína; Feiková, Sona; Klement, Cyril; Obernauerová, Margita
2010-09-01
Naegleria fowleri is a free-living amoeba that can cause primary amoebic meningoencephalitis (PAM). While, traditional methods for diagnosing PAM still rely on culture, more current laboratory diagnoses exist based on conventional PCR methods; however, only a few real-time PCR processes have been described as yet. Here, we describe a real-time PCR-based diagnostic method using hybridization fluorescent labelled probes, with a LightCycler instrument and accompanying software (Roche), targeting the Naegleria fowleriMp2Cl5 gene sequence. Using this method, no cross reactivity with other tested epidemiologically relevant prokaryotic and eukaryotic organisms was found. The reaction detection limit was 1 copy of the Mp2Cl5 DNA sequence. This assay could become useful in the rapid laboratory diagnostic assessment of the presence or absence of Naegleria fowleri. Copyright 2009 Elsevier Inc. All rights reserved.
Kwon, Yong Hyun; Jang, Sung Ho
2012-08-25
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.
Kwon, Yong Hyun; Jang, Sung Ho
2012-01-01
We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation. PMID:25624815
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torun, H.; Torello, D.; Degertekin, F. L.
2011-08-15
The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum ''seesaw'' like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz inmore » air with the current setup was demonstrated.« less
Mastitis detection: current trends and future perspectives.
Viguier, Caroline; Arora, Sushrut; Gilmartin, Niamh; Welbeck, Katherine; O'Kennedy, Richard
2009-08-01
Bovine mastitis, the most significant disease of dairy herds, has huge effects on farm economics due to reduction in milk production and treatment costs. Traditionally, methods of detection have included estimation of somatic cell counts, an indication of inflammation, measurement of biomarkers associated with the onset of the disease (e.g. the enzymes N-acetyl-beta-D-glucosaminidase and lactate dehydrogenase) and identification of the causative microorganisms, which often involves culturing methods. These methods have their limitations and there is a need for new rapid, sensitive and reliable assays. Recently, significant advances in the identification of nucleic acid markers and other novel biomarkers and the development of sensor-based platforms have taken place. These novel strategies have shown promise, and their advantages over the conventional tests are discussed.
An Information Retrieval Approach for Robust Prediction of Road Surface States.
Park, Jae-Hyung; Kim, Kwanho
2017-01-28
Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods.
Loudiyi, M; Aït-Kaddour, A
2018-03-21
Chemical composition, sensory characteristics, textural and functional properties are among the most important characteristics, which directly relates to the global quality of cheese and to consumer acceptability. A number of factors including milk composition, processing conditions and salt content, influences these properties. The past decades many investigations were performed on the possibilities to reduce salt content of cheese due to its adverse health effects, the current lifestyle and the awareness of the consumers for nutrition quality products. Due to the multiple potential effects of reducing NaCl (simple reduction or substitution) on cheese attributes, it is of utmost importance to identify and understand those effects in order to control the global quality and safety of the final product. In the present review a collection of the different results and conclusions drawn after studying the effect of salts by conventional (e.g. wet chemistry) and instrumental (e.g. spectral) methods on chemical, structural, textural, sensory and heating properties of cheese are presented.
Large Carbon Dioxide Fluxes from Headwater Boreal and Sub-Boreal Streams
Venkiteswaran, Jason J.; Schiff, Sherry L.; Wallin, Marcus B.
2014-01-01
Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape. PMID:25058488
Hosaka, Seiji; Ohdaira, Takeshi; Umemoto, Satoshi; Hashizume, Makoto; Kawamoto, Shunji
2013-12-01
Endoscopic surgery is currently a standard procedure in many countries. Furthermore, conventional four-port laparoscopic cholecystectomy is developing into a single-port procedure. However, in many developing countries, disposable medical products are expensive and adequate medical waste disposable facilities are absent. Advanced medical treatments such as laparoscopic or single-port surgeries are not readily available in many areas of developing countries, and there are often no other sterilization methods besides autoclaving. Moreover, existing reusable metallic ports are impractical and are thus not widely used. We developed a novel controllable, multidirectional single-port device that can be autoclaved, and with a wide working space, which was employed in five patients. In all patients, laparoscopic cholecystectomy was accomplished without complications. Our device facilitates single-port surgery in areas of the world with limited sterilization methods and offers a novel alternative to conventional tools for creating a smaller incision, decrease postoperative pain, and improve cosmesis. This novel device can also lower the cost of medical treatment and offers a promising tool for major surgeries requiring a wide working space.
Novel non-contact control system of electric bed for medical healthcare.
Lo, Chi-Chun; Tsai, Shang-Ho; Lin, Bor-Shyh
2017-03-01
A novel non-contact controller of the electric bed for medical healthcare was proposed in this study. Nowadays, the electric beds are widely used for hospitals and home-care, and the conventional control method of the electric beds usually involves in the manual operation. However, it is more difficult for the disabled and bedridden patients, who might totally depend on others, to operate the conventional electric beds by themselves. Different from the current controlling method, the proposed system provides a new concept of controlling the electric bed via visual stimuli, without manual operation. The disabled patients could operate the electric bed by focusing on the control icons of a visual stimulus tablet in the proposed system. Besides, a wearable and wireless EEG acquisition module was also implemented to monitor the EEG signals of patients. The experimental results showed that the proposed system successfully measured and extracted the EEG features related to visual stimuli, and the disabled patients could operate the adjustable function of the electric bed by themselves to effectively reduce the long-term care burden.
Acceleration of plates using non-conventional explosives heavily-loaded with inert materials
NASA Astrophysics Data System (ADS)
Loiseau, J.; Petel, O. E.; Huneault, J.; Serge, M.; Frost, D. L.; Higgins, A. J.
2014-05-01
The detonation behavior of high explosives containing quantities of dense additives has been previously investigated with the observation that such systems depart dramatically from the approximately "gamma law" behavior typical of conventional explosives due to momentum transfer and thermalization between particles and detonation products. However, the influence of this non-ideal detonation behavior on the divergence speed of plates has been less thoroughly studied and existing literature suggests that the effect of dense additives cannot be explained solely through the straightforward application of the Gurney method with energy and density averaging of the explosive. In the current study, the acceleration history and terminal velocity of aluminum flyers launched by packed beds of granular material saturated by amine-sensitized nitromethane is reported. It was observed that terminal flyer velocity scales primarily with the ratio of flyer mass to mass of the explosive component; a fundamental feature of the Gurney method. Velocity decrement from the addition of particles was only 20%-30% compared to the resulting velocity if propelled by an equivalent quantity of neat explosive.
Additive Manufactured Superconducting Cavities
NASA Astrophysics Data System (ADS)
Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan
Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.
Large carbon dioxide fluxes from headwater boreal and sub-boreal streams.
Venkiteswaran, Jason J; Schiff, Sherry L; Wallin, Marcus B
2014-01-01
Half of the world's forest is in boreal and sub-boreal ecozones, containing large carbon stores and fluxes. Carbon lost from headwater streams in these forests is underestimated. We apply a simple stable carbon isotope idea for quantifying the CO2 loss from these small streams; it is based only on in-stream samples and integrates over a significant distance upstream. We demonstrate that conventional methods of determining CO2 loss from streams necessarily underestimate the CO2 loss with results from two catchments. Dissolved carbon export from headwater catchments is similar to CO2 loss from stream surfaces. Most of the CO2 originating in high CO2 groundwaters has been lost before typical in-stream sampling occurs. In the Harp Lake catchment in Canada, headwater streams account for 10% of catchment net CO2 uptake. In the Krycklan catchment in Sweden, this more than doubles the CO2 loss from the catchment. Thus, even when corrected for aquatic CO2 loss measured by conventional methods, boreal and sub-boreal forest carbon budgets currently overestimate carbon sequestration on the landscape.
Hot-compress: A new postdeposition treatment for ZnO-based flexible dye-sensitized solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haque Choudhury, Mohammad Shamimul, E-mail: shamimul129@gmail.com; Department of Electrical and Electronic Engineering, International Islamic University Chittagong, b154/a, College Road, Chittagong 4203; Kishi, Naoki
2016-08-15
Highlights: • A new postdeposition treatment named hot-compress is introduced. • Hot-compression gives homogeneous compact layer ZnO photoanode. • I-V and EIS analysis data confirms the efficacy of this method. • Charge transport resistance was reduced by the application of hot-compression. - Abstract: This article introduces a new postdeposition treatment named hot-compress for flexible zinc oxide–base dye-sensitized solar cells. This postdeposition treatment includes the application of compression pressure at an elevated temperature. The optimum compression pressure of 130 Ma at an optimum compression temperature of 70 °C heating gives better photovoltaic performance compared to the conventional cells. The aptness ofmore » this method was confirmed by investigating scanning electron microscopy image, X-ray diffraction, current-voltage and electrochemical impedance spectroscopy analysis of the prepared cells. Proper heating during compression lowers the charge transport resistance, longer the electron lifetime of the device. As a result, the overall power conversion efficiency of the device was improved about 45% compared to the conventional room temperature compressed cell.« less
An Information Retrieval Approach for Robust Prediction of Road Surface States
Park, Jae-Hyung; Kim, Kwanho
2017-01-01
Recently, due to the increasing importance of reducing severe vehicle accidents on roads (especially on highways), the automatic identification of road surface conditions, and the provisioning of such information to drivers in advance, have recently been gaining significant momentum as a proactive solution to decrease the number of vehicle accidents. In this paper, we firstly propose an information retrieval approach that aims to identify road surface states by combining conventional machine-learning techniques and moving average methods. Specifically, when signal information is received from a radar system, our approach attempts to estimate the current state of the road surface based on the similar instances observed previously based on utilizing a given similarity function. Next, the estimated state is then calibrated by using the recently estimated states to yield both effective and robust prediction results. To validate the performances of the proposed approach, we established a real-world experimental setting on a section of actual highway in South Korea and conducted a comparison with the conventional approaches in terms of accuracy. The experimental results show that the proposed approach successfully outperforms the previously developed methods. PMID:28134859
An Optimal Current Observer for Predictive Current Controlled Buck DC-DC Converters
Min, Run; Chen, Chen; Zhang, Xiaodong; Zou, Xuecheng; Tong, Qiaoling; Zhang, Qiao
2014-01-01
In digital current mode controlled DC-DC converters, conventional current sensors might not provide isolation at a minimized price, power loss and size. Therefore, a current observer which can be realized based on the digital circuit itself, is a possible substitute. However, the observed current may diverge due to the parasitic resistors and the forward conduction voltage of the diode. Moreover, the divergence of the observed current will cause steady state errors in the output voltage. In this paper, an optimal current observer is proposed. It achieves the highest observation accuracy by compensating for all the known parasitic parameters. By employing the optimal current observer-based predictive current controller, a buck converter is implemented. The converter has a convergently and accurately observed inductor current, and shows preferable transient response than the conventional voltage mode controlled converter. Besides, costs, power loss and size are minimized since the strategy requires no additional hardware for current sensing. The effectiveness of the proposed optimal current observer is demonstrated experimentally. PMID:24854061
Zhao, Huawei; Crozier, Stuart; Liu, Feng
2002-12-01
Numerical modeling of the eddy currents induced in the human body by the pulsed field gradients in MRI presents a difficult computational problem. It requires an efficient and accurate computational method for high spatial resolution analyses with a relatively low input frequency. In this article, a new technique is described which allows the finite difference time domain (FDTD) method to be efficiently applied over a very large frequency range, including low frequencies. This is not the case in conventional FDTD-based methods. A method of implementing streamline gradients in FDTD is presented, as well as comparative analyses which show that the correct source injection in the FDTD simulation plays a crucial rule in obtaining accurate solutions. In particular, making use of the derivative of the input source waveform is shown to provide distinct benefits in accuracy over direct source injection. In the method, no alterations to the properties of either the source or the transmission media are required. The method is essentially frequency independent and the source injection method has been verified against examples with analytical solutions. Results are presented showing the spatial distribution of gradient-induced electric fields and eddy currents in a complete body model. Copyright 2002 Wiley-Liss, Inc.
Comparison of water-based foam and inert-gas mass emergency depopulation methods.
Alphin, R L; Rankin, M K; Johnson, K J; Benson, E R
2010-03-01
Current control strategies for avian influenza (AI) and other highly contagious poultry diseases include surveillance, quarantine, depopulation, disposal, and decontamination. Selection of the best method of emergency mass depopulation involves maximizing human health and safety while minimizing disease spread and animal welfare concerns. Proper selection must ensure that the method is compatible with the species, age, housing type, and disposal options. No one single method is appropriate for all situations. Gassing is one of the accepted methods for euthanatizing poultry. Whole-house, partial-house, or containerized gassing procedures are currently used. The use of water-based foam was developed for emergency mass depopulation and was conditionally approved by the United States Department of Agriculture in 2006. Research has been done comparing these different methods; parameters such as time to brain death, consistency of time to brain death, and pretreatment and posttreatment corticosterone stress levels were considered. In Europe, the use of foam with carbon dioxide is preferred over conventional water-based foam. A recent experiment comparing CO2 gas, foam with CO2 gas, and foam without CO2 gas depopulation methods was conducted with the use of electroencephalometry results. Foam was as consistent as CO2 gassing and more consistent than argon-CO2 gassing. There were no statistically significant differences between foam methods.
A Fourier Method for Sidelobe Reduction in Equally Spaced Linear Arrays
NASA Astrophysics Data System (ADS)
Safaai-Jazi, Ahmad; Stutzman, Warren L.
2018-04-01
Uniformly excited, equally spaced linear arrays have a sidelobe level larger than -13.3 dB, which is too high for many applications. This limitation can be remedied by nonuniform excitation of array elements. We present an efficient method for sidelobe reduction in equally spaced linear arrays with low penalty on the directivity. The method involves the following steps: construction of a periodic function containing only the sidelobes of the uniformly excited array, calculation of the Fourier series of this periodic function, subtracting the series from the array factor of the original uniformly excited array after it is truncated, and finally mitigating the truncation effects which yields significant increase in sidelobe level reduction. A sidelobe reduction factor is incorporated into element currents that makes much larger sidelobe reductions possible and also allows varying the sidelobe level incrementally. It is shown that such newly formed arrays can provide sidelobe levels that are at least 22.7 dB below those of the uniformly excited arrays with the same size and number of elements. Analytical expressions for element currents are presented. Radiation characteristics of the sidelobe-reduced arrays introduced here are examined, and numerical results for directivity, sidelobe level, and half-power beam width are presented for example cases. Performance improvements over popular conventional array synthesis methods, such as Chebyshev and linear current tapered arrays, are obtained with the new method.
Cho, Il-Hoon; Ku, Seockmo
2017-09-30
The development of novel and high-tech solutions for rapid, accurate, and non-laborious microbial detection methods is imperative to improve the global food supply. Such solutions have begun to address the need for microbial detection that is faster and more sensitive than existing methodologies (e.g., classic culture enrichment methods). Multiple reviews report the technical functions and structures of conventional microbial detection tools. These tools, used to detect pathogens in food and food homogenates, were designed via qualitative analysis methods. The inherent disadvantage of these analytical methods is the necessity for specimen preparation, which is a time-consuming process. While some literature describes the challenges and opportunities to overcome the technical issues related to food industry legal guidelines, there is a lack of reviews of the current trials to overcome technological limitations related to sample preparation and microbial detection via nano and micro technologies. In this review, we primarily explore current analytical technologies, including metallic and magnetic nanomaterials, optics, electrochemistry, and spectroscopy. These techniques rely on the early detection of pathogens via enhanced analytical sensitivity and specificity. In order to introduce the potential combination and comparative analysis of various advanced methods, we also reference a novel sample preparation protocol that uses microbial concentration and recovery technologies. This technology has the potential to expedite the pre-enrichment step that precedes the detection process.
Morlock, Scott E.; Nguyen, Hieu T.; Ross, Jerry H.
2002-01-01
It is feasible to use acoustic Doppler velocity meters (ADVM's) installed at U.S. Geological Survey (USGS) streamflow-gaging stations to compute records of river discharge. ADVM's are small acoustic current meters that use the Doppler principle to measure water velocities in a two-dimensional plane. Records of river discharge can be computed from stage and ADVM velocity data using the 'index velocity' method. The ADVM-measured velocities are used as an estimator or 'index' of the mean velocity in the channel. In evaluations of ADVM's for the computation of records of river discharge, the USGS installed ADVM's at three streamflow-gaging stations in Indiana: Kankakee River at Davis, Fall Creek at Millersville, and Iroquois River near Foresman. The ADVM evaluation study period was from June 1999 to February 2001. Discharge records were computed, using ADVM data from each station. Discharge records also were computed using conventional stage-discharge methods of the USGS. The records produced from ADVM and conventional methods were compared with discharge record hydrographs and statistics. Overall, the records compared closely from the Kankakee River and Fall Creek stations. For the Iroquois River station, variable backwater was present and affected the comparison; because the ADVM record compensates for backwater, the ADVM record may be superior to the conventional record. For the three stations, the ADVM records were judged to be of a quality acceptable to USGS standards for publications and near realtime ADVM-computed discharges are served on USGS real-time data World Wide Web pages.
Acoustic plane wave preferential orientation of metal oxide superconducting materials
Tolt, Thomas L.; Poeppel, Roger B.
1991-01-01
A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0
NASA Astrophysics Data System (ADS)
Hwang, Sunghwan; Han, Chang Wan; Venkatakrishnan, Singanallur V.; Bouman, Charles A.; Ortalan, Volkan
2017-04-01
Scanning transmission electron microscopy (STEM) has been successfully utilized to investigate atomic structure and chemistry of materials with atomic resolution. However, STEM’s focused electron probe with a high current density causes the electron beam damages including radiolysis and knock-on damage when the focused probe is exposed onto the electron-beam sensitive materials. Therefore, it is highly desirable to decrease the electron dose used in STEM for the investigation of biological/organic molecules, soft materials and nanomaterials in general. With the recent emergence of novel sparse signal processing theories, such as compressive sensing and model-based iterative reconstruction, possibilities of operating STEM under a sparse acquisition scheme to reduce the electron dose have been opened up. In this paper, we report our recent approach to implement a sparse acquisition in STEM mode executed by a random sparse-scan and a signal processing algorithm called model-based iterative reconstruction (MBIR). In this method, a small portion, such as 5% of randomly chosen unit sampling areas (i.e. electron probe positions), which corresponds to pixels of a STEM image, within the region of interest (ROI) of the specimen are scanned with an electron probe to obtain a sparse image. Sparse images are then reconstructed using the MBIR inpainting algorithm to produce an image of the specimen at the original resolution that is consistent with an image obtained using conventional scanning methods. Experimental results for down to 5% sampling show consistency with the full STEM image acquired by the conventional scanning method. Although, practical limitations of the conventional STEM instruments, such as internal delays of the STEM control electronics and the continuous electron gun emission, currently hinder to achieve the full potential of the sparse acquisition STEM in realizing the low dose imaging condition required for the investigation of beam-sensitive materials, the results obtained in our experiments demonstrate the sparse acquisition STEM imaging is potentially capable of reducing the electron dose by at least 20 times expanding the frontiers of our characterization capabilities for investigation of biological/organic molecules, polymers, soft materials and nanostructures in general.
Restoration of the Donor Face After Facial Allotransplantation
Grant, Gerald T.; Liacouras, Peter; Santiago, Gabriel F.; Garcia, Juan R.; Al Rakan, Mohammed; Murphy, Ryan; Armand, Mehran; Gordon, Chad R.
2014-01-01
Introduction Current protocols for facial transplantation include the mandatory fabrication of an alloplastic “mask” to restore the congruency of the donor site in the setting of “open casket” burial. However, there is currently a paucity of literature describing the current state-of-the-art and available options. Methods During this study, we identified that most of donor masks are fabricated using conventional methods of impression, molds, silicone, and/or acrylic application by an experienced anaplastologist or maxillofacial prosthetics technician. However, with the recent introduction of several enhanced computer-assisted technologies, our facial transplant team hypothesized that there were areas for improvement with respect to cost and preparation time. Results The use of digital imaging for virtual surgical manipulation, computer-assisted planning, and prefabricated surgical cutting guides—in the setting of facial transplantation—provided us a novel opportunity for digital design and fabrication of a donor mask. The results shown here demonstrate an acceptable appearance for “open-casket” burial while maintaining donor identity after facial organ recovery. Conclusions Several newer techniques for fabrication of facial transplant donor masks exist currently and are described within the article. These encompass digital impression, digital design, and additive manufacturing technology. PMID:24835867
Perez, Aurora; Hernández, Rebeca; Velasco, Diego; Voicu, Dan; Mijangos, Carmen
2015-03-01
Microfluidic techniques are expected to provide narrower particle size distribution than conventional methods for the preparation of poly (lactic-co-glycolic acid) (PLGA) microparticles. Besides, it is hypothesized that the particle size distribution of poly (lactic-co-glycolic acid) microparticles influences the settling behavior and rheological properties of its aqueous dispersions. For the preparation of PLGA particles, two different methods, microfluidic and conventional oil-in-water emulsification methods were employed. The particle size and particle size distribution of PLGA particles prepared by microfluidics were studied as a function of the flow rate of the organic phase while particles prepared by conventional methods were studied as a function of stirring rate. In order to study the stability and structural organization of colloidal dispersions, settling experiments and oscillatory rheological measurements were carried out on aqueous dispersions of PLGA particles with different particle size distributions. Microfluidics technique allowed the control of size and size distribution of the droplets formed in the process of emulsification. This resulted in a narrower particle size distribution for samples prepared by MF with respect to samples prepared by conventional methods. Polydisperse samples showed a larger tendency to aggregate, thus confirming the advantages of microfluidics over conventional methods, especially if biomedical applications are envisaged. Copyright © 2014 Elsevier Inc. All rights reserved.
Local structure studies of materials using pair distribution function analysis
NASA Astrophysics Data System (ADS)
Peterson, Joseph W.
A collection of pair distribution function studies on various materials is presented in this dissertation. In each case, local structure information of interest pushes the current limits of what these studies can accomplish. The goal is to provide insight into the individual material behaviors as well as to investigate ways to expand the current limits of PDF analysis. Where possible, I provide a framework for how PDF analysis might be applied to a wider set of material phenomena. Throughout the dissertation, I discuss 0 the capabilities of the PDF method to provide information pertaining to a material's structure and properties, ii) current limitations in the conventional approach to PDF analysis, iii) possible solutions to overcome certain limitations in PDF analysis, and iv) suggestions for future work to expand and improve the capabilities PDF analysis.
Hohnadel, Marisa; Maumy, Myriam; Chollet, Renaud
2018-01-01
For nearly a century, conventional microbiological methods have been standard practice for detecting and identifying pathogens in food. Nevertheless, the microbiological safety of food has improved and various rapid methods have been developed to overcome the limitations of conventional methods. Alternative methods are expected to detect low cell numbers, since the presence in food of even a single cell of a pathogenic organism may be infectious. With respect to low population levels, the performance of a detection method is assessed by producing serial dilutions of a pure bacterial suspension to inoculate representative food matrices with highly diluted bacterial cells (fewer than 10 CFU/ml). The accuracy of data obtained by multiple dilution techniques is not certain and does not exclude some colonies arising from clumps of cells. Micromanipulation techniques to capture and isolate single cells from environmental samples were introduced more than 40 years ago. The main limitation of the current micromanipulation technique is still the low recovery rate for the growth of a single cell in culture medium. In this study, we describe a new single cell isolation method and demonstrate that it can be used successfully to grow various types of microorganism from picked individual cells. Tests with Gram-positive and Gram-negative organisms, including cocci, rods, aerobes, anaerobes, yeasts and molds showed growth recovery rates from 60% to 100% after micromanipulation. We also highlight the use of our method to evaluate and challenge the detection limits of standard detection methods in food samples contaminated by a single cell of Salmonella enterica.
Pulsed eddy current inspection of broach support plates in steam generators
NASA Astrophysics Data System (ADS)
Mokros, Sarah Gwendolyn
Steam Generators (SGs) are a critical component of nuclear reactors, employing thousands of SG tubes to convert heat generated in the reactor core into useable energy. SG tubes are supported at numerous locations by Broach Support Plates (BSPs) that have trefoil shaped holes, which prevent excessive tube vibrations, while allowing water to easily flow through the support structures. A number of degradation modes occur in SGs, such as SG tube fretting, cracking or denting, requiring periodic inspection. Currently, conventional Eddy Current Testing (ECT) is used to non-destructively assess the condition of SG tubes and components. However, as reactors age, new modes of degradation will likely appear that may be difficult to detect and characterize using conventional ECT, such as wall loss in BSPs and build-up of corrosion products, which typically form as a hard sludge called magnetite. Pulsed Eddy Current (PEC) technologies are an emerging technique that is presented in this work as a method to further advance inspection techniques used in CANDURTM nuclear reactors. A PEC probe was designed to inspect the unique shape of the trefoil shaped hole to detect and characterize wall loss and the presence of magnetite in A516 carbon steel BSPs with trefoil shaped holes from within 15.9 mm (5/8") Alloy-800 SG tubes. PEC was also used to observe how measurements of wall loss were affected by the presence of magnetite. This work presents Finite Element Method (FEM) simulations and experimental results collected to observe these degradation modes. The probe was demonstrated to be capable of detecting far side wall loss as low as 20%, locating and characterizing the relative permeability of magnetite, and of detecting wall loss when magnetite was present. FEM simulations and experimental results were found to be in good agreement, suggesting that additional investigations of the effects of BSP degradation on PEC signal response may also be performed using FEM models.
Wilson, J.T.; Morlock, S.E.; Baker, N.T.
1997-01-01
Acoustic Doppler current profiler, global positioning system, and geographic information system technology were used to map the bathymetry of Morse and Geist Reservoirs, two artificial lakes used for public water supply in central Indiana. The project was a pilot study to evaluate the use of the technologies for bathymetric surveys. Bathymetric surveys were last conducted in 1978 on Morse Reservoir and in 1980 on Geist Reservoir; those surveys were done with conventional methods using networks of fathometer transects. The 1996 bathymetric surveys produced updated estimates of reservoir volumes that will serve as base-line data for future estimates of storage capacity and sedimentation rates.An acoustic Doppler current profiler and global positioning system receiver were used to collect water-depth and position data from April 1996 through October 1996. All water-depth and position data were imported to a geographic information system to create a data base. The geographic information system then was used to generate water-depth contour maps and to compute the volumes for each reservoir.The computed volume of Morse Reservoir was 22,820 acre-feet (7.44 billion gallons), with a surface area of 1,484 acres. The computed volume of Geist Reservoir was 19,280 acre-feet (6.29 billion gallons), with a surface area of 1,848 acres. The computed 1996 reservoir volumes are less than the design volumes and indicate that sedimentation has occurred in both reservoirs. Cross sections were constructed from the computer-generated surfaces for 1996 and compared to the fathometer profiles from the 1978 and 1980 surveys; analysis of these cross sections also indicates that some sedimentation has occurred in both reservoirs.The acoustic Doppler current profiler, global positioning system, and geographic information system technologies described in this report produced bathymetric maps and volume estimates more efficiently and with comparable or greater resolution than conventional bathymetry methods.
Nikooiyan, Payam; Mohammadi Sardo, Hamzeh; Poursaeidi, Bahram; Zaherara, Motahareh; Ahmadi, Bijan
2016-01-01
Aim: This study was performed to evaluate the efficacy, safety and complications of electrotherapy compared with conventional hemorrhoidectomy (Ferguson technique). Background: Ferguson hemorrhoidectomy is always associated with considerable pain and postoperative complications. Still, the electrotherapy method in which the hemorrhoidal tissue is not removed may not improve critical complications. Patients and methods: This randomized clinical trial was performed on patients with hemorrhoids referring to hospitals affiliated to the Kerman University of Medical Sciences during 2014-2015. One hundred and twenty patients presented with symptomatic hemorrhoids grade I, II, III, and IV were randomized into two groups. Group 1 (60 patients) underwent electrotherapy using 30 mA direct current and group 2 (60 patients) were submitted to Ferguson hemorrhoidectomy. The groups were compared regarding postoperative pain severity and complications, including recurrent symptoms, infection and recovery time to return to normal activities. The p≤ 0.05 was considered statistically significant. Results: More than 70% of patients in group 2 complained of severe pain, but in group 1, no more than 30% of patients experienced severe pain up to 6 hours post-surgery and 70% complained of mild pain 2-3 days post-surgery. Twenty four-hour hospitalization in group 2 and group 1 were 97% and 78%, respectively, whilst patients in electrotherapy group could be treated as outpatients. The mean return time to usual activities was 15 and 1.5 days for group 2 and 1, respectively. Conclusion: Electrotherapy with a direct current of 30 mA significantly reduce postoperative pain and the recovery period. This method showed a good success rate and less complication than the Ferguson method. As a result, because of more effectiveness, less pain, as well as shorter recovery time and getting back to normal activities, we recommend this procedure for the treatment of symptomatic hemorrhoids grade I, II, and III. PMID:27895851
Novel Method For Low-Rate Ddos Attack Detection
NASA Astrophysics Data System (ADS)
Chistokhodova, A. A.; Sidorov, I. D.
2018-05-01
The relevance of the work is associated with an increasing number of advanced types of DDoS attacks, in particular, low-rate HTTP-flood. Last year, the power and complexity of such attacks increased significantly. The article is devoted to the analysis of DDoS attacks detecting methods and their modifications with the purpose of increasing the accuracy of DDoS attack detection. The article details low-rate attacks features in comparison with conventional DDoS attacks. During the analysis, significant shortcomings of the available method for detecting low-rate DDoS attacks were found. Thus, the result of the study is an informal description of a new method for detecting low-rate denial-of-service attacks. The architecture of the stand for approbation of the method is developed. At the current stage of the study, it is possible to improve the efficiency of an already existing method by using a classifier with memory, as well as additional information.
What can formal methods offer to digital flight control systems design
NASA Technical Reports Server (NTRS)
Good, Donald I.
1990-01-01
Formal methods research begins to produce methods which will enable mathematic modeling of the physical behavior of digital hardware and software systems. The development of these methods directly supports the NASA mission of increasing the scope and effectiveness of flight system modeling capabilities. The conventional, continuous mathematics that is used extensively in modeling flight systems is not adequate for accurate modeling of digital systems. Therefore, the current practice of digital flight control system design has not had the benefits of extensive mathematical modeling which are common in other parts of flight system engineering. Formal methods research shows that by using discrete mathematics, very accurate modeling of digital systems is possible. These discrete modeling methods will bring the traditional benefits of modeling to digital hardware and hardware design. Sound reasoning about accurate mathematical models of flight control systems can be an important part of reducing risk of unsafe flight control.
Çetinkaya, S.; Çetinkara, H. A.; Bayansal, F.; Kahraman, S.
2013-01-01
CuO interlayers in the CuO/p-Si Schottky diodes were fabricated by using CBD and sol-gel methods. Deposited CuO layers were characterized by SEM and XRD techniques. From the SEM images, it was seen that the film grown by CBD method is denser than the film grown by sol-gel method. This result is compatible with XRD results which show that the crystallization in CBD method is higher than it is in sol-gel method. For the electrical investigations, current-voltage characteristics of the diodes have been studied at room temperature. Conventional I-V and Norde's methods were used in order to determine the ideality factor, barrier height, and series resistance values. It was seen that the morphological and structural analysis are compatible with the results of electrical investigations. PMID:23766670
NASA Astrophysics Data System (ADS)
Lee, Jae-Hoon; Park, Sang-Geun; Jeon, Jae-Hong; Goh, Joon-chul; Huh, Jong-moo; Choi, Joonhoo; Chung, Kyuha; Han, Min-Koo
2007-03-01
We propose and fabricate a new hydrogenated amorphous silicon (a-Si:H) thin-film transistor (TFT) pixel employing a fraction time annealing (FTA), which can supply a negative gate bias during a fraction time of each frame rather than the entire whole frame, in order to improve the organic light emitting diode (OLED) current stability for an active matrix (AM) OLED. When an electrical bias for an initial reference current of 2 μA at 60 °C is applied to an FTA-driven pixel more than 100 h and the temperature is increased up to 60 °C rather than room temperature, the OLED current is reduced by 22% in the FTA-driven pixel, whereas it is reduced by 53% in a conventional pixel. The current stability of the proposed pixel is improved, because the applied negative bias can suppress the threshold voltage degradation of the a-Si:H TFT itself, which may be attributed to hole trapping into SiNx. The proposed fraction time annealing method can successfully suppress Vth shift of the a-Si:H TFT itself due to hole trapping into SiNx induced by negative gate bias annealing.
Yasaki, Hirotoshi; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu
2017-10-11
Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the μA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 10 4 aL; height and width of 2.0 × 2.0 μm; length of 14 μm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.
Status and perspectives for the electron beam technology for flue gases treatment
NASA Astrophysics Data System (ADS)
Frank, Norman W.
The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.
Yue, Jin-feng; Qiao, Guan-hua; Liu, Ni; Nan, Fa-jun; Gao, Zhao-bing
2016-01-01
Aim: To establish an improved, high-throughput screening techniques for identifying novel KCNQ2 channel activators. Methods: KCNQ2 channels were stably expressed in CHO cells (KCNQ2 cells). Thallium flux assay was used for primary screening, and 384-well automated patch-clamp IonWorks Barracuda was used for hit validation. Two validated activators were characterized using a conventional patch-clamp recording technique. Results: From a collection of 80 000 compounds, the primary screening revealed a total of 565 compounds that potentiated the fluorescence signals in thallium flux assay by more than 150%. When the 565 hits were examined in IonWorks Barracuda, 38 compounds significantly enhanced the outward currents recorded in KCNQ2 cells, and were confirmed as KCNQ2 activators. In the conventional patch-clamp recordings, two validated activators ZG1732 and ZG2083 enhanced KCNQ2 currents with EC50 values of 1.04±0.18 μmol/L and 1.37±0.06 μmol/L, respectively. Conclusion: The combination of thallium flux assay and IonWorks Barracuda assay is an efficient high-throughput screening (HTS) route for discovering KCNQ2 activators. PMID:26725738
Cancer Treatment Using Peptides: Current Therapies and Future Prospects
Thundimadathil, Jyothi
2012-01-01
This paper discusses the role of peptides in cancer therapy with special emphasis on peptide drugs which are already approved and those in clinical trials. The potential of peptides in cancer treatment is evident from a variety of different strategies that are available to address the progression of tumor growth and propagation of the disease. Use of peptides that can directly target cancer cells without affecting normal cells (targeted therapy) is evolving as an alternate strategy to conventional chemotherapy. Peptide can be utilized directly as a cytotoxic agent through various mechanisms or can act as a carrier of cytotoxic agents and radioisotopes by specifically targeting cancer cells. Peptide-based hormonal therapy has been extensively studied and utilized for the treatment of breast and prostate cancers. Tremendous amount of clinical data is currently available attesting to the efficiency of peptide-based cancer vaccines. Combination therapy is emerging as an important strategy to achieve synergistic effects in fighting cancer as a single method alone may not be efficient enough to yield positive results. Combining immunotherapy with conventional therapies such as radiation and chemotherapy or combining an anticancer peptide with a nonpeptidic cytotoxic drug is an example of this emerging field. PMID:23316341
Schneiderman, Eva; Colón, Ellen; White, Donald J; St John, Samuel
2015-01-01
The purpose of this study was to compare the abrasivity of commercial dentifrices by two techniques: the conventional gold standard radiotracer-based Radioactive Dentin Abrasivity (RDA) method; and a newly validated technique based on V8 brushing that included a profilometry-based evaluation of dentin wear. This profilometry-based method is referred to as RDA-Profilometry Equivalent, or RDA-PE. A total of 36 dentifrices were sourced from four global dentifrice markets (Asia Pacific [including China], Europe, Latin America, and North America) and tested blindly using both the standard radiotracer (RDA) method and the new profilometry method (RDA-PE), taking care to follow specific details related to specimen preparation and treatment. Commercial dentifrices tested exhibited a wide range of abrasivity, with virtually all falling well under the industry accepted upper limit of 250; that is, 2.5 times the level of abrasion measured using an ISO 11609 abrasivity reference calcium pyrophosphate as the reference control. RDA and RDA-PE comparisons were linear across the entire range of abrasivity (r2 = 0.7102) and both measures exhibited similar reproducibility with replicate assessments. RDA-PE assessments were not just linearly correlated, but were also proportional to conventional RDA measures. The linearity and proportionality of the results of the current study support that both methods (RDA or RDA-PE) provide similar results and justify a rationale for making the upper abrasivity limit of 250 apply to both RDA and RDA-PE.
The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges
Masneuf-Pomarede, Isabelle; Bely, Marina; Marullo, Philippe; Albertin, Warren
2016-01-01
Saccharomyces cerevisiae is by far the most widely used yeast in oenology. However, during the last decade, several other yeasts species has been purposed for winemaking as they could positively impact wine quality. Some of these non-conventional yeasts (Torulaspora delbrueckii, Metschnikowia pulcherrima, Pichia kluyveri, Lachancea thermotolerans, etc.) are now proposed as starters culture for winemakers in mixed fermentation with S. cerevisiae, and several others are the subject of various studies (Hanseniaspora uvarum, Starmerella bacillaris, etc.). Along with their biotechnological use, the knowledge of these non-conventional yeasts greatly increased these last 10 years. The aim of this review is to describe the last updates and the current state-of-art of the genetics of non-conventional yeasts (including S. uvarum, T. delbrueckii, S. bacillaris, etc.). We describe how genomics and genetics tools provide new data into the population structure and biodiversity of non-conventional yeasts in winemaking environments. Future challenges will lie on the development of selection programs and/or genetic improvement of these non-conventional species. We discuss how genetics, genomics and the advances in next-generation sequencing will help the wine industry to develop the biotechnological use of non-conventional yeasts to improve the quality and differentiation of wines. PMID:26793188
Evaluation of alternatives to sound barrier walls.
DOT National Transportation Integrated Search
2013-06-01
The existing INDOTs noise wall specification was developed primarily on the basis of knowledge of the conventional precast concrete : panel systems. Currently, the constructed cost of conventional noise walls is approximately $2 million per linear...
Zhen, Chen; QuiuLi, Zhang; YuanQi, An; Casado, Verónica Vocero; Fan, Yuan
2016-01-01
Currently, conventional enzyme immunoassays which use manual gold immunoassays and colloidal tests (GICTs) are used as screening tools to detect Treponema pallidum (syphilis), hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus type 1 (HIV-1), and HIV-2 in patients undergoing surgery. The present observational, cross-sectional study compared the sensitivity, specificity, and work flow characteristics of the conventional algorithm with manual GICTs with those of a newly proposed algorithm that uses the automated Bio-Flash technology as a screening tool in patients undergoing gastrointestinal (GI) endoscopy. A total of 956 patients were examined for the presence of serological markers of infection with HIV-1/2, HCV, HBV, and T. pallidum. The proposed algorithm with the Bio-Flash technology was superior for the detection of all markers (100.0% sensitivity and specificity for detection of anti-HIV and anti-HCV antibodies, HBV surface antigen [HBsAg], and T. pallidum) compared with the conventional algorithm based on the manual method (80.0% sensitivity and 98.6% specificity for the detection of anti-HIV, 75.0% sensitivity for the detection of anti-HCV, 94.7% sensitivity for the detection of HBsAg, and 100% specificity for the detection of anti-HCV and HBsAg) in these patients. The automated Bio-Flash technology-based screening algorithm also reduced the operation time by 85.0% (205 min) per day, saving up to 24 h/week. In conclusion, the use of the newly proposed screening algorithm based on the automated Bio-Flash technology can provide an advantage over the use of conventional algorithms based on manual methods for screening for HIV, HBV, HCV, and syphilis before GI endoscopy. PMID:27707942
Jun, Zhou; Zhen, Chen; QuiuLi, Zhang; YuanQi, An; Casado, Verónica Vocero; Fan, Yuan
2016-12-01
Currently, conventional enzyme immunoassays which use manual gold immunoassays and colloidal tests (GICTs) are used as screening tools to detect Treponema pallidum (syphilis), hepatitis B virus (HBV), hepatitis C virus (HCV), human immunodeficiency virus type 1 (HIV-1), and HIV-2 in patients undergoing surgery. The present observational, cross-sectional study compared the sensitivity, specificity, and work flow characteristics of the conventional algorithm with manual GICTs with those of a newly proposed algorithm that uses the automated Bio-Flash technology as a screening tool in patients undergoing gastrointestinal (GI) endoscopy. A total of 956 patients were examined for the presence of serological markers of infection with HIV-1/2, HCV, HBV, and T. pallidum The proposed algorithm with the Bio-Flash technology was superior for the detection of all markers (100.0% sensitivity and specificity for detection of anti-HIV and anti-HCV antibodies, HBV surface antigen [HBsAg], and T. pallidum) compared with the conventional algorithm based on the manual method (80.0% sensitivity and 98.6% specificity for the detection of anti-HIV, 75.0% sensitivity for the detection of anti-HCV, 94.7% sensitivity for the detection of HBsAg, and 100% specificity for the detection of anti-HCV and HBsAg) in these patients. The automated Bio-Flash technology-based screening algorithm also reduced the operation time by 85.0% (205 min) per day, saving up to 24 h/week. In conclusion, the use of the newly proposed screening algorithm based on the automated Bio-Flash technology can provide an advantage over the use of conventional algorithms based on manual methods for screening for HIV, HBV, HCV, and syphilis before GI endoscopy. Copyright © 2016 Jun et al.
NASA Astrophysics Data System (ADS)
Winslow, M.; Akhtar-Schuster, M.; Cherlet, M.; Martius, C.; Sommer, S.; Thomas, R.; Vogt, J.
2009-12-01
The United Nations Convention to Combat Desertification (UNCCD) is a global treaty that emerged from the Rio Earth Summit and formally took force in 1996. It has now been ratified by 193 countries (known as Parties to the Convention). Yet the UNCCD has gained only modest support from donors, largely due to questions about the science base underlying its target issue (desertification) resulting in ambiguous definitions and quantification of the problem. The UNCCD recognizes the need to reform itself and commissioned a scientific conference in Buenos Aires, Argentina in September 2009 to discuss ways to improve the scientific underpinning of monitoring and assessment (M&A) of desertification, land degradation and drought (DLDD). Previous attempts by the UNCCD on M&A focused largely on a search for a common, simple, universal set of indicators that could be reported by country Parties to the Convention Secretariat, which would collate them into a global report. However experience found that no single set of indicators is satisfactory to all countries, because DLDD depends strongly on the local environmental and human/social context. Three preparatory Working Groups analyzed the issue of DLDD M&A and recommended the following. Parties should recognize that M&A methods must integrate human-environment parameters to capture the complexity of DLDD phenomena as defined in the Convention’s text. Traditional tendencies had been to isolate biophysical from social and economic parameters, leading to unrealistic conclusions. Parties should take advantage of a much wider range of analytical techniques than just the coarse-scale indicators that had been their main focus to date. Powerful but underutilized techniques include integrated assessment models, remote sensing, geographic information systems and mapping, participatory stakeholder assessment, hierarchical aggregation of related data, knowledge management and many others. Multiple methods could provide validation checks on each other from complementary perspectives. M&A should also collect information to support benefit/cost analysis because decision-makers require such information in weighing priorities for public investment. Such information should include non-monetary as well as monetary values. Ecosystem services should also be valued, even if they are currently available free to land users. Parties should recognize the potential utility of knowledge management (KM) methods to overcome knowledge barriers that currently inhibit M&A collaboration between institutions, scientific disciplines, scale levels, formal/informal sectors, development sectors (e.g. water, health, food, infrastructure etc.), and between land users, scientists and policy makers. Improved KM could also build human and institutional capacities, resulting in improved M&A in the future.
Muraina, I A; Adaudi, A O; Mamman, M; Kazeem, H M; Picard, J; McGaw, L J; Eloff, J N
2010-10-01
Mycoplasma spp. are obligate parasites of humans and animals. But due to the special requirements needed to culture Mycoplasma in the laboratory, little or no research has been done to evaluate the efficacy of medicinal plants on the organism. To screen medicinal plants traditionally used to treat infections for possible antimycoplasmal and cytotoxic activities. Acetone extracts of 21 Nigerian medicinal plants were analyzed for antimycoplasmal and cytotoxicity activities using the metabolic inhibition and colorimetric methods, respectively. The extract with the best antimycoplasmal activities was also analyzed for its phytochemical constituents using the desktop method. Calotropis procera (Aiton) R.Br (Asclepiadaceae) extract had the best antimycoplasmal effect with a minimum inhibitory concentration (MIC) of 80 µg/mL and minimum mycoplasmacidal concentration (MMC) of 160 µg/mL. This extract contained saponins, tannins, cardiac glycosides, alkaloids, and flavonoids. The extract of Vernonia amygdalina Delile (Compositae) was the most cytotoxic with median lethal concentration (LC(50)) of approximately 17 µg/mL, and that of Anacardium occidentale L. (Anacardiaceae) was the least cytotoxic with an LC(50) of approximately 1919 µg/mL. Calotropis procera is a promising plant for an alternative antimycoplasmal agent because the crude acetone extract had a higher mycoplasmacidal activity than the conventional drug tylosin, which is currently used in treatment of the disease in Nigeria. The crude extract of Calotropis procera is worth investigating for the development of a potent agent against cattle Mycoplasma, which has long defied solution by conventional chemotherapy.
Carbon nanotubes and graphene towards soft electronics
NASA Astrophysics Data System (ADS)
Chae, Sang Hoon; Lee, Young Hee
2014-04-01
Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic substrates that have attractive characteristics. A future research direction is also proposed to overcome current technological obstacles necessary to realize commercially feasible soft electronics.
Carbon nanotubes and graphene towards soft electronics.
Chae, Sang Hoon; Lee, Young Hee
2014-01-01
Although silicon technology has been the main driving force for miniaturizing device dimensions to improve cost and performance, the current application of Si to soft electronics (flexible and stretchable electronics) is limited due to material rigidity. As a result, various prospective materials have been proposed to overcome the rigidity of conventional Si technology. In particular, nano-carbon materials such as carbon nanotubes (CNTs) and graphene are promising due to outstanding elastic properties as well as an excellent combination of electronic, optoelectronic, and thermal properties compared to conventional rigid silicon. The uniqueness of these nano-carbon materials has opened new possibilities for soft electronics, which is another technological trend in the market. This review covers the recent progress of soft electronics research based on CNTs and graphene. We discuss the strategies for soft electronics with nano-carbon materials and their preparation methods (growth and transfer techniques) to devices as well as the electrical characteristics of transparent conducting films (transparency and sheet resistance) and device performances in field effect transistor (FET) (structure, carrier type, on/off ratio, and mobility). In addition to discussing state of the art performance metrics, we also attempt to clarify trade-off issues and methods to control the trade-off on/off versus mobility). We further demonstrate accomplishments of the CNT network in flexible integrated circuits on plastic substrates that have attractive characteristics. A future research direction is also proposed to overcome current technological obstacles necessary to realize commercially feasible soft electronics.
Bergin, Junping Ma; Rubenstein, Jeffrey E; Mancl, Lloyd; Brudvik, James S; Raigrodski, Ariel J
2013-10-01
Conventional impression techniques for recording the location and orientation of implant-supported, complete-arch prostheses are time consuming and prone to error. The direct optical recording of the location and orientation of implants, without the need for intermediate transfer steps, could reduce or eliminate those disadvantages. The objective of this study was to assess the feasibility of using a photogrammetric technique to record the location and orientation of multiple implants and to compare the results with those of a conventional complete-arch impression technique. A stone cast of an edentulous mandibular arch containing 5 implant analogs was fabricated to create a master model. The 3-dimensional (3D) spatial orientations of implant analogs on the master model were measured with a coordinate measuring machine (CMM) (control). Five definitive casts were made from the master model with a splinted impression technique. The positions of the implant analogs on the 5 casts were measured with a NobelProcera scanner (conventional method). Prototype optical targets were attached to the master model implant analogs, and 5 sets of images were recorded with a digital camera and a standardized image capture protocol. Dimensional data were imported into commercially available photogrammetry software (photogrammetric method). The precision and accuracy of the 2 methods were compared with a 2-sample t test (α=.05) and a 95% confidence interval. The location precision (standard error of measurement) for CMM was 3.9 µm (95% CI 2.7 to 7.1), for photogrammetry, 5.6 µm (95% CI 3.4 to 16.1), and for the conventional method, 17.2 µm (95% CI 10.3 to 49.4). The average measurement error was 26.2 µm (95% CI 15.9 to 36.6) for the conventional method and 28.8 µm (95% CI 24.8 to 32.9) for the photogrammetric method. The overall measurement accuracy was not significantly different when comparing the conventional to the photogrammetric method (mean difference = -2.6 µm, 95% CI -12.8 to 7.6). The precision of the photogrammetric method was similar to CMM, but lower for the conventional method as compared to CMM and the photogrammetric method. However, the overall measurement accuracy of the photogrammetric and conventional methods was similar. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guler, Seyhmus; Dannhauer, Moritz; Erem, Burak; Macleod, Rob; Tucker, Don; Turovets, Sergei; Luu, Phan; Erdogmus, Deniz; Brooks, Dana H.
2016-06-01
Objective. Transcranial direct current stimulation (tDCS) aims to alter brain function non-invasively via electrodes placed on the scalp. Conventional tDCS uses two relatively large patch electrodes to deliver electrical current to the brain region of interest (ROI). Recent studies have shown that using dense arrays containing up to 512 smaller electrodes may increase the precision of targeting ROIs. However, this creates a need for methods to determine effective and safe stimulus patterns as the number of degrees of freedom is much higher with such arrays. Several approaches to this problem have appeared in the literature. In this paper, we describe a new method for calculating optimal electrode stimulus patterns for targeted and directional modulation in dense array tDCS which differs in some important aspects with methods reported to date. Approach. We optimize stimulus pattern of dense arrays with fixed electrode placement to maximize the current density in a particular direction in the ROI. We impose a flexible set of safety constraints on the current power in the brain, individual electrode currents, and total injected current, to protect subject safety. The proposed optimization problem is convex and thus efficiently solved using existing optimization software to find unique and globally optimal electrode stimulus patterns. Main results. Solutions for four anatomical ROIs based on a realistic head model are shown as exemplary results. To illustrate the differences between our approach and previously introduced methods, we compare our method with two of the other leading methods in the literature. We also report on extensive simulations that show the effect of the values chosen for each proposed safety constraint bound on the optimized stimulus patterns. Significance. The proposed optimization approach employs volume based ROIs, easily adapts to different sets of safety constraints, and takes negligible time to compute. An in-depth comparison study gives insight into the relationship between different objective criteria and optimized stimulus patterns. In addition, the analysis of the interaction between optimized stimulus patterns and safety constraint bounds suggests that more precise current localization in the ROI, with improved safety criterion, may be achieved by careful selection of the constraint bounds.
WE-G-BRD-09: Novel MRI Compatible Electron Accelerator for MRI-Linac Radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whelan, B; Keall, P; Gierman, S
Purpose: MRI guided radiotherapy is a rapidly growing field; however current linacs are not designed to operate in MRI fringe fields. As such, current MRI- Linac systems require magnetic shielding, impairing MR image quality and system flexibility. Here, we present a bespoke electron accelerator concept with robust operation in in-line magnetic fields. Methods: For in-line MRI-Linac systems, electron gun performance is the major constraint on accelerator performance. To overcome this, we propose placing a cathode directly within the first accelerating cavity. Such a configuration is used extensively in high energy particle physics, but not previously for radiotherapy. Benchmarked computational modellingmore » (CST, Darmstadt, Germany) was employed to design and assess a 5.5 cell side coupled accelerator with a temperature limited thermionic cathode in the first accelerating cell. This simulation was coupled to magnetic fields from a 1T MRI model to assess robustness in magnetic fields for Source to Isocenter Distance between 1 and 2 meters. Performance was compared to a conventional electron gun based system in the same magnetic field. Results: A temperature limited cathode (work function 1.8eV, temperature 1245K, emission constant 60A/K/cm{sup 2}) will emit a mean current density of 24mA/mm{sup 2} (Richardson’s Law). We modeled a circular cathode with radius 2mm and mean current 300mA. Capture efficiency of the device was 43%, resulting in target current of 130 mA. The electron beam had a FWHM of 0.2mm, and mean energy of 5.9MeV (interquartile spread of 0.1MeV). Such an electron beam is suitable for radiotherapy, comparing favourably to conventional systems. This model was robust to operation the MRI fringe field, with a maximum current loss of 6% compared to 85% for the conventional system. Conclusion: The bespoke electron accelerator is robust to operation in in-line magnetic fields. This will enable MRI-Linacs with no accelerator magnetic shielding, and minimise painstaking optimisation of the MRI fringe field. This work was supported by US (NIH) and Australian (NHMRC & Cancer Institute NSW) government research funding. In addition, I would like to thank cancer institute NSW and the Ingham Institute for scholarship support.« less
Enhancing the Detection of Giardia duodenalis Cysts in Foods by Inertial Microfluidic Separation
Ganz, Kyle R.; Clime, Liviu; Farber, Jeffrey M.; Corneau, Nathalie
2015-01-01
The sensitivity and specificity of current Giardia cyst detection methods for foods are largely determined by the effectiveness of the elution, separation, and concentration methods used. The aim of these methods is to produce a final suspension with an adequate concentration of Giardia cysts for detection and a low concentration of interfering food debris. In the present study, a microfluidic device, which makes use of inertial separation, was designed and fabricated for the separation of Giardia cysts. A cyclical pumping platform and protocol was developed to concentrate 10-ml suspensions down to less than 1 ml. Tests involving Giardia duodenalis cysts and 1.90-μm microbeads in pure suspensions demonstrated the specificity of the microfluidic chip for cysts over smaller nonspecific particles. As the suspension cycled through the chip, a large number of beads were removed (70%) and the majority of the cysts were concentrated (82%). Subsequently, the microfluidic inertial separation chip was integrated into a method for the detection of G. duodenalis cysts from lettuce samples. The method greatly reduced the concentration of background debris in the final suspensions (10-fold reduction) in comparison to that obtained by a conventional method. The method also recovered an average of 68.4% of cysts from 25-g lettuce samples and had a limit of detection (LOD) of 38 cysts. While the recovery of cysts by inertial separation was slightly lower, and the LOD slightly higher, than with the conventional method, the sample analysis time was greatly reduced, as there were far fewer background food particles interfering with the detection of cysts by immunofluorescence microscopy. PMID:25841016
A simple, less invasive stripper micropipetter-based technique for day 3 embryo biopsy.
Cedillo, Luciano; Ocampo-Bárcenas, Azucena; Maldonado, Israel; Valdez-Morales, Francisco J; Camargo, Felipe; López-Bayghen, Esther
2016-01-01
Preimplantation genetic screening (PGS) is an important procedure for in vitro fertilization (IVF). A key step of PGS, blastomere removal, is abundant with many technical issues. The aim of this study was to compare a more simple procedure based on the Stipper Micropipetter, named S-biopsy, to the conventional aspiration method. On Day 3, 368 high-quality embryos (>7 cells on Day3 with <10% fragmentation) were collected from 38 women. For each patient, their embryos were equally separated between the conventional method ( n = 188) and S-biopsy method ( n = 180). The conventional method was performed using a standardized protocol. For the S-biopsy method, a laser was used to remove a significantly smaller portion of the zona pellucida. Afterwards, the complete embryo was aspirated with a Stripper Micropipetter, forcing the removal of the blastomere. Selected blastomeres went to PGS using CGH microarrays. Embryo integrity and blastocyst formation were assessed on Day 5. Differences between groups were assessed by either the Mann-Whitney test or Fisher Exact test. Both methods resulted in the removal of only one blastomere. The S-biopsy and the conventional method did not differ in terms of affecting embryo integrity (95.0% vs. 95.7%) or blastocyst formation (72.7% vs. 70.7%). PGS analysis indicated that aneuploidy rate were similar between the two methods (63.1% vs. 65.2%). However, the time required to perform the S-biopsy method (179.2 ± 17.5 s) was significantly shorter (5-fold) than the conventional method. The S-biopsy method is comparable to the conventional method that is used to remove a blastomere for PGS, but requires less time. Furthermore, due to the simplicity of the S-biopsy technique, this method is more ideal for IVF laboratories.
2011-01-01
Background In recent times the basic understanding, perceptions and CAM use among undergraduate health sciences students have become a topic of interest. This study was aimed to investigate the understanding, perceptions and self-use of CAM among pharmacy students in Malaysia. Methods This cross-sectional study was conducted on 500 systematically sampled pharmacy students from two private and one public university. A validated, self-administered questionnaire comprised of seven sections was used to gather the data. A systematic sampling was applied to recruit the students. Both descriptive and inferential statistics were applied using SPSS® version 18. Results Overall, the students tend to disagree that complementary therapies (CM) are a threat to public health (mean score = 3.6) and agreed that CMs include ideas and methods from which conventional medicine could benefit (mean score = 4.7). More than half (57.8%) of the participants were currently using CAM while 77.6% had used it previously. Among the current CAM modalities used by the students, CM (21.9%) was found to be the most frequently used CAM followed by Traditional Chinese Medicine (TCM) (21%). Most of the students (74.8%) believed that lack of scientific evidence is one of the most important barriers obstructing them to use CAM. More than half of the students perceived TCM (62.8%) and music therapy (53.8%) to be effective. Majority of them (69.3%) asserted that CAM knowledge is necessary to be a well-rounded professional. Conclusions This study reveals a high-percentage of pharmacy students who were using or had previously used at least one type of CAM. Students of higher professional years tend to agree that CMs include ideas and methods from which conventional medicine could benefit. PMID:21992582
The development of additive manufacturing technique for nickel-base alloys: A review
NASA Astrophysics Data System (ADS)
Zadi-Maad, Ahmad; Basuki, Arif
2018-04-01
Nickel-base alloys are an attractive alloy due to its excellent mechanical properties, a high resistance to creep deformation, corrosion, and oxidation. However, it is a hard task to control performance when casting or forging for this material. In recent years, additive manufacturing (AM) process has been implemented to replace the conventional directional solidification process for the production of nickel-base alloys. Due to its potentially lower cost and flexibility manufacturing process, AM is considered as a substitute technique for the existing. This paper provides a comprehensive review of the previous work related to the AM techniques for Ni-base alloys while highlighting current challenges and methods to solving them. The properties of conventionally manufactured Ni-base alloys are also compared with the AM fabricated alloys. The mechanical properties obtained from tension, hardness and fatigue test are included, along with discussions of the effect of post-treatment process. Recommendations for further work are also provided.
Botanical alternatives to antibiotics for use in organic poultry production.
Diaz-Sanchez, Sandra; D'Souza, Doris; Biswas, Debrabrata; Hanning, Irene
2015-06-01
The development of antibiotic resistant pathogens has resulted from the use of sub-therapeutic concentrations of antibiotics delivered in poultry feed. Furthermore, there are a number of consumer concerns regarding the use of antibiotics in food animals including residue contamination of poultry products and antibiotic resistant bacterial pathogens. These issues have resulted in recommendations to reduce the use of antibiotics as growth promoters in livestock in the United States. Unlike conventional production, organic systems are not permitted to use antibiotics. Thus, both conventional and organic poultry production need alternative methods to improve growth and performance of poultry. Herbs, spices, and various other plant extracts are being evaluated as alternatives to antibiotics and some do have growth promoting effects, antimicrobial properties, and other health-related benefits. This review aims to provide an overview of herbs, spices, and plant extracts, currently defined as phytobiotics as potential feed additives. © 2015 Poultry Science Association Inc.
Diagnosis of Dengue Infection Using Conventional and Biosensor Based Techniques
Parkash, Om; Hanim Shueb, Rafidah
2015-01-01
Dengue is an arthropod-borne viral disease caused by four antigenically different serotypes of dengue virus. This disease is considered as a major public health concern around the world. Currently, there is no licensed vaccine or antiviral drug available for the prevention and treatment of dengue disease. Moreover, clinical features of dengue are indistinguishable from other infectious diseases such as malaria, chikungunya, rickettsia and leptospira. Therefore, prompt and accurate laboratory diagnostic test is urgently required for disease confirmation and patient triage. The traditional diagnostic techniques for the dengue virus are viral detection in cell culture, serological testing, and RNA amplification using reverse transcriptase PCR. This paper discusses the conventional laboratory methods used for the diagnosis of dengue during the acute and convalescent phase and highlights the advantages and limitations of these routine laboratory tests. Subsequently, the biosensor based assays developed using various transducers for the detection of dengue are also reviewed. PMID:26492265
Zero-dimensional to three-dimensional nanojoining: current status and potential applications
Ma, Ying; Li, Hong; Bridges, Denzel; ...
2016-08-01
We report that the continuing miniaturization of microelectronics is pushing advanced manufacturing into nanomanufacturing. Nanojoining is a bottom-up assembly technique that enables functional nanodevice fabrication with dissimilar nanoscopic building blocks and/or molecular components. Various conventional joining techniques have been modified and re-invented for joining nanomaterials. Our review surveys recent progress in nanojoining methods, as compared to conventional joining processes. Examples of nanojoining are given and classified by the dimensionality of the joining materials. At each classification, nanojoining is reviewed and discussed according to materials specialties, low dimensional processing features, energy input mechanisms and potential applications. The preparation of new intermetallicmore » materials by reactive nanoscale multilayer foils based on self-propagating high-temperature synthesis is highlighted. This review will provide insight into nanojoining fundamentals and innovative applications in power electronics packaging, plasmonic devices, nanosoldering for printable electronics, 3D printing and space manufacturing.« less
Comparative evaluation of surface and downhole steam-generation techniques
NASA Astrophysics Data System (ADS)
Hart, C.
The application of heat to reservoirs containing high API gravity oils can substantially improve recovery. Although steam injection is currently the principal thermal recovery method, heat transmission losses associated with delivery of the steam from the surface generators to the oil bearing formation has limited conventional steam injection to shallow reservoirs. The objective of the Department of Energy's Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this effort are the development and evaluation of thermally efficient delivery systems and downhole steam generation systems. The technical and economic performance of conventional surface steam drives, which are strongly influenced by heat losses are compared. The selection of a preferred technology based upon either total efficiency or cost is found to be strongly influenced by reservoir depth, steam mass flow rate, and sandface steam quality.
NASA Astrophysics Data System (ADS)
Haruzi, Peleg; Halisch, Matthias; Katsman, Regina; Waldmann, Nicolas
2016-04-01
Lower Cretaceous sandstone serves as hydrocarbon reservoir in some places over the world, and potentially in Hatira formation in the Golan Heights, northern Israel. The purpose of the current research is to characterize the petrophysical properties of these sandstone units. The study is carried out by two alternative methods: using conventional macroscopic lab measurements, and using CT-scanning, image processing and subsequent fluid mechanics simulations at a microscale, followed by upscaling to the conventional macroscopic rock parameters (porosity and permeability). Comparison between the upscaled and measured in the lab properties will be conducted. The best way to upscale the microscopic rock characteristics will be analyzed based the models suggested in the literature. Proper characterization of the potential reservoir will provide necessary analytical parameters for the future experimenting and modeling of the macroscopic fluid flow behavior in the Lower Cretaceous sandstone.
Electric power processing, distribution and control for advanced aerospace vehicles.
NASA Technical Reports Server (NTRS)
Krausz, A.; Felch, J. L.
1972-01-01
The results of a current study program to develop a rational basis for selection of power processing, distribution, and control configurations for future aerospace vehicles including the Space Station, Space Shuttle, and high-performance aircraft are presented. Within the constraints imposed by the characteristics of power generation subsystems and the load utilization equipment requirements, the power processing, distribution and control subsystem can be optimized by selection of the proper distribution voltage, frequency, and overload/fault protection method. It is shown that, for large space vehicles which rely on static energy conversion to provide electric power, high-voltage dc distribution (above 100 V dc) is preferable to conventional 28 V dc and 115 V ac distribution per MIL-STD-704A. High-voltage dc also has advantages over conventional constant frequency ac systems in many aircraft applications due to the elimination of speed control, wave shaping, and synchronization equipment.
Improved fuzzy PID controller design using predictive functional control structure.
Wang, Yuzhong; Jin, Qibing; Zhang, Ridong
2017-11-01
In conventional PID scheme, the ensemble control performance may be unsatisfactory due to limited degrees of freedom under various kinds of uncertainty. To overcome this disadvantage, a novel PID control method that inherits the advantages of fuzzy PID control and the predictive functional control (PFC) is presented and further verified on the temperature model of a coke furnace. Based on the framework of PFC, the prediction of the future process behavior is first obtained using the current process input signal. Then, the fuzzy PID control based on the multi-step prediction is introduced to acquire the optimal control law. Finally, the case study on a temperature model of a coke furnace shows the effectiveness of the fuzzy PID control scheme when compared with conventional PID control and fuzzy self-adaptive PID control. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Computer-based self-organized tectonic zoning: a tentative pattern recognition for Iran
NASA Astrophysics Data System (ADS)
Zamani, Ahmad; Hashemi, Naser
2004-08-01
Conventional methods of tectonic zoning are frequently characterized by two deficiencies. The first one is the large uncertainty involved in tectonic zoning based on non-quantitative and subjective analysis. Failure to interpret accurately a large amount of data "by eye" is the second. In order to alleviate each of these deficiencies, the multivariate statistical method of cluster analysis has been utilized to seek and separate zones with similar tectonic pattern and construct automated self-organized multivariate tectonic zoning maps. This analytical method of tectonic regionalization is particularly useful for showing trends in tectonic evolution of a region that could not be discovered by any other means. To illustrate, this method has been applied for producing a general-purpose numerical tectonic zoning map of Iran. While there are some similarities between the self-organized multivariate numerical maps and the conventional maps, the cluster solution maps reveal some remarkable features that cannot be observed on the current tectonic maps. The following specific examples need to be noted: (1) The much disputed extent and rigidity of the Lut Rigid Block, described as the microplate of east Iran, is clearly revealed on the self-organized numerical maps. (2) The cluster solution maps reveal a striking similarity between this microplate and the northern Central Iran—including the Great Kavir region. (3) Contrary to the conventional map, the cluster solution maps make a clear distinction between the East Iranian Ranges and the Makran Mountains. (4) Moreover, an interesting similarity between the Azarbaijan region in the northwest and the Makran Mountains in the southeast and between the Kopet Dagh Ranges in the northeast and the Zagros Folded Belt in the southwest of Iran are revealed in the clustering process. This new approach to tectonic zoning is a starting point and is expected to be improved and refined by collection of new data. The method is also a useful tool in studying neotectonics, seismotectonics, seismic zoning, and hazard estimation of the seismogenic regions.
Wang, Kangkang; Rosenmann, Daniel; Holt, Martin; Winarski, Robert; Hla, Saw-Wai; Rose, Volker
2013-06-01
In order to achieve elemental and chemical sensitivity in scanning tunneling microscopy (STM), synchrotron x-rays have been applied to excite core-level electrons during tunneling. The x-ray photo-excitations result in tip currents that are superimposed onto conventional tunneling currents. While carrying important physical information, the varying x-ray induced currents can destabilize the feedback loop causing it to be unable to maintain a constant tunneling current, sometimes even causing the tip to retract fully or crash. In this paper, we report on an easy-to-implement filter circuit that can separate the x-ray induced currents from conventional tunneling currents, thereby allowing simultaneous measurements of topography and chemical contrasts. The filter and the schematic presented here can also be applied to other variants of light-assisted STM such as laser STM.
Steinmetz, Michael P; Mroz, Thomas E; Krishnaney, Ajit; Modic, Michael
2009-12-01
In today's health-care environment, operational efficiency is intrinsic to balancing the need for increased productivity driven by rising costs and potentially decreasing reimbursement. Other operational factors kept constant, decreasing the time for a procedure can be viewed as one marker for increased efficiency. To prospectively evaluate the time and operating room efficiency differences between the two methods for intraoperative level localization. STYDY DESIGN: Prospective nonrandomized study. Prospective consecutive patients undergoing a single-level anterior cervical discectomy and fusion (ACDF) with plate and allograft. Time for performance and interpretation of intraoperative localization radiograph. This is a prospective nonrandomized study of patients treated consecutively with a single-level ACDF with allograft and plating. All the patients underwent a conventional approach to the cervical spine. After exposure, a spinal needle was placed in the exposed intervertebral disc and a radiography was performed. Either a conventional or a digital radiography was used in each case. Eighteen patients were enrolled in this study. Ten patients underwent localization with conventional radiography, whereas eight patients underwent localization with digital imaging. The mean time for conventional radiography was 823 seconds (standard deviation [SD], 159), and for digital, it was 100 seconds (SD, 34; p<.001). Current technology provides options for level localization. Digital imaging provides equally accurate information as conventional radiography in a significantly reduced amount of time. Image quality, ease or archival, and manipulation provided by digital radiography are superior to those by provided fluoroscopy. Keeping operational factors constant, decreasing the time for a procedure, and increasing the efficiency of the environment may be viewed as a surrogate for improving the cost basis for a procedure.
Novel Method for Superposing 3D Digital Models for Monitoring Orthodontic Tooth Movement.
Schmidt, Falko; Kilic, Fatih; Piro, Neltje Emma; Geiger, Martin Eberhard; Lapatki, Bernd Georg
2018-04-18
Quantitative three-dimensional analysis of orthodontic tooth movement (OTM) is possible by superposition of digital jaw models made at different times during treatment. Conventional methods rely on surface alignment at palatal soft-tissue areas, which is applicable to the maxilla only. We introduce two novel numerical methods applicable to both maxilla and mandible. The OTM from the initial phase of multi-bracket appliance treatment of ten pairs of maxillary models were evaluated and compared with four conventional methods. The median range of deviation of OTM for three users was 13-72% smaller for the novel methods than for the conventional methods, indicating greater inter-observer agreement. Total tooth translation and rotation were significantly different (ANOVA, p < 0.01) for OTM determined by use of the two numerical and four conventional methods. Directional decomposition of OTM from the novel methods showed clinically acceptable agreement with reference results except for vertical translations (deviations of medians greater than 0.6 mm). The difference in vertical translational OTM can be explained by maxillary vertical growth during the observation period, which is additionally recorded by conventional methods. The novel approaches are, thus, particularly suitable for evaluation of pure treatment effects, because growth-related changes are ignored.
AlBarakati, SF; Kula, KS; Ghoneima, AA
2012-01-01
Objective The aim of this study was to assess the reliability and reproducibility of angular and linear measurements of conventional and digital cephalometric methods. Methods A total of 13 landmarks and 16 skeletal and dental parameters were defined and measured on pre-treatment cephalometric radiographs of 30 patients. The conventional and digital tracings and measurements were performed twice by the same examiner with a 6 week interval between measurements. The reliability within the method was determined using Pearson's correlation coefficient (r2). The reproducibility between methods was calculated by paired t-test. The level of statistical significance was set at p < 0.05. Results All measurements for each method were above 0.90 r2 (strong correlation) except maxillary length, which had a correlation of 0.82 for conventional tracing. Significant differences between the two methods were observed in most angular and linear measurements except for ANB angle (p = 0.5), angle of convexity (p = 0.09), anterior cranial base (p = 0.3) and the lower anterior facial height (p = 0.6). Conclusion In general, both methods of conventional and digital cephalometric analysis are highly reliable. Although the reproducibility of the two methods showed some statistically significant differences, most differences were not clinically significant. PMID:22184624
[Music therapy as a part of complex healing].
Sliwka, Agnieszka; Jarosz, Anna; Nowobilski, Roman
2006-10-01
Music therapy is a method which takes the adventage of therapeutic influence of musie on psychological and somatic sphere of the human body. Its therapeutic properties are more and more used. Current scientific research have proved its modifying influence on vegetative, circulatory, respiratory and endocrine systems. Works devoted to the effects of musie on the patients' psychological sphere have also confirmed that it reduces psychopathologic symptoms (anxiety and depression), improves self-rating, influences quality and disorders of sleep, reduces pain, improves moral immunity and patients' openness, readiness, co-operation in treatment process. Music therapy is treated as a method which complements conventional treatment and makes up part of an integral whole together with physiotherapy, kinesitherapy and recuperation.
Sample preparation for the analysis of isoflavones from soybeans and soy foods.
Rostagno, M A; Villares, A; Guillamón, E; García-Lafuente, A; Martínez, J A
2009-01-02
This manuscript provides a review of the actual state and the most recent advances as well as current trends and future prospects in sample preparation and analysis for the quantification of isoflavones from soybeans and soy foods. Individual steps of the procedures used in sample preparation, including sample conservation, extraction techniques and methods, and post-extraction treatment procedures are discussed. The most commonly used methods for extraction of isoflavones with both conventional and "modern" techniques are examined in detail. These modern techniques include ultrasound-assisted extraction, pressurized liquid extraction, supercritical fluid extraction and microwave-assisted extraction. Other aspects such as stability during extraction and analysis by high performance liquid chromatography are also covered.
NASA Astrophysics Data System (ADS)
Steingroewer, Juliane; Bley, Thomas; Bergemann, Christian; Boschke, Elke
2007-04-01
Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.
Pure detection of the acoustic spin pumping in Pt/YIG/PZT structures
NASA Astrophysics Data System (ADS)
Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Saitoh, Eiji
2014-11-01
The acoustic spin pumping (ASP) stands for the generation of a spin voltage from sound waves in a ferromagnet/paramagnet junction. In this letter, we propose and demonstrate a method for pure detection of the ASP, which enables the separation of sound-wave-driven spin currents from the spin Seebeck effect due to the heating of a sample caused by a sound-wave injection. Our demonstration using a Pt/YIG/PZT sample shows that the ASP signal in this structure measured by a conventional method is considerably offset by the heating signal and that the pure ASP signal is one order of magnitude greater than that reported in the previous study.
Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems.
Montesinos-López, Osval A; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José C; Mota-Sanchez, David; Estrada-González, Fermín; Gillberg, Jussi; Singh, Ravi; Mondal, Suchismita; Juliana, Philomin
2018-01-04
In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. In current genomic selection, although researchers have a large amount of information and appropriate statistical models to process it, there is still limited computing efficiency to do so. Although some statistical models are usually mathematically elegant, many of them are also computationally inefficient, and they are impractical for many traits, lines, environments, and years because they need to sample from huge normal multivariate distributions. For these reasons, this study explores two recommender systems: item-based collaborative filtering (IBCF) and the matrix factorization algorithm (MF) in the context of multiple traits and multiple environments. The IBCF and MF methods were compared with two conventional methods on simulated and real data. Results of the simulated and real data sets show that the IBCF technique was slightly better in terms of prediction accuracy than the two conventional methods and the MF method when the correlation was moderately high. The IBCF technique is very attractive because it produces good predictions when there is high correlation between items (environment-trait combinations) and its implementation is computationally feasible, which can be useful for plant breeders who deal with very large data sets. Copyright © 2018 Montesinos-Lopez et al.
NASA Astrophysics Data System (ADS)
Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan
2017-05-01
In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.
Curuksu, Jeremy; Zacharias, Martin
2009-03-14
Although molecular dynamics (MD) simulations have been applied frequently to study flexible molecules, the sampling of conformational states separated by barriers is limited due to currently possible simulation time scales. Replica-exchange (Rex)MD simulations that allow for exchanges between simulations performed at different temperatures (T-RexMD) can achieve improved conformational sampling. However, in the case of T-RexMD the computational demand grows rapidly with system size. A Hamiltonian RexMD method that specifically enhances coupled dihedral angle transitions has been developed. The method employs added biasing potentials as replica parameters that destabilize available dihedral substates and was applied to study coupled dihedral transitions in nucleic acid molecules. The biasing potentials can be either fixed at the beginning of the simulation or optimized during an equilibration phase. The method was extensively tested and compared to conventional MD simulations and T-RexMD simulations on an adenine dinucleotide system and on a DNA abasic site. The biasing potential RexMD method showed improved sampling of conformational substates compared to conventional MD simulations similar to T-RexMD simulations but at a fraction of the computational demand. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions including explicit solvent and ions and can be easily extended to other types of molecules.
Design and multi-physics optimization of rotary MRF brakes
NASA Astrophysics Data System (ADS)
Topcu, Okan; Taşcıoğlu, Yiğit; Konukseven, Erhan İlhan
2018-03-01
Particle swarm optimization (PSO) is a popular method to solve the optimization problems. However, calculations for each particle will be excessive when the number of particles and complexity of the problem increases. As a result, the execution speed will be too slow to achieve the optimized solution. Thus, this paper proposes an automated design and optimization method for rotary MRF brakes and similar multi-physics problems. A modified PSO algorithm is developed for solving multi-physics engineering optimization problems. The difference between the proposed method and the conventional PSO is to split up the original single population into several subpopulations according to the division of labor. The distribution of tasks and the transfer of information to the next party have been inspired by behaviors of a hunting party. Simulation results show that the proposed modified PSO algorithm can overcome the problem of heavy computational burden of multi-physics problems while improving the accuracy. Wire type, MR fluid type, magnetic core material, and ideal current inputs have been determined by the optimization process. To the best of the authors' knowledge, this multi-physics approach is novel for optimizing rotary MRF brakes and the developed PSO algorithm is capable of solving other multi-physics engineering optimization problems. The proposed method has showed both better performance compared to the conventional PSO and also has provided small, lightweight, high impedance rotary MRF brake designs.
Prediction of Multiple-Trait and Multiple-Environment Genomic Data Using Recommender Systems
Montesinos-López, Osval A.; Montesinos-López, Abelardo; Crossa, José; Montesinos-López, José C.; Mota-Sanchez, David; Estrada-González, Fermín; Gillberg, Jussi; Singh, Ravi; Mondal, Suchismita; Juliana, Philomin
2018-01-01
In genomic-enabled prediction, the task of improving the accuracy of the prediction of lines in environments is difficult because the available information is generally sparse and usually has low correlations between traits. In current genomic selection, although researchers have a large amount of information and appropriate statistical models to process it, there is still limited computing efficiency to do so. Although some statistical models are usually mathematically elegant, many of them are also computationally inefficient, and they are impractical for many traits, lines, environments, and years because they need to sample from huge normal multivariate distributions. For these reasons, this study explores two recommender systems: item-based collaborative filtering (IBCF) and the matrix factorization algorithm (MF) in the context of multiple traits and multiple environments. The IBCF and MF methods were compared with two conventional methods on simulated and real data. Results of the simulated and real data sets show that the IBCF technique was slightly better in terms of prediction accuracy than the two conventional methods and the MF method when the correlation was moderately high. The IBCF technique is very attractive because it produces good predictions when there is high correlation between items (environment–trait combinations) and its implementation is computationally feasible, which can be useful for plant breeders who deal with very large data sets. PMID:29097376
NASA Technical Reports Server (NTRS)
Mcgary, M. C.
1986-01-01
The anticipated application of advanced turboprop propulsion systems and use of composite materials in primary structure is expected to increase the interior noise of future aircraft to unacceptability high levels. The absence of technically and economically feasible noise source-path diagnostic tools has been a primer obstacle in the development of efficient noise control treatments for propeller driven aircraft. A new diagnostic method which permits the separation and prediction of the fully coherent airborne and structureborne components of the sound radiated by plates or thin shells has been developed. Analytical and experimental studies of the proposed method were performed on plates constructed of both conventional and composite materials. The results of the study indicate that the proposed method can be applied to a variety of aircraft materials, could be used in flight, and has fewer encumbrances than the other diagnostic tools currently available. The study has also revealed that the noise radiation of vibrating plates in the low frequency regime due to combined airborne and structureborne inputs possesses a strong synergistic nature. The large influence of the interaction between the airborne and structureborne terms has been hitherto ignored by researchers of aircraft interior noise problems.
Unconventional Pretreatment of Lignocellulose with Low-Temperature Plasma.
Vanneste, Jens; Ennaert, Thijs; Vanhulsel, Annick; Sels, Bert
2017-01-10
Lignocellulose represents a potential supply of sustainable feedstock for the production of biofuels and chemicals. There is, however, an important cost and efficiency challenge associated with the conversion of such lignocellulosics. Because its structure is complex and not prone to undergo chemical reactions very easily, chemical and mechanical pretreatments are usually necessary to be able to refine them into the compositional building blocks (carbohydrates and lignin) from which value-added platform molecules, such as glucose, ethylene glycol, 5-hydroxymethylfurfural, and levulinic acid, and biofuels, such as bioderived naphtha, kerosene, and diesel fractions, will be produced. Conventional (wet) methods are usually polluting, aggressive, and highly energy consuming, so any alternative activation procedure of the lignocellulose is highly recommended and anticipated in recent and future biomass research. Lignocellulosic plasma activation has emerged as an interesting (dry) treatment technique. In the long run, in particular, in times of fairly accessible renewable electricity, plasma may be considered as an alternative to conventional pretreatment methods, but current knowledge is too little and examples too few to guarantee that statement. This review therefore highlights recent knowledge, advancements, and shortcomings in the field of plasma treatment of cellulose and lignocellulose with regard to the (structural and chemical) effects and impact on the future of pretreatment methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Traceability in hardness measurements: from the definition to industry
NASA Astrophysics Data System (ADS)
Germak, Alessandro; Herrmann, Konrad; Low, Samuel
2010-04-01
The measurement of hardness has been and continues to be of significant importance to many of the world's manufacturing industries. Conventional hardness testing is the most commonly used method for acceptance testing and production quality control of metals and metallic products. Instrumented indentation is one of the few techniques available for obtaining various property values for coatings and electronic products in the micrometre and nanometre dimensional scales. For these industries to be successful, it is critical that measurements made by suppliers and customers agree within some practical limits. To help assure this measurement agreement, a traceability chain for hardness measurement traceability from the hardness definition to industry has developed and evolved over the past 100 years, but its development has been complicated. A hardness measurement value not only requires traceability of force, length and time measurements but also requires traceability of the hardness values measured by the hardness machine. These multiple traceability paths are needed because a hardness measurement is affected by other influence parameters that are often difficult to identify, quantify and correct. This paper describes the current situation of hardness measurement traceability that exists for the conventional hardness methods (i.e. Rockwell, Brinell, Vickers and Knoop hardness) and for special-application hardness and indentation methods (i.e. elastomer, dynamic, portables and instrumented indentation).
Measurement of pattern roughness and local size variation using CD-SEM: current status
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Kawasaki, Takahiro; Kawada, Hiroki; Sakai, Kei; Kato, Takashi; Yamaguchi, Satoru; Ikota, Masami; Momonoi, Yoshinori
2018-03-01
Measurement of line edge roughness (LER) is discussed from four aspects: edge detection, PSD prediction, sampling strategy, and noise mitigation, and general guidelines and practical solutions for LER measurement today are introduced. Advanced edge detection algorithms such as wave-matching method are shown effective for robustly detecting edges from low SNR images, while conventional algorithm with weak filtering is still effective in suppressing SEM noise and aliasing. Advanced PSD prediction method such as multi-taper method is effective in suppressing sampling noise within a line edge to analyze, while number of lines is still required for suppressing line to line variation. Two types of SEM noise mitigation methods, "apparent noise floor" subtraction method and LER-noise decomposition using regression analysis are verified to successfully mitigate SEM noise from PSD curves. These results are extended to LCDU measurement to clarify the impact of SEM noise and sampling noise on LCDU.
A fully automatable enzymatic method for DNA extraction from plant tissues
Manen, Jean-François; Sinitsyna, Olga; Aeschbach, Lorène; Markov, Alexander V; Sinitsyn, Arkady
2005-01-01
Background DNA extraction from plant tissues, unlike DNA isolation from mammalian tissues, remains difficult due to the presence of a rigid cell wall around the plant cells. Currently used methods inevitably require a laborious mechanical grinding step, necessary to disrupt the cell wall for the release of DNA. Results Using a cocktail of different carbohydrases, a method was developed that enables a complete digestion of the plant cell walls and subsequent DNA release. Optimized conditions for the digestion reaction minimize DNA shearing and digestion, and maximize DNA release from the plant cell. The method gave good results in 125 of the 156 tested species. Conclusion In combination with conventional DNA isolation techniques, the new enzymatic method allows to obtain high-yield, high-molecular weight DNA, which can be used for many applications, including genome characterization by AFLP, RAPD and SSR. Automation of the protocol (from leaf disks to DNA) is possible with existing workstations. PMID:16269076
Use of two conventional staining methods to assess the acrosomal status of stallion spermatozoa.
Runcan, E E; Pozor, M A; Zambrano, G L; Benson, S; Macpherson, M L
2014-07-01
The acrosome is a highly specialised region of the spermatozoon that is essential for fertilisation. Defects or dysfunction of this structure have been associated with fertility problems in man and various domestic species including stallions. Current methods of evaluating the acrosome of stallion spermatozoa are time consuming and require specialised equipment, which is cost prohibitive to the average practitioner. To evaluate 2 conventional stains (Dip Quick and Spermac) and determine their usefulness in assessing acrosome integrity in stallions as compared with specific acrosomal labelling with a fluorescein-conjugated lectin - a method that has been validated for acrosome status evaluation in stallions. In vivo experimental design. Semen from 6 mature Miniature horse stallions of known fertility was collected on 5 separate occasions. To increase the number of reacted acrosomes, portions of each ejaculate were incubated with the calcium ionophore, A23187. Ejaculates were divided and semen samples were processed according to recommendations for fluorescein-conjugated peanut lectin, Pisum sativum agglutin, Dip Quick, and Spermac staining methods. Slides were evaluated independently by 2 separate investigators. Spermatozoa were classified as having intact, reacting, reacted or defective acrosomes. All parameters obtained by both investigators, using all 3 staining methods were highly correlated (P<0.001). There was no statistical difference (P>0.05) between investigators or staining method for the percentages of intact or reacted acrosomes. However, there was a significant difference between investigators and staining methods for determining reacting acrosome percentages (P<0.05). Dip Quick and Spermac stains are useful for determining intact vs. reacted acrosomes for stallion spermatozoa. © 2013 EVJ Ltd.
Non-equilibrium Green's functions method: Non-trivial and disordered leads
NASA Astrophysics Data System (ADS)
He, Yu; Wang, Yu; Klimeck, Gerhard; Kubis, Tillmann
2014-11-01
The non-equilibrium Green's function algorithm requires contact self-energies to model charge injection and extraction. All existing approaches assume infinitely periodic leads attached to a possibly quite complex device. This contradicts today's realistic devices in which contacts are spatially inhomogeneous, chemically disordered, and impacting the overall device characteristics. This work extends the complex absorbing potentials method for arbitrary, ideal, or non-ideal leads in atomistic tight binding representation. The algorithm is demonstrated on a Si nanowire with periodic leads, a graphene nanoribbon with trumpet shape leads, and devices with leads of randomly alloyed Si0.5Ge0.5. It is found that alloy randomness in the leads can reduce the predicted ON-state current of Si0.5Ge0.5 transistors by 45% compared to conventional lead methods.
Modern analytical methods for the detection of food fraud and adulteration by food category.
Hong, Eunyoung; Lee, Sang Yoo; Jeong, Jae Yun; Park, Jung Min; Kim, Byung Hee; Kwon, Kisung; Chun, Hyang Sook
2017-09-01
This review provides current information on the analytical methods used to identify food adulteration in the six most adulterated food categories: animal origin and seafood, oils and fats, beverages, spices and sweet foods (e.g. honey), grain-based food, and others (organic food and dietary supplements). The analytical techniques (both conventional and emerging) used to identify adulteration in these six food categories involve sensory, physicochemical, DNA-based, chromatographic and spectroscopic methods, and have been combined with chemometrics, making these techniques more convenient and effective for the analysis of a broad variety of food products. Despite recent advances, the need remains for suitably sensitive and widely applicable methodologies that encompass all the various aspects of food adulteration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Facile method for the synthesis of gold nanoparticles using an ion coater
NASA Astrophysics Data System (ADS)
Lee, Seung Han; Jung, Hyun Kyu; Kim, Tae Cheol; Kim, Chang Hee; Shin, Chang Hwan; Yoon, Tae-Sik; Hong, A.-Ra; Jang, Ho Seong; Kim, Dong Hun
2018-03-01
Herein we report a metal nanoparticle synthesis method based on a physical vapor deposition process instead of the conventional wet process of chemical reactions in liquids. A narrow size distribution of synthesized gold nanoparticles was obtained using an ion coater on glycerin at low vapor pressure. The nanoparticle size could be modulated by controlling the sputtering conditions especially the discharge current. Due to the formation of gold nanoparticles, a surface plasmon resonance peak appeared at ∼530 nm in the absorption spectrum. The surface plasmon resonance peak exhibited red-shift with increasing size of the gold nanoparticles. Our results provide a simple, environmental friendly method for the synthesis of metal nanoparticles by combine low-cost deposition apparatus and a liquid medium, which is free from toxic reagents.
Step-height measurement with a low coherence interferometer using continuous wavelet transform
NASA Astrophysics Data System (ADS)
Jian, Zhang; Suzuki, Takamasa; Choi, Samuel; Sasaki, Osami
2013-12-01
With the development of electronic technology in recent years, electronic components become increasingly miniaturized. At the same time a more accurate measurement method becomes indispensable. In the current measurement of nano-level, the Michelson interferometer with the laser diode is widely used, the method can measure the object accurately without touching the object. However it can't measure the step height that is larger than the half-wavelength. In this study, we improve the conventional Michelson interferometer by using a super luminescent diode and continuous wavelet transform, which can detect the time that maximizes the amplitude of the interference signal. We can accurately measure the surface-position of the object with this time. The method used in this experiment measured the step height of 20 microns.
Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil*
da Silva, Rogério Matias Vidal; Pinezi, Juliana Castro Dourado; Macedo, Luiz Eduardo Andrade; Souza, Divanízia do Nascimento
2014-01-01
Objective To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and Methods In the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results Sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion The authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. PMID:25741073