Preservation of Near-Earth Space for Future Generations
NASA Astrophysics Data System (ADS)
Simpson, John A.
2007-05-01
List of contributors; Preface; Part I. Introduction: 1. Introduction J. A. Simpson; Part II. Defining the Problem: 2. The Earth satellite population: official growth and constituents Nicholas L. Johnson; 3. The current and future environment: an overall assessment Donald J. Kessler; 4. The current and future space debris environment as assessed in Europe Dietrich Rex; 5. Human survivability issues in the low Earth orbit space debris environment Bernard Bloom; 6. Protecting the space environment for astronomy Joel R. Primack; 7. Effects of space debris on commercial spacecraft - the RADARSAT example H. Robert Warren and M. J. Yelle; 8. Potential effects of the space debris environment on military space systems Albert E. Reinhardt; Part III. Mitigation of and Adaptation to the Space Environment: Techniques and Practices: 9. Precluding post-launch fragmentation of delta stages Irvin J. Webster and T. Y. Kawamura; 10. US international and interagency cooperation in orbital debris Daniel V. Jacobs; 11. ESA concepts for space debris mitigation and risk reduction Heiner Klinkrad; 12. Space debris: how France handles mitigation and adaptation Jean-Louis Marcé; 13. Facing seriously the issue of protection of the outer space environment Qi Yong Liang; 14. Space debris - mitigation and adaptation U. R. Rao; 15. Near Earth space contamination and counteractions Vladimir F. Utkin and S. V. Chekalin; 16. The current and future space debris environment as assessed in Japan Susumu Toda; 17. Orbital debris minimization and mitigation techniques Joseph P. Loftus Jr, Philip D. Anz-Meador and Robert Reynolds; Part IV. Economic Issues: 18. In pursuit of a sustainable space environment: economic issues in regulating space debris Molly K. Macauley; 19. The economics of space operations: insurance aspects Christopher T. W. Kunstadter; Part V. Legal Issues: 20. Environmental treatymaking: lessons learned for controlling pollution of outer space Winfried Lang; 21. Regulation of orbital debris - current status Howard A. Baker; 22. Who should regulate the space environment: the laissez-faire, national and multinational options Diane P. Wood; Part VI. A Multilateral Treaty: 23. Orbital debris: prospects for international cooperation Jeffrey Maclure and William C. Bartley; 24. Preservation of near Earth space for future generations: current initiatives on space debris in the United Nations Stephen Gorove; 25. A legal regime for orbital debris: elements of a multilateral treaty Pamela L. Meredith; Part VII. Panel Discussions: 26. Panel discussion led by Diane Wood; 27. Panel discussion led by Paul Uhlir; 28. Suggested further reading on orbital debris.
NASA Technical Reports Server (NTRS)
Reynolds, R. C.; Ruck, G. T.
1983-01-01
Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed.
Final Design for a Comprehensive Orbital Debris Management Program
NASA Technical Reports Server (NTRS)
1990-01-01
The rationale and specifics for the design of a comprehensive program for the control of orbital debris, as well as details of the various components of the overall plan, are described. The problem of orbital debris has been steadily worsening since the first successful launch in 1957. The hazards posed by orbital debris suggest the need for a progressive plan for the prevention of future debris, as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventative techniques and policies. The debris removal is directed at improving the current debris environment. Because of the variance in sizes of debris, a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrieves targeted debris from known orbits, was determined to be effective in the disposal of debris tracked directly from earth. However, no effective system is currently available to remove the untrackable debris. The debris program is intended to protect the orbital environment from future abuses. This portion of the plan involves various environment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policies are rules which should be employed to force the prevention of orbital debris.
NASA Technical Reports Server (NTRS)
1989-01-01
The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.
Orbital debris: A technical assessment
NASA Technical Reports Server (NTRS)
Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav
1995-01-01
To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.
Orbital Debris and Future Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi
2011-01-01
This slide presentation is an overview of the historical and current orbital debris environment. Included is information about: Projected growth of the future debris population, The need for active debris removal (ADR), A grand challenge for the 21st century and The forward path
Current orbital debris environment
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1989-01-01
NASA has instituted a plan for the definition of activities and resources required over the coming decade for the deepening of current understanding of anthropogenic orbital debris, and its effects on future mission operations. This understanding will be the basis of policy definition and policy implementation efforts. The most immediate requirement is the definition of the debris environment, with emphasis on data for debris sizes smaller than 4 cm. Systems-damage criteria and hypervelocity-impact theory will then be used to define the hazard to specific spacecraft.
Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future
NASA Technical Reports Server (NTRS)
Matney, Mark
2016-01-01
Despite of the tireless work by space surveillance assets, much of the Earth debris environment is not easily measured or tracked. For every object that is in an orbit we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. Therefore, orbital debris scientists rely on numerical modeling to understand the nature of the debris environment and its risk to space operations throughout Earth orbit and into the future. This talk will summarize the ways in which modeling complements measurements to help give us a better picture of what is occurring in Earth orbit, and helps us to better conduct current and future space operations.
The Influence of Solid Rocket Motor Retro-Burns on the Space Debris Environment
NASA Astrophysics Data System (ADS)
Stabroth, S.; Homeister, M.; Oswald, M.; Wiedemann, C.; Klinkrad, H.; Vörsmann, P.
The ESA space debris population model MASTER Meteoroid and Space Debris Terrestrial Environment Reference considers firings of solid rocket motors SRM as a debris source with the associated generation of slag and dust particles The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit The current model version MASTER-2005 is based on the simulation of 1 076 orbital SRM firings which contributed to the long-term debris environment A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope HST solar array measurements very well However the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility LDEF surfaces This points into the direction of some past SRM firings not included in the current event database The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere Thus they produce no long-term effect on the debris environment However a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces In this paper the influence of SRM retro-burns on the short- and long-term debris environment is analysed The existing firing database is updated with gathered
An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi
2010-01-01
The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.
The Solid Rocket Motor Slag Population: Results of a Radar-Based Regressive Statistical Evaluation
NASA Technical Reports Server (NTRS)
Horstman, Matthew F.; Xu, Yu-Lin
2008-01-01
Solid rocket motor (SRM) slag has been identified as a potential source of man-made orbital debris. The possibility that SRMs (in addition to generating dust particles in the sub-millimeter range) may generate particles up to centimeters in size has caused concern regarding their contribution to the debris environment. Returned surfaces from space do not have sufficient area or exposure time to provide a clear picture of the SRM millimeter and centimeter debris population. Currently, radar observation is probably the only way to collect data showing the debris contribution from SRMs. Such observation is used to sample the debris environment, but it is difficult to obtain accurate orbital elements for the detected debris objects. NASA has developed several models to describe the different orbital debris populations, based on assumed debris production mechanisms to create clouds of debris objects that can be propagated in time. The NASA model, LEGEND (LEO-to-GEO Environment Debris), functions as a time-tested debris model for most debris sources. However, the current LEGEND model does not include contributions from the SRM population. An SRM model has recently been developed by NASA, based on purely theoretical details of SRM production and known SRM launches, but verification with hard data is needed. Because the detections of individual SRM objects cannot be deterministically separated from the total debris observed by radar, the validation of the SRM model can only be done by combining it with the LEGEND breakup model and comparing it with data. By applying observational constraints, the degree of SRM slag contribution to the environment may be estimated. This serves as an observationally sound method from which to calibrate a purely theoretical model into something more realistic. For this study, we use the populations observed by the Haystack radar from 1996 to present. For the SRM debris, we use a historical database of SRM launches, propellant masses, and estimated locations and times of tailoff to produce and propagate the SRM debris clouds. Comparisons with radar data from the ensuing years were made, and the SRM model was altered with respect to size and mass production of slag particles to reflect the populations estimated from the data. The result is a model SRM population that fits within the bounds of the observed environment and estimates of the production and contribution of SRM debris to the environment.
The influence of solid rocket motor retro-burns on the space debris environment
NASA Astrophysics Data System (ADS)
Stabroth, Sebastian; Homeister, Maren; Oswald, Michael; Wiedemann, Carsten; Klinkrad, Heiner; Vörsmann, Peter
The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers firings of solid rocket motors (SRM) as a debris source with the associated generation of slag and dust particles. The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit. The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which contributed to the long-term debris environment. A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility (LDEF) surfaces. This points into the direction of some past SRM firings not included in the current event database. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere. Thus, they produce no long-term effect on the debris environment. However, a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces. In this paper, the influence of SRM retro-burns on the short- and long-term debris environment is analysed. The existing firing database is updated with gathered information of some 800 Russian retro-firings. Each firing is simulated with the MASTER population generation module. The resulting population is compared against the existing background population of SRM slag and dust particles in terms of spatial density and flux predictions.
NASA Technical Reports Server (NTRS)
Matney, Mark
2017-01-01
Because of the high speeds needed for orbital space flight, hypervelocity impacts with objects in space are a constant risk to spacecraft. This includes natural debris - meteoroids - and the debris remnants of our own activities in space. A number of space surveillance assets are used to measure and track spacecraft, used upper stages, and breakup debris. However, much of the debris and meteoroids encountered by spacecraft in Earth orbit is not easily measured or tracked. For every man-made object that we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. This means that much of the risk from both meteoroids and anthropogenic debris is statistical in nature. NASA uses and maintains a number of instruments to statistically monitor the meteoroid and orbital debris environments, and uses this information to compute statistical models for use by spacecraft designers and operators. Because orbital debris is a result of human activities, NASA has led the US government in formulating national and international strategies that space users can employ to limit the growth of debris in the future. This talk will summarize the history and current state of meteoroid and space debris measurements and modeling, how the environment influences spacecraft design and operations, how we are designing the experiments of tomorrow to improve our knowledge, and how we are working internationally to preserve the space environment for the future.
Meteoroids and Orbital Debris: Effects on Spacecraft
NASA Technical Reports Server (NTRS)
Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.
1997-01-01
The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.
Modelling the near-Earth space environment using LDEF data
NASA Technical Reports Server (NTRS)
Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.
1992-01-01
Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is overpredicted by Kessler and underpredicted by Cour-Palais. This divergence may be a result of beta-meteoroid fluxes, elliptical orbits or a combination of the two. The results of this study illustrate the definite need for more intensive study of the near-Earth space environment, particularly the small particle regime, as it is the most degrading to spacecraft in LEO.
Highlights of Recent Research Activities at the NASA Orbital Debris Program Office
NASA Technical Reports Server (NTRS)
Liou, J - C.
2017-01-01
The NASA Orbital Debris Program Office (ODPO) was established at the NASA Johnson Space Center in 1979. The ODPO has initiated and led major orbital debris research activities over the past 38 years, including developing the first set of the NASA orbital debris mitigation requirements in 1995 and supporting the establishment of the U.S. Government Orbital Debris Mitigation Standard Practices in 2001. This paper is an overview of the recent ODPO research activities, ranging from ground-based and in-situ measurements, to laboratory tests, and to engineering and long-term orbital debris environment modeling. These activities highlight the ODPO's commitment to continuously improve the orbital debris environment definition to better protect current and future space missions from the low Earth orbit to the geosynchronous Earth orbit regions.
Contribution of explosion and future collision fragments to the orbital debris environment
NASA Technical Reports Server (NTRS)
Su, S.-Y.; Kessler, D. J.
1985-01-01
The time evolution of the near-earth man-made orbital debris environment modeled by numerical simulation is presented in this paper. The model starts with a data base of orbital debris objects which are tracked by the NORAD ground radar system. The current untrackable small objects are assumed to result from explosions and are predicted from data collected from a ground explosion experiment. Future collisions between earth orbiting objects are handled by the Monte Carlo method to simulate the range of collision possibilities that may occur in the real world. The collision fragmentation process between debris objects is calculated using an empirical formula derived from a laboratory spacecraft impact experiment to obtain the number versus size distribution of the newly generated debris population. The evolution of the future space debris environment is compared with the natural meteoroid background for the relative spacecraft penetration hazard.
NASA Technical Reports Server (NTRS)
Olmstead, D.
1985-01-01
The 1985 Space WARC will examine and potentially modify the current geostationary orbit spectrum resource allocation methodology. Discussions in this international political environment could likely associate the geostationary orbital debris issue with the politicized issue of orbit spectrum allocation.
Current and Future Impact Risks from Small Debris to Operational Satellites
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Kessler, Don
2011-01-01
The collision between Iridium 33 and Cosmos 2251 in 2009 signaled the potential onset of the collision cascade effect, commonly known as the "Kessler Syndrome", in the low Earth orbit (LEO) region. Recent numerical simulations have shown that the 10 cm and larger debris population in LEO will continue to increase even with a good implementation of the commonly-adopted mitigation measures. This increase is driven by collisions involving large and massive intacts, i.e., rocket bodies and spacecraft. Therefore, active debris removal (ADR) of large and massive intacts with high collision probabilities has been argued as a direct and effective means to remediate the environment in LEO. The major risk for operational satellites in the environment, however, comes from impacts with debris just above the threshold of the protection shields. In general, these are debris in the millimeter to centimeter size regime. Although impacts by these objects are insufficient to lead to catastrophic breakup of the entire vehicle, the damage is certainly severe enough to cause critical failure of the key instruments or the entire payload. The focus of this paper is to estimate the impact risks from 5 mm and 1 cm debris to active payloads in LEO (1) in the current environment and (2) in the future environment based on different projection scenarios, including ADR. The goal of the study is to quantify the benefits of ADR in reducing debris impact risks to operational satellites.
Recent Measurements of the Orbital Debris Environment at NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Stansbery, E. G.; Settecerri, T. J.; Africano, J. L.
1999-01-01
Space debris presents many challenges to current space operations. Although, the probability of collision between an operational spacecraft and a piece of space debris is quite small, the potential losses can be quite high. Prior to 1990, characterization of the orbital debris environment was divided into two categories. Objects larger than 10 cm are monitored by the United States Space Surveillance Network (SSN) and documented in the U.S. Space Command (USSPACECOM) catalog. Knowledge of debris smaller than 0.1 cm has come from the analyses of returned surfaces. The lack of information about the debris environment in the size range from 0.1 to 1 0 cm led to a joint NASA-DOD effort for orbital debris measurements using the Haystack radar and the unbuilt Haystack Auxiliary (HAX) radars. The data from these radars have been critical to the design of shielding for the International Space Station and have been extensively used in the creation of recent models describing the orbital debris environment. Recent debris campaigns have been conducted to verify and validate through comparative measurements, the results and conclusions drawn from the Haystack/HAX measurements. The Haystack/HAX measurements and results will be described as well as the results of the recent measurement campaigns.
Current and Near-Term Future Measurements of the Orbital Debris Environment at NASA
NASA Technical Reports Server (NTRS)
Stansbery, Gene; Liou, J.-C.; Mulrooney, M.; Horstman, M
2010-01-01
The NASA Orbital Debris Program Office places great emphasis on obtaining and understanding direct measurements of the orbital debris environment. The Orbital Debris Program Office's environmental models are all based on these measurements. Because OD measurements must cover a very wide range of sizes and altitudes, one technique realistically cannot be used for all measurements. In general, radar measurements have been used for lower altitudes and optical measurements for higher altitude orbits. For very small debris, in situ measurements such as returned spacecraft surfaces are utilized. In addition to receiving information from large debris (> 5-10 cm diameter) from the U.S. Space Surveillance Network, NASA conducts statistical measurements of the debris population for smaller sizes. NASA collects data from the Haystack and Goldstone radars for debris in low Earth orbit as small as 2- 4 mm diameter and from the Michigan Orbital DEbris Survey Telescope for debris near geosynchronous orbit altitude for sizes as small as 30-60 cm diameter. NASA is also currently examining the radiator panel of the Hubble Space Telescope Wide Field Planetary Camera 2 which was exposed to space for 16 years and was recently returned to Earth during the STS- 125 Space Shuttle mission. This paper will give an overview of these on-going measurement programs at NASA as well as discuss progress and plans for new instruments and techniques in the near future.
Origin of marine debris is related to disposable packs of ultra-processed food.
Andrades, Ryan; Martins, Agnaldo S; Fardim, Lorena M; Ferreira, Juliana S; Santos, Robson G
2016-08-15
Marine debris is currently distributed worldwide, and the discard and contamination pose hazards to human and wildlife health. One of the gaps in debris science is tracking the source of debris to better evaluate and avoid the pathway of debris from the source to marine environment. For this, we evaluated three beaches of different urbanization levels and environmental influences; a low urbanized beach, a highly urbanized beach and a non-urbanized estuary-associated beach, in order to determine the sources and original use of debris. Plastic was the major material found on beaches, and the urbanized beach recorded the highest debris densities. Marine debris was primarily from land-based sources, and the debris recorded in all beaches was mainly assigned as food-related items. Our results highlight the major presence of disposable and short-lived products comprising the majority of debris that enters the ocean and draw attention to the unsustainable lifestyle of current society. Copyright © 2016 Elsevier Ltd. All rights reserved.
Current Status of Programs and Research within the NASA Orbital Debris Program Office
NASA Technical Reports Server (NTRS)
Bacon, Jack
2016-01-01
The NASA Orbital Debris Program Office (ODPO) is the world's longest-standing orbital debris research organization. It supports all aspects of international and US national policy-making related to the orbital environment and to spacecraft life cycle requirements. Representing more than just NASA projects, it is the United States' center of expertise in the field. The office continues to advance research in all aspects of orbital debris, including its measurement, modeling, and risk assessment for both orbital and ground safety concerns. This presentation will highlight current activities and recent progress in all aspects of the ODPO's mission.
Kubota, Masahisa; Takayama, Katsumi; Namimoto, Daisuke
2005-06-01
Research results about the movement and accumulation of floating marine debris drifting throughout the world's oceans are reviewed in this paper. A mechanism for this accumulation and movement is strongly associated with surface currents consisting of the Ekman drift and the geostrophic current, because all floating marine debris is passive to surface currents. The basic published mechanism for the North Pacific is common across the world's ocean. After marine debris accumulates in the narrow Ekman convergence zone, it is moved to the east by geostrophic currents. The most important thing is that floating marine debris concentrates in some specific regions, independent of the initial quantity of marine debris. In order to resolve this problem and to avoid an asbestos-like problem, the use of biodegradable polymers is important in our daily life.
Current Issues in Orbital Debris
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2011-01-01
During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.
Debris Removal: An Opportunity for Cooperative Research?
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2007-01-01
Space debris mitigation practices will be insufficient to prevent the continued growth of the Earth satellite population. Removal of orbital debris can improve the reliability of present and future space systems. The challenges of developing an effective, affordable debris removal capability are considerable. The time is right for a new look at space remediation concepts. In concert with or following the current IAA study An international approach to the remediation of the near-Earth space environment will likely be required.
Cost and risk assessment for spacecraft operation decisions caused by the space debris environment
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Jasper, Lee E. Z.; Anderson, Paul V.; McKnight, Darren S.
2015-08-01
Space debris is a topic of concern among many in the space community. Most forecasting analyses look centuries into the future to attempt to predict how severe debris densities and fluxes will become in orbit regimes of interest. Conversely, space operators currently do not treat space debris as a major mission hazard. This survey paper outlines the range of cost and risk evaluations a space operator must consider when determining a debris-related response. Beyond the typical direct costs of performing an avoidance maneuver, the total cost including indirect costs, political costs and space environmental costs are discussed. The weights on these costs can vary drastically across mission types and orbit regimes flown. The operator response options during a mission are grouped into four categories: no action, perform debris dodging, follow stricter mitigation, and employ ADR. Current space operations are only considering the no action and debris dodging options, but increasing debris risk will eventually force the stricter mitigation and ADR options. Debris response equilibria where debris-related risks and costs settle on a steady-state solution are hypothesized.
A Parametric Study on Using Active Debris Removal for LEO Environment Remediation
NASA Technical Reports Server (NTRS)
2010-01-01
Recent analyses on the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resource, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of its effectiveness must be conducted. The goal is to demonstrate the need and feasibility of using ADR to better preserve the future environment and to guide its implementation to maximize the benefit-to-cost ratio. This paper describes a new sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term orbital debris evolutionary model, LEGEND, is used to quantify the effects of several key parameters, including target selection criteria/constraints and the starting epoch of ADR implementation. Additional analyses on potential ADR targets among the currently existing satellites and the benefits of collision avoidance maneuvers are also included.
An adaptive strategy for active debris removal
NASA Astrophysics Data System (ADS)
White, Adam E.; Lewis, Hugh G.
2014-04-01
Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris. One method to tackle this uncertainty is to create a strategy that can adapt and respond to the space debris population. This work explores the concept of an adaptive strategy, in terms of the number of objects required to be removed by ADR, to prevent the low Earth orbit (LEO) debris population from growing in size. This was demonstrated by utilising the University of Southampton’s Debris Analysis and Monitoring Architecture to the Geosynchronous Environment (DAMAGE) tool to investigate ADR rates (number of removals per year) that change over time in response to the current space environment, with the requirement of achieving zero growth of the LEO population. DAMAGE was used to generate multiple Monte Carlo projections of the future LEO debris environment. Within each future projection, the debris removal rate was derived at five-year intervals, by a new statistical debris evolutionary model called the Computational Adaptive Strategy to Control Accurately the Debris Environment (CASCADE) model. CASCADE predicted the long-term evolution of the current DAMAGE population with a variety of different ADR rates in order to identify a removal rate that produced a zero net growth for that particular projection after 200 years. The results show that using an adaptive ADR rate generated by CASCADE, alongside good compliance with existing mitigation measures, increases the probability of achieving a constant LEO population of objects greater than 10 cm. This was shown to be 12% greater compared with removing five objects per year, with the additional advantage of requiring only 3.1 removals per year, on average.
Instability of the Present LEO Satellite Populations
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Johnson, Nicholas L.
2006-01-01
Several studies conducted during 1991-2001 demonstrated, with some assumed launch rates, the future unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects. In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new breakup debris due to collisions would exceed the loss of objects due to orbital decay. A new study has been conducted in the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, using higher fidelity models to evaluate the current debris environment. The study assumed no satellites were launched after December 2005. A total of 150 Monte Carlo runs were carried out and analyzed. Each Monte Carlo run simulated the current debris environment and projected it 200 years into the future. The results indicate that the LEO debris environment has reached a point such that even if no further space launches were conducted, the Earth satellite population would remain relatively constant for only the next 50 years or so. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Detailed analysis shows that this growth is primarily driven by high collision activities around 900 to 1000 km altitude - the region which has a very high concentration of debris at present. In reality, the satellite population growth in LEO will undoubtedly be worse than this study indicates, since spacecraft and their orbital stages will continue to be launched into space. Postmission disposal of vehicles (e.g., limiting postmission orbital lifetimes to less than 25 years) will help, but will be insufficient to constrain the Earth satellite population. To preserve better the near-Earth environment for future space activities, it might be necessary to remove existing large and massive objects from regions where high collision activities are expected.
NASA Technical Reports Server (NTRS)
Krisko, Paula H.
2007-01-01
Space debris is a worldwide-recognized issue concerning the safety of commercial, military, and exploration spacecraft. The space debris environment includes both naturally occuring meteoroids and objects in Earth orbit that are generated by human activity, termed orbital debris. Space agencies around the world are addressing the dangers of debris collisions to both crewed and robotic spacecraft. In the United States, the Orbital Debris Program Office at the NASA Johnson Space Center leads the effort to categorize debris, predict its growth, and formulate mitigation policy for the environment from low Earth orbit (LEO) through geosynchronous orbit (GEO). This paper presents recent results derived from the NASA long-term debris environment model, LEGEND. It includes the revised NASA sodium potassium droplet model, newly corrected for a factor of two over-estimation of the droplet population. The study indicates a LEO environment that is already highly collisionally active among orbital debris larger than 1 cm in size. Most of the modeled collision events are non-catastrophic (i.e., They lead to a cratering of the target, but no large scale fragmentation.). But they are potentially mission-ending, and take place between impactors smaller than 10 cm and targets larger than 10 cm. Given the small size of the impactor these events would likely be undetectable by present-day measurement means. The activity continues into the future as would be expected. Impact rates of about four per year are predicted by the current study within the next 30 years, with the majority of targets being abandoned intacts (spent upper stages and spacecraft). Still, operational spacecraft do show a small collisional activity, one that increases over time as the small fragment population increases.
Mission Success and Environmental Protection: Orbital Debris Considerations
NASA Technical Reports Server (NTRS)
Johnson, Nicholas
2007-01-01
The current U.S. National Space Policy specifically calls on U.S. Government entities "to follow the United States Government Orbital Debris Mitigation Standard Practices, consistent with mission requirements and cost effectiveness, in the procurement and operation of spacecraft, launch services, and the operation of tests and experiments in space. Early assessment (pre-PDR) of orbital debris mitigation compliance is essential to minimize development impacts. Orbital debris mitigation practices today are the most effective means to protect the near-Earth space environment for future missions.
Space Debris Environment Remediation Concepts
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.; Klinkrad, Heiner
2009-01-01
Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.
Modeling the space debris environment with MASTER-2009 and ORDEM2010
NASA Astrophysics Data System (ADS)
Flegel, Sven Kevin; Krisko, Paula; Gelhaus, Johannes; Wiedemann, Carsten; Moeckel, Marek; Krag, Holger; Klinkrad, Heiner; Xu, Yu-Lin; Horstman, Matthew; Matney, Mark; Vörsmann, Peter
The two software tools MASTER-2009 and ORDEM2010 are the ESA and NASA reference software tools respectively which describe the earth's debris environment. The primary goal of both programs is to allow users to estimate the object flux onto a target object for mission planning. The current paper describes the basic distinctions in the model philosophies. At the core of each model lies the method by which the object environment is established. Cen-tral to this process is the role played by the results from radar/telescope observations or impact fluxes on surfaces returned from earth orbit. The ESA Meteoroid and Space Debris Terrestrial Environment Reference Model (MASTER) is engineered to give a realistic description of the natural and the man-made particulate environment of the earth. Debris sources are simulated based on detailed lists of known historical events such as fragmentations or solid rocket motor firings or through simulation of secondary debris such as impact ejecta or the release of paint flakes from degrading spacecraft surfaces. The resulting population is then validated against historical telescope/radar campaigns using the ESA Program for Radar and Optical Observa-tion Forecasting (PROOF) and against object impact fluxes on surfaces returned from space. The NASA Orbital Debris Engineering Model (ORDEM) series is designed to provide reliable estimates of orbital debris flux on spacecraft and through telescope or radar fields-of-view. Central to the model series is the empirical nature of the input populations. These are derived from NASA orbital debris modeling but verified, where possible, with measurement data from various sources. The latest version of the series, ORDEM2010, compiles over two decades of data from NASA radar systems, telescopes, in-situ sources, and ground tests that are analyzed by statistical methods. For increased understanding of the application ranges of the two programs, the current paper provides an overview of the two models' main program features and the methods by which simulation results are presented. This paper is written in a combined effort by ESA and NASA.
NASA Technical Reports Server (NTRS)
Yang, Fan Y.; Nelson, Bron; Carlino, Roberto; Perez, Andres D.; Faber, Nicolas; Henze, Chris; Karacahoglu, Arif G.; O'Toole, Conor; Swenson, Jason; Stupl, Jan
2015-01-01
This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 10kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 percent of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planed simulation approach for that effort.
Orbital Debris Quarterly News, Volume 13, No. 3
NASA Technical Reports Server (NTRS)
Liou, J.-C. (Editor); Shoots, Debi (Editor)
2009-01-01
This issue of the Orbital Debris Quarterly contains articles on the congressional hearing that was held on orbital debris and space traffic; the update received by the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) on the collision of the Iridium 33 and Cosmos 2251 satellites; the micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope Wide Field Planetary Camera; an analysis of the reentry survivability of the Global Precipitation Measurement (GPM) spacecraft; an update on recent major breakup fragments; and a graph showing the current debris environment in low Earth orbit.
The Top 10 Questions for Active Debris Removal
NASA Technical Reports Server (NTRS)
Liou, J. -C.
2010-01-01
This slide presentation reviews the requirement and issues around removal of debris from the earth orbital environment. The 10 questions discussed are: 1. Which region (LEO/MEO/GEO) has the fastest projected growth rate and the highest collision activities? 2. Can the commonly-adopted mitigation measures stabilize the future environment? 3. What are the objectives of active debris removal (ADR)? 4. How can effective ADR target selection criteria to stabilize the future LEO environment be defined? 5. What are the keys to remediate the future LEO environment? 6. What is the timeframe for ADR implementation? 7. What is the effect of practical/operational constraints? 8. What are the collision probabilities and masses of the current objects? 9. What are the benefits of collision avoidance maneuvers? 10. What is the next step?
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Anz-Meador, P.; Matney, M. J.; Kessler, D. J.; Theall, J.; Johnson, N. L.
2000-01-01
The Low Earth Orbit (LEO, between 200 and 2000 km altitudes) debris environment has been constantly measured by NASA Johnson Space Center's Liquid Mirror Telescope (LMT) since 1996 (Africano et al. 1999, NASA JSC-28826) and by Haystack and Haystack Auxiliary radars at MIT Lincoln Laboratory since 1990 (Settecerri et al. 1999, NASA JSC-28744). Debris particles as small as 3 mm can be detected by the radars and as small as 3 cm can be measured by LMT. Objects about 10 cm in diameter and greater are tracked and catalogued by the US Space Surveillance Network. Much smaller (down to several micrometers) natural and debris particle populations can be estimated based on in situ measurements, such as Long Duration Exposure Facility, and based on analyses of returned surfaces, such as Hubble Space Telescope solar arrays, European Retrievable Carrier, and Space Shuttles. To increase our understanding of the current LEO debris environment, the Orbital Debris Program Office at NASA JSC has initiated an effort to improve and update the ORDEM96 model (Kessler et al. 1996, NASA TM-104825) utilizing the recently available data. This paper gives an overview of the new NASA orbital debris engineering model, ORDEM2000.
Solar Effects of Low-Earth Orbit objects in ORDEM 3.0
NASA Technical Reports Server (NTRS)
Vavrin, A. B.; Anz-Meador, P.; Kelley, R. L.
2014-01-01
Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed.
JSC Orbital Debris Website Description
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as required. These data also help in the analysis and interpretation of impact features on returned spacecraft surfaces. 4) Mitigation - Controlling the growth of the orbital debris population is a high priority for NASA, the United States, and the major space-faring nations of the world to preserve near-Earth space for future generations. Mitigation measures can take the form of curtailing or preventing the creation of new debris, designing satellites to withstand impacts by small debris, and implementing operational procedures ranging from utilizing orbital regimes with less debris, adopting specific spacecraft attitudes, and even maneuvering to avoid collisions with debris. Downloadable items include several documents in PDF format and executable software.and 5) Reentry - Because of the increasing number of objects in space, NASA has adopted guidelines and assessment procedures to reduce the number of non-operational spacecraft and spent rocket upper stages orbiting the Earth. One method of postmission disposal is to allow reentry of these spacecraft, either from orbital decay (uncontrolled entry) or with a controlled entry. Orbital decay may be achieved by firing engines to lower the perigee altitude so that atmospheric drag will eventually cause the spacecraft to enter. However, the surviving debris impact footprint cannot be guaranteed to avoid inhabited landmasses. Controlled entry normally occurs by using a larger amount of propellant with a larger propulsion system to drive the spacecraft to enter the atmosphere at a steeper flight path angle. It will then enter at a more precise latitude, longitude, and footprint in a nearly uninhabited impact region, generally located in the ocean.
Hypervelocity impact facility for simulating materials exposure to impact by space debris
NASA Technical Reports Server (NTRS)
Rose, M. F.; Best, S.; Chaloupka, T.; Stephens, B.; Crawford, G.
1993-01-01
As a result of man's venturing into space, the local debris contributed by his presence exceeds, at some orbital altitudes, that of the natural component. Man's contribution ranges from fuel residue to large derelect satellites that weigh many kilograms. Current debris models are able to predict the growth of the problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now, and that, the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The maximum velocity of the man-made component is in the 14-16 km/s range. The Long Duration Exposure Facility (LDEF) has verified that the 'high probability of impact' particles are in the microgram to milligram range. These particles can have significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility is currently being used to study impact phenomena on Space Station Freedom's solar array structure, other solar array materials, potential structural materials for use in the station, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on the LDEF surfaces. The results of these experiments are described in terms of the mass/velocity distribution incident on selected samples, crater dynamics, and sample geometry.
Activities on space debris in U.S.
NASA Astrophysics Data System (ADS)
Johnson, Nicholas L.
2001-10-01
In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices, both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant U.S. government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of U.S. government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of spacecraft and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.
Activities on Space Debris in U.S.
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2001-01-01
In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant US government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of US government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of satellite and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2001-01-01
Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOLVE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been released with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NASA Safety Standard 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the application of both DAS and ORSAT has increased markedly in the past two years.
Space Station: Delays in dealing with space debris may reduce safety and increase costs
NASA Astrophysics Data System (ADS)
1992-06-01
The majority of NASA's current designs for protecting the space station and crew from debris are outdated and its overall debris protection strategy is insufficient. NASA's contractors have designed the station using a 1984 model of the space environment that is obsolete, significantly underestimating the increasing amount of debris that the station will encounter during its 30-year lifetime. In February 1992, NASA directed its space centers to incorporate an updated 1991 model into their designs. However, the agency has not yet made critical decisions on how to implement this change. Preliminary evaluations show that incorporating the 1991 model using currently established safety criteria could entail a major redesign of some components, with significant cost impact and schedule delays. NASA's overall protection strategy for space debris is insufficient. While NASA has concentrated its protection on shielding the space station from small debris and plans to augment this initial shielding in orbit, it has not yet developed designs or studied the cost and operational impact of augmenting its protection with additional shielding. Further, current designs do not provide the capability of warning or protecting the crew from imminent collision with mid-size debris. Finally, although some capabilities exist for maneuvering the station away from large debris, the agency lacks collision-avoidance plans and debris-tracking equipment. In developing a comprehensive strategy to protect the station from the more severe debris environment, NASA cannot avoid some difficult decisions. These decisions involve tradeoffs between how much the agency is willing to pay to protect the station, the schedule delays it may incur, and the risk to station safety it is willing to accept. It is important that these decisions be made before NASA completes its critical design reviews in early 1993. At that time key designs will be made final and manufacturing will begin. Without a comprehensive strategy, NASA will have decided to build the station, knowing the consequences of this decision on station and crew safety, and on life-cycle station cost.
NASA Astrophysics Data System (ADS)
Yang Yang, Fan; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Dono Perez, Andres; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan
2016-09-01
This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline (without collision avoidance) conjunction analysis with an analysis where LightForce is active. Using that approach, we take into account that collision avoidance maneuvers could have effects on third objects. Performing all-on-all conjunction analyses for extended period of time requires significant computer resources; hence we implemented this simulation utilizing a highly parallel approach on the NASA Pleiades supercomputer.
Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O’Toole, Conor; Swenson, Jason; Worden, Simon P.; Stupl, Jan
2017-01-01
This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce’s utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline (without collision avoidance) conjunction analysis with an analysis where LightForce is active. Using that approach, we take into account that collision avoidance maneuvers could have effects on third objects. Performing all-on-all conjunction analyses for extended period of time requires significant computer resources; hence we implemented this simulation utilizing a highly parallel approach on the NASA Pleiades supercomputer. PMID:29302129
Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Carlino, Roberto; Perez, Andres Dono; Faber, Nicolas; Foster, Cyrus; Frost, Chad; Henze, Chris; Karacalıoğlu, Arif Göktuğ; Levit, Creon; Marshall, William; Mason, James; O'Toole, Conor; Swenson, Jason; Worden, Simon P; Stupl, Jan
2016-09-01
This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 20 kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 % of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence, we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planned simulation approach for that effort. For the efficiency analysis of collision avoidance in the current debris environment, we utilize a simulation approach that uses the entire Two Line Element (TLE) catalog in LEO for a given day as initial input. These objects are propagated for one year and an all-on-all conjunction analysis is performed. For conjunctions that fall below a range threshold, we calculate the probability of collision and record those values. To assess efficiency, we compare a baseline (without collision avoidance) conjunction analysis with an analysis where LightForce is active. Using that approach, we take into account that collision avoidance maneuvers could have effects on third objects. Performing all-on-all conjunction analyses for extended period of time requires significant computer resources; hence we implemented this simulation utilizing a highly parallel approach on the NASA Pleiades supercomputer.
The impact of debris on marine life.
Gall, S C; Thompson, R C
2015-03-15
Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Orbital debris and meteoroids: Results from retrieved spacecraft surfaces
NASA Astrophysics Data System (ADS)
Mandeville, J. C.
1993-08-01
Near-Earth space contains natural and man-made particles, whose size distribution ranges from submicron sized particles to cm sized objects. This environment causes a grave threat to space missions, mainly for future manned or long duration missions. Several experiments devoted to the study of this environment have been recently retrieved from space. Among them several were located on the NASA Long Duration Exposure Facility (LDEF) and on the Russian MIR Space Station. Evaluation of hypervelocity impact features gives valuable information on size distribution of small dust particles present in low Earth orbit. Chemical identification of projectile remnants is possible in many instances, thus allowing a discrimination between extraterrestrial particles and man-made orbital debris. A preliminary comparison of flight data with current modeling of meteoroids and space debris shows a fair agreement. However impact of particles identified as space debris on the trailing side of LDEF, not predicted by the models, could be the result of space debris in highly excentric orbits, probably associated with GTO objects.
Plastic debris and policy: Using current scientific understanding to invoke positive change.
Rochman, Chelsea M; Cook, Anna-Marie; Koelmans, Albert A
2016-07-01
Captain Charles Moore introduced the world to the "Great Pacific Garbage Patch" in the mid-1990s, and images of plastic debris in the oceans began to sweep the media. Since then, there has been increasing interest from scientists, the public, and policy makers regarding plastic debris in the environment. Today, there remains no doubt that plastic debris contaminates aquatic (marine and freshwater) habitats and animals globally. The growing scientific evidence demonstrates widespread contamination from plastic debris, and researchers are beginning to understand the sources, fate, and effects of the material. As new scientific understanding breeds new questions, scientists are working to fill data gaps regarding the fate and effects of plastic debris and the mechanisms that drive these processes. In parallel, policy makers are working to mitigate this contamination. The authors focus on what is known about plastic debris that is relevant to policy by reviewing some of the weight of evidence regarding contamination, fate, and effects of the material. Moreover, they highlight some examples of how science has already been used to inform policy change and mitigation and discuss opportunities for future linkages between science and policy to continue the relationship and contribute to effective solutions for plastic debris. Environ Toxicol Chem 2016;35:1617-1626. © 2016 SETAC. © 2016 SETAC.
ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison
NASA Technical Reports Server (NTRS)
Krisko, Paula H.; Flegel, S.
2010-01-01
The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.
Defining interactions of in-stream hydrokinetic devices in the Tanana River, Alaska
NASA Astrophysics Data System (ADS)
Johnson, J.; Toniolo, H.; Seitz, A. C.; Schmid, J.; Duvoy, P.
2012-12-01
The acceptance, performance, and sustainability of operating in-stream hydrokinetic power generating devices in rivers depends on the impact of the river environment on hydrokinetic infrastructure as well as its impact on the river environment. The Alaska Hydrokinetic Energy Research Center (AHERC) conducts hydrokinetic "impact" and technology studies needed to support a sustainable hydrokinetic industry in Alaska. These include completed and ongoing baseline studies of river hydrodynamic conditions (river stage, discharge, current velocity, power, and turbulence; suspended and bed load sediment transport), ice, fish populations and behavior, surface and subsurface debris flows, and riverbed conditions. Technology and methods studies to minimize the effect of debris flows on deployed turbine system are in-progress to determine their effectiveness at reducing the probability of debris impact, diverting debris and their affect on available river power for conversion to electricity. An anchor point has been placed in the main flow just upstream of Main (Figure 1) to support projects and in preparation for future projects that are being planned to examine hydrokinetic turbine performance including power conversion efficiency, turbine drag and anchor chain loads, wake generation and effects on fish. Baseline fish studies indicate that hydrokinetic devices at the test site will have the most potential interactions with Pacific salmon smolts during their down-migration to the ocean in May and June. At the AHERC test site, the maximum turbulent kinetic energy (TKE) occurs just down stream from the major river bends (e.g., 000 and near the railroad bridge [upper center of the figure]) and over a deep hole at 440 (Figure 1), Minimum TKE occurs between main and 800. River current velocity measurements and simulations of river flow from 000 downstream past the railroad bridge indicate that the most stable current in the river reach is between Main and 800. The stable current and low TKE between Main and 800 indicate that this section of river may be the best site for deploying hydrokinetic devices. Woody debris exists as individual pieces or as large tangled masses on the surface, as full depth vertically oriented debris moving down river and as submerged debris posing a potential hazard to surface or subsurface deployed hydrokinetic devices. Submerged debris consists of logs, root balls, and small (mulch-like) debris. A surface debris diversion device has been tested and shown to be effective at diverting isolated debris and may reduce hazards for surface mounted devices.Figure 1. AHERC Tanana River test site at Nenana, AK.
The economics of mitigation and remediation measures - preliminary results
NASA Astrophysics Data System (ADS)
Wiedemann, Carsten; Flegel, Sven Kevin; Vörsmann, Peter; Gelhaus, Johannes; Moeckel, Marek; Braun, Vitali; Kebschull, Christopher; Metz, Manuel
2012-07-01
Today there exists a high spatial density of orbital debris objects at about 800 km altitude. The control of the debris population in this region is important for the long-term evolution of the debris environment. The future debris population is investigated by simulations using the software tool LUCA (Long-Term Orbit Utilization Collision Analysis). It is likely that in the future there will occur more catastrophic collisions. Debris objects generated during such events may again trigger further catastrophic collisions. Current simulations have revealed that the number of debris objects will increase in the future. In a long-term perspective, catastrophic collisions may become the dominating mechanism in generating orbital debris. In this study it is investigated, when the situation will become unstable. To prevent this instability it is necessary to implement mitigation and maybe even remediation measures. It is investigated how these measures affect the future debris environment. It is simulated if the growth of the number of debris objects can be interrupted and how much this may cost. Different mitigation scenarios are considered. Furthermore also one remediation measure, the active removal of high-risk objects, is simulated. Cost drivers for the different measures are identified. It is investigated how selected measures are associated with costs. The goal is to find out which economic benefits may result from mitigation or remediation. First results of a cost benefit analyses are presented.
Earth Satellite Population Instability: Underscoring the Need for Debris Mitigation
NASA Technical Reports Server (NTRS)
Liou, Jer-chyi; Johnson, N. L.
2006-01-01
A recent study by NASA indicates that the implementation of international orbital debris mitigation measures alone will not prevent a significant increase in the artificial Earth satellite population, beginning in the second half of this century. Whereas the focus of the aerospace community for the past 25 years has been on the curtailment of the generation of long-lived orbital debris, active remediation of the current orbital debris population should now be reconsidered to help preserve near-Earth space for future generations. In particular, we show in this paper that even if launch operations were to cease today, the population of space debris would continue to grow. Further, proposed remediation techniques do not appear to offer a viable solution. We therefore recommend that, while the aerospace community maintains the current debris-limiting mission regulations and postmission disposal procedures, future emphasis should be placed on finding new remediation technologies for solving this growing problem. Since the launch of Sputnik 1, space activities have created an orbital debris environment that poses increasing impact risks to existing space systems, including human space flight and robotic missions (1, 2). Currently, more than 9,000 Earth orbiting man-made objects (including many breakup fragments), with a combined mass exceeding 5 million kilograms, are tracked by the US Space Surveillance Network and maintained in the US satellite catalog (3-5). Three accidental collisions between cataloged satellites during the period from late 1991 to early 2005 have already been documented (6), although fortunately none resulted in the creation of large, trackable debris clouds. Several studies conducted during 1991-2001 demonstrated, with assumed future launch rates, the unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects (7-13). In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new satellites (i.e., debris) due to collisions exceeds the loss of objects due to orbital decay. NASA s evolutionary satellite population model LEGEND (LEO-to-GEO Environment Debris model), developed by the Orbital Debris Program Office at the NASA Lyndon B. Johnson Space Center, is a high fidelity three-dimensional physical model that is capable of simulating the historical satellite environment, as well as the evolution of future debris populations (14, 15). The subject study assumed no rocket bodies and spacecraft were launched after December 2004, and no future disposal maneuvers were allowed for existing spacecraft, few of which currently have such a capability. The rate of satellite explosions would naturally decrease to zero within a few decades as the current satellite population ages. The LEGEND future projection adopts a Monte Carlo approach to simulate future on-orbit explosions and collisions. Within a given projection time step, once the explosion probability is estimated for an intact object, a random number is drawn and compared with the probability to determine if an explosion would occur. A similar procedure is applied to collisions for each pair of target and projectile involved within the same time step. Due to the nature of the Monte Carlo process, multiple projection runs must be performed and analyzed before one can draw reliable and meaningful conclusions from the outcome. A total of fifty, 200-year future projection Monte Carlo simulations were executed and evaluated (16).
Sources of orbital debris and the projected environment for future spacecraft
NASA Technical Reports Server (NTRS)
Kessler, D. J.
1980-01-01
The major source of the nearly 5000 objects currently observed orbiting the earth is from rocket explosions. These explosions have almost certainly produced an even larger unobserved population. If the current trend continues, collisions between orbiting fragments and other space objects could be frequent. By the year 2000 satellite fragmentation by hypervelocity collisions could become the major source of earth orbiting objects, resulting in a self propagating debris belt. The flux within this belt could exceed the meteoroid flux, affecting future spacecraft design.
Agustin, Alyssa E; Merrifield, Mark A; Potemra, James T; Morishige, Carey
2015-12-15
A twenty-two year record of marine debris collected on Tern Island is used to characterize the temporal variability of debris deposition at a coral atoll in the Northwestern Hawaiian Islands. Debris deposition tends to be episodic, without a significant relationship to local forcing processes associated with winds, sea level, waves, and proximity to the Subtropical Convergence Zone. The General NOAA Operational Modeling Environment is used to estimate likely debris pathways for Tern Island. The majority of modeled arrivals come from the northeast following prevailing trade winds and surface currents, with trajectories indicating the importance of the convergence zone, or garbage patch, in the North Pacific High region. Although debris deposition does not generally exhibit a significant seasonal cycle, some debris types contain considerable 3 cycle/yr variability that is coherent with wind and surface pressure over a broad region north of Tern. Copyright © 2015 Elsevier Ltd. All rights reserved.
Duhec, Aurélie V; Jeanne, Richard F; Maximenko, Nikolai; Hafner, Jan
2015-07-15
The abundance, composition, and potential sources of marine debris were investigated on remote Alphonse Island, during the austral winter 2013. A total of 4743 items, weighing 142 kg, were removed from 1 km of windward beach, facing the prevailing southeasterly trade winds. Our study demonstrates the prevalence of plastic debris as a world-wide marine contaminant. Characteristics of the debris suggest it originated primarily from land-based sources. To determine their potential geographic sources we used the Surface Current from Diagnostic model of near-surface ocean currents, forced by satellite sea level and wind data. While preliminary evidence indicated the Southeast Asia to be the main source of the flotsam, the model highlighted Somalia as another potential primary source. Our study concludes that most of the collected debris entered the sea as a result of inadequate waste management and demonstrates how anthropogenic waste can negatively impact even the most remote environments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
The Space Debris Environment for the ISS Orbit
NASA Technical Reports Server (NTRS)
Theall, Jeff; Liou, Jer-Chyi; Matney, Mark; Kessler, Don
2001-01-01
With thirty-five planned missions over the next five years, the International Space Station (ISS) will be the focus for manned space activity. At least 6 different vehicles will transport crew and supplies to and from the nominally 400 km, 51.6 degree orbit. When completed, the ISS will be the largest space structure ever assembled and hence the largest target for space debris. Recent work at the Johnson Space Center has focused on updating the existing space debris models. The Orbital Debris Engineering Model, has been restructured to take advantage of state of the art desktop computing capability and revised with recent measurements from Haystack and Goldstone radars, additional analysis of LDEF and STS impacts, and the most recent SSN catalog. The new model also contains the capability to extrapolate the current environment in time to the year 2030. A revised meteoroid model based on the work of Divine has also been developed, and is called the JSC Meteoroid Model. The new model defines flux on the target per unit angle per unit speed, and for Earth orbit, includes the meteor showers. This paper quantifies the space debris environment for the ISS orbit from natural and anthropogenic sources. Particle flux and velocity distributions as functions of size and angle are be given for particles 10 microns and larger for altitudes from 350 to 450 km. The environment is projected forward in time until 2030.
ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison
NASA Technical Reports Server (NTRS)
Krisko, P. H.; Flegel, S.
2012-01-01
The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publicly released within the last year. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper describes the population generation and categorization of both ORDEM 3.0 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population verification. Fluxes on spacecraft for chosen orbits are presented and discussed. Future collaborative analysis is noted.
NASA Technical Reports Server (NTRS)
OBrien, Susan K.; Workman, Gary L.
1996-01-01
The space environment in which the Space Station Freedom and other space platforms will orbit is truly a hostile environment. For example, the currently estimated integral fluence for electrons above 1 Mev at 2000 nautical miles is above 2 x 1O(exp 10) electrons/sq cm/day and the proton integral fluence is above 1 x 10(exp 9) protons/sq cm/day. At the 200 - 400 nautical miles, which is more representative of the altitude which will provide the environment for the Space Station, each of these fluences will be proportionally less; however, the data indicates that the radiation environment will obviously have an effect on structural materials exposed to the environment for long durations. The effects of this combined environment is the issue which needs to be understood for the long term exposure of structures in space. At the same time, there will be substantial potential for collisions between the space platforms and space debris. The current NASA catalogue contains over 4500 objects floating in space which are not considered payloads. This debris can have significant effects on collision with orbiting spacecraft. In order to better understand the effect of these hostile phenomena on spacecraft, several types of studies are being performed to simulate at some level the effect of the environment. In particular the study of debris clouds produced by hypervelocity impact on the various surfaces anticipated on the Space Station is very important at this point in time. The need to assess the threat of such debris clouds on space structures is an on-going activity. The Space Debris Impact facility in Building 4612 provides a test facility to monitor the types of damage produced with hypervelocity impact. These facilities are used to simulate space environmental effects from energetic particles. Flash radiography or x-ray imaging has traditionally provided such information and as such has been an important tool for recording damage in situ with the event. The proper operation of the system can provide much useful information with respect to parametric analysis of the hypervelocity experiment. The following report outlines the procedures developed to optimize the operation of the x-ray imaging system and its operational characteristics.
Fractal Risk Assessment of ISS Propulsion Module in Meteoroid and Orbital Debris Environments
NASA Technical Reports Server (NTRS)
Mog, Robert A.
2001-01-01
A unique and innovative risk assessment of the International Space Station (ISS) Propulsion Module is conducted using fractal modeling of the Module's response to the meteoroid and orbital debris environments. Both the environment models and structural failure modes due to the resultant hypervelocity impact phenomenology, as well as Module geometry, are investigated for fractal applicability. The fractal risk assessment methodology could produce a greatly simplified alternative to current methodologies, such as BUMPER analyses, while maintaining or increasing the number of complex scenarios that can be assessed. As a minimum, this innovative fractal approach will provide an independent assessment of existing methodologies in a unique way.
Engineering and Technology Challenges for Active Debris Removal
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi
2011-01-01
After more than fifty years of space activities, the near-Earth environment is polluted with man-made orbital debris. The collision between Cosmos 2251 and the operational Iridium 33 in 2009 signaled a potential collision cascade effect, also known as the "Kessler Syndrome", in the environment. Various modelling studies have suggested that the commonly-adopted mitigation measures will not be sufficient to stabilize the future debris population. Active debris removal must be considered to remediate the environment. This paper summarizes the key issues associated with debris removal and describes the technology and engineering challenges to move forward. Fifty-four years after the launch of Sputnik 1, satellites have become an integral part of human society. Unfortunately, the ongoing space activities have left behind an undesirable byproduct orbital debris. This environment problem is threatening the current and future space activities. On average, two Shuttle window panels are replaced after every mission due to damage by micrometeoroid or orbital debris impacts. More than 100 collision avoidance maneuvers were conducted by satellite operators in 2010 to reduce the impact risks of their satellites with respect to objects in the U.S. Space Surveillance Network (SSN) catalog. Of the four known accident collisions between objects in the SSN catalog, the last one, collision between Cosmos 2251 and the operational Iridium 33 in 2009, was the most significant. It was the first ever accidental catastrophic destruction of an operational satellite by another satellite. It also signaled the potential collision cascade effect in the environment, commonly known as the "Kessler Syndrome," predicted by Kessler and Cour-Palais in 1978 [1]. Figure 1 shows the historical increase of objects in the SSN catalog. The majority of the catalog objects are 10 cm and larger. As of April 2011, the total objects tracked by the SSN sensors were more than 22,000. However, approximately 6000 of them had yet to be fully processed and entered into the catalog. This population had been dominated by fragmentation debris throughout history. Before the anti-satellite test (ASAT) conducted by China in 2007, the fragmentation debris were almost all explosion fragments. After the ASAT test and the collision between Iridium 33 and Cosmos 2251, the ratio of collision fragments to explosion fragments was about one-to-one. It is expected that accidental collision fragments will further dominate the environment in the future.
Effects on the orbital debris environment due to solar activity
NASA Technical Reports Server (NTRS)
Kessler, Donald J.; Anz-Meador, Phillip D.
1990-01-01
The rate that earth-orbiting debris is removed from the environment is dependent on a number of factors which include orbital altitude and solar activity. It is generally believed that at lower altitudes and especially during periods of high solar activity, debris generated in the past will be eliminated from the environment. While some debris is eliminated, most is replaced by old debris from higher altitudes or new debris from recent launches. Some low altitude debris, which would reenter if the debris were in circular orbits, does not reenter because the debris is in higher-energy elliptical orbits.
Active Debris Removal - A Grand Engineering Challenge for the Twenty-First Century
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi
2010-01-01
The collision between Iridium 33 and Cosmos 2251 in 2009 underlined the potential of an ongoing collision cascade effect (the Kessler Syndrome ) in the near-Earth orbital debris environment. A 2006 NASA analysis of the instability of the debris population in the low Earth orbit (LEO, the region below 2000 km altitude) shows that the environment has reached a point where the debris population will continue to increase in the next 200 years, even without any future launches. The increase is driven by fragments generated via collisions among existing objects in LEO. In reality, the situation will be worse than this prediction because satellite launches will continue and unexpected major breakups may continue to occur. Mitigation measures commonly adopted by the international space community (such as the 25-year rule) will help, but will be insufficient to stop the population growth. To better preserve the near-Earth space environment for future generations, active debris removal (ADR) should be considered. The idea of active debris removal is not new. However, due to the monumental technical, resource, operational, legal, and political challenges associated with removing objects from orbit, it has not yet been widely considered feasible. The recent major breakup events and the environment modeling efforts have certainly reignited the interest in using active debris removal to remediate the environment. This trend is further highlighted by the National Space Policy of the United States of America, released by the White House in June 2010, where the President explicitly directs NASA and the Department of Defense to pursue research and development of technology and techniques, to mitigate and remove on-orbit debris, reduce hazards, and increase understanding of the current and future debris environment. A 2009 modeling study by the NASA Orbital Debris Program Office has shown that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products. Analyses from the study indicate that the majority of those objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 10 inclination bands. To remove five of those objects per year in a cost-effective manner truly represents a grand challenge in engineering and technology development. An end-to-end debris removal operation includes, in general terms, launches orbit rendezvous, precision tracking, stabilization (of the tumbling motion), capture, and deorbit of the targets. An ADR system deigned to remove a single object is not very cost-effective. Therefore, the repeatability of the removal system is almost a requirement. Some of the technologies involved in the ADR process do exist, but the difficulty is to make them more cost effective. Other technologies, such as ways to stabilize a massive tumbling upper stage and the capture mechanisms, are new and will require major innovative research and development efforts. This paper summarizes an updated assessment of the environment, including what needs to be done to control the population growth, and outlines the major engineering and technology challenges to carry out active debris removal to preserve the environment.
An Overview of NASA's Oribital Debris Environment Model
NASA Technical Reports Server (NTRS)
Matney, Mark
2010-01-01
Using updated measurement data, analysis tools, and modeling techniques; the NASA Orbital Debris Program Office has created a new Orbital Debris Environment Model. This model extends the coverage of orbital debris flux throughout the Earth orbit environment, and includes information on the mass density of the debris as well as the uncertainties in the model environment. This paper will give an overview of this model and its implications for spacecraft risk analysis.
A Plasma Drag Hypervelocity Particle Accelerator (HYPER)
NASA Technical Reports Server (NTRS)
Best, Steve R.; Rose, M. Frank
1998-01-01
Current debris models are able to predict the growth of the space debris problem and suggest that spacecraft must employ armor or bumper shields for some orbital altitudes now and that the problem will become worse as a function of time. The practical upper limit to the velocity distribution is on the order of 40 km/s and is associated with the natural environment. The velocity distribution of the man-made component peaks at 9-10 km/s with maximum velocity in the 14-16 km/s range. Experience in space has verified that the "high probability of impact" particles are in the microgram to milligram range. These particles can have very significant effects on coatings, insulators, and thin metallic layers. The surface of thick materials becomes pitted and the local debris component is enhanced by ejecta from the impact events. In this paper, the HYPER facility is described which produces a reasonable simulation of the man-made space debris spectrum in a controlled environment. The facility capability is discussed in terms of drive geometry, energetics, velocity distribution, diagnostics, and projectile/debris loading. The facility has been used to study impact phenomena on Space Station Freedom's solar array structure, the calibration of space debris collectors, other solar array materials, potential structural materials for use in space, electrical breakdown in the space environment, and as a means of clarifying or duplicating the impact phenomena on surfaces which have been exposed in space.
Orbital Debris: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Stansbery, Gene; Johnson, Nicholas
2013-01-01
In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.
Prevalence and composition of marine debris in Brown Booby (Sula leucogaster) nests at Ashmore Reef.
Lavers, Jennifer L; Hodgson, Jarrod C; Clarke, Rohan H
2013-12-15
Anthropogenic debris is ubiquitous in the marine environment and has been reported to negatively impact hundreds of species globally. Seabirds are particularly at risk from entanglement in debris due to their habit of collecting food and, in many cases, nesting material off the ocean's surface. We compared the prevalence and composition of debris in nests and along the beach at two Brown Booby (Sula leucogaster) colonies on Ashmore Reef, Timor Sea, a remote area known to contain high densities of debris transported by ocean currents. The proportion of nests with debris varied across islands (range 3-31%), likely in response to the availability of natural nesting materials. Boobies exhibited a preference for debris colour (white and black), but not type. The ephemeral nature of Brown Booby nests on Ashmore Reef may limit their utility as indicators of marine pollution, however monitoring is recommended in light of increasing demand for plastic products. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cour-Palais, Burton G.; Avans, Sherman L.
1988-01-01
The damage to spacecraft caused by debris and design of the Space Station to minimize damage from debris are discussed. Although current estimates of the debris environment show that fragments bigger than 2 cm are not likely to hit the Space Station, orbital debris from about 0.5 mm to 2 cm will pose a hazard, especially on brittle surfaces, such as glass. Spacesuits are being designed to reduce debris caused dangers to astronauts during EVA. About 5 cm of high-strength aluminum are needed to prevent penetration by a 1 cm piece of aluminum with a mass near 1.5 g colliding at 10 km/sec. Because aluminum bumpers have the drawback of metallic debris ejected outward after a hypervelocity collision, the use of nonmetallic materials for bumpers is being studied. Methods of reducing the weight and volume of the shield for the Space Station are also being researched. A space station habitation module using bumpers has a 99.6 percent chance of avoiding penetration during its lifetime.
Influence of fishing activity over the marine debris composition close to coastal jetty.
Farias, Eduardo G G; Preichardt, Paulo R; Dantas, David V
2018-04-23
Worldwide, the marine debris emissions have been provoking impacts in ecosystems, generating massive mortality of different species with commercial interest. In South America, we have a lack of studies to verify the marine debris composition in transitional environments such as adjacent regions of coastal jetties. These are hydraulic engineering constructions used to maintain the navigation channel access between the sea-estuarine interface and are also used by teleost fishes, crustaceans, and mollusks like artificial shelters (reefs), being excellent fishing grounds. Therefore, the present study was devoted to qualitatively evaluate the composition of marine debris in an internal jetty portion of a Laguna Estuarine System (LES) located in South America (Brazil). Six hundred freediving were conducted to collect marine debris in the study region. The in situ campaigns were performed in 2016 during all spring season (sand substrata) in four distinct zones with 26,400 m 2 each one covering almost all adjacent jetty extension, to evaluate possible spatial changes in the marine debris composition. All material obtained was identified, measured, weighed, and ordered in eight groups, with six groups being related to the fishing activity and two groups related to the tourism/community in the study region. So, it was possible to observe possible relations between the marine debris distribution to artisanal and recreational local fishing. After 600 freediving sampling efforts, 2142 marine debris items were obtained, totaling close to 100 kg of solid waste removed from the inner portion of the coastal jetty. Notably, 1752 units (50 kg) of fishing leads were collected being this item the main marine debris residue found in the four sampled areas, corresponding to nearly 50% of the total weight of the collected waste. Ninety-eight percent of marine debris were derived from the local fishing activities, and just 2% were derived from tourism/community. Considering the total contribution related to fishing, 83% of the marine debris were composed by lead (sinkers) adopted by recreational and artisanal fishing. Notably, the catch activity in this region has a close influence over the marine debris composition. Reductions of marine debris emissions derived from the fishing activities have been a global challenge, once this problem is occurring in practically all marine and estuarine environments under the anthropic action. The presence of marine debris changes the local landscape and can provoke serious environmental problems, such as ghost fishing that affects a wide variability of marine mammals, birds, and fishes. Most of marine debris collected came from recreational and artisanal fishing, being the fishing leads the most prominent material, especially in sector 4. This fact is possibly related to the intense mullet fishing using cast nets, usual in this sample area. In the other sectors, there was a great predominance of grapnel fishing leads, widely adopted by recreational fishermen in open water environments. The "fingernails" present in these fishing leads ensure the sinking of the line for a specific location independently of possible flow oscillations of the tidal current and/or currents generated by winds. The massive quantity of fishing leads into the sectors is a dangerous fact. Notably, lead is a heavy, non-biodegradable, and extremely toxic metal that, due to the anthropogenic activities, has been increasing around the world. Future efforts in our study region should evaluate the seasonal marine debris composition to observe possible changes along the different seasons of the year. In this way, it would be possible to infer quantitatively the emission of marine debris derived from the fishing activity, assessing its impacts and enabling the adoption of environmental management strategies. This effort adopted a qualitative analysis, serving to show the current situation of this region that we now know to be vulnerable to the presence of marine debris derived from the fishing activity.
Additional historical solid rocket motor burns
NASA Astrophysics Data System (ADS)
Wiedemann, Carsten; Homeister, Maren; Oswald, Michael; Stabroth, Sebastian; Klinkrad, Heiner; Vörsmann, Peter
2009-06-01
The use of orbital solid rocket motors (SRM) is responsible for the release of a high number of slag and Al 2O 3 dust particles which contribute to the space debris environment. This contribution has been modeled for the ESA space debris model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference). The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which mainly contributed to the long-term debris environment. SRM firings on very low earth orbits which produce only short living particles are not considered. A comparison of the modeled flux with impact data from returned surfaces shows that the shape and quantity of the modeled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analyzed Long Duration Exposure Facility (LDEF) surfaces. This indicates that some past SRM firings are not included in the current event database. Thus it is necessary to investigate, if additional historical SRM burns, like the retro-burn of low orbiting re-entry capsules, may be responsible for these dust impacts. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. This paper focuses on the SRM retro-burns of Russian photoreconnaissance satellites, which were used in high numbers during the time of the LDEF mission. It is discussed which types of satellites and motors may have been responsible for this historical contribution. Altogether, 870 additional SRM retro-burns have been identified. An important task is the identification of such missions to complete the current event data base. Different types of motors have been used to de-orbit both large satellites and small film return capsules. The results of simulation runs are presented.
LEGEND, a LEO-to-GEO Environment Debris Model
NASA Technical Reports Server (NTRS)
Liou, Jer Chyi; Hall, Doyle T.
2013-01-01
LEGEND (LEO-to-GEO Environment Debris model) is a three-dimensional orbital debris evolutionary model that is capable of simulating the historical and future debris populations in the near-Earth environment. The historical component in LEGEND adopts a deterministic approach to mimic the known historical populations. Launched rocket bodies, spacecraft, and mission-related debris (rings, bolts, etc.) are added to the simulated environment. Known historical breakup events are reproduced, and fragments down to 1 mm in size are created. The LEGEND future projection component adopts a Monte Carlo approach and uses an innovative pair-wise collision probability evaluation algorithm to simulate the future breakups and the growth of the debris populations. This algorithm is based on a new "random sampling in time" approach that preserves characteristics of the traditional approach and captures the rapidly changing nature of the orbital debris environment. LEGEND is a Fortran 90-based numerical simulation program. It operates in a UNIX/Linux environment.
Characterizing the Space Debris Environment with a Variety of SSA Sensors
NASA Technical Reports Server (NTRS)
Stansbery, Eugene G.
2010-01-01
Damaging space debris spans a wide range of sizes and altitudes. Therefore no single method or sensor can fully characterize the space debris environment. Space debris researchers use a variety of radars and optical telescopes to characterize the space debris environment in terms of number, altitude, and inclination distributions. Some sensors, such as phased array radars, are designed to search a large volume of the sky and can be instrumental in detecting new breakups and cataloging and precise tracking of relatively large debris. For smaller debris sizes more sensitivity is needed which can be provided, in part, by large antenna gains. Larger antenna gains, however, produce smaller fields of view. Statistical measurements of the debris environment with less precise orbital parameters result. At higher altitudes, optical telescopes become the more sensitive instrument and present their own measurement difficulties. Space Situational Awareness, or SSA, is concerned with more than the number and orbits of satellites. SSA also seeks to understand such parameters as the function, shape, and composition of operational satellites. Similarly, debris researchers are seeking to characterize similar parameters for space debris to improve our knowledge of the risks debris poses to operational satellites as well as determine sources of debris for future mitigation. This paper will discuss different sensor and sensor types and the role that each plays in fully characterizing the space debris environment.
Active space debris charging for contactless electrostatic disposal maneuvers
NASA Astrophysics Data System (ADS)
Schaub, Hanspeter; Sternovsky, Zoltán
2014-01-01
The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.
Orbital Debris Quarterly News, Volume 13, Issue 4
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi (Editor); Shoots, Debi (Editor)
2009-01-01
Although NASA has conducted research on orbital debris since the 1960s, the NASA Orbital Debris Program Office is now considered to have been established in October 1979, following the recognition by senior NASA officials of orbital debris as a space environmental issue and the allocation by NASA Headquarters Advanced Programs Office to the Lyndon B. Johnson Space Center (JSC) of funds specifically dedicated for orbital debris investigations. In the 30 years since, the NASA Orbital Debris Program Office has pioneered the characterization of the orbital debris environment and its potential effects on current and future space systems, has developed comprehensive orbital debris mitigation measures, and has led efforts by the international aerospace community in addressing the challenges posed by orbital debris. In 1967 the Flight Analysis Branch at the Manned Spacecraft Center (renamed the Lyndon B. Johnson Space Center in 1973) evaluated the risks of collisions between an Apollo spacecraft and orbital debris. Three years later the same group calculated collision risks for the forthcoming Skylab space station, which was launched in 1973. By 1976, the nucleus of NASA s yet-to-be-formed orbital debris research efforts, including Andrew Potter, Burton Cour-Palais, and Donald Kessler, was found in JSC s Environmental Effects Office, examining the potential threat of orbital debris to large space platforms, in particular the proposed Solar Power Satellites (SPS).
NASA Astrophysics Data System (ADS)
Telichev, Igor; Cherniaev, Aleksandr
Gas-filled pressure vessels are extensively used in spacecraft onboard systems. During operation on the orbit they exposed to the space debris environment. Due to high energies they contain, pressure vessels have been recognized as the most critical spacecraft components requiring protection from orbital debris impact. Major type of pressurized containers currently used in spacecraft onboard systems is composite overwrapped pressure vessels (COPVs) manufactured by filament winding. In the present work we analyze the structural integrity of vessels of this kind in case of orbital debris impact at velocities ranging from 2 to 10 km/s. Influence of such parameters as projectile energy, shielding standoff, internal pressure and filament winding pattern on COPVs structural integrity has been investigated by means of numerical and physical experiments.
NASA Astrophysics Data System (ADS)
Montebugnoli, S.; Pupillo, G.; Salerno, E.; Pluchino, S.; di Martino, M.
2010-03-01
An accurate measurement of the position and trajectory of the space debris fragments is of primary importance for the characterization of the orbital debris environment. The Medicina Radioastronomical Station is a radio observation facility that is here proposed as receiving part of a ground-based space surveillance system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits). The proposed system consists of two bistatic radars formed by the existing Medicina receiving antennas coupled with appropriate transmitters. This paper focuses on the current features and future technical development of the receiving part of the observational setup. Outlines of possible transmitting systems will also be given together with the evaluation of the observation strategies achievable with the proposed facilities.
Seif, S; Provencher, J F; Avery-Gomm, S; Daoust, P-Y; Mallory, M L; Smith, P A
2018-04-01
Plastic debris is recognized as a widespread, common and problematic environmental pollutant. An important consequence of this pollution is the ingestion of plastic debris by wildlife. Assessing the degree to which different species ingest plastics, and the potential effects of these plastics on their health are important research needs for understanding the impacts of plastic pollution. We examined debris (plastic and other types) ingestion in three sympatric overwintering gull species (Herring gulls Larus smithsonianus, Great Black-backed Gulls Larus marinus, and Iceland Gulls Larus glaucoides) to understand how debris ingestion differs among species, age classes and sexes in gulls. We also assessed how plastic burdens were associated with body condition to investigate how gulls may be affected by debris ingestion. There were no differences among the species, age classes or sexes in the incidence of debris ingestion (plastic or otherwise), the mass or number of debris pieces ingested. We found no correlation between ingested plastics burdens and individual condition. Gulls ingested plastic debris, but also showed high levels of other debris types as well, including metal, glass and building materials, including a metal piece of debris found within an abscess in the stomach. Thus, when the health effects of debris ingestion on gulls, and other species that ingest debris, is of interest, either from a physical or chemical perspective, it may be necessary to consider all debris types and not just plastic burdens as is often currently done for seabirds.
Collisional cascading - The limits of population growth in low earth orbit
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1991-01-01
Random collisions between made-made objects in earth orbit will lead to a significant source of orbital debris, but there are a number of uncertainties in these models, and additional analysis and data are required to fully characterize the future environment. However, the nature of these uncertainties are such that while the future environment is uncertain, the fact that collisions will control the future environment is less uncertain. The data that already exist is sufficient to show that cascading collisions will control the future debris environment with no, or very minor increases in the current low-earth-orbit population. Two populations control this process: explosion fragments and expended rocket bodies and payloads. Practices are already changing to limit explosions in low earth orbit; it is necessary to begin limiting the number of expended rocket bodies and payloads in orbit.
Mid- and long-term debris environment projections using the EVOLVE and CHAIN models
NASA Astrophysics Data System (ADS)
Eichler, Peter; Reynolds, Robert C.
1995-06-01
Results of debris environment projections are of great importance for the evaluation of the necessity and effectiveness of debris mitigation measures. EVOLVE and CHAIN are two models for debris environment projections that have been developed independently using different conceptual approaches. A comparison of results from these two models therefore provides a means of validating debris environment projections which they have made. EVOLVE is a model that requires mission model projections to describe future space operation; these projections include launch date, mission orbit altitude and inclimation, mission duration, vehicle size and mass, and classification as an object capable of experiencing breakup from on-board stored energy. EVOLVE describes the orbital debris environment by the orbital elements of the objects in the environment. CHAIN is an analytic model that bins the debris environemnt in size and altitude rather than following the orbit evolution of individual debris fragments. The altitude/size bins are coupled by the initial spreading of fragments by collisions and the following orbital decay behavior. A set of test cases covering a variety of space usage scenarios have been defined for the two models. In this paper, a comparison of the results will be presented and sources of disagreement identified and discussed. One major finding is that despite differences in the results of the two models, the basic tendencies of the environment projections are independent of modeled uncertainties, leading to the demand of debris mitigation measures--explosion suppression and de-orbit of rocket bodies and payloads after mission completion.
Effects of CubeSat Deployments in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Matney, M. J.; Vavrin, A. B.; Manis, A. P.
2017-01-01
Long-term models, such as NASA's LEGEND (LEO (Low-Earth Orbit)-to-GEO (Geosynchrous Earth Orbit) Environment Debris) model, are used to make predictions about how space activities will affect the long-term evolution of the debris environment. Part of this process is to predict how spacecraft and rocket bodies will be launched and left in the environment in the future. This has usually been accomplished by repeating past launch history to simulate future launches. It was partially upon the basis of the results of such models that both national and international orbital debris mitigation guidelines - especially the "25-year rule" for post-mission disposal - were determined. The proliferation of Cubesat launches in recent years, however, has raised concerns that we are seeing a fundamental shift in how humans launch satellites into space that may alter the assumptions upon which our current mitigation guidelines are based. The large number of Cubesats, and their short lifetime and general inability to perform collision avoidance, potentially makes them an important new source of debris. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding Cubesats to the environment. Several possible future scenarios were simulated to investigate the effects of the size of future Cubesat launches and the efficiency of post-mission disposal on the proliferation of catastrophic collisions over the next 200 years. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major Cubesat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of post-mission disposal. We also discuss how the proliferation of Cubesats may affect satellite traffic at lower altitudes.
Understanding sources, sinks, and transport of marine debris
NASA Astrophysics Data System (ADS)
Law, Kara Lavender; Maximenko, Nikolai
2011-07-01
Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.
Potential transfer of organic pollutants from littoral plastics debris to the marine environment.
León, Víctor M; García, Inés; González, Emilia; Samper, Raquel; Fernández-González, Verónica; Muniategui-Lorenzo, Soledad
2018-05-01
Plastic polymers act as passive samplers in air system and concentrate hydrophobic organic contaminants by sorption or specific interactions, which can be transported to other systems such as the marine environment. In this study plastic debris was sampled in the surrounding area of a Mediterranean lagoon in order to determine the concentration of persistent and emerging organic contaminants. More specifically, desorption of 91 regulated and emerging organic contaminants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorinated pesticides, current-use pesticides, personal care products, other pesticides and plastic additives) was characterized for the first 24 h from different polymers to seawater and the remaining content of these contaminants was also extracted by ultrasonic extraction with methanol. All samples were analyzed by Stir Bar Sorptive Extraction coupled to GC/MS. A significant fraction of sorbed contaminants in polymers was desorbed in the first 24 h, particularly for triazines and organophosphorus pesticides due to their lower hydrophobicity than other considered analytes. The remaining contaminants contained in plastics can be also transferred to seawater, sediments or biota. Considering 24 h desorbed fraction plus the remaining methanol extracted fraction, the highest transfer levels corresponded to personal care products, plastic additives, current-use pesticides and PAHs. This is the first study to show the relevance of the transport of organic contaminants on plastic debris from littoral areas to the marine environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Conceptualizing an economically, legally, and politically viable active debris removal option
NASA Astrophysics Data System (ADS)
Emanuelli, M.; Federico, G.; Loughman, J.; Prasad, D.; Chow, T.; Rathnasabapathy, M.
2014-11-01
It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity's access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today's restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these challenges and propose an economically, politically, and legally viable ADR option. Much like waste management on Earth, cleaning up space junk will likely lie somewhere between a public good and a private sector service. An international, cooperative, public-private partnership concept can address many of these issues and be economically sustainable, while also driving the creation of a proper set of regulations, standards and best practices.
Lavers, Jennifer L; Bond, Alexander L
2017-06-06
In just over half a century plastic products have revolutionized human society and have infiltrated terrestrial and marine environments in every corner of the globe. The hazard plastic debris poses to biodiversity is well established, but mitigation and planning are often hampered by a lack of quantitative data on accumulation patterns. Here we document the amount of debris and rate of accumulation on Henderson Island, a remote, uninhabited island in the South Pacific. The density of debris was the highest reported anywhere in the world, up to 671.6 items/m 2 (mean ± SD: 239.4 ± 347.3 items/m 2 ) on the surface of the beaches. Approximately 68% of debris (up to 4,496.9 pieces/m 2 ) on the beach was buried <10 cm in the sediment. An estimated 37.7 million debris items weighing a total of 17.6 tons are currently present on Henderson, with up to 26.8 new items/m accumulating daily. Rarely visited by humans, Henderson Island and other remote islands may be sinks for some of the world's increasing volume of waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herdiwijaya, Dhani, E-mail: dhani@as.itb.ac.id; Rachman, Abdul
Any man-made object in Earth's orbit that no longer serves a useful purpose is classified as orbital debris. Debris objects come from a variety of sources. The majority is related to satellite fragmentation. Other major sources of debris are propulsion systems, and fragmentation of spent upper stages, payload and mission related debris. Serious concern about orbital debris has been growing. Knowledge of the future debris environment is important to both satellite designers, and mission planners, who need to know what hazards a satellite might encounter during the course of its mission. Therefore, it is important to know how much debrismore » is in orbit, where it is located, and when it will decay. The debris environment is complex and dynamically evolving. Objects of different shape and size behave differently in orbit. The geoeffectiveness space environments include solar flux at 10.7 cm, solar energetic particles flux or speed, solar wind flow pressure, electric field, and geomagnetic indices. We study the decaying orbital debris from Tracking and Impact Prediction (TIP) messages in conjuction with geoeffectiveness space environments through time epoch correlation. We found that the decaying and reentry orbital debris are triggered by space environment enhancement within at least one week before reentry. It is not necessary a transient or high energetic and severe solar storm events are needed in decaying processes. We propose that the gradual enhancement processes of space environment will cause satellite surface charging due to energetic electron and enhance drag force.« less
Conceptual design of an orbital debris collector
NASA Technical Reports Server (NTRS)
Odonoghue, Peter (Editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas
1991-01-01
The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.
Tracking the sources and sinks of local marine debris in Hawai'i.
Carson, Henry S; Lamson, Megan R; Nakashima, Davis; Toloumu, Derek; Hafner, Jan; Maximenko, Nikolai; McDermid, Karla J
2013-03-01
Plastic pollution has biological, chemical, and physical effects on marine environments and economic effects on coastal communities. These effects are acute on southeastern Hawai'i Island, where volunteers remove 16 metric tons of debris annually from a 15 km coastline. Although the majority is foreign-origin, a portion is locally-generated. We used floating debris-retention booms in two urban waterways to measure the input of debris from Hilo, the island's largest community, and released wooden drifters in nearby coastal waters to track the fate of that debris. In 205 days, 30 kilograms of debris (73.6% plastic) were retained from two watersheds comprising 10.2% of Hilo's developed land area. Of 851 wooden drifters released offshore of Hilo in four events, 23.3% were recovered locally, 1.4% at distant locations, and 6.5% on other islands. Comparisons with modeled surface currents and wind were mixed, indicating the importance of nearshore and tidal dynamics not included in the model. This study demonstrated that local pollutants can be retained nearby, contribute to the island's debris-accumulation area, and quickly contaminate other islands. Copyright © 2012 Elsevier Ltd. All rights reserved.
Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk
NASA Technical Reports Server (NTRS)
Gee, Ken; Lawrence, Scott
2013-01-01
For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.
NASA Technical Reports Server (NTRS)
1991-01-01
The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take approximately six months and the system is designed to allow for a 30 deg inclination change on the outgoing and incoming trips of the transfer vehicle.
Analyzing costs of space debris mitigation methods
NASA Astrophysics Data System (ADS)
Wiedemann, C.; Krag, H.; Bendisch, J.; Sdunnus, H.
2004-01-01
The steadily increasing number of space objects poses a considerable hazard to all kinds of spacecraft. To reduce the risks to future space missions different debris mitigation measures and spacecraft protection techniques have been investigated during the last years. However, the economic efficiency has not been considered yet in this context. Current studies have the objective to evaluate the mission costs due to space debris in a business as usual (no mitigation) scenario compared to the missions costs considering debris mitigation. The aim is an estimation of the time until the investment in debris mitigation will lead to an effective reduction of mission costs. This paper presents the results of investigations on the key issues of cost estimation for spacecraft and the influence of debris mitigation and shielding on cost. Mitigation strategies like the reduction of orbital lifetime and de- or re-orbit of non-operational satellites are methods to control the space debris environment. These methods result in an increase of costs. In a first step the overall costs of different types of unmanned satellites are analyzed. A selected cost model is simplified and generalized for an application on all operational satellites. In a next step the influence of space debris on cost is treated, if the implementation of mitigation strategies is considered.
Approaches to dealing with meteoroid and orbital debris protection on the Space Station
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1990-01-01
Viewgraphs and discussion on approaches to dealing with meteoroid and orbital debris protection on the space station are presented. The National Space Policy of February, 1988, included the following: 'All sectors will seek to minimize the creation of space debris. Design and operations of space tests, experiments, and systems will strive to minimize or reduce accumulation of space debris consistent with mission requirements and cost effectiveness.' The policy also tasked the National Security Council, which established an Interagency Group, which in turn produced an Interagency Report. NASA and DoD tasks to establish a joint plan to determine techniques to measure the environment, and techniques to reduce the environment are addressed. Topics covered include: orbital debris environment, meteoroids, orbital debris population, cataloged earth satellite population, USSPACECOM cataloged objects, and orbital debris radar program.
Dust and Debris Tolerant Retractable Cover Connector
NASA Technical Reports Server (NTRS)
Lewis, Mark E. (Inventor); Dokos, Adam G. (Inventor); Townsend, III, Ivan I. (Inventor); Carlson, Jeffrey W. (Inventor); Bastin, Gary L. (Inventor); Murtland, Kevin A. (Inventor)
2017-01-01
A debris exclusion and removal apparatus for connectors which have retractable cover configurations which include internal wafers that clean the connectors prior to mating. XXXX connectors. More particularly, embodiments relate to dust tolerant connectors. Some embodiments also relate to an intelligent connector system capable of detecting damage to or faults within a conductor and then rerouting the energy to a non-damaged spare conductor. Discussion Connectors of the present invention may be used to transfer electrical current, fluid, and gas in a wide variety of environments containing dust and other debris, wherein that debris may present substantial challenges. For example, lunar/Martian dust intrusion and/or accumulation in connectors used to transfer oxygen, hydrogen, nitrogen, etc., may lead to larger system failures as well as loss of life in extraterrestrial human exploration endeavors. Additionally, embodiments of the present invention may also be suitable for use where connectors must resist water intrusion, such as terrestrial deep water operations.
Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris
NASA Technical Reports Server (NTRS)
Hill, Nicole M.
2009-01-01
There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.
The Orbital Debris Problem and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2013-01-01
Orbital debris scientists from major international space agencies, including JAXA and NASA, have worked together to predict the trend of the future environment. A summary presentation was given to the United Nations in February 2013. The orbital debris population in LEO will continue to increase. Catastrophic collisions will continue to occur every 5 to 9 years center dot To limit the growth of the future debris population and to better protect future spacecraft, active debris removal, should be considered.
Space Shuttle Solid Rocket Booster Debris Assessment
NASA Technical Reports Server (NTRS)
Kendall, Kristin; Kanner, Howard; Yu, Weiping
2006-01-01
The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.
Bond, Alexander L.
2017-01-01
In just over half a century plastic products have revolutionized human society and have infiltrated terrestrial and marine environments in every corner of the globe. The hazard plastic debris poses to biodiversity is well established, but mitigation and planning are often hampered by a lack of quantitative data on accumulation patterns. Here we document the amount of debris and rate of accumulation on Henderson Island, a remote, uninhabited island in the South Pacific. The density of debris was the highest reported anywhere in the world, up to 671.6 items/m2 (mean ± SD: 239.4 ± 347.3 items/m2) on the surface of the beaches. Approximately 68% of debris (up to 4,496.9 pieces/m2) on the beach was buried <10 cm in the sediment. An estimated 37.7 million debris items weighing a total of 17.6 tons are currently present on Henderson, with up to 26.8 new items/m accumulating daily. Rarely visited by humans, Henderson Island and other remote islands may be sinks for some of the world’s increasing volume of waste. PMID:28507128
Micrometeoroids and debris on LDEF comparison with MIR data
NASA Technical Reports Server (NTRS)
Mandeville, Jean-Claude; Berthoud, Lucinda
1995-01-01
Part of the LDEF tray allocated to French experiments (FRECOPA) has been devoted to the study of dust particles. The tray was located on the face of LDEF directly opposed to the velocity vector. Crater size distributions have made possible the evaluation of the incident microparticle flux in the near-Earth environment. Comparisons are made with measurements obtained on the other faces of LDEF (tray clamps), on the leading edge (MAP) and with results of a similar experiment flown on the MIR space station. The geometry of impact craters, depth in particular, provides useful information on the nature of impacting particles and the correlation of geometry with the chemical analysis of projectile remnants inside craters make possible a discrimination between meteoroids and orbital debris. Emphasis has been laid on the size distribution of small craters in order to assess a cut-off in the distribution of particles in LEO. Special attention has been paid to the phenomenon of secondary impacts. A comparison of flight data with current models of meteoroids and space debris shows a fair agreement for LDEF, except for the smaller particles: the possible contribution of orbital debris in GTO orbits to the LDEF trailing edge flux is discussed. For MIR, flight results show differences with current modeling: the possible enhancement of orbital debris could be due to the contaminating presence of a permanently manned space station.
Debris Albedo from Laser Ablation in Low and High Vacuum: Comparisons to Hypervelocity Impact
NASA Astrophysics Data System (ADS)
Radhakrishnan, G.; Adams, P. M.; Alaan, D. R.; Panetta, C. J.
The albedo of orbital debris fragments in space is a critical parameter used in the derivation of their physical sizes from optical measurements. The change in albedo results from scattering due to micron and sub-micron particles on the surface. There are however no known hypervelocity collision ground tests that simulate the high-vacuum conditions on-orbit. While hypervelocity impact experiments at a gun range can offer a realistic representation of the energy of impact and fragmentation, and can aid the understanding of albedo, they are conducted in low-pressure air that is not representative of the very high vacuum of 10-8 Torr or less that exists in the Low Earth Orbit environment. Laboratory simulation using laser ablation with a high power laser, on the same target materials as used in current satellite structures, is appealing because it allows for well-controlled investigations that can be coupled to optical albedo (reflectance) measurements of the resultant debris. This relatively low-cost laboratory approach can complement the significantly more elaborate and expensive field-testing of single-shot hypervelocity impact on representative satellite structures. Debris generated is optically characterized with UV-VIS-NIR reflectance, and particle size distributions can be measured. In-situ spectroscopic diagnostics (nanosecond time frame) provide an identification of atoms and ions in the plume, and plasma temperatures, allowing a correlation of the energetics of the ablated plume with resulting albedo and particle size distributions of ablated debris. Our laboratory experiments offer both a high-vacuum environment, and selection of any gaseous ambient, at any controlled pressure, thus allowing for comparison to the hypervelocity impact experiments in low-pressure air. Initial results from plume analysis, and size distribution and microstructure of debris collected on witness plates show that laser ablations in low-pressure air offer many similarities to the recent DebrisLV and DebriSat hypervelocity impact experiments, while ablations in high-vacuum provide critical distinctions.
NASA Technical Reports Server (NTRS)
Barker, Ed; Abercromby, Kira J.; Abell, Paul
2009-01-01
A key objective of NASA s Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the 0.6 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectra is flat and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar panels with a strong band gap feature near 1 micron. The two spacecraft are spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer features of white paint - indicating that the surface paint on the SL-12 may be different than the IUS. This study shows that the surface materials of debris appear different spectrally than intact rocket bodies and spacecraft and therefore are not believed to be solar panel material or pristine white paint. Further investigation is necessary in order to eliminate materials as possible choices for the debris pieces.
NASA Astrophysics Data System (ADS)
Albercromby, Kira J.; Abell, Paul; Barker, Ed
2009-03-01
A key objective of NASA's Orbital Debris program office at Johnson Space Center (JSC) is to characterize the debris environment by way of assessing the physical properties (type, mass, density, and size) of objects in orbit. Knowledge of the geosynchronous orbit (GEO) debris environment in particular can be used to determine the hazard probability at specific GEO altitudes and aid predictions of the future environment. To calculate an optical size from an intensity measurement of an object in the GEO regime, a 0.175 albedo is assumed currently. However, identification of specific material type or types could improve albedo accuracy and yield a more accurate size estimate for the debris piece. Using spectroscopy, it is possible to determine the surface materials of space objects. The study described herein used the NASA Infrared Telescope Facility (IRTF) to record spectral data in the ~ 0.65 to 2.5 micron regime on eight catalogued space objects. For comparison, all of the objects observed were in GEO or near-GEO. The eight objects consisted of two intact spacecraft, three rocket bodies, and three catalogued debris pieces. Two of the debris pieces stemmed from Titan 3C transtage breakup and the third is from COSMOS 2054. The reflectance spectra of the Titan 3C pieces share similar slopes (increasing with wavelength) and lack any strong absorption features. The COSMOS debris spectrum has a slight slope and has no absorption features. In contrast, the intact spacecraft show classic absorption features due to solar cells with a strong band gap feature near 1 micron. The two spacecraft were spin-stabilized objects and therefore have solar panels surrounding the outer surface. Two of the three rocket bodies are inertial upper stage (IUS) rocket bodies and have similar looking spectra. The slopes flatten out near 1.5 microns with absorption features in the near-infrared that are similar to that of white paint. The third rocket body has a similar flattening of slope but with fewer features of white paint - indicating that the surface paint on the SL-12 may be different than the IUS. This study shows that the surface materials of debris appear different spectrally than intact rocket bodies and spacecraft and therefore are not believed to be solar cell material or pristine white paint. Further investigation is necessary in order to eliminate materials as possible choices for the debris pieces.
NASA Orbital Debris Large-Object Baseline Population in ORDEM 3.0
NASA Technical Reports Server (NTRS)
Krisco, Paula H.; Vavrin, A. B.; Anz-Meador, P. D.
2013-01-01
The NASA Orbital Debris Program Office (ODPO) has created and validated high fidelity populations of the debris environment for the latest Orbital Debris Engineering Model (ORDEM 3.0). Though the model includes fluxes of objects 10 um and larger, this paper considers particle fluxes for 1 cm and larger debris objects from low Earth orbit (LEO) through Geosynchronous Transfer Orbit (GTO). These are validated by several reliable radar observations through the Space Surveillance Network (SSN), Haystack, and HAX radars. ORDEM 3.0 populations were designed for the purpose of assisting, debris researchers and sensor developers in planning and testing. This environment includes a background derived from the LEO-to-GEO ENvironment Debris evolutionary model (LEGEND) with a Bayesian rescaling as well as specific events such as the FY-1C anti-satellite test, the Iridium 33/Cosmos 2251 accidental collision, and the Soviet/Russian Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium droplet releases. The environment described in this paper is the most realistic orbital debris population larger than 1 cm, to date. We describe derivations of the background population and added specific populations. We present sample validation charts of our 1 cm and larger LEO population against Space Surveillance Network (SSN), Haystack, and HAX radar measurements.
NASA Technical Reports Server (NTRS)
Miller, Joshua E.
2016-01-01
Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.
Active Debris Removal and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, J. C.
2012-01-01
Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.
Observations of Human-Made Debris in Earth Orbit
NASA Technical Reports Server (NTRS)
Cowardia, Heather
2011-01-01
Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.
Operability of Space Station Freedom's meteoroid/debris protection system
NASA Technical Reports Server (NTRS)
Kahl, Maggie S.; Stokes, Jack W.
1992-01-01
The design of Space Station Freedom's external structure must not only protect the spacecraft from the hazardous environment, but also must be compatible with the extra vehicular activity system for assembly and maintenance. The external procedures for module support are utility connections, external orbital replaceable unit changeout, and maintenance of the meteoroid/debris shields and multilayer insulation. All of these interfaces require proper man-machine engineering to be compatible with the extra vehicular activity and manipulator systems. This paper discusses design solutions, including those provided for human interface, to the Space Station Freedom meteoroid/debris protection system. The system advantages and current access capabilities are illustrated through analysis of its configuration over the Space Station Freedom resource nodes and common modules, with emphasis on the cylindrical sections and endcones.
NASA Technical Reports Server (NTRS)
Kessler, D. J. (Compiler); Su, S. Y. (Compiler)
1985-01-01
Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.
NASA Technical Reports Server (NTRS)
Stokely, C. L.; Stansbery, E. G.; Goldstein, R. M.
2006-01-01
The continual monitoring of low Earth orbit (LEO) debris environment using highly sensitive radars is essential for an accurate characterization of these dynamic populations. Debris populations are continually evolving since there are new debris sources, previously unrecognized debris sources, and debris loss mechanisms that are dependent on the dynamic space environment. Such radar data are used to supplement, update, and validate existing orbital debris models. NASA has been utilizing radar observations of the debris environment for over a decade from three complementary radars: the NASA JPL Goldstone radar, the MIT Lincoln Laboratory (MIT/LL) Long Range Imaging Radar (known as the Haystack radar), and the MIT/LL Haystack Auxiliary radar (HAX). All of these systems are highly sensitive radars that operate in a fixed staring mode to statistically sample orbital debris in the LEO environment. Each of these radars is ideally suited to measure debris within a specific size region. The Goldstone radar generally observes objects with sizes from 2 mm to 1 cm. The Haystack radar generally measures from 5 mm to several meters. The HAX radar generally measures from 2 cm to several meters. These overlapping size regions allow a continuous measurement of cumulative debris flux versus diameter from 2 mm to several meters for a given altitude window. This is demonstrated for all three radars by comparing the debris flux versus diameter over 200 km altitude windows for 3 nonconsecutive years from 1998 through 2003. These years correspond to periods before, during, and after the peak of the last solar cycle. Comparing the year to year flux from Haystack for each of these altitude regions indicate statistically significant changes in subsets of the debris populations. Potential causes of these changes are discussed. These analysis results include error bars that represent statistical sampling errors, and are detailed in this paper.
Comparison of debris flux models
NASA Astrophysics Data System (ADS)
Sdunnus, H.; Beltrami, P.; Klinkrad, H.; Matney, M.; Nazarenko, A.; Wegener, P.
The availability of models to estimate the impact risk from the man-made space debris and the natural meteoroid environment is essential for both, manned and unmanned satellite missions. Various independent tools based on different approaches have been developed in the past years. Due to an increased knowledge of the debris environment and its sources e.g. from improved measurement capabilities, these models could be updated regularly, providing more detailed and more reliable simulations. This paper addresses an in-depth, quantitative comparison of widely distributed debris flux models which were recently updated, namely ESA's MASTER 2001 model, NASA's ORDEM 2000 and the Russian SDPA 2000 model. The comparison was performed in the frame of the work of the 20t h Interagency Debris Coordination (IADC) meeting held in Surrey, UK. ORDEM 2000ORDEM 2000 uses careful empirical estimates of the orbit populations based onthree primary data sources - the US Space Command Catalog, the H ystackaRadar, and the Long Duration Exposure Facility spacecraft returned surfaces.Further data (e.g. HAX and Goldstone radars, impacts on Shuttle windows andradiators, and others) were used to adjust these populations for regions in time,size, and space not covered by the primary data sets. Some interpolation andextrapolation to regions with no data (such as projections into the future) wasprovided by the EVOLVE model. MASTER 2001The ESA MASTER model offers a full three dimensional description of theterrestrial debris distribution reaching from LEO up to the GEO region. Fluxresults relative to an orbiting target or to an inertial volume can be resolved intosource terms, impactor characteristics and orbit, as well as impact velocity anddirection. All relevant debris source terms are considered by the MASTERmodel. For each simulated source, a corresponding debris generation model interms of mass/diameter distribution, additional velocities, and directionalspreading has been developed. A comprehensive perturbation model was used topropagate all objects to a reference epoch. SDPA 2000The Russian Space Debris Prediction and Analysis (SDPA) model is the semi-analytical stochastic tool for medium- and long-term forecast of the man-madedebris environment (with size larger than 1 mm), for construction of spatialdensity and velocity distribution in LEO and GEO as well as for risk evaluation.The last version of SDPA 2000 consists of ten individual modules related to theaforementioned tasks. The total characteristics of space debris of the differentsizes are considered (without partition of these characteristics into specificsources). The current space debris environment is characterised a) by the spatialdensity dependence on the altitude and latitude of a point, as well as on size ofobjects and b) by a statistical distribution of the magnitude and direction of spaceobjects velocities in an inertial geocentric coordinate system. Thesecharacteristics are constructed on the basis of the complex application of theaccessible measuring information and series of a priori data. The comparison is performed by applying the models to a large number of target orbits specified by a grid in terms of impactor size (6 gridpoints), target orbit perigee altitude (16 gridpoints), and target orbit inclination (15 gridpoints). These result provide a characteristic diagram of integral fluxes for all models, which will be compared. Further to this, the models are applied to orbits of particular interest, namely the ISS orbit, and a sun-synchronous orbit. For these cases, the comparison will include the comparison of flux directionality and velocity. References 1. Liou, J.-C., M. J. Matney, P. D. Anz-Meador, D. Kessler, M. Jansen, and J. R.Theall, 2001, "The New NASA Orbital Debris Engineering ModelORDEM2000", NASA/TP-2002-210780. 2. P. Wegener, J. Bendisch, K.D. Bunte, H. Sdunnus; Upgrade of the ESAMASTER Model; Final Report of ESOC/TOS-GMA contract 12318/97/D/IM;May 2000 3. A.I. Nazarenko, I.L. Menchikov. Engineering Model of Space DebrisEnvironment. Third European Conference on Space Debris, Darmstadt,Germany, March 2001.
Measurement Techniques for Hypervelocity Impact Test Fragments
NASA Technical Reports Server (NTRS)
Hill, Nicole E.
2008-01-01
The ability to classify the size and shape of individual orbital debris fragments provides a better understanding of the orbital debris environment as a whole. The characterization of breakup fragmentation debris has gradually evolved from a simplistic, spherical assumption towards that of describing debris in terms of size, material, and shape parameters. One of the goals of the NASA Orbital Debris Program Office is to develop high-accuracy techniques to measure these parameters and apply them to orbital debris observations. Measurement of the physical characteristics of debris resulting from groundbased, hypervelocity impact testing provides insight into the shapes and sizes of debris produced from potential impacts in orbit. Current techniques for measuring these ground-test fragments require determination of dimensions based upon visual judgment. This leads to reduced accuracy and provides little or no repeatability for the measurements. With the common goal of mitigating these error sources, allaying any misunderstandings, and moving forward in fragment shape determination, the NASA Orbital Debris Program Office recently began using a computerized measurement system. The goal of using these new techniques is to improve knowledge of the relation between commonly used dimensions and overall shape. The immediate objective is to scan a single fragment, measure its size and shape properties, and import the fragment into a program that renders a 3D model that adequately demonstrates how the object could appear in orbit. This information would then be used to aid optical methods in orbital debris shape determination. This paper provides a description of the measurement techniques used in this initiative and shows results of this work. The tradeoffs of the computerized methods are discussed, as well as the means of repeatability in the measurements of these fragments. This paper serves as a general description of methods for the measurement and shape analysis of orbital debris.
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.; Schramm, L. S.; Barrett, R. A.; Mckay, D. S.; Zook, H. A.
1986-01-01
The physical properties of impact features in the Solar Max main electronics box thermal blanket are consistent with hypervelocity impacts of particles in the near-earth space environment. The majority of particles are orbital debris and include spacecraft paints and bismuth-rich particles. At least 30 percent of all impact features are caused by micrometeorites, which include silicates and sulfides. Some micrometeorites survive impact with only minor shock-metamorphic effects or chemical fractionation. Currently calibration experiments are under way to relate flux to particle diameter (or mass).
Orbital Debris Environment Assessment and Mitigation for Launch Vehicles
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2007-01-01
This viewgraph presentation reviews the debris that is in orbit, and reduction of the orbital debris. Specifically, attention is paid to the reduction of orbital debris from launch vehicle stages after the launch.
Impact of high-risk conjunctions on Active Debris Removal target selection
NASA Astrophysics Data System (ADS)
Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto
2015-10-01
Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target selection is the collision probability accumulated by every object. This paper shows the impact of high-probability conjunctions on the collision probability accumulated by individual objects as well as the probability of any collision occurring in orbit. Such conjunctions cannot be predicted far in advance and, consequently, not all the objects that will be involved in such dangerous conjunctions can be removed through ADR. Therefore, a debris remediation method that would address such events at short notice, and thus help prevent likely collisions, is suggested.
Joint Polar Satellite System (JPSS) Micrometeoroid and Orbital Debris (MMOD) Assessment
NASA Technical Reports Server (NTRS)
Squire, Michael D.; Cooke, William J.; Williamsen, Joel; Kessler, Donald; Vesely, William E.; Hull, Scott H.; Schonberg, William; Peterson, Glenn E.; Jenkin, Alan B.; Cornford, Steven L.
2015-01-01
The Joint Polar Satellite System (JPSS) Project requested the NASA Engineering and Safety Center (NESC) conduct an independent evaluation of the Micrometeoroid and Orbital Debris (MMOD) models used in the latest JPSS MMOD risk assessment. The principal focus of the assessment was to compare Orbital Debris Engineering Model version 3 (ORDEM 3.0) with the Meteoroid and Space Debris Terrestrial Environment Reference version 2009 (MASTER-2009) and Aerospace Debris Environment Projection Tool (ADEPT) and provide recommendations to the JPSS Project regarding MMOD protection. The outcome of the NESC assessment is contained in this report.
An Analysis of the Orbital Distribution of Solid Rocket Motor Slag
NASA Technical Reports Server (NTRS)
Horstman, Matthew F.; Mulrooney, Mark
2007-01-01
The contribution made by orbiting solid rocket motors (SRMs) to the orbital debris environment is both potentially significant and insufficiently studied. A combination of rocket motor design and the mechanisms of the combustion process can lead to the emission of sufficiently large and numerous by-products to warrant assessment of their contribution to the orbital debris environment. These particles are formed during SRM tail-off, or the termination of burn, by the rapid expansion, dissemination, and solidification of the molten Al2O3 slag pool accumulated during the main burn phase of SRMs utilizing immersion-type nozzles. Though the usage of SRMs is low compared to the usage of liquid fueled motors, the propensity of SRMs to generate particles in the 100 m and larger size regime has caused concern regarding their contributing to the debris environment. Particle sizes as large as 1 cm have been witnessed in ground tests conducted under vacuum conditions and comparable sizes have been estimated via ground-based telescopic and in-situ observations of sub-orbital SRM tail-off events. Using sub-orbital and post recovery observations, a simplistic number-size-velocity distribution of slag from on-orbit SRM firings was postulated. In this paper we have developed more elaborate distributions and emission scenarios and modeled the resultant orbital population and its time evolution by incorporating a historical database of SRM launches, propellant masses, and likely location and time of particulate deposition. From this analysis a more comprehensive understanding has been obtained of the role of SRM ejecta in the orbital debris environment, indicating that SRM slag is a significant component of the current and future population.
USA Space Debris Environment, Operations, and Research Updates
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2018-01-01
Space Missions in 2017 Earth Satellite Population Collision Avoidance Maneuvers Post mission Disposal of U.S.A. Spacecraft Space Situational Awareness (SSA) and the Space Debris Sensor (SDS) A total of 86 space launches placed more than 400 spacecraft into Earth orbits during 2017, following the trend of increase over the past decade NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 - One maneuver was conducted to avoid the ISS NASA has established conjunction assessment processes for its human spaceflight and uncrewed spacecraft to avoid accidental collisions with objects tracked by the U.S. Space Surveillance Network - NASA also assists other U.S. government spacecraft owners with conjunction assessments and subsequent maneuvers The ISS has conducted 25 debris collision avoidance maneuvers since 1999 - None in 2016-2017, but an ISS visiting vehicle had one collision avoidance maneuver in 2017 During 2017 NASA executed or assisted in the execution of 21 collision avoidance maneuvers by uncrewed spacecraft - Four maneuvers were conducted to avoid debris from Fengyun-1C - Two maneuvers were conducted to avoid debris from the collision of Cosmos 2251 and Iridium 33 The 2014-15 NASA Engineering and Safety Center (NESC) study on the micrometeoroid and orbital debris (MMOD) assessment for the Joint Polar Satellite System (JPSS) provided the following findings - Millimeter-sized orbital debris pose the highest penetration risk to most operational spacecraft in LEO - The most effective means to collect direct measurement data on millimetersized debris above 600 km altitude is to conduct in situ measurements - There is currently no in situ data on such small debris above 600 km altitude Since the orbital debris population follows a power-law size distribution, there are many more millimeter-sized debris than the large tracked objects - Current conjunction assessments and collision avoidance maneuvers against the tracked objects (which are typically 10 cm and larger) only address a small fraction (<1%) of the mission-ending risk from orbital debris To address the millimeter-sized debris data gap above 600 km, NASA has recently developed an innovative in situ measurement instrument - the Space Debris Sensor (SDS) - One maneuver was conducted to avoid the ISS
Plastics in the marine environment: the dark side of a modern gift.
Hammer, Jort; Kraak, Michiel H S; Parsons, John R
2012-01-01
Plastics are cheap, strong, and durable and offer considerable benefits to humanity. They potentially can enhance the benefits that both medical and scientific technology will bestow to humankind. However, it has now been several decades since the use of plastics exploded, and we have evidence that our current approach to production, use, transport and disposal of plastic materials has caused, and is still causing serious effects on wildlife, and is not sustainable. Because of frequent inappropriate waste management practices, or irresponsible human behavior, large masses of plastic items have been released into the environment, and thereby have entered the world's oceans. Moreover, this process continues, and in some places is even increasing. Most plastic debris that now exists in the marine environment originated from ocean-based sources such as the fishing industry. Plastics accumulate in coastal areas, at the ocean surface and on the seabed. Because 70% of all plastics are known to eventually sink, it is suspected that ever increasing amounts of plastic items are accumulating in seabed sediments. Plastics do not biodegrade, although, under the influence of solar UV radiations, plastics do degrade and fragment into small particles, termed microplastics. Our oceans eventually serve as a sink for these small plastic particles and in one estimate, it is thought that 200,000 microplastics per km(2) of the ocean's surface commonly exist. The impact of plastic debris has been studied since the beginning of the 1960's. To date, more than 267 species in the marine environment are known to have been affected by plastic entanglement or ingestion. Marine mammals are among those species that are most affected by entanglement in plastic debris. By contrast, marine birds suffer the most from ingestion of plastics. Organisms can also be seriously absorbed by floating plastic debris, or the contaminants may derive from plastic additives that are leached to the environment. Recent studies emphasize the important role of microplastics as they are easily ingestible by small organisms, such as plankton species, and form a pathway for contaminants to enter the food web. Contaminants leached from plastics tend to bioaccumulate in those organisms that absorb them, and chemical concentrations are often higher at higher trophic levels. This causes a threat to the basis of every food web and can have serious and far-reaching effects, even on nonmarine species such as polar bears and humans, who consume marine-grown food. Therefore, resolving the plastic debris problem is important to human kind for two reasons: we are both creator, and victim of the plastic pollution problem. Solutions to the plastic debris problem can only be achieved through a combination of actions. Such actions include the following: Legislation against marine pollution by plastics must be enforced, recycling must be accentuated, alternatives (biodegradable) to current plastic products must be found, and clean-up of debris must proceed, if the marine plastic pollution problem is to eventually be resolved. Governments cannot accomplish this task on their own, and will need help and initiative from the public. Moreover, resolving this long-standing problem will require time, money, and energy from many individuals now living and those of future generations, if a safer and cleaner marine environment is to be achieved.
Statistical Estimation of Orbital Debris Populations with a Spectrum of Object Size
NASA Technical Reports Server (NTRS)
Xu, Y. -l; Horstman, M.; Krisko, P. H.; Liou, J. -C; Matney, M.; Stansbery, E. G.; Stokely, C. L.; Whitlock, D.
2008-01-01
Orbital debris is a real concern for the safe operations of satellites. In general, the hazard of debris impact is a function of the size and spatial distributions of the debris populations. To describe and characterize the debris environment as reliably as possible, the current NASA Orbital Debris Engineering Model (ORDEM2000) is being upgraded to a new version based on new and better quality data. The data-driven ORDEM model covers a wide range of object sizes from 10 microns to greater than 1 meter. This paper reviews the statistical process for the estimation of the debris populations in the new ORDEM upgrade, and discusses the representation of large-size (greater than or equal to 1 m and greater than or equal to 10 cm) populations by SSN catalog objects and the validation of the statistical approach. Also, it presents results for the populations with sizes of greater than or equal to 3.3 cm, greater than or equal to 1 cm, greater than or equal to 100 micrometers, and greater than or equal to 10 micrometers. The orbital debris populations used in the new version of ORDEM are inferred from data based upon appropriate reference (or benchmark) populations instead of the binning of the multi-dimensional orbital-element space. This paper describes all of the major steps used in the population-inference procedure for each size-range. Detailed discussions on data analysis, parameter definition, the correlation between parameters and data, and uncertainty assessment are included.
Modeling of the Orbital Debris Population of RORSAT Sodium-Potassium Droplets
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Krisko, P. H.; Matney, Mark; Stansbery, E. G.
2010-01-01
A large population resident in the orbital debris environment is composed of eutectic sodium-potassium (NaK) droplets, released during the reactor core ejection of 16 nuclear-powered Radar Ocean Reconnaissance Satellites (RORSATs) launched in the 1980s by the former Soviet Union. These electrically conducting RORSAT debris objects are spherical in shape, generating highly polarized radar returns. Their diameters are mostly in the centimeter and millimeter size regimes. Since the Space Surveillance Network catalog is limited to objects greater than 5 cm in low Earth orbit, our current knowledge about this special class of orbital debris relies largely on the analysis of Haystack radar data. This paper elaborates the simulation of the RORSAT debris populations in the new NASA Orbital Debris Engineering Model ORDEM2010, which replaces ORDEM2000. The estimation of the NaK populations uses the NASA NaK-module as a benchmark. It follows the general statistical approach to developing all other ORDEM2010-required LEO populations (for various types of debris and across a wide range of object sizes). This paper describes, in detail, each major step in the NaK-population derivation, including a specific discussion on the conversion between Haystack-measured radar-cross-sections and object-size distribution for the NaK droplets. Modeling results show that the RORSAT debris population is stable for the time period under study and that Haystack data sets are fairly consistent over the observations of multiple years.
The New NASA Orbital Debris Engineering Model ORDEM2000
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Matney, Mark J.; Anz-Meador, Phillip D.; Kessler, Donald; Jansen, Mark; Theall, Jeffery R.
2002-01-01
The NASA Orbital Debris Program Office at Johnson Space Center has developed a new computer-based orbital debris engineering model, ORDEM2000, which describes the orbital debris environment in the low Earth orbit region between 200 and 2000 km altitude. The model is appropriate for those engineering solutions requiring knowledge and estimates of the orbital debris environment (debris spatial density, flux, etc.). ORDEM2000 can also be used as a benchmark for ground-based debris measurements and observations. We incorporated a large set of observational data, covering the object size range from 10 mm to 10 m, into the ORDEM2000 debris database, utilizing a maximum likelihood estimator to convert observations into debris population probability distribution functions. These functions then form the basis of debris populations. We developed a finite element model to process the debris populations to form the debris environment. A more capable input and output structure and a user-friendly graphical user interface are also implemented in the model. ORDEM2000 has been subjected to a significant verification and validation effort. This document describes ORDEM2000, which supersedes the previous model, ORDEM96. The availability of new sensor and in situ data, as well as new analytical techniques, has enabled the construction of this new model. Section 1 describes the general requirements and scope of an engineering model. Data analyses and the theoretical formulation of the model are described in Sections 2 and 3. Section 4 describes the verification and validation effort and the sensitivity and uncertainty analyses. Finally, Section 5 describes the graphical user interface, software installation, and test cases for the user.
Summary of the AIAA/NASA/DOD Orbital Debris Conference - Technical issues and future directions
NASA Technical Reports Server (NTRS)
Potter, A.; Kessler, D.; Nieder, R.; Reynolds, R.
1990-01-01
An international conference on orbital debris was held on April 16-19, 1990, in Baltimore, Maryland. Topics of the conference included the implications of orbital debris for space flight, orbital debris measurements, modeling of the orbital debris environment, and methods to reduce the growth of the orbital debris population. Significant results from this meeting are summarized.
Space Debris and Observational Astronomy
NASA Astrophysics Data System (ADS)
Seitzer, Patrick
2018-01-01
Since the launch of Sputnik 1 in 1957, astronomers have faced an increasing number of artificial objects contaminating their images of the night sky. Currently almost 17000 objects larger than 10 cm are tracked and have current orbits in the public catalog. Active missions are only a small fraction of these objects. Most are inactive satellites, rocket bodies, and fragments of larger objects: all space debris. Several mega-constellations are planned which will increase this number by 20% or more in low Earth orbit (LEO). In terms of observational astronomy, this population of Earth orbiting objects has three implications: 1) the number of streaks and glints from spacecraft will only increase. There are some practical steps that can be taken to minimize the number of such streaks and glints in astronomical imaging data. 2) The risk to damage to orbiting astronomical telescopes will only increase, particularly those in LEO. 3) If you are working on a plan for an orbiting telescope project, then there are specific steps that must be taken to minimize space debris generation during the mission lifetime, and actions to safely dispose of the spacecraft at end of mission to prevent it from becoming space debris and a risk to other missions. These steps may involve sacrifices to mission performance and lifetime, but are essential in today's orbital environment.
CONSTELL: NASA's Satellite Constellation Model
NASA Technical Reports Server (NTRS)
Theall, Jeffrey R.; Krisko, Paula H.; Opiela, John N.; McKay, Gordon A. (Technical Monitor)
1999-01-01
The CONSTELL program represents an initial effort by the orbital debris modeling group at NASA/JSC to address the particular issues and problems raised by the presence of LEO satellite constellations. It was designed to help NASA better understand the potential orbital debris consequences of having satellite constellations operating in the future in LEO. However, it could also be used by constellation planners to evaluate architecture or design alternatives that might lessen debris consequences for their constellation or lessen the debris effects on other users of space. CONSTELL is designed to perform debris environment projections rapidly so it can support parametric assessments involving either the constellations themselves or the background environment which represents non-constellation users of the space. The projections need to be calculated quickly because a number of projections are often required to adequately span the parameter space of interest. To this end CONSTELL uses the outputs of other NASA debris environment models as inputs, thus doing away with the need for time consuming upfront calculations. Specifically, CONSTELL uses EVOLVE or ORDEM96 debris spatial density results as its background environment, debris cloud snapshot templates to simulate debris cloud propagation, and time dependent orbit profiles of the intact non- functional constellation spacecraft and upper stages. In this paper the environmental consequences of the deployment of particular LEO satellite constellations using the CONSTELL model will be evaluated. Constellations that will undergo a parametric assessment will reflect realistic parameter values. Among other results the increase in loss rate of non-constellation spacecraft, the number of collisions involving constellation elements, and the replacement rate of constellation satellites as a result of debris impact will be presented.
Jang, Mi; Shim, Won Joon; Han, Gi Myung; Rani, Manviri; Song, Young Kyoung; Hong, Sang Hee
2017-12-01
The role of marine plastic debris and microplastics as a carrier of hazardous chemicals in the marine environment is an emerging issue. This study investigated expanded polystyrene (EPS, commonly known as styrofoam) debris, which is a common marine debris item worldwide, and its additive chemical, hexabromocyclododecane (HBCD). To obtain a better understanding of chemical dispersion via EPS pollution in the marine environment, intensive monitoring of HBCD levels in EPS debris and microplastics was conducted in South Korea, where EPS is the predominant marine debris originate mainly from fishing and aquaculture buoys. At the same time, EPS debris were collected from 12 other countries in the Asia-Pacific region, and HBCD concentrations were measured. HBCD was detected extensively in EPS buoy debris and EPS microplastics stranded along the Korean coasts, which might be related to the detection of a quantity of HBCD in non-flame-retardant EPS bead (raw material). The wide detection of the flame retardant in sea-floating buoys, and the recycling of high-HBCD-containing EPS waste inside large buoys highlight the need for proper guidelines for the production and use of EPS raw materials, and the recycling of EPS waste. HBCD was also abundantly detected in EPS debris collected from the Asia-Pacific coastal region, indicating that HBCD contamination via EPS debris is a common environmental issue worldwide. Suspected tsunami debris from Alaskan beaches indicated that EPS debris has the potential for long-range transport in the ocean, accompanying the movement of hazardous chemicals. The results of this study indicate that EPS debris can be a source of HBCD in marine environments and marine food web. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Parametric Study on Using Active Debris Removal to Stabilize the Future LEO Debris Environment
NASA Technical Reports Server (NTRS)
Liou, J.C.
2010-01-01
Recent analyses of the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resources, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of the effectiveness of ADR must be conducted. The goal is to demonstrate the feasibility of using ADR to preserve the future environment and to guide its implementation to maximize the benefit-cost ratio. This paper describes a comprehensive sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term, orbital debris evolutionary model, LEGEND, is used to quantify the effects of many key parameters. These parameters include (1) the starting epoch of ADR implementation, (2) various target selection criteria, (3) the benefits of collision avoidance maneuvers, (4) the consequence of targeting specific inclination or altitude regimes, (5) the consequence of targeting specific classes of vehicles, and (6) the timescale of removal. Additional analyses on the importance of postmission disposal and how future launches might affect the requirements to stabilize the environment are also included.
Controlling the Growth of Future LEO Debris Populations with Active Debris Removal
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Johnson, N. L.; Hill, N. M.
2008-01-01
Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.
Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris
NASA Technical Reports Server (NTRS)
Wiegman, Bruce M.
2009-01-01
This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.
A Citizen's Guide to Plastics in the Ocean: More than a Litter Problem. Second Edition.
ERIC Educational Resources Information Center
O'Hara, Kathryn J.; And Others
This publication gives an overview of the problems caused by plastic debris in the marine environment and describes how citizens and public officials are working together to solve these problems. Chapter I introduces the reader to the problems caused by plastic debris in the marine environment. Chapter II examines the types of debris that are…
Orbital Debris Engineering Model (ORDEM) v.3
NASA Technical Reports Server (NTRS)
Matney, Mark; Krisko, Paula; Xu, Yu-Lin; Horstman, Matthew
2013-01-01
A model of the manmade orbital debris environment is required by spacecraft designers, mission planners, and others in order to understand and mitigate the effects of the environment on their spacecraft or systems. A manmade environment is dynamic, and can be altered significantly by intent (e.g., the Chinese anti-satellite weapon test of January 2007) or accident (e.g., the collision of Iridium 33 and Cosmos 2251 spacecraft in February 2009). Engineering models are used to portray the manmade debris environment in Earth orbit. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical and statistical techniques has enabled the construction of this more comprehensive and sophisticated model. The primary output of this model is the flux [#debris/area/time] as a function of debris size and year. ORDEM may be operated in spacecraft mode or telescope mode. In the former case, an analyst defines an orbit for a spacecraft and "flies" the spacecraft through the orbital debris environment. In the latter case, an analyst defines a ground-based sensor (telescope or radar) in terms of latitude, azimuth, and elevation, and the model provides the number of orbital debris traversing the sensor's field of view. An upgraded graphical user interface (GUI) is integrated with the software. This upgraded GUI uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional flux as a function of debris size for chosen analysis orbits (or views), for example, to the more complex color-contoured two-dimensional (2D) directional flux diagrams in local spacecraft elevation and azimuth.
Biobjective planning of an active debris removal mission
NASA Astrophysics Data System (ADS)
Madakat, Dalal; Morio, Jérôme; Vanderpooten, Daniel
2013-03-01
The growth of the orbital debris population has been a concern to the international space community for several years. Recent studies have shown that the debris environment in Low Earth Orbit (LEO, defined as the region up to 2000 km altitude) has reached a point where the debris population will continue to increase even if all future launches are suspended. As the orbits of these objects often overlap the trajectories of satellites, debris create a potential collision risk. However, several studies show that about 5 objects per year should be removed in order to keep the future LEO environment stable. In this article, we propose a biobjective time dependent traveling salesman problem (BiTDTSP) model for the problem of optimally removing debris and use a branch and bound approach to deal with it.
History of on-orbit satellite fragmentations
NASA Technical Reports Server (NTRS)
Johnson, N. L.; Gabbard, J. R.; Devere, G. T.; Johnson, E. E.
1984-01-01
The causes of on-orbit fragmentations are varied and may be intentional or accidental. The cause of many fragmentations remains unknown. While a few cases are currently under investigation as on-orbit collision candidates, man is directly responsible for the vast majority of artificial debris polluting the near-Earth space environment. It should be emphasized that the number of fragments listed with each event in this document represent only those debris officially cataloged by NORAD. Each known on-orbit satellite fragementation is described within this document in module format. Also listed are pertinent characteristics of each fragmentation event. Comments regarding the nature of the satellite and additional details of the events are given.
Risks of Plastic Debris: Unravelling Fact, Opinion, Perception, and Belief
2017-01-01
Researcher and media alarms have caused plastic debris to be perceived as a major threat to humans and animals. However, although the waste of plastic in the environment is clearly undesirable for aesthetic and economic reasons, the actual environmental risks of different plastics and their associated chemicals remain largely unknown. Here we show how a systematic assessment of adverse outcome pathways based on ecologically relevant metrics for exposure and effect can bring risk assessment within reach. Results of such an assessment will help to respond to the current public worry in a balanced way and allow policy makers to take measures for scientifically sound reasons. PMID:28971682
Large craters on the meteoroid and space debris impact experiment
NASA Technical Reports Server (NTRS)
Humes, Donald H.
1991-01-01
The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.
Measuring Small Debris - What You Can't See Can Hurt You
NASA Technical Reports Server (NTRS)
Matney, Mark
2016-01-01
While modeling gives us a tool to better understand the Earth orbit debris environment, it is measurements that give us "ground truth" about what is happening in space. Assets that can detect orbital debris remotely from the surface of the Earth, such as radars and telescopes, give us a statistical view of how debris are distributed in space, how they are being created, and how they are evolving over time. In addition, in situ detectors in space are giving us a better picture of how the small particle environment is actually damaging spacecraft today. IN addition, simulation experiments on the ground help us to understand what we are seeing in orbit. This talk will summarize the history of space debris measurements, how it has changed our view of the Earth orbit environment, and how we are designing the experiments of tomorrow.
Search strategy in a complex and dynamic environment (the Indian Ocean case)
NASA Astrophysics Data System (ADS)
Loire, Sophie; Arbabi, Hassan; Clary, Patrick; Ivic, Stefan; Crnjaric-Zic, Nelida; Macesic, Senka; Crnkovic, Bojan; Mezic, Igor; UCSB Team; Rijeka Team
2014-11-01
The disappearance of Malaysia Airlines Flight 370 (MH370) in the early morning hours of 8 March 2014 has exposed the disconcerting lack of efficient methods for identifying where to look and how to look for missing objects in a complex and dynamic environment. The search area for plane debris is a remote part of the Indian Ocean. Searches, of the lawnmower type, have been unsuccessful so far. Lagrangian kinematics of mesoscale features are visible in hypergraph maps of the Indian Ocean surface currents. Without a precise knowledge of the crash site, these maps give an estimate of the time evolution of any initial distribution of plane debris and permits the design of a search strategy. The Dynamic Spectral Multiscale Coverage search algorithm is modified to search a spatial distribution of targets that is evolving with time following the dynamic of ocean surface currents. Trajectories are generated for multiple search agents such that their spatial coverage converges to the target distribution. Central to this DSMC algorithm is a metric for the ergodicity.
NASA Technical Reports Server (NTRS)
Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)
1999-01-01
This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.
Plastics in the Marine Environment
NASA Astrophysics Data System (ADS)
Law, Kara Lavender
2017-01-01
Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.
Plastics in the Marine Environment.
Law, Kara Lavender
2017-01-03
Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.
NASA Astrophysics Data System (ADS)
Bosson, Jean-Baptiste; Lambiel, Christophe
2014-05-01
The current climate forcing, through negative glacier mass balance and rockfall intensification, is leading to the rapid burring of many small glacier systems. When the debris mantle exceeds some centimeters of thickness, the climate control on ice melt is mitigated and delayed. As well, debris-covered glaciers respond to climate forcing in a complex way. This situation is emphasised in high mountain environments, where topo-climatic conditions, such as cold temperatures, amount of solid precipitation, duration of snow cover, nebulosity or shadow effect of rockwalls, limit the influence of rising air temperatures in the ground. Beside, due to Holocene climate history, glacier-permafrost interactions are not rare within the periglacial belt. Glacier recurrence may have removed and assimilated former ice-cemented sediments, the negative mass balance may have led to the formation of ice-cored rock glaciers and neopermafrost may have formed recently under cold climate conditions. Hence, in addition to sedimentary ice, high mountain debris-covered glacier systems can contain interstitial magmatic ice. Especially because of their position at the top of alpine cascade systems and of the amount of water and (unconsolidated) sediment involved, it is important to understand and anticipate the evolution of these complex landforms. Due to the continuous and thick debris mantle and to the common existence of dead ice in deglaciated areas, the current extent of debris-covered glacier can be difficult to point out. Thus, the whole system, according to Little Ice Age (LIA) extent, has sometimes to be investigated to understand the current response of glacier systems to the climate warming. In this context, two neighbouring sites, Rognes and Pierre Ronde systems (45°51'38''N, 6°48'40''E; 2600-3100m a.s.l), have been studied since 2011. These sites are almost completely debris-covered and only few ice outcrops in the upper slopes still witness the existence of former glaciers. Electrical resistivity tomographies, kinematic data and ground surface temperature show that heterogeneous responses to climate forcing are occurring despites their small areas (> 0.3 km2). This complex situation is related to Holocene climate history and especially to glacier systems evolution since LIA. The current dynamics depend of ground ice nature and distribution. Five main behaviours can be highlighted: - Debris covered glacier areas are the most active. Their responses to climate forcing are relatively fast, especially through massive ice melt-out each summer. - Ice-cored rock glacier areas are quite active. The existence of massive glacier ice under few meters of debris explain the important surface lowering during the snow free period . - Ice-cemented rock glacier areas are characterised by winter and summer subhorizontal downslope creeping. - Moraine areas containing dead ice have heterogeneous activities (directions and values of detected movements) related to the ice vanishing. - Deglaciated moraine areas are almost inactive, except modest superficial paraglacial rebalancing.
Backwater development by woody debris
NASA Astrophysics Data System (ADS)
Geertsema, Tjitske; Torfs, Paul; Teuling, Ryan; Hoitink, Ton
2017-04-01
Placement of woody debris is a common method for increasing ecological values in river and stream restoration, and is thus widely used in natural environments. Water managers, however, are afraid to introduce wood in channels draining agricultural and urban areas. Upstream, it may create backwater, depending on hydrodynamic characteristics including the obstruction ratio, the Froude number and the surface level gradient. Patches of wood may trigger or counter morphological activity, both laterally, through bank erosion and protection, and vertically, with pool and riffle formation. Also, a permeable construction composed of wood will weather over time. Both morphodynamic activity and weathering cause backwater effects to change in time. The purpose of this study is to quantify the time development of backwater effects caused by woody debris. Hourly water levels gauged upstream and downstream of patches and discharge are collected for five streams in the Netherlands. The water level drop over the woody debris patch relates to discharge in the streams. This relation is characterized by an increasing water level difference for an increasing discharge, up to a maximum. If the discharge increases beyond this level, the water level difference reduces to the value that may represent the situation without woody debris. This reduction depends primarily on the obstruction ratio of the woody debris in the channel cross-section. Morphologic adjustments in the stream and reorientation of the woody material reduce the water level drop over the patches in time. Our results demonstrate that backwater effects can be reduced by optimizing the location where woody debris is placed and manipulating the obstruction ratio. Current efforts are focussed on representing woody debris in a one-dimensional numerical model, aiming to obtain a generic tool to achieve a stream design with woody debris that minimizes backwater.
Using the Data From Accidents and Natural Disasters to Improve Marine Debris Modeling
NASA Astrophysics Data System (ADS)
Maximenko, N. A.; Hafner, J.; MacFadyen, A.; Kamachi, M.; Murray, C. C.
2016-02-01
In the absence of satisfactory marine debris observing system, drift models provide a unique tool that can be used to identify main pathways and accumulation areas of the natural and anthropogenic debris, including the plastic pollution having increasing impact on the environment and raising concern of the society. Main problems, limiting the utility of model simulations, include the lack of accurate information on distribution, timing, strength and composition of sources of marine debris and the complexity of the hydrodynamics of an object, floating on the surface of a rough sea. To calculate the drift, commonly, models estimate surface currents first and then add the object motion relative to the water. Importantly, ocean surface velocity can't be measured with the existing instruments. For various applications it is derived from subsurface (such as 15-meter drifter trajectories) and satellite (altimetry, scatterometry) data using simple theories (geostrophy, Ekman spiral, etc.). Similarly, even the best ocean general circulation models (OGCM's), utilizing different parameterizations of the mixed layer, significantly disagree on the ocean surface velocities. Understanding debris motion under the direct wind force and in interaction with the breaking wind waves seems to be a task of even greater complexity. In this presentation, we demonstrate how the data of documented natural disasters (such as tsunamis, hurricanes and floods) and other accidents generating marine debris with known times and coordinates of start and/or end points of the trajectories, can be used to calibrate drift models and obtain meaningful quantitative results that can be generalized for other sources of debris and used to plan the future marine debris observing system. On these examples we also demonstrate how the oceanic and atmospheric circulations couple together to determine the pathways and destination areas of different types of the floating marine debris.
Debris ingestion by the Antillean Manatee (Trichechus manatus manatus).
Attademo, Fernanda Loffler Niemeyer; Balensiefer, Deisi Cristiane; Freire, Augusto Carlos da Bôaviagem; de Sousa, Glaucia Pereira; da Cunha, Fábio Adonis Gouveia Carneiro; Luna, Fábia de Oliveira
2015-12-15
The Antillean manatee inhabits coastal regions of North and Northeastern Brazil and currently is considered an endangered species in the country. Aiming to gather information for the development of public policies focusing on the conservation of manatees, the National Center for Research and Conservation of Aquatic Mammals of the Chico Mendes Institute for Biodiversity has been rescuing, rehabilitating and releasing these mammals since the 1980s. Over the last 36 years, 40 manatees were released by the CMA/ICMBio and four of them were rescued again due to debris ingestion. Two of these manatees died and the other two were taken back into captivity for a new rehabilitation process. The four mammals had confirmed diagnosis of plastic debris ingestion. These findings demonstrate that the environment where the manatees live after being released had a significant amount of garbage which may hinder the success of the species conservation in Brazil. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Simple Model for the Orbital Debris Environment in GEO
NASA Astrophysics Data System (ADS)
Anilkumar, A. K.; Ananthasayanam, M. R.; Subba Rao, P. V.
The increase of space debris and its threat to commercial space activities in the Geosynchronous Earth Orbit (GEO) predictably cause concern regarding the environment over the long term. A variety of studies regarding space debris such as detection, modeling, protection and mitigation measures, is being pursued for the past couple of decades. Due to the absence of atmospheric drag to remove debris in GEO and the increasing number of utility satellites therein, the number of objects in GEO will continue to increase. The characterization of the GEO environment is critical for risk assessment and protection of future satellites and also to incorporate effective debris mitigation measures in the design and operations. The debris measurements in GEO have been limited to objects with size more than 60 cm. This paper provides an engineering model of the GEO environment by utilizing the philosophy and approach as laid out for the SIMPLE model proposed recently for LEO by the authors. The present study analyses the statistical characteristics of the GEO catalogued objects in order to arrive at a model for the GEO space debris environment. It is noted that the catalogued objects, as of now of around 800, by USSPACECOM across the years 1998 to 2004 have the same semi major axis mode (highest number density) around 35750 km above the earth. After removing the objects in the small bin around the mode, (35700, 35800) km containing around 40 percent (a value that is nearly constant across the years) of the objects, the number density of the other objects follow a single Laplace distribution with two parameters, namely location and scale. Across the years the location parameter of the above distribution does not significantly vary but the scale parameter shows a definite trend. These observations are successfully utilized in proposing a simple model for the GEO debris environment. References Ananthasayanam, M. R., Anil Kumar, A. K., and Subba Rao, P. V., ``A New Stochastic Impressionistic Low Earth (SIMPLE) Model of the Space Debris Scenario'', Conference Abstract COSPAR 02-A-01772, 2002. Ananthasayanam, M. R., Anilkumar, A. K., Subba Rao, P. V., and V. Adimurthy, ``Characterization of Eccentricity and Ballistic Coefficients of Space Debris in Altitude and Perigee Bins'', IAC-03-IAA5.p.04, Presented at the IAF Conference, Bremen, October 2003 and also to be published in the Proceedings of IAF Conference, Science and Technology Series, 2003.
Debris Motion and Injury Relationships in All Hazard Environments
1976-07-01
reaction, limit of voluntary tolerance, injury threshold, LD5 0 value, limit of survival, etc. Our current state of knowledge concerning human impact...of-the-art review of "Human Impact Tolerance" up to approximately August 1970. Snyder concludes that current knowledge on human tolerance to impact...children and adults, suicides, high divers, skiers etc. have occurred and are reported in the literature (Refs. 19, 20, 21). With the objective of
Aquatic Debris Detection Using Embedded Camera Sensors
Wang, Yong; Wang, Dianhong; Lu, Qian; Luo, Dapeng; Fang, Wu
2015-01-01
Aquatic debris monitoring is of great importance to human health, aquatic habitats and water transport. In this paper, we first introduce the prototype of an aquatic sensor node equipped with an embedded camera sensor. Based on this sensing platform, we propose a fast and accurate debris detection algorithm. Our method is specifically designed based on compressive sensing theory to give full consideration to the unique challenges in aquatic environments, such as waves, swaying reflections, and tight energy budget. To upload debris images, we use an efficient sparse recovery algorithm in which only a few linear measurements need to be transmitted for image reconstruction. Besides, we implement the host software and test the debris detection algorithm on realistically deployed aquatic sensor nodes. The experimental results demonstrate that our approach is reliable and feasible for debris detection using camera sensors in aquatic environments. PMID:25647741
Deformation of debris-ice mixtures
NASA Astrophysics Data System (ADS)
Moore, Peter L.
2014-09-01
Mixtures of rock debris and ice are common in high-latitude and high-altitude environments and are thought to be widespread elsewhere in our solar system. In the form of permafrost soils, glaciers, and rock glaciers, these debris-ice mixtures are often not static but slide and creep, generating many of the landforms and landscapes associated with the cryosphere. In this review, a broad range of field observations, theory, and experimental work relevant to the mechanical interactions between ice and rock debris are evaluated, with emphasis on the temperature and stress regimes common in terrestrial surface and near-surface environments. The first-order variables governing the deformation of debris-ice mixtures in these environments are debris concentration, particle size, temperature, solute concentration (salinity), and stress. A key observation from prior studies, consistent with expectations, is that debris-ice mixtures are usually more resistant to deformation at low temperatures than their pure end-member components. However, at temperatures closer to melting, the growth of unfrozen water films at ice-particle interfaces begins to reduce the strengthening effect and can even lead to profound weakening. Using existing quantitative relationships from theoretical and experimental work in permafrost engineering, ice mechanics, and glaciology combined with theory adapted from metallurgy and materials science, a simple constitutive framework is assembled that is capable of capturing most of the observed dynamics. This framework highlights the competition between the role of debris in impeding ice creep and the mitigating effects of unfrozen water at debris-ice interfaces.
NASA Technical Reports Server (NTRS)
Cour-Palais, Burton G.
1989-01-01
The long-term effects of the orbital debris and micrometeoroid environments on materials that are current candidates for use on space vehicles are discussed. In addition, the limits of laboratory testing to determine these effects are defined and the need for space-based data is delineated. The impact effects discussed are divided into primary and secondary surfaces. Primary surfaces are those that are subject to erosion, pitting, the degradation and delamination of optical coatings, perforation of atomic oxygen erosion barriers, vapor coating of optics and the production of secondary ejecta particles. Secondary surfaces are those that are affected by the result of the perforation of primary surfaces, for example, vapor deposition on electronic components and other sensitive equipment, and the production of fragments with damage potential to internal pressurized elements. The material properties and applications that are required to prevent or lessen the effects described, are defined.
Space Debris: Its Causes and Management
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2002-01-01
Orbital debris is internationally recognized as an environmental issue which needs to be addressed today to preserve near-Earth space for future generations. All major space agencies are committed to mitigating the growth of the debris environment. Many commercial space system operators have responded positively to orbital debris mitigation principles and recommendations. Orbital debris mitigation measures are most cost-effective if included in the design development phase.
Active Debris Removal - A Grand Engineering Challenge for the Twenty-First Century
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2011-01-01
The collision between Iridium 33 and Cosmos 2251 in 2009 has reignited interest in using active debris removal to remediate the near-Earth orbital debris environment. A recent NASA study shows that, in order to stabilize the environment in the low Earth orbit (LEO) region for the next 200 years, active debris removal of about five large and massive (1 to more than 8 metric tons) objects per year is needed. To develop the capability to remove five of those objects per year in a cost-effective manner truly represents a grand challenge in engineering and technology development.
GEO Population Estimates using Optical Survey Data
NASA Technical Reports Server (NTRS)
Barker, Edwin S.; Matney, Mark J.
2007-01-01
Optical survey data taken using the NASA Michigan Orbital Debris Survey Telescope (MODEST) gives us an opportunity to statistically sample faint object population in the Geosynchronous (GEO) and near-GEO environment. This paper will summarize the MODEST survey work that has been conducted by NASA since 2002, and will outline the techniques employed to arrive at the current population estimates in the GEO environment for dim objects difficult to detect and track using current systems in the Space Surveillance Network (SSN). Some types of orbits have a higher detection rate based on what parts of the GEO belt is being observed, a straightforward statistical technique is used to debias these observations to arrive at an estimate of the total population potentially visible to the telescope. The size and magnitude distributions of these fainter debris objects are markedly different from the catalogued population. GEO debris consists of at least two different populations, one which follows the standard breakup power law and one which has anomalously high Area-to-Mass Ratios (1 to approx. 30 square meters per kilogram; a sheet of paper = approx. 13 square meters per kilogram). The Inter-Agency Space Debris Coordination Committee (IADC) is investigating objects in GEO orbits with anomalously high Area-to-Mass Ratios (AMRs). The ESA Space Debris Telescope discovered this population and has and its properties of inclinations (0 to 30 degrees), changing eccentricities (0 and 0.6), and mean motions (approx. 1 rev), will be presented. The accepted interpretation of this orbital behavior is that solar radiation pressure drives the perturbations causing time varying inclinations and eccentricities. The orbital parameters are unstable for this population and thus difficult to predict. Their dim visual magnitudes and photometric variability make observations a challenge. The IADC has enlisted a series of observatories (participating institutions: University of Michigan/CTIO, Astronomical Institute University of Bern, Boeing LTS / AMOS, Keldysh Institute of Applied Mathematics) at different longitudes. Complete observational coverage over periods of days to months will provide a better understanding of the properties, such as solar radiation pressure effects on orbital elements, size, shape, attitude, color variations, and spectral characteristics. Results from recent observational programs will be summarized, and includes a description of the orbit elements prediction processes, a summary of the metric tracking performance, and some photometric characteristics of this class of debris.
The recent upgrade and future perspectives of the ESABASE/Debris tool
NASA Astrophysics Data System (ADS)
Bunte, K.; Langwost, A.; Drolshagen, G.
ESABASE is a software tool which provides more than ten applications for space- specific analyses, such as atomic oxygen recession, charging, space debris and meteoroid impacts, outgassing contamination, attitude perturbations, radiation, and others. The proposed paper focuses on the ESABASE/Debris application, which has been upgraded in the course of a recent ESA/ESTEC study. The methods used to calculate the debris and meteoroid flux on, and the related number of failures of a spacecraft surface will be presented. A brief description of the capabilities and features of the program will be given. The main extension of ESABASE/Debris is the implementation of new state-of-the- art particulate flux models. ESA's MASTER 2001 debris model includes the latest findings in the debris research, the considered particle size ranges from 1micron up to 100m. The model covers all orbital altitudes from LEO to GEO, and any target orbit within its altitude range. The user may select or deselect single debris source terms (e.g. fragments, SRM slag particles, NaK droplets). For the first time, the MASTER 2001 model provides realistic population data for historic and future (based on pre- defined debris environment evolution scenario s) epochs. Thus, the ESABASE/Debris user is able to (re-) investigate historic missions (e.g. LDEF), or to assess the risk posed to future missions (e.g. ISS). The Divine-Staubach meteoroid model still represents the best fit to the interplanetary meteoroid environment and its appearance for Earth-bound satellites. Since it is part of the MASTER model, it has been made available for meteoroid analysis within ESABASE/Debris. The most important implementation aspects as well as the general model implementation strategy will be outlined. All new features and capabilities of ESABASE/Debris have been tested and verified by means of pre-defined test cases. Some interesting results of the software verification and validation process will be presented. The upgraded ESABASE/Debris and its new flux models have been applied to the historic LDEF mission. The model results will be discussed by means of a comparison with measured impact data. Additionally, the results of impact flux analyses of a simplified ISS model and of a geostationary satellite will provide an impression of the comprehensive capabilties of ESABASE/Debris. In the near future, some important development steps will significantly facilitate the applicability of the ESABASE tool. It is intended to establish a PC -based version of the complete software including a completely revised graphical user interface. The effort for porting and a simultaneous improvement of ergonomic aspects, and the consideration of the user demands is currently evaluated in an ESA/E TEC study.S The porting activities will also include the establishment of a new spacecraft data model which will allow ESABASE to make use of commonly available software packages for the generation and display of three-dimensional spacecraft models. The presentation of the future development activities will conclude the paper.
Space debris protection: A standard procedure in future?
NASA Astrophysics Data System (ADS)
Yasaka, Tetsuo
2003-08-01
The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris. Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left unprotected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.
Space Debris Protection: A Standard Procedure in Future?
NASA Astrophysics Data System (ADS)
Yasaka, Tetsuo
2002-01-01
The near earth orbital environment is getting hazardous due to increasing space debris accumulated as a result of human space activities. Man tended facility is being designed so that the main structure may be protected from a collision with a limited size debris.Other space systems are generally found inadequate to possess protection shields because of functional requirement of space-viewing faces and cost burden in terms of added mass. In the future, where the debris hazard is expected to become severer, the situation is not expected to change and most space systems will be left un-protected. The present situation and future projection of the orbital debris environment will be first reviewed. The possible hazard to space systems will be described in terms of colliding debris size at various orbits. Some of the measures to secure safety of the system will be then proposed for future application.
Plastics and other anthropogenic debris in freshwater birds from Canada.
Holland, Erika R; Mallory, Mark L; Shutler, Dave
2016-11-15
Plastics in marine environments are a global environmental issue. Plastic ingestion is associated with a variety of deleterious health effects in marine wildlife, and is a focus of much international research and monitoring. However, little research has focused on ramifications of plastic debris for freshwater organisms, despite marine and freshwater environments often having comparable plastic concentrations. We quantified plastic and other anthropogenic debris in 350 individuals of 17 freshwater and one marine bird species collected across Canada. We determined freshwater birds' anthropogenic debris ingestion rates to be 11.1% across all species studied. This work establishes that plastics and other anthropogenic debris are a genuine concern for management of the health of freshwater ecosystems, and provides a baseline for the prevalence of plastic and other anthropogenic debris ingestion in freshwater birds in Canada, with relevance for many other locations. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Jianping; Xian, Benzhong; Wang, Junhui; Ji, Youliang; Lu, Zhiyong; Liu, Saijun
2017-12-01
The sedimentary architectures of submarine/sublacustrine fans are controlled by sedimentary processes, geomorphology and sediment composition in sediment gravity flows. To advance understanding of sedimentary architecture of debris fans formed predominantly by debris flows in deep-water environments, a sub-lacustrine fan (Y11 fan) within a lacustrine succession has been identified and studied through the integration of core data, well logging data and 3D seismic data in the Eocene Dongying Depression, Bohai Bay Basin, east China. Six types of resedimented lithofacies can be recognized, which are further grouped into five broad lithofacies associations. Quantification of gravity flow processes on the Y11 fan is suggested by quantitative lithofacies analysis, which demonstrates that the fan is dominated by debris flows, while turbidity currents and sandy slumps are less important. The distribution, geometry and sedimentary architecture are documented using well data and 3D seismic data. A well-developed depositional lobe with a high aspect ratio is identified based on a sandstone isopach map. Canyons and/or channels are absent, which is probably due to the unsteady sediment supply from delta-front collapse. Distributary tongue-shaped debris flow deposits can be observed at different stages of fan growth, suggesting a lobe constructed by debrite tongue complexes. Within each stage of the tongue complexes, architectural elements are interpreted by wireline log motifs showing amalgamated debrite tongues, which constitute the primary fan elements. Based on lateral lithofacies distribution and vertical sequence analysis, it is proposed that lakefloor erosion, entrainment and dilution in the flow direction lead to an organized distribution of sandy debrites, muddy debrites and turbidites on individual debrite tongues. Plastic rheology of debris flows combined with fault-related topography are considered the major factors that control sediment distribution and fan architecture. An important implication of this study is that a deep-water depositional model for debrite-dominated systems was proposed, which may be applicable to other similar deep-water environments.
Orbital Debris and NASA's Measurement Program
NASA Astrophysics Data System (ADS)
Africano, J. L.; Stansbery, E. G.
2002-05-01
Since the launch of Sputnik in 1957, the number of manmade objects in orbit around the Earth has dramatically increased. The United States Space Surveillance Network (SSN) tracks and maintains orbits on over nine thousand objects down to a limiting diameter of about ten centimeters. Unfortunately, active spacecraft are only a small percentage ( ~ 7%) of this population. The rest of the population is orbital debris or ``space junk" consisting of expended rocket bodies, dead payloads, bits and pieces from satellite launches, and fragments from satellite breakups. The number of these smaller orbital debris objects increases rapidly with decreasing size. It is estimated that there are at least 130,000 orbital debris objects between one and ten centimeters in diameter. Most objects smaller than 10 centimeters go untracked! As the orbital debris population grows, the risk to other orbiting objects, most importantly manned space vehicles, of a collision with a piece of debris also grows. The kinetic energy of a solid 1 cm aluminum sphere traveling at an orbital velocity of 10 km/sec is equivalent to a 400 lb. safe traveling at 60 mph. Fortunately, the volume of space in which the orbiting population resides is large, collisions are infrequent, but they do occur. The Space Shuttle often returns to earth with its windshield pocked with small pits or craters caused by collisions with very small, sub-millimeter-size pieces of debris (paint flakes, particles from solid rocket exhaust, etc.), and micrometeoroids. To get a more complete picture of the orbital-debris environment, NASA has been using both radar and optical techniques to monitor the orbital debris environment. This paper gives an overview of the orbital debris environment and NASA's measurement program.
NASA Astrophysics Data System (ADS)
Mobilik, Julyus-Melvin; Ling, Teck-Yee; Husain, Mohd-Lokman Bin; Hassan, Ruhana
2015-09-01
The abundance and composition of marine debris were investigated at Saujana (in the state of Negeri Sembilan) and Batu Rakit (in the state of Terengganu) beaches during surveys conducted in December 2012 (northeast monsoon), May 2013 (intermediate monsoon) and July 2013 (southwest monsoon). A total of 4,682 items of debris weighing 231.4 kg were collected and sorted. Batu Rakit received substantially greater quantities of debris (815±717 items/km or 40.4±13.0 kg/km) compared to Saujana (745±444 items/km or 36.7±18.0 kg/km). Total debris item was more abundant during the southwest monsoon (SWM) (1,122±737 items/km) compared to the northeast monsoon (NEM) (825±593 items/ km) and the intermediate monsoon (IM) (394±4 items/km) seasons. Plastic category (88%) was the most numerous items collected and object items contributed 44.18% includes packaging, plastic fragments, cups, plastic shopping bags, plastic food wrapper, clear plastic bottles from the total debris items collected. Object items associated with common source (47%) were the highest debris accumulated, followed by terrestrial (30%) and marine (23%) sources. The high percentage of common and terrestrial sources during SWM season requires immediate action by marine environment stakeholders to develop and introduce strategies to reduce if not totally eliminates the marine debris in the marine environment. Awareness should be continued and focused on beach users and vessels' crew to alert them on the alarming accumulation rate of marine debris and its pathways into the marine environment.
Space-based detection of space debris by photometric and polarimetric characteristics
NASA Astrophysics Data System (ADS)
Pang, Shuxia; Wang, Hu; Lu, Xiaoyun; Shen, Yang; Pan, Yue
2017-10-01
The number of space debris has been increasing dramatically in the last few years, and is expected to increase as much in the future. As the orbital debris population grows, the risk of collision between debris and other orbital objects also grows. Therefore, space debris detection is a particularly important task for space environment security, and then supports for space debris modeling, protection and mitigation. This paper aims to review space debris detection systematically and completely. Firstly, the research status of space debris detection at home and abroad is presented. Then, three kinds of optical observation methods of space debris are summarized. Finally, we propose a space-based detection scheme for space debris by photometric and polarimetric characteristics.
NASA Technical Reports Server (NTRS)
Dicken, Todd
2012-01-01
My internship at Johnson Space Center, Houston TX comprised of working simultaneously in the Space Life Science Directorate (Clinical Services Branch, SD3) in Audiology and Hearing Conservation and in the Astromaterials Research and Exploration Sciences Directorate in the Orbital Debris Program Office (KX). The purpose of the project done to support the Audiology and Hearing Conservation Clinic (AuHCon) is to organize and analyze auditory test data that has been obtained from tests conducted onboard the International Space Station (ISS) and in Johnson Space Center's clinic. Astronauts undergo a special type of auditory test called an On-Orbit Hearing Assessment (OOHA), which monitors hearing function while crewmembers are exposed to noise and microgravity during long-duration spaceflight. Data needed to be formatted to assist the Audiologist in studying, analyzing and reporting OOHA results from all ISS missions, with comparison to conventional preflight and post-flight audiometric test results of crewmembers. Orbital debris is the #1 threat to manned spacecraft; therefore NASA is investing in different measurement techniques to acquire information on orbital debris. These measurements are taken with telescopes in different parts of the world to acquire brightness variations over time, from which size, rotation rates and material information can be determined for orbital debris. Currently many assumptions are taken to resolve size and material from observed brightness, therefore a laboratory (Optical Measurement Center) is used to simulate the space environment and acquire information of known targets suited to best model the orbital debris population. In the Orbital Debris Program Office (ODPO) telescopic data were acquired and analyzed to better assess the orbital debris population.
NASA Technical Reports Server (NTRS)
2011-01-01
Over the past 50 years, various NASA communities have contributed significantly to maturing NASA s meteoroid and orbital debris (MMOD)1 programs to their current state. As a result of these community efforts, and to NASA s credit, NASA s MMOD programs and models are now widely used and respected by the providers and users of both government and commercial satellites, nationally as well as internationally. Satellites have been redesigned to protect critical components from MMOD damage by moving critical components from exterior surfaces to deep inside a satellite s structure. Orbits are monitored and altered to minimize the risk of collision with tracked orbital debris. MMOD shielding added to the International Space Station (ISS) protects critical components and astronauts from potentially catastrophic damage that might result from smaller, untracked debris and meteoroid impacts. The space shuttle, as it orbited Earth, and whether docked to the ISS or not, was optimally oriented to protect its fragile thermal protection and thermal radiation systems from MMOD damage. In addition, astronauts inspected its thermal protection system for MMOD damage before the shuttle reentered Earth s atmosphere; Orion, NASA s capsule to carry astronauts to low Earth orbit, includes designs to mitigate the threat of MMOD damage and provide increased safety to the crew. When a handful of reasonable assumptions are used in NASA s MMOD models, scenarios are uncovered that conclude that the current orbital debris environment has already reached a "tipping point." That is, the amount of debris - in terms of the population of large debris objects, as well as overall mass of debris in orbit - currently in orbit has reached a threshold where it will continually collide with itself, further increasing the population of orbital debris. This increase will lead to corresponding increases in spacecraft failures, which will only create more feedback into the system, increasing the debris population growth rate. The increase thus far has been most rapid in low Earth orbit (LEO), with geosynchronous Earth orbits (GEOs) potentially suffering the same fate, but over a much longer time period. The exact timing and pace of this exponential growth are uncertain, but the serious implications of such a scenario require careful attention because of the strategic importance of U.S. space operations. The Office of Science and Technology Policy and the Office of Management and Budget contracted with the National Research Council for a study to perform three tasks: review NASA s MMOD programs and efforts, recommend in which of those NASA should increase or decrease its effort or change focus, and determine whether NASA should pursue work in any new MMOD areas. The official letter requesting the study and the full statement of task for the Committee for the Assessment of NASA s Orbital Debris Programs are in Appendixes A and B, respectively.
Assessment of environmental effects on Space Station Freedom Electrical Power System
NASA Technical Reports Server (NTRS)
Lu, Cheng-Yi; Nahra, Henry K.
1991-01-01
Analyses of EPS (electrical power system) interactions with the LEO (low earth orbit) environment are described. The results of these analyses will support EPS design so as to be compatible with the natural and induced environments and to meet power, lifetime, and performance requirements. The environmental impacts to the Space Station Freedom EPS include aerodynamic drag, atomic oxygen erosion, ultraviolet degradation, VXB effect, ionizing radiation dose and single event effects, electromagnetic interference, electrostatic discharge, plasma interactions (ion sputtering, arcing, and leakage current), meteoroid and orbital debris threats, thermal cycling effects, induced current and voltage potential differences in the SSF due to induced electric field, and contamination degradation.
Alimi, Olubukola S; Farner Budarz, Jeffrey; Hernandez, Laura M; Tufenkji, Nathalie
2018-02-20
Plastic litter is widely acknowledged as a global environmental threat, and poor management and disposal lead to increasing levels in the environment. Of recent concern is the degradation of plastics from macro- to micro- and even to nanosized particles smaller than 100 nm in size. At the nanoscale, plastics are difficult to detect and can be transported in air, soil, and water compartments. While the impact of plastic debris on marine and fresh waters and organisms has been studied, the loads, transformations, transport, and fate of plastics in terrestrial and subsurface environments are largely overlooked. In this Critical Review, we first present estimated loads of plastics in different environmental compartments. We also provide a critical review of the current knowledge vis-à-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant cotransport in the environment. Important factors that affect aggregation and deposition in natural subsurface environments are identified and critically analyzed. Factors affecting contaminant sorption onto plastic debris are discussed, and we show how polyethylene generally exhibits a greater sorption capacity than other plastic types. Finally, we highlight key knowledge gaps that need to be addressed to improve our ability to predict the risks associated with these ubiquitous contaminants in the environment by understanding their mobility, aggregation behavior and their potential to enhance the transport of other pollutants.
Large craters on the meteoroid and space debris impact experiment
NASA Technical Reports Server (NTRS)
Humes, Donald H.
1992-01-01
Examination of 29.37 sq m of thick aluminum plates from the LDEF, which were exposed to the meteoroid and man-made orbital debris environments for 5.8 years, revealed 606 craters that were 0.5 mm in diameter or larger. Most were nearly hemispherical. There was a large variation in the number density of craters around the three axis gravity gradient stabilized spacecraft. A new model of the near-Earth meteoroid environment gives good agreement with the crater fluxes measured on the fourteen faces of the LDEF. The man-made orbital debris model of Kessler, which predicts that 16 pct. of the craters would be caused by man-made debris, is plausible. No chemical analyses of impactor residue that will distinguish between meteoroids and man-made debris is yet available.
NASA Astrophysics Data System (ADS)
Heyl, T. P.; Nizinski, M. S.; Kinlan, B. P.; Shank, T. M.
2016-02-01
Submarine canyons are important productive habitats in the deep-sea, as well as downslope conduits for transporting sediment and organic material that enhances local and regional species diversity, including species and ecosystems vulnerable to anthropogenic activities. In 2012 and 2013, we documented and characterized deep-sea coral and sponge ecosystems in virtually unexplored northeast and mid-Atlantic canyons using WHOI's TowCam towed imaging system on the FSV Bigelow. Specifically, thirty-eight digital image TowCam surveys were completed in 10 canyons, with more than 91,000 images documenting not only deep-sea coral and sponge ecosystems and habitat features, but also anthropogenic debris. Canyons surveyed cover most of the latitudinal range of the northeast US region and include Toms Canyon complex, Ryan, Veatch, Gilbert, Powell, and Munson canyons. Each of these canyon hosted debris across depths of 550 to 2100m, consisting mostly of fisheries equipment, including fishing lines, traps, and nets. Potentially-land-based debris (e.g., plastic bags and magazines) was also present in all canyons surveyed. These substrates likely enhance colonization and often served as habitat for specific sessile and mobile species. Comparisons of debris in these canyons revealed depth-related differences, likely due to offshore extent of fishing activities, and will be compared to density and abundances of other deep-sea environments. The occurrence of anthropogenic debris on Northeast US canyon floors suggests major sources via transport ship and fishing-related activities and perhaps the rapid transport of debris through near-shore zones and entrainment in bottom currents.
NASA's Space Environments and Effects (SEE) Program: Meteoroid and Orbital Debris Lesson Plan.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The study of the natural space environment and its effects on spacecraft is one of the most important and least understood aspects of spacecraft design. The Space Environments and Effects (SEE) Program prepared the Meteoroids and Orbital Debris Lesson Plan, a SEE-focused high school curriculum to engage students in creative activities that will…
Daniel J. Miller; Kelly M. Burnett
2008-01-01
Debris flows are important geomorphic agents in mountainous terrains that shape channel environments and add a dynamic element to sediment supply and channel disturbance. Identification of channels susceptible to debris-flow inputs of sediment and organic debris, and quantification of the likelihood and magnitude of those inputs, are key tasks for characterizing...
Orbital debris removal and meteoroid deflection
NASA Astrophysics Data System (ADS)
Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas
1998-11-01
Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1 - 10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts of asteroids with the Earth, it shown that it is possible to scale up the systems to prevent these catastrophic collisions providing sufficient early warning is available from new generation space telescopes plus deep space radar tracking.
NASA Astrophysics Data System (ADS)
Campbell, Jonathan W.; Taylor, Charles R.; Smalley, Larry L.; Dickerson, Thomas
1999-01-01
Orbital debris in low-Earth orbit in the size range from 1 to 10 cm in diameter can be detected but not tracked reliably enough to be avoided by spacecraft. It can cause catastrophic damage even to a shielded spacecraft. With adaptive optics, a ground-based pulsed laser ablating the debris surface can produce enough propulsion in several hundred pulses to cause such debris to reenter the atmosphere. A single laser station could remove all of the 1-10 cm debris in three years or less. A technology demonstration of laser space propulsion is proposed which would pave the way for the implementation of such a debris removal system. The cost of the proposed demonstration is comparable with the estimated annual cost of spacecraft operations in the present orbital debris environment. Orbital debris is not the only space junk that is deleterious to the Earth's environment. Collisions with asteroids have caused major havoc to the Earth's biosphere many times in the ancient past. Since the possibility still exists for major impacts, it is shown that it is possible to scale up the systems to prevent these catastrophic collisions given sufficient early warning.
NASA Technical Reports Server (NTRS)
1991-01-01
The topics presented are covered in viewgraph form. Programmatic objectives are: (1) to improve characterization of the orbital debris environment; and (2) to provide a passive sensor test bed for debris collision detection systems. Technical objectives are: (1) to study LEO debris altitude, size and temperature distribution down to 1 mm particles; (2) to quantify ground based radar and optical data ambiguities; and (3) to optimize debris detection strategies.
Sonic Boom Assessment for the Crew Exploration Vehicle
NASA Technical Reports Server (NTRS)
Herron, Marissa
2007-01-01
The Constellation Environmental Impact Statement (Cx EIS) requires that an assessment be performed on the environmental impact of sonic booms during the reentry of the Crew Exploration Vehicle (CEV). This included an analysis of current planned vehicle trajectories for the Crew Module (CM) and the Service Module (SM) debris and the determination of the potential impact to the overflown environment.
Assessment and prediction of debris-flow hazards
Wieczorek, Gerald F.; ,
1993-01-01
Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.
Improving The Near-Earth Meteoroid And Orbital Debris Environment Definition With LAD-C
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. C.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Tabata, M.; Stansbery, E. G.; Westphal, A. J.; Yano, H.
2006-01-01
To improve the near-Earth meteoroid and orbital debris environment definition, a large area particle sensor/collector is being developed to be placed on the International Space Station (ISS). This instrument, the Large Area Debris Collector (LAD-C), will attempt to record meteoroid and orbital debris impact flux, and capture the same particles with aerogel. After at least one year of deployment, the whole system will be brought back for additional laboratory analysis of the captured meteoroids and orbital debris. This project is led by the U.S. Naval Research Laboratory (NRL) while the U.S. Department of Defense (DoD) Space Test Program (STP) is responsible for the integration, deployment, and retrieval of the system. Additional contributing team members of the consortium include the NASA Orbital Debris Program Office, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of Kent (UK), and University of California at Berkeley. The deployment of LAD-C on the ISS is planned for 2008, with the system retrieval in late 2009.
Assessment of the consequences of the Fengyun-1C breakup in low Earth orbit
NASA Astrophysics Data System (ADS)
Pardini, Carmen
On 11 January 2007, the 880 kg (958 kg at launch) weather spacecraft Fengyun-1C, launched on 10 May 1999 into a sun-synchronous orbit with a CZ-4B booster from the Taiyuan Satellite Launch Center, was destroyed over central China as a result of the first successful Chinese anti-satellite weapon test. It was carried out with a direct ascent interception with a kinetic energy kill vehicle launched by an SC-19 missile, fired from a mobile ground platform close to the Xichang Satellite Launch Center. While the technical details of the test, probably the third attempt, and the characteristics of the weapon used remain shrouded in secrecy, the intentional breakup of the aging weather spacecraft, fully functional until 2005, produced a huge amount of debris in one of the orbital regimes already most affected by past fragmentation events. At present, the US Space Surveillance Network has identified about 2600 objects, typically larger than 10 cm, but the fragments larger than 1 cm may be more than 100,000. After two decades of substantial international progress in the field of orbital debris mitigation, in order to preserve the low Earth and geosynchronous environments for future space missions, the Fengyun-1C destruction represented a serious turnabout. In fact, it abruptly increased by approximately 20% the number of cataloged debris in orbit. To give a rough idea of the impact of this single event on the circumterrestrial environment, it is sufficient to realize that about 15 years of global space activity - including failures and accidental breakups - had been needed to increase, by a comparable amount, the number of cataloged debris in orbit to the level observed before the Chinese anti-satellite test. The purpose of this presentation is to assess the impact of the debris cloud generated by the Fengyun-1C breakup on the low Earth environment. The anti-satellite test was carried out at an altitude of about 863 km, spreading the cataloged fragments between 200 and 4000 km, with maximum concentration around the breakup height. The environmental impact was particularly significant in all the altitude range between 700 and 1000 km, where the debris density due to past space activities was already at worrisome levels. Considering the inclination, nearly polar, and the height of the target, such a deliberate act of debris generation was therefore one of worst conceivable with current technology and its consequences will unfortunately be felt for many decades.
NASA Astrophysics Data System (ADS)
Pardini, Carmen; Anselmo, Luciano
2018-04-01
Approximately 95% of the mass in Earth orbit is currently concentrated in about 6700 intact objects, of which nearly 80% are abandoned and more than 90% cannot be maneuvered. The intact objects abandoned in low Earth orbit (LEO) above 650 km, i.e. with an average residual lifetime of more than 25 years, represent the main potential mass reservoir for the generation of new detrimental orbital debris in case of mutual collisions with the existing debris environment, taking into account that an 800 g impactor may be sufficient, in principle, to shatter a 1000 kg spacecraft or rocket stage. Since the 1980's, several mitigation measures were promoted and agreed at the international level in order to prevent the occurrence of new breakups in space and put under control the accumulation of mass abandoned in orbit, but unfortunately the level of compliance with such guidelines, requirements or standards is still far from satisfactory. Moreover, the appearance on the scene of space activity of new private and government actors from a growing number of countries makes the proper management of the circumterrestrial space a task of increasing complexity, taking also into account the rapid emerging of new potential applications, disrupting technologies and operational approaches quite different from the past. In this rapidly evolving environment, it might be useful to have a simple and flexible instrument for evaluating the potential criticality for the environment of massive objects placed or abandoned in LEO. With this goal, in the last few years, a particular effort was devoted to the development of various "criticality indexes", then applied for evaluating many families of rocket bodies and selected spacecraft. In this paper, with the underlining ambition to be simple, intuitive and relevant, from an environmental point of view, a couple of the most complete indexes were coherently applied in order to assess the potential criticality of the most massive objects abandoned in LEO. The results obtained are presented here in detail, also highlighting how these ranking approaches might be used both for debris mitigation, for instance to choose an appropriate disposal orbit for either spacecraft or upper stages to be dismissed at the end-of-life, and for debris remediation, as a guide in the selection of the most relevant targets for active debris removal, if and when such missions will become practicable.
NASA Orbital Debris Baseline Populations
NASA Technical Reports Server (NTRS)
Krisko, Paula H.; Vavrin, A. B.
2013-01-01
The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.
The pollution of the marine environment by plastic debris: a review.
Derraik, José G B
2002-09-01
The deleterious effects of plastic debris on the marine environment were reviewed by bringing together most of the literature published so far on the topic. A large number of marine species is known to be harmed and/or killed by plastic debris, which could jeopardize their survival, especially since many are already endangered by other forms of anthropogenic activities. Marine animals are mostly affected through entanglement in and ingestion of plastic litter. Other less known threats include the use of plastic debris by "invader" species and the absorption of polychlorinated biphenyls from ingested plastics. Less conspicuous forms, such as plastic pellets and "scrubbers" are also hazardous. To address the problem of plastic debris in the oceans is a difficult task, and a variety of approaches are urgently required. Some of the ways to mitigate the problem are discussed.
Orbital debris: Technical issues and future directions
NASA Technical Reports Server (NTRS)
Potter, Andrew (Editor)
1992-01-01
An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.
[Review and prospect of analysis on UHMWPE wear debris in artificial hip joints].
Wu, Jingping; Yuan, Chengqing; Yan, Xinping
2010-02-01
This paper briefly reviews the latest progress in the analyses of the technologies for artificial hip joints; and in the researches directed to the features of UHMWPE debris obtained from all kinds of experimental conditions, to the wear process and wear mechanism, and to the factors which influence the wear mechanism. Furthermore, the signification of debris atlas was illustrated. Finally, future directions to be furthered were considered and envisaged. It is suggested that emphases be laid on the relationship between the UHMWPE debris feature and the wear mechanism, and be laid synergistic effects of biochemical environment and loading environment so as to establish the predictive wear models of artificial hip joints.
The sensitivity of the ESA DELTA model
NASA Astrophysics Data System (ADS)
Martin, C.; Walker, R.; Klinkrad, H.
Long-term debris environment models play a vital role in furthering our understanding of the future debris environment, and in aiding the determination of a strategy to preserve the Earth orbital environment for future use. By their very nature these models have to make certain assumptions to enable informative future projections to be made. Examples of these assumptions include the projection of future traffic, including launch and explosion rates, and the methodology used to simulate break-up events. To ensure a sound basis for future projections, and consequently for assessing the effectiveness of various mitigation measures, it is essential that the sensitivity of these models to variations in key assumptions is examined. The DELTA (Debris Environment Long Term Analysis) model, developed by QinetiQ for the European Space Agency, allows the future projection of the debris environment throughout Earth orbit. Extensive analyses with this model have been performed under the auspices of the ESA Space Debris Mitigation Handbook and following the recent upgrade of the model to DELTA 3.0. This paper draws on these analyses to present the sensitivity of the DELTA model to changes in key model parameters and assumptions. Specifically the paper will address the variation in future traffic rates, including the deployment of satellite constellations, and the variation in the break-up model and criteria used to simulate future explosion and collision events.
Jang, Mi; Shim, Won Joon; Han, Gi Myung; Song, Young Kyoung; Hong, Sang Hee
2018-06-01
Fragmentation of large plastic debris into smaller particles results in increasing microplastic concentrations in the marine environment. In plastic debris fragmentation processes, the influence of biological factors remains largely unknown. This study investigated the fragmentation of expanded polystyrene (EPS) debris by polychaetes (Marphysa sanguinea) living on the debris. A large number of EPS particles (131 ± 131 particles/individual, 0.2-3.8 mm in length) were found in the digestive tracts of burrowing polychaetes living on EPS debris. To confirm the formation of microplastics by polychaetes and identify the quantity and morphology of produced microplastics, polychaetes were exposed to EPS blocks in filtered seawater under laboratory conditions. Polychaetes burrowed into the blocks and created numerous EPS microplastic particles, indicating that a single polychaete can produce hundreds of thousands of microplastic particles per year. These results reveal the potential role of marine organisms as microplastic producers in the marine environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
How marine debris ingestion differs among megafauna species in a tropical coastal area.
Di Beneditto, Ana Paula Madeira; Awabdi, Danielle Rodrigues
2014-11-15
The marine debris ingested by megafauna species (Trichiurus lepturus, Chelonia mydas, Pontoporia blainvillei, and Sotalia guianensis) was recorded in a coastal area of southeastern Brazil (21-23°S). Marine debris was recorded in all species, mainly consisting of plastic material (flexible and hard plastics - clear, white, and colored- and nylon filaments). The 'pelagic predators' T. lepturus and S. guianesis showed the lowest percent frequencies of debris ingestion (0.7% and 1.3%, respectively), followed by the 'benthic predator' P. blainvillei (15.7%) and the 'benthic herbivorous C. mydas (59.2%). The debris found in C. mydas stomachs was opportunistically ingested during feeding activities on local macroalgal banks. In the study area, the benthic environment accumulates more anthropogenic debris than the pelagic environment, and benthic/demersal feeders are more susceptible to encounters and ingestion. The sub-lethal effects observed in C. mydas, such as intestinal obstruction due to hardened fecal material, should be considered a local conservation concern. Copyright © 2014 Elsevier Ltd. All rights reserved.
Generation of Martian chaos and channels by debris flows
NASA Technical Reports Server (NTRS)
Nummedal, D.; Prior, D. B.
1981-01-01
A debris flow mechanism is proposed to account for the formation of chaos and the large channels debouching into Crysae Planitia from the adjacent southern uplands of Mars. Based on considerations of the juxtaposition of individual channel environments, the morphological assemblages within each environment and flow dynamics, it is suggested that the debris flows were triggered by the large-scale failure of subsurface sediments, possibly initiated by a seismic event. During the initial, slow-moving phase of the flow, the debris would have formed gently sinuous channels with multiple side-wall slumps, grooves and ridges, and elongate erosional remnants. The flow would have gained mobility as the debris moved downslope, producing travel distances greatly in excess of those characteristic of terrestrial examples, and eroded, streamlined remnants at the distal reaches of the channel. Finally, due to internal and boundary friction, the flow would have been slowed down once it entered the Chryse plains, resulting in a thin debris blanket with no depositional relief.
Physical properties of glasses exposed to Earth-facing and trailing-side environments on LDEF
NASA Technical Reports Server (NTRS)
Wiedlocher, David E.; Kinser, Donald L.; Weller, Robert A.; Weeks, Robert A.; Mendenhall, Marcus H.
1993-01-01
The exposure of 108 glass samples and 12 glass-ceramic samples to Earth-orbit environments permitted measurements which establish the effects of each environment. Examination of five glass types and one glass ceramic located on both the Earth-facing side and the trailing edge revealed no reduction in strength within experimental limits. Strength measurements subjected less than 5 percent of the sample surface area to stresses above 90 percent of the glass's failure strength. Seven micrometeorite or space debris impacts occurred on trailing edge samples. One of those impacts occurred in a location which was subjected to 50 percent of the applied stress at failure. Micrometeorite or space debris impacts were not observed on Earth-facing samples. The physical shape and structure of the impact sites were carefully examined using stereographic scanning electron microscopy. These impacts induce a stress concentration at the damaged region which influences mechanical strength. The flaw size produced by such damage was examined to determine the magnitude of strength degradation in micrometeorite or space-debris impacted glasses. Scanning electron microscopy revealed topographical details of impact sites which included central melt zones and glass fiber production. The overall crater structure is similar to much larger impacts of large meteorite on the Moon in that the melt crater is surrounded by shocked regions of material which fracture zones and spall areas. Residual stresses arising from shock compression and cooling of the fused zone cannot currently be included in fracture mechanics analyses based on simple flaw size examination.
Analyzing costs of space debris mitigation methods
NASA Astrophysics Data System (ADS)
Wiedemann, C.; Krag, H.; Bendisch, J.; Sdunnus, H.
The steadily increasing number of space objects poses a considerable hazard to all kinds of spacecraft. To reduce the risks to future space missions different debris mitigation measures and spacecraft protection techniques have been investigated during the last years. However, the economic efficiency has not been considered yet in this context. This economical background is not always clear to satellite operators and the space industry. Current studies have the objective to evaluate the mission costs due to space debris in a business as usual (no mitigation) scenario compared to the missions costs considering debris mitigation. The aim i an estimation of thes time until the investment in debris mitigation will lead to an effective reduction of mission costs. This paper presents the results of investigations on the key problems of cost estimation for spacecraft and the influence of debris mitigation and shielding on cost. The shielding of a satellite can be an effective method to protect the spacecraft against debris impact. Mitigation strategies like the reduction of orbital lifetime and de- or re-orbit of non-operational satellites are methods to control the space debris environment. These methods result in an increase of costs. In a first step the overall costs of different types of unmanned satellites are analyzed. The key problem is, that it is not possible to provide a simple cost model that can be applied to all types of satellites. Unmanned spacecraft differ very much in mission, complexity of design, payload and operational lifetime. It is important to classify relevant cost parameters and investigate their influence on the respective mission. The theory of empirical cost estimation and existing cost models are discussed. A selected cost model is simplified and generalized for an application on all operational satellites. In a next step the influence of space debris on cost is treated, if the implementation of mitigation strategies is considered.
Orbiting Debris: a Space Environmental Problem. Background Paper
NASA Technical Reports Server (NTRS)
1990-01-01
Artificial debris, deposited in a multitude of orbits about the Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. Unless nations sharply reduce the amount of orbital debris they produce, future space activites could suffer loss of capability, loss of income, and even loss of life as a result of collisions between spacecraft and debris. This background paper discusses the sources of debris and how they can be greatly reduced.
Orbital Debris Quarterly News. Volume 13; No. 1
NASA Technical Reports Server (NTRS)
Liou, J.-C. (Editor); Shoots, Debi (Editor)
2009-01-01
Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.
Determination of debris albedo from visible and infrared brightnesses
NASA Astrophysics Data System (ADS)
Lambert, John V.; Osteen, Thomas J.; Kraszewski, Butch
1993-09-01
The Air Force Phillips Laboratory is conducting measurements to characterize the orbital debris environment using wide-field optical systems located at the Air Force's Maui, Hawaii, Space Surveillance Site. Conversion of the observed visible brightnesses of detected debris objects to physical sizes require knowledge of the albedo (reflectivity). A thermal model for small debris objects has been developed and is used to calculate albedos from simultaneous visible and thermal infrared observations of catalogued debris objects. The model and initial results will be discussed.
Activities on space debris in Europe
NASA Astrophysics Data System (ADS)
Flury, W.
2001-10-01
Activities on space debris in Europe are carried out by ESA, by national space agencies such as ASI (Italy), BNSC (United Kingdom), CNES (France) and DLR (Germany) and by various research groups. The objectives of ESA's activities in the field of space debris have been defined by the Council of ESA in 1989, and were updated in 2000 with the adoption of the Resolution for a European policy on the protection of the space environment from debris. ESA's debris-related activities comprise research, application of debris mitigation measures and international cooperation. The research activities address the knowledge of the terrestrial particulate environment, risk assessment, hypervelocity impacts and protection, and preventative measures. In all these areas substantial progress has been achieved. Examples are the MASTER 99 model, the DISCOS database, beam-park experiments with the FGAN radar, the discovery of a small-size debris population in GEO with the Space Debris telescope at the Teide observatory, and the GORID dust detector in the geostationary orbit. The ESA Space Debris Mitigation Handbook was issued, and in a joint effort of ESA and the national agencies ASI, BNSC, CNES and DLR the European Space Debris Safety and Mitigation Standard (draft) was established. This standard will be harmonized with standards of other agencies through the deliberations in the Inter-Agency Space Debris Coordination Committee (IADC). In order to strengthen the European cooperation, the pilot network of centers - Working Group on Space Debris was created in 2000. The members are ESA, ASI, BNSC, CNES and DLR. An integrated work plan has been established for the period 2001-2003. Global cooperation among the space-faring nations is achieved through the IADC. ESA and its Member States strongly support the deliberations on space debris within the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS).
A Sensitivity Study on the Effectiveness of Active Debris Removal in LEO
NASA Technical Reports Server (NTRS)
Liou, J. C.; Johnson, Nicholas L.
2007-01-01
The near-Earth orbital debris population will continue to increase in the future due to ongoing space activities, on-orbit explosions, and accidental collisions among resident space objects. Commonly adopted mitigation measures, such as limiting postmission orbital lifetimes of satellites to less than 25 years, will slow down the population growth, but may be insufficient to stabilize the environment. The nature of the growth, in the low Earth orbit (LEO) region, is further demonstrated by a recent study where no future space launches were conducted in the environment projection simulations. The results indicate that, even with no new launches, the LEO debris population would remain relatively constant for only the next 50 years. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Therefore, to better limit the growth of future debris population to protect the environment, remediation option, i.e., removing existing large and massive objects from orbit, needs to be considered. This paper does not intend to address the technical or economical issues for active debris removal. Rather, the objective is to provide a sensitivity study to quantify the effectiveness of various remediation options. A removal criterion based upon mass and collision probability is developed to rank objects at the beginning of each projection year. This study includes simulations with removal rates ranging from 2 to 20 objects per year, starting in the year 2020. The outcome of each simulation is analyzed, and compared with others. The summary of the study serves as a general guideline for future debris removal consideration.
An integrated study to evaluate debris flow hazard in alpine environment
NASA Astrophysics Data System (ADS)
Tiranti, Davide; Crema, Stefano; Cavalli, Marco; Deangeli, Chiara
2018-05-01
Debris flows are among the most dangerous natural processes affecting the alpine environment due to their magnitude (volume of transported material) and the long runout. The presence of structures and infrastructures on alluvial fans can lead to severe problems in terms of interactions between debris flows and human activities. Risk mitigation in these areas requires identifying the magnitude, triggers, and propagation of debris flows. Here, we propose an integrated methodology to characterize these phenomena. The methodology consists of three complementary procedures. Firstly, we adopt a classification method based on the propensity of the catchment bedrocks to produce clayey-grained material. The classification allows us to identify the most likely rheology of the process. Secondly, we calculate a sediment connectivity index to estimate the topographic control on the possible coupling between the sediment source areas and the catchment channel network. This step allows for the assessment of the debris supply, which is most likely available for the channelized processes. Finally, with the data obtained in the previous steps, we modelled the propagation and depositional pattern of debris flows with a 3D code based on Cellular Automata. The results of the numerical runs allow us to identify the depositional patterns and the areas potentially involved in the flow processes. This integrated methodology is applied to a test-bed catchment located in Northwestern Alps. The results indicate that this approach can be regarded as a useful tool to estimate debris flow related potential hazard scenarios in an alpine environment in an expeditious way without possessing an exhaustive knowledge of the investigated catchment, including data on historical debris flow events.
Orbital Debris Quarterly News, Vol. 13, No. 2
NASA Technical Reports Server (NTRS)
Liou, J.-C. (Editor); Shoots, Debi (Editor)
2009-01-01
Topics include: debris clouds left by satellite collision; debris flyby near the International Space Station; and break-up of an ullage motor from a Russian Proton launch vehicle. Findings from the analysis of the STS-126 Shuttle Endeavour window impact damage are provided. Abstracts from the NASA Orbital Debris program office are presented and address a variety of topics including: Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime; Shape Distribution of Fragments From Microsatellite Impact Tests; Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter; Space Debris Environment Remediation Concepts; and, In Situ Measurement Activities at the NASA Orbital Debris Program Office. Additionally, a Meeting Report is provided for the 12 meeting of the NASA/DoD Orbital Debris Working Group.
Orbital Debris Research in the United States
NASA Technical Reports Server (NTRS)
Stansbery, Gene
2009-01-01
The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.
Using the Shuttle In Situ Window and Radiator Data for Meteoroid Measurements
NASA Technical Reports Server (NTRS)
Matney, Mark
2015-01-01
Every time NASA's Space Shuttle flew in orbit, it was exposed to the natural meteoroid and artificial debris environment. NASA Johnson Space Center maintains a database of impact cratering data of 60 Shuttle missions flown since the mid-1990's that were inspected after flight. These represent a total net exposure time to the space environment of 2 years. Impact damage was recorded on the windows and radiators, and in many cases information on the impactor material was determined by later analysis of the crater residue. This information was used to segregate damage caused by natural meteoroids and artificial space debris. The windows represent a total area of 3.565 sq m, and were capable of resolving craters down to about 10 micrometers in size. The radiators represent a total area of 119.26 sq m, and saw damage from objects up to approximately 1 mm in diameter. These data were used extensively in the development of NASA's ORDEM 3.0 Orbital Debris Environment Model, and gives a continuous picture of the orbital debris environment in material type and size ranging from about 10 micrometers to 1 mm. However, the meteoroid data from the Shuttles have never been fully analyzed. For the orbital debris work, special "as flown" files were created that tracked the pointing of the surface elements and their shadowing by structure (such as the ISS during docking). Unfortunately, such files for the meteoroid environment have not yet been created. This talk will introduce these unique impact data and describe how they were used for orbital debris measurements. We will then discuss some simple first-order analyses of the meteoroid data, and point the way for future analyses.
2017-12-11
Orbital debris poses a risk to all spacecraft in Earth orbit, so the International Space Station is getting a new debris impact sensor to provide information on the micrometeoroid orbital debris environment in low Earth orbit. The Space Debris Sensor, launching on the next SpaceX Dragon cargo vehicle, will monitor impacts caused by small-scale orbital debris for a period of two to three years. That data will improve station safety by generating a more accurate estimate of the amount of small-scale debris that cannot be tracked from the ground and helping define better spacecraft shielding requirements. _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
The fast debris evolution model
NASA Astrophysics Data System (ADS)
Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.
2009-09-01
The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FADE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.
To Eat or Not to Eat? Debris Selectivity by Marine Turtles
Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy
2012-01-01
Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006–2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs. larger benthic feeders). Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles’ debris preferences (color and type) using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles. PMID:22829894
Legal Consequences of the Pollution of Outer Space with Space Debris
NASA Astrophysics Data System (ADS)
Stubbe, Peter
2017-07-01
Space debris has grown to be a significant problem for outer space activities. The remnants of human activities in space are very diverse; they can be tiny paint flakes, all sorts of fragments, or entirely intact—but otherwise nonfunctional spacecraft and rocket bodies. The amount of debris is increasing at a growing pace, thus raising the risk of collision with operational satellites. Due to the relative high velocities involved in on-orbit collisions, their consequences are severe; collisions lead to significant damage or the complete destruction of the affected spacecraft. Protective measures and collision avoidance have thus become a major concern for spacecraft operators. The pollution of space with debris must, however, not only be seen as an unfavorable circumstance that accompanies space activities and increases the costs and complexity of outer space activities. Beyond this rather technical perspective, the presence of man-made, nonfunctional objects in space represents a global environmental concern. Similar to the patterns of other environmental problems on Earth, debris generation appears to have surpassed the absorption capacity of the space environment. Studies indicate that the evolution of the space object environment has crossed the tipping point to a runaway situation in which an increasing number of collisions―mostly among debris―leads to an uncontrolled population growth. It is thus in the interest of all mankind to address the debris problem in order to preserve the space environment for future generations. International space law protects the space environment. Article IX of the Outer Space Treaty obligates States to avoid the harmful contamination of outer space. The provision corresponds to the obligation to protect the environment in areas beyond national jurisdiction under the customary "no harm" rule of general environmental law. These norms are applicable to space debris and establish the duty not to pollute outer space by limiting the generation of debris. They become all the more effective when the principles of sustainable development are taken into account, which infuse considerations of intra- as well as inter-generational justice into international law. In view of the growing debris pollution and its related detrimental effects, it is obvious that questions of liability and responsibility will become increasingly relevant. The Liability Convention offers a remedy for victims having suffered damage caused by space debris. The launching State liability that it establishes is even absolute for damage occurring on the surface of the Earth. The secondary rules of international responsibility law go beyond mere compensation: States can also be held accountable for the environmental pollution event itself, entailing a number of consequential obligations, among them―under certain circumstances―a duty to active debris removal. While international law is, therefore, generally effective in addressing the debris problem, growing use and growing risks necessitate the establishment of a comprehensive traffic management regime for outer space. It would strengthen the rule of law in outer space and ensure the sustainability of space utilization.
A fresh look at crater scaling laws for normal and oblique hypervelocity impacts
NASA Technical Reports Server (NTRS)
Watts, A. J.; Atkinson, D. R.; Rieco, S. R.; Brandvold, J. B.; Lapin, S. L.; Coombs, C. R.
1993-01-01
With the concomitant increase in the amount of man-made debris and an ever increasing use of space satellites, the issue of accidental collisions with particles becomes more severe. While the natural micrometeoroid population is unavoidable and assumed constant, continued launches increase the debris population at a steady rate. Debris currently includes items ranging in size from microns to meters which originated from spent satellites and rocket cases. To understand and model these environments, impact damage in the form of craters and perforations must be analyzed. Returned spacecraft materials such as those from LDEF and Solar Max have provided such a testbed. From these space-aged samples various impact parameters (i.e., particle size, particle and target material, particle shape, relative impact speed, etc.) may be determined. These types of analyses require the use of generic analytic scaling laws which can adequately describe the impact effects. Currently, most existing analytic scaling laws are little more than curve-fits to limited data and are not based on physics, and thus are not generically applicable over a wide range of impact parameters. During this study, a series of physics-based scaling laws for normal and oblique crater and perforation formation has been generated into two types of materials: aluminum and Teflon.
Peng, Jinping; Wang, Jundong; Cai, Liqi
2017-05-01
Microplastics pollution has been documented in the global environment, including at sea, in freshwater and in atmospheric fallout. Ingestion of microplastics by multiple kinds of organisms has been reported and has received increasing attention, because microplastics not only act as a source of toxic chemicals but also a sink for toxic chemicals. To better understand the great concerns about microplastics and associated toxic chemicals potential exposed to the organisms ingesting the debris, we should know more about the occurrence, fate, and risks of microplastics in the environment. What we should do depends on this better understanding. Integr Environ Assess Manag 2017;13:476-482. © 2017 SETAC. © 2017 SETAC.
An Overview of NASA's Orbital Debris Engineering Model
NASA Technical Reports Server (NTRS)
Matney, Mark
2010-01-01
This slide presentation reviews the importance of Orbital debris engineering models. They are mathematical tools to assess orbital debris flux. It briefly reviews the history of the orbital debris engineering models, and reviews the new features in the current model (i.e., ORDEM2010).
Using parallel computing for the display and simulation of the space debris environment
NASA Astrophysics Data System (ADS)
Möckel, M.; Wiedemann, C.; Flegel, S.; Gelhaus, J.; Vörsmann, P.; Klinkrad, H.; Krag, H.
2011-07-01
Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction to OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.
Using parallel computing for the display and simulation of the space debris environment
NASA Astrophysics Data System (ADS)
Moeckel, Marek; Wiedemann, Carsten; Flegel, Sven Kevin; Gelhaus, Johannes; Klinkrad, Heiner; Krag, Holger; Voersmann, Peter
Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction of OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.
NASA Technical Reports Server (NTRS)
Potter, Andrew
1989-01-01
The materials with vulnerability to micrometeoroids and space debris are discussed. It is concluded that all materials are vulnerable to hypervelocity impacts and that the importance of these impacts depends on the function of material. It is also concluded that low earth orbits are the most significant region relative to orbital debris. The consequences of aerospace environment effects are discussed.
International Space Station: Meteoroid/Orbital Debris Survivability and Vulnerability
NASA Technical Reports Server (NTRS)
Graves, Russell
2000-01-01
This slide presentation reviews the surviability and vulnerability of the International Space Station (ISS) from the threat posed by meteoroid and orbital debris. The topics include: (1) Space station natural and induced environments (2) Meteoroid and orbital debris threat definition (3) Requirement definition (4) Assessment methods (5) Shield development and (6) Component vulnerability
Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea.
De Tender, Caroline; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Vangeyte, Jürgen; Cattrijsse, André; Dawyndt, Peter; Ruttink, Tom
2017-07-05
Despite growing evidence that biofilm formation on plastic debris in the marine environment may be essential for its biodegradation, the underlying processes have yet to be fully understood. Thus, far, bacterial biofilm formation had only been studied after short-term exposure or on floating plastic, yet a prominent share of plastic litter accumulates on the seafloor. In this study, we explored the taxonomic composition of bacterial and fungal communities on polyethylene plastic sheets and dolly ropes during long-term exposure on the seafloor, both at a harbor and an offshore location in the Belgian part of the North Sea. We reconstructed the sequence of events during biofilm formation on plastic in the harbor environment and identified a core bacteriome and subsets of bacterial indicator species for early, intermediate, and late stages of biofilm formation. Additionally, by implementing ITS2 metabarcoding on plastic debris, we identified and characterized for the first time fungal genera on plastic debris. Surprisingly, none of the plastics exposed to offshore conditions displayed the typical signature of a late stage biofilm, suggesting that biofilm formation is severely hampered in the natural environment where most plastic debris accumulates.
An analysis of the 2016 Hitomi breakup event
NASA Astrophysics Data System (ADS)
Flegel, Sven; Bennett, James; Lachut, Michael; Möckel, Marek; Smith, Craig
2017-04-01
The breakup of Hitomi (ASTRO-H) on 26 March 2016 is analysed. Debris from the fragmentation is used to estimate the time of the event by propagating backwards and estimating the close approach with the parent object. Based on this method, the breakup event is predicted to have occurred at approximately 01:42 UTC on 26 March 2016. The Gaussian variation of parameters equations based on the instantaneous orbits at the predicted time of the event are solved to gain additional insight into the on-orbit position of Hitomi at the time of the event and to test an alternate approach of determining the event epoch and location. A conjunction analysis is carried out between Hitomi and all catalogued objects which were in orbit around the estimated time of the anomaly. Several debris objects have close approaches with Hitomi; however, there is no evidence to support the breakup was caused by a catalogued object. Debris from both of the largest fragmentation events—the Iridium 33-Cosmos 2251 conjunction in 2009 and the intentional destruction of Fengyun 1C in 2007—is involved in close approaches with Hitomi indicating the persistent threat these events have caused in subsequent space missions. To quantify the magnitude of a potential conjunction, the fragmentation resulting from a collision with the debris is modelled using the EVOLVE-4 breakup model. The debris characteristics are estimated from two-line element data. This analysis is indicative of the threat to space assets that mission planners face due to the growing debris population. The impact of the actual event to the environment is investigated based on the debris associated with Hitomi which is currently contained in the United States Strategic Command's catalogue. A look at the active missions in the orbital vicinity of Hitomi reveals that the Hubble Space Telescope is among the spacecraft which may be immediately affected by the new debris.[Figure not available: see fulltext.
Effects of High-Density Impacts on Shielding Capability
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Lear, Dana M.
2014-01-01
Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.
Deep HST/STIS Visible-Light Imaging of Debris Systems Around Solar Analog Hosts
NASA Technical Reports Server (NTRS)
Schneider, Glenn; Grady, Carol A.; Stark, Christopher C.; Gaspar, Andras; Carson, Joseph; Debes, John H.; Henning, Thomas; Hines, Dean C.; Jang-Condell, Hannah; Kuchner, Marc J.
2016-01-01
We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar systems Edgeworth Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both approx. 2.3 Gyr) currently the oldest CDSs imaged in visible or near-IR light. These deep (10-14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F disk /F star optical brightness approx. t( exp.-0.8), similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.
LightForce: An Update on Orbital Collision Avoidance Using Photon Pressure
NASA Technical Reports Server (NTRS)
Stupl, Jan; Mason, James; De Vries, Willem; Smith, Craig; Levit, Creon; Marshall, William; Salas, Alberto Guillen; Pertica, Alexander; Olivier, Scot; Ting, Wang
2012-01-01
We present an update on our research on collision avoidance using photon-pressure induced by ground-based lasers. In the past, we have shown the general feasibility of employing small orbit perturbations, induced by photon pressure from ground-based laser illumination, for collision avoidance in space. Possible applications would be protecting space assets from impacts with debris and stabilizing the orbital debris environment. Focusing on collision avoidance rather than de-orbit, the scheme avoids some of the security and liability implications of active debris removal, and requires less sophisticated hardware than laser ablation. In earlier research we concluded that one ground based system consisting of a 10 kW class laser, directed by a 1.5 m telescope with adaptive optics, could avoid a significant fraction of debris-debris collisions in low Earth orbit. This paper describes our recent efforts, which include refining our original analysis, employing higher fidelity simulations and performing experimental tracking tests. We investigate the efficacy of one or more laser ground stations for debris-debris collision avoidance and satellite protection using simulations to investigate multiple case studies. The approach includes modeling of laser beam propagation through the atmosphere, the debris environment (including actual trajectories and physical parameters), laser facility operations, and simulations of the resulting photon pressure. We also present the results of experimental laser debris tracking tests. These tests track potential targets of a first technical demonstration and quantify the achievable tracking performance.
Final payload test results for the RemoveDebris active debris removal mission
NASA Astrophysics Data System (ADS)
Forshaw, Jason L.; Aglietti, Guglielmo S.; Salmon, Thierry; Retat, Ingo; Roe, Mark; Burgess, Christopher; Chabot, Thomas; Pisseloup, Aurélien; Phipps, Andy; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.
2017-09-01
Since the beginning of the space era, a significant amount of debris has progressively been generated in space. Active Debris Removal (ADR) missions have been suggested as a way of limiting and controlling future growth in orbital space debris by actively deploying vehicles to remove debris. The European Commission FP7-sponsored RemoveDebris mission, which started in 2013, draws on the expertise of some of Europe's most prominent space institutions in order to demonstrate key ADR technologies in a cost effective ambitious manner: net capture, harpoon capture, vision-based navigation, dragsail de-orbiting. This paper provides an overview of some of the final payload test results before launch. A comprehensive test campaign is underway on both payloads and platform. The tests aim to demonstrate both functional success of the experiments and that the experiments can survive the space environment. Space environmental tests (EVT) include vibration, thermal, vacuum or thermal-vacuum (TVAC) and in some cases EMC and shock. The test flow differs for each payload and depends on the heritage of the constituent payload parts. The paper will also provide an update to the launch, expected in 2017 from the International Space Station (ISS), and test philosophy that has been influenced from the launch and prerequisite NASA safety review for the mission. The RemoveDebris mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.
An analysis of the orbital distribution of solid rocket motor slag
NASA Astrophysics Data System (ADS)
Horstman, Matthew F.; Mulrooney, Mark
2009-01-01
The contribution by solid rocket motors (SRMs) to the orbital debris environment is potentially significant and insufficiently studied. Design and combustion processes can lead to the emission of enough by-products to warrant assessment of their contribution to orbital debris. These particles are formed during SRM tail-off, or burn termination, by the rapid solidification of molten Al2O3 slag accumulated during the burn. The propensity of SRMs to generate particles larger than 100μm raises concerns regarding the debris environment. Sizes as large as 1 cm have been witnessed in ground tests, and comparable sizes have been estimated via observations of sub-orbital tail-off events. Utilizing previous research we have developed more sophisticated size distributions and modeled the time evolution of resultant orbital populations using a historical database of SRM launches, propellant, and likely location and time of tail-off. This analysis indicates that SRM ejecta is a significant component of the debris environment.
Fish debris record the hydrothermal activity in the Atlantis II deep sediments (Red Sea)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oudin, E.; Cocherie, A.
1988-01-01
The REE and U, Th, Zr, Hf, Sc have been analyzed in samples from Atlantis II and Shaban/Jean Charcot Deeps in the Red Sea. The high Zr/Hf ratio in some sediments indicates the presence of fish debris or of finely crystallized apatite. The positive ..sigma..REE vs P/sub 2/O/sub 5/ and ..sigma..REE vs Zr/Hf correlations show that fish debris and finely crystallized apatite are the main REE sink in Atlantis II Deep sediments as in other marine environments. The hydrothermal sediments and the fish debris concentrates have similar REE patterns, characterized by a LREE enrichment and a large positive Eu anomaly.more » This REE pattern is also observed in E.P.R. hydrothermal solutions. Fish debris from marine environments acquire their REE content and signature mostly from sea water during early diagenesis. The hydrothermal REE signature of Atlantis II Deep fish debris indicate that they probably record the REE signature of their hydrothermal sedimentation and diagenetic environment. The different REE signatures of the Shaban/Jean Charcot and Atlantis II Deep hydrothermal sediments suggest a sea water-dominated brine in the Shaban/Jean Charcot Deep as opposed to the predominantly hydrothermal brine in Atlantis II Deep. Atlantis II Deep fish debris are also characterized by their high U but low Th contents. Their low Th contents probably reflect the low Th content of the various possible sources (sea water, brine, sediments). Their U contents are probably controlled by the redox conditions of sedimentation.« less
Human Exploration Science Office (KX) Overview
NASA Technical Reports Server (NTRS)
Calhoun, Tracy A.
2014-01-01
The Human Exploration Science Office supports human spaceflight, conducts research, and develops technology in the areas of space orbital debris, hypervelocity impact technology, image science and analysis, remote sensing, imagery integration, and human and robotic exploration science. NASA's Orbital Debris Program Office (ODPO) resides in the Human Exploration Science Office. ODPO provides leadership in orbital debris research and the development of national and international space policy on orbital debris. The office is recognized internationally for its measurement and modeling of the debris environment. It takes the lead in developing technical consensus across U.S. agencies and other space agencies on debris mitigation measures to protect users of the orbital environment. The Hypervelocity Impact Technology (HVIT) project evaluates the risks to spacecraft posed by micrometeoroid and orbital debris (MMOD). HVIT facilities at JSC and White Sands Test Facility (WSTF) use light gas guns, diagnostic tools, and high-speed imagery to quantify the response of spacecraft materials to MMOD impacts. Impact tests, with debris environment data provided by ODPO, are used by HVIT to predict risks to NASA and commercial spacecraft. HVIT directly serves NASA crew safety with MMOD risk assessments for each crewed mission and research into advanced shielding design for future missions. The Image Science and Analysis Group (ISAG) supports the International Space Station (ISS) and commercial spaceflight through the design of imagery acquisition schemes (ground- and vehicle-based) and imagery analyses for vehicle performance assessments and mission anomaly resolution. ISAG assists the Multi-Purpose Crew Vehicle (MPCV) Program in the development of camera systems for the Orion spacecraft that will serve as data sources for flight test objectives that lead to crewed missions. The multi-center Imagery Integration Team is led by the Human Exploration Science Office and provides expertise in the application of engineering imagery to spaceflight. The team links NASA programs and private industry with imagery capabilities developed and honed through decades of human spaceflight, including imagery integration, imaging assets, imagery data management, and photogrammetric analysis. The team is currently supporting several NASA programs, including commercial demonstration missions. The Earth Science and Remote Sensing Team is responsible for integrating the scientific use of Earth-observation assets onboard the ISS, which consist of externally mounted sensors and crew photography capabilities. This team facilitates collaboration on remote sensing and participates in research with academic organizations and other Government agencies, not only in conjunction with ISS science, but also for planetary exploration and regional environmental/geological studies. Human exploration science focuses on science strategies for future human exploration missions to the Moon, Mars, asteroids, and beyond. This function provides communication and coordination between the science community and mission planners. ARES scientists support the operation of robotic missions (i.e., Mars Exploration Rovers and the Mars Science Laboratory), contribute to the interpretation of returned mission data, and translate robotic mission technologies and techniques to human spaceflight.
The formation of Pluto's low-mass satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenyon, Scott J.; Bromley, Benjamin C., E-mail: skenyon@cfa.harvard.edu, E-mail: bromley@physics.utah.edu
Motivated by the New Horizons mission, we consider how Pluto's small satellites—currently Styx, Nix, Kerberos, and Hydra—grow in debris from the giant impact that forms the Pluto-Charon binary. After the impact, Pluto and Charon accrete some of the debris and eject the rest from the binary orbit. During the ejection, high-velocity collisions among debris particles produce a collisional cascade, leading to the ejection of some debris from the system and enabling the remaining debris particles to find stable orbits around the binary. Our numerical simulations of coagulation and migration show that collisional evolution within a ring or a disk ofmore » debris leads to a few small satellites orbiting Pluto-Charon. These simulations are the first to demonstrate migration-induced mergers within a particle disk. The final satellite masses correlate with the initial disk mass. More massive disks tend to produce fewer satellites. For the current properties of the satellites, our results strongly favor initial debris masses of 3-10 × 10{sup 19} g and current satellite albedos A ≈ 0.4-1. We also predict an ensemble of smaller satellites, R ≲ 1-3 km, and very small particles, R ≈ 1-100 cm and optical depth τ ≲ 10{sup –10}. These objects should have semimajor axes outside the current orbit of Hydra.« less
2012-06-01
procedures have been driven by the rising significance of the orbital debris problem in Low Earth Orbit (LEO). Therefore current EOL plans are...does not display a currently valid OMB control number. 1. REPORT DATE JUN 2012 2. REPORT TYPE 3. DATES COVERED 00-00-2012 to 00-00-2012 4...by the rising significance of the orbital debris problem in Low Earth Orbit (LEO). Therefore current EOL plans are written largely with the aim of
The world state of orbital debris measurements and modeling
NASA Astrophysics Data System (ADS)
Johnson, Nicholas L.
2004-02-01
For more than 20 years orbital debris research around the world has been striving to obtain a sharper, more comprehensive picture of the near-Earth artificial satellite environment. Whereas significant progress has been achieved through better organized and funded programs and with the assistance of advancing technologies in both space surveillance sensors and computational capabilities, the potential of measurements and modeling of orbital debris has yet to be realized. Greater emphasis on a systems-level approach to the characterization and projection of the orbital debris environment would prove beneficial. On-going space surveillance activities, primarily from terrestrial-based facilities, are narrowing the uncertainties of the orbital debris population for objects greater than 2 mm in LEO and offer a better understanding of the GEO regime down to 10 cm diameter objects. In situ data collected in LEO is limited to a narrow range of altitudes and should be employed with great care. Orbital debris modeling efforts should place high priority on improving model fidelity, on clearly and completely delineating assumptions and simplifications, and on more thorough sensitivity studies. Most importantly, however, greater communications and cooperation between the measurements and modeling communities are essential for the efficient advancement of the field. The advent of the Inter-Agency Space Debris Coordination Committee (IADC) in 1993 has facilitated this exchange of data and modeling techniques. A joint goal of these communities should be the identification of new sources of orbital debris.
Multi-Functional Sandwich Composites for Spacecraft Applications: An Initial Assessment
NASA Technical Reports Server (NTRS)
Adams, Daniel O.; Webb, Nicholas Jason; Yarger, Cody B.; Hunter, Abigail; Oborn, Kelli D.
2007-01-01
Current spacecraft implement relatively uncoupled material and structural systems to address a variety of design requirements, including structural integrity, damage tolerance, radiation protection, debris shielding and thermal insulation. This investigation provided an initial assessment of multi-functional sandwich composites to integrate these diverse requirements. The need for radiation shielding was addressed through the selection of polymeric constituents with high hydrogen content. To provide increased damage tolerance and debris shielding, manufacturing techniques were developed to incorporate transverse stitching reinforcement, internal layers, and a self-healing ionomer membrane. To assess the effects of a space environment, thermal expansion behavior of the candidate foam materials was investigated under a vacuum and increasing temperature. Finally, a thermal expansion model was developed for foam under vacuum conditions and its predictive capability assessed.
Characterizing GEO Titan Transtage Fragmentations using Ground-based Measurements
NASA Technical Reports Server (NTRS)
Cowardin, H.; Anz-Meador, P.
2016-01-01
In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess what may be causing these fragmentations, the NASA ODPO recently acquired a Titan Transtage test and display article that was previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage will be a subject of forensic analysis using spectral measurements to compare with telescopic data; as well, a scale model will be created to use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. The following presentation will provide a review of the Titan Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment.
NASA Technical Reports Server (NTRS)
Wiegmann, Bruce M.; Hovater, Mary; Kos, Larry
2012-01-01
NASA/MSFC has been investigating the various aspects of the growing orbital debris problem since early 2009. Data shows that debris ranging in size from 5 mm to 10 cm presents the greatest threat to operational spacecraft today. Therefore, MSFC has focused its efforts on small orbital debris. Using off-the-shelf analysis packages, like the ESA MASTER software, analysts at MSFC have begun to characterize the small debris environment in LEO to support several spacecraft concept studies and hardware test programs addressing the characterization, mitigation, and ultimate removal, if necessary, of small debris. The Small Orbital Debris Active Removal (SODAR) architectural study investigated the overall effectiveness of removing small orbital debris from LEO using a low power, space-based laser. The Small Orbital Debris Detection, Acquisition, and Tracking (SODDAT) conceptual technology demonstration spacecraft was developed to address the challenges of in-situ small orbital debris environment classification including debris observability and instrument requirements for small debris observation. Work is underway at MSFC in the areas of hardware and testing. By combining off the shelf digital video technology, telescope lenses, and advanced video image FPGA processing, MSFC is building a breadboard of a space based, passive orbital tracking camera that can detect and track faint objects (including small debris, satellites, rocket bodies, and NEOs) at ranges of tens to hundreds of kilometers and speeds in excess of 15 km/sec,. MSFC is also sponsoring the development of a one-of-a-kind Dynamic Star Field Simulator with a high resolution large monochrome display and a custom collimator capable of projecting realistic star images with simple orbital debris spots (down to star magnitude 11-12) into a passive orbital detection and tracking system with simulated real-time angular motions of the vehicle mounted sensor. The dynamic star field simulator can be expanded for multiple sensors (including advanced star trackers), real-time vehicle pointing inputs, and more complex orbital debris images. This system is also adaptable to other sensor optics, missions, and installed sensor testing.
Radar Measurements of Small Debris from HUSIR and HAX
NASA Technical Reports Server (NTRS)
Hamilton J.; Blackwell, C.; McSheehy, R.; Juarez, Q.; Anz-Meador, P.
2017-01-01
For many years, the NASA Orbital Debris Program Office has been collecting measurements of the orbital debris environment from the Haystack Ultra-wideband Satellite Imaging Radar (HUSIR) and its auxiliary (HAX). These measurements sample the small debris population in low earth orbit (LEO). This paper will provide an overview of recent observations and highlight trends in selected debris populations. Using the NASA size estimation model, objects with a characteristic size of 1 cm and larger observed from HUSIR will be presented. Also, objects with a characteristic size of 2 cm and larger observed from HAX will be presented.
NASA Technical Reports Server (NTRS)
Frith, James; Barker, Ed; Cowardin, Heather; Buckalew, Brent; Anz-Meado, Phillip; Lederer, Susan
2017-01-01
The NASA Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT's known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment. A simulated GEO debris population is created and sampled at various cadences and run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT's ability to determine accurately the orbits of debris at various sample rates. Additionally, estimates of the rate at which MCAT will be able produce a complete GEO survey are presented using collected weather data and the proposed observation data collection cadence. The specific methods and results are presented here.
NASA Technical Reports Server (NTRS)
Matney, Mark J.; Stansbery, Eugene; J.-C Liou; Stokely, Christopher; Horstman, Matthew; Whitlock, David
2008-01-01
On January 11, 2007, the Chinese military conducted a test of an anti-satellite (ASAT) system, destroying their own Fengyun-1C spacecraft with an interceptor missile. The resulting hypervelocity collision created an unprecedented number of tracked debris - more than 2500 objects. These objects represent only those large enough for the US Space Surveillance Network (SSN) to track - typically objects larger than about 5-10 cm in diameter. There are expected to be even more debris objects at sizes too small to be seen and tracked by the SSN. Because of the altitude of the target satellite (865 x 845 km orbit), many of the debris are expected to have long orbital lifetimes and contribute to the orbital debris environment for decades to come. In the days and weeks following the ASAT test, NASA was able to use Lincoln Laboratory s Haystack radar on several occasions to observe portions of the ASAT debris cloud. Haystack has the capability of detecting objects down to less than one centimeter in diameter, and a large number of centimeter-sized particles corresponding to the ASAT cloud were clearly seen in the data. While Haystack cannot track these objects, the statistical sampling procedures NASA uses can give an accurate statistical picture of the characteristics of the debris from a breakup event. For years computer models based on data from ground hypervelocity collision tests (e.g., the SOCIT test) and orbital collision experiments (e.g., the P-78 and Delta-180 on-orbit collisions) have been used to predict the extent and characteristics of such hypervelocity collision debris clouds, but until now there have not been good ways to verify these models in the centimeter size regime. It is believed that unplanned collisions of objects in space similar to ASAT tests will drive the long-term future evolution of the debris environment in near-Earth space. Therefore, the Chinese ASAT test provides an excellent opportunity to test the models used to predict the future debris environment. For this study, Haystack detection events are compared to model predictions to test the model assumptions, including debris size distribution, velocity distribution, and assumptions about momentum transfer between the target and interceptor. In this paper we will present the results of these and other measurements on the size and extent of collisional breakup debris clouds.
Effects of CubeSat Deployments in Low-Earth Orbit
NASA Technical Reports Server (NTRS)
Matney, Mark; Vavrin, Andrew; Manis, Alyssa
2017-01-01
Long-term models, such as NASA's LEGEND (LEO-to- GEO Environment Debris) model, are used to make predictions about how space activities will affect the manner in which the debris environment evolves over time. Part of this process predicts how spacecraft and rocket bodies will be launched and remain in the future environment. This has usually been accomplished by repeating past launch history to simulate future launches. The NASA Orbital Debris Program Office (ODPO) has conducted a series of LEGEND computations to investigate the long-term effects of adding CubeSats to the environment. These results are compared to a baseline "business-as-usual" scenario where launches are assumed to continue as in the past without major CubeSat deployments. Using these results, we make observations about the continued use of the 25-year rule and the importance of the universal application of postmission disposal.
NASA Astrophysics Data System (ADS)
Lafon, Jose J.
(FOD) Foreign Object Debris/Damage has been a costly issue for the commercial and military aircraft manufacturers at their production lines every day. FOD can put pilots, passengers and other crews' lives into high-risk. FOD refers to any type of foreign object, particle, debris or agent in the manufacturing environment, which could contaminate/damage the product or otherwise undermine quality standards. Nowadays, FOD is currently addressed with prevention programs, elimination techniques, and designation of FOD areas, controlled access to FOD areas, restrictions of personal items entering designated areas, tool accountability, etc. All of the efforts mentioned before, have not shown a significant reduction in FOD occurrence in the manufacturing processes. This research presents a Decision Making Model approach based on a logistic regression predictive model that was previously made by other researchers. With a general idea of the FOD expected, elimination plans can be put in place and start eradicating the problem minimizing the cost and time spend on the prediction, detection and/or removal of FOD.
Pathways and Distribution of Marine Debris Around a Remote Caribbean Island, Little Cayman
NASA Astrophysics Data System (ADS)
Camp, L.; Marsh, L.; O'Keefe, A.; Duran, J.; Wilcox, S. M.; James, R.; Cowan, E.
2011-12-01
Marine Debris is a major environmental concern that affects all levels of marine life. On remote beaches in the Caribbean, where human populations are minimal, marine debris is largely deposited by ocean currents. The ocean is estimated to be littered with over 6 million metric tons of trash per year with 90% coming from land sources, but little is known about the exact sources and pathways for the debris. In 2006, on Little Cayman Island, coastal debris was collected at two coastal areas where removal of debris had not occurred in at least 9 years and along 2000 meters squared. One site was located on the north side, while the other site was located on the south side of the island. Both sites were located in reef-protected coastal zones. These two sites were revisited in 2007, 2010, and 2011 to determine the volume, weight, and type of debris arriving annually and to assess the importance of different coastal processes in deposition. In 2011, eight turtle nesting beaches were added to the study and a total of 11,186 liters of debris was collected from 1600 meters of coastline. The island lies in a northeast southwest orientation. The south-side of the island is influenced largely by prevailing trade winds, currents and tropical storms, traveling across the Caribbean from the east. Currents, eddies, and Norwesters would presumably deposit debris on the north side of the island. Approximately five times the amount of debris is deposited on the south side of the island than on the north side of the island. From the total debris collected, 72.45% was plastic, 8.23% shoes, 6.37% ropes & nets , 5.13% glass, 4.37% styrofoam, and 3.44% contained other debris. The marine debris originated in 8 different countries, and it is estimated that there is collectively 223,721 liters (11,635 kg) covering the shores of the entire island. Remarkably, debris found on Little Cayman in 2011 was traced to the 2010 Haitian earthquake relief effort.
NASA Astrophysics Data System (ADS)
Blickley, L.; Currie, J. J.; Kaufman, G. D.
2016-02-01
Marine debris is an identified concern for coastal areas and is known to accumulate in large quantities in the North Pacific Ocean. The proximity of the Main Hawaiian Islands to these "garbage patches" represents an ongoing concern with little understanding of debris origins or efficacy of current mitigation policies. Debris accumulation surveys were conducted monthly between October 2013 and August 2014 and daily during January 2015 at 3 beaches on Maui's coastline. Debris accumulation rates, loads, and sources varied between sites and were influenced by both environmental and anthropogenic factors. Debris accumulation was strongly influenced by the temporal scale of sampling, with daily surveys showing a significant increase in accumulation rate. Plastics were the most common debris item at each site ranging from local, land-based debris including cigarette butts, straws, and food wrappers, to foreign, ocean-based debris such as oyster spacer tubes and hagfish traps. The results of this study indicate that the passage of a tobacco free beaches bill on Maui has not significantly reduced the amount of tobacco related debris. Alternatively, a ban on plastic grocery bags has eliminated this type of debris from Maui's shorelines, with no bags found at any of the sampling sites. The wide spread origins of collected debris further suggests that mitigation strategies to reduce debris will need to take place across hundreds of local municipalities. The efficacy of marine debris policies furthermore depends on enforcement and implementation strategy, as current results suggest policy enforcement at the producer level affords more effective results than that at the consumer level. Local debris mitigation actions have nevertheless been shown to affect debris loads, and municipalities are therefore encouraged to adopt a holistic combination of policy, community-based debris removal programs, increased public awareness, and ongoing monitoring to address marine debris.
Using PVDF to locate the debris cloud impact position
NASA Astrophysics Data System (ADS)
Pang, Baojun; Liu, Zhidong
2010-03-01
With the increase of space activities, space debris environment has deteriorated. Space debris impact shields of spacecraft creates debris cloud, the debris cloud is a threat to module wall. In order to conduct an assessment of spacecraft module wall damage impacted by debris cloud, the damage position must be known. In order to design a light weight location system, polyvinylidene fluoride (PVDF) has been studied. Hyper-velocity impact experiments were conducted using two-stage light gas gun, the experimental results indicate that: the virtual wave front location method can be extended to debris cloud impact location, PVDF can be used to locate the damage position effectively, the signals gathered by PVDF from debris cloud impact contain more high frequency components than the signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.
Pasternak, Galia; Zviely, Dov; Ribic, Christine; Ariel, Asaf; Spanier, Ehud
2017-01-01
Marine debris (litter) is a complex problem that affects human activities and the marine environment worldwide. The Clean Coast Program in Israel has had some success in keeping most of the coasts clean most of the time, but without understanding the mechanisms of accumulation of marine debris on the coasts of Israel. In 2012, we initiated a study to characterize the types of marine debris, its origins and spatial distribution. Nineteen surveys were done from June 2012 to March 2015 on eight beaches that spanned the coast of Israel. Average debris density was 12.1 items per 100 m2 and 90% of the items were plastic. The top debris categories were food wrappers and disposables, plastic bags and cigarette butts. However, there was variation in the top debris categories among the beaches indicating that a flexible approach with multiple options will be important when addressing the marine debris problem.
The International Space Station and the Space Debris Environment: 10 Years On
NASA Technical Reports Server (NTRS)
Johnson, Nicholas; Klinkrad, Heiner
2009-01-01
For just over a decade the International Space Station (ISS), the most heavily protected vehicle in Earth orbit, has weathered the space debris environment well. Numerous hypervelocity impact features on the surface of ISS caused by small orbital debris and meteoroids have been observed. In addition to typical impacts seen on the large solar arrays, craters have been discovered on windows, hand rails, thermal blankets, radiators, and even a visiting logistics module. None of these impacts have resulted in any degradation of the operation or mission of the ISS. Validating the rate of small particle impacts on the ISS as predicted by space debris environment models is extremely complex. First, the ISS has been an evolving structure, from its original 20 metric tons to nearly 300 metric tons (excluding logistics vehicles) ten years later. Hence, the anticipated space debris impact rate has grown with the increasing size of ISS. Secondly, a comprehensive visual or photographic examination of the complete exterior of ISS has never been accomplished. In fact, most impact features have been discovered serendipitously. Further complications include the estimation of the size of an impacting particle without knowing its mass, velocity, and angle of impact and the effect of shadowing by some ISS components. Inadvertently and deliberately, the ISS has also been the source of space debris. The U.S. Space Surveillance Network officially cataloged 65 debris from ISS from November 1998 to November 2008: from lost cameras, sockets, and tool bags to intentionally discarded equipment and an old space suit. Fortunately, the majority of these objects fall back to Earth quickly with an average orbital lifetime of less than two months and a maximum orbital lifetime of a little more than 15 months. The cumulative total number of debris object-years is almost exactly 10, the equivalent of one piece of debris remaining in orbit for 10 years. An unknown number of debris too small to be tracked and cataloged have also been generated, but normally with even shorter orbital lifetimes. Finally, eight collision avoidance maneuvers have been performed to avoid potential collisions between ISS and large, tracked space debris. The most recent such maneuver was accomplished by ESA's Automated Transfer Vehicle, the Jules Verne, just three months before the 10th anniversary of the launch of ISS's first element.
Material Density Distribution of Small Debris in Earth Orbit
NASA Technical Reports Server (NTRS)
Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.
2008-01-01
Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in Earth orbit. The near Earth environment is thus parameterized by debris density percentages within subsections of that environment. This model version is used in the upgraded NASA Orbital Debris Engineering Model (ORDEM).
CDOT rapid debris removal research project.
DOT National Transportation Integrated Search
2014-07-01
Highway debris represents a traffic safety problem that requires a prompt response from state or local transportation : agencies. The most common practice for debris removal currently is for agency personnel to leave their vehicles and : remove the d...
NASA Technical Reports Server (NTRS)
Liou, J. C.
2012-01-01
Presentation outlne: (1) The NASA Orbital Debris (OD) Engineering Model -- A mathematical model capable of predicting OD impact risks for the ISS and other critical space assets (2) The NASA OD Evolutionary Model -- A physical model capable of predicting future debris environment based on user-specified scenarios (3) The NASA Standard Satellite Breakup Model -- A model describing the outcome of a satellite breakup (explosion or collision)
Interagency Report on Orbital Debris, 1995
NASA Technical Reports Server (NTRS)
1995-01-01
This 1995 report updates the findings and recommendations of the 1989 report and reflects the authors' progress in understanding and managing the orbital debris environment. It provides an up-to-date portrait of their measurement, modeling, and mitigation efforts; and a set of recommendations outlining specific steps they should pursue, both domestically and internationally, to minimize the potential hazard posed by orbital debris.
Improvements to NASA's Debris Assessment Software
NASA Technical Reports Server (NTRS)
Opiela, J.; Johnson, Nicholas L.
2007-01-01
NASA's Debris Assessment Software (DAS) has been substantially revised and expanded. DAS is designed to assist NASA programs in performing orbital debris assessments, as described in NASA s Guidelines and Assessment Procedures for Limiting Orbital Debris. The extensive upgrade of DAS was undertaken to reflect changes in the debris mitigation guidelines, to incorporate recommendations from DAS users, and to take advantage of recent software capabilities for greater user utility. DAS 2.0 includes an updated environment model and enhanced orbital propagators and reentry-survivability models. The ORDEM96 debris environment model has been replaced by ORDEM2000 in DAS 2.0, which is also designed to accept anticipated revisions to the environment definition. Numerous upgrades have also been applied to the assessment of human casualty potential due to reentering debris. Routines derived from the Object Reentry Survival Analysis Tool, Version 6 (ORSAT 6), determine which objects are assessed to survive reentry, and the resulting risk of human casualty is calculated directly based upon the orbital inclination and a future world population database. When evaluating reentry risks, the user may enter up to 200 unique hardware components for each launched object, in up to four nested levels. This last feature allows the software to more accurately model components that are exposed below the initial breakup altitude. The new DAS 2.0 provides an updated set of tools for users to assess their mission s compliance with the NASA Safety Standard and does so with a clear and easy-to-understand interface. The new native Microsoft Windows graphical user interface (GUI) is a vast improvement over the previous DOS-based interface. In the new version, functions are more-clearly laid out, and the GUI includes the standard Windows-style Help functions. The underlying routines within the DAS code are also improved.
The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi
2012-01-01
The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.
Orbital debris and near-Earth environmental management: A chronology
NASA Technical Reports Server (NTRS)
Portree, David S. F.; Loftus, Joseph P., Jr.
1993-01-01
This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.
ORDEM 3.0 and MASTER-2009 Modeled Small Debris Population Comparison
NASA Technical Reports Server (NTRS)
Krisko, P. H.; Flegel, S.
2014-01-01
The latest versions of the two premier orbital debris engineering models, NASA's ORDEM 3.0 and ESA's MASTER-2009, have been publically released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in low Earth orbit (LEO) to geosynchronous orbit (GEO). The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs, particularly in LEO. These objects are much more numerous than larger trackable debris and can have enough momentum to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. In this paper, we present and detail the 1 mm to 1 cm orbital debris populations from both ORDEM 3.0 and MASTER-2009 in LEO. We review population categories: particle sources for MASTER-2009, particle densities for ORDEM 3.0. We describe data sources and their uses, and supporting models. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1988-01-01
The probable amount, sizes, and relative velocities of debris are discussed, giving examples of the damage caused by debris, and focusing on the use of mathematical models to forecast the debris environment and solar activity now and in the future. Most debris are within 2,000 km of the earth's surface. The average velocity of spacecraft-debris collisions varies from 9 km/sec at 30 degrees of inclination to 13 km/sec near polar orbits. Mathematical models predict a 5 percent per year increase in the large-fragment population, producing a small-fragment population increase of 10 percent per year until the year 2060, the time of critical density. A 10 percent increase in the large population would cause the critical density to be reached around 2025.
Remote Sensing of Plastic Debris
NASA Astrophysics Data System (ADS)
Garaba, S. P.; Dierssen, H. M.
2016-02-01
Plastic debris is becoming a nuisance in the environment and as a result there has been a dire need to synoptically detect and quantify them in the ocean and on land. We investigate the possible utility of spectral information determined from hand held, airborne and satellite remote sensing tools in the detection and identification polymer source of plastic debris. Sampled debris will be compared to our derived spectral library of typical raw polymer sources found at sea and in household waste. Additional work will be to determine ways to estimate the abundance of plastic debris in target areas. Implications of successful remote detection, tracking and quantification of plastic debris will be towards validating field observations over large areas and at repeated time intervals both on land and at sea.
[Research progress in post-fire debris flow].
Di, Xue-ying; Tao, Yu-zhu
2013-08-01
The occurrence of the secondary disasters of forest fire has significant impacts on the environment quality and human health and safety. Post-fire debris flow is one of the most hazardous secondary disasters of forest fire. To understand the occurrence conditions of post-fire debris flow and to master its occurrence situation are the critical elements in post-fire hazard assessment. From the viewpoints of vegetation, precipitation threshold and debris flow material sources, this paper elaborated the impacts of forest fire on the debris flow, analyzed the geologic and geomorphic conditions, precipitation and slope condition that caused the post-fire debris flow as well as the primary mechanisms of debris-flow initiation caused by shallow landslide or surface runoff, and reviewed the research progress in the prediction and forecast of post-fire debris flow and the related control measures. In the future research, four aspects to be focused on were proposed, i. e., the quantification of the relationships between the fire behaviors and environmental factors and the post-fire debris flow, the quantitative research on the post-fire debris flow initiation and movement processes, the mechanistic model of post-fire debris flow, and the rapid and efficient control countermeasures of post-fire debris flow.
Deliberate Satellite Fragmentations and their Effects on the Long-Term Space Environment
NASA Technical Reports Server (NTRS)
Johnson, N. L.
2010-01-01
Since 1964 at least 56 spacecraft and two launch vehicle upper stages have been deliberately fragmented while in Earth orbit. Many of these events have had no long-lasting effects on the near-Earth space environment, but one represents the most devastating satellite breakup in history that will pose hazards to operational spacecraft in low Earth orbit for decades to come. International space debris mitigation guidelines now call for avoiding the creation of long-lived debris from intentional satellite fragmentations. This paper summarizes the reasons for and environmental consequences of deliberate satellite fragmentations. Contrary to popular belief, only one in five deliberate fragmentations have been related to the testing of anti-satellite weapon systems, for which only one such test has occurred during the past 25 years. Other reasons for deliberate satellite fragmentations range from engineering tests to protecting national security information. Whereas the majority of deliberate satellite fragmentations have occurred in low Earth orbits, some have involved spacecraft in highly elliptical orbits. The former Soviet Union and the current Russian Federation have been responsible for 90% of all identified deliberate on-orbit satellite fragmentations.
NASA Technical Reports Server (NTRS)
Matney, M.; Barker, E.; Seitzer, P.; Abercromby, K. J.; Rodriquez, H. M.
2006-01-01
NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit suitable for tracking purposes. Telescopes operating in survey mode, however, randomly observe objects that pass through their field of view. Typically, these short-arc observation are inadequate to obtain detailed orbits, but can be used to estimate approximate circular orbit elements (semimajor axis, inclination, and ascending node). From this information, it should be possible to make statistical inferences about the orbital distributions of the GEO population bright enough to be observed by the system. The Michigan Orbital Debris Survey Telescope (MODEST) has been making such statistical surveys of the GEO region for four years. During that time, the telescope has made enough observations in enough areas of the GEO belt to have had nearly complete coverage. That means that almost all objects in all possible orbits in the GEO and near- GEO region had a non-zero chance of being observed. Some regions (such as those near zero inclination) have had good coverage, while others are poorly covered. Nevertheless, it is possible to remove these statistical biases and reconstruct the orbit populations within the limits of sampling error. In this paper, these statistical techniques and assumptions are described, and the techniques are applied to the current MODEST data set to arrive at our best estimate of the GEO orbit population distribution.
Microplastic-associated Bacterial Assemblages in the Intertidal Zone
NASA Astrophysics Data System (ADS)
Jiang, P.; Zhao, S.; Zhu, L.; Li, D.
2017-12-01
Plastic debris is posing a planetary-scale threat. As a zone where terrestrial and marine ecosystems interactions occur, the accumulation of plastic marine debris (PMD) in intertidal environments has been well documented. But the information of plastic-associated microbial community (the "Plastisphere") in the intertidal zone is scanty. Utilizing the high-throughput sequencing, we profiled the bacterial communities attached to microplastic samples from the intertidal locations around Yangtze estuary. The structure and composition of Plastisphere communities in current study varied significantly with geographical stations. The taxonomic composition on microplastic samples implied their sedimental and aquatic origins. Some members of hydrocarbon degrading microorganisms and potential pathogens were detected on microplastic. Overall, our findings fuel the evidence for the occurrence of diverse microbial assemblages on PMD and improving our understanding of Plastisphere ecology, which could support the management action and policy change related to PMD.
Plastics and beaches: a degrading relationship.
Corcoran, Patricia L; Biesinger, Mark C; Grifi, Meriem
2009-01-01
Plastic debris in Earth's oceans presents a serious environmental issue because breakdown by chemical weathering and mechanical erosion is minimal at sea. Following deposition on beaches, plastic materials are exposed to UV radiation and physical processes controlled by wind, current, wave and tide action. Plastic particles from Kauai's beaches were sampled to determine relationships between composition, surface textures, and plastics degradation. SEM images indicated that beach plastics feature both mechanically eroded and chemically weathered surface textures. Granular oxidation textures were concentrated along mechanically weakened fractures and along the margins of the more rounded plastic particles. Particles with oxidation textures also produced the most intense peaks in the lower wavenumber region of FTIR spectra. The textural results suggest that plastic debris is particularly conducive to both chemical and mechanical breakdown in beach environments, which cannot be said for plastics in other natural settings on Earth.
Space Debris Surfaces - Probability of no penetration versus impact velocity and obliquity
NASA Technical Reports Server (NTRS)
Elfer, N.; Meibaum, R.; Olsen, G.
1992-01-01
A collection of computer codes called Space Debris Surfaces (SD-SURF), have been developed to assist in the design and analysis of space debris protection systems. An SD-SURF analysis will show which obliquities and velocities are most likely to cause a penetration to help the analyst select a shield design best suited to the predominant penetration mechanism. Examples of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration are presented.
NASA Astrophysics Data System (ADS)
Weiss, C.
2017-12-01
Marine Debris is defined by NOAA (National Oceanic and Atmospheric Administration) as any man made object discarded, disposed of or abandoned that enters the coastal or marine environment. All marine debris can be traced back to one source: PEOPLE. The mishandling of waste materials and other items makes up the bulk of the marine debris problem. -Debris can smother sensitive ecosystems. -Pollution and clogging of watersheds -Medical and personal hygiene products can effect beach goers -Grocery bags, trash bags, fishing line can wrap around propellers and cause damage
NASA Technical Reports Server (NTRS)
Jarvis, K. S.; Thumm, T. L.; Matney, M. J.; Jorgensen, K.; Stansbery, E. G.; Africano, J. L.; Sydney, P. F.; Mulrooney, M. K.
2002-01-01
NASA has been using the charged coupled device (CCD) debris telescope (CDT)--a transportable 32-cm Schmidt telescope located near Cloudcroft, New Mexico-to help characterize the debris environment in geosynchronous Earth orbit (GEO). The CDT is equipped with a SITe 512 x 512 CCD camera whose 24 m2 (12.5 arc sec) pixels produce a 1.7 x 1.7-deg field of view. The CDT system can therefore detect l7th-magnitude objects in a 20-sec integration corresponding to an approx. 0.6-m diameter, 0.20 albedo object at 36,000 km. The telescope pointing and CCD operation are computer controlled to collect data automatically for an entire night. The CDT has collected more than 1500 hrs of data since November 1997. This report describes the collection and analysis of 58 nights (approx. 420 hrs) of data acquired in 1998.
Cai, Liqi; Wang, Jundong; Peng, Jinping; Wu, Ziqing; Tan, Xiangling
2018-07-01
Plastic debris represents one of the most prevalent and persistent pollution problems in the marine environment. In particular, microplastics that are mainly degraded from larger plastic debris have become a growing environmental concern. However, studies on the degradation of plastics in the aquatic environment that hydrobios reside in have been limited, while several studies regarding the degradation of plastics have been conducted under outdoor or accelerated weathering conditions. Thus, observation of the degradation of three types of virgin plastic pellets exposed to UV irradiation in three different environments (i.e., simulated seawater, ultrapure water, and a waterless (air) condition) was carried out. Data on the changes in physical and chemical properties were collected. The FTIR spectra showed that hydroxyl groups and carbonyl groups developed in three types of weathered plastic pellets under the air and ultrapure water environmental conditions after 3months of UV irradiation, while only carbonyl groups were found in plastic pellets in the simulated seawater environment. In contrast, the Raman spectra showed no significant changes in the weathered plastic pellets, but there were different intensities of characteristic peaks after exposure to UV irradiation. In addition, SEM images illustrated that granular oxidation, cracks and flakes were common patterns during degradation, and the plastic pellets in the three different environments experienced different levels of chemical weathering. We suggest that further studies on the degradation processes of plastic debris are needed to predict the fate of plastic debris in the environment. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Petro, Andrew J.
1990-01-01
This paper will summarize a range of techniques which have been proposed for controlling the growth of man-made debris in earth orbit. Several techniques developed in studies at the Johnson Space Center will be described in detail. These techniques include the retrieval of inoperative satellites with an orbital maneuvering vehicle and self-disposal devices for satellites and upper stages. Self-disposal devices include propulsive deorbit motors and passive drag-augmentation devices. Concepts for sweeping small debris from the orbital environment will also be described. An evaluation of the technical feasibility and economic practicality of the various control methods will be summarized. In general, methods which prevent the accumulation of large debris objects were found to provide greater promise for control of the debris problem than methods of removing small debris particles.
NASA Technical Reports Server (NTRS)
Strutzenberg, L. L.; Dougherty, N. S.; Liever, P. A.; West, J. S.; Smith, S. D.
2007-01-01
This paper details advances being made in the development of Reynolds-Averaged Navier-Stokes numerical simulation tools, models, and methods for the integrated Space Shuttle Vehicle at launch. The conceptual model and modeling approach described includes the development of multiple computational models to appropriately analyze the potential debris transport for critical debris sources at Lift-Off. The conceptual model described herein involves the integration of propulsion analysis for the nozzle/plume flow with the overall 3D vehicle flowfield at Lift-Off. Debris Transport Analyses are being performed using the Shuttle Lift-Off models to assess the risk to the vehicle from Lift-Off debris and appropriately prioritized mitigation of potential debris sources to continue to reduce vehicle risk. These integrated simulations are being used to evaluate plume-induced debris environments where the multi-plume interactions with the launch facility can potentially accelerate debris particles toward the vehicle.
Orbital Debris: the Growing Threat to Space Operations
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2010-01-01
For nearly 50 years the amount of man-made debris in Earth orbit steadily grew, accounting for about 95% of all cataloged space objects over the past few decades. The Chinese anti-satellite test in January 2007 and the accidental collision of two spacecraft in February 2009 created more than 4000 new cataloged debris, representing an increase of 40% of the official U.S. Satellite Catalog. The frequency of collision avoidance maneuvers for both human space flight and robotic operations is increasing along with the orbital debris population. However, the principal threat to space operations is driven by the smaller and much more numerous uncataloged debris. Although the U.S. and the international aerospace communities have made significant progress in recognizing the hazards of orbital debris and in reducing or eliminating the potential for the creation of new debris, the future environment is expected to worsen without additional corrective measures.
NASA Technical Reports Server (NTRS)
Rhatigan, Jennifer L.; Christiansen, Eric L.; Fleming, Michael L.
1990-01-01
A great deal of experimentation and analysis was performed to quantify penetration thresholds of components which will experience orbital debris impacts. Penetration was found to depend upon mission specific parameters such as orbital altitude, inclination, and orientation of the component; and upon component specific parameters such as material, density and the geometry particular to its shielding. Experimental results are highly dependent upon shield configuration and cannot be extrapolated with confidence to alternate shield configurations. Also, current experimental capabilities are limited to velocities which only approach the lower limit of predicted orbital debris velocities. Therefore, prediction of the penetrating particle size for a particular component having a complex geometry remains highly uncertain. An approach is described which was developed to assess on-orbit survivability of the solar dynamic radiator due to micrometeoroid and space debris impacts. Preliminary analyses are presented to quantify the solar dynamic radiator survivability, and include the type of particle and particle population expected to defeat the radiator bumpering (i.e., penetrate a fluid flow tube). Results of preliminary hypervelocity impact testing performed on radiator panel samples (in the 6 to 7 km/sec velocity range) are also presented. Plans for further analyses and testing are discussed. These efforts are expected to lead to a radiator design which will perform to requirements over the expected lifetime.
NASA Astrophysics Data System (ADS)
Ourmieres, Yann; Mansui, Jérémy; Molcard, Anne; Galgani, François; Poitou, Isabelle
2018-03-01
The aim of the present study is to evidence the role of a boundary current and meteorological conditions in the transport and stranding of floating marine debris. The used data are from a beach survey and an inter-annual unique effort of marine debris sightings along the French Riviera in the North-Western Mediterranean region. Offshore data have been collected during oceanic cruises while beach surveys were performed around Antibes city. Debris were found on 97% of the ocean transects, with a large spatial and temporal variability, showing contrasted areas of low ( 1 item/km2) and of high (> 10 items/km2) debris densities. Results suggest that the debris spatio-temporal distribution is related to the Northern current (NC) dynamics, the regional boundary current, with accumulation patterns in its core and external edge. By playing a role in the alongshore transport, such a boundary current can form a cross-shore transport barrier. Stranding events can then occur after strong on-shore wind bursts modifying the sea surface dynamics and breaking this transport barrier. It is also shown that episodic enhancement of the stranding rate can be explained by combining the NC dynamics with the wind forcing and the rainfall effect via the local river run-off. Conversely, off-shore wind bursts could also free the marine litter from the boundary current and export them towards the open sea.
Using GEO Optical Observations to Infer Orbit Populations
NASA Technical Reports Server (NTRS)
Matney, Mark; Africano, John
2002-01-01
NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit. When observing very dim objects with small field-of-view telescopes, though, the observations are generally too short to obtain accurate orbital elements. However, it is possible to use such observations to statistically characterize the small object environment. A telescope pointed at a particular spot could potentially see objects in a number of different orbits. Inevitably, when looking at one region for certain types of orbits, there are objects in other types of orbits that cannot be seen. Observation campaigns are designed with these limitations in mind and are set up to span a number of regions of the sky, making it possible to sample all potential orbits under consideration. Each orbit is not seen with the same probability, however, so there are observation biases intrinsic to any observation campaign. Fortunately, it is possible to remove such biases and reconstruct a meaningful estimate of the statistical orbit populations of small objects in GEO. This information, in turn, can be used to investigate the nature of debris sources and to characterize the risk to GEO spacecraft. This paper describes these statistical tools and presents estimates of small object GEO populations.
Preserving the Near-Earth Space Environment with Green Engineering and Operations
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2009-01-01
Green engineering and operations are essential to preserving the near-Earth space environment for future generations. The U.S. and the international aerospace community have been proactive in addressing the threat of the increasing orbital debris population and the risks to people and property from reentering debris. NASA has led this activity first by devoting resources to thoroughly understand the technical issues and then by developing effective and acceptable policies and guidelines. NASA also worked closely with the international community to ensure that the US aerospace industry was not placed at an economic disadvantage. In the long term, the removal of large orbital debris will be essential to the sustainability of space operations.
Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.
Martin, Jeannie Miller
2013-09-15
Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year. Copyright © 2013 Elsevier Ltd. All rights reserved.
Pasternak, Galia; Zviely, Dov; Ribic, Christine A; Ariel, Asaf; Spanier, Ehud
2017-01-30
Marine debris (litter) is a complex problem that affects human activities and the marine environment worldwide. The Clean Coast Program in Israel has had some success in keeping most of the coasts clean most of the time, but without understanding the mechanisms of accumulation of marine debris on the coasts of Israel. In 2012, we initiated a study to characterize the types of marine debris, its origins and spatial distribution. Nineteen surveys were done from June 2012 to March 2015 on eight beaches that spanned the coast of Israel. Average debris density was 12.1 items per 100m 2 and 90% of the items were plastic. The top debris categories were food wrappers and disposables, plastic bags and cigarette butts. However, there was variation in the top debris categories among the beaches indicating that a flexible approach with multiple options will be important when addressing the marine debris problem. Copyright © 2016 Elsevier Ltd. All rights reserved.
Augmentation of UK Space Debris Observing Capabilities Using Univiersity Optical Telescopes
NASA Astrophysics Data System (ADS)
Herridge, Philip; Brown, David; Crowther, Richard
2013-08-01
The study of space debris requires a range of different sensors. Debris population monitoring requires survey, follow-on and characterisation capable sensors. In order to fully participate in space debris measurement the range of sensors available to the UK Space Agency needs to be augmented with additional capability. One source of untapped resource resides within the UK university sector. This paper discusses investigation into extending the optical sensor diversity available to the UK for participation in study of the debris environment through a collaboration between Space Insight Limited, a commercial company providing Space Situational Awareness (SSA) services to the UK Space Agency, and the Astronomy Group at the University of St Andrews.
NASA Astrophysics Data System (ADS)
Song, Chunqiao; Sheng, Yongwei; Ke, Linghong; Nie, Yong; Wang, Jida
2016-09-01
Glacial lakes, as an important component of the cryosphere in the southeastern Tibetan Plateau (SETP) in response to climate change, pose significant threats to the downstream lives and properties of people, engineering construction, and ecological environment via outburst floods, yet we currently have limited knowledge of their distribution, evolution, and the driving mechanism of rapid expansions due to the low accessibility and harsh natural conditions. By integrating optical imagery, satellite altimetry and digital elevation model (DEM), this study presents a regional-scale investigation of glacial lake dynamics across two river basins of the SETP during 1988-2013 and further explores the glacial-hydrogeomorphic process of rapidly expanding lakes. In total 1278 and 1396 glacial lakes were inventoried in 1988 and 2013, respectively. Approximately 92.4% of the lakes in 2013 are not in contact with modern glaciers, and the remaining 7.6% includes 27 (1.9%) debris-contact lakes (in contact with debris-covered ice) and 80 (5.7%) cirque lakes. In categorizing lake variations, we found that debris-contact proglacial lakes experienced much more rapid expansions (∼75%) than cirque lakes (∼7%) and non-glacier-contact lakes (∼3%). To explore the cause of rapid expansion for these debris-contact lakes, we further investigated the mass balance of parent glaciers and elevation changes in lake surfaces and debris-covered glacier tongues using time-series Landsat images, ICESat altimetry, and DEM. Results reveal that the upstream expansion of debris-contact proglacial lakes was not directly associated with rising water levels but with a geomorphological alternation of upstream lake basins caused by melting-induced debris subsidence at glacier termini. This suggests that the hydrogeomorphic process of glacier thinning and retreat, in comparison with direct glacial meltwater alone, may have played a dominant role in the recent glacial lake expansion observed across the SETP. Our findings assist in understanding the expansion mechanism of debris-contact proglacial lakes, which facilitates early recognition of potential glacial lake hazards in this region.
Variations in debris distribution and thickness on Himalayan debris-covered glaciers
NASA Astrophysics Data System (ADS)
Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil
2016-04-01
Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1 to 2 m. Temporal variability was a result of differential surface lowering, spatial variability in glacier surface velocities and intermittent input of debris to the glacier surface through mass movement. Most debris thickening is seen in initially thin areas of debris (< 0.4 m) or within ~1 km of the glacier terminus. Surface energy balance modelling is currently underway to determine the effect of these variations in debris thickness, and other parameters mentioned previously. Future work will be to calculate debris transport flux on the surface of Khumbu Glacier using the time series of debris thickness maps. Debris flux and refined energy balance calculations will then be incorporated into a 3-D ice flow model to determine the response of Khumbu Glacier to debris transport and climatic changes.
The Fast Debris Evolution Model
NASA Astrophysics Data System (ADS)
Lewis, Hugh G.; Swinerd, Graham; Newland, Rebecca; Saunders, Arrun
The ‘Particles-in-a-box' (PIB) model introduced by Talent (1992) removed the need for computerintensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FaDE), employs a first-order differential equation to describe the rate at which new objects (˜ 10 cm) are added and removed from the environment. Whilst Talent (1992) based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FaDE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FaDE model has been implemented as a client-side, web-based service using Javascript embedded within a HTML document. Due to the simple nature of the algorithm, FaDE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ˜ 10 cm low Earth orbit (LEO) debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FaDE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly, its speed and flexibility allows the user to explore and understand the evolution of the space debris environment.
NASA Astrophysics Data System (ADS)
Sanga, Ramesh; Srinivasan, V. S.; Sivaramakrishna, M.; Prabhakara Rao, G.
2018-07-01
In rotating machinery due to continuous rotational induced wear and tear, metallic debris will be produced and mixes with the in-service lubricant oil over the course of time. This debris gives the sign of potential machine failure due to the aging of critical parts like gears and bearings. The size and type of wear debris has a direct relationship with the degree of wear in the machine and gives information about the healthiness of equipment. This article presents an inductive quasi-digital sensor to detect the metallic debris, its type; size in the lubrication oil of rotating machinery. A microcontroller based low cost, low power, high resolution and high precise instrument with alarm indication and LCD is developed to detect ferrous debris of sizes from 30 µm and non-ferrous debris of 50 µm. It is thoroughly tested and calibrated with ferrous, non-ferrous debris of different sizes in the air environment. Finally, an experiment is conducted to check the performance of the instrument by circulating lubricant oil containing ferrous, non-ferrous debris through the sensor.
McLain, Derek R.; Liu, Christine; Sudowe, Ralf
2017-11-02
The majority of radiochemical separation schemes available have been developed for environmental samples that are not necessarily representative of those found in an urban environment. However, it is much more likely that an incident involving a radiation dispersal device (RDD) would occur in an urban or metropolitan area. It is unclear if the currently available separation schemes would be effective in such an event. It is therefore important to determine if the current schemes would be adequate, or to find efficient and accurate ways to separate radiological material from urban debris. One important radiological material that could be used inmore » an RDD is 90Sr. Part I of this work investigated the effects steel had on strontium separations, while this work investigates cement and concrete. This research demonstrates that the individual elements present in a cement and concrete sample matrix can give rise to significant interferences with extraction chromatographic separations. In conclusion, solutions of the constituents mixed in representative ratios; however, show fewer problems« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLain, Derek R.; Liu, Christine; Sudowe, Ralf
The majority of radiochemical separation schemes available have been developed for environmental samples that are not necessarily representative of those found in an urban environment. However, it is much more likely that an incident involving a radiation dispersal device (RDD) would occur in an urban or metropolitan area. It is unclear if the currently available separation schemes would be effective in such an event. It is therefore important to determine if the current schemes would be adequate, or to find efficient and accurate ways to separate radiological material from urban debris. One important radiological material that could be used inmore » an RDD is 90Sr. Part I of this work investigated the effects steel had on strontium separations, while this work investigates cement and concrete. This research demonstrates that the individual elements present in a cement and concrete sample matrix can give rise to significant interferences with extraction chromatographic separations. In conclusion, solutions of the constituents mixed in representative ratios; however, show fewer problems« less
Synthetic polymers in the marine environment: a rapidly increasing, long-term threat.
Moore, Charles James
2008-10-01
Synthetic polymers, commonly known as plastics, have been entering the marine environment in quantities paralleling their level of production over the last half century. However, in the last two decades of the 20th Century, the deposition rate accelerated past the rate of production, and plastics are now one of the most common and persistent pollutants in ocean waters and beaches worldwide. Thirty years ago the prevailing attitude of the plastic industry was that "plastic litter is a very small proportion of all litter and causes no harm to the environment except as an eyesore" [Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842-852]. Between 1960 and 2000, the world production of plastic resins increased 25-fold, while recovery of the material remained below 5%. Between 1970 and 2003, plastics became the fastest growing segment of the US municipal waste stream, increasing nine-fold, and marine litter is now 60-80% plastic, reaching 90-95% in some areas. While undoubtedly still an eyesore, plastic debris today is having significant harmful effects on marine biota. Albatross, fulmars, shearwaters and petrels mistake floating plastics for food, and many individuals of these species are affected; in fact, 44% of all seabird species are known to ingest plastic. Sea turtles ingest plastic bags, fishing line and other plastics, as do 26 species of cetaceans. In all, 267 species of marine organisms worldwide are known to have been affected by plastic debris, a number that will increase as smaller organisms are assessed. The number of fish, birds, and mammals that succumb each year to derelict fishing nets and lines in which they become entangled cannot be reliably known; but estimates are in the millions. We divide marine plastic debris into two categories: macro, >5 mm and micro, <5 mm. While macro-debris may sometimes be traced to its origin by object identification or markings, micro-debris, consisting of particles of two main varieties, (1) fragments broken from larger objects, and (2) resin pellets and powders, the basic thermoplastic industry feedstocks, are difficult to trace. Ingestion of plastic micro-debris by filter feeders at the base of the food web is known to occur, but has not been quantified. Ingestion of degraded plastic pellets and fragments raises toxicity concerns, since plastics are known to adsorb hydrophobic pollutants. The potential bioavailability of compounds added to plastics at the time of manufacture, as well as those adsorbed from the environment are complex issues that merit more widespread investigation. The physiological effects of any bioavailable compounds desorbed from plastics by marine biota are being directly investigated, since it was found 20 years ago that the mass of ingested plastic in Great Shearwaters was positively correlated with PCBs in their fat and eggs. Colonization of plastic marine debris by sessile organisms provides a vector for transport of alien species in the ocean environment and may threaten marine biodiversity. There is also potential danger to marine ecosystems from the accumulation of plastic debris on the sea floor. The accumulation of such debris can inhibit gas exchange between the overlying waters and the pore waters of the sediments, and disrupt or smother inhabitants of the benthos. The extent of this problem and its effects have recently begun to be investigated. A little more than half of all thermoplastics will sink in seawater.
Assessment of Debris Flow Hazards, North Mountain, Phoenix, AZ
NASA Astrophysics Data System (ADS)
Reavis, K. J.; Wasklewicz, T. A.
2014-12-01
Urban sprawl in many western U.S. cities has expanded development onto alluvial fans. In the case of metropolitan Phoenix, AZ (MPA), urban sprawl has led to an exponential outward growth into surrounding mountainous areas and onto alluvial fans. Building on alluvial fans places humans at greater risk to flooding and debris flow hazards. Recent research has shown debris flows often supply large quantities of material to many alluvial fans in MPA. However, the risk of debris flows to built environments is relatively unknown. We use a 2D debris flow modeling approach, aided by high-resolution airborne LiDAR and terrestrial laser scanning (TLS) topographic data, to examine debris flow behavior in a densely populated portion of the MPA to assess the risk and vulnerability of debris flow damage to the built infrastructure. A calibrated 2D debris flow model is developed for a "known" recent debris flow at an undeveloped site in MPA. The calibrated model and two other model scenarios are applied to a populated area with historical evidence of debris flow activity. Results from the modeled scenarios show evidence of debris flow damage to houses built on the alluvial fan. Debris flow inundation is also evident on streets on the fan. We use housing values and building damage to estimate the costs assocaited with various modeled debris flow scenarios.
NASA Technical Reports Server (NTRS)
Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Montague, Nancy L.; Wortman, Jim J.; Kassel, Phillip C.; Kinard, William H.
1992-01-01
The purpose of the Interplanetary Dust Experiment (IDE) on the Long Duration Exposure Facility (LDEF) was to sample the cosmic dust environment and to use the spatio-temporal aspect of the experiment to distinguish between the various components of the environment: zodiacal cloud, beta meteoroids, meteor streams, interstellar dust, and orbital debris. It was found that the introduction of precise time and even rudimentary directionality as co-lateral observables in sampling the particulate environment in near-Earth space produces an enormous qualitative improvement in the information content of the impact data. The orbital debris population is extremely clumpy, being dominated by persistent clouds in which the fluxes may rise orders of magnitude above the background. The IDE data suggest a strategy to minimize the damage to sensitive spacecraft components, using the observed characteristics of cloud encounters.
Harnessing Orbital Debris to Sense the Space Environment
NASA Astrophysics Data System (ADS)
Mutschler, S.; Axelrad, P.; Matsuo, T.
A key requirement for accurate space situational awareness (SSA) is knowledge of the non-conservative forces that act on space objects. These effects vary temporally and spatially, driven by the dynamical behavior of space weather. Existing SSA algorithms adjust space weather models based on observations of calibration satellites. However, lack of sufficient data and mismodeling of non-conservative forces cause inaccuracies in space object motion prediction. The uncontrolled nature of debris makes it particularly sensitive to the variations in space weather. Our research takes advantage of this behavior by inverting observations of debris objects to infer the space environment parameters causing their motion. In addition, this research will produce more accurate predictions of the motion of debris objects. The hypothesis of this research is that it is possible to utilize a "cluster" of debris objects, objects within relatively close proximity of each other, to sense their local environment. We focus on deriving parameters of an atmospheric density model to more precisely predict the drag force on LEO objects. An Ensemble Kalman Filter (EnKF) is used for assimilation; the prior ensemble to the posterior ensemble is transformed during the measurement update in a manner that does not require inversion of large matrices. A prior ensemble is utilized to empirically determine the nonlinear relationship between measurements and density parameters. The filter estimates an extended state that includes position and velocity of the debris object, and atmospheric density parameters. The density is parameterized as a grid of values, distributed by latitude and local sidereal time over a spherical shell encompassing Earth. This research focuses on LEO object motion, but it can also be extended to additional orbital regimes for observation and refinement of magnetic field and solar radiation models. An observability analysis of the proposed approach is presented in terms of the measurement cadence necessary to estimate the local space environment.
Martinez, Elodie; Maamaatuaiahutapu, Keitapu; Taillandier, Vincent
2009-09-01
Whatever its origin is, a floating particle at the sea surface is advected by ocean currents. Surface currents could be derived from in situ observations or combined with satellite data. For a better resolution in time and space, we use satellite-derived sea-surface height and wind stress fields with a 1/3 degrees grid from 1993 to 2001 to determine the surface circulation of the South Pacific Ocean. Surface currents are then used to compute the Lagrangian trajectories of floating debris. Results show an accumulation of the debris in the eastern-centre region of the South Pacific subtropical gyre ([120 degrees W; 80 degrees W]-[20 degrees S; 40 degrees S]), resulting from a three-step process: in the first two years, mostly forced by Ekman drift, the debris drift towards the tropical convergence zone ( approximately 30 degrees S). Then they are advected eastward mostly forced by geostrophic currents. They finally reach the eastern-centre region of the South Pacific subtropical gyre from where they could not escape.
Active Removal of Large Debris: Electrical Propulsion Capabilities
NASA Astrophysics Data System (ADS)
Billot Soccodato, Carole; Lorand, Anthony; Perrin, Veronique; Couzin, Patrice; FontdecabaBaig, Jordi
2013-08-01
The risk for current operational spacecraft or future market induced by large space debris, dead satellites or rocket bodies, in Low Earth Orbit has been identified several years ago. Many potential solutions and architectures are traded with a main objective of reducing cost per debris. Based on cost consideration, specially driven by launch cost, solutions constructed on multi debris capture capacities seem to be much affordable The recent technologic evolutions in electric propulsion and solar power generation can be used to combine high potential vehicles for debris removal. The present paper reports the first results of a study funded by CNES that addresses full electric solutions for large debris removal. Some analysis are currently in progress as the study will end in August. It compares the efficiency of in-orbit Active Removal of typical debris using electric propulsion The electric engine performances used in this analysis are demonstrated through a 2012/2013 PPS 5000 on-ground tests campaign. The traded missions are based on a launch in LEO, the possible vehicle architectures with capture means or contact less, the selection of deorbiting or reorbiting strategy. For contact less strategy, the ion-beam shepherd effect towards the debris problematic will be addressed. Vehicle architecture and performance of the overall system will be stated, showing the adequacy and the limits of each solution.
Development of the Space Debris Sensor (SDS)
NASA Technical Reports Server (NTRS)
Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.
2017-01-01
The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2018. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured at NASA Johnson Space Center's Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 microns to 500 microns in size. This paper describes the features of SDS and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.
Development of the Space Debris Sensor
NASA Technical Reports Server (NTRS)
Hamilton, J.; Liou, J.-C.; Anz-Meador, P. D.; Corsaro, B.; Giovane, F.; Matney, M.; Christiansen, E.
2017-01-01
The Space Debris Sensor (SDS) is a NASA experiment scheduled to fly aboard the International Space Station (ISS) starting in 2017. The SDS is the first flight demonstration of the Debris Resistive/Acoustic Grid Orbital NASA-Navy Sensor (DRAGONS) developed and matured by the NASA Orbital Debris Program Office. The DRAGONS concept combines several technologies to characterize the size, speed, direction, and density of small impacting objects. With a minimum two-year operational lifetime, SDS is anticipated to collect statistically significant information on orbital debris ranging from 50 micron to 500 micron in size. This paper describes the SDS features and how data from the ISS mission may be used to update debris environment models. Results of hypervelocity impact testing during the development of SDS and the potential for improvement on future sensors at higher altitudes will be reviewed.
Space Shuttle and Launch Pad Lift-Off Debris Transport Analysis: SRB Plume-Driven
NASA Technical Reports Server (NTRS)
West, Jeff; Strutzenberg, Louis; Dougherty, Sam; Radke, Jerry; Liever, Peter
2007-01-01
This paper discusses the Space Shuttle Lift-Off model developed for potential Lift-Off Debris transport. A critical Lift-Off portion of the flight is defined from approximately 1.5 sec after SRB Ignition up to 'Tower Clear', where exhaust plume interactions with the Launch Pad occur. A CFD model containing the Space Shuttle and Launch Pad geometry has been constructed and executed. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the effects of the Space Shuttle plumes, the wind environment, their interactions with the Launch Pad, and their ultimate effect on potential debris during Lift-Off. Emphasis in this paper is on potential debris that might be caught by the SRB plumes.
The NASA/AFRL Meter Class Autonomous Telescope
NASA Technical Reports Server (NTRS)
Cowardin, H.; Lederer, S.; Buckalew, B.; Frith, J.; Hickson, P.; Glesne, T.; Anz-Meador, P.; Barker, E.; Stansbery, G.; Kervin, P.
2016-01-01
For the past decade, the NASA Orbital Debris Program Office (ODPO) has relied on using various ground-based telescopes in Chile to acquire statistical survey data as well as photometric and spectroscopic data of orbital debris in geosynchronous Earth orbit (GEO). The statistical survey data have been used to supply the Orbital Debris Engineering Model (ORDEM) v.3.0 with debris detections in GEO to better model the environment at altitudes where radar detections are limited. The data produced for the statistical survey ranged from 30 to 40 nights per year, which only accounted for 10% of the possible observing time. Data collection was restricted by ODPO resources and weather conditions. In order to improve the statistical sampling in GEO, as well as observe and sample other orbits, NASA's ODPO with support from the Air Force Research Laboratory (AFRL), has constructed a new observatory dedicated to orbital debris - the Meter Class Autonomous Telescope (MCAT) on Ascension Island. This location provides MCAT with the unique ability to access targets orbiting at an altitude of less than 1,000 km and low inclinations (< 20 deg). This orbital regime currently has little to no coverage by the U.S. Space Surveillance Network. Unlike previous ODPO optical assets, the ability to operate autonomously will allow rapid response observations of break-up events, an observing mode that was only available via radar tasking prior to MCAT's deployment. The primary goal of MCAT is to statistically characterize GEO via daily tasking files uploaded from ODPO. These tasking files define which operating mode to follow, providing the field center, rates, and/or targets to observe over the entire observing period. The system is also capable of tracking fast-moving targets in low Earth orbit (LEO), middle Earth orbit (MEO), as well as highly eccentric orbits like geostationary transfer orbits. On 25 August 2015, MCAT successfully acquired scientific first light, imaging the Bug Nebula and tracked objects in LEO, MEO, and GEO. NASA is working towards characterizing the system and thoroughly testing the integrated hardware and software control to achieve fully autonomous operations by late 2016. This paper will review the history and current status of the MCAT project, the details of the telescope system, and its five currently manifested operating modes.
Eddy covariance and lysimeter measurements of moisture fluxes over supraglacial debris
NASA Astrophysics Data System (ADS)
Brock, Benjamin
2015-04-01
Supraglacial debris covers have the potential to evaporate large quantities of water derived from either sub-debris ice melt or precipitation. Currently, knowledge of evaporation and condensation rates in supraglacial debris is limited due to the difficulty of making direct measurements. This paper presents eddy covariance and lysimeter measurements of moisture fluxes made over a 0.2 m debris layer at Miage debris covered glacier, Italian Alps, during the 2013 ablation season. The meteorological data are complimented by reflectometer measurements of volumetric water fraction in the saturated and vadose zones of the debris layer. The lysimeters were designed specifically to mimic the debris cover and were embedded within the debris matrix, level with the surface. Over the ablation season, the latent heat flux is dominated by evaporation, and the flux magnitude closely follows the daily cycle of daytime solar heating and night time radiative cooling of debris. Mean flux values are of the order of 1 kg m-2 day-1, but often higher for short periods following rainfall. Condensation rates are relatively small and restricted to night time and humid conditions when the debris-atmosphere vapour pressure gradient reverses due to relatively warm air overlying cold debris. The reflectometer measurements provide evidence of vertical water movement through capillary rise in the upper part of the fine-grained debris layer, just above the saturated horizon, and demonstrate how debris bulk water content increases after rainfall. The latent heat flux responds directly to changes in wind speed, indicating that atmospheric turbulence can penetrate porous upper debris layers to the saturated horizon. Hence, vertical sorting of debris sediments and antecedent rainfall are important in determining evaporation rates, in addition to current meteorological conditions. Comparison of lysimeter measurements with rainfall data provides an estimate that between 45% and 89% of rainfall is evaporated directly back to the atmosphere. Rainfall evaporation rates increase with debris impermeability and temperature, with highest rates occurring when a shower falls on hot debris. If these point measurements are representative of larger scales, evaporation rates of the order of 1000 tonnes km-2 day-1 are implied, with higher rates following rainfall. This has important implications for downstream runoff, sub-debris ice melt rates (due to consumption of evaporative latent heat energy) and, possibly, convective atmospheric processes.
Development of the Space Debris Sensor (SDS)
NASA Technical Reports Server (NTRS)
Hamilton, Joe; Liou, J. -C.; Anz-Meador, P.; Matney, M.; Christiansen, E.
2017-01-01
Debris Resistive/Acoustic Grid Orbital Navy-NASA Sensor (DRAGONS) is an impact sensor designed to detect and characterize collisions with small orbital debris: from 50 microns to greater than 1millimeter debris size detection; Characterizes debris size, speed, direction, and density. The Space Debris Sensor (SDS) is a flight demonstration of DRAGONS on the International Space Station: Approximately 1 square meter of detection area facing the ISS velocity vector; Minimum two year mission on Columbus External Payloads Facility (EPF); Minimal obstruction from ISS hardware; Development is nearing final checkout and integration with the ISS; Current launch schedule is SpaceX13, about September 2017, or SpaceX14, about Jan 2018.
Orbiting space debris: Dangers, measurement and mitigation
NASA Astrophysics Data System (ADS)
McNutt, Ross T.
1992-06-01
Space debris is a growing environmental problem. Accumulation of objects in earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, United States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical and diplomatic components. Actions need to be taken now to: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the loss of critical space systems such as the space shuttle or the space station.
First Stage Solid Propellant Multi Debris Thermal Analysis
NASA Technical Reports Server (NTRS)
Toleman, Benjamin M.
2011-01-01
The crew launch vehicle considered for the Constellation (Cx) Program utilizes a first stage solid rocket motor. If an abort is initiated in first stage flight the Crew Module (CM) will separate and be pulled away from the launch vehicle via a Launch Abort System (LAS) in order to safely and quickly carry the crew away from the malfunction launch vehicle. Having aborted the mission, the launch vehicle will likely be destroyed via a Flight Termination System (FTS) in order to prevent it from errantly traversing back over land and posing a risk to the public. The resulting launch vehicle debris field, composed primarily of first stage solid propellant, poses a threat to the CM. The harsh radiative thermal environment induced by surrounding burning propellant debris may lead to CM parachute failure. A methodology, detailed herein, has been developed to address this concern and quantify the risk of first stage propellant debris leading to radiative thermal demise of the CM parachutes. Utilizing basic thermal radiation principles, a software program was developed to calculate parachute temperature as a function of time for a given abort trajectory and debris piece trajectory set. Two test cases, considered worst-case aborts with regard to launch vehicle debris environments, were analyzed using the simulation: an abort declared at Mach 1 and an abort declared at maximum dynamic pressure (Max Q). For both cases, the resulting temperature profiles indicated that thermal limits for the parachutes were not exceeded. However, short duration close encounters by single debris pieces did have a significant effect on parachute temperature, with magnitudes on the order of 10 s of degrees Fahrenheit. Therefore while these two test cases did not indicate exceedance of thermal limits, in order to quantify the risk of parachute failure due to radiative effects from the abort environment, a more thorough probability-based analysis using the methodology demonstrated herein must be performed.
First Stage Solid Propellant Multiply Debris Thermal Analysis
NASA Technical Reports Server (NTRS)
Toleman, Benjamin M.
2011-01-01
Destruction of a solid rocket stage of a launch vehicle can create a thermal radiation hazard for an aborting crew module. This hazard was assessed for the Constellation Program (Cx) crew and launch vehicle concept. For this concept, if an abort was initiated in first stage flight, the Crew Module (CM) will separate and be pulled away from the malfunctioning launch vehicle via a Launch Abort System (LAS). Having aborted the mission, the launch vehicle will likely be destroyed via a Flight Termination System (FTS) in order to prevent it from errantly traversing back over land and posing a risk to the public. The resulting launch vehicle debris field, composed primarily of first stage solid propellant, poses a threat to the CM. The harsh radiative thermal environment, caused by surrounding burning propellant debris, may lead to CM parachute failure. A methodology, detailed herein, has been developed to address this concern and to quantify the risk of first stage propellant debris leading to the thermal demise of the CM parachutes. Utilizing basic thermal radiation principles, a software program was developed to calculate parachute temperature as a function of time for a given abort trajectory and debris piece trajectory set. Two test cases, considered worst case aborts with regard to launch vehicle debris environments, were analyzed using the simulation: an abort declared at Mach 1 and an abort declared at maximum dynamic pressure (Max Q). For both cases, the resulting temperature profiles indicated that thermal limits for the parachutes were not exceeded. However, short duration close encounters by single debris pieces did have a significant effect on parachute temperature. Therefore while these two test cases did not indicate exceedance of thermal limits, in order to quantify the risk of parachute failure due to radiative effects from the abort environment, a more thorough probability-based analysis using the methodology demonstrated herein must be performed.
Management of the orbital environment
NASA Technical Reports Server (NTRS)
Loftus, Joseph P., Jr.; Kessler, Donald J.; Anz-Meador, Phillip D.
1991-01-01
Data regarding orbital debris are presented to shed light on the requirements of environmental management in space, and strategies are given for active intervention and operational strategies. Debris are generated by inadvertent explosions of upper stages, intentional military explosions, and collisional breakups. Design and operation practices are set forth for minimizing debris generation and removing useless debris from orbit in the low-earth and geosynchronous orbits. Self-disposal options include propulsive maneuvers, drag-augmentation devices, and tether systems, and the drag devices are described as simple and passive. Active retrieval and disposition are considered, and the difficulty is examined of removing small debris. Active intervention techniques are required since pollution prevention is more effective than remediation for the problems of both earth and space.
NASA Astrophysics Data System (ADS)
Bernhardt, H.; Reiss, D.; Hiesinger, H.; Hauber, E.; Johnsson, A.
2017-11-01
Fan-shaped accumulations of debris flow deposits are common landforms in polar regions such as Svalbard. Although depositional processes in these environments are of high interest to climate as well as Mars-analog research, several parameters, e.g., debris flow recurrence periods, remain poorly constrained. Here, we present an investigation based on remote sensing as well as in situ data of a 0.4 km2 large colluvial fan in Hanaskogdalen, central Spitsbergen. We analyzed high resolution satellite and aerial images covering five decades from 1961 to 2014 and correlated them with lichenometric dating as well as meteorological data. Image analyses and lichenometry deliver consistent results and show that the recurrence period of large debris flows (≥ 400 m3) is about 5 to 10 years, with smaller flows averaging at two per year in the period from 2008 to 2013. While this is up to two orders of magnitude shorter than previous estimates for Svalbard (80 to 500 years), we found the average volume of 220 m3 per individual flow to be similar to previous estimates for the region. Image data also reveal that an avulsion took place between 1961 and 1976, when the active part of the fan moved from its eastern to its western portion. A case study of the effects of a light rain event ( 5 mm/day) in the rainy summer of 2013, which triggered a large debris flow, further shows that even light precipitation can trigger major flows. This is made possible by multiple light rain events or gradual snow melt pre-saturating the permafrost ground and has to be taken into account when predicting the likelihood of potentially hazardous mass wasting in polar regions. Furthermore, our findings imply a current net deposition rate on the colluvial fan of 480 m3/year, which is slightly less than the integrated net deposition rate of 576 to 720 m3/year resulting from the current fan volume divided by the 12,500 to 10,000 years since the onset of fan build-up after the area's deglaciation. However, the actual deposition rate, which should increase in a warmer climate including more rain, cannot be constrained due to effects like ongoing toe-cutting of the debris fan and some flows only causing internal redistributions.
NASA Astrophysics Data System (ADS)
Frith, J.; Barker, E.; Cowardin, H.; Buckalew, B.; Anz-Meador, P.; Lederer, S.
The National Aeronautics and Space Administration (NASA) Orbital Debris Program Office (ODPO) recently commissioned the Meter Class Autonomous Telescope (MCAT) on Ascension Island with the primary goal of obtaining population statistics of the geosynchronous (GEO) orbital debris environment. To help facilitate this, studies have been conducted using MCAT’s known and projected capabilities to estimate the accuracy and timeliness in which it can survey the GEO environment, including collected weather data and the proposed observational data collection cadence. To optimize observing cadences and probability of detection, on-going work using a simulated GEO debris population sampled at various cadences are run through the Constrained Admissible Region Multi Hypotheses Filter (CAR-MHF). The orbits computed from the results are then compared to the simulated data to assess MCAT’s ability to determine accurately the orbits of debris at various sample rates. The goal of this work is to discriminate GEO and near-GEO objects from GEO transfer orbit objects that can appear as GEO objects in the environmental models due to the short arc observation and an assumed circular orbit. The specific methods and results are presented here.
NASA Technical Reports Server (NTRS)
Krisko, Paula H.; Opiela, John N.; Liou, Jer-Chyi; Anz-Meador, Phillip D.; Theall, Jeffrey R.
1999-01-01
The latest update of the NASA orbital debris environment model, EVOLVE 4.0, has been used to study the effect of various proposed debris mitigation measures, including the NASA 25-year guideline. EVOLVE 4.0, which includes updates of the NASA breakup, solar activity, and the orbit propagator models, a GEO analysis option, and non-fragmentation debris source models, allows for the statistical modeling and predicted growth of the particle population >1 mm in characteristic length in LEO and GEO orbits. The initial implementation of this &odel has been to study the sensitivity of the overall LEO debris environment to mitigation measures designed to limit the lifetime of intact objects in LEO orbits. The mitigation measures test matrix for this study included several commonly accepted testing schemes, i.e., the variance of the maximum LEO lifetime from 10 to 50 years, the date of the initial implementation of this policy, the shut off of all explosions at some specified date, and the inclusion of disposal orbits. All are timely studies in that all scenarios have been suggested by researchers and satellite operators as options for the removal of debris from LEO orbits.
Orbital debris environment for spacecraft in low earth orbit
NASA Technical Reports Server (NTRS)
Kessler, Donald J.
1990-01-01
Modeling and measurement results used in formulating an environment model that can be used for the engineering design of spacecraft are reviewed. Earth-based and space-based sensors are analyzed and it is noted that the effects of satellite breakups can be modeled to predict a uncatalogued population, if the nature of the breakup is understood. It is observed that the telescopic data indicate that the current model is too low for sizes slightly larger than 10 cm, and may be too low for sizes between 2 cm and 10 cm, while there is an uncertainty in the current development, especially for sizes smaller than 10 cm, and at altitudes different from 500 km. Projections for the catastrophic collision rate for different growth conditions are made, emphasizing that the rate of growth of fragments will be twice the rate of intact objects.
Rani, Manviri; Shim, Won Joon; Han, Gi Myung; Jang, Mi; Song, Young Kyoung; Hong, Sang Hee
2017-02-01
Ultraviolet stabilizers (UVSs) and antioxidants are the most widely used additives in plastics to enhance the lifetime of polymeric materials. There is growing interest in the roles of plastic marine debris and microplastics as source or vector of toxic substances to marine environment and organisms. However, there is limited information available on plastic associated chemicals, particularly additive chemicals. Therefore, to evaluate their extent of exposure from plastics to the marine environment, we determined UVSs and antioxidants in plastic debris (n=29) collected from beaches along with their corresponding new plastic products in markets (n=27) belonging to food, fisheries, and general use. Antioxidants were present at higher concentrations than UVSs in both plastic debris and new plastics, indicative of their high use over UVSs. Irganox 1076 and Irganox 1010 were more commonly used than other chemicals investigated. The irregular use with high concentration of additive chemicals was observed in short-term use plastic products. Except for Irganox 1076 and UV 326, most antioxidants and UVSs were relatively high in new plastics compared to corresponding plastic marine debris, implying their potential leaching or degradation during use or after disposal. The present study provides quantitative information about additive chemicals contained in plastic marine debris and their new products. These results could be useful for better understanding of environmental exposure to hazardous chemicals through plastic pollution. Copyright © 2016 Elsevier B.V. All rights reserved.
Matched Template Signal Processing for Continuous Wave Laser Tracking of Space Debris
NASA Astrophysics Data System (ADS)
Raj, S.; Ward, R.; Roberts, L.; Fleddermann, R.; Francis, S.; McClellend, D.; Shaddock, D.; Smith, C.
2016-09-01
The build up of space junk in Earth's orbit space is a growing concern as it shares the same orbit as many currently active satellites. As the number of objects increase in these orbits, the likelihood of collisions between satellites and debris will increase [1]. The eventual goal is to be able to maneuver space debris to avoid such collisions. We at SERC aim to accomplish this by using ground based laser facilities that are already being used to track space debris orbit. One potential method to maneuver space debris is using continuous wave lasers and applying photon pressure on the debris and attempt to change the orbit. However most current laser ranging facilities operates using pulsed lasers where a pulse of light is sent out and the time taken for the pulse to return back to the telescope is measured after being reflected by the target. If space debris maneuvering is carried out with a continuous wave laser then two laser sources need to be used for ranging and maneuvering. The aim of this research is to develop a laser ranging system that is compatible with the continuous wave laser; using the same laser source to simultaneously track and maneuver space debris. We aim to accomplish this by modulating the outgoing laser light with pseudo random noise (PRN) codes, time tagging the outgoing light, and utilising a matched filter at the receiver end to extract the various orbital information of the debris.
Space debris mitigation - engineering strategies
NASA Astrophysics Data System (ADS)
Taylor, E.; Hammond, M.
The problem of space debris pollution is acknowledged to be of growing concern by space agencies, leading to recent activities in the field of space debris mitigation. A review of the current (and near-future) mitigation guidelines, handbooks, standards and licensing procedures has identified a number of areas where further work is required. In order for space debris mitigation to be implemented in spacecraft manufacture and operation, the authors suggest that debris-related criteria need to become design parameters (following the same process as applied to reliability and radiation). To meet these parameters, spacecraft manufacturers and operators will need processes (supported by design tools and databases and implementation standards). A particular aspect of debris mitigation, as compared with conventional requirements (e.g. radiation and reliability) is the current and near-future national and international regulatory framework and associated liability aspects. A framework for these implementation standards is presented, in addition to results of in-house research and development on design tools and databases (including collision avoidance in GTO and SSTO and evaluation of failure criteria on composite and aluminium structures).
Benthic plastic debris in marine and fresh water environments.
Corcoran, Patricia L
2015-08-01
This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.
NASA Astrophysics Data System (ADS)
Morgan, Gareth A.; Head, James W.; Marchant, David R.
2011-01-01
The Amazonian period of Mars has been described as static, cold, and dry. Recent analysis of high-resolution imagery of equatorial and mid-latitude regions has revealed an array of young landforms produced in association with ice and liquid water; because near-surface ice in these regions is currently unstable, these ice-and-water-related landforms suggest one or more episodes of martian climate change during the Amazonian. Here we report on the origin and evolution of valley systems within a degraded crater in Noachis Terra, Asimov Crater. The valleys have produced a unique environment in which to study the geomorphic signals of Amazonian climate change. New high-resolution images reveal Hesperian-aged layered basalt with distinctive columnar jointing capping interior crater fill and providing debris, via mass wasting, for the surrounding annular valleys. The occurrence of steep slopes (>20°), relatively narrow (sheltered) valleys, and a source of debris have provided favorable conditions for the preservation of shallow-ice deposits. Detailed mapping reveals morphological evidence for viscous ice flow, in the form of several lobate debris tongues (LDT). Superimposed on LDT are a series of fresh-appearing gullies, with typical alcove, channel, and fan morphologies. The shift from ice-rich viscous-flow formation to gully erosion is best explained as a shift in martian climate, from one compatible with excess snowfall and flow of ice-rich deposits, to one consistent with minor snow and gully formation. Available dating suggests that the climate transition occurred >8 Ma, prior to the formation of other small-scale ice-rich flow features identified elsewhere on Mars that have been interpreted to have formed during the most recent phases of high obliquity. Taken together, these older deposits suggest that multiple climatic shifts have occurred over the last tens of millions of years of martian history.
Climate change impacts on mass movements--case studies from the European Alps.
Stoffel, M; Tiranti, D; Huggel, C
2014-09-15
This paper addresses the current knowledge on climate change impacts on mass movement activity in mountain environments by illustrating characteristic cases of debris flows, rock slope failures and landslides from the French, Italian, and Swiss Alps. It is expected that events are likely to occur less frequently during summer, whereas the anticipated increase of rainfall in spring and fall could likely alter debris-flow activity during the shoulder seasons (March, April, November, and December). The magnitude of debris flows could become larger due to larger amounts of sediment delivered to the channels and as a result of the predicted increase in heavy precipitation events. At the same time, however, debris-flow volumes in high-mountain areas will depend chiefly on the stability and/or movement rates of permafrost bodies, and destabilized rock glaciers could lead to debris flows without historic precedents in the future. The frequency of rock slope failures is likely to increase, as excessively warm air temperatures, glacier shrinkage, as well as permafrost warming and thawing will affect and reduce rock slope stability in the direction that adversely affects rock slope stability. Changes in landslide activity in the French and Western Italian Alps will likely depend on differences in elevation. Above 1500 m asl, the projected decrease in snow season duration in future winters and springs will likely affect the frequency, number and seasonality of landslide reactivations. In Piemonte, for instance, 21st century landslides have been demonstrated to occur more frequently in early spring and to be triggered by moderate rainfalls, but also to occur in smaller numbers. On the contrary, and in line with recent observations, events in autumn, characterized by a large spatial density of landslide occurrences might become more scarce in the Piemonte region. Copyright © 2014 Elsevier B.V. All rights reserved.
Tichavský, Radek; Šilhán, Karel; Tolasz, Radim
2017-02-01
Hydro-geomorphic processes have significantly influenced the recent development of valley floors, river banks and depositional forms in mountain environments, have caused considerable damage to manmade developments and have disrupted forest management. Trees growing along streams are affected by the transported debris mass and provide valuable records of debris flow/flood histories in their tree-ring series. Dendrogeomorphic approaches are currently the most accurate methods for creating a chronology of the debris flow/flood events in forested catchments without any field-monitoring or a stream-gauging station. Comprehensive studies focusing on the detailed chronology of hydro-geomorphic events and analysis of meteorological triggers and weather circulation patterns are still lacking for the studied area. We provide a spatio-temporal reconstruction of hydro-geomorphic events in four catchments of the Hrubý Jeseník Mountains, Czech Republic, with an analysis of their triggering factors using meteorological data from four nearby rain gauges. Increment cores from 794 coniferous trees (Picea abies [L.] Karst.) allowed the identification of 40 hydro-geomorphic events during the period of 1889-2013. Most of the events can be explained by extreme daily rainfalls (≥50mm) occurring in at least one rain gauge. However, in several cases, there was no record of extreme precipitation at rain gauges during the debris flow/flood event year, suggesting extremely localised rainstorms at the mountain summits. We concluded that the localisation, intensity and duration of rainstorms; antecedent moisture conditions; and amount of available sediments all influenced the initiation, spatial distribution and characteristics of hydro-geomorphic events. The most frequent synoptic situations responsible for the extreme rainfalls (1946-2015) were related to the meridional atmospheric circulation pattern. Our results enhance current knowledge of the occurrences and triggers of debris flows/floods in the Central European mountains in transition between temperate oceanic and continental climatic conditions and may prompt further research of these phenomena in the Eastern Sudetes in general. Copyright © 2016 Elsevier B.V. All rights reserved.
Anthropogenic Debris Ingestion by Avifauna in Eastern Australia
Schuyler, Qamar A.; Hardesty, Britta Denise; Townsend, Kathy A.
2016-01-01
Anthropogenic debris in the world’s oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia’s coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia’s avifauna. PMID:27574986
Imam, Mohamed A.; Abdelkafy, Ashraf; Dinah, Feroz; Adhikari, Ajeya
2015-01-01
Background: The purpose of the current study was to determine whether a systematic five-step protocol for debridement and evacuation of bone debris during anterior cruciate ligament reconstruction (ACLR) reduces the presence of such debris on post-operative radiographs. Methods: A five-step protocol for removal of bone debris during arthroscopic assisted ACLR was designed. It was applied to 60 patients undergoing ACLR (Group 1), and high-quality digital radiographs were taken post-operatively in each case to assess for the presence of intra-articular bone debris. A control group of 60 consecutive patients in whom no specific bone debris protocol was applied (Group 2) and their post-operative radiographs were also checked for the presence of intra-articular bone debris. Results: In Group 1, only 15% of post-operative radiographs showed residual bone debris, compared to 69% in Group 2 (p < 0.001). Conclusion: A five-step systematic protocol for bone debris removal during arthroscopic assisted ACLR resulted in a significant decrease in residual bone debris seen on high-quality post-operative radiographs. PMID:27163060
The NASA Meter Class Autonomous Telescope: Ascension Island
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Stansbery, E. G.; Cowardin, H. M.; Hickson, P.; Pace, L. F.; Abercromby, K. J.; Kervin, P. W.
2013-01-01
The Meter Class Autonomous Telescope (MCAT) is the newest optical sensor dedicated to NASA's mission to characterize the space debris environment. It is the successor to a series of optical telescopes developed and operated by the JSC Orbital Debris Program Office (ODPO) to monitor and assess the debris environment in (1) Low Earth Orbit (LEO), (2) Medium Earth Orbit (MEO), and (3) Geosynchronous Orbit (GEO), with emphasis on LEO and GEO altitudes. A joint NASA - Air Force Research Labs project, MCAT is a 1.3m optical telescope dedicated to debris research. Its optical path and sensor yield a large survey fence at the cutting edge of current detector performance. It has four primary operational observing modes, two of which were not computationally feasible a decade ago. Operations are supported by a sophisticated software suite that monitors clouds and weather conditions, and controls everything from data collection to dome rotation to processing tens of gigabytes of image data nightly. With fainter detection limits, precision detection, acquisition and tracking of targets, multi-color photometry, precision astrometry, automated re-acquisition capability, and the ability to process all data at the acquisition rate, MCAT is capable of producing and processing a volume and quality of data far in excess of any current (or prior) ODPO operations. This means higher fidelity population inputs and eliminating the multi-year backlog from acquisition-to-product typical of optical campaigns. All of this is possible given a suitable observing location. Ascension Island offers numerous advantages. As a British overseas territory with a US Air Force base presence, the necessary infrastructure and support already exists. It is located mid-way between Brazil and Africa at 7.93S latitude and 14.37 W longitude. With the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) asset in Moron, Spain shutting down, this presents access to the sky from a unique latitude/longitude for an optical telescope. Constant trade winds from the SSE, originating from Africa, give promise to a steady laminar airflow over an island, a trait sought after to create stable atmospheric and good astronomical 'seeing' conditions with very low annual rainfall values. This combination of attributes created the necessary compelling argument to redirect MCAT to its final destination: Ascension Island.
NASA Astrophysics Data System (ADS)
Hlinka, Lisa
2016-04-01
Ocean Literacy is a topic that is often underrepresented in secondary school science curriculum. To combat this deficit, our School has partnered up with Hudson River Community Sailing (HRCS), a local organization in New York City that offers an after-school program to high-need high school students in the surrounding community. This organization has developed a 9th grade Sail Academy which allows students from participating public high schools to increase their proficiency in math and science by learning basic sailing, navigation, and boat building. Upon successfully completing the 9th grade Sail Academy curriculum, students enter the "First Mates Program" which offers a scaffolded set of youth development experiences that prepare students for college, career, leadership, and stewardship. This program is built in the context of a new Ocean Literacy Curriculum focused around 3 major topics within Ocean Literacy: Marine Debris, Meteorology, and Ecology (specifically water quality). The learning experiences include weekly data collection of marine debris, weather conditions, and water quality testing in the Hudson River adjacent to the HRCS Boathouse. Additionally there are weekly lessons engaging students in the fundamentals of each of the 3 topics and how they are also important in the lens of sailing. During the marine debris portion of the curriculum students identify sources of marine debris, impacts on the local environment, and study how debris can travel along the ocean currents leading in to larger garbage gyres. To supplement the curriculum, students embarked on a day trip to the Newtown Creek Wastewater Treatment Facility in Brooklyn, NY to learn how and where NYC receives its drinking water, how wastewater is treated, and how water quality in the local area can be easily influenced. While on the trip, students did their data collection of marine debris, weather conditions, and water quality testing at Newtown Creek, and then they compared their results that same day to data collected at the HRCS Boathouse along the Hudson River.
Upgrade of DRAMA-ESA's Space Debris Mitigation Analysis Tool Suite
NASA Astrophysics Data System (ADS)
Gelhaus, Johannes; Sanchez-Ortiz, Noelia; Braun, Vitali; Kebschull, Christopher; de Oliveira, Joaquim Correia; Dominguez-Gonzalez, Raul; Wiedemann, Carsten; Krag, Holger; Vorsmann, Peter
2013-08-01
One decade ago ESA started the dev elopment of the first version of the software tool called DRAMA (Debris Risk Assessment and Mitigation Analysis) to enable ESA space programs to assess their compliance with the recommendations in the European Code of Conduct for Space Debris Mitigation. This tool was maintained, upgraded and extended during the last year and is now a combination of five individual tools, each addressing a different aspect of debris mitigation. This paper gives an overview of the new DRAMA software in general. Both, the main tools ARES, OSCAR, MIDAS, CROC and SARA will be discussed and the environment used by DRAMA will be explained shortly.
Active Debris Removal Using Modified Launch Vehicle Upper Stages
NASA Astrophysics Data System (ADS)
Nasseri, S. Ali; Emanuelli, Matteo; Raval, Siddharth; Turconi, Andrea
2013-09-01
During the past few years, several research programs have assessed the current state and future evolution of space debris in the Low Earth Orbit region. These studies indicate that space debris density could reach a critical level such that there will be a continuous increase in the number of debris objects, primarily driven by debris-debris collision activity known as the Kessler effect. These studies also highlight the urgency for active debris removal.An Active Debris Removal System (ADRS) is capable of approaching the debris object through a close-range rendezvous, stabilizing its attitude, establishing physical contact, and finally de-orbiting the debris object. The de-orbiting phase could be powered by propulsion systems such as chemical rockets or electrodynamic tether (EDT) systems.The aim of this project is to model and evaluate a debris removal mission in which an adapted rocket upper stage, equipped with an electrodynamic tether (EDT) system, is employed for de-orbiting a debris object. This ADRS package is installed initially as part of a launch vehicle on a normal satellite deployment mission, and a far-approach manoeuvre will be required to align the ADRS' orbit with that of the target debris. We begin by selecting a suitable target debris and launch vehicle, and then proceed with modelling the entire debris removal mission from launch to de-orbiting of the target debris object using Analytical Graphic Inc.'s Systems Tool Kit (STK).
The New NASA Orbital Debris Engineering Model ORDEM 3.0
NASA Technical Reports Server (NTRS)
Krisko, P. H.
2014-01-01
The NASA Orbital Debris Program Office (ODPO) has released its latest Orbital Debris Engineering Model, ORDEM 3.0. It supersedes ORDEM 2.0. This newer model encompasses the Earth satellite and debris flux environment from altitudes of low Earth orbit (LEO) through geosynchronous orbit (GEO). Debris sizes of 10 microns through 1 m in non-GEO and 10 cm through 1 m in GEO are modeled. The inclusive years are 2010 through 2035. The ORDEM model series has always been data driven. ORDEM 3.0 has the benefit of many more hours from existing data sources and from new sources that weren't available to past versions. Returned surfaces, ground tests, and remote sensors all contribute data. The returned surface and ground test data reveal material characteristics of small particles. Densities of fragmentation debris particles smaller than 10 cm are grouped in ORDEM 3.0 in terms of high-, medium-, and lowdensities, along with RORSAT sodium-potassium droplets. Supporting models have advanced significantly. The LEO-to-GEO ENvironment Debris model (LEGEND) includes an historical and a future projection component with yearly populations that include launched and maneuvered intacts, mission related debris (MRD), and explosion and collision fragments. LEGEND propagates objects with ephemerides and physical characteristics down to 1 mm in size. The full LEGEND yearly population acts as an a priori condition for a Bayesian statistical model. Specific, well defined populations are added like the Radar Ocean Reconnaissance Satellite (RORSAT) sodium-potassium (NaK) droplets, recent major accidental and deliberate collision fragments, and known anomalous debris event fragments. For microdebris of sizes 10 microns to 1 mm the ODPO uses an in-house Degradation/Ejecta model in which a MLE technique is used with returned surface data to estimate populations. This paper elaborates on the upgrades of this model over previous versions highlighting the material density splits and consequences of that to the penetration risk to spacecraft.
The HR 4796A Debris System: Discovery of Extensive Exo-ring Dust Material
NASA Astrophysics Data System (ADS)
Schneider, Glenn; Debes, John H.; Grady, Carol A.; Gáspár, Andras; Henning, Thomas; Hines, Dean C.; Kuchner, Marc J.; Perrin, Marshall; Wisniewski, John P.
2018-02-01
The optically and IR-bright and starlight-scattering HR 4796A ringlike debris disk is one of the most- (and best-) studied exoplanetary debris systems. The presence of a yet-undetected planet has been inferred (or suggested) from the narrow width and inner/outer truncation radii of its r = 1.″05 (77 au) debris ring. We present new, highly sensitive Hubble Space Telescope (HST) visible-light images of the HR 4796A circumstellar debris system and its environment over a very wide range of stellocentric angles from 0.″32 (23 au) to ≈15″ (1100 au). These very high-contrast images were obtained with the Space Telescope Imaging Spectrograph (STIS) using six-roll PSF template–subtracted coronagraphy suppressing the primary light of HR 4796A, with three image-plane occulters, and simultaneously subtracting the background light from its close angular proximity M2.5V companion. The resulting images unambiguously reveal the debris ring embedded within a much larger, morphologically complex, and biaxially asymmetric exo-ring scattering structure. These images at visible wavelengths are sensitive to and map the spatial distribution, brightness, and radial surface density of micron-size particles over 5 dex in surface brightness. These particles in the exo-ring environment may be unbound from the system and interacting with the local ISM. Herein, we present a new morphological and photometric view of the larger-than-prior-seen HR 4796A exoplanetary debris system with sensitivity to small particles at stellocentric distances an order of magnitude greater than has previously been observed.
Observing orbital debris using space-based telescopes. I - Mission orbit considerations
NASA Technical Reports Server (NTRS)
Reynolds, Robert C.; Talent, David L.; Vilas, Faith
1989-01-01
In this paper, mission orbit considerations are addressed for using the Space Shuttle as a telescope platform for observing man-made orbital debris. Computer modeling of various electrooptical systems predicts that such a space-borne system will be able to detect particles as small as 1-mm diameter. The research is meant to support the development of debris- collision warning sensors through the acquisition of spatial distribution and spectral characteristics for debris and testing of detector combinations on a shuttle-borne telescopic experiment. The technique can also be applied to low-earth-orbit-debris environment monitoring systems. It is shown how the choice of mission orbit, season of launch, and time of day of launch may be employed to provide extended periods of favorable observing conditions.
On the connection of permafrost and debris flow activity in Austria
NASA Astrophysics Data System (ADS)
Huber, Thomas; Kaitna, Roland
2016-04-01
Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.
NASA Technical Reports Server (NTRS)
Cowardin, H.
2017-01-01
In a continued effort to better characterize the Geosynchronous Orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while a third Transtage fragmented in GEO transfer orbit. The forth fragmentation occurred in Low Earth Orbit. In order to better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that the test article was of sufficient fidelity to be of interest, the test article was brought to JSC to continue material analysis and historical documentation of the Titan Transtage. The Transtage has been subject to two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, the goal being to enable comparison with telescopic data and potential material identification. A LIDAR scan has been completed and a scale model has been created for use in the Optical Measurement Center for photometric analysis of an intact Transtage, including a BRDF. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.
Orbiting space debris: Dangers, measurement, and mitigation
NASA Astrophysics Data System (ADS)
McNutt, Ross T.
1992-01-01
Space debris is a growing environmental problem. Accumulation of objects in Earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, Unites States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-Earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical, and diplomatic components. Actions need to be taken now for the following reasons: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the the loss of critical space systems such as the Space Shuttle or the Space Station.
Response of Debris-Covered and Clean-Ice Glaciers to Climate Change from Observations and Modeling
NASA Astrophysics Data System (ADS)
Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Roe, G.; Huybers, K. M.
2017-12-01
Debris-covered glaciers form a significant percentage of the glacier area and volume in many mountainous regions of the world, and respond differently to climatic forcings as compared to clean-ice glaciers. In particular, debris-covered glaciers tend to downwaste with very little retreat, while clean-ice glaciers simultaneously thin and retreat. This difference has posed a significant challenge to quantifying glacier sensitivity to climate change, modeling glacier response to future climate change, and assessing the impacts of recent and future glacier changes on mountain environments and downstream populations. In this study, we evaluate observations of the geodetic mass balance and thinning profiles of 1000 glaciers across the Himalayas from 1975 to 2016. We use this large sampling of glacier changes over multiple decades to provide a robust statistical comparison of mass loss for clean-ice versus debris-covered glaciers over a period relevant to glacier dynamics. In addition, we force a glacier model with a series of climate change scenarios, and compare the modeled results to the observations. We essentially ask the question, "Are our theoretical expectations consistent with the observations?" Our observations show both clean-ice and debris-covered glaciers, regionally averaged, thinned in a similar pattern for the first 25-year observation period. For the more recent 15-year period, clean ice glaciers show significantly steepened thinning gradients across the surface, while debris-covered glaciers have continued to thin more uniformaly across the surface. Our preliminary model results generally agree with these observations, and suggest that both glacier types are expected to have a thinning phase followed by a retreat phase, but that the timing of the retreat phase is much later for debris-covered glaciers. Thus, these early results suggest these two glacier types are dynamically very similar, but are currently in different phases of response to recent climate change. This difference in phase of response will be carefully evaluated by integrating the modeling and observational components of this work. In addition, we will use this integrated framework to assess the expected impacts of differing glacier response on glacier-related resources in the Himalayas over the coming century.
Habitability in different Milky Way stellar environments: a stellar interaction dynamical approach.
Jiménez-Torres, Juan J; Pichardo, Bárbara; Lake, George; Segura, Antígona
2013-05-01
Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 10(8) yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments.
NASA Astrophysics Data System (ADS)
Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Kimoto, Yugo; Hanada, Toshiya; Akahoshi, Yasuhiro; Pauline, Faure; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Testuo
2015-04-01
The history of Japanese R&D into in-situ sensors for micro-meteoroid and orbital debris (MMOD) measurements is neither particularly long nor short. Research into active sensors started for the meteoroid observation experiment on the HITEN (MUSES-A) satellite of ISAS/JAXA launched in 1990, which had MDC (Munich Dust Counter) on-board sensors for micro meteoroid measurement. This was a collaboration between Technische Universität München and ISAS/JAXA. The main purpose behind the start of passive sensor research was SOCCOR, a late 80's Japan-US mission that planned to capture cometary dust and return to the Earth. Although this mission was canceled, the research outcomes were employed in a JAXA micro debris sample return mission using calibrated aerogel involving the Space Shuttle and the International Space Station. There have been many other important activities apart from the above, and the knowledge generated from them has contributed to JAXA's development of a new type of active dust sensor. JAXA and its partners have been developing a simple in-situ active dust sensor of a new type to detect dust particles ranging from a hundred micrometers to several millimeters. The distribution and flux of the debris in the size range are not well understood and is difficult to measure using ground observations. However, it is important that the risk caused by such debris is assessed. In-situ measurement of debris in this size range is useful for 1) verifying meteoroid and debris environment models, 2) verifying meteoroid and debris environment evolution models, and 3) the real time detection of explosions, collisions and other unexpected orbital events. Multitudes of thin, conductive copper strips are formed at a fine pitch of 100 um on a film 12.5 um thick of nonconductive polyimide. An MMOD particle impact is detected when one or more strips are severed by being perforated by such an impact. This sensor is simple to produce and use and requires almost no calibration as it is essentially a digital system. Based on this sensor technology, the Kyushu Institute of Technology (Kyutech) has designed and developed an educational version of the sensor, which is currently on board the nano-satellite Horyu-II, which was built at Kyutech and launched on May 18, 2012 by JAXA. Although the sensor has a very small sensing area, sensor data were nonetheless successfully received. Moreover, a laboratory version of the sensor fitted on QSAT-EOS ("Tsukushi"), a small satellite, was be launched in November 2014. This version was developed and manufactured by Japan's QPS Institute to evaluate the sensor's capability regarding hypervelocity impact experiments at JAXA. JAXA's flight version, to be employed on satellites and/or the ISS, will be ready soon and a flight demonstration will be conducted on KOUNOTORI (HTV) in 2015. This paper reports on the R&D into in-situ measurement MMOD sensors at JAXA.
NASA Technical Reports Server (NTRS)
Miglionico, C.; Stein, C.; Murr, L. E.
1991-01-01
A preliminary study of materials exposed in space in LEO for nearly six years in the NASA Long-Duration Exposure Facility is presented. It is demonstrated that it will be necessary to isolate surface debris and reaction products from materials exposed in space. Replication techniques originally designed for electron microscopy examination of surfaces can be applied to lift off and isolate such surface features. Debris and reaction products were examined through a variety of analytical techniques, including the surface morphology by SEM, and internal microstructures by STEM and TEM, EDS, and SAD. The results illustrate the role that atomic oxygen and micrometeorites play in surface alteration and reaction in LEO space environments, as well as the role of debris created from other proximate materials.
Sedimentary architecture and depositional environment of Kudat Formation, Sabah, Malaysia
NASA Astrophysics Data System (ADS)
Ghaheri, Samira; Suhaili, Mohd; Sapari, Nasiman; Momeni, Mohammadsadegh
2017-12-01
Kudat Formation originated from deep marine environment. Three lithofacies association of deep marine turbidity channel was discovered in three Members of the Kudat Formation in Kudat Peninsula, Sabah, Malaysia. Turbidite and deep marine architecture elements was described based on detailed sedimentological studies. Four architecture elements were identified based on each facies association and their lithology properties and character: inner external levee that was formed by turbidity flows spill out from their confinement of channel belt; Lobes sheet that was formed during downslope debris flows associated with levee; Channel fill which sediments deposited from high to low density currents with different value of sediment concentration; and overbank terrace which was formed by rapid suspension sedimentation. The depositional environment of Kudat Formation is shelf to deep marine fan.
Functions & Requirements for Debris Removal System Project A-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
PRECECHTEL, D.R.
1999-12-29
This revision of the Functions and Requirements Document updates the approved Functions and Requirements for Debris Removal Subproject WHC-SD-SNF-FRD-009, Rev. 0. It has been revised in its entirety to reflect the current scope of work for Debris Removal as canisters and lids under the K Basin Projects work breakdown structure (WBS). In this revision the canisters and lids will be consider debris and a new set of Functions and Requirements have been developed to remove the canisters and lids from the basin.
NASA Technical Reports Server (NTRS)
Chase, Thomas D.; Splawn, Keith; Christiansen, Eric L.
2007-01-01
The NASA Extravehicular Mobility Unit (EMU) micrometeoroid and orbital debris protection ability has recently been assessed against an updated, higher threat space environment model. The new environment was analyzed in conjunction with a revised EMU solid model using a NASA computer code. Results showed that the EMU exceeds the required mathematical Probability of having No Penetrations (PNP) of any suit pressure bladder over the remaining life of the program (2,700 projected hours of 2 person spacewalks). The success probability was calculated to be 0.94, versus a requirement of >0.91, for the current spacesuit s outer protective garment. In parallel to the probability assessment, potential improvements to the current spacesuit s outer protective garment were built and impact tested. A NASA light gas gun was used to launch projectiles at test items, at speeds of approximately 7 km per second. Test results showed that substantial garment improvements could be made, with mild material enhancements and moderate assembly development. The spacesuit s PNP would improve marginally with the tested enhancements, if they were available for immediate incorporation. This paper discusses the results of the model assessment process and test program. These findings add confidence to the continued use of the existing NASA EMU during International Space Station (ISS) assembly and Shuttle Operations. They provide a viable avenue for improved hypervelocity impact protection for the EMU, or for future space suits.
Examination of returned solar-max surfaces for impacting orbital debris and meteoroids
NASA Astrophysics Data System (ADS)
Kessler, D. J.; Zook, H. A.; Potter, A. E.; McKay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.
1985-11-01
Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.
In Situ Measurement Activities at the NASA Orbital Debris Program Office
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Burchell, M.; Corsaro, R.; Drolshagen, G.; Giovane, F.; Pisacane, V.; Stansbery, E.
2009-01-01
The NASA Orbital Debris Program Office has been involved in the development of several particle impact instruments since 2003. The main objective of this development is to eventually conduct in situ measurements to better characterize the small (millimeter or smaller) orbital debris and micrometeoroid populations in the near-Earth environment. In addition, the Office also supports similar instrument development to define the micrometeoroid and lunar secondary ejecta environment for future lunar exploration activities. The instruments include impact acoustic sensors, resistive grid sensors, fiber optic displacement sensors, and impact ionization sensors. They rely on different mechanisms and detection principles to identify particle impacts. A system consisting of these different sensors will provide data that are complimentary to each other, and will provide a better description of the physical and dynamical properties (e.g., size, mass, and impact speed) of the particles in the environment. Details of several systems being considered by the Office and their intended mission objectives are summarized in this paper.
Examination of returned solar-max surfaces for impacting orbital debris and meteoroids
NASA Technical Reports Server (NTRS)
Kessler, D. J.; Zook, H. A.; Potter, A. E.; Mckay, D. S.; Clanton, U. S.; Warren, J. L.; Watts, L. A.; Schultz, R. A.; Schramm, L. S.; Wentworth, S. J.
1985-01-01
Previous theoretical studies predicted that in certain regions of earth orbit, the man-made earth orbiting debris environment will soon exceed the interplanetary meteoroid environment for sizes smaller than 1 cm. The surfaces returned from the repaired Solar Max Mission (SMM) by STS 41-C on April 12, 1984, offered an excellent opportunity to examine both the debris and meteoroid environments. To date, approximately 0.7 sq. met. of the thermal insulation and 0.05 sq. met of the aluminum louvers have been mapped by optical microscope for crater diameters larger than 40 microns. Craters larger in diameter than about 100 microns found on the initial 75 micron thick Kapton first sheet on the MEB (Main Electronics Box) blanket are actually holes and constitute perforations through that blanket. The following populations have been found to date in impact sites on these blankets: (1) meteoritic material; (2) thermal paint particles; (3) aluminum droplets; and (4) waste particles.
Small Orbital Stereo Tracking Camera Technology Development
NASA Technical Reports Server (NTRS)
Bryan, Tom; MacLeod, Todd; Gagliano, Larry
2017-01-01
Any exploration vehicle assembled or Spacecraft placed in LEO or GTO must pass through this debris cloud and survive. Large cross section, low thrust vehicles will spend more time spiraling out through the cloud and will suffer more impacts.Better knowledge of small debris will improve survival odds. Current estimated Density of debris at various orbital attitudes with notation of recent collisions and resulting spikes. Orbital Debris Tracking and Characterization has now been added to NASA Office of Chief Technologists Technology Development Roadmap in Technology Area 5 (TA5.7)[Orbital Debris Tracking and Characterization] and is a technical gap in the current National Space Situational Awareness necessary to safeguard orbital assets and crews due to the risk of Orbital Debris damage to ISS Exploration vehicles. The Problem: Traditional orbital trackers looking for small, dim orbital derelicts and debris typically will stare at the stars and let any reflected light off the debris integrate in the imager for seconds, thus creating a streak across the image. The Solution: The Small Tracker will see Stars and other celestial objects rise through its Field of View (FOV) at the rotational rate of its orbit, but the glint off of orbital objects will move through the FOV at different rates and directions. Debris on a head-on collision course (or close) will stay in the FOV at 14 Km per sec. The Small Tracker can track at 60 frames per sec allowing up to 30 fixes before a near-miss pass. A Stereo pair of Small Trackers can provide range data within 5-7 Km for better orbit measurements.
Fugacity analysis of polycyclic aromatic hydrocarbons between microplastics and seawater
NASA Astrophysics Data System (ADS)
Lee, Hwang; Chang, Sein; Kim, Seung-Kyu; Kwon, Jung-Hwan
2017-03-01
Recently, the accumulation of plastic debris in the marine environment has become a great concern worldwide. Although plastics are biologically and chemically inert, plastic debris has been suspected of causing adverse effects on ecosystems due to the increase in reactivity by size reduction and/or micropollutants associated with plastics. Because of the high sorption capacity of microplastics toward organic micropollutants, it is suspected that microplastics may play roles in the distribution and fate of micropollutants. In order to quantitatively evaluate the "net flow" of environmental contaminants in water-plastic-organism systems, a fugacity analysis was conducted using concentrations of polycyclic aromatic hydrocarbons (PAHs) in open oceans and in polyethylene as a representative material of plastic debris. Ratio of fugacity in polyethylene to that in seawater showed a decreasing trend with increasing partition coefficient between polyethylene and seawater (KPE/sw). This indicates that phase equilibrium between polyethylene and seawater is not attained for higher molecular weight PAHs. Disequilibrium of high molecular weight PAHs suggests that transfer from seawater to plastic debris is thermodynamically driven and the role of plastic debris as a vector to transfer them to living organisms would be minimal. However, additives may slowly migrate from plastics into the environment causing potentially serious effects on ecosystems.
NASA Astrophysics Data System (ADS)
Huang, Jian; Hu, Weidong; Xin, Qin; Guo, Weiwei
2012-12-01
The increasing amount of space debris threatens to seriously deteriorate and damage space-based instruments in Low Earth Orbit (LEO) environments. Therefore, LEO space debris surveillance systems must be developed to provide situational awareness in space and issue warnings of collisions with LEO space debris. In this paper, a double fence radar system is proposed as an emerging paradigm for LEO space debris surveillance. This system exhibits several unique and promising characteristics compared with existing surveillance systems. In this paper, we also investigate the data association scheme for LEO space debris surveillance based on a double fence radar system. We also perform a theoretical analysis of the performance of our proposed scheme. The superiority and the effectiveness of our novel data association scheme is demonstrated by experimental results. The data used in our experiments is the LEO space debris catalog produced by the North American Air Defense Command (NORAD) up to 2009, especially for scenarios with high densities of LEO space debris, which were primarily produced by the collisions between Iridium 33 and Cosmos 2251. We hope that our work will stimulate and benefit future work on LEO space debris surveillance approaches and enable construction of the double fence radar system.
Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets
NASA Technical Reports Server (NTRS)
Drolshagen, Gerhard
1993-01-01
The number of impacts from meteoroids and space debris particles to the various LDEF rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on recent reference environment flux models and includes geometrical and directional effects. A comparison of model predictions and actual observations is made for penetrations of the thermal blankets which covered the UHCR experiment. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a test case for the latest meteoroid and debris flux models.
NASA Technical Reports Server (NTRS)
Hill, David C.; Rose, M. Frank
1994-01-01
The results of the postflight analysis of the solar cell assemblies from the LDEF (Long Duration Exposure facility) experiment A0171 is provided in this NASA sponsored research project. The following data on this research are provided as follows: (1) solar cell description, including, substrate composition and thickness, crystal orientation, anti-reflective coating composition and thickness; (2) preflight characteristics of the solar cell assemblies with respect to current and voltage; and (3) post-flight characteristics of the solar cell assemblies with respect to voltage and current. These solar cell assemblies are part of the Goddard Space Flight Center test plate which was designed to test the space environment effects (radiation, atomic oxygen, thermal cycling, meteoroid and debris) on conductively coated solar cell coversheets, various electrical bond materials, solar cell performance, and other material properties where feasible.
Lorbeer, Raoul-Amadeus; Zwilich, Michael; Zabic, Miroslav; Scharring, Stefan; Eisert, Lukas; Wilken, Jascha; Schumacher, Dennis; Roth, Markus; Eckel, Hans-Albert
2018-05-31
Walking along a beach one may notice debris being washed ashore from the vast oceans. Then, turning your head up at night you even might noticed a shooting star or a bright spot passing by. Chances are, that you witnessed space debris, endangering future space flight in lower earth orbit. If it was possible to turn cm-sized debris into shooting stars the problem might be averted. Unfortunately, these fragments counting in the 100 thousands are not controllable. To possibly regain control we demonstrate how to exert forces on a free falling debris object from a distance by ablating material with a high energy ns-laser-system. Thrust effects did scale as expected from simulations and led to speed gains above 0.3 m/s per laser pulse in an evacuated micro-gravity environment.
de Carvalho-Souza, Gustavo Freire; de A Miranda, Daniele; Pataro, Luciano
2016-04-15
Marine species are experiencing unprecedented global impacts due to anthropogenic debris. Many recent studies have pointed out the hazards associated with marine litter ingestion, especially plastic debris - the most abundant and ubiquitous items in coastal and oceanic environments worldwide. In this study we provide the first in situ evidence of consumption of non-discarded synthetic rope fragments by green turtles. We explored the environmental risks to this endangered species associated with the grazing and consumption of anthropogenic debris in zones of human activity. Efforts to combat debris ingestion and reduce anthropogenic debris discharged into the world's oceans should be a priority for decision-makers and will need to involve multiple-approaches and the adoption of more environmentally friendly products and practices by the international community. Copyright © 2016 Elsevier Ltd. All rights reserved.
Provencher, Jennifer F; Gaston, Anthony J; Mallory, Mark L; O'hara, Patrick D; Gilchrist, H Grant
2010-09-01
Plastic debris has become ubiquitous in the marine environment and seabirds may ingest debris which can have deleterious effects on their health. In the North Atlantic Ocean, surface feeding seabirds typically ingest high levels of plastic, while the diving auks which feed in the water column typically have much lower levels. We examined 186 thick-billed murres from five colonies in the eastern Canadian Arctic for ingested plastic debris. Approximately 11% of the birds had at least one piece of plastic debris in their gastrointestinal tracts, with debris dominated by user plastics. This is the first report of ingested plastics in an auk species in Canada's Arctic, and the highest incidence of plastic ingestion to date for thick-billed murres (Uria lomvia). Copyright 2010 Elsevier Ltd. All rights reserved.
Texas Coastal Cleanup Report, 1986.
ERIC Educational Resources Information Center
O'Hara, Kathryn; And Others
During the 1986 Coastweek, a national event dedicated to improvement of the marine environment, a large beach cleanup was organized on the Texas coast. The goals of the cleanup were to create public awareness of the problems caused by marine debris, and to collect data on the types and quantities of debris found on the Texas coastline. The…
Entry Debris Field Estimation Methods and Application to Compton Gamma Ray Observatory Disposal
NASA Technical Reports Server (NTRS)
Mrozinski, Richard B.
2001-01-01
For public safety reasons, the Compton Gamma Ray Observatory (CGRO) was intentionally deorbited on June 4, 2000. This deorbit was NASA's first intentional controlled deorbit of a satellite, and more will come including the eventual deorbit of the International Space Station. To maximize public safety, satellite deorbit planning requires conservative estimates of the debris footprint size and location. These estimates are needed to properly design a deorbit sequence that places the debris footprint over unpopulated areas, including protection for deorbit contingencies. This paper details a method for estimating the length (range), width (crossrange), and location of entry and breakup debris footprints. This method utilizes a three degree-of-freedom Monte Carlo simulation incorporating uncertainties in all aspects of the problem, including vehicle and environment uncertainties. The method incorporates a range of debris characteristics based on historical data in addition to any vehicle-specific debris catalog information. This paper describes the method in detail, and presents results of its application as used in planning the deorbit of the CGRO.
Space program: Space debris a potential threat to Space Station and shuttle
NASA Technical Reports Server (NTRS)
Schwartz, Stephen A.; Beers, Ronald W.; Phillips, Colleen M.; Ramos, Yvette
1990-01-01
Experts estimate that more than 3.5 million man-made objects are orbiting the earth. These objects - space debris - include whole and fragmentary parts of rocket bodies and other discarded equipment from space missions. About 24,500 of these objects are 1 centimeter across or larger. A 1-centimeter man-made object travels in orbit at roughly 22,000 miles per hour. If it hit a spacecraft, it would do about the same damage as would a 400-pound safe traveling at 60 miles per hour. The Government Accounting Office (GAO) reviews NASA's plans for protecting the space station from debris, the extent and precision of current NASA and Defense Department (DOD) debris-tracking capabilities, and the extent to which debris has already affected shuttle operations. GAO recommends that the space debris model be updated, and that the findings be incorporated into the plans for protecting the space station from such debris. GAO further recommends that the increased risk from debris to the space shuttle operations be analyzed.
The New NASA Orbital Debris Engineering Model ORDEM 3.0
NASA Technical Reports Server (NTRS)
Krisko, P. H.
2014-01-01
The NASA Orbital Debris Program Office (ODPO) has released its latest Orbital Debris Engineering Model, ORDEM 3.0. It supersedes ORDEM 2000, now referred to as ORDEM 2.0. This newer model encompasses the Earth satellite and debris flux environment from altitudes of low Earth orbit (LEO) through geosynchronous orbit (GEO). Debris sizes of 10 micron through larger than 1 m in non-GEO and 10 cm through larger than 1 m in GEO are available. The inclusive years are 2010 through 2035. The ORDEM model series has always been data driven. ORDEM 3.0 has the benefit of many more hours of data from existing sources and from new sources than past ORDEM versions. The object data range in size from 10 µm to larger than 1 m, and include in situ and remote measurements. The in situ data reveals material characteristics of small particles. Mass densities are grouped in ORDEM 3.0 in terms of 'high-density', represented by 7.9 g/cc, 'medium-density' represented by 2.8 g/cc and 'low-density' represented by 1.4 g/cc. Supporting models have also advanced significantly. The LEO-to-GEO ENvironment Debris model (LEGEND) includes an historical and a future projection component with yearly populations that include launched and maneuvered intact spacecraft and rocket bodies, mission related debris, and explosion and collision event fragments. LEGEND propagates objects with ephemerides and physical characteristics down to 1 mm in size. The full LEGEND yearly population acts as an a priori condition for a Bayesian statistical model. Specific populations are added from sodium potassium droplet releases, recent major accidental and deliberate collisions, and known anomalous debris events. This paper elaborates on the upgrades of this model over previous versions. Sample validation results with remote and in situ measurements are shown, and the consequences of including material density are discussed as it relates to heightened risks to crewed and robotic spacecraft
Assessing Microplastic Loads in the Mississippi River and Its Major Tributaries
NASA Astrophysics Data System (ADS)
Hasenmueller, E. A.; Martin, K. M.; Conkle, J. L.; White, J. R.
2017-12-01
Plastic debris is ubiquitous in marine environments and can cause significant harm to aquatic life when organisms become entangled in the plastic or mistake it for food. Macroplastic debris (plastic >5 mm in diameter) has received significant attention from the public, government agencies, and the scientific community. However, the majority of plastics in aquatic environments are microplastics (plastic <5 mm in diameter), emerging contaminants that, due to their small size, were understudied until the last decade. Estimates of plastic debris in the world's ocean vary widely from 244,000 tonnes floating at the water's surface to 4.8-12.7 million tonnes loaded from terrestrial sources annually. Many of these terrestrial inputs of plastic debris to the ocean have not yet been systematically quantified. The Mississippi River is likely one of the largest sources of marine plastic debris, not only to the Gulf of Mexico, but also the global ocean. Therefore, this research, funded by the National Oceanic and Atmospheric Administration (NOAA) Marine Debris Program, has quantified and characterized microplastics (i.e., size, shape, and resin type) at the surface and at depth along the mainstem of the Mississippi River, including near major cities such as St. Louis and New Orleans, as well as in some of the Mississippi River's major tributaries (i.e., the Missouri River, Ohio River, and Illinois River). Sampling is ongoing, but our datasets will allow us to characterize: 1) total microplastic concentrations and loads, 2) spatial and temporal trends in microplastic abundances, and 3) land-use effects on microplastic levels across the Mississippi River watershed. Our data will also provide estimates of the total discharge of microplastics from the Mississippi River to the Gulf of Mexico. These efforts will provide a baseline for future research relating to the fate and effects of microplastics in aquatic environments and can guide federal and local policy makers in creating and assessing mitigation strategies to improve water quality.
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.
2003-01-01
This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.
Monitoring the Heavens, Today, and Tomorrow
NASA Technical Reports Server (NTRS)
Johnson, Nicholas L.
2006-01-01
The current Earth satellite population in LEO for all sizes is relatively well-established by a combination of deterministic and statistical means. At higher altitudes, the population of satellites with diameters of less than 1 m is not well defined. Although a few new sensors might become operational in the near- to mid-term, no major improvement in environment characterization is anticipated during this period. With the increasing deployment of micro- and pico-satellites and with the continued growth of the small debris population, a need exists for better space surveillance to support spacecraft design and operations.
The Impact of New Trends in Satellite Launches on the Orbital Debris Environment
NASA Technical Reports Server (NTRS)
Karacalioglu, Arif Goektug; Stupl, Jan
2016-01-01
The main goal of this study is to examine the impact of new trends in satellite launch activities on the orbital debris environment and collision risk. As a foundation for the study, we developed a deployment scenario for satellites and associated rocket bodies based on publicly announced future missions. The upcoming orbital injection technologies, such as the new launch vehicles dedicated for small spacecraft and propulsive interstages, are also considered in this scenario. We then used a simulation tool developed in-house to propagate the objects within this scenario using variable-sized time-steps as small as one second to detect conjunctions between objects. The simulation makes it possible to follow the short- and long-term effects of a particular satellite or constellation in the space environment. Likewise, the effects of changes in the debris environment on a particular satellite or constellation can be evaluated. It is our hope that the results of this paper and further utilization of the developed simulation tool will assist in the investigation of more accurate deorbiting metrics to replace the generic 25-year disposal guidelines, as well as to guide future launches toward more sustainable and safe orbits.
Natural orbital environment definition guidelines for use in aerospace vehicle development
NASA Technical Reports Server (NTRS)
Anderson, B. Jeffrey (Editor); Smith, Robert E. (Compiler)
1994-01-01
This document provides definitions of the natural near-Earth space environment suitable for use in the initial development/design phase of any space vehicle. The natural environment includes the neutral atmosphere, plasma, charged particle radiation, electromagnetic radiation (EMR), meteoroids, orbital debris, magnetic field, physical and thermal constants, and gravitational field. Communications and other unmanned satellites operate in geosynchronous-Earth orbit (GEO); therefore, some data are given for GEO, but emphasis is on altitudes from 200 km to 1000 km (low-Earth orbit (LEO)). This document does not cover the induced environment of other effects resulting from presence of the space vehicle. Manmade factors are included as part of the ambient natural environment; i.e., orbital debris and radio frequency (RF) noise generated on Earth, because they are not caused by the presence of the space vehicle but form part of the ambient environment that the space vehicle experiences.
Accumulation and fragmentation of plastic debris in global environments
Barnes, David K. A.; Galgani, Francois; Thompson, Richard C.; Barlaz, Morton
2009-01-01
One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly understood. PMID:19528051
Accumulation and fragmentation of plastic debris in global environments.
Barnes, David K A; Galgani, Francois; Thompson, Richard C; Barlaz, Morton
2009-07-27
One of the most ubiquitous and long-lasting recent changes to the surface of our planet is the accumulation and fragmentation of plastics. Within just a few decades since mass production of plastic products commenced in the 1950s, plastic debris has accumulated in terrestrial environments, in the open ocean, on shorelines of even the most remote islands and in the deep sea. Annual clean-up operations, costing millions of pounds sterling, are now organized in many countries and on every continent. Here we document global plastics production and the accumulation of plastic waste. While plastics typically constitute approximately 10 per cent of discarded waste, they represent a much greater proportion of the debris accumulating on shorelines. Mega- and macro-plastics have accumulated in the highest densities in the Northern Hemisphere, adjacent to urban centres, in enclosed seas and at water convergences (fronts). We report lower densities on remote island shores, on the continental shelf seabed and the lowest densities (but still a documented presence) in the deep sea and Southern Ocean. The longevity of plastic is estimated to be hundreds to thousands of years, but is likely to be far longer in deep sea and non-surface polar environments. Plastic debris poses considerable threat by choking and starving wildlife, distributing non-native and potentially harmful organisms, absorbing toxic chemicals and degrading to micro-plastics that may subsequently be ingested. Well-established annual surveys on coasts and at sea have shown that trends in mega- and macro-plastic accumulation rates are no longer uniformly increasing: rather stable, increasing and decreasing trends have all been reported. The average size of plastic particles in the environment seems to be decreasing, and the abundance and global distribution of micro-plastic fragments have increased over the last few decades. However, the environmental consequences of such microscopic debris are still poorly understood.
Space debris characterization in support of a satellite breakup model
NASA Technical Reports Server (NTRS)
Fortson, Bryan H.; Winter, James E.; Allahdadi, Firooz A.
1992-01-01
The Space Kinetic Impact and Debris Branch began an ambitious program to construct a fully analytical model of the breakup of a satellite under hypervelocity impact. In order to provide empirical data with which to substantiate the model, debris from hypervelocity experiments conducted in a controlled laboratory environment were characterized to provide information of its mass, velocity, and ballistic coefficient distributions. Data on the debris were collected in one master data file, and a simple FORTRAN program allows users to describe the debris from any subset of these experiments that may be of interest to them. A statistical analysis was performed, allowing users to determine the precision of the velocity measurements for the data. Attempts are being made to include and correlate other laboratory data, as well as those data obtained from the explosion or collision of spacecraft in low earth orbit.
Canadian Activities in Space Debris Mitigation Technologies
NASA Astrophysics Data System (ADS)
Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes
The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.
Current Status of Hybrid Bearing Damage Detection
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Certo, Joseph M.; Morales, Wilfredo
2004-01-01
Advances in material development and processing have led to the introduction of ceramic hybrid bearings for many applications. The introduction of silicon nitride hybrid bearings into the high pressure oxidizer turbopump, on the space shuttle main engine, led NASA to solve a highly persistent and troublesome bearing problem. Hybrid bearings consist of ceramic balls and steel races. The majority of hybrid bearings utilize Si3N4 balls. The aerospace industry is currently studying the use of hybrid bearings and naturally the failure modes of these bearings become an issue in light of the limited data available. In today s turbine engines and helicopter transmissions, the health of the bearings is detected by the properties of the debris found in the lubrication line when damage begins to occur. Current oil debris sensor technology relies on the magnetic properties of the debris to detect damage. Since the ceramic rolling elements of hybrid bearings have no metallic properties, a new sensing system must be developed to indicate the system health if ceramic components are to be safely implemented in aerospace applications. The ceramic oil debris sensor must be capable of detecting ceramic and metallic component damage with sufficient reliability and forewarning to prevent a catastrophic failure. The objective of this research is to provide a background summary on what is currently known about hybrid bearing failure modes and to report preliminary results on the detection of silicon nitride debris, in oil, using a commercial particle counter.
Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska
NASA Astrophysics Data System (ADS)
Dufresne, A.; Geertsema, M.; Shugar, D. H.; Koppes, M.; Higman, B.; Haeussler, P. J.; Stark, C.; Venditti, J. G.; Bonno, D.; Larsen, C.; Gulick, S. P. S.; McCall, N.; Walton, M.; Loso, M. G.; Willis, M. J.
2018-02-01
On 17 October 2015, a landslide of roughly 60 × 106 m3 occurred at the terminus of Tyndall Glacier in Taan Fiord, southeastern Alaska. It caused a tsunami that inundated an area over 20 km2, whereas the landslide debris itself deposited within a much smaller area of approximately 2 km2. It is a unique event in that the landslide debris was deposited into three very different environments: on the glacier surface, on land, and in the marine waters of the fjord. Part of the debris traversed the width of the fjord and re-emerged onto land, depositing coherent hummocks with preserved source stratigraphy on an alluvial fan and adjacent moraines on the far side of the fjord. Imagery from before the landslide shows that the catastrophic slope failure was preceded by deformation and sliding for at least the two decades since the glacier retreated to its current terminus location, exposing steep and extensively faulted slopes. A small volume of the total slide mass remains within the source area and is topped by striated blocks (> 10 m across) and standing trees that were transported down the slope in intact positions during the landslide. Field work was carried out in the summer of 2016, and by the time this paper was written, almost all of the supraglacial debris was advected into the fjord and half the subaerial hummocks were buried by glacial advance; this rapid change illustrates how highly active sedimentary processes in high-altitude glacial settings can skew any landslide-frequency analyses, and emphasizes the need for timely field investigations of these natural hazards.
LDEF data correlation to existing NASA debris environment models
NASA Technical Reports Server (NTRS)
Atkinson, Dale R.; Allbrooks, Martha K.; Watts, Alan J.
1992-01-01
The Long Duration Exposure Facility (LDEF) was recovered in January 1990, following 5.75 years exposure of about 130 sq. m to low-Earth orbit. About 25 sq. m of this surface area was aluminum 6061 T-6 exposed in every direction. In addition, about 17 sq. m of Scheldahl G411500 silver-Teflon thermal control blankets were exposed in 9 of the 12 directions. Since the LDEF was gravity gradient stabilized and did not rotate, the directional dependence of the flux can be easily distinguished. During the disintegration of the LDEF, all impact features larger than 0.5 mm into aluminum were documented for diameters and locations. In addition, the diameters and locations of all impact features larger than 0.3 mm into Scheldahl G411500 thermal control blankets were also documented. This data, along with additional information collected from LDEF materials will be compared with current meteoroid and debris models. This comparison will provide a validation of the models and will identify discrepancies between the models and the data.
Colferai, André S; Silva-Filho, Rodolfo Pinho; Martins, Aryse Moreira; Bugoni, Leandro
2017-06-15
Pollution from anthropogenic marine debris (AMD) is currently the most widely distributed and lasting anthropic impact in the marine environment, affecting hundreds of species, including all sea turtles. In this study, the patterns of AMD distribution along the gastrointestinal tract (GT) and their relationship with obstructions and faecalomas in 62 green turtles (Chelonia mydas) that died during rehabilitation in southern Brazil were determined. The GT was split in seven sections, corresponding to the natural organs and intestinal areas morphologically and physiologically distinct. Mean mass (4.24g) and area (146.74cm 2 ) of AMD in the stomach were higher than in other sections. The anterior portion of the rectum had the highest number of obstructions, followed by the stomach. AMD was associated with the obstructions, with positive correlation between faecalomas and AMD masses. Organs and subdivisions showed marked differences in susceptibility to obstructions caused by AMD, which deserves attention in clinical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Cowardin, Heather; Anz-Meador, Phillip; Reyes, Jacqueline A.
2017-01-01
In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA's Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.
NASA Astrophysics Data System (ADS)
Cowardin, H.; Anz-Meador, P.; Reyes, J. A.
In a continued effort to better characterize the geosynchronous orbit (GEO) environment, NASA’s Orbital Debris Program Office (ODPO) utilizes various ground-based optical assets to acquire photometric and spectral data of known debris associated with fragmentations in or near GEO. The Titan IIIC Transtage upper stage is known to have fragmented four times. Two of the four fragmentations were in GEO while the Transtage fragmented a third time in GEO transfer orbit. The forth fragmentation occurred in low Earth orbit. To better assess and characterize these fragmentations, the NASA ODPO acquired a Titan Transtage test and display article previously in the custody of the 309th Aerospace Maintenance and Regeneration Group (AMARG) in Tucson, Arizona. After initial inspections at AMARG demonstrated that it was of sufficient fidelity to be of interest, the test article was brought to NASA Johnson Space Center (JSC) to continue material analysis and historical documentation. The Transtage has undergone two separate spectral measurement campaigns to characterize the reflectance spectroscopy of historical aerospace materials. These data have been incorporated into the NASA Spectral Database, with the goal of using telescopic data comparisons for potential material identification. A Light Detection and Ranging (LIDAR) system scan also has been completed and a scale model has been created for use in the Optical Measurement Center (OMC) for photometric analysis of an intact Transtage, including bidirectional reflectance distribution function (BRDF) measurements. An historical overview of the Titan IIIC Transtage, the current analysis that has been done to date, and the future work to be completed in support of characterizing the GEO and near GEO orbital debris environment will be discussed in the subsequent presentation.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Finchum, Andy; Hubbs, Whitney; Evans, Steve
2008-01-01
Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
An Imaging System for Automated Characteristic Length Measurement of Debrisat Fragments
NASA Technical Reports Server (NTRS)
Moraguez, Mathew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Sorge, Marlon; Cowardin, Heather; Opiela, John; Krisko, Paula H.
2015-01-01
The debris fragments generated by DebriSat's hypervelocity impact test are currently being processed and characterized through an effort of NASA and USAF. The debris characteristics will be used to update satellite breakup models. In particular, the physical dimensions of the debris fragments must be measured to provide characteristic lengths for use in these models. Calipers and commercial 3D scanners were considered as measurement options, but an automated imaging system was ultimately developed to measure debris fragments. By automating the entire process, the measurement results are made repeatable and the human factor associated with calipers and 3D scanning is eliminated. Unlike using calipers to measure, the imaging system obtains non-contact measurements to avoid damaging delicate fragments. Furthermore, this fully automated measurement system minimizes fragment handling, which reduces the potential for fragment damage during the characterization process. In addition, the imaging system reduces the time required to determine the characteristic length of the debris fragment. In this way, the imaging system can measure the tens of thousands of DebriSat fragments at a rate of about six minutes per fragment, compared to hours per fragment in NASA's current 3D scanning measurement approach. The imaging system utilizes a space carving algorithm to generate a 3D point cloud of the article being measured and a custom developed algorithm then extracts the characteristic length from the point cloud. This paper describes the measurement process, results, challenges, and future work of the imaging system used for automated characteristic length measurement of DebriSat fragments.
Habitability in Different Milky Way Stellar Environments: A Stellar Interaction Dynamical Approach
Pichardo, Bárbara; Lake, George; Segura, Antígona
2013-01-01
Abstract Every Galactic environment is characterized by a stellar density and a velocity dispersion. With this information from literature, we simulated flyby encounters for several Galactic regions, numerically calculating stellar trajectories as well as orbits for particles in disks; our aim was to understand the effect of typical stellar flybys on planetary (debris) disks in the Milky Way Galaxy. For the solar neighborhood, we examined nearby stars with known distance, proper motions, and radial velocities. We found occurrence of a disturbing impact to the solar planetary disk within the next 8 Myr to be highly unlikely; perturbations to the Oort cloud seem unlikely as well. Current knowledge of the full phase space of stars in the solar neighborhood, however, is rather poor; thus we cannot rule out the existence of a star that is more likely to approach than those for which we have complete kinematic information. We studied the effect of stellar encounters on planetary orbits within the habitable zones of stars in more crowded stellar environments, such as stellar clusters. We found that in open clusters habitable zones are not readily disrupted; this is true if they evaporate in less than 108 yr. For older clusters the results may not be the same. We specifically studied the case of Messier 67, one of the oldest open clusters known, and show the effect of this environment on debris disks. We also considered the conditions in globular clusters, the Galactic nucleus, and the Galactic bulge-bar. We calculated the probability of whether Oort clouds exist in these Galactic environments. Key Words: Stellar interactions—Galactic habitable zone—Oort cloud. Astrobiology 13, 491–509. PMID:23659647
Hess, N.A.; Ribic, C.A.; Vining, I.
1999-01-01
Composition and abundance of benthic marine debris were investigated during three bottom trawl surveys in inlet and offshore locations surrounding Kodiak Island, Alaska, 1994-1996. Debris items were primarily plastic and metal regardless of trawl location. Plastic bait jars, fishing line, and crab pots were the most common fishery-related debris items and were encountered in large amounts in inlets (20-25 items km-2), but were less abundant outside of inlets (4.5-11 items km-2). Overall density of debris was also significantly greater in inlets than outside of inlets. Plastic debris densities in inlets ranged 22-31.5 items km-2, 7.8-18.8 items km-2 outside of inlets. Trawls in inlets contained almost as much metal debris as plastic debris. Density of metal debris ranged from 21.2 to 23.7 items km-2 in inlets, a maximum of 2.7 items km-2 outside of inlets. Inlets around the town of Kodiak had the highest densities of fishery-related and total benthic debris. Differences in benthic debris density between inlets and outside of inlets and differences by area may be due to differences in fishing activity and water circulation patterns. At the current reduced levels of fishing activity, however, yearly monitoring of benthic debris appears unnecessary. Copyright (C) 1999.
Lens-free imaging-based low-cost microsensor for in-line wear debris detection in lube oils
NASA Astrophysics Data System (ADS)
Mabe, Jon; Zubia, Joseba; Gorritxategi, Eneko
2017-02-01
The current paper describes the application of lens-free imaging principles for the detection and classification of wear debris in lubricant oils. The potential benefits brought by the lens-free microscopy techniques in terms of resolution, deep of field and active areas have been tailored to develop a micro sensor for the in-line monitoring of wear debris in oils used in lubricated or hydraulic machines as gearboxes, actuators, engines, etc. The current work presents a laboratory test-bench used for evaluating the optical performance of the lens-free approach applied to the wear particle detection in oil samples. Additionally, the current prototype sensor is presented, which integrates a LED light source, CMOS imager, embedded CPU, the measurement cell and the appropriate optical components for setting up the lens-free system. The imaging performance is quantified using micro structured samples, as well as by imaging real used lubricant oils. Probing a large volume with a decent 2D spatial resolution, this lens-free micro sensor can provide a powerful tool at very low cost for inline wear debris monitoring.
A direct reflection OLVF debris detector based on dark-field imaging
NASA Astrophysics Data System (ADS)
Li, Bo; Xi, Yinhu; Feng, Song; Mao, Junhong; Xie, You-Bai
2018-06-01
To solve the problems of monitoring wear debris in black oil, a direct reflection online visual ferrograph (OLVF) debris detector is presented. In current OLVF detectors, a reflected light source is used. The emitted light is reflected by wear debris directly instead of passing through the lube oil. Therefore, the transparency of the lube oil ceases to matter. Two experiments were conducted to validate the wear debris imaging feasibility and effectiveness of the newly developed detector. The results show that the visual feature information of the wear debris can be reliably obtained from black oil by this detector, and it can also be used to track the fast-changing wear of tribopairs at different wear stages. To the best of our knowledge, to date there is no other report for solving this issue.
Space Weather Influence on Relative Motion Control using the Touchless Electrostatic Tractor
NASA Astrophysics Data System (ADS)
Hogan, Erik A.; Schaub, Hanspeter
2016-09-01
With recent interest in the use of electrostatic forces for contactless tugging and attitude control of noncooperative objects for orbital servicing and active debris mitigation, the need for a method of remote charge control arises. In this paper, the use of a directed electron beam for remote charge control is considered in conjunction with the relative motion control. A tug vehicle emits an electron beam onto a deputy object, charging it negatively. At the same time, the tug is charged positively due to beam emission, resulting in an attractive electrostatic force. The relative position feedback control between the tug and the passive debris object is studied subject to the charging being created through an electron beam. Employing the nominal variations of the GEO space weather conditions across longitude slots, two electrostatic tugging strategies are considered. First, the electron beam current is adjusted throughout the orbit in order to maximize this resulting electrostatic force. This open-loop control strategy compensates for changes in the nominally expected local space weather environment in the GEO region to adjust for fluctuations in the local plasma return currents. Second, the performance impact of using a fixed electron beam current on the electrostatic tractor is studied if the same natural space weather variations are assumed. The fixed electron beam current shows a minor performance penalty (<5 %) while providing a much simpler implementation that does not require any knowledge of local space weather conditions.
The Solid Rocket Motor Slag Population: Results of a Radar-based Regressive Statistical Evaluation
NASA Technical Reports Server (NTRS)
Horstman, Matthew F.; Xu, Yu-Lin
2008-01-01
Solid rocket motor (SRM) slag has been identified as a significant source of man-made orbital debris. The propensity of SRMs to generate particles of 100 m and larger has caused concern regarding their contribution to the debris environment. Radar observation, rather than in-situ gathered evidence, is currently the only measurable source for the NASA/ODPO model of the on-orbit slag population. This simulated model includes the time evolution of the resultant orbital populations using a historical database of SRM launches, propellant masses, and estimated locations and times of tail-off. However, due to the small amount of observational evidence, there can be no direct comparison to check the validity of this model. Rather than using the assumed population developed from purely historical and physical assumptions, a regressional approach was used which utilized the populations observed by the Haystack radar from 1996 to present. The estimated trajectories from the historical model of slag sources, and the corresponding plausible detections by the Haystack radar, were identified. Comparisons with observational data from the ensuing years were made, and the SRM model was altered with respect to size and mass production of slag particles to reflect the historical data obtained. The result is a model SRM population that fits within the bounds of the observed environment.
Participatory Sensing Marine Debris: Current Trends and Future Opportunities
NASA Astrophysics Data System (ADS)
Jambeck, J.; Johnsen, K.
2016-02-01
The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.
MMOD Protection and Degradation Effects for Thermal Control Systems
NASA Technical Reports Server (NTRS)
Christiansen, Eric
2014-01-01
Micrometeoroid and orbital debris (MMOD) environment overview Hypervelocity impact effects & MMOD shielding MMOD risk assessment process Requirements & protection techniques - ISS - Shuttle - Orion/Commercial Crew Vehicles MMOD effects on spacecraft systems & improving MMOD protection - Radiators Coatings - Thermal protection system (TPS) for atmospheric entry vehicles Coatings - Windows - Solar arrays - Solar array masts - EVA Handrails - Thermal Blankets Orbital Debris provided by JSC & is the predominate threat in low Earth orbit - ORDEM 3.0 is latest model (released December 2013) - http://orbitaldebris.jsc.nasa.gov/ - Man-made objects in orbit about Earth impacting up to 16 km/s average 9-10 km/s for ISS orbit - High-density debris (steel) is major issue Meteoroid model provided by MSFC - MEM-R2 is latest release - http://www.nasa.gov/offices/meo/home/index.html - Natural particles in orbit about sun Mg-silicates, Ni-Fe, others - Meteoroid environment (MEM): 11-72 km/s Average 22-23 km/s.
An Update on the Effectiveness of Postmission Disposal in LEO
NASA Technical Reports Server (NTRS)
Liou, J.-C; Krisko, Paula
2013-01-01
Orbital debris mitigation measures have been developed to reduce the growth of the future debris population by the international space community over the past two decades. A major component in the overall mitigation strategy is postmission disposal (PMD). A key PMD element for the low Earth orbit (LEO, the region below 2000 km altitude) satellites is the 25-year decay rule. It is intended to limit the long-term presence of massive intact objects - rocket bodies (R/Bs) and spacecraft (S/C) in the environment. The effectiveness of the 25-year rule was well demonstrated and documented during the development of the mitigation measures. The orbital debris population in LEO, unfortunately, has significantly increased since that time. The objectives of this paper are to provide an updated assessment based on the 2012 LEO environment and to highlight the importance of the global compliance of the 25-year decay rule.
Seabirds, gyres and global trends in plastic pollution.
van Franeker, Jan A; Law, Kara Lavender
2015-08-01
Fulmars are effective biological indicators of the abundance of floating plastic marine debris. Long-term data reveal high plastic abundance in the southern North Sea, gradually decreasing to the north at increasing distance from population centres, with lowest levels in high-arctic waters. Since the 1980s, pre-production plastic pellets in North Sea fulmars have decreased by ∼75%, while user plastics varied without a strong overall change. Similar trends were found in net-collected floating plastic debris in the North Atlantic subtropical gyre, with a ∼75% decrease in plastic pellets and no obvious trend in user plastic. The decreases in pellets suggest that changes in litter input are rapidly visible in the environment not only close to presumed sources, but also far from land. Floating plastic debris is rapidly "lost" from the ocean surface to other as-yet undetermined sinks in the marine environment. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA's New Orbital Debris Engineering Model, ORDEM2010
NASA Technical Reports Server (NTRS)
Krisko, Paula H.
2010-01-01
This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.
Discharge of debris from ice at the margin of the Greenland ice sheet
Knight, P.G.; Waller, R.I.; Patterson, C.J.; Jones, A.P.; Robinson, Z.P.
2002-01-01
Sediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12-45 m3 m-1 a-1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glacio-fluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.
Experiments and simulation of a net closing mechanism for tether-net capture of space debris
NASA Astrophysics Data System (ADS)
Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.
2017-10-01
This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.
SURVIVAL AND TRANSMISSION OF PATHOGENS IN THE ENVIRONMENT
To provide and apply scientific knowledge regarding the survival and transmission of pathogens in the clinical setting to their potential survival and transmission in the natural environment. Similar to the hospital environment where pathogens reside in organic debris treated wi...
Spaceborne Sensors Track Marine Debris Circulation in the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Reahard, Ross; Mitchell, Brandie; Lee, Lucas; Pezold, Blaise; Brook, Chris; Mallett, Candis; Barrett, Shelby; Albin, Aaron
2011-01-01
Marine debris is a problem for coastal areas throughout the world, including the Gulf of Mexico. To aid the NOAA Marine Debris Program in monitoring marine debris dispersal and regulating marine debris practices, sea surface height and height anomaly data provided by the Colorado Center for Astrodynamics Research at the University of Colorado, Boulder, were utilized to help assess trash and other discarded items that routinely wash ashore in southeastern Texas, at Padre Island National Seashore. These data were generated from the NASA radar altimeter satellites TOPEX/Poseidon, Jason 1, and Jason 2, as well as the European altimeter satellites ERS-1, ERS-2 (European Remote Sensing Satellite), and ENVISAT (Environmental Satellite). Sea surface temperature data from MODIS were used to study of the dynamics of the Loop Current. Sea surface height and MODIS data analysis were used to show that warm water in the core of eddies, which periodically separate from the Loop Current, can be as high as 30 cm above the surrounding water. These eddies are known to directly transfer marine debris to the western continental shelf and the elevated area of water can be tracked using satellite radar altimeter data. Additionally, using sea surface height, geostrophic velocity, and particle path data, foretracking and backtracking simulations were created. These simulation runs demonstrated that marine debris on Padre Island National Seashore may arise from a variety of sources, such as commercial fishing/shrimping, the oil and gas industry, recreational boaters, and from rivers that empty into the Gulf of Mexico.
Bouwman, Hindrik; Evans, Steven W; Cole, Nik; Choong Kwet Yive, Nee Sun; Kylin, Henrik
2016-03-01
Isolated coral atolls are not immune from marine debris accumulation. We identified Southeast Asia, the Indian sub-continent, and the countries on the Arabian Sea as most probable source areas of 50 000 items on the shores of St. Brandon's Rock (SBR), Indian Ocean. 79% of the debris was plastics. Flip-flops, energy drink bottles, and compact fluorescent lights (CFLs) were notable item types. The density of debris (0.74 m(-)(1) shore length) is comparable to similar islands but less than mainland sites. Intact CFLs suggests product-facilitated long-range transport of mercury. We suspect that aggregated marine debris, scavenged by the islands from currents and gyres, could re-concentrate pollutants. SBR islets accumulated debris types in different proportions suggesting that many factors act variably on different debris types. Regular cleaning of selected islets will take care of most of the accumulated debris and may improve the ecology and tourism potential. However, arrangements and logistics require more study. Copyright © 2016 Elsevier Ltd. All rights reserved.
Observed Marine Debris in the Pacific Ocean 00e2?? Victoria to Maui 2012
Location and descriptions of marine debris observed by the Sailing Vessel (S/V) Family Affair yacht during the Victoria, British Columbia to Maui, Hawaii Yacht Race in July 2012. These observations are organized according to the following map layers: Family Affairs Observations, Fleet Debris Levels, Return Vessels Special Reports, Roll Call Debris Data-Race, Special Report Debris-Race, Vessel Specific Observations, and Return Vessel Specific Levels Observations.The March, 2011 tsunami that affected northern Japan washed enormous amounts of debris out to sea. While most of this debris sank quickly out at sea, much remains on the surface and by ocean current and wind is working its way across the Pacific Ocean. In early days, the U.S. National Oceanic and Atmospheric Administration (NOAA) could track the debris slick by satellite, but by early 2012, the debris had become too dispersed to track. News stories have reported containers with motorcycles on Haida Gwaii, whole fishing boats in Alaska, and sections of concrete dock in Oregon. Recent reports are about the struggles of local governments to deal with cleaning up and disposing of flotsam washing up on local beaches.
Stevens, Michael R.; Flynn, Jennifer L.; Stephens, Verlin C.; Verdin, Kristine L.
2011-01-01
During 2009, the U.S. Geological Survey, in cooperation with Gunnison County, initiated a study to estimate the potential for postwildfire debris flows to occur in the drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble, Colorado. Currently (2010), these drainage basins are unburned but could be burned by a future wildfire. Empirical models derived from statistical evaluation of data collected from recently burned basins throughout the intermountain western United States were used to estimate the probability of postwildfire debris-flow occurrence and debris-flow volumes for drainage basins occupied by Carbonate, Slate, Raspberry, and Milton Creeks near Marble. Data for the postwildfire debris-flow models included drainage basin area; area burned and burn severity; percentage of burned area; soil properties; rainfall total and intensity for the 5- and 25-year-recurrence, 1-hour-duration-rainfall; and topographic and soil property characteristics of the drainage basins occupied by the four creeks. A quasi-two-dimensional floodplain computer model (FLO-2D) was used to estimate the spatial distribution and the maximum instantaneous depth of the postwildfire debris-flow material during debris flow on the existing debris-flow fans that issue from the outlets of the four major drainage basins. The postwildfire debris-flow probabilities at the outlet of each drainage basin range from 1 to 19 percent for the 5-year-recurrence, 1-hour-duration rainfall, and from 3 to 35 percent for 25-year-recurrence, 1-hour-duration rainfall. The largest probabilities for postwildfire debris flow are estimated for Raspberry Creek (19 and 35 percent), whereas estimated debris-flow probabilities for the three other creeks range from 1 to 6 percent. The estimated postwildfire debris-flow volumes at the outlet of each creek range from 7,500 to 101,000 cubic meters for the 5-year-recurrence, 1-hour-duration rainfall, and from 9,400 to 126,000 cubic meters for the 25-year-recurrence, 1-hour-duration rainfall. The largest postwildfire debris-flow volumes were estimated for Carbonate Creek and Milton Creek drainage basins, for both the 5- and 25-year-recurrence, 1-hour-duration rainfalls. Results from FLO-2D modeling of the 5-year and 25-year recurrence, 1-hour rainfalls indicate that the debris flows from the four drainage basins would reach or nearly reach the Crystal River. The model estimates maximum instantaneous depths of debris-flow material during postwildfire debris flows that exceeded 5 meters in some areas, but the differences in model results between the 5-year and 25-year recurrence, 1-hour rainfalls are small. Existing stream channels or topographic flow paths likely control the distribution of debris-flow material, and the difference in estimated debris-flow volume (about 25 percent more volume for the 25-year-recurrence, 1-hour-duration rainfall compared to the 5-year-recurrence, 1-hour-duration rainfall) does not seem to substantially affect the estimated spatial distribution of debris-flow material. Historically, the Marble area has experienced periodic debris flows in the absence of wildfire. This report estimates the probability and volume of debris flow and maximum instantaneous inundation area depths after hypothetical wildfire and rainfall. This postwildfire debris-flow report does not address the current (2010) prewildfire debris-flow hazards that exist near Marble.
Trends and drivers of marine debris on the Atlantic coast of the United States 1997-2007
Ribic, C.A.; Sheavly, S.B.; Rugg, D.J.; Erdmann, Eric S.
2010-01-01
For the first time, we documented regional differences in amounts and long-term trends of marine debris along the US Atlantic coast. The Southeast Atlantic had low land-based and general-source debris loads as well as no increases despite a 19% increase in coastal population. The Northeast (8% population increase) also had low land-based and general-source debris loads and no increases. The Mid-Atlantic (10% population increase) fared the worst, with heavy land-based and general-source debris loads that increased over time. Ocean-based debris did not change in the Northeast where the fishery is relatively stable; it declined over the Mid-Atlantic and Southeast and was correlated with declining regional fisheries. Drivers, including human population, land use status, fishing activity, and oceanic current systems, had complex relationships with debris loads at local and regional scales. Management challenges remain undeniably large but solid information from long-term programs is one key to addressing this pressing pollution issue. ?? 2010.
Trends and drivers of marine debris on the Atlantic coast of the United States 1997-2007.
Ribic, Christine A; Sheavly, Seba B; Rugg, David J; Erdmann, Eric S
2010-08-01
For the first time, we documented regional differences in amounts and long-term trends of marine debris along the US Atlantic coast. The Southeast Atlantic had low land-based and general-source debris loads as well as no increases despite a 19% increase in coastal population. The Northeast (8% population increase) also had low land-based and general-source debris loads and no increases. The Mid-Atlantic (10% population increase) fared the worst, with heavy land-based and general-source debris loads that increased over time. Ocean-based debris did not change in the Northeast where the fishery is relatively stable; it declined over the Mid-Atlantic and Southeast and was correlated with declining regional fisheries. Drivers, including human population, land use status, fishing activity, and oceanic current systems, had complex relationships with debris loads at local and regional scales. Management challenges remain undeniably large but solid information from long-term programs is one key to addressing this pressing pollution issue. Published by Elsevier Ltd.
Browne, Mark Anthony; Chapman, M Gee; Thompson, Richard C; Amaral Zettler, Linda A; Jambeck, Jenna; Mallos, Nicholas J
2015-06-16
Floating and stranded marine debris is widespread. Increasing sea levels and altered rainfall, solar radiation, wind speed, waves, and oceanic currents associated with climatic change are likely to transfer more debris from coastal cities into marine and coastal habitats. Marine debris causes economic and ecological impacts, but understanding the scope of these requires quantitative information on spatial patterns and trends in the amounts and types of debris at a global scale. There are very few large-scale programs to measure debris, but many peer-reviewed and published scientific studies of marine debris describe local patterns. Unfortunately, methods of defining debris, sampling, and interpreting patterns in space or time vary considerably among studies, yet if data could be synthesized across studies, a global picture of the problem may be avaliable. We analyzed 104 published scientific papers on marine debris in order to determine how to evaluate this. Although many studies were well designed to answer specific questions, definitions of what constitutes marine debris, the methods used to measure, and the scale of the scope of the studies means that no general picture can emerge from this wealth of data. These problems are detailed to guide future studies and guidelines provided to enable the collection of more comparable data to better manage this growing problem.
The complex interaction between marine debris and toxic chemicals in the ocean.
Engler, Richard E
2012-11-20
Marine debris, especially plastic debris, is widely recognized as a global environmental problem. There has been substantial research on the impacts of plastic marine debris, such as entanglement and ingestion. These impacts are largely due to the physical presence of plastic debris. In recent years there has been an increasing focus on the impacts of toxic chemicals as they relate to plastic debris. Some plastic debris acts as a source of toxic chemicals: substances that were added to the plastic during manufacturing leach from plastic debris. Plastic debris also acts as a sink for toxic chemicals. Plastic sorbs persistent, bioaccumulative, and toxic substances (PBTs), such as polychlorinated biphenyls (PCBs) and dioxins, from the water or sediment. These PBTs may desorb when the plastic is ingested by any of a variety of marine species. This broad look at the current research suggests that while there is significant uncertainty and complexity in the kinetics and thermodynamics of the interaction, plastic debris appears to act as a vector transferring PBTs from the water to the food web, increasing risk throughout the marine food web, including humans. Because of the extremely long lifetime of plastic and PBTs in the ocean, prevention strategies are vital to minimizing these risks.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney; Gray, Perry
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California, The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a 'National Asset' by the DoD, The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Marshall Space Flight Center's Impact Testing Facility Capabilities
NASA Technical Reports Server (NTRS)
Evans, Steve; Finchum, Andy; Hubbs, Whitney
2008-01-01
Marshall Space Flight Center's (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960% then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility's unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Relocated test equipment was dated and in need of upgrade. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. Future ITF improvements will be focused on continued instrumentation and performance enhancements. These enhancements will allow further, more in-depth, characterization of rain drop demise characterization and evaluation of ice crystal impact. Performance enhancements also include increasing the upper velocity limit of the current environmental guns to allow direct environmental simulation for missile components. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas grins, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.
Brabb, Earl E.; Colgan, Joseph P.; Best, Timothy C.
2000-01-01
Introduction Debris flows, debris avalanches, mud flows and lahars are fast-moving landslides that occur in a wide variety of environments throughout the world. They are particularly dangerous to life and property because they move quickly, destroy objects in their paths, and often strike without warning. This map represents a significant effort to compile the locations of known debris flows in United Stated and predict where future flows might occur. The files 'dfipoint.e00' and 'dfipoly.e00' contain the locations of over 6600 debris flows from published and unpublished sources. The locations are referenced by numbers that correspond to entries in a bibliography, which is part of the pamphlet 'mf2329pamphlet.pdf'. The areas of possible future debris flows are shown in the file 'susceptibility.tif', which is a georeferenced TIFF file that can be opened in an image editing program or imported into a GIS system like ARC/INFO. All other databases are in ARC/INFO export (.e00) format.
Soil respiration and carbon responses to logging debris and competing vegetation
Robert A. Slesak; Stephen H. Schoenholtz; Timothy B. Harrington
2010-01-01
Management practices following forest harvesting that modify organic matter (OM) inputs and influence changes in the soil environment have the potential to alter soil C pools, but there is still much uncertainty regarding how these practices influence soil C flux. We examined the influence of varying amounts of logging-debris retention (0, 40, and 80% coverage) and...
Role of construction debris in release of copper, chromium, and arsenic from treated wood structures
Stan T. Lebow; Steven A. Halverson; Jeffrey J. Morrell; John Simonsen
Recent research on the release of wood preservatives from treated wood used in sensitive environments has not considered the potential contribution from construction residues. This study sought to develop leaching rate data for small construction debris and compare those to the release rate from treated wood itself. Western hemlock boards were pressure treated with...
Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris
2017-01-01
Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean. PMID:28281667
NASA Astrophysics Data System (ADS)
Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris
2017-03-01
Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean.
Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects
NASA Technical Reports Server (NTRS)
Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David
2012-01-01
The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light on how many debris pieces can be visited for various amounts of propellant, which launch vehicles can accommodate such missions, and how much margin is available for debris removal system payloads.
NASA Astrophysics Data System (ADS)
Kain, Claire L.; Rigby, Edward H.; Mazengarb, Colin
2018-02-01
Two episodes of intense flooding and sediment movement occurred in the Westmorland Stream alluvial system near Caveside, Australia in January 2011 and June 2016. The events were investigated in order to better understand the drivers and functioning of this composite alluvial system on a larger scale, so as to provide awareness of the potential hazard from future flood and debris flow events. A novel combination of methods was employed, including field surveys, catchment morphometry, GIS mapping from LiDAR and aerial imagery, and hydraulic modelling using RiverFlow-2D software. Both events were initiated by extreme rainfall events (< 1% Annual Exceedance Probability for durations exceeding 6 h) and resulted in flooding and sediment deposition across the alluvial fan. The impacts of the 2011 and 2016 events on the farmland appeared similar; however, there were differences in sediment source and transport processes that have implications for understanding recurrence probabilities. A debris flow was a key driver in the 2011 event, by eroding the stream channel in the forested watershed and delivering a large volume of sediment downstream to the alluvial fan. In contrast, modelled flooding velocities suggest the impacts of the 2016 event were the result of an extended period of extreme stream flooding and consequent erosion of alluvium directly above the current fan apex. The morphometry of the catchment is better aligned with values from fluvially dominated fans found elsewhere, which suggests that flooding represents a more frequent future risk than debris flows. These findings have wider implications for the estimation of debris flow and flood hazard on alluvial fans in Tasmania and elsewhere, as well as further demonstrating the capacity of combined hydraulic modelling and geomorphologic investigation as a predictive tool to inform hazard management practices in environments affected by flooding and sediment movement.
Pathologies of the digestive system caused by marine debris in Chelonia mydas.
Jerdy, Hassan; Werneck, Max Rondon; da Silva, Maria Aparecida; Ribeiro, Rachel Bittencourt; Bianchi, Mariah; Shimoda, Eduardo; de Carvalho, Eulógio Carlos Queiróz
2017-03-15
The growth of human population and deficient pollution control measures pose significant challenge to the environment. Despite conservation efforts, all sea turtle species are at some risk of extinction. The present study investigated the effect of marine debris on the gastrointestinal tract of green turtles in southeastern Brazil. Of the 777 animals evaluated, 290 showed marine debris in one segment of the gastrointestinal tract. The presence of these materials in the gastrointestinal tract may be harmful, independent of the segment involved, and increases the risk of impaction. Marine debris has become a significant hazard to Chelonia mydas in the region surveyed, causing perforation, rupture, or fecal impaction that, when not treated, is potentially fatal, exposing the intestine to bacterial infection. Copyright © 2017 Elsevier Ltd. All rights reserved.
Conceptual design of an Orbital Debris Defense System
NASA Technical Reports Server (NTRS)
Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly
1994-01-01
Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.
Monitoring the abundance of plastic debris in the marine environment.
Ryan, Peter G; Moore, Charles J; van Franeker, Jan A; Moloney, Coleen L
2009-07-27
Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.
NASA Astrophysics Data System (ADS)
Stuurman, C. M.; Holt, J.; Levy, J.
2016-12-01
On Earth and Mars, debris-covered glaciers (DCGs) often exhibit arcuate ridges transverse to the flow direction. Additionally, there exists some evidence linking internal structure (which is controlled in part by climate) in DCGs with surface microtopography. A better understanding of the relationship between englacial debris bands, compressional stresses, and debris-covered glacier microtopography will augment understanding of formational environments and mechanisms for terrestrial and martian DCGs. In order to better understand relationships between DCG surface morphology and internal debris bands, we combine field observations with finite-element modeling techniques to relate internal structure of DCGs to their surface morphologies. A geophysical survey including time-domain electromagnetic and ground-penetrating radar techniques of the Galena Creek Rock Glacier, WY was conducted over two field seasons in 2015/2016. Geomorphic analysis by surface observation and photogrammetry, including examination of a cirque-based thermokarst, was used to guide and complement geophysical sounding methods. Very clean ice below a 1 m thick layer of debris was directly observed on the walls of a 40 m diameter thermokarst pond near the accumulation zone. An englacial debris band 0.7 m thick dipping 30o intersected the wall of the pond. Transverse ridges occur at varying ridge-to-ridge wavelengths at different locations on the glacier. The GPR data supports the idea that surface ridges correlate with the intersection of debris layers and the surface. Modelling evidence is consistent with the observation of ridges at debris-layer/surface intersections, with compressional stresses buckling ice up-stream of the debris band.
Monitoring the abundance of plastic debris in the marine environment
Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.
2009-01-01
Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally. PMID:19528052
NASA Astrophysics Data System (ADS)
Godfrey, C. M.; Peterson, C. J.; Lombardo, F.
2017-12-01
Efforts to enhance the resilience of communities to tornadoes requires an understanding of the interconnected nature of debris and damage propagation in both the built and natural environment. A first step toward characterizing the interconnectedness of these elements within a given community involves detailed post-event surveys of tornado damage. Such damage surveys immediately followed the 22 January 2017 EF3 tornadoes in the southern Georgia towns of Nashville and Albany. After assigning EF-scale ratings to impacted structures, the authors geotagged hundreds of pieces of debris scattered around selected residential structures and outbuildings in each neighborhood and paired each piece of debris with its source structure. Detailed information on trees in the vicinity of the structures supplements the debris data, including the species, dimensions, location, fall direction, and level of damage. High-resolution satellite imagery helps to identify the location and fall direction of hundreds of additional forest trees. These debris and treefall patterns allow an estimation of the near-surface wind field using a Rankine vortex model coupled with both a tree stability model and an infrastructure fragility model that simulates debris flight. Comparisons between the modeled damage and the actual treefall and debris field show remarkable similarities for a selected set of vortex parameters, indicating the viability of this approach for estimating enhanced Fujita scale levels, determining the near-surface wind field of a tornado during its passage through a neighborhood, and identifying how debris may contribute to the overall risk from tornadoes.
RemoveDEBRIS: An in-orbit active debris removal demonstration mission
NASA Astrophysics Data System (ADS)
Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.
2016-10-01
Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.
Ballistic Performance of Porous Ceramic Thermal Protection Systems at 9 km/s
NASA Technical Reports Server (NTRS)
Miller, Joshua E.; Bohl, W. E.; Foreman, C. D.; Christiansen, Eric L.; Davis, B. A.
2009-01-01
Porous-ceramic, thermal-protection-systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components and sensitive electronic components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s on ceramic tiles similar to those used on the Orbiter. These tiles have a porous-batting of nominally 8 lb/cubic ft alumina-fiber-enhanced-thermal-barrier (AETB8) insulating material coated with a damage-resistant, toughened-unipiece-fibrous-insulation (TUFI) layer.
NASA Astrophysics Data System (ADS)
Radtke, Jonas; Stoll, Enrico
2016-10-01
Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as close to the reality as possible and included in the corresponding population. They furthermore have been correlated with TLE catalogue objects. As the latest available validated population snapshot for MASTER is May 2009, this epoch is chosen as endpoint for the simulations. The second scenario uses the knowledge of the past 25 years to perform a Monte-Carlo simulation of the evolution of the space debris environment. Necessary input parameters such as explosions per year, launch rates, and the evolution of the solar cycle are taken from their real evolutions. The third scenario goes a step further by only extracting mean numbers and trends from inputs such as launch and explosion rates and applying them. The final and fourth scenario aims to disregarding all knowledge of the time frame under investigation and inputs are determined based on data available in 1989 only. Results are compared to the reference scenario of the space debris environment.
LAD-C: A large area debris collector on the ISS
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Giovane, F. J.; Corsaro, R. D.; Burchell, M. J.; Drolshagen, G.; Kawai, H.; Stansbery, E. G.; Tabata, M.; Westphal, A. J.; Yano, H.
2006-01-01
The Large Area Debris Collector (LAD-C) is a 10 sq m aerogel and acoustic sensor system under development by the U.S. Naval Research Laboratory (NRL) with main collaboration from the NASA Orbital Debris Program Office at Johnson Space Center, JAXA Institute of Space and Astronautical Science (ISAS), Chiba University (Japan), ESA Space Debris Office, University of California at Berkeley, and University of Kent at Canterbury (UK). The U.S. Department of Defense (DoD) Space Test Program (STP) has assumed the responsibility for having the system manifested and deployed on the International Space Station (ISS), and then having it retrieved and returned to Earth after one to two years. LAD-C will attempt to utilize the ISS as a scientific platform to characterize the near-Earth meteoroid and orbital debris environment in the size regime where little data exist. In addition to meteoroid and orbital debris sample return, the acoustic sensors will record impact time, location, signal strength, and acoustic waveform data of the largest collected samples. A good time-dependent meteoroid and orbital debris flux estimate can be derived. Analysis of the data will also enable potential source identification of some of the collected samples. This dynamical link can be combined with laboratory composition analysis of impact residuals extracted from aerogel to further our understanding of orbital debris population, and the sources of meteoroids, asteroids and comets.
Bouwmeester, Hans; Hollman, Peter C H; Peters, Ruud J B
2015-08-04
High concentrations of plastic debris have been observed in the oceans. Much of the recent concern has focused on microplastics in the marine environment. Recent studies of the size distribution of the plastic debris suggested that continued fragmenting of microplastics into nanosized particles may occur. In this review we assess the current literature on the occurrence of environmentally released micro- and nanoplastics in the human food production chain and their potential health impact. The currently used analytical techniques introduce a great bias in the knowledge, since they are only able to detect plastic particles well above the nanorange. We discuss the potential use of the very sensitive analytical techniques that have been developed for the detection and quantification of engineered nanoparticles. We recognize three possible toxic effects of plastic particles: first due to the plastic particles themselves, second to the release of persistent organic pollutant adsorbed to the plastics, and third to the leaching of additives of the plastics. The limited data on microplastics in foods do not predict adverse effect of these pollutants or additives. Potential toxic effects of microplastic particles will be confined to the gut. The potential human toxicity of nanoplastics is poorly studied. Based on our experiences in nanotoxicology we prioritized future research questions.
NASA Astrophysics Data System (ADS)
Iovine, G.; D'Ambrosio, D.; Di Gregorio, S.
2005-03-01
In modelling complex a-centric phenomena which evolve through local interactions within a discrete time-space, cellular automata (CA) represent a valid alternative to standard solution methods based on differential equations. Flow-type phenomena (such as lava flows, pyroclastic flows, earth flows, and debris flows) can be viewed as a-centric dynamical systems, and they can therefore be properly investigated in CA terms. SCIDDICA S 4a is the last release of a two-dimensional hexagonal CA model for simulating debris flows characterised by strong inertial effects. S 4a has been obtained by progressively enriching an initial simplified model, originally derived for simulating very simple cases of slow-moving flow-type landslides. Using an empirical strategy, in S 4a, the inertial character of the flowing mass is translated into CA terms by means of local rules. In particular, in the transition function of the model, the distribution of landslide debris among the cells is obtained through a double cycle of computation. In the first phase, the inertial character of the landslide debris is taken into account by considering indicators of momentum. In the second phase, any remaining debris in the central cell is distributed among the adjacent cells, according to the principle of maximum possible equilibrium. The complexities of the model and of the phenomena to be simulated suggested the need for an automated technique of evaluation for the determination of the best set of global parameters. Accordingly, the model is calibrated using a genetic algorithm and by considering the May 1998 Curti-Sarno (Southern Italy) debris flow. The boundaries of the area affected by the debris flow are simulated well with the model. Errors computed by comparing the simulations with the mapped areal extent of the actual landslide are smaller than those previously obtained without genetic algorithms. As the experiments have been realised in a sequential computing environment, they could be improved by adopting a parallel environment, which allows the performance of a great number of tests in reasonable times.
ESA Technologies for Space Debris Remediation
NASA Astrophysics Data System (ADS)
Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.
2013-08-01
Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.
NASA Technical Reports Server (NTRS)
Elfer, N.; Meibaum, R.; Olsen, G.
1995-01-01
A unique collection of computer codes, Space Debris Surfaces (SD_SURF), have been developed to assist in the design and analysis of space debris protection systems. SD_SURF calculates and summarizes a vehicle's vulnerability to space debris as a function of impact velocity and obliquity. An SD_SURF analysis will show which velocities and obliquities are the most probable to cause a penetration. This determination can help the analyst select a shield design that is best suited to the predominant penetration mechanism. The analysis also suggests the most suitable parameters for development or verification testing. The SD_SURF programs offer the option of either FORTRAN programs or Microsoft-EXCEL spreadsheets and macros. The FORTRAN programs work with BUMPERII. The EXCEL spreadsheets and macros can be used independently or with selected output from the SD_SURF FORTRAN programs. Examples will be presented of the interaction between space vehicle geometry, the space debris environment, and the penetration and critical damage ballistic limit surfaces of the shield under consideration.
NASA Technical Reports Server (NTRS)
Kessler, D. J. (Editor); Zarnecki, J. C. (Editor); Matson, D. L. (Editor)
1991-01-01
The present conference on space dust and debris encompasses orbital debris, in situ measurements and laboratory analysis of space-dust particles, comparative studies of comets, asteroids, and dust, the protection and maneuvering of spacecraft in space-debris environments, and the out-of-elliptic distribution of interplanetary dust derived from near-earth flux. Specific issues addressed include asteroid taxonomy, the optical properties of dust from cometary and interplanetary grains, light scattering by rough surfaces on asteroidal/lunar regoliths, and the first results of particulate impacts and foil perforations on the Long Duration Exposure Facility. Also addressed are collision probability and spacecraft disposition in the geostationary orbit, a flash on the moon caused by orbital debris, the limits of population growth in low earth orbit due to collisional cascading, and the simulation of cosmic man-made dust effects on space-vehicle elements in rocket and laboratory experiments.
The Orbital Debris Problem and the Challenges for Environment Remediation
NASA Technical Reports Server (NTRS)
Liou, J.-C.
2014-01-01
LEO debris population will continue to increase even with a good implementation of the commonly-adopted mitigation measures. The root-cause of the increase is catastrophic collisions involving large/massive intact objects (rocket bodies or spacecraft). The major mission-ending risks for most operational spacecraft, however, come from impacts with debris just above the threshold of the protection shields (5-mm to 1-cm). A solution-driven approach is to seek: Concepts for removal of massive intacts with high P(collision); Concepts capable of preventing collisions involving intacts; Concepts for removal of 5-mm to 1-cm debris; Enhanced impact protection shields for valuable space assets. Key questions for remediation consideration of orbital debris: What is the acceptable threat level? What are the mission objectives? What is the appropriate roadmap/timeframe for remediation? Support advanced technology development when an economically viable approach is identified. Address non-technical issues, such as policy, coordination, ownership, legal, and liability at the national and international levels.
Justin C. Davis; Steven B. Castleberry; John C. Kilgo
2010-01-01
Coarse woody debris (CWD) is thought to benefit herpetofauna in a variety of ways including serving as feeding sites, providing a moist environment, and providing protection from temperature extremes. We investigated the importance of CWD to amphibian and reptile communities in managed upland pine stands in the southeastern United States Coastal Plain during years 6...
Optimizing Orbital Debris Monitoring with Optical Telescopes
2010-09-01
poses an increasing risk to manned space missions and operational satellites ; however, the majority of debris large enough to cause catastrophic...cameras hosted on GEO- based satellites for monitoring GEO. Performance analysis indicates significant potential contributions of these systems as a...concerns over the long term-viability of the space environment and the resulting economic impacts. The 2007 China anti- satellite test and the 2009
To what extent are microplastics from the open ocean weathered?
Ter Halle, Alexandra; Ladirat, Lucie; Martignac, Marion; Mingotaud, Anne Françoise; Boyron, Olivier; Perez, Emile
2017-08-01
It is necessary to better characterize plastic marine debris in order to understand its fate in the environment and interaction with organisms, the most common type of debris being made of polyethylene (PE) and polypropylene (PP). In this work, plastic debris was collected in the North Atlantic sub-tropical gyre during the Expedition 7th Continent sea campaign and consisted mainly in PE. While the mechanisms of PE photodegradation and biodegradation in controlled laboratory conditions are well known, plastic weathering in the environment is not well understood. This is a difficult task to examine because debris comes from a variety of manufactured objects, the original compositions and properties of which vary considerably. A statistical approach was therefore used to compare four sample sets: reference PE, manufactured objects, mesoplastics (5-20 mm) and microplastics (0.3-5 mm). Infrared spectroscopy showed that the surface of all debris presented a higher oxidation state than the reference samples. Differential scanning calorimetry analysis revealed that the microplastics were more crystalline contrarily to the mesoplastics which were similar to references samples. Size exclusion chromatography showed that the molar mass decreased from the references to meso- and microplastics, revealing a clear degradation of the polymer chains. It was thus concluded that the morphology of marine microplastic was much altered and that an unambiguous shortening of the polymer chains took place even for this supposedly robust and inert polymer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Long Duration Exposure Facility (LDEF) experiment M0003 meteoroid and debris survey
NASA Technical Reports Server (NTRS)
Meshishnek, M. J.; Gyetvay, S. R.; Paschen, K. W.; Coggi, J. M.
1993-01-01
A survey of the meteoroid and space debris impacts on LDEF experiment M0003 was performed. The purpose of this survey was to document significant impact phenomenology and to obtain impact crater data for comparison to current space debris and micrometeoroid models. The survey consists of the following: photomicrographs of significant impacts in a variety of material types; accurate measurements of impact crater coordinates and dimensions for selected experiment surfaces; and databasing of the crater data for reduction, manipulation, and comparison to models. Large area surfaces that were studied include the experiment power and data system (EPDS) sunshields, environment exposure control canister (EECC) sunshields, and the M0003 signal conditioning unit (SCU) covers. Crater diameters down to 25 microns were measured and cataloged. Both leading (D8) and trailing (D4) edge surfaces were studied and compared. The EPDS sunshields are aluminum panels painted with Chemglaze A-276 white thermal control paint, the EECC sunshields are chromic acid-anodized aluminum, and the SCU covers are aluminum painted with S13GLO white thermal control paint. Typical materials that have documented impacts are metals, glasses and ceramics, composites, polymers, electronic materials, and paints. The results of this survey demonstrate the different response of materials to hypervelocity impacts. Comparison of the survey data to curves derived from the Kessler debris model and the Cour-Palais micrometeoroid model indicates that these models overpredict small impacts (less than 100 micron) and may underpredict large impacts (greater than 1000 micron) while having fair to good agreement for the intermediate impacts. Comparison of the impact distributions among the various surfaces indicates significant variations, which may be a function of material response effects, or in some cases surface roughness. Representative photographs and summary graphs of the impact data are presented.
NASA Astrophysics Data System (ADS)
Nguyen, T.; Pankratius, V.; Eckman, L.; Seager, S.
2018-04-01
Debris disks around stars other than the Sun have received significant attention in studies of exoplanets, specifically exoplanetary system formation. Since debris disks are major sources of infrared emissions, infrared survey data such as the Wide-Field Infrared Survey (WISE) catalog potentially harbors numerous debris disk candidates. However, it is currently challenging to perform disk candidate searches for over 747 million sources in the WISE catalog due to the high probability of false positives caused by interstellar matter, galaxies, and other background artifacts. Crowdsourcing techniques have thus started to harness citizen scientists for debris disk identification since humans can be easily trained to distinguish between desired artifacts and irrelevant noises. With a limited number of citizen scientists, however, increasing data volumes from large surveys will inevitably lead to analysis bottlenecks. To overcome this scalability problem and push the current limits of automated debris disk candidate identification, we present a novel approach that uses citizen science results as a seed to train machine learning based classification. In this paper, we detail a case study with a computer-aided discovery pipeline demonstrating such feasibility based on WISE catalog data and NASA's Disk Detective project. Our approach of debris disk candidates classification was shown to be robust under a wide range of image quality and features. Our hybrid approach of citizen science with algorithmic scalability can facilitate big data processing for future detections as envisioned in future missions such as the Transiting Exoplanet Survey Satellite (TESS) and the Wide-Field Infrared Survey Telescope (WFIRST).
Ballistic performance of porous-ceramic, thermal protection systems
NASA Astrophysics Data System (ADS)
Miller, Joshua E.; Bohl, William E.; Christiansen, Eric C.; Davis, Bruce A.; Foreman, Cory D.
2012-03-01
Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on 8 lb/ft3 alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrousinsulation/ reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principles impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. Model extensions to look at the implications of greater than 10 GPa equation of state is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.
NASA Astrophysics Data System (ADS)
Scherler, D.; Egholm, D. L.
2017-12-01
Debris-covered glaciers are widespread in the Himalaya and other steep mountain ranges. They testify to active erosion of ice-free bedrock hillslopes that tower above valley glaciers, sometimes more than a kilometer high. It is well known that supraglacial debris cover significantly reduces surface ablation rates and thereby influences glacial mass balances and runoff. However, the dynamic evolution of debris cover along with climatic and topographic changes is poorly understood. Here, we present ice-free hillslope erosion rates derived from 10Be concentrations in the ablation-dominated medial moraine of the Chhota Shigri Glacier, Indian Himalaya. We combine our empirical, field-based approach with a numerical model of frost-related sediment production and glacial debris transport to (1) assess patterns of ice-free hillslope erosion that are permissible with observed patterns of debris cover, and (2) explore the coupled response of glaciers and ice-free hillslopes to climatic changes. Measured 10Be concentrations increase downglacier from 3×104 to 6×104 atoms (g quartz) -1, yielding hillslope erosion rates of 1.3-0.6 mm yr-1. The accumulation of 10Be during debris residence on the ice surface can only account for a small fraction (<20%) of the downglacier increase. Other potential explanations include (1) heterogeneous source areas with different average productions rates, and (2) homogeneous source areas but temporally variable erosion rates. We used the 10Be-derived hillslope erosion rates to define debris supply rates from ice-free bedrock hillslopes in the numerical ice and landscape evolution model iSOSIA. Based on available mass balance and ice thickness data, the calibrated model reproduces the medial moraine of the Chhota Shogri Glacier quite well, although uncertainties exist due to the transient disequilibrium of the glacier, i.e., the current debris cover was fed into the glacier during the Little Ice Age (LIA), and thus under different boundary conditions. We currently perform transient experiments during warming and cooling periods for testing models of frost-related and temperature-sensitive debris production, and for assessing the coupled sensitivity of hillslopes and glaciers to climate change.
Shielded, Automated Umbilical Mechanism
NASA Technical Reports Server (NTRS)
Barron, Daniel R.; Morrill, Brion F.; Jasulaitis, Vytas
1995-01-01
Umbilical mechanism automatically connects and disconnects various fluid couplings and/or electrical contacts while shielding mating parts from debris. Reacts mating and demating loads internally, without additional supporting structures. All functions - extension of plug, mating, and movement of debris shields - actuated by single motor. If mechanism jams or fails at any point in sequence, override feature in drive train allows manual operation. Designed for service in outer space, where its shields protect against micrometeoroids, debris, ultraviolet radiation, and atomic oxygen. Used on Earth to connect or disconnect fluid or electrical utilities in harsh environments like those of nuclear powerplants or undersea construction sites, or in presence of radioactive, chemical, or biological hazards, for example.
Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets
NASA Astrophysics Data System (ADS)
Drolshagen, Gerhard
1992-06-01
The number of impacts from meteoroids and space debris particles to the various Long Duration Exposure Facility (LDEF) rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on the latest environment flux models and includes geometrical and directional effects. A detailed comparison of model predictions and actual observations is made for impacts on the thermal blankets which covered the USCR experiment. Impact features on these blankets were studied intensively in European laboratories and hypervelocity impacts for calibration were performed. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a unique test case for the latest meteoroid and debris flux models.
Zodiac II: Debris Disk Science from a Balloon
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne;
2011-01-01
Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.
Zodiac II: Debris Disk Science from a Balloon
NASA Technical Reports Server (NTRS)
Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne;
2011-01-01
Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.
NASA Astrophysics Data System (ADS)
Fickert, Thomas; Friend, Donald; Grüninger, Friederike; Molnia, Bruce; Richter, Michael
2017-04-01
As stated at the International Conference on Debris-Covered Glaciers in 2000, "debris-covered glaciers comprise a significant fraction of the global population of glaciers...." Given a minimum of debris thickness and sufficient stability, these surfaces host surprisingly diverse plant assemblages, both floristically and structurally. Observations of plant growth on glacier surfaces are reported from around the world - including mature forests with trees more than 50cm in diameter. Debris covered glacier surfaces are mobile habitats for plants, which migrate downhill with glacier movement, but are able to spread upward with strong anabatic valley winds. Plant growth is possible even on a very shallow debris cover. Depending on site conditions, floristic composition and structure of vegetation on debris covered glaciers represent a mosaic of environments, including subnival pioneer communities, glacier foreland early- to late-successional stages, and morainal locations. The taxa involved display a wide spectrum of adaptations to habitat conditions with particular migration and dispersal strategies. With a shallow debris cover, alpine/subnival taxa can grow considerably below their usual altitudinal niche due to the cooler subsurface soil temperatures. In contrast, a greater thickness of debris cover allows even thermophilous plants of lower elevations to grow on glacier surfaces. Employing the principle of actualism, debris covered glaciers provided important and previously undocumented refugia for plants during the Pleistocene cold stages from which alpine and arctic plant species were able to re-establish and spread in post-glacial time. This assumption is complementary to the two competing ideas to explain the fate of alpine and/or arctic taxa during the Pleistocene, the nunatak hypothesis (i.e. in-situ survival of plants on unglaciated summits) and tabula rasa theory (i.e. displacement of plants and subsequent remigration). Vice versa debris covered glaciers might have served as refugia for cryophilic plants during Holocene warm stages.
Characterization of the Space Shuttle Ascent Debris using CFD Methods
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.
2005-01-01
After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.
Fauziah, S H; Liyana, I A; Agamuthu, P
2015-09-01
Studies on marine debris have gained worldwide attention since many types of debris have found their way into the food chain of higher organisms. Thus, it is crucial that more focus is given to this area in order to curb contaminations in sea food. This study was conducted to quantify plastic debris buried in sand at selected beaches in Malaysia. Marine debris was identified according to size range and distribution, and this information was related to preventive actions to improve marine waste issues. For the purpose of this study, comparison of plastic waste abundance between a recreational beach and fish-landing beaches was also carried out, since the different beach types represent different activities that produce debris. Six beaches along the Malaysian coastline were selected for this study. The plastic types in this study were related to the functions of the beach. While recreational beaches have abundant quantities of plastic film, foamed plastic including polystyrene, and plastic fragment, fish-landing beaches accumulated line and foamed plastic. A total of 2542 pieces (265.30 g m(-2)) of small plastic debris were collected from all six beaches, with the highest number from Kuala Terengganu, at 879 items m(-2) on Seberang Takir Beach, followed by Batu Burok Beach with 780 items m(-2). Findings from studies of Malaysian beaches have provided a clearer understanding of the distribution of plastic debris. This demonstrates that commitments and actions, such as practices of the 'reduce, reuse, recycle' (3R) approach, supporting public awareness programmes and beach clean-up activities, are essential in order to reduce and prevent plastic debris pollution. © The Author(s) 2015.
POST Earthquake Debris Management — AN Overview
NASA Astrophysics Data System (ADS)
Sarkar, Raju
Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction and demolition debris following an earthquake.
POST Earthquake Debris Management - AN Overview
NASA Astrophysics Data System (ADS)
Sarkar, Raju
Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction and demolition debris following an earthquake.
Finite element analysis of space debris removal by high-power lasers
NASA Astrophysics Data System (ADS)
Xue, Li; Jiang, Guanlei; Yu, Shuang; Li, Ming
2015-08-01
With the development of space station technologies, irradiation of space debris by space-based high-power lasers, can locally generate high-temperature plasmas and micro momentum, which may achieve the removal of debris through tracking down. Considered typical square-shaped space debris of material Ti with 5cm×5cm size, whose thermal conductivity, density, specific heat capacity and emissivity are 7.62W/(m·°C), 4500kg/m3, 0.52J/(kg·°C) and 0.3,respectively, based on the finite element analysis of ANSYS, each irradiation of space debris by high-power lasers with power density 106W/m2 and weapons-grade lasers with power density 3000W/m2 are simulated under space environment, and the temperature curves due to laser thermal irradiation are obtained and compared. Results show only 2s is needed for high-power lasers to make the debris temperature reach to about 10000K, which is the threshold temperature for plasmas-state conversion. While for weapons-grade lasers, it is 13min needed. Using two line elements (TLE), and combined with the coordinate transformation from celestial coordinate system to site coordinate system, the visible period of space debris is calculated as 5-10min. That is, in order to remove space debris by laser plasmas, the laser power density should be further improved. The article provides an intuitive and visual feasibility analysis method of space debris removal, and the debris material and shape, laser power density and spot characteristics are adjustable. This finite element analysis method is low-cost, repeatable and adaptable, which has an engineering-prospective applications.
Keswani, Anisha; Oliver, David M; Gutierrez, Tony; Quilliam, Richard S
2016-07-01
Marine plastic debris is well characterized in terms of its ability to negatively impact terrestrial and marine environments, endanger coastal wildlife, and interfere with navigation, tourism and commercial fisheries. However, the impacts of potentially harmful microorganisms and pathogens colonising plastic litter are not well understood. The hard surface of plastics provides an ideal environment for opportunistic microbial colonisers to form biofilms and might offer a protective niche capable of supporting a diversity of different microorganisms, known as the "Plastisphere". This biotope could act as an important vector for the persistence and spread of pathogens, faecal indicator organisms (FIOs) and harmful algal bloom species (HABs) across beach and bathing environments. This review will focus on the existent knowledge and research gaps, and identify the possible consequences of plastic-associated microbes on human health, the spread of infectious diseases and bathing water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Darmon, Gaëlle; Miaud, Claude; Claro, Françoise; Doremus, Ghislain; Galgani, François
2017-07-01
Debris impact on marine wildlife has become a major issue of concern. Mainy species have been identified as being threatened by collision, entanglement or ingestion of debris, generally plastics, which constitute the predominant part of the recorded marine debris. Assessing sensitive areas, where exposure to debris are high, is thus crucial, in particular for sea turtles which have been proposed as sentinels of debris levels for the Marine Strategy Framework Directive and for the Unep-MedPol convention. Our objective here was to assess sea turtle exposure to marine debris in the 3 metropolitan French fronts. Using aerial surveys performed in the Channel, the Atlantic and the Mediterranean regions in winter and summer 2011-2012, we evaluated exposure areas and magnitude in terms of spatial overlap, encounter probability and density of surrounding debris at various spatial scales. Major overlapping areas appeared in the Atlantic and Mediterranean fronts, concerning mostly the leatherback and the loggerhead turtles respectively. The probability for individuals to be in contact with debris (around 90% of individuals within a radius of 2 km) and the density of debris surrounding individuals (up to 16 items with a radius of 2 km, 88 items within a radius of 10 km) were very high, whatever the considered spatial scale, especially in the Mediterranean region and during the summer season. The comparison of the observed mean debris density with random distribution suggested that turtles selected debris areas. This may occur if both debris and turtles drift to the same areas due to currents, if turtles meet debris accidentally by selecting high food concentration areas, and/or if turtles actively seek debris out, confounding them with their preys. Various factors such as species-specific foraging strategies or oceanic features which condition the passive diffusion of debris, and sea turtles in part, may explain spatio-temporal variations in sensitive areas. Further research on exposure to debris is urgently needed. Empirical data on sea turtles and debris distributions, such as those collected aerially, are essential to better identify the location and the factors determining risks.
The leaching of lead from lead-based paint in landfill environments.
Wadanambi, Lakmini; Dubey, Brajesh; Townsend, Timothy
2008-08-30
Lead leaching from lead-based paint (LBP) was examined using standardized laboratory protocols and tests with leachate from actual and simulated landfill environments. Two different LBP samples were tested; leaching solutions included leachates from three municipal solid waste (MSW) landfills and three construction and demolition (C&D) debris landfills. The toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP) were also performed. Lead concentrations were many times higher using the TCLP compared to the SPLP and the landfill leachates. No significant difference (alpha=0.05) was observed in leached lead concentrations from the MSW landfill and C&D debris landfill leachates. The impact of other building materials present in LBP debris on lead leaching was examined by testing mixtures of LBP (2%) and different building materials (98%; steel, wood, drywall, concrete). The type of substrate present impacted lead leaching results, with concrete demonstrating the most dramatic impact; the lowest lead concentrations were measured in the presence of concrete under both TCLP and SPLP extractions.
NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT
NASA Technical Reports Server (NTRS)
Lederer, S. M.; Frith, J. M.; Pace, L. F.; Cowardin, H. M.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.;
2014-01-01
NASA's Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 - 1.06 micrometers) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micrometers) and mid- to far-infrared (8-25 micrometers) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescope's time has been allocated to collect orbital debris data for NASA's ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The combination of these ground-based telescope assets will yield spectral coverage ranging from 0.3 - 25 micrmeters, allowing orbital debris to be studied in depth across a wider wavelength range in the visible and IR than ever previously studied by ODPO. Located on opposite sides of the world and in opposite hemispheres, they offer access to nearly the entire GEO belt on any given night, allowing immediate coverage of nearly any time-critical break-up event. By expanding the methods for surveying, detecting, and characterizing orbital debris, we can better model the debris environment and ultimately gain insight into how to mitigate potential collisions for future missions.
NASA Technical Reports Server (NTRS)
Barker, Edwin S.; Matney, M. J.; Liou, J.-C.; Abercromby, K. J.; Rodriquez, H. M.; Seitzer, P.
2006-01-01
Since 2002 the National Aeronautics and Space Administration (NASA) has carried out an optical survey of the debris environment in the geosynchronous Earth-orbit (GEO) region with the Michigan Orbital Debris Survey Telescope (MODEST) in Chile. The survey coverage has been similar for 4 of the 5 years allowing us to follow the orbital evolution of Correlated Targets (CTs), both controlled and un-controlled objects, and Un-Correlated Targets (UCTs). Under gravitational perturbations the distributions of uncontrolled objects, both CTs and UCTs, in GEO orbits will evolve in predictable patterns, particularly evident in the inclination and right ascension of the ascending node (RAAN) distributions. There are several clusters (others have used a "cloud" nomenclature) in observed distributions that show evolution from year to year in their inclination and ascending node elements. However, when MODEST is in survey mode (field-of-view approx.1.3deg) it provides only short 5-8 minute orbital arcs which can only be fit under the assumption of a circular orbit approximation (ACO) to determine the orbital parameters. These ACO elements are useful only in a statistical sense as dedicated observing runs would be required to obtain sufficient orbital coverage to determine a set of accurate orbital elements and then to follow their evolution. Identification of the source(s) for these "clusters of UCTs" would be advantageous to the overall definition of the GEO orbital debris environment. This paper will set out to determine if the ACO elements can be used to in a statistical sense to identify the source of the "clustering of UCTs" roughly centered on an inclination of 12deg and a RAAN of 345deg. The breakup of the Titan 3C-4 transtage on February 21, 1992 has been modeled using NASA s LEGEND (LEO-to-GEO Environment Debris) code to generate a GEO debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta-V distributions). Once fragments are created, they are propagated forward in time with a subroutine GEOPROP. Perturbations included in GEOPROP are those due to solar/lunar gravity, radiation pressure, and major geopotential terms. The question to be addressed: are the UCTs detected by MODEST in this inclination/RAAN region related to the Titan 3C-4 breakup? Discussion will include the observational biases in attempting to detect a specific, uncontrolled target during given observing session. These restrictions include: (1) the length of the observing session which is 8 hours or less at any given date or declination; (2) the assumption of ACO elements for detected object when the breakup model predicts debris with non-zero eccentricities; (3) the size and illumination or brightness of the debris predicted by the model and the telescope/sky limiting magnitude.
NASA Astrophysics Data System (ADS)
Liou, J.-C.; Anz-Meador, P.; Opiela, J.; Christiansen, E.; Cowardin, H.; Davidson, W.; Ed-Wards, D.; Hedman, T.; Herrin, J.; Hyde, J.; Juarez, Q.; Lear, D.; McNamara, K.; Moser, D.; Ross, D.; Stansbery, E.
The STS-125 Atlantis astronauts retrieved the Hubble Space Telescope (HST) Wide Field Planetary Camera 2 (WFPC2) during a very successful servicing mission to the HST in May 2009. The radiator attached to WFPC2 has dimensions of 2.2 m by 0.8 m. Its outermost layer is a 4-mm thick aluminum plate covered with a white thermal control coating. This radiator had been exposed to space since the deployment of WFPC2 in 1993. Due to its large surface area and long exposure time, the radiator serves as a unique witness plate for the micrometeoroid and orbital debris (MMOD) environment between 560 and 620 km altitude. The NASA Orbital Debris Program Office is leading an effort, with full support from the HST Program at GSFC, NASA Curation Office at JSC, NASA Hypervelocity Impact Technology Facility at JSC, and NASA Meteoroid Environment Office at MSFC, to inspect the exposed radiator surface. The objective is to measure and analyze the MMOD impact damage on the radiator, and then apply the data to validate or improve the near-Earth MMOD environment definition. The initial inspection was completed in September 2009. A total of 685 MMOD impact features (larger than about 0.3 mm) were identified and documented. This paper will provide an overview of the inspection, the analysis of the data, and the initial effort to use the data to model the MMOD environment.
Orbital debris hazard insights from spacecraft anomalies studies
NASA Astrophysics Data System (ADS)
McKnight, Darren S.
2016-09-01
Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.
An evaluation of the significance of transfers of debris: criteria for association and exclusion.
Cwiklik, C
1999-11-01
Several criteria are proposed for making decisions about comparing sets of debris involving the transfer of non-component particles and fibers--those produced from something other than the item itself--using a model based upon rudimentary set theory. Decisions about the significance of an association or an exclusion based upon trace evidence require an evaluation of debris in its context; reference points for such evaluation are presented. Samples of debris from the sites relevant to the event under investigation must be available, as well as debris standards from the usual environments of the people involved, and must be adequate to permit a determination of normal versus foreign debris. Criteria are proposed for establishing contact based upon corresponding sets of particles and fibers, for excluding contact in the absence of corresponding particles or fibers, and for refraining from making either an association or an exclusion. Conditions for reaching qualified conclusions or other types of associations when these criteria are only partially met are also discussed; conclusions may sometimes be reached if potential sources for debris particles and fibers can be found. Decisions about the strength of an association or an exclusion based upon comparisons of non-component debris particles and fibers can be made by reference to the criteria for reaching a conclusion. The criteria can be tested via Bayes' Theorem. The analysis itself is based primarily upon light microscopy, although other methods may be used as well. Case examples are presented.
Contrasting origin of two clay-rich debris flows at Cayambe Volcanic Complex, Ecuador
NASA Astrophysics Data System (ADS)
Detienne, M.; Delmelle, P.; Guevara, A.; Samaniego, P.; Opfergelt, S.; Mothes, P. A.
2017-04-01
We investigate the sedimentological and mineralogical properties of a debris flow deposit west of Cayambe Volcanic Complex, an ice-clad edifice in Ecuador. The deposit exhibits a matrix facies containing up to 16 wt% of clays. However, the stratigraphic relationship of the deposit with respect to the Canguahua Formation, a widespread indurated volcaniclastic material in the Ecuadorian inter-Andean Valley, and the deposit alteration mineralogy differ depending on location. Thus, two different deposits are identified. The Río Granobles debris flow deposit ( 1 km3) is characterised by the alteration mineral assemblage smectite + jarosite, and sulphur isotopic analyses point to a supergene hydrothermal alteration environment. This deposit probably derives from a debris avalanche initiated before 14-21 ka by collapse of a hydrothermally altered rock mass from the volcano summit. In contrast, the alteration mineralogy of the second debris flow deposit, which may itself comprise more than one unit, is dominated by halloysite + smectite and relates to a shallower and more recent (<13 ky) mass movement of high-altitude (>3200 m) volcanic soils. Our study reinforces the significance of hydrothermal alteration in weakening volcano flanks and in favouring rapid transformation of a volcanic debris avalanche into a clay-rich debris flow. It also demonstrates that mineralogical analysis provides crucial information for resolving the origin of a debris flow deposit in volcanic terrains. Finally, we posit that slope instability, promoted by ongoing subglacial hydrothermal alteration, remains a significant hazard at Cayambe Volcanic Complex.
The Lone Ranger Mission: Understanding Synthetic Polymer Microbe Interactions In the Atlantic Ocean
NASA Astrophysics Data System (ADS)
Mielke, R.; Neal, A.; Stam, C. N.; Ferry, J. G.; Schlegel, R.; Tsapin, A. I.; Park, S.; Bhartia, R.; Salas, E.; Hug, W.; Behar, A. E.; Nadeau, J.
2011-12-01
Pollution is one of the most ubiquitous and insidious problems currently facing the oceans. As synthetic polymer debris degrades, it becomes increasingly accessible to organisms that forage or absorb food particles. However, research on this significant environmental pollution problem has not been able to keep up with the scope of the issue, since some of the first studies published in 1972 by Edward Carpenter. In January 2011, The Lone Ranger Atlantic Expedition, a collaboration between Blue Ocean Sciences (BOS) and the Schmidt Ocean Institute (SOI) transected the Atlantic Ocean covering 3,100 nautical miles sampling the first 15cm of the water column to investigate microbial interactions with synthetic polymer marine debris. Using established and novel techniques of Fourier transform infrared spectroscopy (FT-IR), scanning transmission electron microscopy (STEM), environmental scanning electron microscopy (ESEM), and gas chromatography-mass spectrometry (GC-MS), we were able to image and locate material degradation of pre-production, association of microbial biofilms, and accumulation of persistent organic pollutants (POP's) on environmental microplastics. We then used Spectroscopic Organic Analysis and ArcGIS mapping systems to observe the material degradation and the associated biofilm lattice on the environmental microplastics. This data sheds light on possible mechanisms of material weathering of synthetic polymers in deep ocean environments and new methods for identifying POP's association with them. These new techniques are highly transferable to many studies on material biofilm interactions in the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Glenn; Gaspar, Andras; Grady, Carol A.
We present new Hubble Space Telescope observations of three a priori known starlight-scattering circumstellar debris systems (CDSs) viewed at intermediate inclinations around nearby close-solar analog stars: HD 207129, HD 202628, and HD 202917. Each of these CDSs possesses ring-like components that are more massive analogs of our solar system's Edgeworth–Kuiper Belt. These systems were chosen for follow-up observations to provide imaging with higher fidelity and better sensitivity for the sparse sample of solar-analog CDSs that range over two decades in systemic ages, with HD 202628 and HD 207129 (both ∼2.3 Gyr) currently the oldest CDSs imaged in visible or near-IRmore » light. These deep (10–14 ks) observations, made with six-roll point-spread-function template visible-light coronagraphy using the Space Telescope Imaging Spectrograph, were designed to better reveal their angularly large debris rings of diffuse/low surface brightness, and for all targets probe their exo-ring environments for starlight-scattering materials that present observational challenges for current ground-based facilities and instruments. Contemporaneously also observing with a narrower occulter position, these observations additionally probe the CDS endo-ring environments that are seen to be relatively devoid of scatterers. We discuss the morphological, geometrical, and photometric properties of these CDSs also in the context of other CDSs hosted by FGK stars that we have previously imaged as a homogeneously observed ensemble. From this combined sample we report a general decay in quiescent-disk F {sub disk}/ F {sub star} optical brightness ∼ t {sup −0.8}, similar to what is seen at thermal IR wavelengths, and CDSs with a significant diversity in scattering phase asymmetries, and spatial distributions of their starlight-scattering grains.« less
Environmental and Environmental-Health Implications of the USGS SAFRR California Tsunami Scenario
NASA Astrophysics Data System (ADS)
Plumlee, G. S.; Morman, S. A.; San Juan, C. A.
2013-12-01
The California Tsunami Scenario models the impacts of a hypothetical yet plausible tsunami caused by an earthquake offshore from the Alaskan Peninsula. Here, we interpret plausible tsunami-related contamination, environmental impacts, potential for human exposures to contaminants and hazardous materials, and implications for remediation and recovery. Inundation-related damages to major ports, boat yards, and many marinas could release complex debris, crude oil, various fuel types, other petroleum products, some liquid bulk cargo and dry bulk cargo, and diverse other pollutants into nearby coastal marine environments and onshore in the inundation zone. Tsunami-induced erosion of contaminated harbor bottom sediments could re-expose previously sequestered metal and organic pollutants (e.g., organotin, DDT). Inundation-related damage to many older buildings could produce complex debris containing lead paint, asbestos, pesticides, and other legacy contaminants. Intermingled household debris and externally derived debris and sediments would be left in flooded buildings. Post tsunami, mold would likely develop in inundated houses, buildings, and debris piles. Tsunamigenic fires in spilled oil, debris, cargo, vehicles, vegetation, and residential, commercial, or industrial buildings and their contents would produce potentially toxic gases and smoke, airborne ash, and residual ash/debris containing caustic alkali solids, metal toxicants, asbestos, and various organic toxicants. Inundation of and damage to wastewater treatment plants in many coastal cities could release raw sewage containing fecal solids, pathogens, and waste chemicals, as well as chemicals used to treat wastewaters. Tsunami-related physical damages, debris, and contamination could have short- and longer-term impacts on the environment and the health of coastal marine and terrestrial ecosystems. Marine habitats in intertidal zones, marshes, sloughs, and lagoons could be damaged by erosion or sedimentation, and could receive an influx of debris, metal and organic contaminants, and sewage-related pathogens. Debris and re-exposed contaminated sediments would be a source of sea- or rain-water-leachable metal and organic contaminants that could pose chronic toxicity threats to ecosystems. If human populations are successfully evacuated prior to the tsunami arrival, there would be no or limited numbers of drownings, other casualties, or related injuries, wounds, and infections. Immediately after the tsunami, human populations away from the inundation zone could be transiently exposed to airborne gases, smoke and ash from tsunamigenic fires. Post-tsunami cleanup, if done with appropriate mitigation (e.g., dust control), personal protection, and disposal measures, would help reduce the potential for cleanup-worker and resident exposures to toxicants and pathogens in harbor waters, debris, soils, ponded waters, and buildings. Cleanup and disposal, particularly of hazardous materials, would pose substantial logistical challenges and economic costs. Development of State and local policies that foster rapid assessment of potential contamination, as well as rapid decision making for disposal options should hazardous debris or sediment be identified, would help enhance resilience.
An Imaging System for Satellite Hypervelocity Impact Debris Characterization
NASA Astrophysics Data System (ADS)
Moraguez, M.; Liou, J.; Fitz-Coy, N.; Patankar, K.; Cowardin, H.
This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.
An Imaging System for Satellite Hypervelocity Impact Debris Characterization
NASA Technical Reports Server (NTRS)
Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather
2015-01-01
This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.
NASA Astrophysics Data System (ADS)
Staley, Dennis; Negri, Jacquelyn; Kean, Jason
2016-04-01
Population expansion into fire-prone steeplands has resulted in an increase in post-fire debris-flow risk in the western United States. Logistic regression methods for determining debris-flow likelihood and the calculation of empirical rainfall intensity-duration thresholds for debris-flow initiation represent two common approaches for characterizing hazard and reducing risk. Logistic regression models are currently being used to rapidly assess debris-flow hazard in response to design storms of known intensities (e.g. a 10-year recurrence interval rainstorm). Empirical rainfall intensity-duration thresholds comprise a major component of the United States Geological Survey (USGS) and the National Weather Service (NWS) debris-flow early warning system at a regional scale in southern California. However, these two modeling approaches remain independent, with each approach having limitations that do not allow for synergistic local-scale (e.g. drainage-basin scale) characterization of debris-flow hazard during intense rainfall. The current logistic regression equations consider rainfall a unique independent variable, which prevents the direct calculation of the relation between rainfall intensity and debris-flow likelihood. Regional (e.g. mountain range or physiographic province scale) rainfall intensity-duration thresholds fail to provide insight into the basin-scale variability of post-fire debris-flow hazard and require an extensive database of historical debris-flow occurrence and rainfall characteristics. Here, we present a new approach that combines traditional logistic regression and intensity-duration threshold methodologies. This method allows for local characterization of both the likelihood that a debris-flow will occur at a given rainfall intensity, the direct calculation of the rainfall rates that will result in a given likelihood, and the ability to calculate spatially explicit rainfall intensity-duration thresholds for debris-flow generation in recently burned areas. Our approach synthesizes the two methods by incorporating measured rainfall intensity into each model variable (based on measures of topographic steepness, burn severity and surface properties) within the logistic regression equation. This approach provides a more realistic representation of the relation between rainfall intensity and debris-flow likelihood, as likelihood values asymptotically approach zero when rainfall intensity approaches 0 mm/h, and increase with more intense rainfall. Model performance was evaluated by comparing predictions to several existing regional thresholds. The model, based upon training data collected in southern California, USA, has proven to accurately predict rainfall intensity-duration thresholds for other areas in the western United States not included in the original training dataset. In addition, the improved logistic regression model shows promise for emergency planning purposes and real-time, site-specific early warning. With further validation, this model may permit the prediction of spatially-explicit intensity-duration thresholds for debris-flow generation in areas where empirically derived regional thresholds do not exist. This improvement would permit the expansion of the early-warning system into other regions susceptible to post-fire debris flow.
Parametric analysis: SOC meteoroid and debris protection
NASA Technical Reports Server (NTRS)
Kowalski, R.
1985-01-01
The meteoroid and man made space debris environments of an Earth orbital manned space operations center are discussed. Protective shielding thickness and design configurations for providing given levels of no penetration probability were also calculated. Meteoroid/debris protection consists of a radiator/shield thickness, which is actually an outer skin, separated from the pressure wall, thickness by a distance. An ideal shield thickness, will, upon impact with a particle, cause both the particle and shield to vaporize, allowing a minimum amount of debris to impact the pressure wall itself. A shield which is too thick will crater on the outside, and release small particles of shield from the inside causing damage to the pressure wall. Inversely, if the shield is too thin, it will afford no protection, and the backup must provide all necessary protection. It was concluded that a double wall concept is most effective.
Scalloped margin domes: What are the processes responsible and how do they operate?
NASA Technical Reports Server (NTRS)
Bulmer, M. H.; Guest, J. E.; Michaels, G.; Saunders, S.
1993-01-01
Studies of scalloped margin domes (SMD) indicate the scallops are the result of slope failure. SMD's have similar but smaller average diameters (26.5 km) to unmodified domes (29.8 km), and the majority plot at altitudes ranging from 0.5-4.7 km, relative to the mean planetary diameter. A range of morphological types exist from those least modified to those that show heavy modification. Of the 200 SMD's examined, 33 have clearly discernible debris aprons. Examination and comparison of debris aprons with mass movement features on the Moon, Mars, and in sub-aerial and submarine environments on Earth using H/L against area (km(sup 2)), suggests there are three main types of failure; debris avalanche, slumps, and debris flow. The five examples representing the morphological range within the SMD's, show the different modified forms and the different types of slope failures that have occurred.
Petry, Maria V; Benemann, Victória R F
2017-04-15
Seabirds are amongst the most affected organisms by plastic pollution worldwide. Ingestion of marine debris has been reported in at least 122 species, and owing to the increasing global production and persistence of these anthropogenic materials within the marine environment, it is expected to be a growing problem to the marine fauna. Here we report evidence of an increasing frequency in marine debris ingestion and a decrease in the amount of plastic pellets ingested by White-chinned Petrels attending south Brazilian waters during the last three decades. Future studies comprising large temporal scales and large sample sizes are needed to better understand the trends of marine debris ingestion by seabirds. We expect our findings to highlight the need for prevention policies and mitigation measures to reduce the amount of solid litter in the oceans. Copyright © 2017 Elsevier Ltd. All rights reserved.
Particle swarm optimization based space debris surveillance network scheduling
NASA Astrophysics Data System (ADS)
Jiang, Hai; Liu, Jing; Cheng, Hao-Wen; Zhang, Yao
2017-02-01
The increasing number of space debris has created an orbital debris environment that poses increasing impact risks to existing space systems and human space flights. For the safety of in-orbit spacecrafts, we should optimally schedule surveillance tasks for the existing facilities to allocate resources in a manner that most significantly improves the ability to predict and detect events involving affected spacecrafts. This paper analyzes two criteria that mainly affect the performance of a scheduling scheme and introduces an artificial intelligence algorithm into the scheduling of tasks of the space debris surveillance network. A new scheduling algorithm based on the particle swarm optimization algorithm is proposed, which can be implemented in two different ways: individual optimization and joint optimization. Numerical experiments with multiple facilities and objects are conducted based on the proposed algorithm, and simulation results have demonstrated the effectiveness of the proposed algorithm.
A Brief History of Meteoroid and Orbital Debris Shielding Technology for US Manned Spacecraft
NASA Technical Reports Server (NTRS)
Bjorkman, Michael D.; Hyde, James L.
2008-01-01
Meteoroid and orbital debris shielding has played an important role from the beginning of manned spaceflight. During the early 60 s, meteoroid protection drove requirements for new meteor and micrometeoroid impact science. Meteoroid protection also stimulated advances in the technology of hypervelocity impact launchers and impact damage assessment methodologies. The first phase of meteoroid shielding assessments closed in the early 70 s with the end of the Apollo program. The second phase of meteoroid protection technology began in the early 80 s when it was determined that there is a manmade Earth orbital debris belt that poses a significant risk to LEO manned spacecraft. The severity of the Earth orbital debris environment has dictated changes in Space Shuttle and ISS operations as well as driven advances in shielding technology and assessment methodologies. A timeline of shielding technology and assessment methodology advances is presented along with a summary of risk assessment results.
GEO Debris and Interplanetary Dust: Fluxes and Charging Behavior
NASA Astrophysics Data System (ADS)
Graps, A. L.; Green, S. F.; McBride, N. M.; McDonnell, J. A. M.; Drolshagen, G.; Svedhem, H.; Bunte, K. D.
2005-08-01
A population of cosmic dust mixed with a population of man-made debris exists within the Earth's magnetosphere. Measurements of these provide the data samples for studies of the interplanetary dust particles that travel through our magnetosphere from the outside and for studies of the local byproducts of our space endeavours. Even though instruments to detect natural meteoroids and space debris particles have been flown in Low Earth Orbits (LEO) and on interplanetary missions, very little information on the particle environment for Earth orbits above about 600 km altitude have been available. In particular, knowledge about particles smaller than 1 m in the geostationary (GEO) region was largely unknown before GORID. In September 1996, a dust/debris detector: GORID was launched into GEO as a piggyback instrument on the Russian Express-2 telecommunications spacecraft. The instrument began its normal operation in April 1997 and ended its mission in July 2002. The goal of this work was to use GORID's particle data to identify and separate the space debris from the interplanetary dust particles (IDPs) in GEO, to more finely determine the instrument's measurement characteristics and to derive impact fluxes. Here we present some results of that study. We give GORID flux distributions for debris and IDPs and then present intriguing debris clustering features that might be the result of electrostatic fragmentation of the rocket slag particles.
Ballistic Performance of Porous-Ceramic, Thermal-Protection-Systems
NASA Technical Reports Server (NTRS)
Christiansen, E. L.; Davis, B. A.; Miller, J. E.; Bohl, W. E.; Foreman, C. D.
2009-01-01
Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Space Shuttle and are currently being proposed for the next generation of manned spacecraft, Orion. These materials insulate the structural components of a spacecraft against the intense thermal environments of atmospheric reentry. Furthermore, these materials are also highly exposed to space environmental hazards like meteoroid and orbital debris impacts. This paper discusses recent impact testing up to 9 km/s, and the findings of the influence of material equation-of-state on the simulation of the impact event to characterize the ballistic performance of these materials. These results will be compared with heritage models1 for these materials developed from testing at lower velocities. Assessments of predicted spacecraft risk based upon these tests and simulations will also be discussed.
Plasma effects on the passive external thermal control coating of Space Station Freedom
NASA Technical Reports Server (NTRS)
Carruth, Ralph, Jr.; Vaughn, Jason A.; Holt, James M.; Werp, Richard; Sudduth, Richard D.
1992-01-01
The current baseline chromic acid anodized thermal control coating on 6061-T6 aluminum meteoroid debris (M/D) shields for SSF has been evaluated. The degradation of the solar absorptance, alpha, and the thermal emittance, epsilon, of chromic acid anodized aluminum due to dielectric breakdown in plasma was measured to predict the on-orbit lifetime of the SSF M/D shields. The lifetime of the thermal control coating was based on the surface temperatures achieved with degradation of the thermal control properties, alpha and epsilon. The temperatures of each M/D shield from first element launch (FEL) through FEL+15 years were analyzed. It is shown that the baseline thermal control coating cannot withstand the -140 V potential between the conductive structure of the SSF and the current plasma environment.
Oceanographer tracks marine debris from the Japan tsunami and other incidents
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-09-01
In the wake of the 11 March 2011 Tohoku earthquake and resulting tsunami that struck Japan, much of the debris that washed out to sea continues to float slowly on ocean currents across the Pacific Ocean. The leading edge of a dispersed field of debris that has not already sunk or biodegraded was estimated by a computer model to be about halfway across the Pacific, north of Midway Island, as of 31 July, 142 days after the tsunami. According to Curtis Ebbesmeyer, a consulting oceanographer who has been involved with tracking various kinds of ocean flotsam for decades, the debris field, which encompasses an area about the size of California, could begin to reach the U.S. West Coast by March 2012. The National Oceanic and Atmospheric Administration's (NOAA) Satellite and Information Service was able to track the debris field until mid-April, when the debris became too dispersed to be detected in satellite imagery. Ebbesmeyer, formerly an oceanographer with Mobil and Standard Oil, told Eos that he does not have any recent physical evidence of the debris field because it is now widely dispersed and still far away from any landfall. Ebbesmeyer said, though, that his confidence level for the debris field's estimated size and location is “very high.”
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-109
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-110
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-105
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-104
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Debris/Ice/TPS Assessment and Integrated Photographic Analysis of Shuttle Mission STS-108
NASA Technical Reports Server (NTRS)
Oliu, Armando
2005-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center Photo/Video Analysis, reports from Johnson Space Center and Marshall Space Flight Center are also included in this document to provide an integrated assessment of the mission.
Robert J. Higgins; B. Staffan Lindgren
2006-01-01
Coarse woody debris (CWD) is increasingly recognized in Canada for its contribution toward biodiversity. It is a particularly vital resource in subboreal forests as nesting habitat for ants (Formicidae). Wood, which has low specific heat, provides a thermally favorable environment in this cool climate. Ants contribute to the physical breakdown of wood, and colonies are...
Khallaf, Fathy G; Kehinde, Elijah O
2015-12-01
The aim of study was to test, for the presence of osteoblasts in the reaming debris of intramedullary nailing of femoral and tibial fracture in patients with and without severe head injury. Two groups of patients were studied. Group A (n = 32) had long bone fractures in addition to having head injuries. Group B (n = 35) had only long bone fractures. The fractures in the 2 groups of patients was treated by inter medullary nailing. Osteoblasts in the debris of the inter medullary nailing was compared between the 2 groups of patients. The results demonstrated that histopathological specimens from reaming debris of fractured femur and tibia in patients with head injury showed osteoblasts in (82.9%) and in (27.5%) of patients with isolated long bone fractures (p < 0.001). Healing indicators in diaphyseal fractures and concomitant head injury confirm fast and adequate healing in these patients and the presence of plenty of osteoblasts in their reaming debris may reflect a proof of accelerated fracture healing environment.
NASA Technical Reports Server (NTRS)
Dougherty, Sam; West, Jeff; Droege, Alan; Wilson, Josh; Liever, Peter; Slaby, Matthew
2006-01-01
This paper discusses the Space Shuttle Lift-off CFD model developed for potential Lift-off Debris transport for return-to-flight. The Lift-off portion of the flight is defined as the time starting with tanking of propellants until tower clear, approximately T0+6 seconds, where interactions with the launch pad cease. A CFD model containing the Space Shuttle and launch Pad geometry has been constructed and executed. Simplifications required in the construction of the model are presented and discussed. A body-fitted overset grid of up to 170 million grid points was developed which allowed positioning of the Vehicle relative to the Launch Pad over the first six seconds of Climb-Out. The CFD model works in conjunction with a debris particle transport model and a debris particle impact damage tolerance model. These models have been used to assess the interactions of the Space Shuttle plumes, the wind environment, and their interactions with each other and the Launch Pad and their ultimate effect on potential debris during Lift-off.
Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars
NASA Astrophysics Data System (ADS)
Plaut, Jeffrey J.; Safaeinili, Ali; Holt, John W.; Phillips, Roger J.; Head, James W.; Seu, Roberto; Putzig, Nathaniel E.; Frigeri, Alessandro
2009-01-01
Subsurface radar sounding data indicate that lobate debris aprons found in Deuteronilus Mensae in the mid-northern latitudes of Mars are composed predominantly of water ice. The position in time delay and the relatively low amount of signal loss of the apparent basal reflectors below the debris aprons indicate that aprons contain only a minor component of lithic material. The current presence of large ice masses at these latitudes has important implications for the climate evolution of Mars, and for future targets for in situ exploration.
The degradation potential of PET bottles in the marine environment: An ATR-FTIR based approach
NASA Astrophysics Data System (ADS)
Ioakeimidis, C.; Fotopoulou, K. N.; Karapanagioti, H. K.; Geraga, M.; Zeri, C.; Papathanassiou, E.; Galgani, F.; Papatheodorou, G.
2016-03-01
The dominance and persistence of plastic debris in the marine environment are well documented. No information exists in respect to their lifespan in the marine environment. Nevertheless, the degradation potential of plastic litter items remains a critical issue for marine litter research. In the present study, polyethylene terephthalate bottles (PETs) collected from the submarine environment were characterized using ATR-FTIR in respect to their degradation potential attributed to environmental conditions. A temporal indication was used as indicative to the years of presence of the PETs in the environment as debris. PETs seem to remain robust for approximately fifteen years. Afterwards, a significant decrease of the native functional groups was recorded; some even disappear; or new-not typical for PETs-are created. At a later stage, using the PET time series collected from the Saronikos Gulf (Aegean Sea-E. Mediterranean), it was possible to date bottles that were collected from the bottom of the Ionian Sea (W. Greece). It is the first time that such a study has been conducted with samples that were actually degraded in the marine environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodigas, Timothy J.; Hinz, Philip M.; Malhotra, Renu, E-mail: rodigas@as.arizona.edu
Planets can affect debris disk structure by creating gaps, sharp edges, warps, and other potentially observable signatures. However, there is currently no simple way for observers to deduce a disk-shepherding planet's properties from the observed features of the disk. Here we present a single equation that relates a shepherding planet's maximum mass to the debris ring's observed width in scattered light, along with a procedure to estimate the planet's eccentricity and minimum semimajor axis. We accomplish this by performing dynamical N-body simulations of model systems containing a star, a single planet, and an exterior disk of parent bodies and dustmore » grains to determine the resulting debris disk properties over a wide range of input parameters. We find that the relationship between planet mass and debris disk width is linear, with increasing planet mass producing broader debris rings. We apply our methods to five imaged debris rings to constrain the putative planet masses and orbits in each system. Observers can use our empirically derived equation as a guide for future direct imaging searches for planets in debris disk systems. In the fortuitous case of an imaged planet orbiting interior to an imaged disk, the planet's maximum mass can be estimated independent of atmospheric models.« less
Active Space Debris Charging for Contactless Electrostatic Disposal Maneuvers
NASA Astrophysics Data System (ADS)
Schaub, H.; Sternovsky, Z.
2013-08-01
We assess the feasibility of removing large space debris from geosynchronous orbit (GEO) by means of a tug spacecraft that uses electrostatic forces to pull the debris without touching. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. Further, the debris does not have to be detumbled first to engage the re-orbit maneuver. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam and an auxiliary ion bleeder. Our simple charging model takes into account the primary electron beam current, UV induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that by active charging high potentials can be both achieved and maintained. The resulting mN level electrostatic force is sufficient for the safe re-orbiting of debris objects over an acceptable period of a few months. The capability of debris removal is becoming a pressing need as the increasing population of dysfunctional satellites poses a threat to the future of satellite operations at GEO.
Modeling of LEO Orbital Debris Populations in Centimeter and Millimeter Size Regimes
NASA Technical Reports Server (NTRS)
Xu, Y.-L.; Hill, . M.; Horstman, M.; Krisko, P. H.; Liou, J.-C.; Matney, M.; Stansbery, E. G.
2010-01-01
The building of the NASA Orbital Debris Engineering Model, whether ORDEM2000 or its recently updated version ORDEM2010, uses as its foundation a number of model debris populations, each truncated at a minimum object-size ranging from 10 micron to 1 m. This paper discusses the development of the ORDEM2010 model debris populations in LEO (low Earth orbit), focusing on centimeter (smaller than 10 cm) and millimeter size regimes. Primary data sets used in the statistical derivation of the cm- and mm-size model populations are from the Haystack radar operated in a staring mode. Unlike cataloged objects of sizes greater than approximately 10 cm, ground-based radars monitor smaller-size debris only in a statistical manner instead of tracking every piece. The mono-static Haystack radar can detect debris as small as approximately 5 mm at moderate LEO altitudes. Estimation of millimeter debris populations (for objects smaller than approximately 6 mm) rests largely on Goldstone radar measurements. The bi-static Goldstone radar can detect 2- to 3-mm objects. The modeling of the cm- and mm-debris populations follows the general approach to developing other ORDEM2010-required model populations for various components and types of debris. It relies on appropriate reference populations to provide necessary prior information on the orbital structures and other important characteristics of the debris objects. NASA's LEO-to-GEO Environment Debris (LEGEND) model is capable of furnishing such reference populations in the desired size range. A Bayesian statistical inference process, commonly adopted in ORDEM2010 model-population derivations, changes a priori distribution into a posteriori distribution and thus refines the reference populations in terms of data. This paper describes key elements and major steps in the statistical derivations of the cm- and mm-size debris populations and presents results. Due to lack of data for near 1-mm sizes, the model populations of 1- to 3.16-mm objects are an empirical extension from larger debris. The extension takes into account the results of micro-debris (from 10 micron to 1 mm) population modeling that is based on shuttle impact data, in the hope of making a smooth transition between micron and millimeter size regimes. This paper also includes a brief discussion on issues and potential future work concerning the analysis and interpretation of Goldstone radar data.
The Software Architecture of the Upgraded ESA DRAMA Software Suite
NASA Astrophysics Data System (ADS)
Kebschull, Christopher; Flegel, Sven; Gelhaus, Johannes; Mockel, Marek; Braun, Vitali; Radtke, Jonas; Wiedemann, Carsten; Vorsmann, Peter; Sanchez-Ortiz, Noelia; Krag, Holger
2013-08-01
In the beginnings of man's space flight activities there was the belief that space is so big that everybody could use it without any repercussions. However during the last six decades the increasing use of Earth's orbits has lead to a rapid growth in the space debris environment, which has a big influence on current and future space missions. For this reason ESA issued the "Requirements on Space Debris Mitigation for ESA Projects" [1] in 2008, which apply to all ESA missions henceforth. The DRAMA (Debris Risk Assessment and Mitigation Analysis) software suite had been developed to support the planning of space missions to comply with these requirements. During the last year the DRAMA software suite has been upgraded under ESA contract by TUBS and DEIMOS to include additional tools and increase the performance of existing ones. This paper describes the overall software architecture of the ESA DRAMA software suite. Specifically the new graphical user interface, which manages the five main tools ARES (Assessment of Risk Event Statistics), MIDAS (MASTER-based Impact Flux and Damage Assessment Software), OSCAR (Orbital Spacecraft Active Removal), CROC (Cross Section of Complex Bodies) and SARA (Re-entry Survival and Risk Analysis) is being discussed. The advancements are highlighted as well as the challenges that arise from the integration of the five tool interfaces. A framework had been developed at the ILR and was used for MASTER-2009 and PROOF-2009. The Java based GUI framework, enables the cross-platform deployment, and its underlying model-view-presenter (MVP) software pattern, meet strict design requirements necessary to ensure a robust and reliable method of operation in an environment where the GUI is separated from the processing back-end. While the GUI framework evolved with each project, allowing an increasing degree of integration of services like validators for input fields, it has also increased in complexity. The paper will conclude with an outlook on the future development of the GUI framework, where the potential for advancements will be shown.
NOAA-USGS Debris-Flow Warning System - Final Report
,
2005-01-01
Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a national scope.
Active debris removal GNC challenges over design and required ground validation
NASA Astrophysics Data System (ADS)
Colmenarejo, Pablo; Avilés, Marcos; di Sotto, Emanuele
2015-06-01
Because of the exponential growth of space debris, the access to space in the medium-term future is considered as being seriously compromised, particularly within LEO polar Sun-synchronous orbits and within geostationary orbits. The active debris removal (ADR) application poses new and challenging requirements on: first, the new required Guidance, Navigation and Control (GNC) technologies and, second, how to validate these new technologies before being applied in real missions. There is no doubt about the strong safety and collision risk aspects affecting the real operational ADR missions. But it shall be considered that even ADR demonstration missions will be affected by significant risk of collision during the demonstration, and that the ADR GNC systems/technologies to be used shall be well mature before using/demonstrating them in space. Specific and dedicated on-ground validation approaches, techniques and facilities are mandatory. The different ADR techniques can be roughly catalogued in three main groups (rigid capture, non-rigid capture and contactless). All of them have a strong impact on the GNC system of the active vehicle during the capture/proximity phase and, particularly, during the active vehicle/debris combo control phase after capture and during the de-orbiting phase. The main operational phases on an ADR scenario are: (1) ground controlled phase (ADR vehicle and debris are far), (2) fine orbit synchronization phase (ADR vehicle to reach debris ±V-bar), (3) short range phase (along track distance reduction till 10-100 s of metres), (4) terminal approach/capture phase and (5) de-orbiting. While phases 1-3 are somehow conventional and already addressed in detail during past/on-going studies related to rendezvous and/or formation flying, phases 4-5 are very specific and not mature in terms of GNC needed technologies and HW equipment. GMV is currently performing different internal activities and ESA studies/developments related to ADR mission, GNC and capture technologies. This paper focuses on some specific aspects and technologies related to ADR terminal phases involved technologies and ground validation approaches: (1) Terminal ADR approach phase using visual-based navigation (VBN). Potential Image Processing techniques and preliminary performances will be described, together with the challenge of generating on-ground realistic images as input for the HW/SW VBN system. Some results of image generation (including comparison with real flight image missions) and processing using GMV's Optical Laboratory (image generation by rendering spacecraft 3D models and projecting on a screen in front of the HW camera) and using GMV's platform-art ® laboratory to reproduce space-realistic physical scenarios (to be captured by a HW camera) using 1:1 physical spacecraft mock-ups in an absolutely dark environment with a Sun-like single illumination source. (2) Ground validation of GNC systems based on HW-in-the-Loop (HIL) test facilities, including realistic space-representative avionics (at processor, interfaces and real-time operating system), realistic and air-to-air stimulated breadboard perception sensors (IMU, optical cameras, laser 3D sensors) through the use of dynamic robotic devices hosting the active vehicle and debris mock-ups and reproducing accurately the spatial relative dynamic corresponding to an ADR scenario. This type of ground validation can effectively achieve validation in relevant environment, till TRL (Technology Readiness Level) 5/6 on ground and minimizing the uncertainty/risk of such technologies/systems with respect to its operational use. Description and video demonstration of some ADR applicable test case/s using GMV's platform-art ® dynamic test facility will be included. Particular attention will be paid on the needed type of structural/functional active ADR vehicle and debris mock-ups, force/torque measurement and feedback capability over debris contact or momentum exchange actions, ground gravity compensation.
NASA Astrophysics Data System (ADS)
Jawak, Shridhar D.; Jadhav, Ajay; Luis, Alvarinho J.
2016-05-01
Supraglacial debris was mapped in the Schirmacher Oasis, east Antarctica, by using WorldView-2 (WV-2) high resolution optical remote sensing data consisting of 8-band calibrated Gram Schmidt (GS)-sharpened and atmospherically corrected WV-2 imagery. This study is a preliminary attempt to develop an object-oriented rule set to extract supraglacial debris for Antarctic region using 8-spectral band imagery. Supraglacial debris was manually digitized from the satellite imagery to generate the ground reference data. Several trials were performed using few existing traditional pixel-based classification techniques and color-texture based object-oriented classification methods to extract supraglacial debris over a small domain of the study area. Multi-level segmentation and attributes such as scale, shape, size, compactness along with spectral information from the data were used for developing the rule set. The quantitative analysis of error was carried out against the manually digitized reference data to test the practicability of our approach over the traditional pixel-based methods. Our results indicate that OBIA-based approach (overall accuracy: 93%) for extracting supraglacial debris performed better than all the traditional pixel-based methods (overall accuracy: 80-85%). The present attempt provides a comprehensive improved method for semiautomatic feature extraction in supraglacial environment and a new direction in the cryospheric research.
Mistaken identity? Visual similarities of marine debris to natural prey items of sea turtles.
Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy; Hardesty, B Denise; Marshall, N Justin
2014-05-09
There are two predominant hypotheses as to why animals ingest plastic: 1) they are opportunistic feeders, eating plastic when they encounter it, and 2) they eat plastic because it resembles prey items. To assess which hypothesis is most likely, we created a model sea turtle visual system and used it to analyse debris samples from beach surveys and from necropsied turtles. We investigated colour, contrast, and luminance of the debris items as they would appear to the turtle. We also incorporated measures of texture and translucency to determine which of the two hypotheses is more plausible as a driver of selectivity in green sea turtles. Turtles preferred more flexible and translucent items to what was available in the environment, lending support to the hypothesis that they prefer debris that resembles prey, particularly jellyfish. They also ate fewer blue items, suggesting that such items may be less conspicuous against the background of open water where they forage. Using visual modelling we determined the characteristics that drive ingestion of marine debris by sea turtles, from the point of view of the turtles themselves. This technique can be utilized to determine debris preferences of other visual predators, and help to more effectively focus management or remediation actions.
Apparent rotation properties of space debris extracted from photometric measurements
NASA Astrophysics Data System (ADS)
Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas
2018-02-01
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.
NASA Technical Reports Server (NTRS)
Williamsen, Joel; Evans, Hilary; Bohl, Bill; Evans, Steven; Parker, Nelson (Technical Monitor)
2001-01-01
The increase of the orbital debris environment in low-earth orbit has prompted NASA to develop analytical tools for quantifying and lowering the likelihood of crew loss following orbital debris penetration of the International Space Station (ISS). NASA uses the Manned Spacecraft and Crew Survivability (MSCSurv) computer program to simulate the events that may cause crew loss following orbital debris penetration of ISS manned modules, including: (1) critical cracking (explosive decompression) of the module; (2) critical external equipment penetration (such as hydrazine and high pressure tanks); (3) critical internal system penetration (guidance, control, and other vital components); (4) hazardous payload penetration (furnaces, pressure bottles, and toxic substances); (5) crew injury (from fragments, overpressure, light flash, and temperature rise); (6) hypoxia from loss of cabin pressure; and (7) thrust from module hole causing high angular velocity (occurring only when key Guidance, Navigation, and Control (GN&C) equipment is damaged) and, thus, preventing safe escape vehicle (EV) departure. MSCSurv is also capable of quantifying the 'end effects' of orbital debris penetration, such as the likelihood of crew escape, the probability of each module depressurizing, and late loss of station control. By quantifying these effects (and their associated uncertainties), NASA is able to improve the likelihood of crew survivability following orbital debris penetration due to improved crew operations and internal designs.
Mistaken identity? Visual similarities of marine debris to natural prey items of sea turtles
2014-01-01
Background There are two predominant hypotheses as to why animals ingest plastic: 1) they are opportunistic feeders, eating plastic when they encounter it, and 2) they eat plastic because it resembles prey items. To assess which hypothesis is most likely, we created a model sea turtle visual system and used it to analyse debris samples from beach surveys and from necropsied turtles. We investigated colour, contrast, and luminance of the debris items as they would appear to the turtle. We also incorporated measures of texture and translucency to determine which of the two hypotheses is more plausible as a driver of selectivity in green sea turtles. Results Turtles preferred more flexible and translucent items to what was available in the environment, lending support to the hypothesis that they prefer debris that resembles prey, particularly jellyfish. They also ate fewer blue items, suggesting that such items may be less conspicuous against the background of open water where they forage. Conclusions Using visual modelling we determined the characteristics that drive ingestion of marine debris by sea turtles, from the point of view of the turtles themselves. This technique can be utilized to determine debris preferences of other visual predators, and help to more effectively focus management or remediation actions. PMID:24886170
Synergy of debris mitigation and removal
NASA Astrophysics Data System (ADS)
Lewis, Hugh G.; White, Adam E.; Crowther, Richard; Stokes, Hedley
2012-12-01
Since the end of the 20th Century there has been considerable effort made to devise mitigation measures to limit the growth of the debris population. This activity has led to the implementation of a "25-year rule" by a number of space-faring nations for the post-mission disposal of spacecraft and orbital stages intersecting the Low Earth Orbit (LEO) region. Through the use of projections made by computer models, it was anticipated that this 25-year rule, together with passivation and suppression of mission-related debris, would be sufficient to prevent the unconstrained growth of the LEO debris population. In the last decade both the LEO debris environment and the debris modelling capability have seen significant changes. In particular, recent population growth has been driven by a number of major break-ups, including the intentional destruction of the Fengyun-1C spacecraft and the collision between Iridium 33 and Cosmos 2251. State-of-the-art evolutionary models indicate that the LEO debris population will continue to grow in spite of good compliance with the commonly adopted mitigation measures and even in the absence of new launches. Consequently, this has led to considerable interest in the development of remediation measures and, especially, in debris removal. In this paper, we present a new and large study of debris mitigation and removal using the University of Southampton's evolutionary model, DAMAGE, together with the latest MASTER model population of objects ≥10 cm in LEO. Here, we have employed a concurrent approach to mitigation and remediation, whereby changes to the PMD rule and the inclusion of other mitigation measures have been considered together with multiple removal strategies. In this way, we have been able to demonstrate the synergy of these mitigation and remediation measures and to identify potential, aggregate solutions to the space debris problem. The results suggest that reducing the PMD rule offers benefits that include an increase in the effectiveness of debris removal and a corresponding increase in the confidence that these combined measures will lead to the stabilisation of the LEO debris population.
Debris Flow Process and Climate Controls on Steepland Valley Form and Evolution
NASA Astrophysics Data System (ADS)
Struble, W.; Roering, J. J.
2017-12-01
In unglaciated mountain ranges, steepland bedrock valleys often dominate relief structure and dictate landscape response to perturbations in tectonics or climate; drainage divides have been shown to be dynamic and drainage capture is common. Landscape evolution models often use the stream power model to simulate morphologic changes, but steepland valley networks exhibit trends that deviate from predictions of this model. The prevalence of debris flows in steep channels has motivated approaches that account for commonly observed curvature of slope-area data at small drainage areas. Debris flow deposits correspond with observed curvature in slope-area data, wherein slope increases slowly as drainage area decreases; debris flow incision is implied upstream of deposits. In addition, shallow landslides and in-channel sediment entrainment in humid and arid regions, respectively, have been identified as likely debris flow triggering mechanisms, but the extent to which they set the slope of steep channels is unclear. While an untested model exists for humid landscape debris flows, field observations and models are lacking for regions with lower mean annual precipitation. The Oregon Coastal Ranges are an ideal humid setting for observing how shallow landslide-initiated debris flows abrade channel beds and/or drive exposure-driven weathering. Preliminary field observations in the Lost River Range and the eastern Sierra Nevada - semi-arid and unglaciated environments - suggest that debris flows are pervasive in steep reaches. Evidence for fluvial incision is lacking and the presence of downstream debris flow deposits and a curved morphologic signature in slope-area space suggests stream power models are insufficient for predicting and interpreting landscape dynamics. Investigation of debris flow processes in both humid and arid sites such as these seeks to identify the linkage between sediment transport and the characteristic form of steepland valleys. Bedrock weathering, fracture density, recurrence interval, bulking, and grain size may determine process-form linkages in humid and arid settings. Evaluation of debris flow processes in sites of varying climate presents the opportunity to quantify the role of debris flow incision in the evolution of steepland valleys and improve landscape evolution models.
Debris flows as geomorphic agents in the Huachuca Mountains of southeastern Arizona
Wohl, E.E.; Pearthree, P.P.
1991-01-01
Numerous debris flows occurred in the Huachuca Mountains of southeastern Arizona during the summer rainy season of 1988 in areas that were burned by a forest fire earlier in the summer. Debris flows occurred following a major forest fire in 1977 as well, suggesting a causal link between fires and debris flows. Abundant evidence of older debris flows preserved along channels and in mountain front fans indicates that debris flows have occurred repeteadly during the late Quaternary in this environment. Soil development in sequences of debris-flow deposits indicates that debris flows probably recur over time intervals of several hundred to a thousand years in individual drainage basins in the study area. Surface runoff in the steep drainage basins of the Huachuca Mountains is greatly enhanced following forest fires, as the hillslopes are denuded of their vegetative cover. Water and sediment eroded from the hillslope regolith are rapidly introduced into the upper reaches of tributary channels by widespread rilling and slope wash during rainfall events. This influx of water and sediment destabilizes regolith previously accumulated in the channel, triggering debris flows that scour the channel to bedrock in the upper reaches. Following a debris flow, the scoured, trapezoidally-shaped channel gradually assumes a swale shape and the percentage of exposed bedrock declines, as material is introduced from the slopes. Debris flows do a tremendous amount of work in a very short time, however, and are the major channel-forming events. Where the tributary channels enter larger, trunk channels, the debris flows serve as the main source of very coarse sediment. The local slope and coarse particle distribution of the trunk channel depend on the competence of water flows in the channel to transport the material introduced by debris flows. Where the smaller channels drain directly to the mountain front, debris flows create extensive alluvial fans which dominate the morphology of the basin-range boundary. Time intervals between debris flows in the drainage basins of the Huachuca Mountains are probably controlled by complex interactions among climate, forest fires and slope processes. Fires destroy the protective vegetation that stabilizes the upper catchment slopes and inhibits erosion. However, not every fire that burns a catchment causes debris flows, because sufficient weathered material must accumulate in the upper channel reaches to initiate a large debris flow. If such accumulation has not occurred, the material introduced to a channel following a forest fire will move only a short distance down the channel. Thus, the episodic nature of debris flows probably depends on rates of slope weathering and erosion, which are in turn controlled by climate, both directly and through vegetation and forest fires. ?? 1991.
Small-Scale Variations in Melt of the Debris-Covered Emmons Glacier, Mount Rainier, USA
NASA Astrophysics Data System (ADS)
Dits, T. M.; Nelson, L. I.; Moore, P. L.; Pasternak, J. H.
2014-12-01
In a warming climate the vitality of mid-latitude glaciers is an important measure of local response to global climate change. However, debris-covered glaciers can respond to climate change in a nonlinear manner. Supraglacial debris alters the energy balance at the atmosphere-glacier interface compared with debris-free glaciers, and can result in both accelerated and reduced ablation through complex processes that occur on a variety of scales. Emmons Glacier, on the northeast slope of Mount Rainier (Washington, USA), offers an opportunity to study these processes in supraglacial debris that are otherwise difficult to study in situ (e.g. Himalayan glaciers). Emmons Glacier underwent a steady advance in the late 20th century despite a warming climate, in part due to increased surface debris cover. Key energy balance variables were measured in August of 2013 and 2014 using a temporary weather station installed directly on the debris-covered terminus of Emmons Glacier. Ablation of debris-covered ice was monitored in situ with ablation stakes drilled into the debris-covered ice in a 3600 m2 grid, a size comparable to a single pixel in leading thermal remote-sensing platforms. Debris thickness at the study site ranged from 3-50 cm at the ablation stakes, and textures varied from sand and gravel to large boulders with open pore space. Daily ablation rates varied by a factor of 5 in this small area and were affected by debris thickness, texture, and moisture as well as local surface slope and aspect. On this scale, ablation rates correlated better with debris surface temperature than air temperature. Spatial gradients in ablation rate may strongly influence long-term melt rates through evolving surface topography and consequent redistribution of supraglacial debris, but cannot be resolved using thermal imagery from most current satellite platforms. A preliminary field experiment with a ground-based thermal infrared camera yielded temperature measurements with fine spatial resolution (<1m pixel) and compared well with direct temperature measurements of the debris surface. This result suggests that high resolution ground-based or low-altitude (UAV) thermal imagery could become a valuable tool for monitoring change in debris-covered glaciers.
Spacecraft Robustness to Orbital Debris: Guidelines & Recommendations
NASA Astrophysics Data System (ADS)
Heinrich, S.; Legloire, D.; Tromba, A.; Tholot, M.; Nold, O.
2013-09-01
The ever increasing number of orbital debris has already led the space community to implement guidelines and requirements for "cleaner" and "safer" space operations as non-debris generating missions and end of mission disposal in order to get preserved orbits rid of space junks. It is nowadays well-known that man-made orbital debris impacts are now a higher threat than natural micro-meteoroids and that recent events intentionally or accidentally generated so many new debris that may initiate a cascade chain effect known as "the Kessler Syndrome" potentially jeopardizing the useful orbits.The main recommendations on satellite design is to demonstrate an acceptable Probability of Non-Penetration (PNP) with regard to small population (<5cm) of MMOD (Micro-Meteoroids and Orbital Debris). Compliance implies to think about spacecraft robustness as redundancies, segregations and shielding devices (as implemented in crewed missions but in a more complex mass - cost - criticality trade- off). Consequently the need is non-only to demonstrate the PNP compliance requirement but also the PNF (probability of Non-Failure) per impact location on all parts of the vehicle and investigate the probabilities for the different fatal scenarios: loss of mission, loss of spacecraft (space environment critical) and spacecraft fragmentation (space environment catastrophic).The recent THALES experience known on ESA Sentinel-3, of increasing need of robustness has led the ALTRAN company to initiate an internal innovative working group on those topics which conclusions may be attractive for their prime manufacturer customers.The intention of this paper is to present a status of this study : * Regulations, requirements and tools available * Detailed FMECA studies dedicated specifically to the MMOD risks with the introduction of new of probability and criticality classification scales. * Examples of design risks assessment with regard to the specific MMOD impact risks. * Lessons learnt on robustness survivability of systems (materials, shieldings, rules) coming from other industrial domains (automotive, military vehicles) * Guidelines and Recommendations implementable on satellite systems and mechanical architecture.
NASA's Newest Orbital Debris Ground-based Telescope Assets: MCAT and UKIRT
NASA Astrophysics Data System (ADS)
Lederer, S.; Frith, J.; Pace, L. F.; Cowardin, H. M.; Hickson, P.; Glesne, T.; Maeda, R.; Buckalew, B.; Nishimoto, D.; Douglas, D.; Stansbery, E. G.
2014-09-01
NASAs Orbital Debris Program Office (ODPO) will break ground on Ascension Island in 2014 to build the newest optical (0.30 1.06 microns) ground-based telescope asset dedicated to the study of orbital debris. The Meter Class Autonomous Telescope (MCAT) is a 1.3m optical telescope designed to track objects in orbits ranging from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO). Ascension Island is located in the South Atlantic Ocean, offering longitudinal sky coverage not afforded by the Ground-based Electro-Optical Deep Space Surveillance (GEODSS) network. With a fast-tracking dome, a suite of visible wide-band filters, and a time-delay integration (TDI) capable camera, MCAT is capable of multiple observing modes ranging from tracking cataloged debris targets to surveying the overall debris environment. Access to the United Kingdom Infrared Telescope (UKIRT) will extend our spectral coverage into the near- (0.8-5 micron) and mid- to far-infrared (8-25 micron) regime. UKIRT is a 3.8m telescope located on Mauna Kea on the Big Island of Hawaii. At nearly 14,000-feet and above the atmospheric inversion layer, this is one of the premier astronomical sites in the world and is an ideal setting for an infrared telescope. An unprecedented one-third of this telescopes time has been allocated to collect orbital debris data for NASAs ODPO over a 2-year period. UKIRT has several instruments available to obtain low-resolution spectroscopy in both the near-IR and the mid/far-IR. Infrared spectroscopy is ideal for constraining the material types, albedos and sizes of debris targets, and potentially gaining insight into reddening effects caused by space weathering. In addition, UKIRT will be used to acquire broadband photometric imaging at GEO with the Wide Field Camera (WFCAM) for studying known objects of interest as well as collecting data in survey-mode to discover new targets. Results from the first stage of the debris campaign will be presented. The combination of these ground-based telescope assets will yield spectral coverage ranging from 0.3 25 microns, allowing orbital debris to be studied in depth across a wider wavelength range in the visible and IR than ever previously studied by ODPO. Located on opposite sides of the world and in opposite hemispheres, they offer access to nearly the entire GEO belt on any given night, allowing immediate coverage of nearly any time-critical break-up event. By expanding the methods for surveying, detecting, and characterizing orbital debris, we can better model the debris environment and ultimately gain insight into how to mitigate potential collisions for future missions. Acknowledgments: Special thanks to Matt Bold, Rick Kendrick, the UKIRT staff, the Joint Astronomy Centre, Lockheed Martin, and the University of Arizona, for their collaborative efforts toward modifying UKIRT to boldly venture inward in space to track tiny man-made objects orbiting the Earth.
NASA Astrophysics Data System (ADS)
Brook, Martin; Winkler, Stefan
2016-04-01
Glaciation on the central North Island of New Zealand is limited to the volcanoes of Tongariro National Park, including Mt Ruapehu, the largest and most active andesitic stratovolcano on the North Island. At 2797 m asl, Mt Ruapehu represents the only peak in the North Island to currently intercept the permanent snowline, with small cirque glaciers descending to an altitude of ~2300 m. During the last glacial maximum (LGM), small ice-caps existed on Mt Ruapehu and the Tongariro Massif (15 km to the NNE of Ruapehu), with a series of small (<10 km-long) valley glaciers radiating out from domes centered on the summit areas to altitudes of ~1200 m. Holocene glacier advances have left smaller deposits inboard of some of the LGM moraines. However, understanding of moraine deposition and reconstructing former glacier extent is limited by: (1) the fragmentary nature of glacier moraines in this high precipitation environment; and (2) the broad range of possible process-origins for unconsolidated debris ridges on active volcanoes. Here, we describe the clast roundness, clast shape and textural characteristics associated with active and former glaciers on Mt Ruaephu and the Tongariro Massif, in order to assist in classifying the process-origin of sediments on glaciated volcanic mountains. Supraglacial inputs include rockfall, tephra, and avalanche material delivered to the surface of glaciers. Basal debris, where observed at the terminus of active cirque glaciers, consists mainly of incorporated fluvial material. Following deposition, reworking is mainly by proglacial streams, debris flows and lahars. Within the vicinity of glaciers, the dominant facies appear to be: (i) bouldery gravel with angular clasts on steep slopes surrounding glaciers, (ii) silty-sandy boulder gravel, with mainly subangular clasts, forming lateral moraines, (iii) boulder/cobble gravel with mainly subrounded clasts and associated laminated sediments representing fluvially-reworked material; and (iv) debris-avalanche deposits including fragmental rock clasts with an unsorted inter-clast matrix. As some of these deposits appear to include unambiguous indicators of glacial transport, interpretation of unconsolidated debris ridges on volcanic mountains should not necessarily exclude the contribution of glacial processes.
Hazards of falling debris to people, aircraft, and watercraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, J.K.; Young, L.W.; Jordan-Culler, T.
1997-04-01
This report is a collection of studies performed at Sandia National Laboratories in support of Phase One (inert debris) for the Risk and Lethality Commonality Team. This team was created by the Range Safety Group of the Range Commander`s Council to evaluate the safety issues for debris generated during flight tests and to develop debris safety criteria that can be adopted by the national ranges. Physiological data on the effects of debris impacts on people are presented. Log-normal curves are developed to relate the impact kinetic energy of fragments to the probability of fatality for people exposed in standing, sitting,more » or prone positions. Debris hazards to aircraft resulting from engine ingestion or penetration of a structure or windshield are discussed. The smallest mass fragments of aluminum, steel, and tungsten that may be hazardous to current aircraft are defined. Fragment penetration of the deck of a small ship or a pleasure craft is also considered. The smallest mass fragments of aluminum, steel, or tungsten that can penetrate decks are calculated.« less
Becherucci, Maria Eugenia; Rosenthal, Alan Federico; Seco Pon, Juan Pablo
2017-06-15
Argentina is currently undergoing an intensive development of coastal-oriented tourism due to the temperate climate and coastal sceneries of the Southwestern Atlantic and particularly its wide ocean-open sandy beaches, which may turn into an important contributor of marine debris to the beaches. This study was designed to assess at four spatial scales (i) the variation of the abundance and mass of marine debris and (ii) the composition and sources of these items in sandy-tourist beaches of coastal zones of the province of Buenos Aires, in northern Argentina. The abundance and mass of marine debris shifted between sampling localities (separated by ~1.5×10 5 m) and beaches (~3×10 4 m). Debris was primarily from recreational and fishing activities and over 20mm in size. Tackling the complications associated with marine debris in northern Argentina may include intensive educational and advertising campaigns oriented chiefly to beach users and fisherman. Copyright © 2017. Published by Elsevier Ltd.
Mount Baker lahars and debris flows, ancient, modern, and future
Tucker, David S; Scott, Kevin M.; Grossman, Eric E.; Linneman, Scott
2014-01-01
Holocene lahars and large debris flows (>106 m3) have left recognizable deposits in the Middle Fork Nooksack valley. A debris flow in 2013 resulting from a landslide in a Little Ice Age moraine had an estimated volume of 100,000 m3, yet affected turbidity for the entire length of the river, and produced a slug of sediment that is currently being reworked and remobilized in the river system. Deposits of smaller-volume debris flows, deposited as terraces in the upper valley, may be entirely eroded within a few years. Consequently, the geologic record of small debris flows such as those that occurred in 2013 is probably very fragmentary. Small debris flows may still have significant impacts on hydrology, biology, and human uses of rivers downstream. Impacts include the addition of waves of fine sediment to stream loads, scouring or burying salmon-spawning gravels, forcing unplanned and sudden closure of municipal water intakes, damaging or destroying trail crossings, extending river deltas into estuaries, and adding to silting of harbors near river mouths.
Onset of submarine debris flow deposition far from original giant landslide.
Talling, P J; Wynn, R B; Masson, D G; Frenz, M; Cronin, B T; Schiebel, R; Akhmetzhanov, A M; Dallmeier-Tiessen, S; Benetti, S; Weaver, P P E; Georgiopoulou, A; Zühlsdorff, C; Amy, L A
2007-11-22
Submarine landslides can generate sediment-laden flows whose scale is impressive. Individual flow deposits have been mapped that extend for 1,500 km offshore from northwest Africa. These are the longest run-out sediment density flow deposits yet documented on Earth. This contribution analyses one of these deposits, which contains ten times the mass of sediment transported annually by all of the world's rivers. Understanding how this type of submarine flow evolves is a significant problem, because they are extremely difficult to monitor directly. Previous work has shown how progressive disintegration of landslide blocks can generate debris flow, the deposit of which extends downslope from the original landslide. We provide evidence that submarine flows can produce giant debris flow deposits that start several hundred kilometres from the original landslide, encased within deposits of a more dilute flow type called turbidity current. Very little sediment was deposited across the intervening large expanse of sea floor, where the flow was locally very erosive. Sediment deposition was finally triggered by a remarkably small but abrupt decrease in sea-floor gradient from 0.05 degrees to 0.01 degrees. This debris flow was probably generated by flow transformation from the decelerating turbidity current. The alternative is that non-channelized debris flow left almost no trace of its passage across one hundred kilometres of flat (0.2 degrees to 0.05 degrees) sea floor. Our work shows that initially well-mixed and highly erosive submarine flows can produce extensive debris flow deposits beyond subtle slope breaks located far out in the deep ocean.
NASA Technical Reports Server (NTRS)
Lyons, Frankel
2013-01-01
A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.
Development of a debris flow model in a geotechnical centrifuge
NASA Astrophysics Data System (ADS)
Cabrera, Miguel Angel; Wu, Wei
2013-04-01
Debris flows occur in three main stages. At first the initial soil mass, which rests in a rigid configuration, reaches a critic state releasing a finite mass over a failure surface. In the second stage the released mass starts being transported downhill in a dynamic motion. Segregation, erosion, entrainment, and variable channel geometry are among the more common characteristics of this stage. Finally, at the third stage the transported mass plus the mass gained or loosed during the transportation stage reach a flat and/or a wide area and its deposition starts, going back to a rigid configuration. The lack of understanding and predictability of debris flow from the traditional theoretical approaches has lead that in the last two decades the mechanics of debris flows started to be analysed around the world. Nevertheless, the validation of recent numerical advances with experimental data is required. Centrifuge modelling is an experimental tool that allows the test of natural processes under defined boundary conditions in a small scale configuration, with a good level of accuracy in comparison with a full scale test. This paper presents the development of a debris flow model in a geotechnical centrifuge focused on the second stage of the debris flow process explained before. A small scale model of an inclined flume will be developed, with laboratory instrumentation able to measure the pore pressure, normal stress, and velocity path, developed in a scaled debris flow in motion. The model aims to reproduce in a controlled environment the main parameters of debris flow motion. This work is carried under the EC 7th Framework Programme as part of the MUMOLADE project. The dataset and data-analysis obtained from the tests will provide a qualitative description of debris flow motion-mechanics and be of valuable information for MUMOLADE co-researchers and for the debris flow research community in general.
Remote Maneuver of Space Debris Using Photon Pressure for Active Collision Avoidance
NASA Astrophysics Data System (ADS)
Smith, C.
2014-09-01
The Space Environment Research Corporation (SERC) is a consortium of companies and research institutions that have joined together to pursue research and development of technologies and capabilities that will help to preserve the orbital space environment. The consortium includes, Electro Optics Systems (Australia), Lockheed Martin Australia, Optus Satellite Systems (Australia), The Australian national University, RMIT University, National Institute of Information and Communications Technology (NICT, Japan) as well as affiliates from NASA Ames and ESA. SERC is also the recipient of and Australian Government Cooperative Research Centre grant. SERC will pursue a wide ranging research program including technologies to improve tracking capability and capacity, orbit determination and propagation algorithms, conjunction analysis and collision avoidance. All of these technologies will contribute to the flagship program to demonstrate active collision avoidance using photon pressure to provide remote maneuver of space debris. This project joins of the proposed NASA Lightforce concept with infrastructure and capabilities provided by SERC. This paper will describe the proposed research and development program to provide an on-orbit demonstration within the next five years for remote maneuver of space debris.
NASA Astrophysics Data System (ADS)
Kaushal, Sourabh; Arora, Nishant
2012-07-01
Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh: In this technique we will use the nano tubes. We will create a mesh that will act as a touch panel of the touch screen cell phone. When any small or tiny particle will come on this mesh and touch it then the mesh will act as a touch panel and so that the corresponding processor or sensor will come to know the co-ordinates of it then further by using Destructive laser beam we can destroy that particle. B. Use of the Nano tubes and Nano Bots for the collection of the Space Debris: In this method also we will use a nano mesh which is made up of the nano tubes and the corresponding arrangement will be done so that that mesh will act as a touch panel same as that of the touch screen phones. So when tiny particles will dash on the nano mesh then the Nano Bots which will be at the specific co-ordinates collect the particles and store them into the garbage storage. C. Further the space Debris can be use for the other purposes too:- As we know that the space debris can be any tiny particle in the space. So instead of decomposing that particles or destroying it we can use those particles for the purpose of energy production by using the fuel cells, but for this the one condition is that the particle material should be capable of forming the ionize liquid or solution which can be successfully use in the fuel cell for energy production. But this is useful for only the big projects where in smallest amount of energy has also the great demand or value. D. RECYCLING OF SPACE DEBRIS The general idea of making space structures by recycling space debris is to capture the aluminum of the upper stages, melt it, and form it into new aluminum structures, perhaps by coating the inside of inflatable balloons, to make very large structures of thin aluminum shells. CONCLUSION Space debris has become the topic of great concern in recent years. Space debris creation can't be stopped completely but it can be minimized by adopting some measures. Many methods of space debris mitigation have been proposed earlier by many space experts, but some of them have limitations in them. After some modification those measures can proved beneficial in the process of space debris mitigation. Some new methods of space debris mitigation have been proposed by us in this paper which includes use of nanobot and nanotube mesh technique. Moreover we have to use it for energy purpose or the making of space structures. We end this paper by appealing that ``We have already polluted our own planet earth; we should now ensure that the space is kept least polluted for our own safe exploration of the outer space and also for the safety of aliens from other planets if they happen to exist.
A Study on the Characteristics of the Structure of Vega's Debris Disk
NASA Astrophysics Data System (ADS)
Lu, Tao; Ji, Jiang-hui
2013-10-01
The clumpy structure in the Vega's debris disk was reported at millimeter wavelengths previously, and attributed to the concentration of dust grains trapped in resonances with a potential high-eccentricity planet. However, current imaging at multi-wavelengths with higher sensitivity indicates that the Vega's debris disk has a smooth structure. But a planet orbiting Vega could not be neglected, and the present-day observations may place a severe constraint on the orbital parameters for the potential planet. Herein, we utilize the modi- fied MERCURY codes to numerically simulate the Vega system, which consists of a debris disk and a planet. In our simulations, the initial inner and outer boundaries of the debris disk are assumed to be 80 AU and 120 AU, respectively. The dust grains in the disk have the sizes from 10 μm to 100 μm, and the nearly coplanar orbits. From the outcomes, we show that the evolution of debris disk is consistent with recent observations, if there is no planet orbiting Vega. However, if Vega owns a planet with a high eccentricity (e.g., e = 0.6), the planet's semi- major axis cannot be larger than 60 AU, otherwise, an aggregation phenomenon will occur in the debris disk due to the existence of the postulated planet. In addition, the 2:1 mean motion resonances may play a significant role in forming the structure of debris disk.
Rochman, Chelsea M; Lewison, Rebecca L; Eriksen, Marcus; Allen, Harry; Cook, Anna-Marie; Teh, Swee J
2014-04-01
The accumulation of plastic debris in pelagic habitats of the subtropical gyres is a global phenomenon of growing concern, particularly with regard to wildlife. When animals ingest plastic debris that is associated with chemical contaminants, they are at risk of bioaccumulating hazardous pollutants. We examined the relationship between the bioaccumulation of hazardous chemicals in myctophid fish associated with plastic debris and plastic contamination in remote and previously unmonitored pelagic habitats in the South Atlantic Ocean. Using a published model, we defined three sampling zones where accumulated densities of plastic debris were predicted to differ. Contrary to model predictions, we found variable levels of plastic debris density across all stations within the sampling zones. Mesopelagic lanternfishes, sampled from each station and analyzed for bisphenol A (BPA), alkylphenols, alkylphenol ethoxylates, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), exhibited variability in contaminant levels, but this variability was not related to plastic debris density for most of the targeted compounds with the exception of PBDEs. We found that myctophid sampled at stations with greater plastic densities did have significantly larger concentrations of BDE#s 183 -209 in their tissues suggesting that higher brominated congeners of PBDEs, added to plastics as flame-retardants, are indicative of plastic contamination in the marine environment. Our results provide data on a previously unsampled pelagic gyre and highlight the challenges associated with characterizing plastic debris accumulation and associated risks to wildlife. Copyright © 2014 Elsevier B.V. All rights reserved.
Aerosol-Assisted Solid Debris Collection for the National Ignition Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, S L; Shaughnessy, D A; Moody, K J
2010-05-21
The National Ignition Facility (NIF) has been completed and has made its first shots on-target. While upcoming experiments will be focused on achieving ignition, a variety of subsequent experiments are planned for the facility, including measurement of cross sections, astrophysical measurements, and investigation of hydrodynamic instability in the target capsule. In order to successfully execute several of these planned experiments, the ability to collect solid debris following a NIF capsule shot will be required. The ability to collect and analyze solid debris generated in a shot at the National Ignition Facility (NIF) will greatly expand the number of nuclear reactionsmore » studied for diagnostic purposes. Currently, reactions are limited to only those producing noble gases for cryogenic collection and counting with the Radchem Apparatus for Gas Sampling (RAGS). The radchem solid collection diagnostic has already been identified by NIF to be valuable for the determination and understanding of mix generated in the target capsule's ablation. LLNL is currently developing this solid debris collection capability at NIF, and is in the stage of testing credible designs. Some of these designs explore the use of x-ray generated aerosols to assist in collection of solid debris. However, the variety of harsh experimental conditions this solid collection device will encounter in NIF are challenging to replicate. Experiments performed by Gary Grim et al. at Sandia National Laboratory's RHEPP1 facility have shown that ablation causes a cloud of material removed from an exposed surface to move normal to and away from the surface. This ablation is certain to be a concern in the NIF target chamber from the prompt x-rays, gamma rays, etc. generated in the shot. The cloud of ablated material could interfere with the collection of the desired reaction debris by slowing down the debris so that the kinetic energy is too low to allow implantation, or by stopping the debris from reaching the collection device entirely. Our goal is to use this primary ablation wave to our advantage, by the creation of ionized alkali metal halide salt aerosols. This technique is similar to that used by many particle accelerator groups for gas-jet transport. Ideally the salt would be ablated from a substrate, encounter the reaction debris, agglomerate, and be collected for further study. We have done studies at laser and pulsed-power facilities (Titan laser at LLNL, Trident laser at LANL, Zebra z-pinch at Nevada Terawatt Facility) evaluating the hardiness of materials for placement in the NIF target chamber, as well as testing aerosol generation by the incident x-rays generated in device shots. To test this method's potential success in the NIF environment, we have tested KCl, KI, RbI, and CsI films of 1 and 2 um linear thickness on aluminum and silicon wafer substrates in these aforementioned facilities, at varied distances. These salts do ablate in the presence of sufficient x-ray fluence. Further analysis to quantify the final ablation depth as a function of x-ray fluence is ongoing. Half of each sample was masked with a thick tungsten foil for photon opacity. KCl was the most difficult salt to ablate, from comparing the tungsten-masked side of the samples to the unmasked side of the samples. This is likely due to KCl's absorbance peak being at lower wavelengths than that of KI, {approx}160 nm vs. {approx}220 nm, respectively. Samples with and without collimation were tested to identify if any condensation of these ablated salts occurred after ablation. Visual inspection of the silicon wafer witness plates placed parallel to the direction of the incident photons showed that a vapor was deposited on the wafers next to the collimators. Further analysis with EDS in the case of the collimated samples conclusively identified the vapor as CsI. We also intend to examine samples of bare substrate exposed to the same experimental conditions for post-shot change via SEM images, optical microscopy, and atomic force microscopy (AFM). Furthermore, tests with separated isotopes may be done to reduce background contamination. When sample optimization is complete, we plan to develop a 'catcher' device for these desorbed aerosols. Current ideas include biased grids to either attract the ionized particles to the grid, or repel them towards a collection device.« less
An overview of revised NASA safety standard 1740.14
NASA Technical Reports Server (NTRS)
Reynolds, Robert; Eichler, Peter; Johnson, Nicholas
1997-01-01
Following a broad review of the debris control guidelines outside of NASA and according to additional feedback on the guidelines from within NASA, revisions were made to the NASA safety standard 1740.14. The NASA policy to limit the generation of orbital debris on NASA missions, stated in the NASA management instruction 1700.8 and implemented in the form of the NASA safety standard (NSS) 1740.14 is described together with the revisions implemented. The overall direction of the guidelines is the same, but the details of many of the guidelines were changed, including: changes for tether programs and for the control of operational debris. The NASA will continue to review the guidelines as new measurements and improved models of the environment are obtained.
Shielding requirements for the Space Station habitability modules
NASA Technical Reports Server (NTRS)
Avans, Sherman L.; Horn, Jennifer R.; Williamsen, Joel E.
1990-01-01
The design, analysis, development, and tests of the total meteoroid/debris protection system for the Space Station Freedom habitability modules, such as the habitation module, the laboratory module, and the node structures, are described. Design requirements are discussed along with development efforts, including a combination of hypervelocity testing and analyses. Computer hydrocode analysis of hypervelocity impact phenomena associated with Space Station habitability structures is covered and the use of optimization techniques, engineering models, and parametric analyses is assessed. Explosive rail gun development efforts and protective capability and damage tolerance of multilayer insulation due to meteoroid/debris impact are considered. It is concluded that anticipated changes in the debris environment definition and requirements will require rescoping the tests and analysis required to develop a protection system.
Early microbial biofilm formation on marine plastic debris.
Lobelle, Delphine; Cunliffe, Michael
2011-01-01
An important aspect of the global problem of plastic debris pollution is plastic buoyancy. There is some evidence that buoyancy is influenced by attached biofilms but as yet this is poorly understood. We submerged polyethylene plastic in seawater and sampled weekly for 3 weeks in order to study early stage processes. Microbial biofilms developed rapidly on the plastic and coincided with significant changes in the physicochemical properties of the plastic. Submerged plastic became less hydrophobic and more neutrally buoyant during the experiment. Bacteria readily colonised the plastic but there was no indication that plastic-degrading microorganisms were present. This study contributes to improved understanding of the fate of plastic debris in the marine environment. Copyright © 2010 Elsevier Ltd. All rights reserved.
Debris/ice/TPS assessment and integrated photographic analysis for Shuttle Mission STS-45
NASA Technical Reports Server (NTRS)
Katnik, Gregory N.; Higginbotham, Scott A.; Davis, J. Bradley
1992-01-01
The Debris Team has developed and implemented measures to control damage from debris in the Shuttle operational environment and to make the control measures a part of routine launch flows. These measures include engineering surveillance during vehicle processing and closeout operations, facility and flight hardware inspections before and after launch, and photographic analysis of mission events. Photographic analyses of mission imagery from launch, on-orbit, and landing provide significant data in verifying proper operation of systems and evaluating anomalies. In addition to the Kennedy Space Center (KSC) Photo/Video Analysis, reports from Johnson Space Center, Marshall Space Flight Center, and Rockwell International-Downey are also included to provide an integrated assessment of each Shuttle mission.
Cai, Liqi; Wang, Jundong; Peng, Jinping; Tan, Zhi; Zhan, Zhiwei; Tan, Xiangling; Chen, Qiuqiang
2017-11-01
Microplastic pollution has exhibited a global distribution, including seas, lakes, rivers, and terrestrial environment in recent years. However, little attention was paid on the atmospheric environment, though the fact that plastic debris can escape as wind-blown debris was previously reported. Thus, characteristics of microplastics in the atmospheric fallout from Dongguan city were preliminarily studied. Microplastics of three different polymers, i.e., PE, PP, and PS, were identified. Diverse shapes of microplastics including fiber, foam, fragment, and film were found, and fiber was the dominant shape of the microplastics. SEM images illustrated that adhering particles, grooves, pits, fractures, and flakes were the common patterns of degradation. The concentrations of non-fibrous microplastics and fibers ranged from 175 to 313 particles/m 2 /day in the atmospheric fallout. Thus, dust emission and deposition between atmosphere, land surface, and aquatic environment were associated with the transportation of microplastics.
GEO Collisional Risk Assessment Based on Analysis of NASA-WISE Data and Modeling
NASA Astrophysics Data System (ADS)
Howard, S.; Murray-Krezan, J.; Dao, P.; Surka, D.
From December 2009 thru 2011 the NASA Wide-Field Infrared Survey Explorer (WISE) gathered radiometrically exquisite measurements of debris in near Earth orbits, substantially augmenting the current catalog of known debris. The WISE GEO-belt debris population adds approximately 2,000 previously uncataloged objects. This paper describes characterization of the WISE GEO-belt orbital debris population in terms of location, epoch, and size. The WISE GEO-belt debris population characteristics are compared with the publically available U.S. catalog and previous descriptions of the GEO-belt debris population. We found that our results differ from previously published debris distributions, suggesting the need for updates to collision probability models and a better measurement-based understanding of the debris population. Previous studies of collisional rate in GEO invoke the presence of a large number of debris in the regime of sizes too small to track, i.e. not in the catalog, but large enough to cause significant damage and fragmentation in a collision. A common approach is to estimate that population of small debris by assuming that it is dominated by fragments and therefore should follow trends observed in fragmentation events or laboratory fragmentation tests. In other words, the population of debris can be extrapolated from trackable sizes to small sizes using an empirically determined trend of population as a function of size. We use new information suggested by the analysis of WISE IR measurements to propose an updated relationship. Our trend is an improvement because we expect that an IR emissive signature is a more reliable indicator of physical size. Based on the revised relationship, we re-estimate the total collisional rate in the GEO belt with the inclusion of projected uncatalogued debris and applying a conjunction assessment technique. Through modeling, we evaluate the hot spots near the geopotential wells and the effects of fragmentation in the GEO graveyard to the collision with GEO objects.
A deployable mechanism concept for the collection of small-to-medium-size space debris
NASA Astrophysics Data System (ADS)
St-Onge, David; Sharf, Inna; Sagnières, Luc; Gosselin, Clément
2018-03-01
Current efforts in active debris removal strategies and mission planning focus on removing the largest, most massive debris. It can be argued, however, that small untrackable debris, specifically those smaller than 5 cm in size, also pose a serious threat. In this work, we propose and analyze a mission to sweep the most crowded Low Earth Orbit with a large cupola device to remove small-to-medium-size debris. The cupola consists of a deployable mechanism expanding more than 25 times its storage size to extend a membrane covering its surface. The membrane is sufficiently stiff to capture most small debris and to slow down the medium-size objects, thus accelerating their fall. An overview of the design of a belt-driven rigid-link mechanism proposed to support the collecting cupola surface is presented, based on our previous work. Because of its large size, the cupola will be subject to significant aerodynamic drag; thus, orbit maintenance analysis is carried out using the DTM-2013 atmospheric density model and it predicts feasible requirements. While in operation, the device will also be subject to numerous hyper-velocity impacts which may significantly perturb its orientation from the desired attitude for debris collection. Thus, another important feature of the proposed debris removal device is a distributed array of flywheels mounted on the cupola for reorienting and stabilizing its attitude during the mission. Analysis using a stochastic modeling framework for hyper-velocity impacts demonstrates that three-axes attitude stabilization is achievable with the flywheels array. MASTER-2009 software is employed to provide relevant data for all debris related estimates, including the debris fluxes for the baseline mission design and for assessment of its expected performance. Space debris removal is a high priority for ensuring sustainability of space and continual launch and operation of man-made space assets. This manuscript presents the first analysis of a small-to-medium size debris removal mission, albeit finding it to not be economically viable at the present time.
A methodology for selective removal of orbital debris
NASA Technical Reports Server (NTRS)
Ash, R. L.; Odonoghue, P. J.; Chambers, E. J.; Raney, J. P.
1992-01-01
Earth-orbiting objects, large enough to be tracked, were surveyed for possible systematic debris removal. Based upon the statistical collision studies of others, it was determined that objects in orbits approximately 1000 km above the Earth's surface are at greatest collisional risk. Russian C-1B boosters were identified as the most important target of opportunity for debris removal. Currently, more than 100 in tact boosters are orbiting the Earth with apogees between 950 km and 1050 km. Using data provided by Energia USA, specific information on the C-1B booster, in terms of rendezvous and capture strategies, was discussed.
Balloon Exoplanet Nulling Interferometer (BENI)
NASA Technical Reports Server (NTRS)
Lyon, Richard G.; Clampin, Mark; Woodruff, Robert A.; Vasudevan, Gopal; Ford, Holland; Petro, Larry; Herman, Jay; Rinehart, Stephen; Carpenter, Kenneth; Marzouk, Joe
2009-01-01
We evaluate the feasibility of using a balloon-borne nulling interferometer to detect and characterize exosolar planets and debris disks. The existing instrument consists of a 3-telescope Fizeau imaging interferometer with 3 fast steering mirrors and 3 delay lines operating at 800 Hz for closed-loop control of wavefront errors and fine pointing. A compact visible nulling interferometer is under development which when coupled to the imaging interferometer would in-principle allow deep suppression of starlight. We have conducted atmospheric simulations of the environment above 100,000 feet and believe balloons are a feasible path forward towards detection and characterization of a limited set of exoplanets and their debris disks. Herein we will discuss the BENI instrument, the balloon environment and the feasibility of such as mission.
A Hot White Dwarf SDSS J134430.11+032423.1 with a Planetary Debris Disk
NASA Astrophysics Data System (ADS)
Li, Lifang; Zhang, Fenghui; Kong, Xiaoyang; Han, Quanwang; Li, Jiansha
2017-02-01
We discovered a debris disk around hot white dwarf (WD) SDSS J134430.11+032423.1 (SDSS J1344+0324). The effective temperature [{T}{eff} = 26,071(±163) K], surface gravity [{log}g=7.88(2)], and mass [M=0.58(1) {M}⊙ ] of this WD have been redetermined based on the analysis of its SDSS spectrum. We found that SDSS J1344+0324 is currently the hottest WD with a debris disk. Two spectra observed by SDSS at different times show that this object is similar to SDSS J1228+1040 with variable near-IR Ca II triplet emissions from a gaseous disk. The parameters of the debris disk are derived from the IR excess analysis of SDSS J1344+0324. We found that the disk is the coolest of all debris disks around WDs, and that the inner and outer radii are very close to the tide radius of the WD. Thus, the debris disk is very narrow (about 0.22 {R}⊙ ). This implies that it might be a newly formed disk resulting from the tidal disruption of a rocky planetary body that has just entered the tide volume of the WD. This might provide strong observational evidence for the formation of debris disks around WDs.
Ballistic Performance of Porous-Ceramic, Thermal Protection Systems
NASA Technical Reports Server (NTRS)
Miller, J. E.; Bohl, W. E.; Christiansen, Eric C.; Davis, B. A.; Foreman, C. D.
2011-01-01
Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are highly exposed to space environment hazards like solid particle impacts. This paper discusses impact studies up to 10 km/s on 8 lb/cu ft alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrous-insulation/ reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principals impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. Model extensions to look at the implications of greater than 10 GPa equation of state is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.
Ballistic Performance of Porous-Ceramic, Thermal Protection Systems
NASA Astrophysics Data System (ADS)
Miller, Joshua; Bohl, William; Christiansen, Eric; Davis, B. Alan; Foreman, Cory
2011-06-01
Porous-ceramic, thermal protection systems are used heavily in current reentry vehicles like the Orbiter, and they are currently being proposed for the next generation of US manned spacecraft, Orion. These systems insulate reentry critical components of a spacecraft against the intense thermal environments of atmospheric reentry. Additionally, these materials are also highly exposed to space environment hazards like solid particle impacts. This paper discusses impact testing up to 9.65 km/s on one of these systems. The materials considered are 8 lb/ft3 alumina-fiber-enhanced-thermal-barrier (AETB8) tiles coated with a toughened-unipiece-fibrous-insulation/reaction-cured-glass layer (TUFI/RCG). A semi-empirical, first principals impact model that describes projectile dispersion is described that provides excellent agreement with observations over a broad range of impact velocities, obliquities and projectile materials. A model extension to look at the implications of greater than 10 GPa equation of state measurements is also discussed. Predicted penetration probabilities for a vehicle visiting the International Space Station is 60% lower for orbital debris and 95% lower for meteoroids with this model compared to an energy scaled approach.
Risk analysis reveals global hotspots for marine debris ingestion by sea turtles.
Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy A; Wedemeyer-Strombel, Kathryn R; Balazs, George; van Sebille, Erik; Hardesty, Britta Denise
2016-02-01
Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris. © 2015 John Wiley & Sons Ltd.
Hidalgo-Ruz, Valeria; Thiel, Martin
2013-01-01
The accumulation of large and small plastic debris is a problem throughout the world's oceans and coastlines. Abundances and types of small plastic debris have only been reported for some isolated beaches in the SE Pacific, but these data are insufficient to evaluate the situation in this region. The citizen science project "National Sampling of Small Plastic Debris" was supported by schoolchildren from all over Chile who documented the distribution and abundance of small plastic debris on Chilean beaches. Thirty-nine schools and nearly 1000 students from continental Chile and Easter Island participated in the activity. To validate the data obtained by the students, all samples were recounted in the laboratory. The results of the present study showed that the students were able to follow the instructions and generate reliable data. The average abundance obtained was 27 small plastic pieces per m(2) for the continental coast of Chile, but the samples from Easter Island had extraordinarily higher abundances (>800 items per m(2)). The abundance of small plastic debris on the continental coast could be associated with coastal urban centers and their economic activities. The high abundance found on Easter Island can be explained mainly by the transport of plastic debris via the surface currents in the South Pacific Subtropical Gyre, resulting in the accumulation of small plastic debris on the beaches of the island. This first report of the widespread distribution and abundance of small plastic debris on Chilean beaches underscores the need to extend plastic debris research to ecological aspects of the problem and to improve waste management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Risk Analysis Reveals Global Hotspots for Marine Debris Ingestion by Sea Turtles
NASA Astrophysics Data System (ADS)
Schuyler, Q. A.; Wilcox, C.; Townsend, K.; Wedemeyer-Strombel, K.; Balazs, G.; van Sebille, E.; Hardesty, B. D.
2016-02-01
Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle, and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study, and turtle species. There was no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia, and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.
Genetic algorithm for investigating flight MH370 in Indian Ocean using remotely sensed data
NASA Astrophysics Data System (ADS)
Marghany, Maged; Mansor, Shattri; Shariff, Abdul Rashid Bin Mohamed
2016-06-01
This study utilized Genetic algorithm (GA) for automatic detection and simulation trajectory movements of flight MH370 debris. In doing so, the Ocean Surface Topography Mission(OSTM) on the Jason- 2 satellite have been used within 1 and half year covers data to simulate the pattern of Flight MH370 debris movements across the southern Indian Ocean. Further, multi-objectives evolutionary algorithm also used to discriminate uncertainty of flight MH370 imagined and detection. The study shows that the ocean surface current speed is 0.5 m/s. This current patterns have developed a large anticlockwise gyre over a water depth of 8,000 m. The multi-objectives evolutionary algorithm suggested that objects are existed on satellite data are not flight MH370 debris. In addition, multiobjectives evolutionary algorithm suggested that the difficulties to acquire the exact location of flight MH370 due to complicated hydrodynamic movements across the southern Indian Ocean.
Earth-like aqueous debris-flow activity on Mars at high orbital obliquity in the last million years
de Haas, T.; Hauber, E.; Conway, S. J.; van Steijn, H.; Johnsson, A.; Kleinhans, M. G.
2015-01-01
Liquid water is currently extremely rare on Mars, but was more abundant during periods of high obliquity in the last few millions of years. This is testified by the widespread occurrence of mid-latitude gullies: small catchment-fan systems. However, there are no direct estimates of the amount and frequency of liquid water generation during these periods. Here we determine debris-flow size, frequency and associated water volumes in Istok crater, and show that debris flows occurred at Earth-like frequencies during high-obliquity periods in the last million years on Mars. Results further imply that local accumulations of snow/ice within gullies were much more voluminous than currently predicted; melting must have yielded centimetres of liquid water in catchments; and recent aqueous activity in some mid-latitude craters was much more frequent than previously anticipated. PMID:26102485
Orbital debris removal using ground-based lasers
NASA Technical Reports Server (NTRS)
Taylor, Charles R.
1996-01-01
Orbiting the Earth are spent rocket stages, non-functioning satellites, hardware from satellite deployment and staging, fragments of exploded spacecraft, and other relics of decades of space exploration: orbital debris. The United States Space Command tracks and maintains a catalog of the largest objects. The catalog contains over 7000 objects. Recent studies have assessed the debris environment in an effort to estimate the number of smaller particles and the probability of a collision causing catastrophic damage to a functioning spacecraft. The results of the studies can be used to show, for example, that the likelihood of a collision of a particle larger than about one centimeter in diameter with the International Space Station during a 10-year period is a few percent, roughly in agreement with earlier estimates for Space Station Freedom. Particles greater than about one centimeter in diameter pose the greatest risk to shielded spacecraft. There are on the order of 105 such particles in low Earth orbit. The United States National Space Policy, begun in 1988, is to minimize debris consistent with mission requirements. Measures such as venting unused fuel to prevent explosions, retaining staging and deployment hardware, and shielding against smaller debris have been taken by the U.S. and other space faring nations. There is at present no program to remove debris from orbit. The natural tendency for upper atmospheric drag to remove objects from low Earth orbit is more than balanced by the increase in the number of debris objects from new launches and fragmentation of existing objects. In this paper I describe a concept under study by the Program Development Laboratory of Marshall Space Flight Center and others to remove debris with a ground-based laser. A longer version of this report, including figures, is available from the author.
Size distribution of stranded small plastic debris on the coast of Guangdong, South China.
Fok, Lincoln; Cheung, Pui Kwan; Tang, Guangda; Li, Wai Chin
2017-01-01
Beach environments are known to be conducive to fragmentation of plastic debris, and highly fragmented plastic particles can interact with smaller organisms. Even through stranded plastic debris may not interact directly with marine organisms, backwash processes may transport this debris back to coastal waters, where it may affect a wide range of marine life at different trophic levels. This study analysed the size distribution of stranded plastic debris (<10 mm) collected from eight coastal beaches in Guangdong Province, China. Polystyrene (PS) foams and fragments smaller than 7 mm were increasingly abundant in the smaller size classes, whereas resin pellets remained in their production sizes (∼3 mm). Microplastics (<5 mm) accounted for over 98% of the total plastic debris by abundance and 71% by weight, indicating that the plastic debris on these coastal beaches was highly fragmented and the majority of the plastic masses belonged to the microplastic size range. The observed size distributions of PS foams and fragments are believed to result from continued fragmentation. Previous studies found that the residence time of beached debris was less than one year on average, and no sign of plastic accumulation with depth in beach sediment was observed. Therefore, coastal beaches may represent a reservoir of highly fragmented and degraded microplastics that may be mobilised and returned to the sea during storm events. Further research on the dynamics and longevity of microplastics on beaches will help reveal the mass balance of microplastics on the shoreline and determine whether shorelines are sinks or sources of microplastics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jankovic, Marko; Paul, Jan; Kirchner, Frank
2016-04-01
Recent studies of the space debris population in low Earth orbit (LEO) have concluded that certain regions have already reached a critical density of objects. This will eventually lead to a cascading process called the Kessler syndrome. The time may have come to seriously consider active debris removal (ADR) missions as the only viable way of preserving the space environment for future generations. Among all objects in the current environment, the SL-8 (Kosmos 3M second stages) rocket bodies (R/Bs) are some of the most suitable targets for future robotic ADR missions. However, to date, an autonomous relative navigation to and capture of an non-cooperative target has never been performed. Therefore, there is a need for more advanced, autonomous and modular systems that can cope with uncontrolled, tumbling objects. The guidance, navigation and control (GNC) system is one of the most critical ones. The main objective of this paper is to present a preliminary concept of a modular GNC architecture that should enable a safe and fuel-efficient capture of a known but uncooperative target, such as Kosmos 3M R/B. In particular, the concept was developed having in mind the most critical part of an ADR mission, i.e. close range proximity operations, and state of the art algorithms in the field of autonomous rendezvous and docking. In the end, a brief description of the hardware in the loop (HIL) testing facility is made, foreseen for the practical evaluation of the developed architecture.
Tracing the drift of MH370 debris throughout the Indian Ocean
NASA Astrophysics Data System (ADS)
Biastoch, Arne; Durgadoo, Jonathan V.; Rühs, Siren
2017-04-01
On 8 March 2014, a missing Boeing 777 of Malaysia Airlines (MH370) disappeared from radar screens. Since then, extensive search efforts aim to find the missing plane in the southeastern Indian Ocean. Starting with a flaperon washed up at La Réunion in July 2015, several pieces of debris were found at different shores at islands and African coasts in the southwestern Indian Ocean. Ocean currents were examined to understand the drift paths of debris throughout the Indian Ocean, and in consequence to identify the location of MH370. Here we present a series of Lagrangian analyses in which we follow particles representing virtual pieces of debris advected in an operational high-resolution ocean model. Of particular importance is the lare-scale influence of surface waves through Stokes drift. Large number of particles are analysed in statistical approaches to provide most likely starting locations. Different pieces of debris are combined to refine probability maps of their joint start positions. Forward vs. backward advection approaches are compared.
Satellite Vulnerability to Space Debris- An Improved 3D Risk Assessment Methodology
NASA Astrophysics Data System (ADS)
Grassi, Lilith; Destefanis, Roberto; Tiboldo, Francesca; Donath, Therese; Winterboer, Arne; Evand, Leanne; Janovsky, Rolf; Kempf, Scott; Rudolph, Martin; Schafer, Frank; Gelhaus, Johannes
2013-08-01
The work described in the present paper, performed as a part of the PÇ-ROTECT project, presents an enhanced method to evaluate satellite vulnerability to micrometeoroids and orbital debris (MMOD), using the ESABASE2/Debris tool (developed under ESA contract). Starting from the estimation of induced failures on spacecraft (S/C) components and from the computation of lethal impacts (with an energy leading to the loss of the satellite), and considering the equipment redundancies and interactions between components, the debris-induced S/C functional impairment is assessed. The developed methodology, illustrated through its application to a case study satellite, includes the capability to estimate the number of failures on internal components, overcoming the limitations of current tools which do not allow propagating the debris cloud inside the S/C. The ballistic limit of internal equipment behind a sandwich panel structure is evaluated through the implementation of the Schäfer Ryan Lambert (SRL) Ballistic Limit Equation (BLE).
Inventory and transport of plastic debris in the Laurentian Great Lakes.
Hoffman, Matthew J; Hittinger, Eric
2017-02-15
Plastic pollution in the world's oceans has received much attention, but there has been increasing concern about the high concentrations of plastic debris in the Laurentian Great Lakes. Using census data and methodologies used to study ocean debris we derive a first estimate of 9887 metric tonnes per year of plastic debris entering the Great Lakes. These estimates are translated into population-dependent particle inputs which are advected using currents from a hydrodynamic model to map the spatial distribution of plastic debris in the Great Lakes. Model results compare favorably with previously published sampling data. The samples are used to calibrate the model to derive surface microplastic mass estimates of 0.0211 metric tonnes in Lake Superior, 1.44 metric tonnes in Huron, and 4.41 metric tonnes in Erie. These results have many applications, including informing cleanup efforts, helping target pollution prevention, and understanding the inter-state or international flows of plastic pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Plastic in surface waters of the Inside Passage and beaches of the Salish Sea in Washington State.
Davis, Wallace; Murphy, Anne G
2015-08-15
We summarize results of two independent studies on plastic pollution in the marine environment that overlap in time and space. One study evaluated the abundance of anthropogenic debris on 37 sandy beaches bordering the Salish Sea in Washington State while the other characterized plastic debris in surface waters of the Salish Sea and the Inside Passage to Skagway, Alaska. Both studies concluded that foam, primarily expanded polystyrene was the dominant pollutant. Plastic was found in surface waters the full length of the Inside Passage but was concentrated near harbors. At the wrack line, an average square meter of Washington's 1180km of sandy beaches in the Salish Sea had 61 pieces of anthropogenic debris weighing approximately 5g. The total loading for the entire 1m wide band is estimated to be 72,000,000 pieces and 5.8metric tons. Most anthropogenic debris on beaches is generated within the region. Copyright © 2015 Elsevier Ltd. All rights reserved.
Prevalence of marine debris in marine birds from the North Atlantic.
Provencher, Jennifer F; Bond, Alexander L; Hedd, April; Montevecchi, William A; Muzaffar, Sabir Bin; Courchesne, Sarah J; Gilchrist, H Grant; Jamieson, Sarah E; Merkel, Flemming R; Falk, Knud; Durinck, Jan; Mallory, Mark L
2014-07-15
Marine birds have been found to ingest plastic debris in many of the world's oceans. Plastic accumulation data from necropsies findings and regurgitation studies are presented on 13 species of marine birds in the North Atlantic, from Georgia, USA to Nunavut, Canada and east to southwest Greenland and the Norwegian Sea. Of the species examined, the two surface plungers (great shearwaters Puffinus gravis; northern fulmars Fulmarus glacialis) had the highest prevalence of ingested plastic (71% and 51%, respectively). Great shearwaters also had the most pieces of plastics in their stomachs, with some individuals containing as many of 36 items. Seven species contained no evidence of plastic debris. Reporting of baseline data as done here is needed to ensure that data are available for marine birds over time and space scales in which we see changes in historical debris patterns in marine environments (i.e. decades) and among oceanographic regions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Imhof, Hannes K; Sigl, Robert; Brauer, Emilia; Feyl, Sabine; Giesemann, Philipp; Klink, Saskia; Leupolz, Kathrin; Löder, Martin G J; Löschel, Lena A; Missun, Jan; Muszynski, Sarah; Ramsperger, Anja F R M; Schrank, Isabella; Speck, Susan; Steibl, Sebastian; Trotter, Benjamin; Winter, Isabel; Laforsch, Christian
2017-03-15
Plastic debris is ubiquitous in the marine environment and the world's shores represent a major sink. However, knowledge about plastic abundance in remote areas is scarce. Therefore, plastic abundance was investigated on a small island of the Maldives. Plastic debris (>1mm) was sampled once in natural long-term accumulation zones at the north shore and at the high tide drift line of the south shore on seven consecutive days to quantify daily plastic accumulation. Reliable identification of plastic debris was ensured by FTIR spectroscopy. Despite the remoteness of the island a considerable amount of plastic debris was present. At both sites a high variability in plastic abundance on a spatial and temporal scale was observed, which may be best explained by environmental factors. In addition, our results show that snapshot sampling may deliver biased results and indicate that future monitoring programs should consider spatial and temporal variation of plastic deposition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Marine debris in a World Heritage Listed Brazilian estuary.
Possatto, Fernanda E; Spach, Henry L; Cattani, André P; Lamour, Marcelo R; Santos, Lilyane O; Cordeiro, Nathalie M A; Broadhurst, Matt K
2015-02-28
Using monthly otter-trawl deployments, spatial and temporal variability among the relative densities of marine debris were assessed in the Paranaguá estuarine complex; a subtropical World Heritage Listed area in southern Brazil. During 432 deployments over 12 months, 291 marine debris items were identified; of which most (92%) were plastic, and more specifically shopping bags, food packages, candy wrappers and cups typically >21 mm long. The most contaminated sectors were those closest to Paranaguá city and the adjacent port, and had up to 23.37±3.22 pieces ha(-1). Less urbanized sectors had between 12.84±1.49 and 9.32±1.10 pieces ha(-1). Contamination did not vary between dry or wet seasons, but rather was probably affected by consistent urban disposal and localized hydrological processes. Marine debris might be minimized by using more environment friendly materials, however a concrete solution requires adequately integrating local government and civil society. Copyright © 2014 Elsevier Ltd. All rights reserved.
Seawater influence monitored by NaCl on the growth of Trametes versicolor.
Yanagawa, Aya
2016-01-01
There are only a few scientific data about the function of ecosystems after tsunami disasters. The ecosystems help the environment to recover after a disaster, and therefore, the research on its function is important. We estimated the seawater influences on wood degradation after a tsunami disaster by the growth of Trametes versicolor. The debris from the Great East Japan Earthquake on the pacific coast in March 2011 was used for the simulations. Its growth on debris was compared with those on seawater-treated woods, and the amount of sodium chloride was examined to know the approximate amount of salts in the samples. Sodium chloride contents were employed as an indicative parameter of sea salts, which contained many elements. As a result, this common white-rot fungus degraded wood debris in the same way as sound sapwood. Although the study was conducted at the laboratory level, this is the first report from the real debris, which assessed the fungal decomposition ability of the ecosystem after a tsunami disaster.
Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers
NASA Astrophysics Data System (ADS)
Crane, Deborah J.
2002-01-01
the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be extended to include other polymers. Polymerization as well as polymer processing in a microgravity environment may affect the length and orientation of the molecular chains, the degree of crosslinking, and distribution of amorphous to crystalline portions of the material, thus changing the ultimate properties of the polymer. Small polymer samples would be produced from the resin for testing and analysis. This research would include the effect of micro-g processing by compression molded vs. ram extruded samples for analysis. Morphological alterations in the material could be monitored using Transmission Electron Microscopy and associated properties such as toughness, density and crystallinity could be determined and compared to terra produced materials using conventional mechanical testing, density gradient columns and calorimetry techniques. If alterations are evident, fatigue testing can be performed on small specimens in order to determine the material's resistance to crack initiation and propagation. number of orthopaedic implant recipients and could be extended for use in robotics and other beneficial applications. Although polymers exhibit the greatest biocompatibility, problems with debris particle generation continue to reduce the effectiveness of UHMWPE as a biomedical material. Further polymer research in a microgravity environment may prove to produce the desired alterations in the materials' morphology and associated properties, therefore providing millions of people with superior orthopaedic implant components and lessen the occurrences of repeat surgery.
Denlinger, Roger P.
2012-01-01
The eruption of Mount St. Helens in 1980 produced a debris avalanche that flowed down the upper reaches of the North Fork Toutle River in southwestern Washington, clogging this drainage with sediment. In response to continuous anomalously high sediment flux into the Toutle and Cowlitz Rivers resulting from this avalanche and associated debris flows, the U.S. Army Corps of Engineers completed a Sediment Retention Structure (SRS) on the North Fork Toutle River in May 1989. For one decade, the SRS effectively blocked most of the sediment transport down the Toutle River. In 1999, the sediment level behind the SRS reached the elevation of the spillway base. Since then, a higher percentage of sediment has been passing the SRS and increasing the flood risk in the Cowlitz River. Currently (2012), the dam is filling with sediment at a rate that cannot be sustained for its original design life, and the U.S. Army Corps of Engineers is concerned with the current ability of the SRS to manage floods. This report presents an assessment of the ability of the dam to pass large flows from three types of scenarios (it is assumed that no damage to the spillway will occur). These scenarios are (1) a failure of the debris-avalanche blockage forming Castle Lake that produces a dambreak flood, (2) a debris flow from failure of that blockage, or (3) a debris flow originating in the crater of Mount St. Helens. In each case, the flows are routed down the Toutle River and through the SRS using numerical models on a gridded domain produced from a digital elevation model constructed with existing topography and dam infrastructure. The results of these simulations show that a structurally sound spillway is capable of passing large floods without risk of overtopping the crest of the dam. In addition, large debris flows originating from Castle Lake or the crater of Mount St. Helens never reach the SRS. Instead, debris flows fill the braided channels upstream of the dam and reduce its storage capacity.