Direct Analysis of JV-Curves Applied to an Outdoor-Degrading CdTe Module (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, D; Kurtz, S.; Ulbrich, C.
2014-03-01
We present the application of a phenomenological four parameter equation to fit and analyze regularly measured current density-voltage JV curves of a CdTe module during 2.5 years of outdoor operation. The parameters are physically meaningful, i.e. the short circuit current density Jsc, open circuit voltage Voc and differential resistances Rsc, and Roc. For the chosen module, the fill factor FF degradation overweighs the degradation of Jsc and Voc. Interestingly, with outdoor exposure, not only the conductance at short circuit, Gsc, increases but also the Gsc(Jsc)-dependence. This is well explained with an increase in voltage dependent charge carrier collection in CdTe.
Towards maximizing the haze effect of electrodes for high efficiency hybrid tandem solar cell
NASA Astrophysics Data System (ADS)
Vincent, Premkumar; Song, Dong-Seok; Kwon, Hyeok Bin; Kim, Do-Kyung; Jung, Ji-Hoon; Kwon, Jin-Hyuk; Choe, Eunji; Kim, Young-Rae; Kim, Hyeok; Bae, Jin-Hyuk
2018-02-01
In this study, we executed optical simulations to compute the optimum power conversion efficiency (PCE) of a-Si:H/organic photovoltaic (OPV) hybrid tandem solar cell. The maximum ideal short circuit current density (Jsc,max) of the tandem solar cell is initially obtained by optimizing the thickness of the active layer of the OPV subcell for varying thickness of the a-Si:H bottom subcell. To investigate the effect of Haze parameter on the ideal short-circuit current density (Jsc,ideal) of the solar cells, we have varied the haze ratio for the TCO electrode of the a-Si:H subcell in the tandem structure. The haze ratio was obtained for various root mean square (RMS) roughness of the TCO of the front cell. The effect of haze ratio on the Jsc,ideal on the tandem structured solar cell was studied, and the highest Jsc,ideal was obtained at a haze of 55.5% when the thickness of the OPV subcell was 150 nm and that of the a-Si:H subcell was 500 nm.
Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J
2015-06-03
Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Yilin; Li, Zhipeng; Ablekim, Tursunjan; Ren, Tianhui; Dong, Wen-Ji
2014-12-21
A rational design strategy of novel fluorophores for luminescent down-shifting (LDS) application was proposed and tested in this paper. Three new fluorophores (1a-c) with specific intramolecular charge transfer (ICT) and aggregation-induced emission (AIE) characteristics were synthesized as LDS molecules for increasing the output short circuit current density (Jsc) of a CdTe solar cell. Photophysical studies of their solution and solid states, and photovoltaic measurements of their PMMA solid films applied on a CdTe solar cell suggested that the specific spectroscopic properties and Jsc enhancement effects of these molecules were highly related to their chemical structures. The Jsc enhancement effects of these fluorophores were measured on both a CdTe small cell and a large panel. An increase in the output Jsc by as high as 5.69% for a small cell and 8.88% for a large panel was observed. Compared to a traditional LDS molecule, Y083, these fluorophores exhibited more superior capabilities of LDS.
Zhang, Xin; Li, Weiping; Yao, Jiannian; Zhan, Chuanlang
2016-06-22
Carrier mobility is a vital factor determining the electrical performance of organic solar cells. In this paper we report that a high-efficiency nonfullerene organic solar cell (NF-OSC) with a power conversion efficiency of 6.94 ± 0.27% was obtained by optimizing the hole and electron transportations via following judicious selection of polymer donor and engineering of film-morphology and cathode interlayers: (1) a combination of solvent annealing and solvent vapor annealing optimizes the film morphology and hence both hole and electron mobilities, leading to a trade-off of fill factor and short-circuit current density (Jsc); (2) the judicious selection of polymer donor affords a higher hole and electron mobility, giving a higher Jsc; and (3) engineering the cathode interlayer affords a higher electron mobility, which leads to a significant increase in electrical current generation and ultimately the power conversion efficiency (PCE).
NASA Astrophysics Data System (ADS)
Burghoorn, M.; Kniknie, B.; van Deelen, J.; Xu, M.; Vroon, Z.; van Ee, R.; van de Belt, R.; Buskens, P.
2014-12-01
Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.
NASA Astrophysics Data System (ADS)
Koster, L. Jan A.; Mihailetchi, Valentin D.; Ramaker, Robert; Xie, Hangxing; Blom, Paul W. M.
2006-04-01
The open-circuit voltage (Voc) of polymer/fullerene bulk heterojunction solar cells is investigated as a function of light intensity for different temperatures. The observed photogenerated current and V oc are at variance with classical p-n junctionbased models. The influence of light intensity and recombination strength on V oc is consistently explained by a model based on the notion that the quasi-Fermi levels are constant throughout the device, including both drift and diffusion of charge carriers. The light intensity dependence of the short-circuit current density (J sc) is also addressed. A typical feature of polymer/fullerene based solar cells is that Jsc does not scale exactly linearly with light intensity (I). Instead, a power law relationship is found given by Jsc~ Iα, where α ranges from 0.9 to 1. In a number of reports this deviation from unity is attributed to the occurrence of bimolecular recombination. We demonstrate that the dependence of the photocurrent in bulk heterojunction solar cells is governed by the build-up of space charge in the device. The occurrence of space-charge stems from the difference in charge carrier mobility of electrons and holes. In blends of poly(3-hexylthiophene) and 6,6- phenyl C61-butyric acid methyl ester this mobility difference can be tuned in between one and three orders of magnitude, depending on the annealing conditions. This allows us to experimentally verify the relation between space charge build-up and intensity dependence of Jsc. Model calculations confirm that bimolecular recombination leads only to a typical loss of 1% of all free charge carriers at Jsc for these devices. Therefore, bimolecular recombination plays only a minor role as compared to the effect of space charge in the intensity dependence of J sc.
NASA Astrophysics Data System (ADS)
Khalik, Wan Fadhilah; Ong, Soon-An; Ho, Li-Ngee; Voon, Chun-Hong; Wong, Yee-Shian; Yusoff, Nik Athirah; Lee, Sin-Li
2017-04-01
The objective of this study is to compare the performance of cathode electrode in photocatalytic fuel cell (PFC) system under UV light irradiation. The initial concentration 10 mg/L of Reactive Black 5 (RB5) with carbon plate (CP) and Pt-loaded carbon (Pt/C) as cathode reduced to 2.052 and 0.549 mg/L, respectively, after 24 h irradiated by UV light. The value for open circuit voltage, Voc, short-circuit current density, Jsc and maximum power density, Pmax for CP was 0.825 V, 0.00035 mA/cm2 and 0.000063 mW/cm2, respectively, meanwhile Voc, Jsc and Pmax for Pt/C was 1.15 V, 0.0015 mA/cm2 and 0.000286 mW/cm2, respectively, by varying external resistor value from 300 kΩ to 10 Ω. The degradation of RB5 and generation of electricity with Pt/C as cathode showed greater performance than CP.
Trade-offs of the opto-electrical properties of a-Si:H solar cells based on MOCVD BZO films.
Chen, Ze; Zhang, Xiao-dan; Liang, Jun-hui; Fang, Jia; Liang, Xue-jiao; Sun, Jian; Zhang, De-kun; Chen, Xin-liang; Huang, Qian; Zhao, Ying
2015-01-07
Boron-doped zinc oxide (BZO) films, deposited by metal-organic chemical vapor deposition (MOCVD), have been widely used as front electrodes in thin-film solar cells due to their native pyramidal surface structure, which results in efficient light trapping. This light trapping effect can enhance the short-circuit current density (Jsc) of solar cells. However, nanocracks or voids in the silicon active layer may form when the surface morphology of the BZO is too sharp; this usually leads to degraded electrical properties of the cells, such as open-circuit voltage (Voc) and the fill factor (FF), which in turn decreases efficiency (Eff) [Bailat et al., Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on. IEEE, 2006, vol. 2, pp. 1533-1536]. In this paper, an etching and coating method was proposed to modify the sharp "pyramids" on the surface of the BZO films. As a result, an evident enhancement was achieved for these modified, BZO-based cells' Voc, FF, and Eff, although the Jsc exhibited a small decrease. In order to increase the Jsc and maintain the improved electrical properties (Voc, FF) of the cell, a thin BZO coating, deposited by MOCVD, was introduced to coat the sputtering-treated BZO film. Finally, we optimized the trade-off among the Voc, FF, and Jsc, that is, we identified a regime with an increase of the Jsc as well as a further improvement of the other electrical properties.
Developing Tools and Techniques to Increase Communication Effectiveness
NASA Technical Reports Server (NTRS)
Hayes, Linda A.; Peterson, Doug
1997-01-01
The Public Affairs Office (PAO) of the Johnson Space Center (JSC) is responsible for communicating current JSC Space Program activities as well as goals and objectives to the American Public. As part of the 1996 Strategic Communications Plan, a review of PAO' s current communication procedures was conducted. The 1996 Summer Faculty Fellow performed research activities to support this effort by reviewing current research concerning NASA/JSC's customers' perceptions and interests, developing communications tools which enable PAO to more effectively inform JSC customers about the Space Program, and proposing a process for developing and using consistent messages throughout PAO. Note that this research does not attempt to change or influence customer perceptions or interests but, instead, incorporates current customer interests into PAO's communication process.
Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger
2015-09-02
In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.
Charge Transport in Carbon Nanotubes-Polymer Composite Photovoltaic Cells
Ltaief, Adnen; Bouazizi, Abdelaziz; Davenas, Joel
2009-01-01
We investigate the dark and illuminated current density-voltage (J/V) characteristics of poly(2-methoxy-5-(2’-ethylhexyloxy)1-4-phenylenevinylene) (MEH-PPV)/single-walled carbon nanotubes (SWNTs) composite photovoltaic cells. Using an exponential band tail model, the conduction mechanism has been analysed for polymer only devices and composite devices, in terms of space charge limited current (SCLC) conduction mechanism, where we determine the power parameters and the threshold voltages. Elaborated devices for MEH-PPV:SWNTs (1:1) composites showed a photoresponse with an open-circuit voltage Voc of 0.4 V, a short-circuit current density JSC of 1 µA/cm² and a fill factor FF of 43%. We have modelised the organic photovoltaic devices with an equivalent circuit, where we calculated the series and shunt resistances.
NASA Astrophysics Data System (ADS)
Batra, V.; Kotru, S.
2017-12-01
We report the effects of illumination on the ferroelectric and photovoltaic properties of the Pb0.95La0.05Zr0.54Ti0.46O3 (PLZT) thin film based asymmetric metal/ferroelectric/metal capacitor structure, using Au as a top electrode and Pt as a bottom electrode. Conductive-AFM (atomic force microscopy) measurements demonstrate the evolution of charge carriers in PLZT films on illumination. The capacitance-voltage, the polarization-electric field, and the leakage current-voltage characteristics of the asymmetric Au/PLZT/Pt capacitor are discussed under dark and illuminated conditions. The light generates charge carriers in the film, which increase the coercive field and net remnant polarization and decrease the capacitance. The leakage current of the capacitor increases by an order of magnitude upon illumination. The leakage current data analyzed to study the conduction mechanism shows that the capacitor structure follows the Schottky emission "1/4" law. The illuminated current density-voltage curve of the capacitor shows non-zero photovoltaic parameters. An open circuit voltage (Voc) of -0.19 V and a short circuit current density (Jsc) of 1.48 μA/cm2 were obtained in an unpoled film. However, after positive poling, the illuminated curve shifts towards a higher voltage value resulting in a Voc of -0.93 V. After negative poling, the curve shows no change in the Voc value. For both poling directions, the Jsc values decrease. The photocurrent in the capacitor shows a linear variation with the incident illumination intensity.
Hypervelocity Impact Evaluation of Metal Foam Core Sandwich Structures
NASA Technical Reports Server (NTRS)
Yasensky, John; Christiansen, Eric L.
2007-01-01
A series of hypervelocity impact (HVI) tests were conducted by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology Facility (HITF) [1], building 267 (Houston, Texas) between January 2003 and December 2005 to test the HVI performance of metal foams, as compared to the metal honeycomb panels currently in service. The HITF testing was conducted at the NASA JSC White Sands Testing Facility (WSTF) at Las Cruces, New Mexico. Eric L. Christiansen, Ph.D., and NASA Lead for Micro-Meteoroid Orbital Debris (MMOD) Protection requested these hypervelocity impact tests as part of shielding research conducted for the JSC Center Director Discretionary Fund (CDDF) project. The structure tested is a metal foam sandwich structure; a metal foam core between two metal facesheets. Aluminum and Titanium metals were tested for foam sandwich and honeycomb sandwich structures. Aluminum honeycomb core material is currently used in Orbiter Vehicle (OV) radiator panels and in other places in space structures. It has many desirable characteristics and performs well by many measures, especially when normalized by density. Aluminum honeycomb does not perform well in Hypervelocity Impact (HVI) Testing. This is a concern, as honeycomb panels are often exposed to space environments, and take on the role of Micrometeoroid / Orbital Debris (MMOD) shielding. Therefore, information on possible replacement core materials which perform adequately in all necessary functions of the material would be useful. In this report, HVI data is gathered for these two core materials in certain configurations and compared to gain understanding of the metal foam HVI performance.
Tungsten doped titanium dioxide nanowires for high efficiency dye-sensitized solar cells.
Archana, P S; Gupta, Arunava; Yusoff, Mashitah M; Jose, Rajan
2014-04-28
Metal oxide semiconductors offering simultaneously high specific surface area and high electron mobility are actively sought for fabricating high performance nanoelectronic devices. The present study deals with synthesis of tungsten doped TiO2 (W:TiO2) nanowires (diameter ∼50 nm) by electrospinning and evaluation of their performance in dye-sensitized solar cells (DSCs). Similarity in the ionic radii between W(6+) and Ti(4+) and availability of two free electrons per dopant are the rationale for the present study. Materials were characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray fluorescence measurements, and absorption spectroscopy. Nanowires containing 2 at% W:TiO2 gave 90% higher short circuit current density (JSC) (∼15.39 mA cm(-2)) in DSCs with a nominal increase in the open circuit voltage compared with that of the undoped analogue (JSC ∼8.1 mA cm(-2)). The results are validated by multiple techniques employing absorption spectroscopy, electrochemical impedance spectroscopy and open circuit voltage decay. The above studies show that the observed increments resulted from increased dye-loading, electron density, and electron lifetime in tungsten doped samples.
Nanographite-TiO2 photoanode for dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Sharma, S. S.; Sharma, Khushboo; Sharma, Vinay
2016-05-01
Nanographite-TiO2 (NG-TiO2) composite was successfully synthesized by the hydrothermal method and its performance as the photoanode for dye-sensitized solar cells (DSSCs) was investigated. Environmental Scanning electron microscope (E-SEM) micrographs show the uniform distribution of TiO2 nanoflowers deposited over nanographite sheets. The average performance characteristics of the assembled cell in terms of short-ciruit current density (JSC), open circuit voltage (VOC), fill factor (FF) and photoelectric conversion efficiency (η) were measured.
1973-08-02
S73-31875 (2 Aug. 1973) --- After learning of a problem in the Command/Service Module which was used to transport the Skylab 3 crew to the orbiting Skylab space station cluster, NASA officials held various meetings to discuss the problem. Here, four men monitor the current status of the problem in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) at the Johnson Space Center (JSC). From the left are Gary E. Coen, Guidance and Navigation System flight controller; Howard W. Tindall Jr., Director of Flight Operations at JSC; Dr. Christopher C. Kraft Jr., JSC Director; and Sigurd A. Sjoberg, JSC Deputy Director. Photo credit: NASA
NASA Astrophysics Data System (ADS)
Zhu, Zhaozhao; Mankowski, Trent; Shikoh, Ali Sehpar; Touati, Farid; Benammar, Mohieddine A.; Mansuripur, Masud; Falco, Charles M.
2016-09-01
We report the synthesis of ultra-high aspect ratio copper nanowires (CuNW) and fabrication of CuNW-based transparent conductive electrodes (TCE) with high optical transmittance (>80%) and excellent sheet resistance (Rs <30 Ω/sq). These CuNW TCEs are subsequently hybridized with aluminum-doped zinc oxide (AZO) thin-film coatings, or platinum thin film coatings, or nickel thin-film coatings. Our hybrid transparent electrodes can replace indium tin oxide (ITO) films in dye-sensitized solar cells (DSSCs) as either anodes or cathodes. We highlight the challenges of integrating bare CuNWs into DSSCs, and demonstrate that hybridization renders the solar cell integrations feasible. The CuNW/AZO-based DSSCs have reasonably good open-circuit voltage (Voc = 720 mV) and short-circuit current-density (Jsc = 0.96 mA/cm2), which are comparable to what is obtained with an ITO-based DSSC fabricated with a similar process. Our CuNW-Ni based DSSCs exhibit a good open-circuit voltage (Voc = 782 mV) and a decent short-circuit current (Jsc = 3.96 mA/cm2), with roughly 1.5% optical-to-electrical conversion efficiency.
UV Degradation and Recovery of Perovskite Solar Cells
Lee, Sang-Won; Kim, Seongtak; Bae, Soohyun; Cho, Kyungjin; Chung, Taewon; Mundt, Laura E.; Lee, Seunghun; Park, Sungeun; Park, Hyomin; Schubert, Martin C.; Glunz, Stefan W.; Ko, Yohan; Jun, Yongseok; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan
2016-01-01
Although the power conversion efficiency of perovskite solar cells has increased from 3.81% to 22.1% in just 7 years, they still suffer from stability issues, as they degrade upon exposure to moisture, UV light, heat, and bias voltage. We herein examined the degradation of perovskite solar cells in the presence of UV light alone. The cells were exposed to 365 nm UV light for over 1,000 h under inert gas at <0.5 ppm humidity without encapsulation. 1-sun illumination after UV degradation resulted in recovery of the fill factor and power conversion efficiency. Furthermore, during exposure to consecutive UV light, the diminished short circuit current density (Jsc) and EQE continuously restored. 1-sun light soaking induced recovery is considered to be caused by resolving of stacked charges and defect state neutralization. The Jsc and EQE bounce-back phenomenon is attributed to the beneficial effects of PbI2 which is generated by the decomposition of perovskite material. PMID:27909338
Lei, Yan; Jia, Huimin; He, Weiwei; Zhang, Yange; Mi, Liwei; Hou, Hongwei; Zhu, Guangshan; Zheng, Zhi
2012-10-24
P3HT:Ag(2)S hybrid solar cells with broad absorption from the UV to NIR band were directly fabricated on ITO glass by using a room temperature, low energy consumption, and low-cost soft-chemical strategy. The resulting Ag(2)S nanosheet arrays facilitate the construction of a perfect percolation structure with organic P3HT to form ordered bulk heterojunctions (BHJ); without interface modification, the assembled P3HT:Ag(2)S device exhibits outstanding short-circuit current densities (J(sc)) around 20 mA cm(-2). At the current stage, the optimized device exhibited a power conversion efficiency of 2.04%.
NASA Astrophysics Data System (ADS)
Du, Xing; He, Xuan; Zhao, Lei; Chen, Hui; Li, Weixin; Fang, Wei; Zhang, Wanqiu; Wang, Junjie; Chen, Huan
2016-11-01
It reported a novel and simple method for the first time to prepare TiO2 hierarchical porous film (THPF) using ultrastable foams as a soft template to construct porous structures. Moreover, dodecanol as one foam component was creatively used as solvent during the synthesis of CdSe quantum dots (QDs) to decrease reaction temperature and simplify precipitation process. The result showed that hierarchical pores in scale of microns introduced by foams were regarded to benefit for high coverage and unimodal distribution of QDs on the surface of THPF to increase the efficiencies of light-harvesting, charge-collection and charge-transfer. The increased efficiencies caused an enhancement in quantum efficiency of the cell and thus remarkably increased the short circuit current density (Jsc). In addition, the decrease of charge recombination resulted in the increase of the open circuit voltage (Voc) as well. The QDSSC based on THPF exhibited about 2-fold higher power conversion efficiency (η = 2.20%, Jsc = 13.82 mA cm-2, Voc = 0.572 V) than that of TiO2 nanoparticles film (TNF) (η = 1.06%, Jsc = 6.70 mA cm-2, Voc = 0.505 V). It provided a basis to use foams both as soft template and carrier to realize simultaneously construction and in-situ sensitization of photoanode in further work.
Surface plasmon effect in electrodeposited diamond-like carbon films for photovoltaic application
NASA Astrophysics Data System (ADS)
Ghosh, B.; Ray, Sekhar C.; Espinoza-González, Rodrigo; Villarroel, Roberto; Hevia, Samuel A.; Alvarez-Vega, Pedro
2018-04-01
Diamond-like carbon (DLC) films and nanocrystalline silver particles containing diamond-like carbon (DLC:Ag) films were electrodeposited on n-type silicon substrate (n-Si) to prepare n-Si/DLC and n-Si/DLC:Ag heterostructures for photovoltaic (PV) applications. Surface plasmon resonance (SPR) effect in this cell structure and its overall performance have been studied in terms of morphology, optical absorption, current-voltage characteristics, capacitance-voltage characteristics, band diagram and external quantum efficiency measurements. Localized surface plasmon resonance effect of silver nanoparticles (Ag NPs) in n-Si/DLC:Ag PV structure exhibited an enhancement of ∼28% in short circuit current density (JSC), which improved the overall efficiency of the heterostructures.
Comparison of current map data with data from STS-99 SRTM
2000-02-04
JSC2000E01552 (January 2000) --- This chart compares currently available global map data with the data which will be provided by SRTM during STS-99. The area depicted is the California coast. The SRTM mission will have approximately 1,000 scheduled data takes (every time Endeavour is over land). Data acquisition will be conducted in excess of 80 hours. The recording rate for data will be 180 Mbits/sec for C-band, 90 Mbits/sec for X-band. Total raw radar data will be approximately 9.8 terabytes (15,000 CDs). The mission will utilize some 300 high-density tapes (each tape records 30 min. of C-band, or 60 min. of X-band data).
Pioneering space exploration: The JSC strategy
NASA Technical Reports Server (NTRS)
1992-01-01
The framework that JCS's senior management will use to guide effective decision making to achieve our long-rang goals while soliciting inputs from all levels of JSC is presented. This plan was developed to allow us to meet head-on the responsibilities and challenges we have today while assuring that we are well prepared to meet the opportunities and challenges of tomorrow. The JSC strategy is closely aligned with the overall strategic direction currently being defined by NASA. One of our major goals was to keep our plan and process tightly focused but flexible enough so that as our national interests in space exploration evolve, so can JSC.
Metal-Insulator-Semiconductor Nanowire Network Solar Cells.
Oener, Sebastian Z; van de Groep, Jorik; Macco, Bart; Bronsveld, Paula C P; Kessels, W M M; Polman, Albert; Garnett, Erik C
2016-06-08
Metal-insulator-semiconductor (MIS) junctions provide the charge separating properties of Schottky junctions while circumventing the direct and detrimental contact of the metal with the semiconductor. A passivating and tunnel dielectric is used as a separation layer to reduce carrier recombination and remove Fermi level pinning. When applied to solar cells, these junctions result in two main advantages over traditional p-n-junction solar cells: a highly simplified fabrication process and excellent passivation properties and hence high open-circuit voltages. However, one major drawback of metal-insulator-semiconductor solar cells is that a continuous metal layer is needed to form a junction at the surface of the silicon, which decreases the optical transmittance and hence short-circuit current density. The decrease of transmittance with increasing metal coverage, however, can be overcome by nanoscale structures. Nanowire networks exhibit precisely the properties that are required for MIS solar cells: closely spaced and conductive metal wires to induce an inversion layer for homogeneous charge carrier extraction and simultaneously a high optical transparency. We experimentally demonstrate the nanowire MIS concept by using it to make silicon solar cells with a measured energy conversion efficiency of 7% (∼11% after correction), an effective open-circuit voltage (Voc) of 560 mV and estimated short-circuit current density (Jsc) of 33 mA/cm(2). Furthermore, we show that the metal nanowire network can serve additionally as an etch mask to pattern inverted nanopyramids, decreasing the reflectivity substantially from 36% to ∼4%. Our extensive analysis points out a path toward nanowire based MIS solar cells that exhibit both high Voc and Jsc values.
Optical effects of shadow masks on short circuit current of organic photovoltaic devices.
Lin, Chi-Feng; Lin, Bing-Hong; Liu, Shun-Wei; Hsu, Wei-Feng; Zhang, Mi; Chiu, Tien-Lung; Wei, Mau-Kuo; Lee, Jiun-Haw
2012-03-21
In this paper, we have employed different shadow masks attached on top of organic photovoltaic (OPV) devices to study the optical effects of the former on the short circuit current (J(SC)). To rule out possible lateral electrical conduction and simplify the optical effects inside the device, a small-molecular heterojunction OPV device with a clear donor/acceptor interface was employed with a hole extraction layer exhibiting high resistance intentionally. Careful calibration with a shadow mask was employed. By attaching two layers of opaque masks in combination with a suitable holder design to shield the light from the edges and backside, the value of J(SC) approached that of the dark current, even under 1-sun radiation. With different illumination areas, we found that the photons illuminating the non-active region of the device contributed to 40% of the J(SC) by optical effect within the width of about 1 mm around the active region. When illuminating the non-active area with 12 mm to the active area, a 5.6 times improvement in the J(SC) was observed when the incident angle was 75°. With the introduction of a microstructured film onto the OPV device and an increase in the reflection from the non-active region, a 15% enhancement of the J(SC) compared to the control device was achieved.
Using high haze (> 90%) light-trapping film to enhance the efficiency of a-Si:H solar cells
NASA Astrophysics Data System (ADS)
Chu, Wei-Ping; Lin, Jian-Shian; Lin, Tien-Chai; Tsai, Yu-Sheng; Kuo, Chen-Wei; Chung, Ming-Hua; Hsieh, Tsung-Eong; Liu, Lung-Chang; Juang, Fuh-Shyang; Chen, Nien-Po
2012-07-01
The high haze light-trapping (LT) film offers enhanced scattering of light and is applied to a-Si:H solar cells. UV glue was spin coated on glass, and then the LT pattern was imprinted. Finally, a UV lamp was used to cure the UV glue on the glass. The LT film effectively increased the Haze ratio of glass and decreased the reflectance of a-Si:H solar cells. Therefore, the photon path length was increased to obtain maximum absorption by the absorber layer. High Haze LT film is able to enhance short circuit current density and efficiency of the device, as partial composite film generates broader scattering light, thereby causing shorter wave length light to be absorbed by the P layer so that the short circuit current density decreases. In case of lab-made a-Si:H thin film solar cells with v-shaped LT films, superior optoelectronic performances have been found (Voc = 0.74 V, Jsc = 15.62 mA/cm2, F.F. = 70%, and η = 8.09%). We observed ~ 35% enhancement of the short-circuit current density and ~ 31% enhancement of the conversion efficiency.
Sun, Lu; Shen, Liang; Mengd, Fanxu; Xu, Peng; Guo, Wenbin; Ruan, Shengping
2014-05-01
Here we demonstrate the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT):1 -(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) solar cells. Poly[(4,42-bis(2-ethylhexyl) dithieno [3,2-b:22,32-d] silole)-2,6-diylalt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT) was chosen as the electron-donating polymer to improve the short circuit current (J(sc)) due to its distinct absorption in the near-IR range and similar HOMO level with that of P3HT. In the study, we found that J(sc) was improved for ternary blend (P3HT:PSBTBT:PCBM) solar cells. The dependence of device performance was investigated. J(sc) got decreased with increasing the ratio of PSBTBT. Result showed that J(sc) of ternary blend solar cells was improved greatly after thermal annealing at 150 degrees C, close to that of the binary blend (PSBTBT:PCBM) solar cells.
Optical properties of thin merocyanine dye layers for photovoltaic applications
NASA Astrophysics Data System (ADS)
Dikova, J.; Kitova, S.; Stoyanova, D.; Vasilev, A.; Deligeorgiev, T.; Angelova, S.
2014-05-01
The potentiality was studied of our newly synthesized push-pull type merocyanine dye, labeled A1, for use as an electron donating component in solution-processed bulk heterojunction (BHJ) organic solar cells. For the purpose, a soluble n-type fullerene, (6,6)-phenyl C61 butyric acid methyl ester (PCBM), which is currently and in the ear future without an alternative, was chosen as an acceptor. The optical constants (n and k) of thin films obtained by spin coating from solutions in chlorobenzene of A1 and of an A1/PCBM blend were determined by spectrophotometric measurements. Further, an optical simulation of a standard BHJ cell with an active layer of an A1dye/PCMB blend was performed using a transfer-matrix formalism. Thus, the optimum thickness of the active layer was calculated to be about 80 nm, which provides overlapping of the total absorption with the solar spectrum in the broad range 400 nm - 800 nm. Finally, the maximum current density, Jsc, was determined to be 13 mA cm2 assuming that the internal quantum efficiency, IQE, is unity. Comparing the calculated Jsc with data on some advanced small-molecule BHJ devices, the prospects for practical applications of the new merocyanine dye are discussed.
Thermal conductivity of lunar regolith simulant JSC-1A under vacuum
NASA Astrophysics Data System (ADS)
Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi
2018-07-01
Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.
Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastham, Nicholas D.; Dudnik, Alexander S.; Harutyunyan, Boris
2017-06-14
Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the twomore » SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.« less
Perovskite-based solar cells with inorganic inverted hybrid planar heterojunction structure
NASA Astrophysics Data System (ADS)
Lai, Wei-Chih; Lin, Kun-Wei; Guo, Tzung-Fang; Chen, Peter; Liao, Yuan-Yu
2018-01-01
We demonstrated the good performance of inorganic inverted CH3NH3PbI3 perovskite-based solar cells (SCs) with glass/ITO/NiOx/CH3NH3PbI3 perovskite/C60/ room temperature (RT)-sputtered ZnO/Al structure. We adopted spin coating and RT sputtering for the deposition of NiOx and ZnO, respectively. The inorganic hole and electron transport layer of NiOx and RT-sputtered ZnO, respectively, could improve the open-circuit voltage (VOC), short-circuit current density (JSC), and power conversion efficiency (η%) of the SCs. We obtained inorganic inverted CH3NH3PbI3 perovskite-based SCs with a JSC of 21.96 A/cm2, a VOC of 1.02 V, a fill factor (FF%) of 68.2%, and an η% of 15.3% despite the sputtering damage of the RT-sputtered ZnO deposition. Moreover, the RT-sputtered ZnO could function as a diffusion barrier for Al, moisture, and O2. The inorganic inverted CH3NH3PbI3 perovskite-based SCs demonstrated improved storage reliability.
The role of exciton ionization processes in bulk heterojunction organic photovoltaic cells
NASA Astrophysics Data System (ADS)
Zou, Yunlong; Holmes, Russell
2015-03-01
Dissociating photogenerated excitons into their constituent charges is essential for efficient photoconversion in organic semiconductors. Organic photovoltaics cells (OPV) widely adopt a heterojunction architecture where dissociation is facilitated by charge transfer at a donor-acceptor (D-A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo bulk-ionization to generate photocurrent, driven by the built-in field at the MoOx/C60 interface. Here, we show that bulk-ionization processes also contribute to the photocurrent in bulk heterojunction (BHJ) OPVs with fullerene-rich compositions. The short-circuit current density (JSC) in a MoOx/C60 Schottky OPVs shows almost no dependence on temperature down to 80 K. This characteristic of bulk-ionization allows the use of temperature-dependent measurements of JSC to distinguish dissociation by bulk-ionization from charge transfer at a D-A interface. For BHJ OPVs constructed using the D-A pairing of boron subphthalocyanine chloride (SubPc)-C60, bulk-ionization is found to contribute >10% of the total photocurrent and >30% of the photocurrent from C60. We further find that fullerene-rich SubPc-C60 BHJ OPVs show a larger open-circuit voltage (VOC) than evenly mixed BHJs due to the presence of bulk-ionization. This talk will examine the dependence of JSC and VOC on the relative fraction of dissociation by charge transfer and bulk-ionization processes.
Shuttle crew escape systems test conducted in JSC Bldg 9A CCT
1987-03-20
Shuttle crew escape systems test is conducted by astronauts Steven R. Nagel (left) and Manley L. (Sonny) Carter in JSC One Gravity Mockup and Training Facilities Bldg 9A crew compartment trainer (CCT). Nagel and Carter are evaluating methods for crew escape during Space Shuttle controlled gliding flight. JSC test was done in advance of tests scheduled for facilities in California and Utah. Here, Carter serves as test subject evaluating egress positioning for the tractor rocket escape method - one of the two systems currently being closely studied by NASA.
Achieving Workplace Health through Application of Wellness Strategies
NASA Technical Reports Server (NTRS)
Robinson, Judith L.
2008-01-01
Purpose: 1) Understand and measure JSC workplace health: a) levels, sources, indicators & effects of negative, work-related stress; b) define leading indicators of emerging issues. 2 Provide linkage to outcomes: a) Focus application of wellness strategies & HR tools; b) Increase quality of work life and productivity. 3) Current effort will result in: a) Online assessment tool; b) Assessment of total JSC population (civil service & contractors); c) Application of mitigation tools and strategies. 4) Product of the JSC Employee Wellness Program. 5) Collaboration with Corporate Health Improvement Program/University of Arizona.
President Bill Clinton visits JSC
1998-04-14
S98-05017 (14 April 1998) --- President Bill Clinton prepares to use a fork to sample some space food while visiting NASA's Johnson Space Center (JSC). Holding the food packet is U.S. Sen. John H. Glenn Jr. (D.-Ohio), currently in training at JSC as a payload specialist for a flight scheduled later this year aboard the Space Shuttle Discovery. Looking on is astronaut Curtis L. Brown Jr., STS-95 commander. The picture was taken in the full fuselage trainer (FFT). Photo Credit: Joe McNally, National Geographic, for NASA
Xiao, Zhen-Yu; Yao, Bin; Li, Yong-Feng; Ding, Zhan-Hui; Gao, Zhong-Min; Zhao, Hai-Feng; Zhang, Li-Gong; Zhang, Zhen-Zhong; Sui, Ying-Rui; Wang, Gang
2016-07-13
Cu2ZnSn(S,Se)4 (CZTSSe) films were deposited on the Mo-coated glass substrates, and the CZTSSe-based solar cells were successfully fabricated by a facile solution method and postselenization technique. The influencing mechanisms of the selenization temperature and time on the power conversion efficiency (PCE), short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) of the solar cell are systematically investigated by studying the change of the shunt conductance (Gsh), series resistance (Rs), diode ideal factor (n), and reversion saturation current density (J0) with structure and crystal quality of the CZTSSe film and CZTSSe/Mo interface selenized at various temperatures and times. It is found that a Mo(S1-x,Sex)2 (MSSe) layer with hexagonal structure exists at the CZTSSe/Mo interface at the temperature of 500 °C, and its thickness increases with increasing selenization temperature and time. The MSSe has a smaller effect on the Rs, but it has a larger influence on the Gsh, n, and J0. The PCE, Voc, and FF change dominantly with Gsh, n, and J0, while Jsc changes with Rs and Gsh, but not Rs. These results suggest that the effect of the selenization temperature and time on the PCE is dominantly contributed to the change of the CZTSSe/CdS p-n junction and CZTSSe/MSSe interface induced by variation of the quality of the CZTSSe film and thickness of MSSe in the selenization process. By optimizing the selenization temperature and time, the highest PCE of 7.48% is obtained.
NASA Astrophysics Data System (ADS)
Mäckel, Helmut; MacKenzie, Roderick C. I.
2018-03-01
Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.
NASA Technical Reports Server (NTRS)
Hyman, Ladelle M.
1993-01-01
African Americans have participated sporadically in the NASA JSC Summer Faculty Fellows Program--none in 1992 and four in 1993. There is a pool of African Americans who are both qualified to provide services and willing to participate in initiatives which support technologies required for future JSC programs. They can provide human support and handle mission operations, spacecraft systems, planet surface systems, and management tools. Most of these faculty teach at historically black colleges and universities (HBCU's). This research will document the current recruitment system, critique it, and develop a strategy which will facilitate the diversification of the NASA JSC Summer Faculty Fellows Program. While NASA currently mails notices to HBCU's, such notices have generated few applications from, and fewer selections of, targeted faculty. To increase the participation of African Americans in the NASA JSC Summer Faculty Fellows Program, this participant will prepare a strategy which includes a document which identifies HBCU-targeted faculty and enumerates more formally extensive and intensive communication procedures. A fifteen-minute panel discussion, which will include a video, will be delivered during the annual meeting of the American Society for Engineering Education (ASEE) to be held in Edmonton, Alberta, Canada, June 26-29, 1994. An announcement letter will be mailed to targeted faculty; follow-up telephone calls and personal visits will be made and a checklist flowchart will be completed by key NASA personnel or designee. Although initially limited to NASA JSC's recruitment of African Americans, this strategy may be broadened to include other NASA sites and other targeted minority groups.
Suns-VOC characteristics of high performance kesterite solar cells
NASA Astrophysics Data System (ADS)
Gunawan, Oki; Gokmen, Tayfun; Mitzi, David B.
2014-08-01
Low open circuit voltage (VOC) has been recognized as the number one problem in the current generation of Cu2ZnSn(Se,S)4 (CZTSSe) solar cells. We report high light intensity and low temperature Suns-VOC measurement in high performance CZTSSe devices. The Suns-VOC curves exhibit bending at high light intensity, which points to several prospective VOC limiting mechanisms that could impact the VOC, even at 1 sun for lower performing samples. These VOC limiting mechanisms include low bulk conductivity (because of low hole density or low mobility), bulk or interface defects, including tail states, and a non-ohmic back contact for low carrier density CZTSSe. The non-ohmic back contact problem can be detected by Suns-VOC measurements with different monochromatic illuminations. These limiting factors may also contribute to an artificially lower JSC-VOC diode ideality factor.
Choi, Hyekyoung; Song, Jung Hoon; Jang, Jihoon; Mai, Xuan Dung; Kim, Sungwoo; Jeong, Sohee
2015-11-07
We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.
Park, Kyung Hee; Kim, Tae Young; Ko, Hyun Seok; Han, Eun Mi; Lee, Suk-Ho; Kim, Jung-Hun; Lee, Jae Wook
2015-08-01
Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from red cabbage as a sensitizer. In this work, we investigated the adsorption characteristics and the electrochemical behavior for harvesting sunlight and electron transfer in red cabbage DSSCs under different solvents and pH. For the red cabbage dye-sensitized electrode adsorbed at pH 3.5, the solar cell yields a short-circuit current density (Jsc) of 1.60 mA/cm2, a photovoltage (Vcc) of 0.46 V, and a fill factor of 0.55, corresponding to an energy conversion efficiency (η) of 0.41%.
NASA Astrophysics Data System (ADS)
Singh, Ranbir; Shukla, Vivek Kumar
2018-05-01
In this work, we compare the planar and bulk heterojunction (BHJ) perovskite thin films for their morphologies, photovoltaic properties, and recombination dynamics. The BHJ perovskite thin films were prepared with the addition of fullerene derivative [6, 6]-Phenyl-C60 butyric acid methyl ester (PC60BM). The addition of PC60BM in perovskite provides a pinhole free film with high absorption coefficient and better charge transfer. The solar cells fabricated with BHJ perovskite exhibits power conversion efficiency (PCE) of 13.5%, with remarkably increased short-circuit current density (JSC) of 20.1 mAcm-2 and reduced recombination rate.
Johnson Space Center Research and Technology Report
NASA Technical Reports Server (NTRS)
Pido, Kelle; Davis, Henry L. (Technical Monitor)
1999-01-01
As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.
NASA Technical Reports Server (NTRS)
Schrader, Christian; Rickman, Doug; McLemore, Carole; Fikes, John; Wilson, Stephen; Stoeser, Doug; Butcher, Alan; Botha, Pieter
2008-01-01
This work is part of a larger effort to compile an internally consistent database on lunar regolith (Apollo samples) and lunar regolith simulants. Characterize existing lunar regolith and simulants in terms of: a) Particle type; b) Particle size distribution; c) Particle shape distribution; d) Bulk density; and e) Other compositional characteristics. Evaluate regolith simulants (Figure of Merit) by above properties by comparison to lunar regolith (Apollo sample) This presentation covers new data on lunar simulants.
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)
1999-01-01
JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC, under ASEE. The objectives of the program are to further the professional knowledge of qualified engineering and science members; stimulate an exchange of ideas between participants and NASA; enrich and refresh the research and teaching activities of participants; and contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with his/her interests and background and worked in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the fellows' research projects performed during the summer of 1998. Volume 1, current volume, contains the first reports, and volume 2 contains the remaining reports.
NASA Technical Reports Server (NTRS)
Studor, George
2007-01-01
A viewgraph presentation on lessons learned from NASA Johnson Space Center's micro-wireless instrumentation is shown. The topics include: 1) Background, Rationale and Vision; 2) NASA JSC/Structural Engineering Approach & History; 3) Orbiter Wing Leading Edge Impact Detection System; 4) WLEIDS Confidence and Micro-WIS Lessons Learned; and 5) Current Projects and Recommendations.
Former President George H. W. Bush and Mrs. Bush visit with Mission Control Center personnel.
2003-02-03
JSC2003-E-05202 (3 February 2003) --- In the Station Flight Control Room of JSC's Mission Control Center, former President George H.W. Bush learns about current activity aboard the Earth-orbiting International Space Station (ISS) from Flight Director Sally Davis. The former Chief Executive and First Lady visited the Houston facility on Feb. 3, 2003.
Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells
NASA Astrophysics Data System (ADS)
Li, Jiangwei; Niu, Guangda; Li, Wenzhe; Cao, Kun; Wang, Mingkui; Wang, Liduo
2016-07-01
Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve.Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve. Electronic supplementary information (ESI) available: Fig. S1-S11, Tables S1, S2 and details of the Avrami model for reaction kinetics. See DOI: 10.1039/c6nr03359h
Fountaine, Katherine T; Atwater, Harry A
2014-10-20
We analyze mesoscale light absorption and carrier collection in a tandem junction photoelectrochemical device using electromagnetic simulations. The tandem device consists of silicon (E(g,Si) = 1.1 eV) and tungsten oxide (E(g,WO3) = 2.6 eV) as photocathode and photoanode materials, respectively. Specifically, we investigated Si microwires with lengths of 100 µm, and diameters of 2 µm, with a 7 µm pitch, covered vertically with 50 µm of WO3 with a thickness of 1 µm. Many geometrical variants of this prototypical tandem device were explored. For conditions of illumination with the AM 1.5G spectra, the nominal design resulted in a short circuit current density, J(SC), of 1 mA/cm(2), which is limited by the WO3 absorption. Geometrical optimization of photoanode and photocathode shape and contact material selection, enabled a three-fold increase in short circuit current density relative to the initial design via enhanced WO3 light absorption. These findings validate the usefulness of a mesoscale analysis for ascertaining optimum optoelectronic performance in photoelectrochemical devices.
NASA Astrophysics Data System (ADS)
Mintairov, M. A.; Evstropov, V. V.; Mintairov, S. A.; Shvarts, M. Z.; Kozhukhovskaia, S. A.; Kalyuzhnyy, N. A.
2017-11-01
The existence within monolithic double- and triple-junction solar cells of a photoelectric source, which counteracts the basic photovoltaic p-n junctions, is proved. The paper presents a detailed analysis of the shape of the light IV-characteristics, as well as the dependence Voc-Jsc (open circuit voltage - short-circuit current). It is established that the counteracting source is tunnel p+-n+ junction. The photoelectric characteristics of samples with different tunnel diode peak current values were investigated, including the case of a zero value. When the tunnel p+-n+ junction is photoactive, the Voc-Jsc dependence has a dropping part, including a sharp jump. This undesirable effect decreases with increasing peak current.
Apollo Lunar Sample Photographs: Digitizing the Moon Rock Collection
NASA Technical Reports Server (NTRS)
Lofgren, Gary E.; Todd, Nancy S.; Runco, S. K.; Stefanov, W. L.
2011-01-01
The Acquisition and Curation Office at JSC has undertaken a 4-year data restoration project effort for the lunar science community funded by the LASER program (Lunar Advanced Science and Exploration Research) to digitize photographs of the Apollo lunar rock samples and create high resolution digital images. These sample photographs are not easily accessible outside of JSC, and currently exist only on degradable film in the Curation Data Storage Facility
1D nanorod-planted 3D inverse opal structures for use in dye-sensitized solar cells.
Park, Yesle; Lee, Jung Woo; Ha, Su-Jin; Moon, Jun Hyuk
2014-03-21
The effectiveness of the 1D nanorod (NR)-planted 3D inverse opal (IO) structure as an electrode for dye-sensitized solar cells (DSSCs) is demonstrated here. The NRs were grown on the surface of a macroporous IO structure and their longitudinal growth increased the surface area of the structure proportional to the growth duration. NR/IO electrodes with various NR growth times were compared. A remarkable JSC was obtained for the DSSCs utilizing a NR/IO electrode. The improvement of the JSC was analyzed in terms of its efficiency in light harvesting and electron transport. The growth of the NRs improved the dye adsorption density and scattering property of the electrode, resulting in an improvement in the light harvesting efficiency. Electrochemical impedance analysis revealed that the NRs also improved its electron transport properties. Further growth of the NRs tended to limit the increase of the JSC, which could be attributed to an overlap between them.
NASA Astrophysics Data System (ADS)
Yokokura, Yuya; Dogase, Tomomichi; Shinbo, Tatsuki; Nakayashiki, Yuya; Takagi, Yusuke; Ueda, Kazuyoshi; Sarangerel, Khayankhyarvaa; Delgertsetseg, Byambasuren; Ganzorig, Chimed; Sakomura, Masaru
2017-08-01
The use of Langmuir-Blodgett (LB) monolayers to modify the indium tin oxide (ITO) work function and thus improve the performance of zinc phthalocyanine (ZnPc)/fullerene (C60)-based and boron subphthalocyanine chloride (SubPc)/C60-based small molecule organic photovoltaic devices (OPVs) was examined. In general, LB precursor compounds contain one or more long alkyl chain substituents that can act as spacers to prevent electrical contact with adjoining electrode surfaces. As one example of such a compound, arachidic acid (CH3(CH2)18COOH) was inserted in the forms of one-layer, three-layer or five-layer LB films between the anode ITO layer and the p-type layer in ZnPc-C60-based OPVs to investigate the effects of the long alkyl chain group when it acts as an electrically insulating spacer. The short-circuit current density (Jsc) values of the OPVs with the three- and five-layer inserts (1.78 mA.cm-2 and 0.61 mA.cm-2, respectively) were reduced dramatically, whereas the Jsc value for the OPV with the single-layer insertion (2.88 mA.cm-2) was comparable to that of the OPV without any insert (3.14 mA.cm-2). The ITO work function was shifted positively by LB deposition of a surfactant compound, C9F19C2H4-O-C2H4-COOH (PFECA), which contained a fluorinated head group. This positive effect was maintained even after formation of an upper p-type organic layer. The Jsc and open-circuit voltage (Voc) of the SubPc-C60-based OPV with the LB-modified ITO layers were effectively enhanced. As a result, a 42% increase in device efficiency was achieved.
Botha, J; de Ridder, J H; Potgieter, J C; Steyn, H S; Malan, L
2013-10-01
A recently proposed model for waist circumference cut points (RPWC), driven by increased blood pressure, was demonstrated in an African population. We therefore aimed to validate the RPWC by comparing the RPWC and the Joint Statement Consensus (JSC) models via Logistic Regression (LR) and Neural Networks (NN) analyses. Urban African gender groups (N=171) were stratified according to the JSC and RPWC cut point models. Ultrasound carotid intima media thickness (CIMT), blood pressure (BP) and fasting bloods (glucose, high density lipoprotein (HDL) and triglycerides) were obtained in a well-controlled setting. The RPWC male model (LR ROC AUC: 0.71, NN ROC AUC: 0.71) was practically equal to the JSC model (LR ROC AUC: 0.71, NN ROC AUC: 0.69) to predict structural vascular -disease. Similarly, the female RPWC model (LR ROC AUC: 0.84, NN ROC AUC: 0.82) and JSC model (LR ROC AUC: 0.82, NN ROC AUC: 0.81) equally predicted CIMT as surrogate marker for structural vascular disease. Odds ratios supported validity where prediction of CIMT revealed -clinical -significance, well over 1, for both the JSC and RPWC models in African males and females (OR 3.75-13.98). In conclusion, the proposed RPWC model was substantially validated utilizing linear and non-linear analyses. We therefore propose ethnic-specific WC cut points (African males, ≥90 cm; -females, ≥98 cm) to predict a surrogate marker for structural vascular disease. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.
Computer image analysis of etched tracks from ionizing radiation
NASA Technical Reports Server (NTRS)
Blanford, George E.
1994-01-01
I proposed to continue a cooperative research project with Dr. David S. McKay concerning image analysis of tracks. Last summer we showed that we could measure track densities using the Oxford Instruments eXL computer and software that is attached to an ISI scanning electron microscope (SEM) located in building 31 at JSC. To reduce the dependence on JSC equipment, we proposed to transfer the SEM images to UHCL for analysis. Last summer we developed techniques to use digitized scanning electron micrographs and computer image analysis programs to measure track densities in lunar soil grains. Tracks were formed by highly ionizing solar energetic particles and cosmic rays during near surface exposure on the Moon. The track densities are related to the exposure conditions (depth and time). Distributions of the number of grains as a function of their track densities can reveal the modality of soil maturation. As part of a consortium effort to better understand the maturation of lunar soil and its relation to its infrared reflectance properties, we worked on lunar samples 67701,205 and 61221,134. These samples were etched for a shorter time (6 hours) than last summer's sample and this difference has presented problems for establishing the correct analysis conditions. We used computer counting and measurement of area to obtain preliminary track densities and a track density distribution that we could interpret for sample 67701,205. This sample is a submature soil consisting of approximately 85 percent mature soil mixed with approximately 15 percent immature, but not pristine, soil.
Numerical analysis and optimization of Cu2O/TiO2, CuO/TiO2, heterojunction solar cells using SCAPS
NASA Astrophysics Data System (ADS)
Sawicka-Chudy, Paulina; Sibiński, Maciej; Wisz, Grzegorz; Rybak-Wilusz, Elżbieta; Cholewa, Marian
2018-05-01
In the presented work, the Cu2O/TiO2 and CuO/TiO2 heterojunction solar cells have been analyzed by the help of Solar Cell Capacitance Simulator (SCAPS). The effects of various layer parameters like thickness and defect density on the cell performance have been studied in details. Numerical analysis showed how the absorber (CuO, Cu2O) and buffer (TiO2) layers thickness influence the short-circuit current density (Jsc) and efficiency (η) of solar cells. Optimized solar cell structures of Cu2O/TiO2 and CuO/TiO2 showed a potential efficiency of ∼9 and ∼23%, respectively, under the AM1.5G spectrum. Additionally, external quantum efficiency (EQE) curves of the CuO/TiO2 and Cu2O/TiO2 solar cells for various layers thickness of TiO2 were calculated and the optical band gap (Eg) for CuO and Cu2O was obtained. Finally, we examined the effects of defect density on the photovoltaic parameters.
Research and Development Annual Report, 1992
NASA Technical Reports Server (NTRS)
1993-01-01
Issued as a companion to Johnson Space Center's Research and Technology Annual Report, which reports JSC accomplishments under NASA Research and Technology Operating Plan (RTOP) funding, this report describes 42 additional JSC projects that are funded through sources other than the RTOP. Emerging technologies in four major disciplines are summarized: space systems technology, medical and life sciences, mission operations, and computer systems. Although these projects focus on support of human spacecraft design, development, and safety, most have wide civil and commercial applications in areas such as advanced materials, superconductors, advanced semiconductors, digital imaging, high density data storage, high performance computers, optoelectronics, artificial intelligence, robotics and automation, sensors, biotechnology, medical devices and diagnosis, and human factors engineering.
The JSC Research and Development Annual Report 1993
NASA Technical Reports Server (NTRS)
1994-01-01
Issued as a companion to Johnson Space Center's Research and Technology Annual Report, which reports JSC accomplishments under NASA Research and Technology Operating Plan (RTOP) funding, this report describes 47 additional projects that are funded through sources other than the RTOP. Emerging technologies in four major disciplines are summarized: space systems technology, medical and life sciences, mission operations, and computer systems. Although these projects focus on support of human spacecraft design, development, and safety, most have wide civil and commercial applications in areas such as advanced materials, superconductors, advanced semiconductors, digital imaging, high density data storage, high performance computers, optoelectronics, artificial intelligence, robotics and automation, sensors, biotechnology, medical devices and diagnosis, and human factors engineering.
Recombination in polymer-fullerene bulk heterojunction solar cells
NASA Astrophysics Data System (ADS)
Cowan, Sarah R.; Roy, Anshuman; Heeger, Alan J.
2010-12-01
Recombination of photogenerated charge carriers in polymer bulk heterojunction (BHJ) solar cells reduces the short circuit current (Jsc) and the fill factor (FF). Identifying the mechanism of recombination is, therefore, fundamentally important for increasing the power conversion efficiency. Light intensity and temperature-dependent current-voltage measurements on polymer BHJ cells made from a variety of different semiconducting polymers and fullerenes show that the recombination kinetics are voltage dependent and evolve from first-order recombination at short circuit to bimolecular recombination at open circuit as a result of increasing the voltage-dependent charge carrier density in the cell. The “missing 0.3 V” inferred from comparison of the band gaps of the bulk heterojunction materials and the measured open-circuit voltage at room-temperature results from the temperature dependence of the quasi-Fermi levels in the polymer and fullerene domains—a conclusion based on the fundamental statistics of fermions.
Demonstration of a High Open-Circuit Voltage GaN Betavoltaic Microbattery
NASA Astrophysics Data System (ADS)
Cheng, Zai-Jun; San, Hai-Sheng; Chen, Xu-Yuan; Liu, Bo; Feng, Zhi-Hong
2011-07-01
A high open-circuit voltage betavoltaic microbattery based on a GaN p-i-n diode is demonstrated. Under the irradiation of a 4×4 mm2 planar solid 63Ni source with an activity of 2 mCi, the open-circuit voltage Voc of the fabricated single 2×2mm2 cell reaches as high as 1.62 V, the short-circuit current density Jsc is measured to be 16nA/cm2. The microbattery has a fill factor of 55%, and the energy conversion efficiency of beta radiation into electricity reaches to 1.13%. The results suggest that GaN is a highly promising potential candidate for long-life betavoltaic microbatteries used as power supplies for microelectromechanical system devices.
High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W., Jr.
1998-10-01
High performance, lattice-mismatched p/n InGaAs/lnP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1% between the active InGaAs cell structure and the InP substrate. 1x1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6%more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6x10{sup {minus}6} A/cm{sup 2}. Jo values as low as 4.1x10{sup {minus}7} A/cm{sup 2} were also observed with a conventional planar cell geometry.« less
Simulation of silicon thin-film solar cells for oblique incident waves
NASA Astrophysics Data System (ADS)
Jandl, Christine; Hertel, Kai; Pflaum, Christoph; Stiebig, Helmut
2011-05-01
To optimize the quantum efficiency (QE) and short-circuit current density (JSC) of silicon thin-film solar cells, one has to study the behavior of sunlight in these solar cells. Simulations are an adequate and economic method to analyze the optical properties of light caused by absorption and reflection. To this end a simulation tool is developed to take several demands into account. These include the analysis of perpendicular and oblique incident waves under E-, H- and circularly polarized light. Furthermore, the topology of the nanotextured interfaces influences the efficiency and therefore also the short-circuit current density. It is well known that a rough transparent conductive oxide (TCO) layer increases the efficiency of solar cells. Therefore, it is indispensable that various roughness profiles at the interfaces of the solar cell layers can be modeled in such a way that atomic force microscope (AFM) scan data can be integrated. Numerical calculations of Maxwell's equations based on the finite integration technique (FIT) and Finite Difference Time Domain (FDTD) method are necessary to incorporate all these requirements. The simulations are performed in parallel on high performance computers (HPC) to meet the large computational requirements.
Fabrication & Characterization of AIAS/pSi Heterojunction Solar Cell
NASA Astrophysics Data System (ADS)
Hassun, Hanan K.; Shaban, Auday H.; Salman, Ebtisam M. T.
2018-05-01
Silver Indium Aluminum Selenium AgIn1xAlxSe2 AIAS for x=01 thin films was deposited by thermal evaporation at RT and different thickness 100, 150 and 200 nm on the glass substrate and p2Si wafer to produce AIAS/p3Si heterojunction solar cell 4. Structural optical electrical and photovoltaic properties 6 are investigated for the samples XRD analysis reveals that all the deposited AIAS films show polycrystalline structure without any change due to increase of thickness. Average diameter and roughness calculated from AFM images shows an increase in its value with increasing thickness. The optical absorbance and transmittance for samples are measured using a spectrometer type UV Visible 1800 spectrophotometer to study the energy 6 gap. The electrical properties 7 of heterojunction were obtained by IV8 dark and illuminated 9 and C10V measurement. The ideality 1 factor and the saturation 2 current density were calculated. Under illuminated 3 the open circuit voltage Voc4 short circuit current density Jsc6 fill factor 6FF and quantum efficiencies were calculated. The built in potential 7Vbi carrier concentration and depletion width are measured with different 9 thickness.
Emitter Choice for Epitaxial CdTe Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Tao; Kanevce, Ana; Sites, James R.
2016-11-21
High-quality epitaxial CdTe layers with low defect density and high carrier concentration have been demonstrated by several research groups. Nevertheless, one primary challenge for high-performance epitaxial CdTe solar cells is how to choose a suitable emitter partner for the junction formation. The numerical simulations show that a type I heterojunction with small conduction band offset (0.1 eV = ..delta..Ec = 0.3 eV) is necessary to maintain a good cell efficiency even with large interface recombination. Otherwise, a small 'cliff' can assist interface recombination causing smaller Voc, and a large 'spike' (..delta..Ec = 0.4 eV) can impede the photo current andmore » lead to a reduction of JSC and FF. Among the three possible emitters, CdS, CdMgTe, and MgZnO, CdMgTe (with ~30% Mg) and MgZnO (with ~ 20% Mg) are likely to be a better choice since their type-I junction can tolerate a larger density of interface defects.« less
2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids
NASA Astrophysics Data System (ADS)
Xu, Jixian; Voznyy, Oleksandr; Liu, Mengxia; Kirmani, Ahmad R.; Walters, Grant; Munir, Rahim; Abdelsamie, Maged; Proppe, Andrew H.; Sarkar, Amrita; García de Arquer, F. Pelayo; Wei, Mingyang; Sun, Bin; Liu, Min; Ouellette, Olivier; Quintero-Bermudez, Rafael; Li, Jie; Fan, James; Quan, Lina; Todorovic, Petar; Tan, Hairen; Hoogland, Sjoerd; Kelley, Shana O.; Stefik, Morgan; Amassian, Aram; Sargent, Edward H.
2018-06-01
Colloidal quantum dots (CQDs) are promising photovoltaic (PV) materials because of their widely tunable absorption spectrum controlled by nanocrystal size1,2. Their bandgap tunability allows not only the optimization of single-junction cells, but also the fabrication of multijunction cells that complement perovskites and silicon3. Advances in surface passivation2,4-7, combined with advances in device structures8, have contributed to certified power conversion efficiencies (PCEs) that rose to 11% in 20169. Further gains in performance are available if the thickness of the devices can be increased to maximize the light harvesting at a high fill factor (FF). However, at present the active layer thickness is limited to 300 nm by the concomitant photocarrier diffusion length. To date, CQD devices thicker than this typically exhibit decreases in short-circuit current (JSC) and open-circuit voltage (VOC), as seen in previous reports3,9-11. Here, we report a matrix engineering strategy for CQD solids that significantly enhances the photocarrier diffusion length. We find that a hybrid inorganic-amine coordinating complex enables us to generate a high-quality two-dimensionally (2D) confined inorganic matrix that programmes internanoparticle spacing at the atomic scale. This strategy enables the reduction of structural and energetic disorder in the solid and concurrent improvements in the CQD packing density and uniformity. Consequently, planar devices with a nearly doubled active layer thicknesses ( 600 nm) and record values of JSC (32 mA cm-2) are fabricated. The VOC improved as the current was increased. We demonstrate CQD solar cells with a certified record efficiency of 12%.
Coaxial group III-nitride nanowire photovoltaics.
Dong, Yajie; Tian, Bozhi; Kempa, Thomas J; Lieber, Charles M
2009-05-01
Coaxial core/shell nanowires represent an important class of nanoscale building blocks with substantial potential for exploring new concepts and materials for solar energy conversion. Here, we report the first experimental realization of coaxial group III-nitride nanowire photovoltaic (PV) devices, n-GaN/i-In(x)Ga(1-x)N/p-GaN, where variation of indium mole fraction is used to control the active layer band gap and hence light absorption. Current-voltage data reveal clear diode characteristics with ideality factors from 3.9 to 5.6. Electroluminescence measurements demonstrate tunable emission from 556 to 371 nm and thus confirm band gap variations in the In(x)Ga(1-x)N active layer from 2.25 to 3.34 eV as In composition is varied. Simulated one-sun AM 1.5G illumination yielded open-circuit voltages (V(oc)) from 1.0 to 2.0 V and short-circuit current densities (J(sc)) from 0.39 to 0.059 mA/cm(2) as In composition is decreased from 0.27 to 0 and a maximum efficiency of approximately 0.19%. The n-GaN/i-In(x)Ga(1-x)N/p-GaN nanowire devices are highly robust and exhibit enhanced efficiencies for concentrated solar light illuminations as well as single nanowire J(sc) values as high as 390 mA/cm(2) under intense short-wavelength illumination. The ability to rationally tune the structure and composition of these core/shell III-nitride nanowires will make them a powerful platform for exploring nanoenabled PVs in the future.
Zhou, Fangzhou; Zeng, Fangqin; Liu, Xu; Liu, Fangyang; Song, Ning; Yan, Chang; Pu, Aobo; Park, Jongsung; Sun, Kaiwen; Hao, Xiaojing
2015-10-21
Back contact modification plays an important role in improving energy conversion efficiency of Cu2ZnSnS4 (CZTS) thin film solar cells. In this paper, an ultrathin carbon layer is introduced on molybdenum (Mo)-coated soda lime glass (SLG) prior to the deposition of CZTS precursor to improve the back contact and therefore enhance CZTS solar cell efficiency. By introducing this layer, the short circuit current (Jsc) and device conversion efficiency increase for both nonvacuum (sol-gel) and vacuum (sputtering) methods. Specifically, for the sol-gel based process, Jsc increases from 13.60 to 16.96 mA/cm(2) and efficiency from 4.47% to 5.52%, while for the sputtering based process, Jsc increases from 17.50 to 20.50 mA/cm(2) and efficiency from 4.10% to 5.20%. Furthermore, introduction of this layer does not lead to any deterioration of either open circuit voltage (Voc) or fill factor (FF).
Contingency Operations Support to NASA Johnson Space Center Medical Operations Division
NASA Technical Reports Server (NTRS)
Stepaniak, Philip; Patlach, Bob; Swann, Mark; Adams, Adrien
2005-01-01
The Wyle Laboratories Contingency Operations Group provides support to the NASA Johnson Space Center (JSC) Medical Operations Division in the event of a space flight vehicle accident or JSC mishap. Support includes development of Emergency Medical System (EMS) requirements, procedures, training briefings and real-time support of mishap investigations. The Contingency Operations Group is compliant with NASA documentation that provides guidance in these areas and maintains contact with the United States Department of Defense (DOD) to remain current on military plans to support NASA. The contingency group also participates in Space Operations Medical Support Training Courses (SOMSTC) and represents the NASA JSC Medical Operations Division at contingency exercises conducted worldwide by the DOD or NASA. The events of September 11, 2001 have changed how this country prepares and protects itself from possible terrorist attacks on high-profile targets. As a result, JSC is now considered a high-profile target and thus, must prepare for and develop a response to a Weapons of Mass Destruction (WMD) incident. The Wyle Laboratories Contingency Operations Group supports this plan, specifically the medical response, by providing expertise and manpower.
Johnson Space Center Research and Technology Annual Report 1998-1999
NASA Technical Reports Server (NTRS)
Abbey, George W. S.
2004-01-01
As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).
Pharmacy in a New Frontier - The First Five Years at the Johnson Space Center Pharmacy
NASA Technical Reports Server (NTRS)
Bayuse, Tina
2008-01-01
A poster entitled "Space Medicine - A New Role for Clinical Pharmacists" was presented in December 2001 highlighting an up-and-coming role for pharmacists at the Johnson Space Center (JSC) in Houston, Texas. Since that time, the operational need for the pharmacy profession has expanded with the administration s decision to open a pharmacy on site at JSC to complement the care provided by the Flight Medicine and Occupational Medicine Clinics. The JSC Pharmacy is a hybrid of traditional retail and hospital pharmacy and is compliant with the ambulatory care standards set forth by the Joint Commission. The primary charge for the pharmacy is to provide medication management for JSC. In addition to providing ambulatory care for both clinics, the pharmacists also practice space medicine. A pharmacist had been involved in the packing of both the Space Shuttle and International Space Station Medical Kits before the JSC Pharmacy was established; however, the role of the pharmacist in packing medical kits has grown. The pharmacists are now full members of the operations team providing consultation for new drug delivery systems, regulations, and patient safety issues. As the space crews become more international, so does the drug information provided by the pharmacists. This presentation will review the journey of the JSC Pharmacy as it celebrated its five year anniversary in April of 2008. The implementation of the pharmacy, challenges to the incorporation of the pharmacy into an existing health-care system, and the current responsibilities of a pharmacist at the Johnson Space Center will be discussed.
Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell
NASA Astrophysics Data System (ADS)
Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee
Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.
Realization of highly efficient polymer solar cell based on PBDTTT-EFT and [71]PCBM
NASA Astrophysics Data System (ADS)
Bharti, Vishal; Chand, Suresh; Dutta, Viresh
2018-04-01
In this work, we have fabricated highly efficient polymer solar cells based on the blend of PBDTTT-EFT:PC71BM in the inverted device configuration. By using low temperature processed zinc oxide (ZnO) nanoparticles as an electron-transport layer (ETL) and 1,8-diiodooctane (DIO) as additive in chlorobenzene (CB) solvent we have achieved PCE of 9.43% with an excellent short-circuit current density (Jsc) of 17.6 mAcm-2, open circuit voltage (Voc) of 0.80 V and fill factor (FF) of 0.67. These results reveals that addition of 3% DIO additive in CB solvent improve the morphology (lower charge carrier recombination and better metal/organic semiconductor interface) and provide uniform interpenetrating networks in PBDTTT-EFT:PC71BM blend active layer.
2010-01-01
Periodically aligned Si nanopillar (PASiNP) arrays were fabricated on Si substrate via a silver-catalyzed chemical etching process using the diameter-reduced polystyrene spheres as mask. The typical sub-wavelength structure of PASiNP arrays had excellent antireflection property with a low reflection loss of 2.84% for incident light within the wavelength range of 200–1,000 nm. The solar cell incorporated with the PASiNP arrays exhibited a power conversion efficiency (PCE) of ~9.24% with a short circuit current density (JSC) of ~29.5 mA/cm2 without using any extra surface passivation technique. The high PCE of PASiNP array-based solar cell was attributed to the excellent antireflection property of the special periodical Si nanostructure. PMID:21124636
Y-doping TiO2 nanorod arrays for efficient perovskite solar cells
NASA Astrophysics Data System (ADS)
Deng, Xinlian; Wang, Yanqing; Cui, Zhendong; Li, Long; Shi, Chengwu
2018-05-01
To improve the electron transportation in TiO2 nanorod arrays and charge separation in the interface of TiO2/perovskite, Y-doping TiO2 nanorod arrays with the length of 200 nm, diameter of 11 nm and areal density of 1050 μm-2 were successfully prepared by the hydrothermal method and the influence of Y/Ti molar ratios of 0%, 3%, 5% in the hydrothermal grown solutions on the growth of TiO2 nanorod arrays was investigated. The results revealed that the appropriate Y/Ti molar ratios can increase the areal density of the corresponding TiO2 nanorod arrays and improve the charge separation in the interface of the TiO2/perovskite. The Y-doping TiO2 nanorod array perovskite solar cells with the Y/Ti molar ratio of 3% exhibited a photoelectric conversion efficiency (PCE) of 18.11% along with an open-circuit voltage (Voc) of 1.06 V, short-circuit photocurrent density (Jsc) of 22.50 mA cm-2 and fill factor (FF) of 76.16%, while the un-doping TiO2 nanorod array perovskite solar cells gave a PCE of 16.42% along with Voc of 1.04 V, Jsc of 21.66 mA cm-2 and FF of 72.97%.
Two-dimensional photonic crystal arrays for polymer:fullerene solar cells.
Nam, Sungho; Han, Jiyoung; Do, Young Rag; Kim, Hwajeong; Yim, Sanggyu; Kim, Youngkyoo
2011-11-18
We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (J(SC)) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower J(SC) value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.
NASA Astrophysics Data System (ADS)
Chonsut, T.; Kayunkid, N.; Rahong, S.; Rangkasikorn, A.; Wirunchit, S.; Kaewprajak, A.; Kumnorkaew, P.; Nukeaw, J.
2017-09-01
Polymer solar cells is one of the promising technologies that gain tremendous attentions in the field of renewable energy. Optimization of thickness for each layer is an important factor determining the efficiency of the solar cells. In this work, the optimum thickness of Poly(3,4-ethylenedioxythione): poly(styrenesulfonate) (PEDOT:PSS), a famous polymer widely used as hole transporting layer in polymer solar cells, is determined through the analyzing of device’s photovoltaic parameters, e.g. short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF) as well as power conversion efficiency (PCE). The solar cells were prepared with multilayer of ITO/PEDOT:PSS/PCDTBT:PC70BM/TiOx/Al by rapid convective deposition. In such preparation technique, the thickness of the thin film is controlled by the deposition speed. The faster deposition speed is used, the thicker film is obtained. Furthermore, double layer deposition of PEDOT:PSS was introduced as an approach to improve solar cell efficiency. The results obviously reveal that, with the increase of PEDOT:PSS thickness, the increments of Jsc and FF play the important role to improve PCE from 3.21% to 4.03%. Interestingly, using double layer deposition of PEDOT:PSS shows the ability to enhance the performance of the solar cells to 6.12% under simulated AM 1.5G illumination of 100 mW/cm2.
NASA Astrophysics Data System (ADS)
Leyrer, Julio; Hunter, Renato; Rubilar, Monica; Pavez, Boris; Morales, Eduardo; Torres, Simonet
2016-10-01
The mini modules of dye-sensitized solar cells (DSSCs) were investigated for their conversion efficiency using anthocyanin-enriched extracts from maqui berry, which to date has never been tested in a DSSC. Anthocyanins are a group of red, purple, violet and blue water-soluble polyphenolic pigments widely found in berry fruits. Maqui berries are a particularly rich source. The aqueous extract concentrations of maqui fruit were tested at 750 and 1500 mg of anthocyanin/L. The immersion time to produce sensitized TiO2 film was 8 h. According to the experimental results, the conversion efficiency of the DSSC prepared with 750 mg of anthocyanin/L was 0.14%, with an open-circuit voltage (VOC) of 0.43 V, a short-circuit current density (JSC) of 0.38 mA/cm2, and a fill factor (FF) of 0.450. The conversion efficiency attained with 1500 mg of anthocyanin/L was 0.19%, with (VOC) of 0.45 V, (JSC) of 0.44 mA/cm2 and FF of 0.55. Therefore, a higher concentration brought about a higher photosensitized performance. The maqui extracts were successfully dye sensitized over a layer of TiO2 nanoparticles, providing useful information for further studies related to the use of natural pigments as sensitizers for solar cells.
NASA Astrophysics Data System (ADS)
Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan
2016-04-01
In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.
Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells.
Li, Jiangwei; Niu, Guangda; Li, Wenzhe; Cao, Kun; Wang, Mingkui; Wang, Liduo
2016-08-07
Perovskite solar cells (PSCs) with hole-conductor-free mesoscopic architecture have shown superb stability and great potential in practical application. The printable carbon counter electrodes take full responsibility of extracting holes from the active CH3NH3PbI3 absorbers. However, an in depth study of the CH3NH3PbI3/C interface properties, such as the structural formation process and the effect of interfacial conditions on hole extraction, is still lacking. Herein, we present, for the first time, an insight into the spatial confinement induced CH3NH3PbI3/C interface formation by in situ photoluminescence observations during the crystallization process of CH3NH3PbI3. The derived reaction kinetics allows a quantitative description of the perovskite formation process. In addition, we found that the interfacial contact between carbon and perovskite was dominant for hole extraction efficiency and associated with the photovoltaic parameter of short circuit current density (JSC). Consequently, we conducted a solvent vapor assisted process of PbI2 diffusion to carefully control the CH3NH3PbI3/C interface with less unreacted PbI2 barrier. The improvement of interface conditions thereby contributes to a high hole extraction proved by the charge extraction resistance and PL lifetime change, resulting in the increased JSC valve.
NASA Astrophysics Data System (ADS)
Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui
2013-01-01
P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.
Modification of back electrode with WO3 layer and its effect on Cu2ZnSn(S,Se)4-based solar cells
NASA Astrophysics Data System (ADS)
Shi, Kun; Yao, Bin; Li, Yongfeng; Ding, Zhanhui; Deng, Rui; Sui, Yingrui; Zhang, Zhenzhong; Zhao, Haifeng; Zhang, Ligong
2018-01-01
In the present work, we designed and prepared Cu2ZnSn(S,Se)4 (CZTSSe)-based solar cells with a new structure of Al/ITO/ZnO/CdS/CZTSSe/WO3/Mo/SLG (S1-5) by depositing about 5-nm-thick WO3 layer with monoclinic structure on the back electrode Mo/SLG of solar cells with the convention structure of Al/ITO/ZnO/CdS/CZTSSe/Mo/SLG (S2), with the aim of improving the power conversion efficiency (PCE) of CZTSSe-based solar cells. It is found that the average open circuit voltage (Voc) increases from 346.7 mV of the S2 cells to 400.9 mV of the S1-5 cells, the average short circuit current density (Jsc) from 26.4 mA/cm2 to 32.1 mA/cm2 and the filling factor (FF) from 33.8 to 40.0 by addition of the WO3 layer, which results in that the average PCE increases from 3.10% of the S2 cells to 5.14% of the S1-5 cells. The average increasing percent of the PCE is 65.8%. The increase in Voc, Jsc and FF of the S1-5 cells compared to the S2 cells is attributed to that the WO3 layer prevent the Se coming from Se ambient and CZTSSe to react with the Mo to form MoSe2 and other second phases, which makes the shunt resistance (Rsh) of the S1-5 increase and the series resistance (Rs) and reverse saturation current density (J0) decrease compared to the S2 cells. The decreased J0 is main factor of improvement of the PCE. A mechanism of influence of the Rsh, Rs and J0 on the PCE is also revealed. Our result demonstrates that addition of the WO3 layer with a reasonable thickness can be a promising technical route of improving the PCE of the CZTSSe-based solar cell.
An, Qiaoshi; Zhang, Fujun; Li, Lingliang; Wang, Jian; Sun, Qianqian; Zhang, Jian; Tang, Weihua; Deng, Zhenbo
2015-02-18
We present a smart strategy to simultaneously increase the short circuit current (Jsc), the open circuit voltage (Voc), and the fill factor (FF) of polymer solar cells (PSCs). A two-dimensional conjugated small molecule photovoltaic material (SMPV1), as the second electron donor, was doped into the blend system of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl (PC71BM) to form ternary PSCs. The ternary PSCs with 5 wt % SMPV1 doping ratio in donors achieve 4.06% champion power conversion efficiency (PCE), corresponding to about 21.2% enhancement compared with the 3.35% PCE of P3HT:PC71BM-based PSCs. The underlying mechanism on performance improvement of ternary PSCs can be summarized as (i) harvesting more photons in the longer wavelength region to increase Jsc; (ii) obtaining the lower mixed highest occupied molecular orbital (HOMO) energy level by incorporating SMPV1 to increase Voc; (iii) forming the better charge carrier transport channels through the cascade energy level structure and optimizing phase separation of donor/acceptor materials to increase Jsc and FF.
Ultra Pure Water Cleaning Baseline Study on NASA JSC Astromaterial Curation Gloveboxes
NASA Technical Reports Server (NTRS)
Calaway, Michael J.; Burkett, P. J.; Allton, J. H.; Allen, C. C.
2013-01-01
Future sample return missions will require strict protocols and procedures for reducing inorganic and organic contamination in isolation containment systems. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs [1, 2]. As part of this in-depth organic study, the current curatorial technical support procedure (TSP) 23 was used for cleaning the gloveboxes with ultra pure water (UPW) [3-5]. Particle counts and identification were obtained that could be used as a benchmark for future mission designs that require glovebox decontamination. The UPW baseline study demonstrates that TSP 23 works well for gloveboxes that have been thoroughly degreased. However, TSP 23 could be augmented to provide even better glovebox decontamination. JSC 03243 could be used as a starting point for further investigating optimal cleaning techniques and procedures. DuPont Vertrel XF or other chemical substitutes to replace Freon- 113, mechanical scrubbing, and newer technology could be used to enhance glovebox cleanliness in addition to high purity UPW final rinsing. Future sample return missions will significantly benefit from further cleaning studies to reduce inorganic and organic contamination.
18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.
Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong
2016-05-11
We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.
Islam, Ashraful; Akhtaruzzaman, Md; Chowdhury, Towhid H; Qin, Chuanjiang; Han, Liyuan; Bedja, Idriss M; Stalder, Romain; Schanze, Kirk S; Reynolds, John R
2016-02-01
Dye-sensitized solar cells (DSSCs) based on a donor-acceptor-donor oligothienylene dye containing benzothiadiazole (T4BTD-A) were cosensitized with dyes containing cis-configured squaraine rings (HSQ3 and HSQ4). The cosensitized dyes showed incident monochromatic photon-to-current conversion efficiency (IPCE) greater than 70% in the 300-850 nm wavelength region. The individual overall conversion efficiencies of the sensitizers T4BTD-A, HSQ3, and HSQ4 were 6.4%, 4.8%, and 5.8%, respectively. Improved power conversion efficiencies of 7.0% and 7.7% were observed when T4BTD-A was cosensitized with HSQ3 and HSQ4, respectively, thanks to a significant increase in current density (JSC) for the cosensitized DSSCs. Intensity-modulated photovoltage spectroscopy results showed a longer lifetime for cosensitized T4BTD-A+HSQ3 and T4BTD-A+HSQ4 compared to that of HSQ3 and HSQ4, respectively.
An enhanced mangiferaindica for dye sensitized solar cell application
NASA Astrophysics Data System (ADS)
Uno, U. E.; Emetere, M. E.; Fadipe, L. A.; Oluranti, Jonathan
2016-02-01
Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO2 conductive. The DSSC fabricated consist of 2.25 cm2 active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10-2, current density (Jsc)=4.07×10-2, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.
High-performance, lattice-mismatched InGaAs/InP monolithic interconnected modules (MIMs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, Navid S.; Wilt, David M.; Hoffman, Richard W.
1999-03-01
High performance, lattice-mismatched p/n InGaAs/InP monolithic interconnected module (MIM) structures were developed for thermophotovoltaic (TPV) applications. A MIM device consists of several individual InGaAs photovoltaic (PV) cells series-connected on a single semi-insulating (S.I.) InP substrate. Both interdigitated and conventional (i.e., non-interdigitated) MIMs were fabricated. The energy bandgap (Eg) for these devices was 0.60 eV. A compositionally step-graded InPAs buffer was used to accommodate a lattice mismatch of 1.1{percent} between the active InGaAs cell structure and the InP substrate. 1{times}1-cm, 15-cell, 0.60-eV MIMs demonstrated an open-circuit voltage (Voc) of 5.2 V (347 mV per cell) and a fill factor of 68.6{percent}more » at a short-circuit current density (Jsc) of 2.0 A/cm{sup 2}, under flashlamp testing. The reverse saturation current density (Jo) was 1.6{times}10{sup {minus}6}&hthinsp;A/cm{sup 2}. Jo values as low as 4.1{times}10{sup {minus}7}&hthinsp;A/cm{sup 2} were also observed with a conventional planar cell geometry. {copyright} {ital 1999 American Institute of Physics.}« less
Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell.
Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee
2014-05-21
Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23mA/cm(2), a photovoltage (Voc) of 0.75V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%. Copyright © 2014 Elsevier B.V. All rights reserved.
Graphene-Based Transparent Electrodes for Dye Sensitized Solar Cells
NASA Astrophysics Data System (ADS)
Al-Rawashdeh, Nathir A. F.; Albiss, Borhan A.; Yousef, Mo'ath H. I.
2018-02-01
Several Zinc Oxide (ZnO) photo-anodes were prepared with different morphologies. For each morphology, two composites containing graphene oxide (GO) were prepared. ZnO sheet-flowers attained the highest efficiency among control samples, owing to the light diffraction that may be caused by such morphology. On the other hand, ZnO rods achieved lower performance than ZnO sheet-flowers, but higher than ZnO flowers, due to their porosity and structure, which may scatter light effectively. The effect of including GO in the photoanode matrix was studied and the results demonstrate a significant increase in short circuit current density (JSC). The addition of GO suggested an overall positive effect on cell performance, where samples of ZnO rods and Flowers had the most significant increase in their performance, due to the inhibition of charge recombination by GO.
NASA Astrophysics Data System (ADS)
Wang, Xiao-Feng; Xiang, Junfeng; Wang, Peng; Koyama, Yasushi; Yanagida, Shozo; Wada, Yuji; Hamada, Kazunori; Sasaki, Shin-ichi; Tamiaki, Hitoshi
2005-06-01
Titania-based Grätzel-type solar cells were fabricated by the use of a chlorophyll a derivative (methyl 3-carboxy-3-devinyl-pyropheophorobide a) as the dye sensitizer. A 10% each of carotenoids, including neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin with numbers of conjugated double bonds, n = 9-13, was added as a conjugated spacer in order to neutralize the dye radical cation and to block the reverse electron transfer. The short-circuit current density ( Jsc) and the solar energy-to-electricity conversion efficiency ( η) systematically increased, with increasing n, from the values of 10.1 mA cm -2 and 3.1% (with no carotenoid) up to 11.5 mA cm -2 and 4.0% (with spirilloxanthin, n = 13), i.e., an enhancement of ≈30%.
STS-134 Orbit 2 flight controllers on consoles
2011-05-17
JSC2011-E-045472 (17 May 2011) --- A scale model of HM Bark Endeavour, namesake for the space shuttle currently making its final flight, adorns a console in the space shuttle flight control room in Mission Control in Houston. This model was first displayed in 1992 in the old shuttle control room during STS-49, the inaugural flight of the shuttle Endeavour. It was built by Dan Willett of JSC's Information Resources Directorate. The original sailing ship Endeavour was commanded by Lt. James Cook on a scientific voyage to the South Pacific, Australia and New Zealand from 1768 to 1771. Photo credit: NASA
NASA Technical Reports Server (NTRS)
1988-01-01
The Johnson Space Center (JSC) document index is intended to provide a single source listing of all published JSC-numbered documents their authors, and the designated offices of prime responsibility (OPR's) by mail code at the time of publication. The index contains documents which have been received and processed by the JSC Technical Library as of January 13, 1988. Other JSC-numbered documents which are controlled but not available through the JSC Library are also listed.
2017-01-26
jsc2017e009669 (01/26/2017) --- Former NFL players sign autographs for Johnson Space Center (JSC) staff members as part of the JSC Super Bowl Tailgate event. The former NFL Prayers were invited to tour JSC as guests of the Center Director the week before the Super Bowl game. NASA Photographer: Lauren Harnett
Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo
2011-12-01
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.
2011-01-01
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs. PMID:27502653
InGaAs monolithic interconnected modules (MIM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.
1997-12-31
A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs withmore » an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.« less
Realizing Efficient Energy Harvesting from Organic Photovoltaic Cells
NASA Astrophysics Data System (ADS)
Zou, Yunlong
Organic photovoltaic cells (OPVs) are emerging field of research in renewable energy. The development of OPVs in recent years has made this technology viable for many niche applications. In order to realize widespread application however, the power conversion efficiency requires further improvement. The efficiency of an OPV depends on the short-circuit current density (JSC), open-circuit voltage (VOC) and fill factor (FF). For state-of-the-art devices, JSC is mostly optimized with the application of novel low-bandgap materials and a bulk heterojunction device architecture (internal quantum efficiency approaching 100%). The remaining limiting factors are the low VOC and FF. This work focuses on overcoming these bottlenecks for improved efficiency. Temperature dependent measurements of device performance are used to examine both charge transfer and exciton ionization process in OPVs. The results permit an improved understanding of the intrinsic limit for VOC in various device architectures and provide insight on device operation. Efforts have also been directed at engineering device architecture for optimized FF, realizing a very high efficiency of 8% for vapor deposited small molecule OPVs. With collaborators, new molecules with tailored desired energy levels are being designed for further improvements in efficiency. A new type of hybrid organic-inorganic perovskite material is also included in this study. By addressing processing issues and anomalous hysteresis effects, a very high efficiency of 19.1% is achieved. Moving forward, topics including engineering film crystallinity, exploring tandem architectures and understanding degradation mechanisms will further push OPVs toward broad commercialization.
Technology transfer and evaluation for Space Station telerobotics
NASA Technical Reports Server (NTRS)
Price, Charles R.; Stokes, Lebarian; Diftler, Myron A.
1994-01-01
The international space station (SS) must take advantage of advanced telerobotics in order to maximize productivity and safety and to reduce maintenance costs. The Automation and Robotics Division at the NASA Lyndon B. Johnson Space Center (JSC) has designed, developed, and constructed the Automated Robotics Maintenance of Space Station (ARMSS) facility for the purpose of transferring and evaluating robotic technology that will reduce SS operation costs. Additionally, JSC had developed a process for expediting the transfer of technology from NASA research centers and evaluating these technologies in SS applications. Software and hardware system developed at the research centers and NASA sponsored universities are currently being transferred to JSC and integrated into the ARMSS for flight crew personnel testing. These technologies will be assessed relative to the SS baseline, and, after refinements, those technologies that provide significant performance improvements will be recommended as upgrades to the SS. Proximity sensors, vision algorithms, and manipulator controllers are among the systems scheduled for evaluation.
NASA Astrophysics Data System (ADS)
Han, Ming-Liang; Zhu, Yi-Zhou; Liu, Shuang; Liu, Qing-Long; Ye, Dan; Wang, Bing; Zheng, Jian-Yu
2018-05-01
Incorporating alkyl chain decorated dithienopyrrole π-spacer with phenothiazine donor has proven to be efficient strategy for constructing novel dyes, which can achieve both large short-circuit current (Jsc) and high open-circuit voltage (Voc) in dye-sensitized solar cells (DSSCs). To promote the light harvesting capability, auxiliary acceptors including benzotriazole (BTZ), benzothiadiazole (BTD), and quinoxaline (Qu) have been inserted into the skeleton of dyes, and much improved Jsc have been realized. Meantime, the rational design of alkyl chains endows dyes JY53 and JY55 a good shielding effect from the penetration of electrolyte, guaranteeing a high Voc (over 810 mV) through retarding unwanted interfacial charge recombination. As a result, with the assistance of introduced auxiliary acceptors and alkyl chains, the photovoltaic performance of devices have been significantly improved, and dye JY55 has achieved an excellent power conversion efficiency (PCE) of 10.06% with Jsc of 19.18 mA cm-2, Voc of 829 mV, and FF of 0.63 under AM 1.5 G irradiation.
NASA Astrophysics Data System (ADS)
Pandey, A. K.; Ahmad, Muhammad Shakeel; Alizadeh, Mahdi; Rahim, Nasrudin Abd
2018-07-01
The combined effect of dual sensitization and hetero-junction symmetry has been investigated on the performance of TiO2 based dye sensitized solar cell. CdTe nanoparticles have been introduced in TiO2 matrix to function as sensitizer as well as act as hetero-junction between D719 dye and TiO2 nanoarchitecture. Four concentrations of CdTe i.e. 0.5 wt%, 2 wt%, 5 wt% and 8 wt% have been investigated. Morphological and compositional studies have been conducted using scanning electron microscope (SEM) and X-ray diffraction (XRD) respectively. Light absorption characteristics have been investigated by employing Uv-vis spectroscopy and the overall performance has been studied using solar simulator and electrochemical impedance spectroscopy (EIS). Performance has been found to be increased with the addition of CdTe due to high electron density and reduction in recombination reactions. An increase of 41.73% in incident photo conversion efficiency (IPCE) and 75.57% in short circuit current density (Jsc) have been recorded for the specimens containing 5 wt% CdTe compared to bare TiO2 based DSSCs. Further addition of CdTe leads to reduction in overall performance of DSSCs.
MMOD Protection and Degradation Effects for Thermal Control Systems
NASA Technical Reports Server (NTRS)
Christiansen, Eric
2014-01-01
Micrometeoroid and orbital debris (MMOD) environment overview Hypervelocity impact effects & MMOD shielding MMOD risk assessment process Requirements & protection techniques - ISS - Shuttle - Orion/Commercial Crew Vehicles MMOD effects on spacecraft systems & improving MMOD protection - Radiators Coatings - Thermal protection system (TPS) for atmospheric entry vehicles Coatings - Windows - Solar arrays - Solar array masts - EVA Handrails - Thermal Blankets Orbital Debris provided by JSC & is the predominate threat in low Earth orbit - ORDEM 3.0 is latest model (released December 2013) - http://orbitaldebris.jsc.nasa.gov/ - Man-made objects in orbit about Earth impacting up to 16 km/s average 9-10 km/s for ISS orbit - High-density debris (steel) is major issue Meteoroid model provided by MSFC - MEM-R2 is latest release - http://www.nasa.gov/offices/meo/home/index.html - Natural particles in orbit about sun Mg-silicates, Ni-Fe, others - Meteoroid environment (MEM): 11-72 km/s Average 22-23 km/s.
Electrical Arc Ignition Testing for Constellation Program
NASA Technical Reports Server (NTRS)
Sparks, Kyle; Gallus, Timothy; Smith, Sarah
2009-01-01
NASA Johnson Space Center (JSC) Materials and Processes Branch requested that NASA JSC White Sands Test Facility (WSTF) perform testing for the Constellation Program to evaluate the hazard of electrical arc ignition of materials that could be in close proximity to batteries. Specifically, WSTF was requested to perform wire-break electrical arc tests to determine the current threshold for ignition of generic cotton woven fabric samples with a fixed voltage of 3.7 V, a common voltage for hand-held electrical devices. The wire-break test was developed during a previous test program to evaluate the hazard of electrical arc ignition inside the Extravehicular Mobility Unit [1].
Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes
NASA Technical Reports Server (NTRS)
Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.
2013-01-01
Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.
Analysis Results for Lunar Soil Simulant Using a Portable X-Ray Fluorescence Analyzer
NASA Technical Reports Server (NTRS)
Boothe, R. E.
2006-01-01
Lunar soil will potentially be used for oxygen generation, water generation, and as filler for building blocks during habitation missions on the Moon. NASA s in situ fabrication and repair program is evaluating portable technologies that can assess the chemistry of lunar soil and lunar soil simulants. This Technical Memorandum summarizes the results of the JSC 1 lunar soil simulant analysis using the TRACeR III IV handheld x-ray fluorescence analyzer, manufactured by KeyMaster Technologies, Inc. The focus of the evaluation was to determine how well the current instrument configuration would detect and quantify the components of JSC-1.
2017-01-26
jsc2017e009777 (01/26/2017) --- Former NFL player Kevin Williams (Vikings, Seahawks, Saints) enjoys the tour at the Johnson Space Center (JSC) while getting a hands on look in the NASA Space Shuttle cockpit. Kevin was invited with the other former NFL players to visit JSC as part of the JSC Super Bowl tailgate event. The former NFL players got a chance to visit Mission Control and well as many other areas in the Space Center. They also took time to sign autographs and give picture opportunities to the JSC Staff.
Polythiophenes Comprising Conjugated Pendants for Polymer Solar Cells: A Review
Wang, Hsing-Ju; Chen, Chih-Ping; Jeng, Ru-Jong
2014-01-01
Polythiophene (PT) is one of the widely used donor materials for solution-processable polymer solar cells (PSCs). Much progress in PT-based PSCs can be attributed to the design of novel PTs exhibiting intense and broad visible absorption with high charge carrier mobility to increase short-circuit current density (Jsc), along with low-lying highest occupied molecular orbital (HOMO) levels to achieve large open circuit voltage (Voc) values. A promising strategy to tailor the photophysical properties and energy levels via covalently attaching electron donor and acceptor pendants on PTs backbone has attracted much attention recently. The geometry, electron-donating capacity, and composition of conjugated pendants are supposed to be the crucial factors in adjusting the conformation, energy levels, and photovoltaic performance of PTs. This review will go over the most recent approaches that enable researchers to obtain in-depth information in the development of PTs comprising conjugated pendants for PSCs. PMID:28788575
Hernandez-Martinez, Angel Ramon; Estevez, Miriam; Vargas, Susana; Quintanilla, Fracisco; Rodriguez, Rogelio
2011-01-01
The performance of a new dye-sensitized solar cell (DSSC) based in a natural dye extracted from the Bougainvillea spectabilis' bracts, is reported. The performance of this solar cell was compared with cells prepared using extract of the Bougainvillea glabra and mixture of both extracts; in both cases the pigments were betalains, obtained from Reddish-purple extract. These dyes were purified to different extents and used for the construction of solar cells that were electrically characterized. The materials were characterized using FTIR and UV-Vis. Solar cells were assembled using TiO(2) thin film on indium tin oxide (ITO)-coated glass; a mesoporous film was sensitized with the Bougainvillea extracts. The obtained solar energy conversion efficiency was of 0.48% with a current density J(SC) of 2.29 mA/cm(2) using an irradiation of 100 mW/cm(2) at 25 °C.
Analysis of IRAS data for orbital debris
NASA Technical Reports Server (NTRS)
Anz-Meador, P. D.; Oro, D. M.; Kessler, D. J.; Pitts, D. E.
1986-01-01
The Infrared Astronomical Satellite (IRAS) was launched in 1983 for the purpose of surveying the sky in a broad area of the infrared portion of the spectrum. While the primary objects of interest of IRAS were stars and nebulae, other types of space-related objects could also be observed. These include comets, asteroids, and earth orbiting objects. Theoretical analysis indicates that IRAS could observe objects with a diameter of 1-mm at a range of 100-km and objects with a diameter of 1-cm at a range of 1000-km, while current ground-based observations of particles in low earth orbit are limited to objects larger than 1-cm. Thus, these data offer a unique opportunity to ascertain the number density of particles below the present observable limit. At NASA/JSC a preliminary analysis of an IRAS data set has been performed to detect and describe this population, and the results of this study are presented.
Comparison of photovoltaic properties of TiO2 electrodes prepared with nanoparticles and nanorods.
Nam, Sang-Hun; Ju, Dong-Woo; Boo, Jin-Hyo
2014-12-01
In this report, single crystalline rutile TiO2 nanoparticles and nanorods were synthesized via the hydrothermal method using titanium tetra-isopropoxide as a precursor then, these were coated on top of a fluorine-doped tin oxide (FTO) substrate by using a doctor blade and direct deposition, respectively. Consequently, TiO2 nanorods-based dye-sensitized solar cells (DSSC) exhibit a J(sc) of 3.37 mA/cm2, a V(oc) of 0.82 V and fill factor of 60.1% with an overall conversion efficiency of 1.66%. This result shows an increase of around 38% for current density and 35% for conversion efficiency. Also, with respect to the impedance data, TiO2 nanorods-based DSSCs had smaller semicircles than did the nanoparticles-based DSSCs. These results demonstrate that the nanorod structure can have fast electron transport and reduced charge recombination.
NASA Astrophysics Data System (ADS)
Zhang, Xianghua; Korolkov, Ilia; Fan, Bo; Cathelinaud, Michel; Ma, Hongli; Adam, Jean-Luc; Merdrignac, Odile; Calvez, Laurent; Lhermite, Hervé; Brizoual, Laurent Le; Pasquinelli, Marcel; Simon, Jean-Jacques
2018-03-01
In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2-Sb2Se3-CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.
Design of an ammonia two-phase Prototype Thermal Bus for Space Station
NASA Technical Reports Server (NTRS)
Brown, Richard F.; Gustafson, Eric; Parish, Richard
1987-01-01
The feasibility of two-phase heat transport systems for use on Space Station was demonstrated by testing the Thermal Bus Technology Demonstrator (TBTD) as part of the Integrated Two-Phase System Test in NASA-JSC's Thermal Test Bed. Under contract to NASA-JSC, Grumman is currently developing the successor to the TBTD, the Prototype Thermal Bus System (TBS). The TBS design, which uses ammonia as the working fluid, is intended to achieve a higher fidelity level than the TBTD by incorporating both improvements based on TBTD testing and realistic design margins, and by addressing Space Station issues such as redundancy and maintenance. The TBS is currently being fabricated, with testing scheduled for late 1987/early 1988. This paper describes the TBS design which features fully redundant plumbing loops, five evaporators designed to represent different heat acquisition interfaces, 14 condensers which mate with either space radiators or facility heat exchangers, and several modular components.
NASA Astrophysics Data System (ADS)
da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.
2011-08-01
We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.
An enhanced mangiferaindica for dye sensitized solar cell application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uno, U. E., E-mail: moses.emetere@covenantuniversity.edu.ng; Emetere, M. E., E-mail: uno-essang@yahoo.co.uk; Fadipe, L. A.
Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO{sub 2} conductive. The DSSC fabricated consist of 2.25 cm{sup 2} active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filledmore » with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10{sup −2}, current density (Jsc)=4.07×10{sup −2}, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.« less
NASA Astrophysics Data System (ADS)
Reddy, Gachumale Saritha; Ramkumar, Sekar; Asiri, Abdullah M.; Anandan, Sambandam
2015-06-01
Two new bi-anchoring organic sensitizers of type D-(π-A)2 comprising the identical π-spacer (thiophene-2-acetonitrile) and electron acceptor (malonic acid) but different aryl amine as electron donors (diphenylamine and carbazole) were synthesized, characterized and fabricated metal free dye-sensitized solar cell devices. The intra molecular charge transfer property and electrochemical property of these dyes were investigated by molecular absorption, emission, cyclic voltammetric experiments and in addition, quantum chemical calculation studies were performed to provide sufficient driving force for the electron injection into the conduction band of TiO2 which leads to efficient charge collection. Among the fabricated devices, carbazole based device exhibits high current conversion efficiency (η = 4.7%) with a short circuit current density (JSC) 15.3 mA/cm2, an open circuit photo voltage (VOC) of 0.59 V and a fill factor of 0.44 under AM 1.5 illumination (85 mW/cm2) compared to diphenylamine based device.
2017-01-26
jsc2017e009755 (01/26/2017) --- Former NFL player Sammy Davis (Chargers, 49ers, Buccaneers) checks out a NASA Spacesuit while on tour at the Johnson Space Center (JSC) as part of JSC's Super Bowl Tailgate event the week before the Super Bowl game. NASA PHOTOGRAPHER: Lauren Harnett.
Pieces of Other Worlds - Extraterrestrial Samples for Education and Public Outreach
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2010-01-01
During the Year of the Solar System spacecraft from NASA and our international partners will encounter two comets; orbit the asteroid Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories, and their continued study provides incredibly valuable "ground truth" to complement space exploration missions. Extensive information about these unique materials, as well as actual lunar samples and meteorites, are available for display and education. The Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. At the current time JSC curates six types of extraterrestrial samples: (1) Moon rocks and soils collected by the Apollo astronauts (2) Meteorites collected on US expeditions to Antarctica (including rocks from the Moon, Mars, and many asteroids including Vesta) (3) "Cosmic dust" (asteroid and comet particles) collected by high-altitude aircraft (4) Solar wind atoms collected by the Genesis spacecraft (5) Comet particles collected by the Stardust spacecraft (6) Interstellar dust particles collected by the Stardust spacecraft These rocks, soils, dust particles, and atoms continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. Mr. Parker will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples and sets of twelve thin sections of meteorites are available for short-term loan from JSC Curation. The thin sections are designed for use in college and university courses where petrographic microscopes are available for viewing. Requestors should contact the Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov
Geopolymers from lunar and Martian soil simulants
NASA Astrophysics Data System (ADS)
Alexiadis, Alessio; Alberini, Federico; Meyer, Marit E.
2017-01-01
This work discusses the geopolymerization of lunar dust simulant JSC LUNAR-1A and Martian dust simulant JSC MARS-1A. The geopolymerization of JSC LUNAR-1A occurs easily and produces a hard, rock-like, material. The geopolymerization of JSC MARS-1A requires milling to reduce the particle size. Tests were carried out to measure, for both JSC LUNAR-1A and JSC MARS-1A geopolymers, the maximum compressive and flexural strengths. In the case of the lunar simulant, these are higher than those of conventional cements. In the case of the Martian simulant, they are close to those of common building bricks.
Engineering directorate technical facilities catalog
NASA Technical Reports Server (NTRS)
Maloy, Joseph E.
1993-01-01
The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).
Novel energy relay dyes for high efficiency dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Rahman, Md. Mahbubur; Ko, Min Jae; Lee, Jae-Joon
2015-02-01
4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively.4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively. Electronic supplementary information (ESI) available: Details of the materials and instrumentation, device fabrication, measurement and calculations of the quantum yield (Qd), calculations of the Förster radius (R0), optimization of the ERDs mixed with electrolyte according to Type-A strategy; normalized absorption profiles of the N3, Ru505, and Z907 dyes and the emission profiles of DAPI and H33342; J-V characteristics of ERD-incorporated DSSCs sensitized with N3, Ru505, and Z907 (Type-A strategy). See DOI: 10.1039/c4nr06645f
NASA Astrophysics Data System (ADS)
Li, Guang; Chen, Xiaoshuang; Gao, Guandao
2014-02-01
In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm-2, Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures.In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm-2, Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06093d
2017-01-26
jsc2017e009735 (01/26/2017) --- Former NFL players on tour of the Johnson Space Center (JSC) as part of the Centers Super Bowl tailgate event gathered together in front of JSC's Mission Control. The former players toured JSC in the week before the Super Bowl game. Kneeling front left: Kerry Henderson (NY Jets), Joe Wesley (49ers, Jaguars), First standing row, left: Ronald Humphrey (IN Colts), James Williams (Saints, Jag, 49ers, Browns), Emanuel McNeil (NY Jets), Sammy Davis (Chargers, 49ers, Buccaneers), Daryl Gaines (KC Chiefs, Cris Calloway (Giants, Steelers, Falcons, Patriots), Lemanual Stinson (Bears & Falcons). Back row left: Ginger Kerrrick (JSC Staff), Jermaine Fazonde (Chargers), Michael Holmes (49ers), Kevin Williams (Vikings, Seahawks, Saints). NASA PHOTOGRAPHER: Lauren Harnett
Single wall penetration equations
NASA Technical Reports Server (NTRS)
Hayashida, K. B.; Robinson, J. H.
1991-01-01
Five single plate penetration equations are compared for accuracy and effectiveness. These five equations are two well-known equations (Fish-Summers and Schmidt-Holsapple), two equations developed by the Apollo project (Rockwell and Johnson Space Center (JSC), and one recently revised from JSC (Cour-Palais). They were derived from test results, with velocities ranging up to 8 km/s. Microsoft Excel software was used to construct a spreadsheet to calculate the diameters and masses of projectiles for various velocities, varying the material properties of both projectile and target for the five single plate penetration equations. The results were plotted on diameter versus velocity graphs for ballistic and spallation limits using Cricket Graph software, for velocities ranging from 2 to 15 km/s defined for the orbital debris. First, these equations were compared to each other, then each equation was compared with various aluminum projectile densities. Finally, these equations were compared with test results performed at JSC for the Marshall Space Flight Center. These equations predict a wide variety of projectile diameters at a given velocity. Thus, it is very difficult to choose the 'right' prediction equation. The thickness of a single plate could have a large variation by choosing a different penetration equation. Even though all five equations are empirically developed with various materials, especially for aluminum alloys, one cannot be confident in the shield design with the predictions obtained by the penetration equations without verifying by tests.
Lunar Simulants: JSC-1 is Gone; The Need for New Standardized Root Simulants
NASA Technical Reports Server (NTRS)
Carter, James L.; McKay, David S.; Taylor, Lawrence A.; Carrier, W. David, III
2004-01-01
A workshop was held in 1991 to evaluate the status of simulated lunar regolith material and to make recommendations on future requirements and production of such material. As an outgrowth of that workshop, a group centered at Johnson Space Center (JSC) teamed with James Carter of the University of Texas at Dallas and Walter Boles of Texas A&M University to produce and distribute a new standardized lunar regolith simulant termed JSC-1. Carter supervised the field collection, shipping, processing, and initial packaging and transportation of JSC-1. Boles stored and distributed JSC-1. About 25 tons were created and distributed to the lunar science and engineer community; none is left for distribution. JSC-1 served an important role in concepts and designs for lunar base and lunar materials processing. Its chemical and physical properties were described by McKay et al., with its geotechnical properties described by Klosky et al.. While other lunar regolith simulants were produced before JSC-1, they were not standardized, and results from tests performed on them were not necessarily equivalent to test results performed on JSC-1. JSC-1 was designed to be chemically, mineralogically, and texturally similar to a mature lunar mare regolith (low titanium). The glass-rich character of JSC-1 (approx. 50%) produced quite different properties compared to other simulants that were made entirely of comminuted crystalline rock, but properties similar to lunar mare near surface regolith.
NASA Technical Reports Server (NTRS)
Brown, I. I.; Bryant, D.; Sarkisova, S.; Shen, G.; Garrison, D.; McKay, D. S.
2009-01-01
Of all extant environments, iron-depositing hot springs may constitute the most appropriate natural models (Pierson and Parenteau, 2000) for analysis of the ecophysiology of ancient cyanobacteria (CB) which may have emerged in association with hydrothermal activity (Brown et al., 2007) and elevated levels of environmental Fe (Rouxel et al., 2005). Elevated environmental Fe2+ posed a significant challenge to the first oxygenic phototrophs - CB - because reduced Fe2+ induces toxic Fenton reactions (Wiedenheft et al., 2005). Ancient CB could have also been stressed by occasional migrations from the Fe2+-rich Ocean to the basaltic land which was almost devoid of dissolved Fe2+. That is why the study of the adaptation reactions of siderophilic CB, which inhabit iron-depositing hot springs, to up and down shifts in levels of dissolved Fe may shed light on the paleophysiology of ancient oxygenic prokaryotes. Methods. Siderophilic CB (Brown et al., 2007) were cultivated in media with different concentrations of added Fe3+. In some cases basaltic rocks were used as a source of Fe and trace elements. The processes of Fe mineralization and rock dissolution were studied using TEM, SEM and EDS techniques. Fluorescence spectroscopy was used for checking chlorophyll-protein complexes. Results. It was found that five siderophilic isolates Chroogloeocystis siderophila, JSC-1, JSC-3, JSC-11 and JSC-12 precipitated Fe-bearing phases on the exopolymeric sheaths of their cells if [Fe3+] was approx. 400-600 M (high Fe). Same [Fe3+] was most optimal one for the cultures proliferation rate (Brown et al., 2005; Brown et al., 2007). Higher concentrations of Fe3+ repressed the growth of some siderophilic CB (Brown et al., 2005). No mineralized Fe3+ was observed on the sheath of freshwater isolates Synechocystis sp. PCC 6803 and Phormidium aa. Scanning TEM in conjunction with thin-window energy dispersive X-ray spectroscopy (EDS) revealed intracellular Fe-rich phases within all three isolates studied JSC-1, JSC-3 and JSC-11. The elemental composition of the Fe-rich precipitates indicates P, Fe, and O as the major elements with minor amounts of Al and Ca. It was also found that the PSI:PSII ratio is higher in JSC-1 and JSC-3 isolates than in CB without detectable ability to mineralize Fe. SEM-EDS studies of the interaction of siderophilic cyanobacteria with Fe-rich minerals and rocks revealed, for the first time, their ability to leach ilmenite, olivine, FeS, ZnS and ferrosilicates, perhaps because the cyanobacteria studied can secrete 2-oxo-glutarate and malate which possess chelating properties. The draft of Cyanobacterium JSC-1 is currently being completed. This will help to verify the molecular mechanisms of Fe mineralization and Fe-rich minerals by siderophilic CB. Conclusions. The results obtained suggest that colloidal Fe3+ is transported in CB cytoplasm most likely through ABC-type Fe3+ transport system (Braun et al., 2004). The prevalence of PSI components over PSII in some species of siderophilic CB may indirectly support the Y. Cohen s hypothesis that PSI in cyanobacteria can be involved in Fe2+ oxidation (Cohen, 1984; 1989). The ability of siderophilic CB to mineralize Fe within their cytoplasms could be a protective survival mechanism induced by high levels of [Fe2+] and UV radiation, while the ability to leach Fe-rich minerals could have supported the expansion of ancient CB onto basaltic land.
JSC Pharmacy Services for Remote Operations
NASA Technical Reports Server (NTRS)
Stoner, Paul S.; Bayuse, Tina
2005-01-01
The Johnson Space Center Pharmacy began operating in March of 2003. The pharmacy serves in two main capacities: to directly provide medications and services in support of the medical clinics at the Johnson Space Center, physician travel kits for NASA flight surgeon staff, and remote operations, such as the clinics in Devon Island, Star City and Moscow; and indirectly provide medications and services for the International Space Station and Space Shuttle medical kits. Process changes that occurred and continued to evolve in the advent of the installation of the new JSC Pharmacy, and the process of stocking medications for each of these aforementioned areas will be discussed. Methods: The incorporation of pharmacy involvement to provide services for remote operations and supplying medical kits was evaluated. The first step was to review the current processes and work the JSC Pharmacy into the existing system. The second step was to provide medications to these areas. Considerations for the timeline of expiring medications for shipment are reviewed with each request. The third step was the development of a process to provide accountability for the medications. Results: The JSC Pharmacy utilizes a pharmacy management system to document all medications leaving the pharmacy. Challenges inherent to providing medications to remote areas were encountered. A process has been designed to incorporate usage into the electronic medical record upon return of the information from these remote areas. This is an evolving program and several areas have been identified for further improvement.
JSC Metal Finishing Waste Minimization Methods
NASA Technical Reports Server (NTRS)
Sullivan, Erica
2003-01-01
THe paper discusses the following: Johnson Space Center (JSC) has achieved VPP Star status and is ISO 9001 compliant. The Structural Engineering Division in the Engineering Directorate is responsible for operating the metal finishing facility at JSC. The Engineering Directorate is responsible for $71.4 million of space flight hardware design, fabrication and testing. The JSC Metal Finishing Facility processes flight hardware to support the programs in particular schedule and mission critical flight hardware. The JSC Metal Finishing Facility is operated by Rothe Joint Venture. The Facility provides following processes: anodizing, alodining, passivation, and pickling. JSC Metal Finishing Facility completely rebuilt in 1998. Total cost of $366,000. All new tanks, electrical, plumbing, and ventilation installed. Designed to meet modern safety, environmental, and quality requirements. Designed to minimize contamination and provide the highest quality finishes.
NASA Technical Reports Server (NTRS)
McCubbin, Francis M.; Zeigler, Ryan A.
2017-01-01
The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for research, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.
NASA Technical Reports Server (NTRS)
McCubbin, F. M.; Evans, C. A.; Fries, M. D.; Harrington, A. D.; Regberg, A. B.; Snead, C. J.; Zeigler, R. A.
2017-01-01
The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10F JSC is charged with curation of all extraterrestrial material under NASA control, including future NASA missions. The Directive goes on to define Curation as including documentation, preservation, preparation, and distribution of samples for re-search, education, and public outreach. Here we briefly describe NASA's astromaterials collections and our ongoing efforts related to enhancing the utility of our current collections as well as our efforts to prepare for future sample return missions. We collectively refer to these efforts as advanced curation.
Automated space vehicle control for rendezvous proximity operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.
1988-01-01
Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.
Automated space vehicle control for rendezvous proximity operations
NASA Technical Reports Server (NTRS)
Lea, Robert N.
1988-01-01
Rendezvous during the unmanned space exploration missions, such as a Mars Rover/Sample Return will require a completely automatic system from liftoff to docking. A conceptual design of an automated rendezvous, proximity operations, and docking system is being implemented and validated at the Johnson Space Center (JSC). The emphasis is on the progress of the development and testing of a prototype system for control of the rendezvous vehicle during proximity operations that is currently being developed at JSC. Fuzzy sets are used to model the human capability of common sense reasoning in decision-making tasks and such models are integrated with the expert systems and engineering control system technology to create a system that performs comparably to a manned system.
STS-106 Planning Flight Control Team in WFCR, building 30S
2000-09-11
JSC2000-06242 (13 September 2000) --- Flight Director Kelly Beck (planning) is surrounded by the almost five dozen flight controllers who are supporting her shift during the current STS-106 mission. Beck is holding a large decal of the STS-106 insignia.
Cell Separations in Microgravity and Development of a Space Bioreactor
NASA Technical Reports Server (NTRS)
Morrison, D. R.
1985-01-01
A bioreactor optimized for operations in space is now being developed. The current research is focused on determining the optimum cell-bead ratios, medium content and proper maintenance conditions required to keep living cell specimens alive and healthy for the entire flight. The bioreactor development project has recently added a microprocessor/computer to the JSC prototype for control and data analysis. Appropriate new technology is being combined with the current bioreactor designs and tested to determine what specific features must be included in the fabrication of a bioreactor designed to operate for STS demonstration tests. Considerations include: (1) circulation and resupply of culture media; (2) sensors required to monitor temperature, cell growth, mass transport, and oxygen consumption; and (3) inflight control of shear stress on cells, gas transfer in microgravity, diffusion, and intracellular transport. These data and results from the JSC prototype bioreactor test will be used for the design and construction of a small space bioreactor for the Orbiter middeck.
Fill factor in organic solar cells can exceed the Shockley-Queisser limit
NASA Astrophysics Data System (ADS)
Trukhanov, Vasily A.; Bruevich, Vladimir V.; Paraschuk, Dmitry Yu.
2015-06-01
The ultimate efficiency of organic solar cells (OSC) is under active debate. The solar cell efficiency is calculated from the current-voltage characteristic as a product of the open-circuit voltage (VOC), short-circuit current (JSC), and the fill factor (FF). While the factors limiting VOC and JSC for OSC were extensively studied, the ultimate FF for OSC is scarcely explored. Using numerical drift-diffusion modeling, we have found that the FF in OSC can exceed the Shockley-Queisser limit (SQL) established for inorganic p-n junction solar cells. Comparing charge generation and recombination in organic donor-acceptor bilayer heterojunction and inorganic p-n junction, we show that such distinctive properties of OSC as interface charge generation and heterojunction facilitate high FF, but the necessary condition for FF exceeding the SQL in OSC is field-dependence of charge recombination at the donor-acceptor interface. These findings can serve as a guideline for further improvement of OSC.
PEDOT as a Flexible Organic Electrode for a Thin Film Acoustic Energy Harvester.
Kim, Younghoon; Na, Jongbeom; Park, Chihyun; Shin, Haijin; Kim, Eunkyoung
2015-08-05
An efficient thin film acoustic energy harvester was explored using flexible poly(3,4-ethylene dioxythiophene) (PEDOT) films as electrodes in an all-organic triboelectric generator (AO-TEG). A thin film AO-TEG structured as PEDOT/Kapton//PET/PEDOT was prepared by the solution casting polymerization(SCP) on the dielectric polymer films. As-prepared AO-TEG showed high flexibility and durability due to the strong adhesion between the electrodes and the dielectric polymer. The short-circuit current density (Jsc), open-circuit voltage (Voc), and maximum power density (Pw) reached 50 mA/m(2), 700 V, and 12.9 W/m(2) respectively. The output current density decreased with the increase in the electrode resistance (Re), but the energy loss in the organic electrodes was negligible. The AO-TEG could light up 180 LEDs instantaneously upon touching of the AO-TEG with a palm (∼120 N). With the flexible structure, the AO-TEG was worn as clothes and generated electricity to light LEDs upon regular human movement. Furthermore, the AO-TEG was applicable as a thin film acoustic energy harvester, which used music to generate electricity enough for powering of 5 LEDs. An AO-TEG with a PEDOT electrode (Re = 200 Ω) showed instantaneous peak-to-peak voltage generation of 11 V under a sound pressure level (SPL) of 90-100 dB. The harvested acoustic energy through the AO-TEG was 350 μJ from the 4 min playing of the same single song. This is the first demonstration of a flexible triboelectric generator (TEG) using an organic electrode for harvesting acoustic energy from ambient environment.
Increased short circuit current in an azafullerene-based organic solar cell.
Cambarau, Werther; Fritze, Urs F; Viterisi, Aurélien; Palomares, Emilio; von Delius, Max
2015-01-21
We report the synthesis of a solution-processable, dodecyloxyphenyl-substituted azafullerene monoadduct (DPC59N) and its application as electron acceptor in bulk heterojunction organic solar cells (BHJ-OSCs). Due to its relatively strong absorption of visible light, DPC59N outperforms PC60BM in respect to short circuit current (JSC) and external quantum efficiency (EQE) in blends with donor P3HT.
Sharath, B S; Mohankumar, B V; Somashekar, D
2014-03-01
Jatropha seed cake, a byproduct after biodiesel extraction, has several anti-nutrients and toxins. Solid-state fermentation was carried out for the detoxification of the Jatropha seed cake (JSC) using different fungal cultures. The reduction in the anti-nutritional components such as tannins, phytates, saponins, lectin and protease inhibitor, and phorbol esters on 6th, 9th, and 12th day of fermentation was analyzed. The phorbol ester content in the unfermented JSC was 0.83 mg/g, and the maximum degradation of phorbol esters to the extent of 75% was observed in the case of JSC fermented with Cunninghamella echinulata CJS-90. The phytate degradation in the fermented JSC was in the range of 65-96%. There was a gradual reduction of saponin content in the JSC from 6th to 12th day, and the reduction of saponin was in the range of 55-99% after solid-state fermentation. The trypsin inhibitor activity and lectin were 1,680 trypsin inhibitor units (TIU) per gram and 0.32 hemagglutinating unit in the unfermented JSC, respectively. Trypsin inhibitor activity and lectin could not be detected in JSC after 12th day of solid-state fermentation. Tannins accounted for 0.53% in unfermented JSC, and there was a marginal increase of tannins after solid-state fermentation. The results indicate that biological detoxification could be a promising method to reduce anti-nutritional compounds and toxins in the JSC.
SPACELAB (SL)- I (SIMULATION) - JSC
1983-09-23
S83-40845 (Dec 1983) --- Principal investigators and their ground support teams follow Spacelab 1 activities in the Science Monitoring Area of the Johnson Space Center's mission control center. NOTE: This area will be manned for the Spacelab Life Sciences-1 (SLS-1) mission, currently scheduled for May of 1991.
International Space Station Expedition 6 crew arrival at Ellington Field for crew return to JSC.
2003-05-21
JSC2003-E-37449 (21 May 2003) --- A Federal Aviation Administration Gulfstream IV aircraft, which carried the Expedition 6 crewmembers, is pictured at Ellington Field, near Johnson Space Center (JSC).
JSC officials in MCC Bldg 30 monitor STS-26 Discovery, OV-103, activity
1988-10-03
JSC officials, laughing, listen to crewmembers' commentary onboard Discovery, Orbiter Vehicle (OV) 103, during STS-26. In the Flight Control Room (FCR) of JSC's Mission Control Center (MCC) Bldg 30 and seated at the Mission Operations Directorate (MOD) console, MOD Director Eugene F. Kranz (foreground), wearing red, white and blue vest, smiles along with JSC Director Aaron Cohen and Flight Crew Operations Deputy Director Henry W. Hartsfield, Jr. (far right).
JSC Officials in MCC Bldg 30 monitor STS-26 Discovery, OV-103, activity
NASA Technical Reports Server (NTRS)
1988-01-01
JSC Officials, laughing, listen to crewmembers' commentary onboard Discovery, Orbiter Vehicle (OV) 103, during STS-26. In the Flight Control Room (FCR) of JSC's Mission Control Center (MCC) Bldg 30 and seated at the Mission Operations Directorate (MOD) console, MOD Director Eugene F. Kranz (foreground), wearing red, white and blue vest, smiles along with JSC Director Aaron Cohen and Flight Crew Operations Deputy Director Henry W. Hartsfield, Jr. (far right).
Next Generation Simulation Framework for Robotic and Human Space Missions
NASA Technical Reports Server (NTRS)
Cameron, Jonathan M.; Balaram, J.; Jain, Abhinandan; Kuo, Calvin; Lim, Christopher; Myint, Steven
2012-01-01
The Dartslab team at NASA's Jet Propulsion Laboratory (JPL) has a long history of developing physics-based simulations based on the Darts/Dshell simulation framework that have been used to simulate many planetary robotic missions, such as the Cassini spacecraft and the rovers that are currently driving on Mars. Recent collaboration efforts between the Dartslab team at JPL and the Mission Operations Directorate (MOD) at NASA Johnson Space Center (JSC) have led to significant enhancements to the Dartslab DSENDS (Dynamics Simulator for Entry, Descent and Surface landing) software framework. The new version of DSENDS is now being used for new planetary mission simulations at JPL. JSC is using DSENDS as the foundation for a suite of software known as COMPASS (Core Operations, Mission Planning, and Analysis Spacecraft Simulation) that is the basis for their new human space mission simulations and analysis. In this paper, we will describe the collaborative process with the JPL Dartslab and the JSC MOD team that resulted in the redesign and enhancement of the DSENDS software. We will outline the improvements in DSENDS that simplify creation of new high-fidelity robotic/spacecraft simulations. We will illustrate how DSENDS simulations are assembled and show results from several mission simulations.
Tsai, Jenn-Kai; Tu, Yu-Shin
2017-03-15
In this study, high energy conversion efficient dye-sensitized solar cells (DSSCs) were successfully fabricated by attaching a double anti-reflection (AR) layer, which is composed of a subwavelength moth-eye structured polymethyl methacrylate (PMMA) film and a polydimethylsiloxane (PDMS) film. An efficiency of up to 6.79% was achieved. The moth-eye structured PMMA film was fabricated by using an anodic aluminum oxide (AAO) template which is simple, low-cost and scalable. The nano-pattern of the AAO template was precisely reproduced onto the PMMA film. The photoanode was composed of Titanium dioxide (TiO₂) nanoparticles (NPs) with a diameter of 25 nm deposited on the fluorine-doped tin oxide (FTO) glass substrate and the sensitizer N3. The double AR layer was proved to effectively improve the short-circuit current density (JSC) and conversion efficiency from 14.77 to 15.79 mA/cm² and from 6.26% to 6.79%, respectively.
Design and modeling of an SJ infrared solar cell approaching upper limit of theoretical efficiency
NASA Astrophysics Data System (ADS)
Sahoo, G. S.; Mishra, G. P.
2018-01-01
Recent trends of photovoltaics account for the conversion efficiency limit making them more cost effective. To achieve this we have to leave the golden era of silicon cell and make a path towards III-V compound semiconductor groups to take advantages like bandgap engineering by alloying these compounds. In this work we have used a low bandgap GaSb material and designed a single junction (SJ) cell with a conversion efficiency of 32.98%. SILVACO ATLAS TCAD simulator has been used to simulate the proposed model using both Ray Tracing and Transfer Matrix Method (under 1 sun and 1000 sun of AM1.5G spectrum). A detailed analyses of photogeneration rate, spectral response, potential developed, external quantum efficiency (EQE), internal quantum efficiency (IQE), short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF) and conversion efficiency (η) are discussed. The obtained results are compared with previously reported SJ solar cell reports.
Hernandez-Martinez, Angel Ramon; Estevez, Miriam; Vargas, Susana; Quintanilla, Fracisco; Rodriguez, Rogelio
2011-01-01
The performance of a new dye-sensitized solar cell (DSSC) based in a natural dye extracted from the Bougainvillea spectabilis’ bracts, is reported. The performance of this solar cell was compared with cells prepared using extract of the Bougainvillea glabra and mixture of both extracts; in both cases the pigments were betalains, obtained from Reddish-purple extract. These dyes were purified to different extents and used for the construction of solar cells that were electrically characterized. The materials were characterized using FTIR and UV-Vis. Solar cells were assembled using TiO2 thin film on indium tin oxide (ITO)-coated glass; a mesoporous film was sensitized with the Bougainvillea extracts. The obtained solar energy conversion efficiency was of 0.48% with a current density JSC of 2.29 mA/cm2 using an irradiation of 100 mW/cm2 at 25 °C. PMID:22016609
Enhanced performance of perovskite solar cells by ultraviolet-ozone treatment of mesoporous TiO2
NASA Astrophysics Data System (ADS)
Wang, Zengze; Fang, Jin; Mi, Yang; Zhu, Xiaoyang; Ren, He; Liu, Xinfeng; Yan, Yong
2018-04-01
The performance of a semiconductor electronic or photonic device depends greatly on the properties of the interface. In a typical perovskite solar cell (PSC), the interface between electron transport layer (ETL) and perovskites is found to significantly influence the power conversion efficiency (PCE). Herein, Ultraviolet-ozone (UVO) treatment, a technique commonly used to clean a device substrate, is applied on ETL, specially, mesoporous/compact TiO2 layer. This treatment increases the conductivity of ETL and removes the residual organics at the surface. Consequently, an improved interface between mesoporous TiO2 and perovskite is achieved to enhance the performance of PSC. For example, the fill factor (FF) increases by ∼13%, the short-circuit current density (Jsc) and open-circuit voltage (Voc) increase by ∼2%, and the PCE finally enhances by ∼20% with 15 min of UVO treatment. With this method, the PCE of the best cell reaches to 20.43% under the illumination of AM 1.5 (100 mW cm-2) simulated sunlight.
A wireless transmission system powered by an enzyme biofuel cell implanted in an orange.
MacVittie, Kevin; Conlon, Tyler; Katz, Evgeny
2015-12-01
A biofuel cell composed of catalytic electrodes made of "buckypaper" modified with PQQ-dependent glucose dehydrogenase and FAD-dependent fructose dehydrogenase on the anode and with laccase on the cathode was used to activate a wireless information transmission system. The cathode/anode pair was implanted in orange pulp extracting power from its content (glucose and fructose in the juice). The open circuit voltage, Voc, short circuit current density, jsc, and maximum power produced by the biofuel cell, Pmax, were found as ca. 0.6 V, ca. 0.33 mA·cm(-2) and 670 μW, respectively. The voltage produced by the biofuel cell was amplified with an energy harvesting circuit and applied to a wireless transmitter. The present study continues the research line where different implantable biofuel cells are used for the activation of electronic devices. The study emphasizes the biosensor and environmental monitoring applications of implantable biofuel cells harvesting power from natural sources, rather than their biomedical use. Copyright © 2014 Elsevier B.V. All rights reserved.
Reliability analysis of InGaN/GaN multi-quantum-well solar cells under thermal stress
NASA Astrophysics Data System (ADS)
Huang, Xuanqi; Fu, Houqiang; Chen, Hong; Lu, Zhijian; Baranowski, Izak; Montes, Jossue; Yang, Tsung-Han; Gunning, Brendan P.; Koleske, Dan; Zhao, Yuji
2017-12-01
We investigate the thermal stability of InGaN solar cells under thermal stress at elevated temperatures from 400 °C to 500 °C. High Resolution X-Ray Diffraction analysis reveals that material quality of InGaN/GaN did not degrade after thermal stress. The external quantum efficiency characteristics of solar cells were well-maintained at all temperatures, which demonstrates the thermal robustness of InGaN materials. Analysis of current density-voltage (J-V) curves shows that the degradation of conversion efficiency of solar cells is mainly caused by the decrease in open-circuit voltage (Voc), while short-circuit current (Jsc) and fill factor remain almost constant. The decrease in Voc after thermal stress is attributed to the compromised metal contacts. Transmission line method results further confirmed that p-type contacts became Schottky-like after thermal stress. The Arrhenius model was employed to estimate the failure lifetime of InGaN solar cells at different temperatures. These results suggest that while InGaN solar cells have high thermal stability, the degradation in the metal contact could be the major limiting factor for these devices under high temperature operation.
Sharath, Belame S; Muthukumar, Sevva P; Somashekar, Devappa
2017-01-01
The presence of anti-nutrients and toxins like phorbol esters in Jatropha curcas seed cake (JSC) limits its application in feeds. This study was done to assess the potential of detoxified JSC as rat feed. The rats were fed a diet containing 0-5 and 10% of detoxified fermented JSC for four weeks. For the group I, only casein diet was used in rat feed as a negative control. For the group II, untreated JSC was used in rat feed as a positive control. For the group III, fermented JSC using Saccharomyces cerevisiae MTCC-36 was used. For the group IV, the fermented JSC treated with 65% ethanol to remove the residual toxic phorbol esters was used as rat feed. The rats fed with untreated JSC showed increased levels of serum liver enzymes as an indication of the onset of liver disease resulting in mortality. In this group, rats died in week 2, confirming that the cake is not safe as feed until it is processed. The rats fed with detoxified JSC with 5 and 10% level survived with no adverse effects, and the performance was on par with the control groups, although the body weight was slightly less compared to control. Therefore, it was concluded that the detoxified JSC might be the potential and alternative source of protein in the animal feedstuffs up to 10% level. There are recent patents also suggesting the use of alternative feed supplements in the animal feed applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
InGaAs monolithic interconnected modules (MIMs)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.
1997-12-31
A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. Also, the use of a BSR reduces the requirements imposed on a front surface interference filter and may lead to using only an anti-reflection coating. As a result, MIMs are exposed to themore » entire radiator output, and with increasing output power density. MIMs were fabricated with an active area of 0.9 x 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV modules demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. The near IR reflectance (2--4 {micro}m) for both lattice-matched and lattice-mismatched structures was measured to be in the range of 80--85%. Latest electrical and optical performance results for these MIMs is presented.« less
Effects of silicon nanowire morphology on optical properties and hybrid solar cell performance
NASA Astrophysics Data System (ADS)
Syu, Hong-Jhang; Shiu, Shu-Chia; Hung, Yung-Jr; Lee, San-Liang; Lin, Ching-Fuh
2012-10-01
Silicon nanowire (SiNW) arrays are widespread applied on hybrid photovoltaic devices because SiNW arrays can substitute the pyramid texture and anti-reflection coating due to its strong light trapping. Also, SiNWs can be prepared through a cost-efficient process of metal-assisted chemical etching. However, though longer SiNW arrays have lower reflectance, the top of long SiNWs aggregate together to make junction synthesis difficult for SiNW/organic hybrid solar cell. To control and analyze the effect of SiNW array morphology on hybrid solar cells, here we change the metal deposition condition for metal-assisted chemical etching to obtain different SiNW array morphologies. The experiment was separated to two groups, by depositing metal, say, Ag, before etching (BE) or during etching (DE). For group BE, Ag was deposited on n-type Si (n-Si) wafers by thermal evaporation; then etched by H2O2 and HF. For group DE, n-Si was etched by Ag+ and HF directly. Ag was deposited on n-Si during etching process. Afterwards, residual Ag and SiO2 were removed by HNO3 and buffered HF, successively; then Ti and Ag were evaporated on the bottom of Si to be a cathode. Finally, SiNWs were stuck on the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) that was spincoated on the ITO coated glass to form SiNW/organic heterojunction. The results show that group BE has reflectance lower than that in group DE in solar spectrum. However, group BE has smaller power conversion efficiency (PCE) of 8.65% and short-circuit current density (Jsc) of 24.94 mA/cm2 than group DE of PCE of 9.47% and Jsc of 26.81 mA/cm2.
NASA Astrophysics Data System (ADS)
Gray, Zachary R.
This thesis investigates ways to enhance the efficiency of thin film solar cells through the application of both novel nano-element array light trapping architectures and nickel oxide hole transport/electron blocking layers. Experimental results independently demonstrate a 22% enhancement in short circuit current density (JSC) resulting from a nano-element array light trapping architecture and a ˜23% enhancement in fill factor (FF) and ˜16% enhancement in open circuit voltage (VOC) resulting from a nickel oxide transport layer. In each case, the overall efficiency of the device employing the light trapping or transport layer was superior to that of the corresponding control device. Since the efficiency of a solar cell scales with the product of JSC, FF, and VOC, it follows that the results of this thesis suggest high performance thin film solar cells can be realized in the event light trapping architectures and transport layers can be simultaneously optimized. The realizations of these performance enhancements stem from extensive process optimization for numerous light trapping and transport layer fabrication approaches. These approaches were guided by numerical modeling techniques which will also be discussed. Key developments in this thesis include (1) the fabrication of nano-element topographies conducive to light trapping using various fabrication approaches, (2) the deposition of defect free nc-Si:H onto structured topographies by switching from SiH4 to SiF 4 PECVD gas chemistry, and (3) the development of the atomic layer deposition (ALD) growth conditions for NiO. Keywords: light trapping, nano-element array, hole transport layer, electron blocking layer, nickel oxide, nanocrystalline silicon, aluminum doped zinc oxide, atomic layer deposition, plasma enhanced chemical vapor deposition, electron beam lithography, ANSYS HFSS.
Leem, Jung Woo; Kim, Sehwan; Park, Chihyun; Kim, Eunkyoung; Yu, Jae Su
2015-04-01
We propose the biomimetic moth-eye nanoarchitectures as a novel plasmonic light-harvesting structure for further enhancing the solar-generated photocurrents in organic photovoltaics (OPVs). The full moth-eye nanoarchitectures are composed of two-dimensional hexagonal periodic grating arrays on surfaces of both the front zinc oxide (ZnO) and rear active layers, which are prepared by a simple and cost-effective soft imprint nanopatterning technique. For the 380 nm period ZnO and 650 nm period active gratings (i.e., ZnO(P380)/Active(P650)), the poly(3-hexylthiophene-2,5-diyl):indene-C60 bis-adduct (P3HT:ICBA)-based plasmonic OPVs exhibit an improvement of the absorption spectrum compared to the pristine OPVs over a broad wavelength range of 350-750 nm, showing absorption enhancement peaks at wavelengths of ∼370, 450, and 670 nm, respectively. This leads to a considerable increase of short-circuit current density (Jsc) from 10.9 to 13.32 mA/cm(2), showing a large Jsc enhancement percentage of ∼22.2%. As a result, the strongly improved power conversion efficiency (PCE) of 6.28% is obtained compared to that (i.e., PCE = 5.12%) of the pristine OPVs. For the angle-dependent light-absorption characteristics, the plasmonic OPVs with ZnO(P380)/Active(P650) have a better absorption performance than that of the pristine OPVs at incident angles of 20-70°. For optical absorption characteristics and near-field intensity distributions of plasmonic OPVs, theoretical analyses are also performed by a rigorous coupled-wave analysis method, which gives a similar tendency with the experimentally measured data.
STS-3 FLIGHT DAY 1 ACTIVITIES - MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC
1982-03-22
MOCR during Flight Day 1 of the STS-3 Mission. View: Thomas L. Moser, of the Structures and Mechanics Division, briefing Flight Director Eugene Kranz, Flight Operations, and Dr. Kraft, JSC Director. JSC, HOUSTON, TX
Safety Awareness & Communications Internship
NASA Technical Reports Server (NTRS)
Jefferson, Zanani
2015-01-01
The projects that I have worked on during my internships were updating the JSC Safety & Health Action Team JSAT Employee Guidebook, conducting a JSC mishap case study, preparing for JSC Today Close Call success stories, and assisting with event planning and awareness.
2008-02-21
JSC2008-E-014907 (21 Feb. 2008) --- Johnson Space Center's (JSC) director Michael L. Coats (right) greets astronauts Rex Walheim (left) and Leland Melvin, STS-122 mission specialists, at Ellington Field near JSC prior to the STS-122 crew return ceremonies.
JSC Design and Procedural Standards, JSC-STD-8080
NASA Technical Reports Server (NTRS)
Punch, Danny T.
2011-01-01
This document provides design and procedural requirements appropriate for inclusion in specifications for any human spaceflight program, project, spacecraft, system, or end item. The term "spacecraft" as used in the standards includes launch vehicles, orbital vehicles, non-terrestrial surface vehicles, and modules. The standards are developed and maintained as directed by Johnson Space Center (JSC) Policy Directive JPD 8080.2, JSC Design and Procedural Standards for Human Space Flight Equipment. The Design and Procedural Standards contained in this manual represent human spacecraft design and operational knowledge applicable to a wide range of spaceflight activities. These standards are imposed on JSC human spaceflight equipment through JPD 8080.2. Designers shall comply with all design standards applicable to their design effort.
STS-116 Flight Controllers on console during mission - WFCR - Orbit 2
2006-12-20
JSC2006-E-54711 (21 Dec. 2006) --- Overall view of the Shuttle Flight Control Room in the Johnson Space Center's Mission Control Center during the final deployment of some small satellites from Space Shuttle Discovery's cargo bay. On a screen in the front of the control room, a Department of Defense pico-satellite known as Atmospheric Neutral Density Experiment (ANDE) is released from the shuttle's payload bay by STS-116 crewmembers and viewed via live television on the ground.
Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC
NASA Technical Reports Server (NTRS)
1991-01-01
The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.
Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC
1991-10-09
The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.
NASA Astrophysics Data System (ADS)
Hayase, Shuzi; Hirotani, Daisuke; Moriya, Masahiro; Ogomi, Yuhei; Shen, Qing; Yoshino, Kenji; Toyoda, Taro
2016-09-01
In order to examine the interface structure of TiO2/perovskite layer, quartz crystal microbalance sensor (QCM) was used. On the QCM sensor, TiO2 layer was fabricated and the PbI2 solution in Dimethylformamide (DMF) was passed on the QCM sensor to estimate the adsorption density of the PbI2 on the titania2. The amount of PbI2 adsorption on TiO2 surface increased as the adsorption time and leveled off at a certain time. PbI2 still remained even after the solvent only (DMF) was passed on the TiO2 layer on QCM (namely rinsing with DMF), suggesting that the PbI2 was tightly bonded on the TiO2 surface. The bonding structure was found to be Ti-O-Pb linkage by XPS analysis. We concluded that the Ti-OH on the surface of TiO2 reacts with I-Pb-I to form Ti-O-Pb-I and HI (Fig.1 B). The surface trap density was measured by thermally stimulated current (TSC) method. Before the PbI2 passivation, the trap density of TiO2 was 1019 cm3. The trap density decreased to 1016/cm3 after the PbI2 passivation, suggesting that the TiO2 surface trap was passivated with I-Pb-I. The passivation density was tuned by the concentration of PbI2 in DMF, by which TiO2 layer was passivated. Perovskite solar cells were fabricated on the passivated TiO2 layer with various PbI2 passivation densities by one step process (mixture of PbI2 + MAI in DMF). It was found that Jsc increased with an increase in the Ti-O-Pb density. We concluded that the interface between TiO2 and perovskite layer has passivation structure consisting of Ti-O-Pb-I which decreases the trap density of the interfaces and supresses charge recombination. The effect of Cl anion on high efficiency is still controversial when perovskite layer is prepared by one step method from the mixture of MAI and PbCl2. It was found that adsorption density of PbCl2 on TiO2 surface was much higher than that of PbI2 from the experiment using QCM sensor. After the surface was washed with DMF, Cl and Pb were detected. These results suggest that the TiO2 surface was much more passivated by PbCl2 than by PbI2. This may explain partially the high efficiency when the perovskite layer was fabricated by one step process consisting of MAI and PbCl2 solution. We also observed that the crystal size increased with an increase in the amount of Cl anion which of course one of the explanation of the high efficiency. The interface of hole transport layer/perovskite layer, and between perovskite layer /perovskite layer (grain boundary) was passivated with organic amines. The passivation was also effective for increasing Voc and Jsc. This was explained by the results of transient absorption spectroscopy that the charge recombination time between hole transport payer/perovskite layer increased from 0.3 μsec to 60 μsec.
NASA Technical Reports Server (NTRS)
Erickson, Jon D.
1994-01-01
This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an objective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.
NASA Technical Reports Server (NTRS)
Erikson, Jon D.
1994-01-01
This paper presents an overview of the proposed Lyndon B. Johnson Space Center (JSC) precompetitive, dual-use technology investment project in robotics. New robotic technology in advanced robots, which can recognize and respond to their environments and to spoken human supervision so as to perform a variety of combined mobility and manipulation tasks in various sectors, is an obejective of this work. In the U.S. economy, such robots offer the benefits of improved global competitiveness in a critical industrial sector; improved productivity by the end users of these robots; a growing robotics industry that produces jobs and profits; lower cost health care delivery with quality improvements; and, as these 'intelligent' robots become acceptable throughout society, an increase in the standard of living for everyone. In space, such robots will provide improved safety, reliability, and productivity as Space Station evolves, and will enable human space exploration (by human/robot teams). The proposed effort consists of partnerships between manufacturers, universities, and JSC to develop working production prototypes of these robots by leveraging current development by both sides. Currently targeted applications are in the manufacturing, health care, services, and construction sectors of the U.S. economy and in the inspection, servicing, maintenance, and repair aspects of space exploration. But the focus is on the generic software architecture and standardized interfaces for custom modules tailored for the various applications allowing end users to customize a robot as PC users customize PC's. Production prototypes would be completed in 5 years under this proposal.
Flight Planning and Procedures
NASA Technical Reports Server (NTRS)
Rich, Allison C.
2016-01-01
The National Aeronautics and Space Administration (NASA) was founded in 1958 by President Eisenhower as a civilian lead United States federal agency designed to advance the science of space. Over the years, NASA has grown with a vision to "reach for new heights and reveal the unknown for the benefit of humankind" (About NASA). Mercury, Gemini, Apollo, Skylab, and Space Shuttle are just a few of the programs that NASA has led to advance our understanding of the universe. Each of the eleven main NASA space centers located across the United States plays a unique role in accomplishing that vision. Since 1961, Johnson Space Center (JSC) has led the effort for manned spaceflight missions. JSC has a mission to "provide and apply the preeminent capabilities to develop, operate, and integrate human exploration missions spanning commercial, academic, international, and US government partners" (Co-op Orientation). To do that, JSC is currently focused on two main programs, Orion and the International Space Station (ISS). Orion is the exploration vehicle that will take astronauts to Mars; a vessel comparable to the Apollo capsule. The International Space Station (ISS) is a space research facility designed to expand our knowledge of science in microgravity. The first piece of the ISS was launched in November of 1998 and has been in a continuous low earth orbit ever since. Recently, two sub-programs have been developed to resupply the ISS. The Commercial Cargo program is currently flying cargo and payloads to the ISS; the Commercial Crew program will begin flying astronauts to the ISS in a few years.
NASA Astrophysics Data System (ADS)
Rahman, Md. Mahbubur; Im, Sang Hyuk; Lee, Jae-Joon
2016-03-01
We demonstrated the localized surface plasmon resonance (LSPR) effect of Ni nanoparticles (NiNPs) on the performance of dye-sensitized solar cells (DSSCs). Our study revealed that NiNPs in a conventional I-/I3- electrolyte (NiNPs@I-/I3-) increased the net optical absorption of a N719 dye over a broad wavelength range by LSPR, and concurrently improved the power conversion efficiency (PCE) in DSSCs. At an optimized concentration of the NiNPs@I-/I3- electrolyte (1 mg mL-1), N719-sensitized DSSCs with a photoanode thickness of ca. 2, 5, and 10 μm, exhibited net PCEs of 2.32, 6.02, and 9.83%, respectively. These efficiencies were consistent with a net improvement of 43.2, 20.4, and 12.7%, respectively and were mainly attributed to a significant enhancement of the short circuit current density (Jsc) by the LSPR from the NiNPs. Similar effects were observed for cells sensitized by the N3, Ru505, and Z907 dyes. Furthermore, the NiNPs exhibited excellent resistance to corrosion from a conventional I-/I3- electrolyte over a period of 60 days.We demonstrated the localized surface plasmon resonance (LSPR) effect of Ni nanoparticles (NiNPs) on the performance of dye-sensitized solar cells (DSSCs). Our study revealed that NiNPs in a conventional I-/I3- electrolyte (NiNPs@I-/I3-) increased the net optical absorption of a N719 dye over a broad wavelength range by LSPR, and concurrently improved the power conversion efficiency (PCE) in DSSCs. At an optimized concentration of the NiNPs@I-/I3- electrolyte (1 mg mL-1), N719-sensitized DSSCs with a photoanode thickness of ca. 2, 5, and 10 μm, exhibited net PCEs of 2.32, 6.02, and 9.83%, respectively. These efficiencies were consistent with a net improvement of 43.2, 20.4, and 12.7%, respectively and were mainly attributed to a significant enhancement of the short circuit current density (Jsc) by the LSPR from the NiNPs. Similar effects were observed for cells sensitized by the N3, Ru505, and Z907 dyes. Furthermore, the NiNPs exhibited excellent resistance to corrosion from a conventional I-/I3- electrolyte over a period of 60 days. Electronic supplementary information (ESI) available: Details of the materials, optimization of the amount of NiNPs, and the stability of the devices. See DOI: 10.1039/c5nr08155f
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
Overall view of JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) during Flight Day 1 of STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
NASA Astrophysics Data System (ADS)
Dou, Yuanyao; Wu, Fang; Fang, Liang; Liu, Gaobin; Mao, Caiying; Wan, Kai; Zhou, Miao
2016-03-01
Ultralong and highly crystalline rhombohedral Bi2Te3 nanotubes were fabricated by a two-step solution phase reaction. A novel photoanode architecture has been fabricated by embedding 0-2.5 wt.% Bi2Te3 nanotubes into ZnO nanoparticles. The photocurrent density-voltage (J-V) characteristics reveal that the dye sensitized solar cells (DSSCs) with Bi2Te3/ZnO composite photoanode exhibit significantly enhanced photovoltaic performance. Notably, the DSSC incorporating 1.5 wt.% Bi2Te3 in the ZnO photoanode demonstrates an energy conversion efficiency (η) of 4.27%, which is 44.3% higher than that of the bare ZnO photoanode. The electrochemical impedance spectroscopy (EIS) analysis shows that the Bi2Te3 nanotubes can provide a direct pathway for electron transportation, prolong the lifetime of electrons, suppress the charge recombination and improve the electron collection efficiency. The thermoelectric effect analysis indicates that with the increase of irradiation time, Bi2Te3/ZnO composite photoanode could convert both heat and photon energies to electrical energy simultaneously and slow down the decline of η. The calculated electron density (ns) further proves that the increment of short-circuit current density (Jsc) is attributed to Seebeck effect in the composite photoanode. These results suggest that compositing 1D thermoelectric nano-materials in photoanode is a promising route to improve the performance of DSSCs.
2001-06-25
JSC2001-E-19296 (25 June 2001) --- Astronauts James F. Reilly (left), Janet L. Kavandi, Michael L. Gernhardt, all STS-104 mission specialists; along with Charles O. Hobaugh and Steven W. Lindsey, pilot and mission commander, respectively, are photographed during a pre-flight press conference at Johnson Space Center (JSC).
STS-97 flight control team in WFCR - JSC - MCC
2000-11-24
JSC2000-07303 (24 November 2000) --- The 30-odd flight controllers supporting the STS-97 entry shift pose for a pre-flight group portrait in the shuttle flight control room in Houston's Mission Control Center (JSC). Entry flight director LeRoy Cain (front center) holds a mission logo.
Application of an Electronic Medical Record in Space Medicine
NASA Technical Reports Server (NTRS)
McGinnis, Patrick J.
2000-01-01
Electronic Medical Records (EMR) have been emerging over the past decade. Today, they are replacing the paper chart in clinics throughout the nation. Approximately three years ago, the NASA-JSC Flight Medicine Clinic initiated an assessment of the EMRs available on the market. This assessment included comparing these products with the particular scope of practice at JSC. In 1998, the Logician EMR from Medicalogic was selected for the JSC Flight Medicine Clinic. This presentation reviews the process of selection and implementation of the EMR into the unique practice of aerospace medicine at JSC.
NASA Technical Reports Server (NTRS)
Bannerot, Richard; Sickorez, Donn G.
1995-01-01
The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to: (1) further the professional knowledge of qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1994.
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)
1997-01-01
The 1996 JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1996.
Use of COTS Batteries on ISS and Shuttle: Payload Safety and Mission Success
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.
2004-01-01
Contents: Current program requirements; Challenges with COTS batteries; manned vehicle COTS methodology in use; List of typical flight COTS batteries; Energy content and toxicity; Hazards, failure modes and controls for different battery chemistries; JSC test details; List of incidents from Consumer Protection Safety Commission; Conclusions ans recommendations.
Mode of Action of Shigella Toxin: Effects on Ribosome Structure and Function
1988-05-01
1974. Sindrome hemolitico uremico: reporte de 60 casos asociados a una epidemia de enterocolitis hemorragica. Revista Colombiana de Ped. Puericult. 28...1518-1521. 34. Fong, J.S.C., J-P de Chadarevian and B.S. Kaplan. 1982. Hemolytic-uremic syndrome: current concepts and management. Ped. Clin. North Am
Carbon Nanotube Composites: Strongest Engineering Material Ever?
NASA Technical Reports Server (NTRS)
Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)
1999-01-01
The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.
Ultraviolet Testing of Space Suit Materials for Mars
NASA Technical Reports Server (NTRS)
Larson, Kristine; Fries, Marc
2017-01-01
Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.
NASA Technical Reports Server (NTRS)
Liou, J.-C.; Anz-Meador, P.; Matney, M. J.; Kessler, D. J.; Theall, J.; Johnson, N. L.
2000-01-01
The Low Earth Orbit (LEO, between 200 and 2000 km altitudes) debris environment has been constantly measured by NASA Johnson Space Center's Liquid Mirror Telescope (LMT) since 1996 (Africano et al. 1999, NASA JSC-28826) and by Haystack and Haystack Auxiliary radars at MIT Lincoln Laboratory since 1990 (Settecerri et al. 1999, NASA JSC-28744). Debris particles as small as 3 mm can be detected by the radars and as small as 3 cm can be measured by LMT. Objects about 10 cm in diameter and greater are tracked and catalogued by the US Space Surveillance Network. Much smaller (down to several micrometers) natural and debris particle populations can be estimated based on in situ measurements, such as Long Duration Exposure Facility, and based on analyses of returned surfaces, such as Hubble Space Telescope solar arrays, European Retrievable Carrier, and Space Shuttles. To increase our understanding of the current LEO debris environment, the Orbital Debris Program Office at NASA JSC has initiated an effort to improve and update the ORDEM96 model (Kessler et al. 1996, NASA TM-104825) utilizing the recently available data. This paper gives an overview of the new NASA orbital debris engineering model, ORDEM2000.
View of the STS 51-L Memorial service on JSC's main mall
NASA Technical Reports Server (NTRS)
1986-01-01
This high angle photo of thousands of JSC employees and family and friends of the 51-L cremembers was taken from the top of JSC's project managment building prior to memorial service. Note the bleachers that were erected overnight to accommodate the hundreds of news media here to cover the event.
NASA Technical Reports Server (NTRS)
Hyman, William A. (Editor); Sickorez, Donn G. (Editor)
1996-01-01
The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted at JSC, including the White Sands Test Facility, by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports.
NASA Technical Reports Server (NTRS)
Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)
1993-01-01
The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented.
NASA Technical Reports Server (NTRS)
Hyman, William A. (Editor); Goldstein, Stanley H. (Editor)
1993-01-01
The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are as follows: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993.
NASA Technical Reports Server (NTRS)
Fries, M. D.; Allen, C. C.; Calaway, M. J.; Evans, C. A.; Stansbery, E. K.
2015-01-01
Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), astronauts John O. Creighton (right) and L. Blaine Hammond review their notes while serving as spacecraft communicators (CAPCOMs) for STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight directors (FDs) Lee Briscoe (left) and Charles W. Shaw, seated at FD console, view front visual display monitors during STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
Homecoming for STS-99 crew at Ellington Field
2000-02-23
JSC2000-01646 (23 February 2000) --- Three members of the STS-99 crew are greeted by JSC Director George W.S. Abbey following their arrival at Ellington Field, near the Johnson Space Center (JSC). From the left are astronauts Janet L. Kavandi, Janice Voss and Gerhard P.J. Thiele, all mission specialists. Thiele represents the European Space Agency (ESA).
Culbertson tests cosmonaut space suit in Soyuz trainer
2000-02-16
JSC2000-01440 (14 December 1999) --- Using both thumbs to signal success, astronaut Frank L. Culbertson. Jr., emerges from a training session in the nearby Soyuz trainer. Culbertson, currently visiting the Gagarin Cosmonaut Training Center in Russia, is in training as commander for Expedition Three. He was named to that position in September of this year.
Air to air view of Endeavour, OV-105, atop SCA flies over JSC enroute to KSC
NASA Technical Reports Server (NTRS)
1991-01-01
Air to air view shows Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, flying over the Clear Lake / NASA JSC area prior to a brief stopover at Ellington Field, near JSC. JSC site appears behind and below the orbiter/aircraft combination with Clear Creek and Egret Bay Blvd in the foreground and Clear Lake and Galveston Bay in the background. OV-105 rolled out at Rockwell's Palmdale facility on 04-25-91 to once more bring to four the total of NASA Shuttles available for flight assignment. It left Houston later on this day headed for another stop in Mississippi before landing in Florida on 05-07-91. This photograph was taken from a T-38 aircraft by Sheri J. Dunnette of JSC's Image Sciences Division (ISD).
NASA Astrophysics Data System (ADS)
Allen, C.
2010-12-01
During the Year of the Solar System spacecraft will encounter two comets; orbit the asteroid Vesta, continue to explore Mars with rovers, and launch robotic explorers to the Moon and Mars. We have pieces of all these worlds in our laboratories. Extensive information about these unique materials, as well as actual lunar samples and meteorites, is available for display and education. The Johnson Space Center (JSC) curates NASA's extraterrestrial samples to support research, education, and public outreach. At the current time JSC curates five types of extraterrestrial samples: Moon rocks and soils collected by the Apollo astronauts Meteorites collected on US expeditions to Antarctica (including rocks from the Moon, Mars, and many asteroids including Vesta) “Cosmic dust” (asteroid and comet particles) collected by high-altitude aircraft Solar wind atoms collected by the Genesis spacecraft Comet and interstellar dust particles collected by the Stardust spacecraft These rocks, soils, dust particles, and atoms continue to be studied intensively by scientists around the world. Descriptions of the samples, research results, thousands of photographs, and information on how to request research samples are on the JSC Curation website: http://curator.jsc.nasa.gov/ NASA is eager for scientists and the public to have access to these exciting samples through our various loan procedures. NASA provides a limited number of Moon rock samples for either short-term or long-term displays at museums, planetariums, expositions, and professional events that are open to the public. The JSC Public Affairs Office handles requests for such display samples. Requestors should apply in writing to Mr. Louis Parker, JSC Exhibits Manager. He will advise successful applicants regarding provisions for receipt, display, and return of the samples. All loans will be preceded by a signed loan agreement executed between NASA and the requestor's organization. Email address: louis.a.parker@nasa.gov Sets of twelve thin sections of Apollo lunar samples and sets of twelve thin sections of meteorites are available for short-term loan from JSC Curation. The thin sections are designed for use in college and university courses where petrographic microscopes are available for viewing. Requestors should contact Ms. Mary Luckey, Education Sample Curator. Email address: mary.k.luckey@nasa.gov NASA also loans sets of Moon rocks and meteorites for use in classrooms, libraries, museums and planetariums. Lunar samples (three soils and three rocks) are encapsulated in a six-inch diameter clear plastic disk. Disks containing six different samples of meteorites are also available. A CD with PowerPoint presentations, a classroom activity guide, and additional printed material accompany the disks. Educators may qualify for the use of these disks by attending a security certification workshop sponsored by NASA's Aerospace Education Services Program (AESP). Contact Ms. Margaret Maher, AESP Director. Email address: mjm67@psu.edu Please take advantage of the wealth of data and the samples that we have from an exciting variety of solar system bodies.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-30
...; Imposition of Special Measure Against JSC CredexBank as a Financial Institution of Primary Money Laundering... for concluding that JSC CredexBank is a financial institution of primary money laundering concern...- money laundering provisions of the Bank Secrecy Act (BSA), codified at 12 U.S.C. 1829b, 12 U.S.C. 1951...
Taxonomy, Ontology and Semantics at Johnson Space Center
NASA Technical Reports Server (NTRS)
Berndt, Sarah Ann
2011-01-01
At NASA Johnson Space Center (JSC), the Chief Knowledge Officer has been developing the JSC Taxonomy to capitalize on the accomplishments of yesterday while maintaining the flexibility needed for the evolving information environment of today. A clear vision and scope for the semantic system is integral to its success. The vision for the JSC Taxonomy is to connect information stovepipes to present a unified view for information and knowledge across the Center, across organizations, and across decades. Semantic search at JSC means seemless integration of disparate information sets into a single interface. Ever increasing use, interest, and organizational participation mark successful integration and provide the framework for future application.
JSC-1: Lunar Simulant of Choice for Geotechnical Applications and Oxygen Production
NASA Technical Reports Server (NTRS)
Taylor, Lawrence A.; Hill, Eddy; Liu, Yang; Day, James M. D.
2005-01-01
Lunar simulant JSC-1 was produced as the result of a workshop held in 1991 to evaluate the status of simulated lunar material and to make recommendations on future requirements and production of such material (McKay et al., 1991). JSC-1 was prepared from a welded tuff that was mined, crushed, and sized from the Pleistocene San Francisco volcanic field, northern Arizona. As the initial production of approxiamtely 12,300kgs is nearly depleted, new production has commenced. The mineralogy and chemical properties of JSC-1 are described in McKay et al. (1994) and Hill et al. (this volume); description of its geotechnical properties appears in Klosky et al. (1996). Although other lunar-soil simulants have been produced (e.g., MLS-1: Weiblen et al., 1990; Desai et al., 1992; Chua et al., 1994), they have not been as well standardized as JSC-I; this makes it difficult to standardize results from tests performed on these simulants. Here, we provide an overview of the composition, mineralogy, strength and deformation properties, and potential uses of JSC-1 and outline why it is presently the 'lunar simulant of choice' for geotechnical applications and as a proxy for lunar-oxygen production.
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)
2003-01-01
The 2000 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and 1964 nationally, are to (1) further the professional knowledge of qualified engineering and science faculty, (2) stimulate an exchange of ideas between participants and NASA, (3) enrich and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of the NASA Centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project commensurate with her/his interests and background, and worked in collabroation with a NASA/JSC colleague. This document is a compilation of the final reports on the research projects done by the faculty fellows during the summer of 2000.
Buffer Layer Effects on Tandem InGaAs TPV Devices
NASA Technical Reports Server (NTRS)
Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.
2004-01-01
Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of configurations both with and without buffer layers. All structures were characterized by reciprocal space x-ray diffraction to determine epilayer composition and residual strain. Electrical characterization of the devices was performed to examine the effect of the buffer on the device performance. The effect of the buffer structure depends upon where it is positioned. When near the emitter region, a 2.6x increase in dark current was measured, whereas no change in dark current was observed when it was near the base region.
Soluble copper phthalocyanine applied for organic solar cells.
Zhang, Tianhui; Piao, Lingyu; Zha, Suling; Jiang, Chao; Xu, Zheng; Gao, Liyan; Wu, Qian; Kong, Chao
2011-11-01
A soluble derivative of copper phthalocyanine, that is 2,9,16,23-tetra carboxyl copper phthalocyanine (CuTCPc), is synthesized in this paper. The applications of CuTCPc as donor and interlayer materials in solar cell devices are investigated. The results demonstrate that when CuTCPc is used as a donor material, the performance of the device ITO/CuTCPc/PCBM/Al shows an open circuit voltage (V(OC)) of 0.54 V, a short circuit current (J(SC)) of 0.825 mA/cm2, a fill factor (FF) of 32.3% and the power conversion efficiency (nu) of 0.14%. When CuTCPc acts as an interlayer, the performance of the device ITO/CuTCPc/P3HT:PCBM/Al is improved: J(SC) increases to 3.12 mA/cm2, V(OC) increases to 0.59 V, FF increases to 33.8%, and the corresponding nu is 0.62%.
Mars Simulant Development for In-Situ Resource Utilization (ISRU) Applications
NASA Technical Reports Server (NTRS)
Ming, Doug
2016-01-01
Current design reference missions for the Evolvable Mars Campaign (EMC) call for the use of in-situ resources to enable human missions to the surface of Mars. One potential resource is water extracted from the Martian regolith. Current Mars' soil analogs (JSC Mars-1) have 5-10 times more water than typical regolith on Mars. Therefore, there is a critical need to develop Mars simulants to be used in ISRU applications that mimic the chemical, mineralogical, and physical properties of the Martian regolith.
NASA Technical Reports Server (NTRS)
Harrison, D. A., III; Chladek, J. T.
1983-01-01
A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.
NASA Astrophysics Data System (ADS)
Chitpakdee, Chirawat; Jungsuttiwong, Siriporn; Sudyoadsuk, Taweesak; Promarak, Vinich; Kungwan, Nawee; Namuangruk, Supawadee
2017-03-01
The effects of type and position of π-linker in carbazole-carbazole based dyes on their performance in dye-sensitized solar cells (DSSCs) were investigated by DFT and TDDFT methods. The calculated electronic energy level, electron density composition, charge injection and charge recombination properties were compared with those of the high performance CCT3A dye synthesized recently. It is found that that mixing a benzothiadizole (B) unit with two thiophene (T) units in the π-spacer can greatly shift absorption wavelength to near infrared region and enhance the light harvesting efficiency (LHE) resulting in increasing of short-circuit current density (Jsc), whereas a thienothiophene unit does not affect those properties. However, a B should be not directly connected to the anchoring group of the dye because it brings electrolyte to the TiO2 surface which may increase charge recombination rate and consequently decrease open circuit voltage (Voc). This work shows how type and position of the π-linker affect the performance of DSSCs, and how to modulate those properties. We predicted that the designed dye derived from insertion of the B unit in between the two T units would have higher performance than CCT3A dye. The insight understanding from this study is useful for further design of higher performance dyes by molecular engineering.
Thermal Assisted Oxygen Annealing for High Efficiency Planar CH3NH3PbI3 Perovskite Solar Cells
Ren, Zhiwei; Ng, Annie; Shen, Qian; Gokkaya, Huseyin Cem; Wang, Jingchuan; Yang, Lijun; Yiu, Wai-Kin; Bai, Gongxun; Djurišić, Aleksandra B.; Leung, Wallace Woon-fong; Hao, Jianhua; Chan, Wai Kin; Surya, Charles
2014-01-01
We report investigations on the influences of post-deposition treatments on the performance of solution-processed methylammonium lead triiodide (CH3NH3PbI3)-based planar solar cells. The prepared films were stored in pure N2 at room temperature or annealed in pure O2 at room temperature, 45°C, 65°C and 85°C for 12 hours prior to the deposition of the metal electrodes. It is found that annealing in O2 leads to substantial increase in the power conversion efficiencies (PCEs) of the devices. Furthermore, strong dependence on the annealing temperature for the PCEs of the devices suggests that a thermally activated process may underlie the observed phenomenon. It is believed that the annealing process may facilitate the diffusion of O2 into the spiro-MeOTAD for inducing p-doping of the hole transport material. Furthermore, the process can result in lowering the localized state density at the grain boundaries as well as the bulk of perovskite. Utilizing thermal assisted O2 annealing, high efficiency devices with good reproducibility were attained. A PCE of 15.4% with an open circuit voltage (VOC) 1.04 V, short circuit current density (JSC) 23 mA/cm2, and fill factor 0.64 had been achieved for our champion device. PMID:25341527
Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing
2011-08-23
We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society
Synthesis of active absorber layer by dip-coating method for perovskite solar cell
NASA Astrophysics Data System (ADS)
Singh, Rahul; Noor, I. M.; Singh, Pramod K.; Bhattacharya, B.; Arof, A. K.
2018-04-01
In this paper, we develop the hybrid perovskite-based n-i-p solar cell using a simple, fast and low-cost dip-coating method. Hot solution and the pre-annealed substrate are used for coating the perovskite thin film by this method this is further used for studying its structural and electrical properties. UV-vis spectroscopy is carried out for calculating the band gap of the hybrid perovskite layer which is ∼1.6 eV. X-ray spectroscopy confirms that the formation of hybrid perovskite layer. The profilometer is used to study the surface roughness and also for measuring the thickness of the perovskite layer with varying substrate temperature. The optimized sample was further used for cross-sectional SEM image to verify the thickness measured from the profiler. The electrical parameter of JV characteristic with varying temperature is tabulated in the table. Whereas, the perovskite sensitized solar cell exhibits highest short circuit current density, Jsc of 11 mA cm-2, open circuit voltage, Voc of 0.87 V, fill factor of 0.55 and efficiency, η of >5%.
Hsu, Shao-Hui; Li, Chun-Ting; Chien, Heng-Ta; Salunkhe, Rahul R.; Suzuki, Norihiro; Yamauchi, Yusuke; Ho, Kuo-Chuan; Wu, Kevin C.-W.
2014-01-01
We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs. PMID:25382139
Nazim, M; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik
2015-06-12
A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (-CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of -5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of -3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of -CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm(2) and open circuit voltage (VOC) of ~0.79 V.
Nazim, M.; Ameen, Sadia; Seo, Hyung-Kee; Shin, Hyung Shik
2015-01-01
A new and novel organic π-conjugated chromophore (named as RCNR) based on fumaronitrile-core acceptor and terminal alkylated bithiophene was designed, synthesized and utilized as an electron-donor material for the solution-processed fabrication of bulk-heterojunction (BHJ) small molecule organic solar cells (SMOSCs). The synthesized organic chromophore exhibited a broad absorption peak near green region and strong emission peak due to the presence of strong electron-withdrawing nature of two nitrile (–CN) groups of fumaronitrile acceptor. The highest occupied molecular orbital (HOMO) energy level of –5.82 eV and the lowest unoccupied molecular orbital (LUMO) energy level of –3.54 eV were estimated for RCNR due to the strong electron-accepting tendency of –CN groups. The fabricated SMOSC devices with RCNR:PC60BM (1:3, w/w) active layer exhibited the reasonable power conversion efficiency (PCE) of ~2.69% with high short-circuit current density (JSC) of ~9.68 mA/cm2 and open circuit voltage (VOC) of ~0.79 V. PMID:26066557
NASA Technical Reports Server (NTRS)
Titterington, W. A.; Erickson, A. C.
1975-01-01
An advanced six-man rated oxygen generation system has been fabricated and tested as part of a NASA/JSC technology development program for a long lived, manned spacecraft life support system. Details of the design and tests results are presented. The system is based on the Solid Polymer Electrolyte (SPE) water electrolysis technology and its nominal operating conditions are 2760 kN/sq m (400 psia) and 355 K (180 F) with an electrolysis module current density capability up to 350 mA/sq cm (326 ASF). The system is centered on a 13-cell SPE water electrolysis module having a single cell active area of 214 sq cm (33 sq in) and it incorporates instrumentation and controls for single pushbutton automatic startup/shutdown, component fault detection and isolation, and self-contained sensors and controls for automatic safe emergency shutdown. The system has been tested in both the orbital cyclic and continuous mode of operation. Various parametric tests have been completed to define the system capability for potential application in spacecraft environmental systems.
High efficiency dye-sensitized solar cell based on novel TiO2 nanorod/nanoparticle bilayer electrode
Hafez, Hoda; Lan, Zhang; Li, Qinghua; Wu, Jihuai
2010-01-01
High light-to-energy conversion efficiency was achieved by applying novel TiO2 nanorod/nanoparticle (NR/NP) bilayer electrode in the N719 dye-sensitized solar cells. The short-circuit current density (JSC), the open-circuit voltage (VOC), the fill factor (FF), and the overall efficiency (η) were 14.45 mA/cm2, 0.756 V, 0.65, and 7.1%, respectively. The single-crystalline TiO2 NRs with length 200–500 nm and diameter 30–50 nm were prepared by simple hydrothermal methods. The dye-sensitized solar cells with pure TiO2 NR and pure TiO2 NP electrodes showed only a lower light-to-electricity conversion efficiency of 4.4% and 5.8%, respectively, compared with single-crystalline TiO2 NRs. This can be attributed to the new NR/NP bilayer design that can possess the advantages of both building blocks, ie, the high surface area of NP aggregates and rapid electron transport rate and the light scattering effect of single-crystalline NRs. PMID:24198470
Fabrication and characterization of mixed dye: Natural and synthetic organic dye
NASA Astrophysics Data System (ADS)
Richhariya, Geetam; Kumar, Anil
2018-05-01
Mixed dye from hibiscus sabdariffa and eosin Y was employed in the fabrication of dye sensitized solar cell (DSSC). Nanostructured mesoporous film was prepared from the titanium dioxide (TiO2). The energy conversion efficiency of hibiscus, eosin Y and mixed dye was obtained as 0.41%, 1.53% and 2.02% respectively. Mixed DSSC has shown improvement in the performance of the cell as compared to hibiscus and eosin Y dye due to addition of synthetic organic dye. This illustrates the effect of synthetic organic dyes in performance enhancement of natural dyes. It has been credited to the improved absorption of light mainly in higher energy state (λ = 440-560 nm) when two dyes were employed simultaneously as was obvious from the absorption spectra of dyes adsorbed onto TiO2 electrode. The cell with TiO2 electrode sensitized by mixed dye gives short circuit current density (Jsc) = 4.01 mA/cm2, open circuit voltage (Voc) = 0.67 V, fill factor (FF) = 0.60 and energy conversion efficiency (η) of 2.02%.
2002-02-04
JSC2002-00417 (4 February 2002) --- Astronaut Franklin R. Chang-Diaz, STS-111 mission specialist, simulates a parachute drop into water during an emergency bailout training session at the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC). Chang-Diaz is attired in a training version of the shuttle launch and entry garment. STS-111 will be the 14th shuttle mission to visit the International Space Station (ISS).
2004-08-18
JSC2004-E-37689 (18 August 2004) --- Astronaut Steven W. Lindsey, STS-121 commander, uses a climbing apparatus to lower himself from a simulated trouble-plagued shuttle in an emergency egress training session in the Space Vehicle Mockup Facility at the Johnson Space Center (JSC). Lindsey is wearing a training version of the shuttle launch and entry suit. United Space Alliance (USA) crew trainer David Pogue assisted Lindsey.
STS-41 MS Akers assisted by technician on SMS middeck at JSC
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 Mission Specialist (MS) Thomas D. Akers, wearing launch and entry suit (LES) and launch and entry helmet (LEH), is assisted by a technician on the middeck of JSC's Shuttle Mission Simulator (SMS). Akers seated in the mission specialists chairis participating in a simulation of mission events. The SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.
Development of an IVE/EVA Compatible Prototype Cold-Gas Cubesat Propulsion System at NASA/JSC
NASA Technical Reports Server (NTRS)
Radke, Christopher; Studak, Joseph
2017-01-01
Cold-gas propulsion systems are well suited for some applications because they are simple to design and build, have low operating costs, and are non-toxic. The inherent tradeoff, however, is their relatively low impulse density. Nevertheless, a modest propulsion system, sized for Cubesats and designed for affordability, presents an attractive system solution for some missions, such as an on-orbit inspection free-flyer. NASA has a long-standing effort to develop propulsion systems appropriate for very high delta-V cubesat missions, such as geo transfer orbits, and there are commercially available Cubesat propulsion systems with considerably more impulse capability, but, these are both prohibitively expensive for some development customers and face compatibility constraints for crewed applications, such as operation within ISS. A relatively conventional cold-gas system has been developed at NASA/JSC taking advantage of existing miniature industrial components, additive manufacturing techniques and in-house qualification of the system. The result is a nearly modular system with a 1U form factor. Compressed nitrogen is stored in a small high-pressure tank, then regulated and distributed to 12 thrusters. Maneuvering thrust can be adjusted, with a typical value of 40 mN, and the delta-V delivered to a 3U Cubesat would be approximately 7 m/s. These values correspond to the performance parameters for an inspection mission previously established at JSC for inspection of the orbiter prior to reentry. Environmental testing was performed to meet ISS launch and workmanship standards, along with the expected thermal environment for an inspection mission. Functionality has been demonstrated, and performance in both vacuum and relevant blow down scenarios was completed. Several avenues for further improvement are also explored. Details of the system, components, integration, tests, and test data are presented in this paper.
JSC-1: A new lunar regolith simulant
NASA Technical Reports Server (NTRS)
Mckay, David S.; Carter, James L.; Boles, Walter W.; Allen, Carlton C.; Allton, Judith H.
1993-01-01
Simulants of lunar rocks and soils with appropriate properties, although difficult to produce in some cases, will be essential to meeting the system requirements for lunar exploration. In order to address this need a new lunar regolith simulant, JSC-1, has been developed. JSC-1 is a glass-rich basaltic ash which approximates the bulk chemical composition and mineralogy of some lunar soils. It has been ground to produce a gain size distribution approximating that of lunar regolith samples. The simulant is available in large quantities (greater than 2000 lb; 907 kg). JSC-1 was produced specifically for large- and medium-scale engineering studies in support of future human activities on the Moon. Such studies include material handling, construction, excavation, and transportation. The simulant is also appropriate for research on dust control and spacesuit durability. JSC-1 can be used as a chemical or mineralogical analog to some lunar soils for resource studies such as oxygen or metal production, sintering, and radiation shielding.
NASA Technical Reports Server (NTRS)
Popp, Christopher G.; Cook, Joseph C.; Ragland, Brenda L.; Pate, Leah R.
1992-01-01
In support of propulsion system thruster development activity for Space Station Freedom (SSF), NASA Johnson Space Center (JSC) conducted a hydrazine thruster technology demonstration program. The goal of this program was to identify impulse life capability of state-of-the-art long life hydrazine thrusters nominally rated for 50 pounds thrust at 300 psia supply pressure. The SSF propulsion system requirement for impulse life of this thruster class is 1.5 million pounds-seconds, corresponding to a throughput of approximately 6400 pounds of propellant. Long life thrusters were procured from The Marquardt Company, Hamilton Standard, and Rocket Research Company, Testing at JSC was completed on the thruster designs to quantify life while simulating expected thruster firing duty cycles and durations for SSF. This paper presents a review of the SSF propulsion system hydrazine thruster requirements, summaries of the three long life thruster designs procured by JSC and acceptance test results for each thruster, the JSC thruster life evaluation test program, and the results of the JSC test program.
A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed.
Kim, Sung Won; Koo, Bon Seok; Lee, Dong Hyun
2014-06-01
The pyrolysis of Scenedesmus sp. and Jatropha seedshell cake (JSC) was investigated under similar operating condition in a fluidized bed reactor for comparison of pyrolytic behaviors from different species of lipids-containing biomass. Microalgae showed a narrower main peak in differential thermogravimetric curve compared to JSC due to different constituents. Pyrolysis liquid yields were similar; liquid's oil proportion of microalgae is higher than JSC. Microalgae bio-oil was characterized by similar carbon and hydrogen contents and higher H/C and O/C molar ratios compared to JSC due to compositional difference. The pyrolytic oils from microalgae and JSC contained more oxygen and nitrogen and less sulfur than petroleum and palm oils. The pyrolytic oils showed high yields of fatty oxygenates and nitrogenous compounds. The microalgae bio-oil features in high concentrations of aliphatic compounds, fatty acid alkyl ester, alcohols and nitriles. Microalgae showed potentials for alternative feedstock for green diesel, and commodity and valuable chemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Davis, Bruce A.; Christiansen, Eric L.; Lear, Dana M.; Prior, Tom
2013-01-01
The descent module (DM) of the ISS Soyuz vehicle is covered by thermal protection system (TPS) materials that provide protection from heating conditions experienced during reentry. Damage and penetration of these materials by micrometeoroid and orbital debris (MMOD) impacts could result in loss of vehicle during return phases of the mission. The descent module heat shield has relatively thick TPS and is protected by the instrument-service module. The TPS materials on the conical sides of the descent module (referred to as backshell in this test plan) are exposed to more MMOD impacts and are relatively thin compared to the heat shield. This test program provides hypervelocity impact (HVI) data on materials similar in composition and density to the Soyuz TPS on the backshell of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz TPS penetration risk assessments. The impact testing was coordinated by the NASA Johnson Space Center (JSC) Hypervelocity Impact Technology (HVIT) Group [1] in Houston, Texas. The HVI testing was conducted at the NASA-JSC White Sands Hypervelocity Impact Test Facility (WSTF) at Las Cruces, New Mexico. Figure
Enhanced performance of polymer solar cells by employing a ternary cascade energy structure.
An, Qiaoshi; Zhang, Fujun; Li, Lingliang; Zhuo, Zuliang; Zhang, Jian; Tang, Weihua; Teng, Feng
2014-08-14
We present a route to successfully tackle the two main limitations, low open circuit voltage (Voc) and limited short circuit-density (Jsc), of polymer solar cells (PSCs) based on poly(3-hexylthiophene) (P3HT) as an electron-donor. The indene-C60 bisadduct (ICBA) was selected as an electron acceptor to improve the open circuit voltage (Voc). The narrow band gap polymer poly[(4,8-bis-(2-ethylhexyloxy)-benzo[1,2-b:4,5-b']dithiophene)-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2,6-diyl] (PBDTTT-C), as a complementary electron-donor material, was doped into the host system of P3HT:ICBA to form ternary cascade energy structured PSCs with increased Jsc. The power conversion efficiency (PCE) of P3HT:ICBA-based cells was improved from 3.32% to 4.38% by doping with 3 wt% PBDTTT-C with 1 min 150 °C annealing treatment. The 4.38% PCE of ternary PSCs is still larger than the 3.79% PCE of PSCs based on P3HT:ICBA with 10 minutes 150 °C annealing treatment.
STS-49 MS Thuot, in LES, at CCT side hatch during JSC's egress exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Pierre J. Thuot, wearing launch and entry suit (LES), prepares to enter JSC's Crew Compartment Trainer (CCT) via the open side hatch as a technician looks on. Thuot along with the other STS-49 crewmembers is participating in a post-landing emergency egress exercise in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9.
Presidential commission investigating Challenger accident at JSC
1986-03-05
S86-28750 (5 March 1986) --- Two JSC officials and two members of the Presidential Commission on the Space Shuttle Challenger Accident meet in the Executive Conference Room of JSC’s Project Management Building. Left to right are JSC Deputy Director Robert C. Goetz; Richard H. Kohrs, Deputy Manager for National Space Transportation Systems Program Office; and commission members Joseph F. Sutter and Dr. Arthur B.C. Walker Jr. Photo credit: NASA
NASA Astrophysics Data System (ADS)
1981-01-01
Oklahoma City Police Department developed a computerized communications system, based on Johnson Space Center's (JSC's) 1960-mission control knowledge. JSC furnished information on lighting and other fatigue reducing measures, and provided specifications for equipment and design layouts. JSC also advised OCPD how to avoid communications bottlenecks associated with simultaneous handling of telephone, radio and inner-office transmissions. Oklahoma City saved money in reduced design and engineering costs by utilizing the already developed NASA technology.
Visitor - Soviet Union Ambassador - Anatoliy Dobrynin - JSC
1975-07-17
S75-28534 (17 July 1975) --- Anatoliy Dobrynin (right), Soviet Union ambassador to the United States, visits with a group of USSR ASTP flight controllers in the Mission Control Center during a tour of NASA's Johnson Space Center (JSC). Dobrynin was at JSC on the day the Soviet Soyuz and the American Apollo spacecraft docked in Earth orbit. The group also includes a couple of American ASTP flight controllers.
VISITOR - PRES. NIXON - PROTOCOL - JSC
1974-03-20
Five (5) views of President Richard M. Nixon during his visit to the JSC. These views show the President as he addresses a crowd of employees and visitors outside of Building 1 Auditorium. Dr. Christopher C. Kraft, Fletcher, and Astronaut Gerald Carr, with Pete Clements, George Abbey, and Jack Waite in the background is also seen with the President. 1. Pres. Richard M. Nixon 2. Dr. Christopher C. Kraft JSC, HOUSTON, TX
X-Ray Computed Tomography Inspection of the Stardust Heat Shield
NASA Technical Reports Server (NTRS)
McNamara, Karen M.; Schneberk, Daniel J.; Empey, Daniel M.; Koshti, Ajay; Pugel, D. Elizabeth; Cozmuta, Ioana; Stackpoole, Mairead; Ruffino, Norman P.; Pompa, Eddie C.; Oliveras, Ovidio;
2010-01-01
The "Stardust" heat shield, composed of a PICA (Phenolic Impregnated Carbon Ablator) Thermal Protection System (TPS), bonded to a composite aeroshell, contains important features which chronicle its time in space as well as re-entry. To guide the further study of the Stardust heat shield, NASA reviewed a number of techniques for inspection of the article. The goals of the inspection were: 1) to establish the material characteristics of the shield and shield components, 2) record the dimensions of shield components and assembly as compared with the pre-flight condition, 3) provide flight infonnation for validation and verification of the FIAT ablation code and PICA material property model and 4) through the evaluation of the shield material provide input to future missions which employ similar materials. Industrial X-Ray Computed Tomography (CT) is a 3D inspection technology which can provide infonnation on material integrity, material properties (density) and dimensional measurements of the heat shield components. Computed tomographic volumetric inspections can generate a dimensionally correct, quantitatively accurate volume of the shield assembly. Because of the capabilities offered by X-ray CT, NASA chose to use this method to evaluate the Stardust heat shield. Personnel at NASA Johnson Space Center (JSC) and Lawrence Livermore National Labs (LLNL) recently performed a full scan of the Stardust heat shield using a newly installed X-ray CT system at JSC. This paper briefly discusses the technology used and then presents the following results: 1. CT scans derived dimensions and their comparisons with as-built dimensions anchored with data obtained from samples cut from the heat shield; 2. Measured density variation, char layer thickness, recession and bond line (the adhesive layer between the PICA and the aeroshell) integrity; 3. FIAT predicted recession, density and char layer profiles as well as bondline temperatures Finally suggestions are made as to future uses of this technology as a tool for non-destructively inspecting and verifying both pre and post flight heat shields.
STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1986-01-01
STS-29 Discovery, Orbiter Vehicle (OV) 103, Commander Michael L. Coats sits at commanders station forward flight deck controls in JSC fixed base (FB) shuttle mission simulator (SMS). Coats, wearing communications kit assembly headset and flight coveralls, looks away from forward control panels to aft flight deck. Pilots station seat back appears in foreground. FB-SMS is located in JSC Mission Simulation and Training Facility Bldg 5.
Optical Physics of Cu(In,Ga)Se2 Solar Cells and Their Layer Components
NASA Astrophysics Data System (ADS)
Ibdah, Abedl-Rahman
Polycrystalline Cu(In1-xGax)Se 2 (CIGS) thin film technology has emerged as a promising candidate for low cost and high performance solar modules. The efficiency of CIGS solar cells is strongly influenced by several key factors. Among these factors include Ga composition and its profile in the absorber layer, copper content in this layer, and the solar cell multilayer structure. As a result, tools for the characterization of thin film CIGS solar cells and their layer components are becoming increasingly essential in research and manufacturing. Spectroscopic ellipsometry is a non-invasive technique that can serve as an accurate probe of component layer optical properties and multilayer structures, and can be applied as a diagnostic tool for real-time, in-line, and off-line monitoring and analysis in small area solar cell fabrication as well as in large area photovoltaics manufacturing. Implementation of spectroscopic ellipsometry provides unique insights into the properties of complete solar cell multilayer structures and their layer components. These insights can improve our understanding of solar cell structures, overcome challenges associated with solar cell fabrication, and assist in process monitoring and control on a production line. In this dissertation research, Cu(In,Ga)Se2 films with different Cu contents have been prepared by the one stage co-evaporation process. These films have been studied by real time spectroscopic ellipsometry (RTSE) during deposition, and by in-situ SE at the deposition temperature as well as at room temperature to extract the dielectric functions (epsilon1, epsilon 2) of the thin film materials. Analytical expressions for the room temperature dielectric functions were developed, and the free parameters that describe these analytical functions were in turn expressed as functions of the Cu content. As a result of this parameterization, the dielectric function spectra (epsilon 1, epsilon2) can be predicted for any desired composition within the range of the samples investigated. This capability was applied for mapping the structural and compositional variations of CIGS thin films deposited over a 10 cm x 10 cm substrate area. In another application presented in this dissertation, a non-invasive method utilizing ex-situ spectroscopic ellipsometry analysis has been developed and applied to determine non-destructively the Ga compositional profile in CIGS absorbers. The method employs parameterized dielectric function spectra (epsilon1, epsilon2) of CIGS versus Ga content to probe the compositional variation with depth into the absorber. In addition, a methodology for prediction of the external quantum efficiency (QE) including optical gains and losses for a CIGS solar cell has been developed. The methodology utilizes ex-situ spectroscopic ellipsometry analysis of a complete solar cell, with no free parameters, to deduce the multilayer solar cell structure non-invasively and simulate optical light absorption in each of the layer components. In the case of high efficiency CIGS solar cells, with minimal electronic losses, QE spectra are predicted from the sum of optical absorption in the active layer components. For such solar cells with ideal photo-generated charge carrier collection, the SE-predicted QE spectra are excellent representation of the measured ones. Since the QE spectra as well as the short circuit current density (Jsc) can be calculated directly from SE analysis results, then the predicted QE from SE can be compared with the experimental QE to evaluate electronic losses based on the difference between the spectra. Moreover, the calculated Jsc can be used as a key parameter for the design and optimization of anti-reflection coating structures. Because the long term production potential of CIGS solar modules may be limited by the availability of indium, it becomes important to reduce the thickness of the CIGS absorber layer. Thickness reduction would reduce the quantity of indium required for production which would in turn reduce costs. A decrease in short-circuit current density (Jsc) is expected, however, upon thinning the CIGS absorber due to incomplete absorption. To clarify the limits of obtainable Jsc in ultra-thin CIGS solar cells with Mo back contacts, optical properties and multilayer structural data are deduced via spectroscopic ellipsometry analysis and used to predict the QE spectra and maximum obtainable Jsc values upon thinning the absorber. Moreover, SE-guided optical design of ultra-thin CIGS solar cells has been demonstrated. In the case of solar cells fabricated on Mo, thinning the absorber in a CIGS solar cell is associated with significant optical losses in the Mo containing back contact layers. This is due in part to the poor optical reflectance of Mo. Such optical losses may be reduced by employing a back contact design with improved reflectance. Thus, alternative novel solar cell structures with ultra-thin absorbers and improved back contact reflectance have been designed and investigated using SE and the optical modeling methods. In addition to optical losses, electronic losses in the ultra-thin solar cells have been evaluated. By separating the absorber layer into sub-layer regions (for example, near-junction, bulk, and near-back-contact) and varying carrier collection probability in these regions, the contribution of each region to the current can be estimated. Based on this separation, the origin of the electronic losses has been identified as near the back contact.
NASA Astrophysics Data System (ADS)
Sunesh, Chozhidakath Damodharan; Gopi, Chandu V. V. M.; Muthalif, Mohammed Panthakkal Abdul; Kim, Hee-Je; Choe, Youngson
2017-09-01
CuS counter electrodes (CEs) were prepared to fabricate efficient quantum-dot-sensitized solar cells (QDSSCs) based on a CdS/CdSe photo sensitizer. The CEs were prepared on a fluorine-doped tin oxide (FTO) glass substrate by a facile chemical bath deposition (CBD) method by dissolving CuSO4·5H2O and CH3CSNH2 in water, followed by adding 0.25 mM polyvinylpyrrolidone (PVP). The CBD was performed at 60 °C for 1 h, 2 h, and 3 h, and the samples were labeled as CuS 1 h, CuS 2 h, and CuS 3 h, respectively. The QDSSCs were assembled using prepared CuS CEs and a TiO2/CdS/CdSe/ZnS photoanode, and the effect of the growth time of CuS CEs on the QDSSC performance was investigated. As the CuS growth time increases, the short-circuit current density (Jsc), fill factor (FF), and open-circuit voltage (Voc) of the QDSSCs gradually increases, leading to an enhanced power conversion efficiency (η). QDSSCs that use the CuS 2 h CE exhibit a high Jsc of 14.31 mA cm-2, Voc of 0.603 V, and FF of 0.49, which are higher than that using conventional Pt electrodes as well as CuS 1 h and CuS 3 h electrodes. The electrochemical impedance spectroscopy results show that the CuS 2 h CE exhibits an inferior charge transfer resistance of only 2.93 Ω, which is 33 times lesser than that of the Pt CE. The enhanced device performance of CuS 2 h is ascribed to the high catalytic activity and low charge transfer resistance of the CuS CE in the reduction process of oxidized polysulfide. Consequently, a superior power conversion efficiency of 4.27% is achieved for QDSSCs utilizing CuS 2 h.
Joshi, Prakash; Zhou, Zhengping; Poudel, Prashant; Thapa, Amit; Wu, Xiang-Fa; Qiao, Qiquan
2012-09-21
A nickel incorporated carbon nanotube/nanofiber composite (Ni-CNT-CNF) was used as a low cost alternative to Pt as counter electrode (CE) for dye-sensitized solar cells (DSCs). Measurements based on energy dispersive X-rays spectroscopy (EDX) showed that the majority of the composite CE was carbon at 88.49 wt%, while the amount of Ni nanoparticles was about 11.51 wt%. Measurements based on electrochemical impedance spectroscopy (EIS) showed that the charge transfer resistance (R(ct)) of the Ni-CNT-CNF composite electrode was 0.71 Ω cm(2), much lower than that of the Pt electrode (1.81 Ω cm(2)). Such a low value of R(ct) indicated that the Ni-CNT-CNF composite carried a higher catalytic activity than the traditional Pt CE. By mixing with CNTs and Ni nanoparticles, series resistance (R(s)) of the Ni-CNT-CNF electrode was measured as 5.96 Ω cm(2), which was close to the R(s) of 5.77 Ω cm(2) of the Pt electrode, despite the significant difference in their thicknesses: ∼22 μm for Ni-CNT-CNF composite, while ∼40 nm for Pt film. This indicated that use of a thick layer (tens of microns) of Ni-CNT-CNF counter electrode does not add a significant amount of resistance to the total series resistance (R(s-tot)) in DSCs. The DSCs based on the Ni-CNT-CNF composite CEs yielded an efficiency of 7.96% with a short circuit current density (J(sc)) of 15.83 mA cm(-2), open circuit voltage (V(oc)) of 0.80 V, and fill factor (FF) of 0.63, which was comparable to the device based on Pt, that exhibited an efficiency of 8.32% with J(sc) of 15.01 mA cm(-2), V(oc) of 0.83, and FF of 0.67.
NASA Technical Reports Server (NTRS)
Broun, Igor I.; Bryant, Donald A.; Casamatta, Dale; Thomas-Keprta, Kathie L.; Sarkisova, Svetlana A.; Shen, Gaozhang; Graham, Joel E.; Boyd, Eric S.; Peters, John W.; Garrison, Daniel H.;
2010-01-01
Cyanobacteria are the main producers of organic compounds in iron-depositing hot springs despite photosynthetically generated-oxygen and the abundance of reduced iron (Fe2+) that likely leads to enormous oxidative stress within cyanobacterial cells. Therefore, the study of cyanobacterial diversity, phylogeny, and biogeochemical activity in iron-depositing hot springs will not only provide insights into the contribution of CB to iron redox cycling in these environments, but it could also provide insights into CB evolution. This study characterizes the phylogeny, morphology, and physiology of isolate JSC-1, a novel filamentous CB isolated from an iron-depositing hot spring. While isolate JSC-1 is morphologically similar to the CB genus Leptolyngbya, 16S rDNA sequence data indicated that it shares 95 percent sequence similarity to the type strain L. boryanum. Strain JSC-1 fixes N2 and exhibited an unusually high ratio between photosystem (PS) I and PS II and was capable of complementary chromatic adaptation. Further, it synthesized only chlorophyll a and a unique set of carotenoids. Strain JSC-1 not only required high levels of Fe for growth (greater than or equal to 40 microM), but it also accumulated large amounts of extracellular ferrihydrite and generated intracellular ferric phosphates. Strain JSC-1 was found to secrete 2-oxoglutaric acid and possesses one ortholog and one paralog of bacterioferritin. Surprisingly, the latter has 70.13 % identity with a bacterioferritin in marine-proteobacterium HTCC 2080 and has joint node with bacterioferritins found in enterobacteria. Collectively, these observations provide insights into the physiological strategies that might have allowed CB to develop and proliferate in Fe-rich environments. Based on its genotypic and phenotypic characterization of strain, JSC-1 represents a new operational taxonomical unit (OTU) JSC-1.
STS-116 Press Conference and Crew Photos
2006-11-06
JSC2006-E-47958 (6 November 2006) --- Astronauts Mark L. Polansky, left, and Robert L. Curbeam Jr. respond to a question from a reporter during a Nov. 6 press briefing at the Johnson Space Center. Polansky, commander, and Curbeam, one of five mission specialists, are part of the seven-member STS-116 crew currently in training for a Dec. 2006 visit to the International Space Station.
STS-30 crewmembers pose for informal portrait on JSC FB-SMS middeck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-30 Atlantis, Orbiter Vehicle (OV) 104, crewmembers pause briefly from their training schedule to pose for informal portrait in JSC fixed base (FB) shuttle mission simulator (SMS). On FB-SMS middeck are (left to right) Commander David M. Walker, Mission Specialist (MS) Mark C. Lee, MS Mary L. Cleave, Pilot Ronald J. Grabe, and MS Norman E. Thagard. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.
STS-49 MS Thornton, in LES, at the CCT side hatch during JSC egress exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-49 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Kathryn C. Thornton, wearing launch and entry suit (LES) and with foot propped on open side hatch, prepares to enter JSC's Crew Compartment Trainer (CCT) located in the Mockup and Integration Laboratory (MAIL) Bldg 9. Thornton along with other STS-49 crewmembers is participating in post-landing emergency egress training. Photo taken by NASA JSC contract photographer Mark Sowa.
President Bill Clinton visits JSC
1998-04-14
S98-05023 (14 April 1998) --- A large crowd of JSC employees listen to President Bill Clinton during an April 14 visit to the Johnson Space Center. NASA, Houston and JSC officials, as well as the STS-95 Discovery crew members scheduled to fly in space later this year, are on the dais with the President. He earlier had gone inside several of the Shuttle and ISS crew training facilities and mockups. Photo Credit: Joe McNally, National Geographic, for NASA
Skylab 3 prime crew participate in water egress simulations at JSC
1973-05-01
S73-27787 (1 May 1973) --- The three members of the prime crew of the second manned Skylab mission participate in prelaunch training, specifically water egress simulations, at the Johnson Space Center (JSC), Houston. They are, left to right, astronaut Alan J. Bean, commander; scientist-astronaut Owen K. Garriott, science pilot; and astronaut Jack R. Lousma, pilot. This training took place in JSC?s Building 220 on May 1, 1973. Photo credit: NASA
Manned observations technology development, FY 1992 report
NASA Technical Reports Server (NTRS)
Israel, Steven
1992-01-01
This project evaluated the suitability of the NASA/JSC developed electronic still camera (ESC) digital image data for Earth observations from the Space Shuttle, as a first step to aid planning for Space Station Freedom. Specifically, image resolution achieved from the Space Shuttle using the current ESC system, which is configured with a Loral 15 mm x 15 mm (1024 x 1024 pixel array) CCD chip on the focal plane of a Nikon F4 camera, was compared to that of current handheld 70 mm Hasselblad 500 EL/M film cameras.
2001-08-27
JSC2001-E-25713 (27 August 2001) --- Astronaut Franklin R. Chang-Diaz, STS-111 mission specialist, is photographed during food testing in the Flight Projects Division Laboratory at the Johnson Space Center (JSC).
JSC engineers visit area schools for National Engineers Week
1996-02-28
Johnson Space Center (JSC) engineers visit Houston area schools for National Engineers Week. Students examine a machine that generates static electricity (4296-7). Students examine model rockets (4298).
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight controller Granvil A. Pennington, leaning on console, listens to communications during the STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS). MCC FCR visual displays are seen in background. Five veteran astronauts were in the FB-SMS rehearsing their roles for the scheduled June 1988 flight aboard Discovery, Orbiter Vehicle (OV) 103.
STS-46 crewmembers participate in Fixed Base (FB) SMS training at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) and Payload Commander (PLC) Jeffrey A. Hoffman, standing at the interdeck access ladder, explains procedures to backup Italian Payload Specialist Umberto Guidoni (center) and Italian Payload Specialist Franco Malerba (right) on the middeck of JSC's fixed base (FB) shuttle mission simulator (SMS). Behind them, MS Marsha S. Ivins reviews a cheklist. Participants are wearing communications kit assembly lightweight headsets (HDSTs). FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5.
STS-3 MISSION OPERATIONS CONTROL ROOM (MOCR) - JSC
1982-03-26
Mission Control Activities during the STS-3 Mission, Day-4 with: Maj. Gen. James A. Abrahamson, Associate Administrator of the Space Transportation System (STS), NASA Hdqs., conversing with Dr. Kraft; Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC, Aaron Cohen, Manager, Space Shuttle Orbiter Project Office; and, J. E. Conner, Ford Aerospace Engineer at the Instrumentation and Communications Officer (INCO) Console position. 1. Glynn S. Lunney 2. Major General James A. Abrahamson 3. Aaron Cohen 4. J. E. Conner 5. Dr. Christopher Kraft JSC, Houston, TX
STS-6 MISSION OPERATIONS CONTROL ROOM (MOCR) ACTIVITIES - DAY 5 - JSC
1983-04-09
Various views of STS-6 MOCR activities during Day-5 with Vice-Pres. George Bush, Cap Communicator Bridges, JSC Director Gerald Griffin, Eugene F. Kranz, NASA Admin. James M. Beggs, Cap Com Astronaut O'Connor, Flight Directors Jay H. Greene, Gary E. Coen, and Harold Draughon. 1. BUSH, GEORGE, VICE-PRES. - STS-6 MOCR 2. DIR. GRIFFIN, GERALD D. - STS-6 MOCR 3. ADMIN. BEGGS, JAMES M. - STS-6 MOCR 4. FLT. DIRECTORS - STS-6 JSC, HOUSTON, TX Also available in 35 CN
MOSC activitiy during STS-4 mission
1982-06-27
Wide angle view of flight controllers at work in the JSC mission control center during STS-4. Eugene F. Kranz, Deputy Director of Flight Operations at JSC, punches a key on his console in the MOCR during ascent phase of STS-4. Watching other monitors are JSC Director Christopher C. Kraft, Jr. and Neil B. Hutchinson. Beyond the FOD console in the foreground is the public affairs office (PAO) area, where John E. McLeaish, chief of public information, calls out ascent information on Columbia.
2018-01-31
jsc2018e003256 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during an early sunrise on Jan. 31, 2018. Credit: NASA/Robert Markowitz
Development of a prototype two-phase thermal bus system for Space Station
NASA Technical Reports Server (NTRS)
Myron, D. L.; Parish, R. C.
1987-01-01
This paper describes the basic elements of a pumped two-phase ammonia thermal control system designed for microgravity environments, the development of the concept into a Space Station flight design, and design details of the prototype to be ground-tested in the Johnson Space Center (JSC) Thermal Test Bed. The basic system concept is one of forced-flow heat transport through interface heat exchangers with anhydrous ammonia being pumped by a device expressly designed for two-phase fluid management in reduced gravity. Control of saturation conditions, and thus system interface temperatures, is accomplished with a single central pressure regulating valve. Flow control and liquid inventory are controlled by passive, nonelectromechanical devices. Use of these simple control elements results in minimal computer controls and high system reliability. Building on the basic system concept, a brief overview of a potential Space Station flight design is given. Primary verification of the system concept will involve testing at JSC of a 25-kW ground test article currently in fabrication.
NASA Astrophysics Data System (ADS)
Li, Ling; Feng, Liuliu; Yuan, Jun; Peng, Hongjian; Zou, Yingping; Li, Yongfang
2018-03-01
Two medium bandgap polymers (ffQx-TS1, ffQx-TS2) were designed and synthesized to investigate the influence of different alkylthio side chain on the morphology and photovoltaic performance of non-fullerene polymer solar cells (PSCs). Both polymers exhibit similar molecular weights and comparable the highest occupied molecular orbital (HOMO) energy level. However, the polymer with straight alkylthio chain delivers a root-mean-square (RMS) of 0.86 nm, which is slightly lower than that with branched chain (1.40 nm). The lower RMS benefits the ohmic contact between the active lay and interface layer, thus enhanced short circuit current (Jsc) (from 13.54 mA cm-1 to 15.25 mA cm-1) could be obtained. Due to the enhancement of Jsc, better power conversion efficiency (PCE) of 7.69% for ffQx-TS2 could be realized. These results indicated that alkylthio side chain engineering is a promising method to improve photovoltaic performance.
Nanomaterials Work at NASA-Johnson Space Center
NASA Technical Reports Server (NTRS)
Arepalli, Sivaram
2005-01-01
Nanomaterials activities at NASA-Johnson Space Center focus on single wall carbon nanotube production, characterization and their applications for aerospace. Nanotubes are produced by arc and laser methods and the growth process is monitored by in-situ diagnostics using time resolved passive emission and laser induced fluorescence of the active species. Parametric study of both these processes are conducted to monitor the effect of production parameters including temperature, buffer gas, flow rate, pressure, laser fluence and arc current. Characterization of the nanotube material is performed using the NASA-JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. Efforts at JSC over the past five years in composites have centered on structural polymernanotube systems. Recent activities broadened this focus to multifunctional materials, supercapacitors, fuel cells, regenerable CO2 absorbers, electromagnetic shielding, radiation dosimetry and thermal management systems of interest for human space flight. Preliminary tests indicate improvement of performance in most of these applications because of the large surface area as well as high conductivity exhibited by SWCNTs.
NASA Technical Reports Server (NTRS)
Nakamura, N.; Nyquist, L.E.; Reese, Y.; Shih, C-Y.; Numata, M.; Fujitani, T.; Okano, O.
2009-01-01
Significantly large mass fractionations between chlorine isotopes (Cl-35, Cl-37) have been reported for terrestrial materials including both geological samples and laboratory materials. Also, the chlorine isotopic composition can be used as a tracer for early solar system processes. Moreover, chlorine is ubiquitous on the Martian surface. Typical chlorine abundances in Gusev soils are approx.0.5 %. The global surface average chlorine abundance also is approx.0.5 %. Striking variations among outcrop rocks at Meridiani were reported with some chlorine abundances as high as approx.2%. Characterizing conditions under which chlorine isotopic fractionation may occur is clearly of interest to planetary science. Thus, we have initiated development of a chlorine isotopic analysis technique using TIMS at NASA-JSC. We present here a progress report on the current status of development at JSC and discuss the possible application of chlorine isotopic analysis to Martian meteorites in a search for fluid- and possibly biological activity on Mars.
2018-01-31
jsc2018e003255 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003246 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003245 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003250 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003252 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003254 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003247 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003200 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003251 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003244 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003259 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/ Norah Moran
2018-01-31
jsc2018e003243 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003248 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
2018-01-31
jsc2018e003258 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/ Norah Moran
2018-01-31
jsc2018e003249 (Jan. 31, 2018) --- The lunar eclipse "Blood Moon" was photographed from the Johnson Space Center in Houston, Texas, during the early morning hours of Jan. 31, 2018. Credit: NASA/Robert Markowitz
NASA Technical Reports Server (NTRS)
Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.
2012-01-01
Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for assessing the feasibility of developing the next generation fiber optic senor system that could be retrofitted onto existing subsea pipeline structures.
Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin
2016-01-01
The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.
NASA Astrophysics Data System (ADS)
Oleiwi, Hind Fadhil; Zakaria, Azmi; Yap, Chi Chin; Abbas, Haidr Abdulzahra; Tan, Sin Tee; Lee, Hock Beng; Tan, Chun Hui; Ginting, Riski Titian; Alshanableh, Abdelelah; Talib, Zainal Abidin
2017-05-01
One-dimensional ZnO nanorods (ZNRs) synthesized on fluorine-doped tin oxide (FTO) glass by hydrothermal method were modified with cadmium sulfide quantum dots (CdS QDs) as an electron transport layer (ETL) in order to enhance the photovoltaic performance of inverted organic solar cell (IOSC). In present study, CdS QDs were deposited on ZNRs using a Successive Ionic Layer Adsorption and Reaction method (SILAR) method. In typical procedures, IOSCs were fabricated by spin-coating the P3HT:PC61BM photoactive layer onto the as-prepared ZNRs/CdS QDs. The results of current-voltage (I-V) measurement under illumination shows that the FTO/ZNRs/CdS QDs/ P3HT:PC61BM/ PEDOT: PSS/Ag IOSC achieved a higher power conversion efficiency (4.06 %) in comparison to FTO/ZNRs/P3HT:PC61BM/PEDOT: PSS/Ag (3.6 %). Our findings suggest that the improved open circuit voltage (Voc) and short circuit current density (Jsc) of ZNRs/CdS QDs devices could be attributed to enhanced electron selectivity and reduced interfacial charge carrier recombination between ZNRs and P3HT:PC61BM after the deposition of CdS QDs. The CdS QDs sensitized ZNRs reported herein exhibit great potential for advanced optoelectronic application.
Mission Operations Control Room Activities during STS-2 mission
NASA Technical Reports Server (NTRS)
1981-01-01
Mission Operations Control Room (MOCR) activities during STS-2 mission. President Ronald Reagan is briefed by Dr. Christopher C. Kraft, Jr., JSC Director, who points toward the orbiter spotter on the projection plotter at the front of the MOCR (39499); President Reagan joking with STS-2 astronauts during space to ground conversation (39500); Mission Specialist/Astronaut Sally K. Ride communicates with the STS-2 crew from the spacecraft communicator console (39501); Charles R. Lewis, bronze team Flight Director, monitors activity from the STS-2 crew. He is seated at the flight director console in MOCR (39502); Eugene F. Kranz, Deputy Director of Flight Operations at JSC answers a question during a press conference on Nov. 13, 1981. He is flanked by Glynn S. Lunney, Manager, Space Shuttle Program Office, JSC; and Dr. Christopher C. Kraft, Jr., Director of JSC (39503).
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1992-01-01
The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document contains reports 13 through 24.
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1992-01-01
The 1992 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, Washington, DC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers. This document is a compilation of the final reports 1 through 12.
NASA Technical Reports Server (NTRS)
1993-01-01
During America's space shuttle flights, press and public attention focuses on the Johnson Space Center in Houston. The press and public often put questions to JSC technical and management staff. This fourth JSC Almanac supplies answers for many such questions, and provide an informational resource for speeches to general interest groups. This Almanac is not necessarily comprehensive or definitive. It is not intended as a statement of JSC or NASA policy. However, it does provide a much needed compilation of information from diverse sources. These sources are given as references, permitting the reader to obtain additional information as required. While every effort has been made to ensure accuracy and to reconcile statistics, users requiring the most up-to-date and accurate information should contact the office supplying the information at issue. The Almanac is updated periodically as needed. The following offices were responsible for supplying material for this update.
NASA Technical Reports Server (NTRS)
Garcia, Hector D.; Coleman, M.; James, J.; Lam, C.
1999-01-01
Data on chemical and biological materials to be flown in the pressurized volumes of habitable spacecraft, including the International Space Station (ISS), are needed by JSC toxicologists to assess the toxicity and assign hazard levels. This document defines submission schedules and establishes requirements for the types and format of these data. JSC 27472 Rev A is a major revision of JSC 25607, "Requirements for Submission of Test Sample-Materials Data for Shuttle Payload Safety Evaluations", dated October 1994, which was subsequently re-issued (September 1996) with a new document number, JSC 27472, but with the same title and date and no revisions. The revisions in the present document have been necessitated by the recent introduction of a two-step process (described in this document) for verification of data for flight materials and by the anticipated needs of the ISS. The requirements -for data submission apply to items which contain liquids, gases, gels, greases, powders/ particulates, radioisotopes, or biological materials and are located in the habitable pressurized volume of ISS or U.S. operated spacecraft. These include, but are not limited to, science payloads, government furnished equipment (GFE), risk mitigation experiments (RmEs), development test objectives (DTOs), detailed supplementary objectives (DSOs), life science experiments, and medical studies.
Cosmonauts and astronauts during medical operations training
1994-06-11
Mir 18 crewmember Gennadiy M. Strekalov, center, practicies an emergency medical procedure to maintain a patient airway during training at JSC. Looking on are Dave E. Ward (right), a JSC medical doctor, and an unidentified interpreter.
2001-07-16
JSC2001-E-21584 (16 July 2001) --- STS-104 Orbit 1 flight director Paul Hill discusses mission related matters over the phone at his console in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC).
2001-07-16
JSC2001-E-21576 (16 July 2001) --- ISS Orbit 1 flight director Sally Davis discusses STS-104 matters with other mission support staff at her console in the ISS flight control room (BFCR) in Houston's Mission Control Center (MCC).
2017-04-24
jsc2017e049146 (April 24, 2017) --- Johnson Space Center employees and Center Director watch President Donald Trump call Peggy Whitson on space station for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Allison Bills)
2017-04-24
jsc2017e049148 (April 24, 2017) --- Johnson Space Center employees and Center Director watch President Donald Trump call Peggy Whitson on space station for her record-breaking stay aboard the International Space Station. (Photo Credit: NASA/Allison Bills)
Curating NASA's Past, Present, and Future Astromaterial Sample Collections
NASA Technical Reports Server (NTRS)
Zeigler, R. A.; Allton, J. H.; Evans, C. A.; Fries, M. D.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.; Zolensky, M.; Stansbery, E. K.
2016-01-01
The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (hereafter JSC curation) is responsible for curating all of NASA's extraterrestrial samples. JSC presently curates 9 different astromaterials collections in seven different clean-room suites: (1) Apollo Samples (ISO (International Standards Organization) class 6 + 7); (2) Antarctic Meteorites (ISO 6 + 7); (3) Cosmic Dust Particles (ISO 5); (4) Microparticle Impact Collection (ISO 7; formerly called Space-Exposed Hardware); (5) Genesis Solar Wind Atoms (ISO 4); (6) Stardust Comet Particles (ISO 5); (7) Stardust Interstellar Particles (ISO 5); (8) Hayabusa Asteroid Particles (ISO 5); (9) OSIRIS-REx Spacecraft Coupons and Witness Plates (ISO 7). Additional cleanrooms are currently being planned to house samples from two new collections, Hayabusa 2 (2021) and OSIRIS-REx (2023). In addition to the labs that house the samples, we maintain a wide variety of infra-structure facilities required to support the clean rooms: HEPA-filtered air-handling systems, ultrapure dry gaseous nitrogen systems, an ultrapure water system, and cleaning facilities to provide clean tools and equipment for the labs. We also have sample preparation facilities for making thin sections, microtome sections, and even focused ion-beam sections. We routinely monitor the cleanliness of our clean rooms and infrastructure systems, including measurements of inorganic or organic contamination, weekly airborne particle counts, compositional and isotopic monitoring of liquid N2 deliveries, and daily UPW system monitoring. In addition to the physical maintenance of the samples, we track within our databases the current and ever changing characteristics (weight, location, etc.) of more than 250,000 individually numbered samples across our various collections, as well as more than 100,000 images, and countless "analog" records that record the sample processing records of each individual sample. JSC Curation is co-located with JSC's Astromaterials Research Office, which houses a world-class suite of analytical instrumentation and scientists. We leverage these labs and personnel to better curate the samples. Part of the cu-ration process is planning for the future, and we refer to these planning efforts as "advanced curation". Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envi-sioned by NASA exploration goals. We are (and have been) planning for future cu-ration, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, and curation of organically- and biologically-sensitive samples.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Front row of consoles with Propulsion Engineer (PROP) and Guidance, Navigation, and Control Systems Engineer (GNC) are visible in the foreground. CBS television camera personnel record front visual displays (orbital chart and data) for '48 Hours' program to be broadcast at a later date. The integrated simulation involved communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
STS-30 crewmembers train on JSC shuttle mission simulator (SMS) flight deck
NASA Technical Reports Server (NTRS)
1988-01-01
Wearing headsets, Mission Specialist (MS) Mark C. Lee (left), MS Mary L. Cleave (center), and MS Norman E. Thagard pose on aft flight deck in JSC's fixed base (FB) shuttle mission simulator (SMS). In background, Commander David M. Walker and Pilot Ronald J. Grabe check data on forward flight deck CRT monitors. FB-SMS is located in JSC's Mission Simulation and Training Facility Bldg 5. Crewmembers are scheduled to fly aboard Atlantis, Orbiter Vehicle (OV) 104, in April 1989 for NASA mission STS-30.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Director of Mission Operations Directorate (MOD) Eugene F. Kranz (left) and Chief of the Flight Directors Office Tommy W. Holloway monitor activity during the simulation. The two are at their normal stations on the rear row of consoles. The integrated simulation involves MCC flight controllers communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). CBS television camera personnel record MCC activities at Spacecraft Communicator (CAPCOM) and Flight Activities Officer (FAO) (foreground) consoles for '48 Hours' program to be broadcast at a later date. The integrated simulation involved communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. MCC FCR visual displays are seen in front of the rows of consoles.
First Integrated Flight Simulation For STS 114
2004-10-13
JSC2004-E-45138 (13 October 2004) --- Astronaut Stephen N. Frick monitors communications at the spacecraft communicator (CAPCOM) console in the Shuttle Flight Control Room (WFCR) in Johnson Space Centers (JSC) Mission Control Center (MCC) with the STS-114 crewmembers during a fully-integrated simulation on October 13. The seven member crew was in a JSC-based simulator during the sims. The dress rehearsal of Discovery's rendezvous and docking with the International Space Station (ISS) was the first flight-specific training for the Space Shuttle's return to flight.
Overview of Power Quality and Integrated Testing at JSC
NASA Technical Reports Server (NTRS)
Davies, Francis
2018-01-01
This presentation describes the basic philosophy behind integrated testing and partially integrated testing. It lists some well known errors in space systems that were or could have been caught during integrated testing. Two examples of integrated testing at the Johnson Space Center (JSC) are mentioned, and then an overview of two test facilities that do power testing (partially integrated testing) at JSC are presented, with information on the capabilities of each. Finally a list of three projects that has problems caught during power quality or Electromagnetic Interference (EMI) testing is presented.
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Sickorez, Donn G. (Editor)
1997-01-01
The objectives of the program, which began nationally in 1964 and at JSC in 1965 are to (1) further the professional knowledge qualified engineering and science faculty members, (2) stimulate an exchange of ideas between participants and NASA, (3) and refresh the research and teaching activities of participants' institutions, and (4) contribute to the research objectives of NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA JSC colleague.
JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr
NASA Technical Reports Server (NTRS)
1991-01-01
JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.
Tan, Swee Ching; Crouch, Lucy I; Mahajan, Sumeet; Jones, Michael R; Welland, Mark E
2012-10-23
The innately highly efficient light-powered separation of charge that underpins natural photosynthesis can be exploited for applications in photoelectrochemistry by coupling nanoscale protein photoreaction centers to man-made electrodes. Planar photoelectrochemical cells employing purple bacterial reaction centers have been constructed that produce a direct current under continuous illumination and an alternating current in response to discontinuous illumination. The present work explored the basis of the open-circuit voltage (V(OC)) produced by such cells with reaction center/antenna (RC-LH1) proteins as the photovoltaic component. It was established that an up to ~30-fold increase in V(OC) could be achieved by simple manipulation of the electrolyte connecting the protein to the counter electrode, with an approximately linear relationship being observed between the vacuum potential of the electrolyte and the resulting V(OC). We conclude that the V(OC) of such a cell is dependent on the potential difference between the electrolyte and the photo-oxidized bacteriochlorophylls in the reaction center. The steady-state short-circuit current (J(SC)) obtained under continuous illumination also varied with different electrolytes by a factor of ~6-fold. The findings demonstrate a simple way to boost the voltage output of such protein-based cells into the hundreds of millivolts range typical of dye-sensitized and polymer-blend solar cells, while maintaining or improving the J(SC). Possible strategies for further increasing the V(OC) of such protein-based photoelectrochemical cells through protein engineering are discussed.
Veerabhadrappa, Mohankumar Bavimane; Shivakumar, Sharath Belame; Devappa, Somashekar
2014-02-01
This study focused on the solid-state fermentation of Jatropha seed cake (JSC), a byproduct generated after biodiesel production. Presence of anti-nutritional compounds and toxins restricts its application in livestock feed. The disposal of the JSC is a major environmental problem in the future, due to the generation of huge quantity of JSC after biodiesel extraction. Hence the JSC was assessed for its suitability as substrate for production and optimization of lipase and protease from Aspergillus versicolor CJS-98 by solid-state fermentation (SSF). The present study was also focused on the biodetoxification of anti-nutrients and toxins in JSC. The SSF parameters were optimized for maximum production of lipase and protease. Under the optimized conditions, the JSC supplemented with maltose and peptone (2%), adjusted to pH 7.0, moisture content 40%, inoculated with 1 × 10(7) spores per 5 g cake and incubated at 25°C, produced maximum lipase, 1288 U/g and protease, 3366 U/g at 96 h. The anti-nutrients like phytic acid (6.08%), tannins (0.37%), trypsin inhibitors (697.5 TIU/g), cyanogenic glucosides (692.5 μg/100 g), and lectins (0.309 mg/ml), were reduced to 1.70%, 0.23%, 12.5 TIU/g, 560.6 μg/100 g and 0.034 mg/ml respectively. The main toxic compound phorbol esters content in the JSC was reduced from 0.083% to 0.015% after SSF. Our results indicate that viability of SSF to utilize the huge amount of seed cake generated after extraction of biodiesel, for production of industrial enzymes and biodetoxification of anti-nutrients, toxins. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Allen, C. C.; Allton, J. H.
2013-01-01
Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included < 0.6 ng/cm2 of DBP, DEP, TXIB, and DIBP. Silicones included < 0.5 ng/cm2 of cyclo(Me2SiO)x (x = 6, 8, 9, 10) and siloxane. Solvents included < 1.0 ng/cm2 of 2-cyclohexen-1-one, 3,5,5-trimethyl- (Isopho-rone), N-formylpiperidine, and 2-(2-butoxyethoxy) ethanol. In addition, DBF, rubber/polymer additive was found at < 0.2 ng/cm2 and caprolactam, nylon-6 at < 0.6 ng/cm2. Reducing Organics: The Apollo program was the last sam-ple return mission to place high-level organic requirements and biological containment protocols on a curation facility. The high vacuum complex F-201 glovebox in the Lunar Receiving Labora-tory used ethyl alcohol (190 proof), 3:1 benzene/methanol (nano grade solution), and heat sterilization at 130degC for 48 hours to reduce organic contamination. In addition, both heat sterilization and peracetic acid sterilization were used in the atmospheric de-contamination (R) cabinets. Later, Lunar curation gloveboxes were degreased with a pressurized Freon 113 wash. Today, UPW has replaced Freon as the standard cleaning procedure, but does not have the degreasing solvency power of Freon. Future Cleaning Studies: Cleaning experiments are cur-rently being orchestrated to study how to degrease and reduce organics in a JSC curation glovebox lower than the established baseline. Several new chemicals in the industry have replaced traditional degreasing solvents such as Freon and others that are now federally restricted. However, these new suites of chemicals remain untested for lowering organics in curation gloveboxes. 3M's HFE-7100DL and DuPont's Vertrel XF are currently being tested as a replacement for Freon 113 as a degreaser at JSC cura-tion facilities. In addition, the use of UPW as a final rinse is be-ing tested, which presumably can maintain a lower total organic carbon load than the filtered purity of chemical solutions. References: [1] Allton J.H. et al. (2012) LPS XLIII, 2439; [2] Calaway M.
2013-02-04
JSC2013-E-009914 (1969) -- Vice President Spiro Agnew pins Flight Director Eugene F. Kranz as NASA Administrator Thomas Paine and Apollo 9 Commander James A. McDivitt look on. Photo credit: NASA Hq. photo identification no. is 69-H-537
STS-32 crewmembers use water hose during exercises at JSC fire training pit
NASA Technical Reports Server (NTRS)
1989-01-01
STS-32 Commander Daniel C. Brandenstein (left) and Pilot James D. Wetherbee handle water hose during fire training exercises conducted at JSC Fire Training Pit across from the Gilruth Center Bldg 207.
STS-104 Crew Return, Ellington Field, Building 990
2001-07-26
JSC2001-E-22790 (25 July 2001) --- Astronauts Janet L. Kavandi (left), STS-104 mission specialist, and Steven W. Lindsey, mission commander, are greeted by JSC Acting Director Roy S. Estess following crew arrival at Ellington Field.
NASA Technical Reports Server (NTRS)
Bannerot, Richard B. (Editor); Goldstein, Stanley H. (Editor)
1989-01-01
The 1988 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers.
Emergency Operations Center at Johnson Space Center
NASA Technical Reports Server (NTRS)
Caylor, Gary C.
1997-01-01
In June 1966, at the start of the Gulf Coast hurricane season, the Johnson Space Center (JSC) celebrated the opening of its new 4,000-square foot, state-of-the-art Emergency Operations Center (EOC). The new EOC has been upgraded and enhanced to support a wide spectrum of emergencies affecting JSC and neighboring communities. One of the main features of the EOC is its premier computerized dispatch center. The new system unites many of JSC's critical emergency functions into one integrated network. It automatically monitors fire alarms, security entrances, and external cameras. It contains the JSC inventory of hazardous materials, by building and room, and can call up Material Safety Data Sheets for most of the generic hazardous materials used on-site. The EOC is available for community use during area emergencies such as hurricanes and is a welcome addition to the Clear Lake/Galveston Bay Area communities' emergency response resources.
The 1983 NASA/ASEE Summer Faculty Fellowship Research Program research reports
NASA Technical Reports Server (NTRS)
Horn, W. J. (Editor); Duke, M. B. (Editor)
1983-01-01
The 1983 NASA/ASEE Summary Faculty Fellowship Research Program was conducted by Texas A&M University and the Lyndon B. Johnson Space Center (JSC). The 10-week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the programs, which began in 1965 at JSC and in 1964 nationally, are (1) to further the professional knowledge of qualified engineering and science faculty members, (2) to stimulate an exchange of ideas between participants and NASA, (3) to enrich and refresh the research and teaching activities of participants' institutions, and (4) to contribute to the research objectives of the NASA Centers. The faculty fellows spent 10 weeks at JSC engaged in a research project commensurate with their interests and background. They worked in collaboration with a NASA/JSC colleague. This document is a compilation of final reports on their research during the summer of 1983.
LDEF meteoroid and debris database
NASA Technical Reports Server (NTRS)
Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.
1994-01-01
The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photodocumented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.
NASA Technical Reports Server (NTRS)
Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)
1989-01-01
The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.
NASA Technical Reports Server (NTRS)
Jones, William B., Jr. (Editor); Goldstein, Stanley H. (Editor)
1989-01-01
The 1989 Johnson Space Center (JSC) National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program was conducted by Texas A and M University and JSC. The 10-week program was operated under the auspices of the ASEE. The program at JSC, as well as the programs at other NASA Centers, was funded by the Office of University Affairs, NASA Headquarters, Washington, D.C. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objective of the NASA Centers.
NASA Technical Reports Server (NTRS)
Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)
1987-01-01
The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston and JSC. The ten week program was operated under the auspices of the American Society for Engineering Education (ASEE). The basic objectives of the program are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. The final reports on the research projects are presented. This volume, 2, contains sections 15 through 30.
NASA Astrophysics Data System (ADS)
Jo, Hyun-Jun; Mun, Young Hee; Kim, Jong Su; Kim, Seung Hyun; Lee, Sang-Ju; Sung, Shi-Joon; Kim, Dae-Hwan
2018-03-01
This paper presents organic-inorganic hybrid solar cells (SCs) based on ZnO/Sb2S3/P3HT heterojunctions. The ZnO and the Sb2S3 layers were grown using atomic layer deposition (ALD). Although four cells were fabricated on one substrate by using the same process, their open-circuit voltages ( V OC ) and short-circuit current densities ( J SC ) were different. The SC with a high V OC has a low J SC . The causes of the changes in the V OC and the JSC were investigated by using photoluminescence (PL) spectroscopy and optically-biased time-resolved photocurrent (TRPC) measurements. The PL results at 300 K showed that the emission positions of the Sb2S3 layers in all cells were similar at approximately 1.71 eV. The carrier lifetime of the SCs was calculated from the TRPC results. The lifetime of cell 4 with the highest J SC decreased drastically with increasing intensity of the continuous-wave optical bias beam. Therefore, the defect states in the ZnO layer contribute to the J SC , but degrade the V OC .
Study of the back recombination processes of PbS quantum dots sensitized solar cells
NASA Astrophysics Data System (ADS)
Badawi, Ali; Al-Hosiny, N.; Merazga, Amar; Albaradi, Ateyyah M.; Abdallah, S.; Talaat, H.
2016-12-01
In this study, the back recombination processes of PbS quantum dots sensitized solar cells (QDSSCs) has been investigated. PbS QDs were adsorbed onto titania electrodes to act the role of sensitizers using successive ionic layer adsorption and reaction (SILAR) technique. The energy band gaps of the synthesized PbS QDs/titania are ranged from 1.64 eV (corresponding to 756 nm) to 3.12 eV (397 nm) matching the whole visible solar spectrum. The hyperbolic band model (HBM) was used to calculate PbS QDs size and it ranges from 1.76 to 3.44 nm. The photovoltaic parameters (open circuit voltage Voc, short circuit current density Jsc, fill factor FF and efficiency η) of the assembled PbS QDs sensitized solar cells (QDSSCs) were determined under a solar illumination of 100 mW/cm2 (AM 1.5 conditions). The open circuit voltage-decay (OCVD) rates of the assembled PbS QDSSCs were measured. The time constant (τ) for PbS QDSSCs (4 SILAR cycles) shows one order of magnitude larger than that of PbS QDSSCs (8 SILAR cycles) as a result of a decreased electron-hole back recombination.
UWB Two-Cluster AOA Tracking Prototype System Design
NASA Technical Reports Server (NTRS)
Ngo, Phong H.; Arndt, D.; Phan, C.; Gross, J.; Jianjun; Rafford, Melinda
2006-01-01
This presentation discusses a design effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar/Mars rovers during early exploration missions when satellite navigation systems are not available. The UWB technology is exploited to implement the tracking system due to its properties such as fine time resolution, low power spectral density and multipath immunity. A two cluster prototype design using commercially available UWB radios is employed to implement the Angle of Arrival (AOA) tracking methodology in this design effort. In order to increase the tracking range, low noise amplifiers (LNA) and high gain horns are used at the receiving sides. Field tests were conducted jointly with the Science and Crew Operation Utility Testbed (SCOUT) vehicle near the Meteor Crater in Arizona to test the tracking capability for a moving target in an operational environment. These tests demonstrate that the UWB tracking system can co-exist with other on-board radio frequency (RF) communication systems (such as Global Positioning System (GPS), video, voice and telemetry systems), and that a tracking resolution less than 1% of the range can be achieved.
Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.
Lim, Sungoh; Kim, Yohan; Lee, Jeongno; Han, Chul Jong; Kang, Jungwon; Kim, Jiwan
2014-12-01
Colloidal quantum dots (QD)-based solar cells with near infrared (NIR) emission have been investigated. Lead sulfide (PbS) QDs, which have narrow band-gap and maximize the absorption of NIR spectrum, were chosen as active materials for efficient solar cells. The inverted structure of indium tin oxide/titanium dioxide/PbS QDs/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)/silver (ITO/TiO2/PbS QDs/ PSS/Ag) was applied for favorable electron and hole seperation from the PbS QD. Through the ligand exchange by 1,2-Ethanedithiol (EDT), the interparticle distance of the PbS QDs in thin film became closer and the performance of the PbS QD-based solar cells was improved. Our PbS QD-based inverted solar cells showed open circuit voltages (V(oc)) of 0.33 V, short circuit current density (J(sc)) of 10.89 mA/cm2, fill factor (FF) of 30%, and power conversion efficiency (PCE) of 1.11%. In our PbS QD-based multifunctional solar cell, the NIR light emission intensity was simply detected with photodiode system, which implies the potential of multi-functional diode device for various applications.
Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon
2016-07-28
In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm(-2)), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved.
NASA Astrophysics Data System (ADS)
Lin, Wen-Kai; Su, Shui-Hsiang; Yeh, Meng-Cheng; Huang, Yang-Chan; Yokoyama, Meiso
2016-01-01
Solution-processed titanium-doped ZnO (TZO) is synthesized by the sol-gel method to be the electron-transporting layer (ETL) in an inverted organic solar cell (IOSC). Carbon nanotubes (CNTs) are doped into an active layer of poly(3-hexylthiophene):[6,6]-phenyl C 61 butyric acid methyl ester (P3HT:PCBM). The addition of CNTs in the P3HT:PCBM composite increases the conjugation length of P3HT:PCBM:CNTs, which simultaneously enhances the capacity of the composite to absorb solar energy radiation. Vanadium oxide (V2O5) was spin-coated onto the active layer to be a hole-transporting layer (HTL). The power conversion efficiency (PCE) results indicate that the V2O5 nanobelt structure possesses better phase separation and provides a more efficient surface area for the P3HT:PCBM:CNT active layer to increase photocurrent. The optimized IOSCs exhibited an open circuit voltage (Voc), a short-circuit current density (Jsc), a fill factor (FF), and a PCE of 0.55 V, 6.50 mA/cm2, 58.34%, and 2.20%, respectively, under simulated AM1.5G illumination of 100 mW/cm2.
Yu, Lu; Li, Qiuxiang; Shi, Zhenzhen; Liu, Hao; Wang, Yaping; Wang, Fuzhi; Zhang, Bing; Dai, Songyuan; Lin, Jun; Tan, Zhan'ao
2016-01-13
The insertion of an appropriate interfacial buffer layer between the photoactive layer and the contact electrodes makes a great impact on the performance of polymer solar cells (PSCs). Ideal interfacial buffer layers could minimize the interfacial traps and the interfacial barriers caused by the incompatibility between the photoactive layer and the electrodes. In this work, we utilized solution-processed hafnium(IV) acetylacetonate (Hf(acac)4) as an effective cathode buffer layer (CBL) in PSCs to optimize the energy level alignment between the photoactive layer and the cathode contact, with the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) all simultaneously improved with Hf(acac)4 CBL, leading to enhanced power conversion efficiencies (PCEs). Ultraviolet photoemission spectroscopy (UPS) and scanning Kelvin probe microscopy (SKPM) were performed to confirm that the interfacial dipoles were formed with the same orientation direction as the built-in potential between the photoactive layer and Hf(acac)4 CBL, benefiting the exciton separation and electron transport/extraction. In addition, the optical characteristics and surface morphology of the Hf(acac)4 CBL were also investigated.
Li, Guang; Chen, Xiaoshuang; Gao, Guandao
2014-03-21
In this work, we synthesized 3D Bi2S3 microspheres comprised of nanorods grown along the (211) facet on graphene sheets by a solvothermal route, and investigated its catalytic activities through I-V curves and conversion efficiency tests as the CE in DSSCs. Although the (211) facet has a large band gap for a Bi2S3 semiconductor, owing to the introduction of graphene into the system, its short-circuit current density, open-circuit voltage, fill factor, and efficiency were Jsc = 12.2 mA cm(-2), Voc = 0.75 V, FF = 0.60, and η = 5.5%, respectively. By integrating it with graphene sheets, our material achieved the conversion efficiency of 5.5%, which is almost triple the best conversion efficiency value of the DSSCs with (211)-faceted 3D Bi2S3 without graphene (1.9%) reported in the latest literature. Since this conversion-efficient 3D material grown on the graphene sheets significantly improves its catalytic properties, it paves the way for designing and applying low-cost Pt-free CE materials in DSSC from inorganic nanostructures.
NASA Astrophysics Data System (ADS)
Kim, Junghwan; Lee, Kwanghee
2016-09-01
The integration of planar-type perovskite (Eg 1.5 eV) solar cells (PSCs) with a bulk-heterojunction (BHJ) composite comprising a near-infrared (NIR) absorbing conjugated polymer (Eg < 1.4 eV) and a fullerene derivative is a promising approach to overcoming the narrow absorption limit of typical PSCs. Nevertheless, integrated solar cells (ISCs) suffer from low fill factors (FFs) and inefficient NIR harvesting, mainly due to poor charge transport in the BHJ films. Here, we successfully demonstrate highly efficient P-I-N perovskite/BHJ ISCs with an enhanced FF and improved NIR harvesting by introducing a novel n-type semiconducting polymer and a new processing additive into the BHJ films. The optimized ISCs exhibit a power conversion efficiency (PCE) of 16.36%, which far surpasses that of the reference PSCs ( 14.70%) due to the increased current density (Jsc 20.04 mA cm-2) resulting from the additional NIR harvesting. Meanwhile, the optimized ISCs maintain a high FF of 77% and an open-circuit voltage (Voc) of 1.06 V. These results indicate that this approach is a versatile means of overcoming the absorption and theoretical efficiency limits of state-ofthe- art PSCs.
Fabrication and characterization study of ZnTe/n-Si heterojunction solar cell application
NASA Astrophysics Data System (ADS)
AlMaiyaly, BushraK H.; Hussein, Bushra H.; Shaban, Auday H.
2018-05-01
Different thicknesses (150 250 and 350) ±20 nm has been deposited on the glass substrate and nSi wafer to fabricate ZnTe/n-Si heterojunction solar cell by vacuum evaporation technique Structural optical electrical and photovoltaic properties are investigated for the samples. The structural characteristics studied via X ray analyses indicated that the films are polycrystalline besides having a cubic (zinc blende) structure also average diameter and surface roughness calculated from AFM images The optical measurements of the deposited films were performed in different thicknesses to determine the transmission spectrum as a function of incident wavelength in the range of wavelength (4001000) nm and the optical energy gap calculated from the optical absorption spectra was found to reduse with thickness The IV characteristic at (dark and illuminated) and CV measurement for ZnTe/n-Si heterojunction shows the good rectifying behaviour under dark condition. The measurements of opencircuit voltage (VOC) short-circuit current density (JSC) fill factor (FF) and quantum fficiencies of the ZnTe/n-Si heterojunction are calculated for all samples The results of these studies are presented and discussed in this paper.
Kwon, Uisik; Kim, Bong-Gi; Nguyen, Duc Cuong; Park, Jong-Hyeon; Ha, Na Young; Kim, Seung-Joo; Ko, Seung Hwan; Lee, Soonil; Lee, Daeho; Park, Hui Joon
2016-01-01
In this work, we report on solution-based p-i-n-type planar-structured CH3NH3PbI3 perovskite photovoltaic (PV) cells, in which precrystallized NiO nanoparticles (NPs) without post-treatment are used to form a hole transport layer (HTL). X-ray diffraction and high-resolution transmission electron microscopy showed the crystallinity of the NPs, and atomic force microscopy and scanning electron microscopy confirmed the uniform surfaces of the resultant NiO thin film and the subsequent perovskite photoactive layer. Compared to the conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL, the NiO HTL had excellent energy-level alignment with that of CH3NH3PbI3 and improved electron-blocking capability, as analyzed by photoelectron spectroscopy and diode modeling, resulting in Voc ~0.13 V higher than conventional PEDOT:PSS-based devices. Consequently, a power conversion efficiency (PCE) of 15.4% with a high fill factor (FF, 0.74), short-circuit current density (Jsc, 20.2 mA·cm−2), and open circuit voltage (Voc, 1.04 V) having negligible hysteresis and superior air stability has been achieved. PMID:27465263
Improved PEDOT:PSS/c-Si hybrid solar cell using inverted structure and effective passivation
Zhang, Xisheng; Yang, Dong; Yang, Zhou; Guo, Xiaojia; Liu, Bin; Ren, Xiaodong; Liu, Shengzhong (Frank)
2016-01-01
The PEDOT:PSS is often used as the window layer in the normal structured PEDOT:PSS/c-Si hybrid solar cell (HSC), leading to significantly reduced response, especially in red and near-infrared region. By depositing the PEDOT:PSS on the rear side of the c-Si wafer, we developed an inverted structured HSC with much higher solar cell response in the red and near-infrared spectrum. Passivating the other side with hydrogenated amorphous silicon (a-Si:H) before electrode deposition, the minority carrier lifetime has been significantly increased and the power conversion efficiency (PCE) of the inverted HSC is improved to as high as 16.1% with an open-circuit voltage (Voc) of 634 mV, fill factor (FF) of 70.5%, and short-circuit current density (Jsc) of 36.2 mA cm−2, an improvement of 33% over the control device. The improvements are ascribed to inverted configuration and a-Si:H passivation, which can increase photon carrier generation and reduce carrier recombination, respectively. Both of them will benefit the photovoltaic performance and should be considered as effective design strategies to improve the performance of organic/c-Si HSCs. PMID:27725714
Expedition 11 Preflight training
2004-06-24
JSC2004-E-26778 (24 June 2004) --- Cosmonaut Sergei K. Krikalev, Expedition 11 commander representing Russias Federal Space Agency, participates in medical training at Johnson Space Center (JSC). Space Medicine Instructor Tyler N. Carruth with Wyle Life Sciences assisted Krikalev.
Performance of High Voltage Modules Under Abuse Operations
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.; Darcy, Eric C.; Irlbeck, Bradley W.
2005-01-01
The Electric Auxiliary Power Unit (EAPU) or the Advanced Hydraulic Power System (AHPS) is a Shuttle Upgrade program. Of the two battery design approaches that were considered in support of this program, the current paper concentrates on the testing performed on the small-cell approach. Testing performed at both ComDev Space, Canada and at NASA-JSC is described in this paper. Testing included those under mission profile conditions and off-nominal abusive conditions.
Automated rendezvous and capture development infrastructure
NASA Technical Reports Server (NTRS)
Bryan, Thomas C.; Roe, Fred; Coker, Cynthia
1992-01-01
The facilities at Marshall Space Flight Center and JSC to be utilized to develop and test an autonomous rendezvous and capture (ARC) system are described. This includes equipment and personnel facility capabilities to devise, develop, qualify, and integrate ARC elements and subsystems into flight programs. Attention is given to the use of a LEO test facility, the current concept and unique system elements of the ARC, and the options available to develop ARC technology.
Electro-chemical development of CuInGaSe2-based photovoltaic solar cells
NASA Astrophysics Data System (ADS)
Tolan, Gavin James
The aim of this work was to make low cost, high efficiency, graded bandgap, thin film CuInGaSe2 solar cells by electrodeposition, using novel device designs proposed by Dharmadasa et al. These new designs were first experimentally tested using well researched GaAs and AlxGa(1-x)As materials grown using MOCVD, these ideas were then transferred to electrodeposited CuInGaSe2.New designs of graded bandgap solar cells based on p-type window materials, using the well researched GaAs and AlxGa(1-x)As alloy system, have been experimentally tested. The size of the cell was gradually scaled up from 0.5 mm diameter (0.002 cm2) to 3x3 mm2 (0.090 cm2) and to 5x5 mm2 (0.250 cm2), these were then assessed using I-V and QE techniques. The devices showed Voc in the range of 1070-1175 mV, exceeding reported values, FF in the range 0.80-0.87, and Jsc in the range 11-12 mA cm-2. The reason for the low current density was believed to be due to the GaAs capping layer used in the device, which acted as a filter. To confirm this, a second set of devices was fabricated, replacing the GaAs cap with GaAlP, this increased the Jsc to 14 mA cm-2, Voc and FF remained the same.New PV device structures based on CuInGaSe2 starting from the front contact, instead of the conventional Mo back contact, have been grown by electrodeposition from aqueous solutions using a single bath. In order to investigate the effect of bath concentrations on the film properties, 3 different bath concentrations were used. PEC was used to determine the electrical conduction of these layers, and it was found that it was possible to grow p+, p, i, n, n+ layers by changing the deposition voltage. XRF was used to determine the stoichiometry of the corresponding layers, and XRD to investigate the bulk structure. The morphological properties were studied using AFM and SEM. A four-layer n-n-i-p solar cell structure was initially fabricated and I-V measurements were carried out to assess the devices. The devices were PV active with parameters Voc 235 mV, Jsc 22 mA cm-2, FF 0.38 and n 2.0%.Due to problems annealing CdS at high temperature and the difficulty of incorporating gallium into the layer, CuInSe2 cells with Mo as the substrate were deposited. To understand the mechanisms of film growth, detailed cyclic voltammetry was carried out, leading to the construction of a Pourbaix diagram for the Cu-In-Se system. Depositing the films at -0.476 V for 20 minutes, followed by 50 minutes at -0,576 mV gave the best quality films, with p-type electrical conduction. XRF and XRD were used to determine stoichiometry and structural properties respectively. A method to anneal the CuInSe2 layers without the use of H2Se was devised, and a detailed study using SEM to determine the effects of annealing time and temperature was carried out. Annealing the films at 550°C for 30 minutes gave the best results. I-V measurements were carried out using an electrolyte contact, the devices were photo active, (Voc 866 mV, Jsc 0.9 mA cm-2, FF 0.40).
Cosmonaut Vladimir Titov participates in bail-out training for STS-60
NASA Technical Reports Server (NTRS)
1993-01-01
Cosmanaut Vladimir Titov, an alternate mission specialist for STS-60, simulates a parachute glide into water during a bailout training exercise at JSC. This phase of emergency egress training took place in JSC's Weightless Environment Training Facility (WETF).
Cosmonaut Vladimir Titov participates in bail-out training for STS-60
1993-07-16
Cosmanaut Vladimir Titov, an alternate mission specialist for STS-60, simulates a parachute glide into water during a bailout training exercise at JSC. This phase of emergency egress training took place in JSC's Weightless Environment Training Facility (WETF).
2012-06-07
JSC2012-E-096294 (7 June 2012) --- Russian cosmonaut Roman Romanenko, Expedition 32 backup crew member, attired in a Russian Sokol launch and entry suit, takes a break from training in Star City, Russia to pose for a portrait. Photo credit: Gagarin Cosmonaut Training Center
2012-11-14
JSC2012-E-238486 (14 Nov. 2012) --- Russian cosmonaut Roman Romanenko, Expedition 34/35 flight engineer, attired in a Russian Sokol launch and entry suit, takes a break from training in Star City, Russia to pose for a portrait. Photo credit: Gagarin Cosmonaut Training Center
JSC technician checks STS-44 DSO 316 bioreactor and rotating wall vessel hdwr
1991-06-27
S91-40049 (27 June 1991) --- JSC technician Tacey Prewitt checks the progress on a bioreactor experiment in JSC's Life Sciences Laboratory Bldg 37 biotechnology laboratory. Similar hardware is scheduled for testing aboard Atlantis, Orbiter Vehicle (OV) 104, during STS-44. Detailed Supplementary Objective (DSO) 316 Bioreactor/Flow and Particle Trajectory in Microgravity will checkout the rotating wall vessel hardware and hopefully will confirm researchers' theories and calculations about how flow fields work in space. Plastic beads of various sizes rather than cell cultures are being flown in the vessel for the STS-44 test.
STS-31 crewmembers during simulation on the flight deck of JSC's FB-SMS
NASA Technical Reports Server (NTRS)
1988-01-01
On the flight deck of JSC's fixed based (FB) shuttle mission simulator (SMS), Mission Specialist (MS) Steven A. Hawley (left), on aft flight deck, looks over the shoulders of Commander Loren J. Shriver, seated at the commanders station (left) and Pilot Charles F. Bolden, seated at the pilots station and partially blocked by the seat's headrest (right). The three astronauts recently named to the STS-31 mission aboard Discovery, Orbiter Vehicle (OV) 103, go through a procedures checkout in the FB-SMS. The training simulation took place in JSC's Mission Simulation and Training Facility Bldg 5.
NASA Technical Reports Server (NTRS)
Calaway, Michael J.
2013-01-01
In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.
2010-01-26
Small Business Council meeting hosed by NASA Ames Research Center: Naeemah Lee, H.Q., Cheryl Harrison, JSC, Gil DelVaile, GSRC, Mary Helen Ruiz, JPL, David Grove, HQ, John Cecconi, NSSC, Sandra Morris, HQ/OP, Michelle Stracener, SSC, Randy Manning, LaRC, Vernon Vann, LaRC, David Brock, MSFC, Ben Henson, MSFC, Larry Third, KSC, Robert Medina, DFRC, Christine Munroe, ARC, Lupe M. Velasquez, ARC, Monica F. Craft, JSC (?), Angel Castillo, NMO, Timothy C Pierce, GRC, Charles Williams, JSC, Jennifer Perez, GSFC, Rosa Acevedo, GSFC, Glenn A Delgado, HQ/Assoc Admin for Small Business, Tabisa Tepfer, HQ/OSBP/MORIAssoc, Richard Mann, HQ/OSBP
Evaluation of Lunar Dark Mantle Deposits as Key to Future Human Missions
NASA Technical Reports Server (NTRS)
Coombs, Cassandra
1997-01-01
I proposed to continue detailed mapping, analysis and assessment of the lunar pyroclastic dark mantle deposits in support of the Human Exploration and Development of Space (HEDS) initiative. Specifically: (1) I continued gathering data via the Internet and mailable media, and a variety of other digital lunar images including; high resolution digital images of the new Apollo masters from JSC, images from Clementine and Galileo, and recent telescopic images from Hawaii; (2) continued analyses on these images using sophisticated hardware and software at JSC and the College of Charleston to determine and map composition using returned sample data for calibration; (3) worked closely with Dr. David McKay and others at JSC to relate sample data to image data using laboratory spectra from JSC and Brown University; (4) mapped the extent, thickness, and composition of important dark mantle deposits in selected study areas; and (5) began composing a geographically referenced database of lunar pyroclastic materials in the Apollo 17 area. The results have been used to identify and evaluate several candidate landing sites in dark mantle terrains. Additional work spawned from this effort includes the development of an educational CD-Rom on exploring the Moon: Contact Light. Throughout the whole process I have been in contact with the JSC HEDS personnel.
High Temperature Microwave Dielectric Properties of JSC-1AC Lunar Simulant
NASA Technical Reports Server (NTRS)
Allan, Shawn M.; Merritt, Brandon J.; Griffin, Brittany F.; Hintze, Paul E.; Shulman, Holly S.
2011-01-01
Microwave heating has many potential lunar applications including sintering regolith for lunar surface stabilization and heating regolith for various oxygen production reactors. The microwave properties of lunar simulants must be understood so this technology can be applied to lunar operations. Dielectric properties at microwave frequencies for a common lunar simulant, JSC-1AC, were measured up to 1100 C, which is approximately the melting point. The experimentally determined dielectric properties included real and imaginary permittivity (epsilon', epsilon"), loss tangent (tan delta), and half-power depth, the di stance at which a material absorbs 50% of incident microwave energy. Measurements at 2.45 GHz revealed tan delta of JSC-1A increases from 0.02 at 25 C to 0.31 at 110 C. The corresponding half-power depth decreases from a peak of 286 mm at 110 C, to 13 mm at 1100 C. These data indicate that JSC-1AC becomes more absorbing, and thus a better microwave heater as temperature increases. A half-power depth maximum at 100-200 C presents a barrier to direct microwave heating at low temperatures. Microwave heating experiments confirm the sluggish heating effect of weak absorption below 200 C, and increasingly strong absorption above 200 C, leading to rapid heating and melting of JSC-1AC.
Finite element analysis of the Space Shuttle 2.5-inch frangible nut
NASA Technical Reports Server (NTRS)
McKinnis, Darin N.
1994-01-01
Finite element analysis of the Space Shuttle 2.5-inch frangible nut was conducted to improve understanding of the current design and proposed design changes to this explosively-actuated nut. The 2.5-inch frangible nut is used in two places to attach the aft end of the Space Shuttle Orbiter to the External Tank. Both 2.5-inch frangible nuts must function to complete safe separation. The 2.5-inch frangible nut contains two explosive boosters containing RDX explosive each capable of splitting the nut in half, on command from the Orbiter computers. To ensure separation, the boosters are designed to be redundant. The detonation of one booster is sufficient to split the nut in half. However, beginning in 1987 some production lots of 2.5-inch frangible nuts have demonstrated an inability to separate using only a single booster. The cause of the failure has been attributed to differences in the material properties and response of the Inconel 718 from which the 2.5-inch frangible nut is manufactured. Subsequent tests have resulted in design modifications of the boosters and frangible nut. Model development and initial analysis was conducted by Sandia National Laboratories (SNL) under funding from NASA Lyndon B. Johnson Space Center (NASA-JSC) starting in 1992. Modeling codes previously developed by SNL were transferred to NASA-JSC for further analysis on this and other devices. An explosive bolt with NASA Standard Detonator (NSD) charge, a 3/4-inch frangible nut, and the Super*Zip linear separation system are being modeled by NASA-JSC.
Lessard, Benoît H; Dang, Jeremy D; Grant, Trevor M; Gao, Dong; Seferos, Dwight S; Bender, Timothy P
2014-09-10
Previous studies have shown that the use of bis(tri-n-hexylsilyl oxide) silicon phthalocyanine ((3HS)2-SiPc) as an additive in a P3HT:PC61BM cascade ternary bulk heterojunction organic photovoltaic (BHJ OPV) device results in an increase in the short circuit current (J(SC)) and efficiency (η(eff)) of up to 25% and 20%, respectively. The previous studies have attributed the increase in performance to the presence of (3HS)2-SiPc at the BHJ interface. In this study, we explored the molecular characteristics of (3HS)2-SiPc which makes it so effective in increasing the OPV device J(SC) and η(eff. Initially, we synthesized phthalocyanine-based additives using different core elements such as germanium and boron instead of silicon, each having similar frontier orbital energies compared to (3HS)2-SiPc and tested their effect on BHJ OPV device performance. We observed that addition of bis(tri-n-hexylsilyl oxide) germanium phthalocyanine ((3HS)2-GePc) or tri-n-hexylsilyl oxide boron subphthalocyanine (3HS-BsubPc) resulted in a nonstatistically significant increase in JSC and η(eff). Secondly, we kept the silicon phthalocyanine core and substituted the tri-n-hexylsilyl solubilizing groups with pentadecyl phenoxy groups and tested the resulting dye in a BHJ OPV. While an increase in JSC and η(eff) was observed at low (PDP)2-SiPc loadings, the increase was not as significant as (3HS)2-SiPc; therefore, (3HS)2-SiPc is a unique additive. During our study, we observed that (3HS)2-SiPc had an extraordinary tendency to crystallize compared to the other compounds in this study and our general experience. On the basis of this observation, we have offered a hypothesis that when (3HS)2-SiPc migrates to the P3HT:PC61BM interface the reason for its unique performance is not solely due to its frontier orbital energies but also might be due to a high driving force for crystallization.
2010-04-05
JSC2010-E-046737 (5 April 2010) --- Flight director Tony Ceccacci is pictured in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
Astronaut Anna Fisher practices control of the RMS in a trainer
NASA Technical Reports Server (NTRS)
1984-01-01
Astronaut Anna Lee Fisher, mission specialist for 51-A, practices control of the remote manipulator system (RMS) at a special trainer at JSC. Dr. Fisher is pictured in the manipulator development facility (MDF) of JSC's Shuttle mockup and integration laboratory.
Photographic coverage of EXP 7 during NBL training
2002-10-28
JSC2002-01972 (28 October 2002) --- Cosmonaut Sergei K. Krikalev, backup Expedition Seven mission commander, floats in a small life raft during an emergency bailout training session in the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC). Krikalev represents Rosaviakosmos.
STS-106 crew water survival training
2000-03-21
JSC2000-02564 (21 March 2000) --- Astronaut Terrence W. (Terry) Wilcutt, STS-106 mission commander, talks with crew training staff members during a simulation of an emergency bailout exercise in the water of the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).
Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.
2006-01-01
This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.
Usability/Sentiment for the Enterprise and ENTERPRISE
NASA Technical Reports Server (NTRS)
Meza, David; Berndt, Sarah
2014-01-01
The purpose of the Sentiment of Search Study for NASA Johnson Space Center (JSC) is to gain insight into the intranet search environment. With an initial usability survey, the authors were able to determine a usability score based on the Systems Usability Scale (SUS). Created in 1986, the freely available, well cited, SUS is commonly used to determine user perceptions of a system (in this case the intranet search environment). As with any improvement initiative, one must first examine and document the current reality of the situation. In this scenario, a method was needed to determine the usability of a search interface in addition to the user's perception on how well the search system was providing results. The use of the SUS provided a mechanism to quickly ascertain information in both areas, by adding one additional open-ended question at the end. The first ten questions allowed us to examine the usability of the system, while the last questions informed us on how the users rated the performance of the search results. The final analysis provides us with a better understanding of the current situation and areas to focus on for improvement. The power of search applications to enhance knowledge transfer is indisputable. The performance impact for any user unable to find needed information undermines project lifecycle, resource and scheduling requirements. Ever-increasing complexity of content and the user interface make usability considerations for the intranet, especially for search, a necessity instead of a 'nice-to-have'. Despite these arguments, intranet usability is largely disregarded due to lack of attention beyond the functionality of the infrastructure (White, 2013). The data collected from users of the JSC search system revealed their overall sentiment by means of the widely-known System Usability Scale. Results of the scores suggest 75%, +/-0.04, of the population rank the search system below average. In terms of a grading scaled, this equated to D or lower. It is obvious JSC users are not satisfied with the current situation, however they are eager to provide information and assistance in improving the search system. A majority of the respondents provided feedback on the issues most troubling them. This information will be used to enrich the next phase, root cause analysis and solution creation.
Climate Change Adaptation Science Activities at NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Lulla, Kamlesh
2012-01-01
The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.
Astronaut Tamara Jernigan in the CCT during a training session
NASA Technical Reports Server (NTRS)
1994-01-01
Astronaut Tamara E. Jernigan, STS-67 payload commander, is shown here in the Shuttle Training Facility at JSC participating in a training session. Jernigan is training with the RMS controls in the Crew Compartment Trainer (CCT) of JSC's Shuttle mockup and integration laboratory.
Astronaut Wendy Lawrence participates in training session in the CCT
NASA Technical Reports Server (NTRS)
1994-01-01
Seated in the pilot's seat of a JSC Shuttle trainer, astronaut Wendy B. Lawrence, STS-67 flight engineer, participates in a training session. The 1992 astronaut class graduate is in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory.
2010-04-05
JSC2010-E-046798 (5 April 2010) --- Flight director Bryan Lunney watches the big screens in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
STS-134 crew during food tasting session in JSC Food Lab.
2010-05-25
JSC2010-E-087706 (25 May 2010) --- NASA astronaut Mark Kelly, STS-134 commander, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew during food tasting session in JSC Food Lab.
2010-05-25
JSC2010-E-087713 (25 May 2010) --- NASA astronaut Mark Kelly, STS-134 commander, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew during food tasting session in JSC Food Lab.
2010-05-25
JSC2010-E-087707 (25 May 2010) --- NASA astronaut Michael Fincke, STS-134 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew during food tasting session in JSC Food Lab.
2010-05-25
JSC2010-E-087712 (25 May 2010) --- NASA astronaut Andrew Feustel, STS-134 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-112 Water Survival Training, SCTF, NBL
2002-02-19
JSC2002-00528 (19 February 2002) --- Astronaut Pamela A. Melroy, STS-112 pilot, attired in a training version of the shuttle launch and entry suit, awaits the start of a mission training session at the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).
STS-112 Water Survival Training, SCTF, NBL
2002-02-19
JSC2002-00521 (19 February 2002) --- Astronaut Jeffrey S. Ashby, STS-112 mission commander, attired in a training version of the shuttle launch and entry suit, awaits the start of a mission training session at the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).
STS-112 Water Survival Training, SCTF, NBL
2002-02-19
JSC2002-00522 (19 February 2002) --- Astronaut David A. Wolf, STS-112 mission specialist, attired in a training version of the shuttle launch and entry suit, awaits the start of a mission training session at the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The Johnson Space Center (JSC) in Houston is NASA's lead center for the space shuttle and the International Space Station programs and for biomedical research. Areas of study include Earth sciences and solar system exploration, astromaterials and space medicine. About 14 000 people, including 3000 civil servants, work at JSC....
NASA Technical Reports Server (NTRS)
Hyman, William A. (Editor); Sickorez, Donn G. (Editor)
1996-01-01
The objectives of the JSC NASA/ASEE Summer Faculty Fellowship Program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of the participants' institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. In addition to the faculty participants, the 1995 program included five students. This document is a compilation of the first fifteen of twenty-seven final reports on the research projects completed by the faculty fellows and visiting students during the summer of 1995. The reports of two of the students are integral with that of the respective fellow. Three students wrote separate reports included in Volume 2.
JSC Astronaut corps, STS-3 vehicle integration test team and others
NASA Technical Reports Server (NTRS)
1982-01-01
Members of the JSC astronaut corps, STS-3 vehicle integration test (VIT) team and other personnel pose for photograph at the completion of a countdown demonstration test (CDDT) and safety briefings at Launch Pad 39A, Kennedy Space Center. Participants are, from the left, Wilbur J. Etbauer, engineer with the VIT team; George W.S. Abbey, Director of Flight Operations at JSC; Astronaut John H. Young, Chief of the Astronaut Office at JSC; Jack Fleming of Rockwell International; Mission Specialist-Astronaut John M. Lounge; Astronaut Daniel C. Brandenstein; Mission Specialist-Astronaut James D. Van Hoften; Astronauts C. Gordon Fullerton and Jack Lousma, prime crew for STS-3; Olan J. Bertrand, VIT team member; Mission Specialist-Astronaut Kathryn D. Sullivan; Richard W. Nygren, head of the VIT team; and Astronaut Donald E. Williams. The Columbia is obscured by its service structure on Launch Pad 39A in the background. Part of slide-wire emergency escape system is visible in the picture.
Developing the Parachute System for NASA's Orion: An Overview at Inception
NASA Technical Reports Server (NTRS)
Machin, Ricardo; Taylor, Anthony P.; Royall, Paul
2007-01-01
As the Crew Exploration Vehicle (CEV) program developed, NASA decided to provide the parachute portion of the landing system as Government Furnished Equipment (GFE) and designated NASA Johnson Space Center (JSC) as the responsible NASA center based on JSC s past experience with the X-38 program. JSC subsequently chose to have the Engineering Support contractor Jacobs Sverdrup to manage the overall program development. After a detailed source selection process Jacobs chose Irvin Aerospace Inc (Irvin) to provide the parachutes and mortars for the CEV Parachute Assembly System (CPAS). Thus the CPAS development team, including JSC, Jacobs and Irvin has been formed. While development flight testing will have just begun at the time this paper is submitted, a number of significant design decisions relative to the architecture for the manned spacecraft will have been completed. This paper will present an overview of the approach CPAS is taking to providing the parachute system for CEV, including: system requirements, the preliminary design solution, and the planned/completed flight testing.
Stereomicroscope Inspection of Polished Aluminum Collector 50684.0
NASA Technical Reports Server (NTRS)
Rodriquez, M. C.; Calaway, M. J.; Allton, J. H.
2008-01-01
The Genesis polished aluminum "kidney" collector was damaged during the hard landing of the capsule on September 8, 2004 in the Utah desert. The kidney was introduced into the Genesis (ISO class 4) cleanroom laboratory on November 4, 2004 and stored under nitrogen cover gas. The collector is currently fastened to a highly polished stainless steel plate for secure handling. Curatorial work at JSC has made successful subdivision and subsequent allocation of samples from the kidney.
NASA Technical Reports Server (NTRS)
Rafalik, Kerrie
2017-01-01
Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.
NASA Technical Reports Server (NTRS)
Rafalik, Kerrie K.
2017-01-01
Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.
Microgravity fluid management in two-phase thermal systems
NASA Technical Reports Server (NTRS)
Parish, Richard C.
1987-01-01
Initial studies have indicated that in comparison to an all liquid single phase system, a two-phase liquid/vapor thermal control system requires significantly lower pumping power, demonstrates more isothermal control characteristics, and allows greater operational flexibility in heat load placement. As a function of JSC's Work Package responsibility for thermal management of space station equipment external to the pressurized modules, prototype development programs were initiated on the Two-Phase Thermal Bus System (TBS) and the Space Erectable Radiator System (SERS). JSC currently has several programs underway to enhance the understanding of two-phase fluid flow characteristics. The objective of one of these programs (sponsored by the Microgravity Science and Applications Division at NASA-Headquarters) is to design, fabricate, and fly a two-phase flow regime mapping experiment in the Shuttle vehicle mid-deck. Another program, sponsored by OAST, involves the testing of a two-phase thermal transport loop aboard the KC-135 reduced gravity aircraft to identify system implications of pressure drop variation as a function of the flow quality and flow regime present in a representative thermal system.
ASTP crewmen in Apollo Command Module Trainer during training session at JSC
NASA Technical Reports Server (NTRS)
1975-01-01
The three members of the American ASTP prime crew are photographed inside the Apollo Command Module (CM) trainer in a water tank in bldg 260 during water egress training at JSC. They are, left to right, Astronauts Thomas P. Stafford, commander; Vance D. Brand, command module pilot; and Donald K. Slayton, docking module pilot (23430); Slayton attaches his life preserver as he egresses an Apollo Command Module trainer in a water tank in bldg 260 during water egresss training at JSC. Astronauts Brand (on left) and Stafford have already egressed the trainer and are seated in a three-man life raft.
NASA/UH signing of memorandum of understanding
1996-10-02
NASA/University of Houston (UH) signing of memorandum of understanding. Johnson Space Center (JSC) Director George Abbey signs a memorandum of understanding with University of Houston's President Glenn Goerke and University of Houston Clear Lake President Williams Staples. UH will supply post-doctoral researchers to JSC for more than 15 projects of scientific interest to both JSC and the university. Seated from left are, Abbey, Goerke and Staples. Standing from left are David Criswell, director of the Institute of Space Systems Operations; Texas State Representatives Michael Jackson, Robert Talton and Talmadge Heflin. View appears in Space News Roundup v35 n41 p4, 10-18-96.
INFLIGHT (MISSION CONTROL CENTER [MCC]) - STS-2 - JSC
1981-11-14
S81-39511 (14 Nov. 1981) --- The successful STS-2 landing at Edwards Air Force Base in California was cause for celebration in the Johnson Space Center?s Mission Control Center shortly before 3:30 p.m. (CST) on Nov. 14, 1981. JSC Director Christopher C. Kraft Jr. (center), not only applauds but enjoys a traditional ?touchdown? cigar, as well. Eugene F. Kranz (left), deputy director of flight operations at JSC, and Thomas L. Moser of the structures and mechanics division join the celebration. The second flight of the space shuttle Columbia lasted two days, six hours, 13 minutes and a few seconds. Photo credit: NASA
A Practitioner's Perspective on Taxonomy, Ontology and Findability
NASA Technical Reports Server (NTRS)
Berndt, Sarah
2011-01-01
This slide presentation reviews the presenters perspective on developing a taxonomy for JSC to capitalize on the accomplishments of yesterday, while maintaining the flexibility needed for the evolving information of today. A clear vision and scope for the semantic system is integral to its success. The vision for the JSC Taxonomy is to connect information stovepipes to present a unified view for information and knowledge across the Center, across organizations, and across decades. Semantic search at JSC means seamless integration of disparate information sets into a single interface. Ever increasing use, interest, and organizational participation mark successful integration and provide the framework for future application.
STS-42 crewmembers participate in JSC fire fighting training exercises
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, Payload Specialist Ulf D. Merbold (far left), fire fighting trainer (center), Payload Specialist Roberta L. Bondar (holding hose nozzle), and backup Payload Specialist Roger K. Crouch position water hoses in the direction of a blazing fire in JSC's Fire Training Pit. The crewmembers and backup are learning fire extinguishing techniques during fire fighting and fire training exercises held at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207. Merbold is representing the European Space Agency (ESA) and Bondar is representing Canada during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.
Operational and Research Musculoskeletal Summit: Summit Recommendations
NASA Technical Reports Server (NTRS)
Scheuring, Richard A.; Walton, Marlei; Davis-Street, Janis; Smaka, Todd J.; Griffin, DeVon
2006-01-01
The Medical Informatics and Health Care Systems group in the Office of Space Medicine at NASA Johnson Space Center (JSC) has been tasked by NASA with improving overall medical care on the International Space Station (ISS) and providing insights for medical care for future exploration missions. To accomplish this task, a three day Operational and Research Musculoskeletal Summit was held on August 23-25th, 2005 at Space Center Houston. The purpose of the summit was to review NASA#s a) current strategy for preflight health maintenance and injury screening, b) current treatment methods in-flight, and c) risk mitigation strategy for musculoskeletal injuries or syndromes that could occur or impact the mission. Additionally, summit participants provided a list of research topics NASA should consider to mitigate risks to astronaut health. Prior to the summit, participants participated in a web-based pre-summit forum to review the NASA Space Medical Conditions List (SMCL) of musculoskeletal conditions that may occur on ISS as well as the resources currently available to treat them. Data from the participants were compiled and integrated with the summit proceedings. Summit participants included experts from the extramural physician and researcher communities, and representatives from NASA Headquarters, the astronaut corps, JSC Medical Operations and Human Adaptations and Countermeasures Offices, Glenn Research Center Human Research Office, and the Astronaut Strength, Conditioning, and Reconditioning (ASCR) group. The recommendations in this document are based on a summary of summit discussions and the best possible evidence-based recommendations for musculoskeletal care for astronauts while on the ISS, and include recommendati ons for exploration class missions.
Networking at NASA. Johnson Space Center
NASA Technical Reports Server (NTRS)
Garman, John R.
1991-01-01
A series of viewgraphs on computer networks at the Johnson Space Center (JSC) are given. Topics covered include information resource management (IRM) at JSC, the IRM budget by NASA center, networks evolution, networking as a strategic tool, the Information Services Directorate charter, and SSC network requirements, challenges, and status.
STS-105 preflight water survival training in NBL pool in SCTF
2000-12-11
JSC2000-07459 (11 December 2000) --- Astronaut Scott J. Horowitz, STS-105 commander, simulates a parachute drop into water during emergency bailout training with his crew members. The exercise took place in the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).
JOHNSON, L. - DEDICATION (CEREMONIES) - JSC
1973-09-05
S73-33655 (1973) --- Left to right, Lynda Bird Johnson Robb, Charles Robb, Claudia "Lady Bird" Johnson, Texas Governor Dolph Briscoe, Christopher C. Kraft, Jr., James Webb, actor David Niven, and nurse Lt. Dolores B. "Dee" O'Hara with NASA officials during formal dedication ceremonies at JSC. Photo credit: NASA
NASA Technical Reports Server (NTRS)
1993-01-01
The primary roles and missions of JSC incorporate all aspects of human presence in space. Therefore, the Center is involved in the development of technology that will allow humans to stay longer in Earth orbit, allow safe flight in space, and provide capabilities to explore the Moon and Mars. The Center's technology emphasis areas include human spacecraft development, human support systems and infrastructure, and human spacecraft operations. Safety and reliability are critical requirements for the technologies that JSC pursues for long-duration use in space. One of the objectives of technology development at the Center is to give employees the opportunity to enhance their technological expertise and project management skills by defining, designing, and developing projects that are vital to the Center's strategy for the future. This report is intended to communicate within and outside the Agency our research and technology (R&T) accomplishments, as well as inform Headquarters program managers and their constituents of the significant accomplishments that have promise for future Agency programs. While not inclusive of all R&T efforts, the report presents a comprehensive summary of JSC projects in which substantial progress was made in the 1992 fiscal year. At the beginning of each project description, names of the Principal Investigator (PI) and the Technical Monitor (TM) are given, followed by their JSC mail codes or their company or university affiliations. The funding sources and technology focal points are identified in the index.
NASA Technical Reports Server (NTRS)
Carlstrom, Nicholas Mercury
2016-01-01
This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User Training Materials version 2013.0 release was used to complete the Trick tutorial. Multiple network privilege and repository permission requests were required in order to access previous simulation models. The project was also an introduction to computer programming and the Linux operating system. Basic C++ and Python syntax was used during the completion of the Trick tutorial. Trick's engineering analysis and Monte Carlo simulation capabilities were observed and basic space mission planning procedures were applied in the conceptual design phase. Multiple professional development opportunities were completed in addition to project duties during this internship through the System for Administration, Training, and Education Resources for NASA (SATERN). Topics include: JSC Risk Management Workshop, CCP Risk Management, Basic Radiation Safety Training, X-Ray Radiation Safety, Basic Laser Safety, JSC Export Control, ISS RISE Ambassador, Basic SharePoint 2013, Space Nutrition and Biochemistry, and JSC Personal Protective Equipment. Additionally, this internship afforded the opportunity for formal project presentation and public speaking practice. This was my first experience at a NASA center. After completing this internship I have a much clearer understanding of certain aspects of the agency's processes and procedures, as well as a deeper appreciation from spaceflight simulation design and testing. I will continue to improve my technical skills so that I may have another opportunity to return to NASA and Johnson Space Center.
The PLAID graphics analysis impact on the space program
NASA Technical Reports Server (NTRS)
Nguyen, Jennifer P.; Wheaton, Aneice L.; Maida, James C.
1994-01-01
An ongoing project design often requires visual verification at various stages. These requirements are critically important because the subsequent phases of that project might depend on the complete verification of a particular stage. Currently, there are several software packages at JSC that provide such simulation capabilities. We present the simulation capabilities of the PLAID modeling system used in the Flight Crew Support Division for human factors analyses. We summarize some ongoing studies in kinematics, lighting, EVA activities, and discuss various applications in the mission planning of the current Space Shuttle flights and the assembly sequence of the Space Station Freedom with emphasis on the redesign effort.
Operational Models Supporting Manned Space Flight
NASA Astrophysics Data System (ADS)
Johnson, A. S.; Weyland, M. D.; Lin, T. C.; Zapp, E. N.
2006-12-01
The Space Radiation Analysis Group (SRAG) at Johnson Space Center (JSC) has the primary responsibility to provide real-time radiation health operational support for manned space flight. Forecasts from NOAA SEC, real-time space environment data and radiation models are used to infer changes in the radiation environment due to space weather. Unlike current operations in low earth orbit which are afforded substantial protection from the geomagnetic field, exploration missions will have little protection and require improved operational tools for mission support. The current state of operational models and their limitations will be presented as well as an examination of needed tools to support exploration missions.
Park, Jong Hoon; Noh, Jun Hong; Han, Byung Suh; Shin, Seong Sik; Park, Ik Jae; Kim, Dong Hoe; Hong, Kug Sun
2012-06-01
Niobium doped hierarchically organized TiO2 nanostructures composed of 20 nm size anatase nanocrystals were synthesized using pulsed laser deposition (PLD). The Nb doping concentration could be facilely controlled by adjusting the concentration of Nb in target materials. We could investigate the influence of Nb doping in the TiO2 photoelectrode on the cell performance of dye-sensitized solar cells (DSSCs) by the exclusion of morphological effects using the prepared Nb-doped TiO2 anostructures. We found no significant change in short circuit current density (Jsc) as a function of Nb doping concentration. However, open circuit voltage (Voc) and fill factor (FF) monotonously decrease with increasing Nb concentration. Dark current characteristics of the DSSCs reveal that the decrease in Voc and FF is attributed to the decrease in shunt resistance due to the increase in conductivity TiO2 by Nb doping. However, electrochemical impedance spectra (EIS) analysis at open circuit condition under illumination showed that the resistance at the TiO2/dye/electrolyte interface increases with Nb concentration, revealing that Nb doping suppress the charge recombination at the interface. In addition, electron life time obtained using characteristic frequency in Bode plot increases from 14 msec to 56 msec with increasing Nb concentration from 0 to 1.2 at%. This implies that the improved light harvesting can be achieved by increasing diffusion length through Nb-doping in the conventional TiO2 photoelectrode.
Kazemifard, Sholeh; Naji, Leila; Afshar Taromi, Faramarz
2018-04-01
Ternary blend (TB) strategy has been considered as an effective method to enhance the photovoltaic performance of bulk heterojunction (BHJ) polymer solar cells (PSCs). Here, we report on TB-based PSCs containing two donor materials; poly-3-hexylthiophene (P3HT) and Rhodamine B (RhB) laser organic dye, and [6,6]-phenyl C 61 butyric acid methyl ester (PC 61 BM) as an acceptor. The influence of RhB weight percentage and injection volume was extensively studied. To gain insight into the influences of RhB on the photovoltaic performance of PSCs, physicochemical and optical properties of TBs were compared with those of BHJ binary blend as a standard. RhB broadened the light absorption properties of the active layer and played a bridging role between P3HT and PC 61 BM. The PCE and short-circuit current density (Jsc) of the optimized TB-based PSCs comprising of 0.5 wt% RhB reached 5% and 12.12 mA/cm 2 , respectively. Compared to BHJ standard cell, the PCE and the generated current was improved by two orders of magnitude due to higher photon harvest of the active layer, cascade energy level structure of TB components and a considerable decrease in the charge carrier recombination. The results suggest that RhB can be considered as an effective material for application in PSCs to attain high photovoltaic performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Shin, Jae Cheol; Kim, Kyou Hyun; Yu, Ki Jun; Hu, Hefei; Yin, Leijun; Ning, Cun-Zheng; Rogers, John A; Zuo, Jian-Min; Li, Xiuling
2011-11-09
We report on the one-dimensional (1D) heteroepitaxial growth of In(x)Ga(1-x)As (x = 0.2-1) nanowires (NWs) on silicon (Si) substrates over almost the entire composition range using metalorganic chemical vapor deposition (MOCVD) without catalysts or masks. The epitaxial growth takes place spontaneously producing uniform, nontapered, high aspect ratio NW arrays with a density exceeding 1 × 10(8)/cm(2). NW diameter (∼30-250 nm) is inversely proportional to the lattice mismatch between In(x)Ga(1-x)As and Si (∼4-11%), and can be further tuned by MOCVD growth condition. Remarkably, no dislocations have been found in all composition In(x)Ga(1-x)As NWs, even though massive stacking faults and twin planes are present. Indium rich NWs show more zinc-blende and Ga-rich NWs exhibit dominantly wurtzite polytype, as confirmed by scanning transmission electron microscopy (STEM) and photoluminescence spectra. Solar cells fabricated using an n-type In(0.3)Ga(0.7)As NW array on a p-type Si(111) substrate with a ∼ 2.2% area coverage, operates at an open circuit voltage, V(oc), and a short circuit current density, J(sc), of 0.37 V and 12.9 mA/cm(2), respectively. This work represents the first systematic report on direct 1D heteroepitaxy of ternary In(x)Ga(1-x)As NWs on silicon substrate in a wide composition/bandgap range that can be used for wafer-scale monolithic heterogeneous integration for high performance photovoltaics.
Fabrication and characterization of dye-sensitized solar cells based on natural plants
NASA Astrophysics Data System (ADS)
Gu, Peng; Yang, Dingyu; Zhu, Xinghua; Sun, Hui; Li, Jitao
2018-02-01
In this paper, the dye-sensitized solar cells (DSSCs) were fabricated based on natural dyes extracting from carrot, mulberry, purple cabbage, potato, and grapes. The ultraviolet-visible spectra suggested purple cabbage and mulberry possess better absorption at 300-550 nm. The solar cells using purple cabbage as dye achieved a conversion efficiency of 0.162% with short-circuit photocurrent density (Jsc) of 0.621 mA/cm2, open circuit voltage (Voc) of 0.541 V and fill factor (FF) of 0.484. The Infrared spectra revealed the bond of Osbnd H, Csbnd C, Csbnd O, Csbnd H were existed in purple cabbage. Finally, the optimal extraction time of dyes is also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Nikhil; Oshima, Ryuji; France, Ryan
To advance the state-of-the-art in III-V multijunction solar cells towards high concentration efficiencies approaching 50%, development of a high-quality ~1.7 eV second junction solar cell is of key interest for integration in five or more junction devices. Quaternary GalnAsP solar cells grown lattice-matched on GaAs allows bandgap tunability in the range from 1.42 to 1.92 eV and offers an attractive Al-free alternative to conventional AlGaAs solar cells. In this work, we investigate the role of growth temperature towards understanding the optimal growth window for realizing high-quality GalnAsP alloys. We demonstrate bandgap tunability from 1.6 to 1.8 eV in GalnAsP alloysmore » for compositions close to the miscibility gap, while still maintaining lattice-matched condition to GaAs. We perform an in-depth investigation to understand the impact of varying base thickness and doping concentration on the carrier collection and performance of these 1.7 eV GalnAsP solar cells. The photo-response of these cells is found to be very sensitive to p-type zinc dopant incorporation in the base layer. We demonstrate prototype 1.7 eV GalnAsP solar cell designs that leverage enhanced depletion width as an effective method to overcome this issue and boost long-wavelength carrier collection. Short-circuit current density (JSC) measured in field-aided devices were as high as 17.25 m A/cm2. The best GalnAsP solar cell in this study achieved an efficiency of 17.2% with a JSC of 17 m A/cm2 and a fill-factor of 86.4%. The corresponding open-circuit voltage (VOC) 1.7 eV measured on this cell represents the highest Voc reported for a 1.7 eV GalnAsP solar cell. These initial cell results are encouraging and highlight the potential of Al-free GalnAsP solar cells for integration in the next generation of III-V multijunction solar cells.« less
Quantum dot sensitized solar cells fabricated by means of a novel inorganic spinel nanoparticle
NASA Astrophysics Data System (ADS)
Jalali-Moghadam, Elnaz; Shariatinia, Zahra
2018-05-01
A novel inorganic spinel compound with formula Zn0.5184La0.7859Ce0.3994Al1.0026O4 (ZLCA) was synthesized by the gel combustion method and its exact formula was approved by the XPS analysis. The TEM image exhibited that the ZLCA NPs were very fine, spherical and slightly agglomerated particles with their particle size changed in the range of ∼5-20 nm. Then, several quantum dot-sensitized solar cells (QDSSCs) were fabricated using this new compound which was doped into the TiO2 pastes of photoanodes and subsequently the CdS, CdS and ZnS layers were deposited on the ZLCA-doped TiO2 layer by the SILAR and the CBD methods. Results indicated that the photovoltaic parameters of the optimized cell (η = 3.50%, JSC = 11.690 mA·cm-2) were boosted compared with those of the reference cell which was free of ZLCA NPs (η = 2.14%, JSC = 7.075 mA·cm-2) indicating rather high improvements of approximately 64 and 65% in the efficiency and short-circuit current density, respectively. The UV-Vis absorption spectra of all nanocomposite photoanodes revealed broad absorption bands between ∼320 and 600 nm. The lowest intensity of the photoluminescence peak for the CdSe cell fabricated using 0.6%ZLCA suggested that it had the least charge recombination and the easiest electron transfer which was confirmed by the J-V and efficiency results. The Electrochemical impedance spectra (EIS) illustrated that the charge transfer resistances (RCT) of cells were dropped by addition of the ZLCA into the TiO2 compared with that of the cell made without using ZLCA NPs. The RCT resistance was 1900 Ω for pure TiO2 but it was decreased to 81.6 Ω in the optimized cell containing 0.6%wt of ZLCA. Thus, it could be decided that doping 0.6%wt ZLCA was appropriate to attain suitable photocurrent efficiency for the QDSSCs because it was used in a minimum quantity to accelerate the electron transport, decrease the recombination and increase the cell efficiency.
STS-41 crew is briefed on camera equipment during training session at JSC
NASA Technical Reports Server (NTRS)
1990-01-01
STS-41 crewmembers are briefed on camera equipment during training session at JSC. Trainer Judy M. Alexander explains the use 16mm motion picture equipment to (left to right) Pilot Robert D. Cabana, Mission Specialist (MS) Bruce E. Melnick, and MS Thomas D. Akers.
JSC Shuttle Mission Simulator (SMS) visual system payload bay video image
NASA Technical Reports Server (NTRS)
1981-01-01
This space shuttle orbiter payload bay (PLB) video image is used in JSC's Fixed Based (FB) Shuttle Mission Simulator (SMS). The image is projected inside the FB-SMS crew compartment during mission simulation training. The FB-SMS is located in the Mission Simulation and Training Facility Bldg 5.
Expedition Five Crewmembers during Water Survival Training at SCTF
2001-07-12
JSC2001-01922 (12 July 2001) --- Cosmonaut Valeri G. Korzun, Expedition Five mission commander, assisted by Johnson Engineering diver Gabriel Meyer, simulates a parachute drop into water during an emergency bailout training session in the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC). Korzun represents Rosaviakosmos.
Best Practices: Power Quality and Integrated Testing at JSC
NASA Technical Reports Server (NTRS)
Davis, Lydia
2018-01-01
This presentation discusses Best Practices for Power Quality and Integrated Testing at JSC in regards to electrical systems. These high-level charts include mostly generic information; however, a specific issue is discussed involving flight hardware that could have been discovered prior to flight with an integrated test.
NASA Technical Reports Server (NTRS)
1970-01-01
The development, history, and opportunities for employment available at the Johnson Space Center (JSC) in Houston, Texas are presented in this video, with special emphasis placed on minorities in the aeronautical engineering fields and at JSC. There are several interviews with black, Hispanic and female engineering and aeronautics professionals and the various projects they work on.
STS-112 Water Survival Training, SCTF, NBL
2002-02-19
JSC2002-00517 (19 February 2002) --- Astronaut David A. Wolf, STS-112 mission specialist, floats in a small life raft during an emergency bailout training session in the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC). Wolf is attired a training version of the shuttle launch and entry suit.
STS-114 Water Survival Training at the NBL
2004-09-17
JSC2004-E-41387 (17 September 2004) --- Astronaut Wendy B. Lawrence, STS-114 mission specialist, attired in a training version of the shuttle launch and entry suit, floats in water during an emergency egress training session in the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).
STS-35 MS Hoffman watches water egress exercises at JSC's WETF Bldg 29 pool
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman, wearing launch and entry suit (LES), comments on launch emergency egress procedures from the poolside of JSC's Weightless Environment Training Facility (WETF) Bldg 29. Hoffman awaits his turn to participate in the training activities.
STS-106 crew water survival training
2000-03-21
JSC2000-02567 (21 March 2000) --- Astronaut Terrence W. (Terry) Wilcutt, STS-106 mission commander, empties water from his newly-deployed life raft during a simulation of an emergency bailout exercise. The water survival training routinely takes place in the Neutral Buoyancy Laboratory (NBL) near the Johnson Space Center (JSC).
Photographic coverage of STS-108 Philippe Perrin
2002-02-20
JSC2002-E-08241 (20 February 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist representing CNES, the French Space Agency, is photographed during an Extravehicular Mobility Unit (EMU) fit check in a Space Station Airlock Test Article (SSATA) in the Crew Systems Laboratory at the Johnson Space Center (JSC).
Photographic coverage of STS-108 Philippe Perrin
2002-02-20
JSC2002-E-08243 (20 February 2002) --- Astronaut Philippe Perrin, STS-111 mission specialist representing CNES, the French Space Agency, is photographed during an Extravehicular Mobility Unit (EMU) fit check in a Space Station Airlock Test Article (SSATA) in the Crew Systems Laboratory at the Johnson Space Center (JSC).
JSC Features and Web Stories Photos of the International Underwater ROV Competition
2006-06-24
View of students participating in the International Underwater Remotely Operated Vehicle (ROV) competition, organized by the Marine Advanced Technology Education Center (MATE), at the Sonny Carter Training Facility (SCTF) Neutral Buoyancy Laboratory (NBL). Photos taken for Johnson Space Center (JSC) Features and Web stories.
Chen, Yao; Zhu, Youqin; Yang, Daobin; Luo, Qian; Yang, Lin; Huang, Yan; Zhao, Suling; Lu, Zhiyun
2015-04-11
An asymmetrical squaraine dye (Py-3) with its two electron-donating aryl groups directly linked to the electron-withdrawing squaric acid core possesses an ideal bandgap of 1.33 eV, together with an intense and broad absorption band in the range 550-950 nm. Hence, the resulting solution-processed solar cells display an impressive Jsc of 12.03 mA cm(-2) and a PCE of 4.35%.
1988-02-28
enormous investment in software. This is an area extremely important objective. We need additional where better methodologies , tools and theories...microscopy (SEM) and optical mi- [131 Hanson, A., et a. "A Methodology for the Develop- croscopy. Current activities include the study of SEM im- ment...through a phased knowledge engineering methodology Center (ARC) and NASA Johnson Space Center consisting of: prototype knowledge base develop- iJSC
ANTARES: Spacecraft Simulation for Multiple User Communities and Facilities
NASA Technical Reports Server (NTRS)
Acevedo, Amanda; Berndt, Jon; Othon, William; Arnold, Jason; Gay, Robet
2007-01-01
The Advanced NASA Technology Architecture for Exploration Studies (ANTARES) simulation is the primary tool being used for requirements assessment of the NASA Orion spacecraft by the Guidance Navigation and Control (GN&C) teams at Johnson Space Center (JSC). ANTARES is a collection of packages and model libraries that are assembled and executed by the Trick simulation environment. Currently, ANTARES is being used for spacecraft design assessment, performance analysis, requirements validation, Hardware In the Loop (HWIL) and Human In the Loop (HIL) testing.
NASA space shuttle lightweight seat
NASA Technical Reports Server (NTRS)
Hansen, Chris; Jermstad, Wayne; Lewis, James; Colangelo, Todd
1996-01-01
The Space Shuttle Lightweight Seat-Mission Specialist (LWS-MS) is a crew seat for the mission specialists who fly aboard the Space Shuttle. The LWS-MS is a lightweight replacement for the mission specialist seats currently flown on the Shuttle. Using state-of-the-art analysis techniques, a team of NASA and Lockheed engineers from the Johnson Space Center (JSC) designed a seat that met the most stringent requirements demanded of the new seats by the Shuttle program, and reduced the weight of the seats by 52%.
NASA Astrophysics Data System (ADS)
Abdullah, Mohd Faizol; Hashim, Abdul Manaf
2018-01-01
The optical reflection and absorption in a very thin textured back-contact back-junction silicon (Si) solar cell are investigated. The introduction of nanotexturing on front Si surface has significantly increased the absorption in the ultraviolet (UV)-visible region with a low reflection of below 0.05. The introduction of rear surface corrugation formed by a combination of SiO2-Al has successfully enhanced the absorption up to near-infrared (NI) region. The optimum crest width, periodicity, and trough depth of corrugation are derived, which lead to high absorption up to 0.97. The internal reflection and scattering that occur near the plasmonic Al corrugation are contributing to the local maximum electric field intensity in both transverse magnetic (TM) and transverse electric (TE) modes. Since there is no perpendicular electric component in TE mode, a coupling of electric field within a corrugation trough is not observed but is only observed in TM mode. On 10-μm-thick Si, the application of Si nanocones (NCs) and optimized rear Al corrugation results in 56% improvement in photogenerated current, Jsc, compared to the reference flat Si. Thinning down the Si to only 2 μm severely limits the Jsc. Our optimized Al corrugation manages to compensate net 9% and 7% Jsc loss in 2-μm Si in respect to 10-μm-thick Si for the model with and without front Si NCs. The results seem to reveal the optimum design of rear Al corrugation for the absorption enhancement from UV up to NI wavelength region.
Space Station view of the Pyramids at Giza
NASA Technical Reports Server (NTRS)
2002-01-01
One of the world's most famous archaeological sites has been photographed in amazing detail by the astronauts onboard Space Station Alpha. This image, taken 15 August, 2001, represents the greatest detail of the Giza plateau captured from a human-occupied spacecraft (approximate 7 m resolution). Afternoon sun casts shadows that help the eye make out the large pyramids of Khufu, Khafre and Menkaure. Sets of three smaller queens' pyramids can be seen to the east of the Pyramid of Khufu and south of the Pyramid of Menkaure. The light-colored causeway stretching from the Mortuary Temple at the Pyramid of Khafre to the Valley Temple near the Sphinx (arrow) can also be seen. Because it is not tall enough to cast a deep shadow, the Sphinx itself cannot readily be distinguished. Although some commercial satellites, such as IKONOS, have imaged the Pyramids at Giza in greater detail (1 m resolution), this image highlights the potential of the International Space Station as a remote sensing platform. A commercial digital camera without space modifications was used to obtain this picture. Similarly, a variety of remote sensing instruments developed for use on aircraft can potentially be used from the Space Station. Currently, all photographs of Earth taken by astronauts from the Space Shuttle and Space Station are released to the public for scientific and educational benefit and can be accessed on the World Wide Web through the NASA-JSC Gateway to Astronaut Photography of Earth (http://eol/jsc.nasa.gov/sseop). Image ISS003-ESC-5120 was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center (http://eol.jsc.nasa.gov).
NASA Technical Reports Server (NTRS)
Shalkhauser, Mary Jo W.
2017-01-01
The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. At the conclusion of the development, the software and hardware description language (HDL) code was delivered to JSC for their use in their iPAS test bed to get hands-on experience with the STRS standard, and for development of their own STRS Waveforms on the now STRS compliant platform.The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx ML605 Virtex-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek eBox 620-110-FL) running the Ubuntu 12.4 operating system. Figure 1 shows the RIACS platform hardware. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications.The purpose of this document is to describe the design of the HDL code for the FPGA portion of the iPAS STRS Radio particularly the design of the FPGA wrapper and the test waveform.
Evaluation of Gas Chromatography/Mini-IMS to Detect VOCs
NASA Technical Reports Server (NTRS)
Limero, Thomas; Reese, Eric; Peters, Randy; James, John T.; Billica, Roger (Technical Monitor)
1999-01-01
The Toxicology Laboratory at Johnson Space Center (JSC) has pioneered the use of gas chromatography-ion mobility spectrometry (GC/IMS) for measuring target volatile organic compounds (VOCs) aboard spacecraft. Graseby Dynamics, under contract to NASA/Wyle, has built several volatile organic analyzers (VOA) based on GC/IMS. Foremost among these have been the volatile organic analyzer-risk mitigation unit and the two flight VOA units for International Space Station (ISS). The development and evaluation of these instruments has been chronicled through presentations at the International Conference on Ion Mobility Spectrometry over the past three years. As the flight VOA from Graseby is prepared for operation on ISS at JSC, it is time to begin evaluations of technologies for the next generation VOA, Although the desired instrument characteristics for the next generation unit are the same as the current unit, the requirements are much more stringent. As NASA looks toward future missions beyond Earth environs, a premium will be placed upon small, light, reliable, autonomous hardware. It is with these visions in mind that the JSC Toxicology Laboratory began a search for the next generation VOA. One technology that is a candidate for the next generation VOA is GC/IMS. The recent miniaturization of IMS technology permits it to compete with other, inherently small, technologies such as chip-sized sensor arrays. This paper will discuss the lessons learned from the VOA experience and how that has shaped the design of a potential second generation VOA based upon GC/IMS technology. Data will be presented from preliminary evaluations of GC technology and the mini-IMS when exposed to VOCs likely to be detected aboard spacecraft. Results from the evaluation of an integrated GC/mini-IMS system will be shown if available.
Desert Research and Technology Studies (RATS) Local and Remote Test Sites
NASA Technical Reports Server (NTRS)
Janoiko, Barbara; Kosmo, Joseph; Eppler, Dean
2007-01-01
Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.
BLDG. 30 - APOLLO-SOYUZ TEST PROJECT (ASTP) SIMS - FLIGHT DIRECTION - JSC
1975-03-20
S75-23638 (20 March 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during joint ASTP simulation activity at NASA's Johnson Space Center. The simulations are part of the preparations for the U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit scheduled for July 1975. M.P. Frank (seated, right) is the senior American flight director for the mission. Sigurd A. Sjoberg (in center, checked jacket), JSC Deputy Director, watches some of the console activity. George W.S. Abbey, Technical Assistant to the JSC Director, is standing next to Sjoberg. The television monitor in the background shows Soviet Soyuz crew activity from the Soviet Union.
Curation of US Martian Meteorites Collected in Antarctica
NASA Technical Reports Server (NTRS)
Lindstrom, M.; Satterwhite, C.; Allton, J.; Stansbury, E.
1998-01-01
To date the ANSMET field team has collected five martian meteorites (see below) in Antarctica and returned them for curation at the Johnson Space Center (JSC) Meteorite Processing Laboratory (MPL). ne meteorites were collected with the clean procedures used by ANSMET in collecting all meteorites: They were handled with JSC-cleaned tools, packaged in clean bags, and shipped frozen to JSC. The five martian meteorites vary significantly in size (12-7942 g) and rock type (basalts, lherzolites, and orthopyroxenite). Detailed descriptions are provided in the Mars Meteorite compendium, which describes classification, curation and research results. A table gives the names, classifications and original and curatorial masses of the martian meteorites. The MPL and measures for contamination control are described.
STS-42 crewmembers participate in JSC fire fighting training exercises
NASA Technical Reports Server (NTRS)
1991-01-01
STS-42 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Norman E. Thagard, holding hose nozzle, is followed by Payload Specialist Ulf D. Merbold and backup Payload Specialist Kenneth Money as the team positions the water hose in the direction of a blazing fire at JSC's Fire Training Pit. A second team of crewmembers, manning another hose, forms a line parallel to the first. The crewmembers and backups are learning fire extinguishing techniques during fire fighting and fire training exercises held at JSC's Fire Training Pit located across from the Gilruth Center Bldg 207. Merbold is representing the European Space Agency (ESA) during the International Microgravity Laboratory 1 (IML-1) mission aboard OV-103.
40 Years of Collecting Martian Meteorites
NASA Technical Reports Server (NTRS)
Funk, R. C.; Sattershite, C. E.; Righter, K.; Harrington, R.
2017-01-01
This year marks the 40th anniversary of the first Martian meteorite found in Antarctica by ANSMET, ALH 77005. Since then, an additional 14 Martian meteorites have been found by the ANSMET team making for a total of 15 Martian meteorites in the Antarctic collection at Johnson Space Center. Of the 15 meteorites, some have been paired so the 15 meteorites actually represent a total of approximately 9 separate meteorites. The first Martian meteorite found by ANSMET was ALH 77005 (482.500 g), a lherzolitic shergottite. When collected, this meteorite was split as a part of the joint expedition with the National Institute of Polar Research (NIPR) Japan. Originally classified as an "achondrite-unique", it was re-classified as a Martian lherzolitic shergottites in 1982 [1]. This meteorite has been allocated to 125 scientists for research and there are 181.964 g remaining at Johnson Space Center (JSC). Two years later, one of the most significant Martian meteorites of the collection at JSC was found at Elephant Moraine, EET 79001 (7942.000 g), a shergottite. This meteorite is the largest in the Martian collection at JSC and was the largest stony meteorite sample collected during the 1979 season. In addition to its size, this meteorite is of particular interest because it contains a linear contact separating two different igneous lithologies, basaltic and olivine-phyric. EET 79001 has glass inclusions that contain chemical compositions that are proportionally identical to the Martian atmosphere, as measured by the Viking spacecraft [2]. This discovery helped scientists to identify where the "SNC" meteorite suite had originated, and that we actually possessed Martian samples. This meteorite has been allocated to 195 scientists for research and there are 5304.770 g of sample is available. Five years later, ANSMET found ALH 84001 (1930.900 g), the only Martian orthopyroxenite. This meteorite was initially classified as a diogenite but was reclassified as being a Martian meteorite in 1993 [3,4]. ALH 84001 is known as the "Life on Mars" meteorite, sparked debate about whether it contained evidence of Martian life [5] and significantly influenced the field of astrobiol-ogy. This sample has been allocated to 173 scientists for research and has 1426.694 g remaining at JSC. In 1988, another lherzolitic shergottite was found, LEW 88516, (13.203 g). This meteorite wasn't recognized in the field as an achondrite until it was broken during processing 2 years later. LEW 88516 has been allocated to 43 scientists for research and 5.351 g of this meteorite remains at JSC. Six years later a basaltic shergottite was found in the Queen Alexandra Range, QUE 94201 (12.020 g). This meteorite was believed to be of terrestrial origin until maskelynite was seen in a thin section. QUE 94201 has been allocated to 57 scientists for research and there are 3.629 g of this meteorite left at JSC. In 2003, the NASA Mars Exploration Program joined the ANSMET team with the hopes of finding another Martian mete-orite. During this expedition, MIL 03346 (715.200 g) was found. This meteorite is a nakhlite. MIL 03346 has been allocated to 98 scientists for research and there are 579.046 g of this sample remaining at JSC. Six years later, 3 more meteorites that have been paired with MIL 03346 were found, MIL 090030 (452.630 g), 090032 (532.190 g ) and 090136 (170.980 g). MIL 090030 has been allocated to 21 scientists for research and has 434.420 g remaining at JSC, MIL 090032 has been allocated to 21 scientists for re-search and has 508.710 g remaining at JSC and MIL 090136 has been allocated to 14 scientists for research and has 156.790 g remaining at JSC. During the 2004 expedition, 2 identical meteorites where found together on the ice, RBT 04261 (78.763 g) and RBT 04262 (204.600 g). These paired meteorites are olivine-phyric shergottites. RBT 04261 has been allocated to 33 scientists for research and has 32.335 g remaining at JSC. RBT 04262 has been allocated to 46 scientists for research and has 171.886 g remaining. In 2006, another olivine-phyric shergottite was found, LAR 06319 (78.572 g). This meteorite has 61.414 g remaining at JSC and has been allocated to 39 scientists for research. During the 2012 season, 3 more olivine-phyric shergottites were found at Larkman Nunatak, LAR 12011 (701.170 g), LAR 12095 (133.132 g) and LAR 12240 (57.596 g). LAR 12011 is paired with LAR 06319 and LAR 12095 and LAR 12240 are paired with each other. LAR 12011 has been allocated to 43 scientists for research and there are 685.778 g of LAR 12011 remaining at JSC. LAR 12095 has been allocated to 18 scientists for research and has 119.744 g remaining at JSC. LAR 12240 has been allocated to 10 scientists for research and has 52.231 g remaining at JSC. Martian meteorites are the only samples available from Mars because no mission has returned samples from there to date. All Martian meteorites are crustal rocks with most of them being crystallized magmas, so they are an important source for under-standing Martian geological history and volcanism. The ANSMET program has greatly contributed to the scientific community by collecting these meteorites
Technology Development and Advanced Planning for Curation of Returned Mars Samples
NASA Technical Reports Server (NTRS)
Lindstrom, David J.; Allen, Carlton C.
2002-01-01
NASA Johnson Space Center (JSC) curates extraterrestrial samples, providing the international science community with lunar rock and soil returned by the Apollo astronauts, meteorites collected in Antarctica, cosmic dust collected in the stratosphere, and hardware exposed to the space environment. Curation comprises initial characterization of new samples, preparation and allocation of samples for research, and clean, secure long-term storage. The foundations of this effort are the specialized cleanrooms (class 10 to 10,000) for each of the four types of materials, the supporting facilities, and the people, many of whom have been doing detailed work in clean environments for decades. JSC is also preparing to curate the next generation of extraterrestrial samples. These include samples collected from the solar wind, a comet, and an asteroid. Early planning and R\\&D are underway to support post-mission sample handling and curation of samples returned from Mars. One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination . Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. JSC has been conducting feasibility studies and developing designs for a sample receiving facility that would offer biocontainment at least the equivalent of current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.
Technology Development and Advanced Planning for Curation of Returned Mars Samples
NASA Astrophysics Data System (ADS)
Lindstrom, D. J.; Allen, C. C.
2002-05-01
NASA/Johnson Space Center (JSC) curates extraterrestrial samples, providing the international science community with lunar rock and soil returned by the Apollo astronauts, meteorites collected in Antarctica, cosmic dust collected in the stratosphere, and hardware exposed to the space environment. Curation comprises initial characterization of new samples, preparation and allocation of samples for research, and clean, secure long-term storage. The foundations of this effort are the specialized cleanrooms (class 10 to 10,000) for each of the four types of materials, the supporting facilities, and the people, many of whom have been doing detailed work in clean environments for decades. JSC is also preparing to curate the next generation of extraterrestrial samples. These include samples collected from the solar wind, a comet, and an asteroid. Early planning and R&D are underway to support post-mission sample handling and curation of samples returned from Mars. One of the strong scientific reasons for returning samples from Mars is to search for evidence of current or past life in the samples. Because of the remote possibility that the samples may contain life forms that are hazardous to the terrestrial biosphere, the National Research Council has recommended that all samples returned from Mars be kept under strict biological containment until tests show that they can safely be released to other laboratories. It is possible that Mars samples may contain only scarce or subtle traces of life or prebiotic chemistry that could readily be overwhelmed by terrestrial contamination. Thus, the facilities used to contain, process, and analyze samples from Mars must have a combination of high-level biocontainment and organic / inorganic chemical cleanliness that is unprecedented. JSC has been conducting feasibility studies and developing designs for a sample receiving facility that would offer biocontainment at least the equivalent of current maximum containment BSL-4 (BioSafety Level 4) laboratories, while simultaneously maintaining cleanliness levels equaling those of state-of-the-art cleanrooms. Unique requirements for the processing of Mars samples have inspired a program to develop handling techniques that are much more precise and reliable than the approach (currently used for lunar samples) of employing gloved human hands in nitrogen-filled gloveboxes. Individual samples from Mars are expected to be much smaller than lunar samples, the total mass of samples returned by each mission being 0.5- 1 kg, compared with many tens of kg of lunar samples returned by each of the six Apollo missions. Smaller samples require much more of the processing to be done under microscopic observation. In addition, the requirements for cleanliness and high-level containment would be difficult to satisfy while using traditional gloveboxes. JSC has constructed a laboratory to test concepts and technologies important to future sample curation. The Advanced Curation Laboratory includes a new-generation glovebox equipped with a robotic arm to evaluate the usability of robotic and teleoperated systems to perform curatorial tasks. The laboratory also contains equipment for precision cleaning and the measurement of trace organic contamination.
NASA Technical Reports Server (NTRS)
Lyons, Frankel
2013-01-01
A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.
2010-04-05
JSC2010-E-046777 (5 April 2010) --- Astronaut Rick Sturckow, spacecraft communicator (CAPCOM) for the STS-131 mission, is pictured at his console in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
2010-04-05
JSC2010-E-046733 (5 April 2010) --- An overall view of the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch. In the foreground are flight directors Tony Ceccacci (left) and Bryan Lunney.
STS-37 Mission Specialist (MS) Godwin during simulation in JSC's FB-SMS
NASA Technical Reports Server (NTRS)
1991-01-01
STS-37 Mission Specialist (MS) Linda M. Godwin rehearses some phases of her scheduled duties on the middeck of the fixed-based (FB) shuttle mission simulator (SMS) located in JSC's Mission Simulation and Training Facility Bldg 5. Godwin is inspecting supplies stowed in the middeck lockers during this unsuited simulation.
FEMALE ASTRONAUT-CANDIDATES (ASCAN)'S - JSC
1979-03-23
S79-29594 (28 Feb 1979) --- Sporting their new Shuttle-type constant-wear garments, these six astronaut candidates pose for a picture in the crew systems laboratory at the Johnson Space Center (JSC). From left to right are Rhea Seddon, Sally K. Ride, Kathryn D. Sullivan, Shannon W. Lucid, Anna L. Fisher and Judith A. Resnik.
STS-47 crew participates in fire fighting exercises at JSC Fire Training Pit
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) N. Jan Davis (foreground) and MS and Payload Commander (PLC) Mark C. Lee, squinting and holding water hose, listen to instructions prior to participating in fire fighting exercises held at JSC's Fire Training Pit across from Gilruth Center Bldg 207.
2012-06-07
JSC2012-E-096292 (7 June 2012) --- Attired in Russian Sokol launch and entry suits, NASA astronaut Tom Marshburn (left), Russian cosmonaut Roman Romanenko (center) and Canadian Space Agency astronaut Chris Hadfield, all Expedition 32 backup crew members, take a break from training in Star City, Russia to pose for a portrait. Photo credit: Gagarin Cosmonaut Training Center
Technicians assist STS-47 MS Jemison prior to JSC bailout training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Mae C. Jemison, assisted by technicians, adjusts a strap on her launch and entry suit (LES) prior to launch emergency egress (bailout) exercises in JSC's Mockup and Integration Laboratory Bldg 9A. Jemison is making her first flight in space.
STS-104 Preflight Emergency Egress Bailout Training at the NBL
2001-01-03
JSC2001-00003 (January 2001) --- Astronaut Janet L. Kavandi, STS-104 mission specialist, is assisted by SCUBA-equipped divers during an emergency bailout training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center (JSC). Kavandi will join four other astronauts for a June mission with the International Space Station (ISS).
STS-104 Preflight Emergency Egress Bailout Training at the NBL
2001-01-03
JSC2001-00021 (January 2001) --- Astronaut Janet L. Kavandi, STS-104 mission specialist, is assisted by a diver during an emergency bailout training session in the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center (JSC). Kavandi will join four other astronauts for a June mission with the International Space Station (ISS).
1962-01-01
S76-32986 (March 1962) --- A color enhancement of a black and white photograph of a water trough, windmill, grazing area and feed lot on the future site of the Manned Spacecraft Center, Houston, Texas. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.
NASA Cribs: Human Exploration Research Analog
2017-07-20
Follow along as interns at NASA’s Johnson Space Center show you around the Human Exploration Research Analog (HERA), a mission simulation environment located onsite at the Johnson Space Center in Houston. HERA is a unique three-story habitat designed to serve as an analog for isolation, confinement, and remote conditions in exploration scenarios. This video gives a tour of where crew members live, work, sleep, and eat during the analog missions. Find out more about HERA mission activities: https://www.nasa.gov/analogs/hera Find out how to be a HERA crew member: https://www.nasa.gov/analogs/hera/want-to-participate For more on NASA internships: https://intern.nasa.gov/ For Johnson Space Center specific internships: https://pathways.jsc.nasa.gov/ https://www.nasa.gov/centers/johnson/education/interns/index.html HD download link: https://archive.org/details/jsc2017m000730_NASA-Cribs-Human-Exploration-Research-Analog --------------------------------- FOLLOW JOHNSON SPACE CENTER INTERNS! Facebook: @NASA.JSC.Students https://www.facebook.com/NASA.JSC.Students/ Instagram: @nasajscstudents https://www.instagram.com/nasajscstudents/ Twitter: @NASAJSCStudents https://twitter.com/nasajscstudents
Effort to Accelerate MBSE Adoption and Usage at JSC
NASA Technical Reports Server (NTRS)
Wang, Lui; Izygon, Michel; Okron, Shira; Garner, Larry; Wagner, Howard
2016-01-01
This paper describes the authors' experience in adopting Model Based System Engineering (MBSE) at the NASA/Johnson Space Center (JSC). Since 2009, NASA/JSC has been applying MBSE using the Systems Modeling Language (SysML) to a number of advanced projects. Models integrate views of the system from multiple perspectives, capturing the system design information for multiple stakeholders. This method has allowed engineers to better control changes, improve traceability from requirements to design and manage the numerous interactions between components. As the project progresses, the models become the official source of information and used by multiple stakeholders. Three major types of challenges that hamper the adoption of the MBSE technology are described. These challenges are addressed by a multipronged approach that includes educating the main stakeholders, implementing an organizational infrastructure that supports the adoption effort, defining a set of modeling guidelines to help engineers in their modeling effort, providing a toolset that support the generation of valuable products, and providing a library of reusable models. JSC project case studies are presented to illustrate how the proposed approach has been successfully applied.
JSC Case Study: Fleet Experience with E-85 Fuel
NASA Technical Reports Server (NTRS)
Hummel, Kirck
2009-01-01
JSC has used E-85 as part of an overall strategy to comply with Presidential Executive Order 13423 and the Energy Policy Act. As a Federal fleet, we are required to reduce our petroleum consumption by 2 percent per year, and increase the use of alternative fuels in our vehicles. With the opening of our onsite dispenser in October 2004, JSC became the second federal fleet in Texas and the fifth NASA center to add E-85 fueling capability. JSC has a relatively small number of GSA Flex Fuel fleet vehicles at the present time (we don't include personal vehicles, or other contractor's non-GSA fleet), and there were no reasonably available retail E-85 fuel stations within a 15-minute drive or within five miles (one way). So we decided to install a small 1000 gallon onsite tank and dispenser. It was difficult to obtain a supplier due to our low monthly fuel consumption, and our fuel supplier contract has changed three times in less than five years. We experiences a couple of fuel contamination and quality control issues. JSC obtained good information on E-85 from the National Ethanol Vehicle Coalition (NEVC). We also spoke with Defense Energy Support Center, (DESC), Lawrence Berkeley Laboratory, and US Army Fort Leonard Wood. E-85 is a liquid fuel that is dispensed into our Flexible Fuel Vehicles identically to regular gasoline, so it was easy for our vehicle drivers to make the transition.
Production of glass-ceramics from sewage sludge and waste glass
NASA Astrophysics Data System (ADS)
Rozenstrauha, I.; Sosins, G.; Petersone, L.; Krage, L.; Drille, M.; Filipenkov, V.
2011-12-01
In the present study for recycling of sewage sludge and waste glass from JSC "Valmieras stikla skiedra" treatment of them to the dense glass-ceramic composite material using powder technology is estimated. The physical-chemical properties of composite materials were identified - density 2.19 g/cm3, lowest water absorption of 2.5% and lowest porosity of 5% for the samples obtained in the temperature range of sintering 1120 - 1140 °C. Regarding mineralogical composition of glass-ceramics the following crystalline phases were identified by XRD analysis: quartz (SiO2), anorthite (CaAl2Si2O8) and hematite (Fe2O3), which could ensure the high density of materials and improve the mechanical properties of material - compressive strength up to 60.31±5.09 - 52.67±19.18 MPa. The physical-chemical properties of novel materials corresponds to dense glass-ceramics composite which eventually could be used as a building material, e.g. for floor covering, road pavement, exterior tiles etc.
Numerical investigation of optimized CZTSSe based solar cell in Wx-Amps environment
NASA Astrophysics Data System (ADS)
Mohanty, Soumya Priyadarshini; Padhy, Srinibasa; Chowdhury, Joy; Sing, Udai P.
2018-05-01
The CZTSSe is the modified version of CZTS with selenium infusion. It shows maximum efficiency in the band gap from 1 to 1.4 eV. In our present work CZTSSe based solar cell is investigated using Wx-Amps tool. The Mo layer, absorber layer, CdS layer, i-ZnO [4]and Al-ZnO layers with their electrical, optical and material parameters are fitted in the tool. The vital parameters such as carrier density, thickness of the CZTSSe absorber layer, operating temperature, CdS buffer layer thickness and its carrier density on the cell interpretation are calculated. From[4] the simulation results it is apparent that the optimal absorber layer varies from 2.9 µm to 3.7 µm. The temperature variation has a strong influence on the efficiency of the cell. An optimal efficiency of 22% (With Jsc=33 mA/cm2, Voc=0.98 V, and fill factor= 68%) are attained. These results will give some insight for makeing higher efficiency CZTSSe based solar cell.
Intra-molecular Charge Transfer and Electron Delocalization in Non-fullerene Organic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Qinghe; Zhao, Donglin; Goldey, Matthew B.
Two types of electron acceptors were synthesized by coupling two kinds of electron-rich cores with four equivalent perylene diimides (PDIs) at the a position. With fully aromatic cores, TPB and TPSe have pi-orbitals spread continuously over the whole aromatic conjugated backbone, unlike TPC and TPSi, which contain isolated PDI units due to the use of a tetrahedron carbon or silicon linker. Density functional theory calculations of the projected density of states showed that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for TPB are localized in separate regions of space. Further, the LUMO of TPB showsmore » a greater contribution from the orbitals belonging to the connective core of the molecules than that of TPC. Overall, the properties of the HOMO and LUMO point at increased intra-molecular delocalization of negative charge carriers for TPB and TPSe than for TPC and TPSi and hence at a more facile intra-molecular charge transfer for the former. The film absorption and emission spectra showed evidences for the inter -molecular electron delocalization in TPB and TPSe, which is consistent with the network structure revealed by X-ray diffraction studies on single crystals of TPB. These features benefit the formation of charge transfer states and/or facilitate charge transport. Thus, higher electron mobility and higher charge dissociation probabilities under J(sc) condition were observed in blend films of TPB:PTB7-Th and TPSe:PTB7-Th than those in TPC:PTB7Th and TPSi:PTB7-Th blend films. As a result, the J(sc) and fill factor values of 15.02 mA/cm(2), 0.58 and 14.36 mA/cm(2), 0.55 for TPB- and TPSe-based solar cell are observed, whereas those for TPC and TPSi are 11.55 mA/cm2, 0.47 and 10.35 mA/cm(2), 0.42, respectively.« less
Low-Energy Impacts onto Lunar Regolith Simulant
NASA Astrophysics Data System (ADS)
Seward, Laura M.; Colwell, J.; Mellon, M.; Stemm, B.
2012-10-01
Low-Energy Impacts onto Lunar Regolith Simulant Laura M. Seward1, Joshua E. Colwell1, Michael T. Mellon2, and Bradley A. Stemm1, 1Department of Physics, University of Central Florida, Orlando, Florida, 2Southwest Research Institute, Boulder, Colorado. Impacts and cratering in space play important roles in the formation and evolution of planetary bodies. Low-velocity impacts and disturbances to planetary regolith are also a consequence of manned and robotic exploration of planetary bodies such as the Moon, Mars, and asteroids. We are conducting a program of laboratory experiments to study low-velocity impacts of 1 to 5 m/s into JSC-1 lunar regolith simulant, JSC-Mars-1 Martian regolith simulant, and silica targets under 1 g. We use direct measurement of ejecta mass and high-resolution video tracking of ejecta particle trajectories to derive ejecta mass velocity distributions. Additionally, we conduct similar experiments under microgravity conditions in a laboratory drop tower and on parabolic aircraft with velocities as low as 10 cm/s. We wish to characterize and understand the collision parameters that control the outcome of low-velocity impacts into regolith, including impact velocity, impactor mass, target shape and size distribution, regolith depth, target relative density, and crater depth, and to experimentally determine the functional dependencies of the outcomes of low-velocity collisions (ejecta mass and ejecta velocities) on the controlling parameters of the collision. We present results from our ongoing study showing the positive correlation between impact energy and ejecta mass. The total ejecta mass is also dependent on the packing density (porosity) of the regolith. We find that ejecta mass velocity fits a power-law or broken power-law distribution. Our goal is to understand the physics of ejecta production and regolith compaction in low-energy impacts and experimentally validate predictive models for dust flow and deposition. We will present our results from one-g and microgravity impact experiments.
Toxicity of Lunar and Martian Dust Simulants to Alveolar Macrophages Isolated from Human Volunteers
NASA Technical Reports Server (NTRS)
Latch, Judith N.; Hamilton, Raymond F., Jr.; Holian, Andrij; James, John T.
2007-01-01
NASA is planning to build a habitat on the Moon and use the Moon as a stepping stone to Mars. JSC-1, an Arizona volcanic ash that has mineral properties similar to lunar soil, is used to produce lunar environments for instrument and equipment testing. NASA is concerned about potential health risks to workers exposed to these fine dusts in test facilities. The potential toxicity of JSC-1 and a Martian soil simulant (JSC-Mars-1, a Hawaiian volcanic ash) was evaluated using human alveolar macrophages (HAM) isolated from volunteers; titanium dioxide and quartz were used as reference dusts. This investigation is a prerequisite to studies of actual lunar dust. HAM were treated in vitro with these test dusts for 24 h; assays of cell viability and apoptosis showed that JSC-1 and TiO2 were comparable, and more toxic than saline control, but less toxic than quartz. HAM treated with JSC-1 or JSC-Mars 1 showed a dose-dependent increase in cytotoxicity. To elucidate the mechanism by which these dusts induce apoptosis, we investigated the involvement of the scavenger receptor (SR). Pretreatment of cells with polyinosinic acid, an SR blocker, significantly inhibited both apoptosis and necrosis. These results suggest HAM cytotoxicity may be initiated by interaction of the dust particles with SR. Besides being cytotoxic, silica is known to induce shifting of HAM phenotypes to an immune active status. The immunomodulatory effect of the simulants was investigated. Treatment of HAM with either simulant caused preferential damage to the suppressor macrophage subpopulation, leading to a net increase in the ratio of activator (RFD1+) to suppressor (RFD1+7+) macrophages, a result similar to treatment with silica. It is recommended that appropriate precautions be used to minimize exposure to these fine dusts in large-scale engineering applications.
Comparison of Morphologies of Apollo 17 Dust Particles with Lunar Simulant, JSC-1
NASA Technical Reports Server (NTRS)
Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Kihm, Kenneth D.; Day, James D. M.
2005-01-01
Lunar dust (< 20 microns) makes up approx.20 wt.% of the lunar soil. Because of the abrasive and adhering nature of lunar soil, a detailed knowledge of the morphology (size, shape and abundance) of lunar dust is important for dust mitigation on the Moon. This represents a critical step towards the establishment of long-term human presence on the Moon (Taylor et al. 2005). Machinery design for in-situ resource utilization (ISRU) on the Moon also requires detailed information on dust morphology and general physical/chemical characteristics. Here, we report a morphological study of Apollo 17 dust sample 70051 and compare it to lunar soil stimulant, JSC-1. W e have obtained SEM images of dust grains from sample 70051 soil (Fig. 1). The dust grains imaged are composed of fragments of minerals, rocks, agglutinates and glass. Most particles consist largely of agglutinitic impact glass with their typical vesicular textures (fine bubbles). All grains show sub-angular to angular shapes, commonly with sharp edges, common for crushed glass fragments. There are mainly four textures: (1) ropey-textured pieces (typical for agglutinates), (2) angular shards, (3) blocky bits, and (4) Swiss-cheese grains. This last type with its high concentration of submicron bubbles, occurs on all scales. Submicron cracks are also present in most grains. Dust-sized grains of lunar soil simulant, JSC-1, were also studied. JSC-1 is a basaltic tuff with relatively high glass content (approx.50%; McKay et al. 1994). It was initially chosen in the early 90s to approximate the geotechnical properties of the average lunar soil (Klosky et al. 1996). JSC-1 dust grains also show angular blocky and shard textures (Fig. 2), similar to those of lunar dust. However, the JSC-1 grains lack the Swiss-cheese textured particles, as well as submicron cracks and bubbles in most grains.
Joint JSC/GSFC two-TDRS navigation certification results for STS-29, STS-30, and STS-32
NASA Technical Reports Server (NTRS)
Schmidt, Thomas G.; Brown, Edward T.; Murdock, Valerie E.; Cappellari, James O., Jr.; Smith, Evan A.; Schmitt, Mark W.; Omalley, James W.; Lowes, Flora B.; Joyce, James B.
1990-01-01
The procedures used and the results obtained in the joint Johnson Space Center (JSC)/Goddard Space Flight Center (GSFC) navigation certification of the two-Tracking and Data Relay Satellite (TDRS) S-band tracking configuration for support of low- to medium-inclination (28.5 to 62 degrees) Shuttle missions (STS-29 and STS-30) and Shuttle rendezvous missions (STS-32) are described. The objective of this certification effort was to certify the two-TDRS configuration for nominal Space Transportation System (STS) on-orbit navigation support, thereby making it possible to significantly reduce the ground tracking support requirements for routine STS on-orbit navigation. JSC had the primary responsibility for certification of the two-TDRS configuration for STS support, and GSFC supported the effort by performing Ground Network (GN) and Space Network (SN) tracking data evaluation, parallel orbit solutions, and solution comparisons. In the certification process, two types of orbit determination solutions were generated by JSC and by GSFC for each tracking arc evaluated, one type using TDRS-East and TDRS-West tracking data combined with ground tracking data (the reference solutions) and one type using only TDRS-East and TDRS-West tracking data. The two types of solutions were then compared to determine the maximum position differences over the solution arcs and whether these differences satisfied the navigation certification criteria. The certification criteria were a function of the type of Shuttle activity in the tracking arc, i.e., quiet, moderate, or active. Quiet periods included no attitude maneuvers or ventings; moderate periods included one or two maneuvers or ventings; and active periods included more than two maneuvers or ventings. The results of the individual JSC and GSFC certification analyses for the STS-29, STS-30, and STS-32 missions and the joint JSC/GSFC conclusions regarding certification of the two-TDRS S-band configuration for STS support are presented.
Long, Guankui; Wu, Bo; Yang, Xuan; Kan, Bin; Zhou, Ye-Cheng; Chen, Li-Chuan; Wan, Xiangjian; Zhang, Hao-Li; Sum, Tze Chien; Chen, Yongsheng
2015-09-30
Both solution-processed polymers and small molecule based solar cells have achieved PCEs over 9% with the conventional device structure. However, for the practical applications of photovoltaic technology, further enhancement of both device performance and stability are urgently required, particularly for the inverted structure devices, since this architecture will probably be most promising for the possible coming commercialization. In this work, we have fabricated both conventional and inverted structure devices using the same small molecular donor/acceptor materials and compared the performance of both device structures, and found that the inverted structure based device gave significantly improved performance, the highest PCE so far for inverted structure based device using small molecules as the donor. Furthermore, the inverted device shows a remarkable stability with almost no obvious degradation after three months. Systematic device physics and charge generation dynamics studies, including optical simulation, light-intensity-dependent current-voltage experiments, photocurrent density-effective voltage analyses, transient absorption measurements, and electrical simulations, indicate that the significantly enhanced performance using inverted device is ascribed to the increasing of Jsc compared to the conventional device, which in turn is mainly attributed to the increased absorption of photons in the active layers, rather than the reduced nongeminate recombination.
Bozzola, Angelo; Liscidini, Marco; Andreani, Lucio Claudio
2012-03-12
We theoretically investigate the light-trapping properties of one- and two-dimensional periodic patterns etched on the front surface of c-Si and a-Si thin film solar cells with a silver back reflector and an anti-reflection coating. For each active material and configuration, absorbance A and short-circuit current density Jsc are calculated by means of rigorous coupled wave analysis (RCWA), for different active materials thicknesses in the range of interest of thin film solar cells and in a wide range of geometrical parameters. The results are then compared with Lambertian limits to light-trapping for the case of zero absorption and for the general case of finite absorption in the active material. With a proper optimization, patterns can give substantial absorption enhancement, especially for 2D patterns and for thinner cells. The effects of the photonic patterns on light harvesting are investigated from the optical spectra of the optimized configurations. We focus on the main physical effects of patterning, namely a reduction of reflection losses (better impedance matching conditions), diffraction of light in air or inside the cell, and coupling of incident radiation into quasi-guided optical modes of the structure, which is characteristic of photonic light-trapping.
Enhancement in c-Si solar cells using 16 nm InN nanoparticles
NASA Astrophysics Data System (ADS)
Imtiaz Chowdhury, Farsad; Alnuaimi, Aaesha; Alkis, Sabri; Ortaç, Bülend; Aktürk, Selçuk; Alevli, Mustafa; Dietz, Nikolaus; Kemal Okyay, Ali; Nayfeh, Ammar
2016-05-01
In this work, 16 nm indium nitride (InN) nanoparticles (NPs) are used to increase the performance of thin-film c-Si HIT solar cells. InN NPs were spin-coated on top of an ITO layer of c-Si HIT solar cells. The c-Si HIT cell is a stack of 2 μm p type c-Si, 4-5 nm n type a-Si, 15 nm n+ type a-Si and 80 nm ITO grown on a p+ type Si substrate. On average, short circuit current density (Jsc) increases from 19.64 mA cm-2 to 21.54 mA cm-2 with a relative improvement of 9.67% and efficiency increases from 6.09% to 7.09% with a relative improvement of 16.42% due to the presence of InN NPs. Reflectance and internal/external quantum efficiency (IQE/EQE) of the devices were also measured. Peak EQE was found to increase from 74.1% to 81.3% and peak IQE increased from 93% to 98.6% for InN NPs coated c-Si HIT cells. Lower reflection of light due to light scattering is responsible for performance enhancement between 400-620 nm while downshifted photons are responsible for performance enhancement from 620 nm onwards.
NASA Astrophysics Data System (ADS)
Sasikumar, Ragu; Chen, Tse-Wei; Chen, Shen-Ming; Rwei, Syang-Peng; Ramaraj, Sayee Kannan
2018-05-01
Tin(IV) oxide nanoparticles (SnO2 NPs) doped on the surface of graphene oxide (GO) sheets for application in Dye-Sensitized Solar Cells (DSSCs). The effective incorporation of SnO2 on the surface of GO sheets were confirmed by powder X-ray diffraction (PXRD), Fourier transform infra-red spectroscopy (FT-IR), thermogravimetric analysis (TGA), electrochemical impedance spectroscopy (EIS), and Raman spectroscopy. The morphology of the GO/SnO2 hybrid nanocomposite was confirmed by field emission scanning electron microscopy (FE-SEM) analysis. This current study involvement with the effect of different photo-anodes such as GO, SnO2, and GO/SnO2 hybrid nanocomposite on the power conversion efficiency (PCE) of the triiodide electrolyte based DSSCs. Remarkably, GO/SnO2 hybrid nanocomposite based photo-anode for DSSC observed PCE of 8.3% and it is about 12% higher than that of un-doped TiO2 photo-anode. The equivalent short-circuit photocurrent density (Jsc) of 16.67 mA cm-2, open circuit voltage (Voc) of 0.77 V, and fill factor (FF) of 0.65 respectively. The achieved results propose that the hybrid nanocomposite is an appropriate photo-anodic material for DSSCs applications.
Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells
Selopal, Gurpreet Singh; Wu, Hui-Ping; Lu, Jianfeng; Chang, Yu-Cheng; Wang, Mingkui; Vomiero, Alberto; Concina, Isabella; Diau, Eric Wei-Guang
2016-01-01
We report the synthesis and characterization of new metal-free organic dyes (namely B18, BTD-R, and CPTD-R) which designed with D-π-A concept to extending the light absorption region by strong conjugation group of π-linker part and applied as light harvester in dye sensitized solar cells (DSSCs). We compared the photovoltaic performance of these dyes in two different photoanodes: a standard TiO2 mesoporous photoanode and a ZnO photoanode composed of hierarchically assembled nanostructures. The results demonstrated that B18 dye has better photovoltaic properties compared to other two dyes (BTD-R and CPTD-R) and each dye has higher current density (Jsc) when applied to hierarchical ZnO nanocrystallites than the standard TiO2 mesoporous film. Transient photocurrent and photovoltage decay measurements (TCD/TVD) were applied to systematically study the charge transport and recombination kinetics in these devices, showing the electron life time (τR) of B18 dye in ZnO and TiO2 based DSSCs is higher than CPTD-R and BTD-R based DSSCs, which is consistent with the photovoltaic performances. The conversion efficiency in ZnO based DSSCs can be further boosted by 35%, when a compact ZnO blocking layer (BL) is applied to inhibit electron back reaction. PMID:26738698
Mansournia, Mohammadreza; Rafizadeh, Somayeh; Hosseinpour-Mashkani, S Mostafa; Motaghedifard, Mohammad Hassan
2016-08-01
Zinc oxide nanosheets (ZnONSs) were successfully synthesized using Zn(NO3)2·4H2O as the starting reagent in ammonia atmosphere at room temperature by a novel gas-solution precipitation method. XRD and EDS patterns indicated that pure ZnONSs were produced only in 15min reaction time. Besides, investigating the optical properties of the as-prepared ZnO nanosheets using UV-Vis diffused reflectance spectroscopy (DRS) exhibited their semiconducting property by revealing one optical band gap in 3.3eV. Moreover, rhodamine B and methylene blue degradation were used as a probe reaction to test the as-synthesized ZnONSs photoactivity. Furthermore, a possible reaction mechanism for ZnONSs formation was discussed. On the other hand, operation of ZnONSs in Dye-sensitized solar cell (DSSC) was investigated by current density-voltage (Jsc-Voc) curve. Finally, a pencil graphite electrode was decorated using ZnONSs and pure MWCNT to provide an electrochemical device for Pb(+2) ions sensing. This modified electrode showed agreeable responses to trace amounts of Pb(+2) in NaOAC/HOAC buffer solutions. The limit of detection was found to be 0.112nmolL(-1) for Pb(+2). Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Xiaodong; Lei, Ming; Zhou, Yi; Song, Bo; Li, Yongfang
2015-08-01
Double cathode buffer layers (CBLs) composed of fullerene derivative functionalized with a crown-ether end group in its side chain (denoted as PCBC) and a LiF layer were introduced between the PCBM acceptor layer and the top cathode in planar p-i-n perovskite solar cells (pero-SCs) based on CH3NH3PbI3-XClX. The devices with the PCBC/LiF double CBLs showed significant improvements in power conversion efficiency (PCE) and long-term stability when compared to the device with LiF single CBL. Through optimizing the spin-coating speed of PCBC, a maximum PCE of 15.53% has been achieved, which is approximately 15% higher than that of the device with single LiF CBL. The remarkable improvement in PCE can be attributed to the formation of a better ohmic contact in the CBL between PCBC and LiF/Al electrode arising from the dipole moment of PCBC, leading to the enhanced fill factor and short-circuit current density (Jsc). Besides the PCE, the long-term stability of the devices with PCBC interlayer is also superior to that of the device with LiF single CBL, which is due to the more effective protection for the perovskite/PCBM interface.
NASA Astrophysics Data System (ADS)
Mohanty, Shyama Prasad; Bhargava, Parag
2012-11-01
Nanoparticle loaded quasi solid electrolytes are important from the view point of developing electrolytes for dye sensitized solar cells (DSSCs) having long term stability. The present work shows the influence of isoelectric point of nanopowders in electrolyte on the photoelectrochemical characteristics of DSSCs. Electrolytes with nanopowders of silica, alumina and magnesia which have widely differing isoelectric points are used in the study. Adsorption of ions from the electrolyte on the nanopowder surface, characterized by zeta potential measurement, show that cations get adsorbed on silica, alumina surface while anions get adsorbed on magnesia surface. The electrochemical characteristics of nanoparticulate loaded electrolytes are examined through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DSSCs fabricated using liquid, silica or alumina loaded electrolytes exhibit almost similar performance. But interestingly, the magnesia loaded electrolyte-based cell show lower short circuit current density (JSC) and much higher open circuit voltage (VOC), which is attributed to adsorption of anions. Such anionic adsorption prevents the dark reaction in magnesia loaded electrolyte-based cell and thus, enhances the VOC by almost 100 mV as compared to liquid electrolyte based cell. Also, higher electron life time at the titania/electrolyte interface is observed in magnesia loaded electrolyte-based cell as compared to others.
NASA Astrophysics Data System (ADS)
Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian
2016-05-01
In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm2, an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm2. Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.
Jin, Fangming; Su, Zisheng; Chu, Bei; Cheng, Pengfei; Wang, Junbo; Zhao, Haifeng; Gao, Yuan; Yan, Xingwu; Li, Wenlian
2016-05-17
In this work, we describe the performance of organic Schottky barrier solar cells with the structure of ITO/molybdenum oxide (MoOx)/boron subphthalocyanine chloride (SubPc)/bathophenanthroline (BPhen)/Al. The SubPc-based Schottky barrier solar cells exhibited a short-circuit current density (Jsc) of 2.59 mA/cm(2), an open-circuit voltage (Voc) of 1.06 V, and a power conversion efficiency (PCE) of 0.82% under simulated AM1.5 G solar illumination at 100 mW/cm(2). Device performance was substantially enhanced by simply inserting thin organic hole transport material into the interface of MoOx and SubPc. The optimized devices realized a 180% increase in PCE of 2.30% and a peak Voc as high as 1.45 V was observed. We found that the improvement is due to the exciton and electron blocking effect of the interlayer and its thickness plays a vital role in balancing charge separation and suppressing quenching effect. Moreover, applying such interface engineering into MoOx/SubPc/C60 based planar heterojunction cells substantially enhanced the PCE of the device by 44%, from 3.48% to 5.03%. Finally, we also investigated the requirements of the interface material for Schottky barrier modification.
STS-30 Commander David M. Walker during preflight press conference at JSC
NASA Technical Reports Server (NTRS)
1989-01-01
During preflight press conference, STS-30 Commander David M. Walker monitors a question from a news media representative. The event was held in the JSC Auditorium and Public Affairs Facility Bldg 2 briefing room. STS-30 mission will fly onboard Atlantis, Orbiter Vehicle (OV) 104, and is scheduled for an April 28 liftoff.
Earth resources sensor data handling system: NASA JSC version
NASA Technical Reports Server (NTRS)
1974-01-01
The design of the NASA JSC data handling system is presented. Data acquisition parameters and computer display formats and the flow of image data through the system, with recommendations for improving system efficiency are discussed along with modifications to existing data handling procedures which will allow utilization of data duplication techniques and the accurate identification of imagery.
2010-04-05
JSC2010-E-046772 (5 April 2010) --- Astronauts George Zamka (left) and Rick Sturckow, both spacecraft communicators (CAPCOM) for the STS-131 mission, are pictured at their consoles in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
2010-04-05
JSC2010-E-046808 (5 April 2010) --- Astronauts Rick Sturckow (foreground) and George Zamka, both spacecraft communicators (CAPCOM) for the STS-131 mission, watch the big screens in the space shuttle flight control room in the Johnson Space Center's Mission Control Center during launch countdown activities a few hundred miles away in Florida, site of space shuttle Discovery's STS-131 launch.
STS-30 Pilot Ronald J. Grabe during preflight press conference at JSC
NASA Technical Reports Server (NTRS)
1989-01-01
During preflight press conference, STS-30 Pilot Ronald J. Grabe answers a question from the news media. The event was held in the JSC Auditorium and Public Affairs Facility Bldg 2 briefing room. STS-30 mission will fly onboard Atlantis, Orbiter Vehicle (OV) 104, and is scheduled for an April 28 liftoff.
STS-37 Mission Specialist (MS) Ross during simulation in JSC's FB-SMS
NASA Technical Reports Server (NTRS)
1991-01-01
STS-37 Mission Specialist (MS) Jerry L. Ross 'borrows' the pilots station to rehearse some of his scheduled duties for his upcoming mission. He is on the flight deck of the fixed-based (FB) shuttle mission simulator (SMS) during this unsuited simulation. The SMS is part of JSC's Mission Simulation and Training Facility Bldg 5.
STS-335 food tasting in the JSC Food Lab
2010-11-12
JSC2010-E-185479 (10 Nov. 2010) --- NASA astronaut Rex Walheim, STS-135 mission specialist, participates in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew during food tasting session in JSC Food Lab.
2010-05-25
JSC2010-E-087708 (25 May 2010) --- NASA astronaut Gregory H. Johnson (foreground), STS-134 pilot; along with astronauts Greg Chamitoff and Michael Fincke, both STS-134 mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
Spherical Panorama 360 VR capture of bldg 30 FCR-1 during ISS operations
2013-11-21
360 VR Panorama of the Building 30 Flight Control Room 1 in honor of the ISS 15th Anniversary. Created with jsc2013e095196 thru jsc2013e095201. VR DATE: 11-20-13 LOCATION: B 30 FCR - 1 SUBJECT: B30 FCR - 1 360 VR Panorama VR PHOTOGRAPHER: Bill Stafford
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith
2009-01-01
This slide presentation reviews the method developed by the NASA Johnson Space Center (JSC) to determine tolerances to internal shorts and screening for problems in commercial off the shelf (COTS) Lithium-ion batteries. The test apparatus is shown and several examples of the usage and results of the test are discussed.
STS-30 crewmembers participate in fire fighting training at JSC
NASA Technical Reports Server (NTRS)
1989-01-01
STS-30 Atlantis, Orbiter Vehicle (OV) 104, crewmembers participate in fire fighting training at JSC's fire training pit across from the Gilruth Center Bldg 207. Commander David M. Walker and Pilot Ronald J. Grabe use fire extinguishers to control blaze. Fire / security staff member Robert Fife coaches the two crewmembers during the training exercise.
STS-32 MS Dunbar trains in JSC Manipulator Development Facility (MDF)
NASA Technical Reports Server (NTRS)
1989-01-01
STS-32 Mission Specialist (MS) Bonnie J. Dunbar reviews checklist with training personnel in the Manipulator Development Facility (MDF) in JSC's Mockup and Integration Facility (MAIL) Bldg 9A. Dunbar (left) discusses procedures with trainer in front of the aft flight deck onorbit station controls. Overhead window W8 is visible above their heads.
2010-05-19
JSC2010-E-085363 (19 May 2010) --- The members of the STS-132 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (right) holds the STS-132 mission logo. Photo credit: NASA or National Aeronautics and Space Administration
STS-40 MS Seddon pauses during fire fighting training at JSC's Fire Pit
1990-08-22
S90-46497 (18 Aug 1990) --- Astronaut Rhea Seddon, STS-40 mission specialist, takes a break from firefighting training at the Johnson Space Center (JSC). In less than a year Dr. Seddon will be joined by four NASA astronauts and two payload specialists for the Spacelab Life Sciences (SLS-1) mission aboard Columbia.
STS-35 MS Hoffman is suspended above pool during JSC water egress exercises
NASA Technical Reports Server (NTRS)
1990-01-01
STS-35 Mission Specialist (MS) Jeffrey A. Hoffman is suspended above pool during launch emergency egress procedures conducted in JSC's Weightless Environmental Training Facility Bldg 29. Hoffman, wearing a launch and entry suit (LES) and launch and entry helmet (LEH), adjusts flotation device (life jacket) as he is raised above the pool.
STS-53 MS Clifford, in EMU, dons gloves with technicians' assistance at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Michael R.U. Clifford, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons gloves with assistance from two technicians. Clifford is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
STS-53 MS Voss,in EMU, dons gloves with technicians' assistance at JSC's WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) James S. Voss, wearing extravehicular mobility unit (EMU) and communications carrier assembly (CCA), dons his gloves with assistance from two technicians. Voss is preparing for an underwater contingency extravehicular activity (EVA) simulation in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
STS-109 Crew Return Ceremony at Ellington Field
2002-03-13
JSC2002-E-09329 (13 March 2002) --- Astronaut Duane G. Carey (right foreground), STS-109 pilot, shakes hands with Johnson Space Centers (JSC) Acting Director Roy Estess during the crew return ceremonies at Ellington Field. Also pictured are astronaut Scott D. Altman (left background), mission commander, and astronaut Steven A. Hawley, Director of Flight Crew Operations.
NASA Technical Reports Server (NTRS)
Mcinnis, Bayliss (Editor); Goldstein, Stanley (Editor)
1987-01-01
The Johnson Space Center (JSC) NASA/ASEE Summer Faculty Fellowship Program was conducted by the University of Houston. The basic objectives of the program are: (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching objectives of participants' institutions; and (4) to contribute to the research objectives of the NASA Centers. Each faculty fellow spent ten weeks at JSC engaged in a research project commensurate with his interests and background and worked in collaboration with a NASA/JSC colleague. Volume 1 contains sections 1 through 14.
Development of the CELSS Emulator at NASA JSC
NASA Technical Reports Server (NTRS)
Cullingford, Hatice S.
1989-01-01
The Controlled Ecological Life Support System (CELSS) Emulator is under development at the NASA Johnson Space Center (JSC) with the purpose to investigate computer simulations of integrated CELSS operations involving humans, plants, and process machinery. This paper describes Version 1.0 of the CELSS Emulator that was initiated in 1988 on the JSC Multi Purpose Applications Console Test Bed as the simulation framework. The run module of the simulation system now contains a CELSS model called BLSS. The CELSS Emulator makes it possible to generate model data sets, store libraries of results for further analysis, and also display plots of model variables as a function of time. The progress of the project is presented with sample test runs and simulation display pages.
Defining the performance gap: Conducting a self-assessment
NASA Technical Reports Server (NTRS)
Braymer, Susan A.; Stoner, David L.; Powell, William C.
1992-01-01
This paper presents two different approaches to performing self-assessments of continuous improvement activities. Case Study 1 describes the activities performed by JSC to assess the implementation of continuous improvement efforts at the NASA Center. The JSC approach included surveys administered to randomly selected NASA personnel and personal interviews with NASA and contractor management personnel. Case Study 2 describes the continuous improvement survey performed by the JSC Safety, Reliability, and Quality Assurance (SR&QA) organization. This survey consisted of a short questionnaire (50 questions) administered to all NASA and contractor SR&QA personnel. The questionnaire is based on the eight categories of the President's Award for Quality and Productivity Improvement. It is designed to objectively determine placement on the TQ benchmark and identify a roadmap for improvement.
NASA Technical Reports Server (NTRS)
Rossi, Meredith; Lee, Lesley; Wear, Mary; Van Baalen, Mary; Rhodes, Bradley
2016-01-01
The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential latent health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging communities are necessary for astronauts to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography), as opposed to conditions resulting directly from the astronaut occupation; and increased breadth of monitoring services will improve the understanding of occupational health risks and longitudinal health of the astronaut community, past, present, and future. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding existing medical monitoring under the Astronaut Occupational Health program for former NASA astronauts.
National Space Biomedical Research Institute (NSBRI) JSC Summer Projects
NASA Technical Reports Server (NTRS)
Dowdy, Forrest Ryan
2014-01-01
This project optimized the calorie content in a breakfast meal replacement bar for the Advanced Food Technology group. Use of multivariable optimization yielded the highest weight savings possible while simultaneously matching NASA Human Standards nutritional guidelines. The scope of this research included the study of shelf-life indicators such as water activity, moisture content, and texture analysis. Key metrics indicate higher protein content, higher caloric density, and greater mass savings as a result of the reformulation process. The optimization performed for this study demonstrated wide application to other food bars in the Advanced Food Technology portfolio. Recommendations for future work include shelf life studies on bar hardening and overall acceptability data over increased time frames and temperature fluctuation scenarios.
Dye-sensitized solar cells using Aloe Vera and Cladode of Cactus extracts as natural sensitizers
NASA Astrophysics Data System (ADS)
Ganta, D.; Jara, J.; Villanueva, R.
2017-07-01
The purpose of this study is to develop dye-sensitized solar cells (DSSCs) from natural plant-based dyes, extracted from the Cladode (nopal) of the Thornless Prickly Pear Cactus (Opuntia ficus-indica), the gel of Aloe Vera (Aloe barbadensis miller), and the combination of Cladode and Aloe Vera extracts on side-by-side configuration. Optical properties were analyzed using UV-Vis Absorption and Fourier Transform Infrared Spectroscopy. Open circuit voltages (Voc) varied from 0.440 to 0.676 V, fill factors (FF) were greater than 40%, short-circuit photocurrent densities (Jsc) ranged from 0.112 to 0.290 mA/cm2 and highest conversion efficiency of 0.740% was reported for the Cladode DSSC.
Effect of polymer electrolyte on the performance of natural dye sensitized solar cells
NASA Astrophysics Data System (ADS)
Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.
2015-10-01
Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.
Multijunction InGaAs thermophotovoltaic devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.
1998-12-31
A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. MIMs were fabricated with an active area of 0.9 {times} 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55more » eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV MIMs demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. Electrical performance results for these MIMs are presented.« less
An Experimental Investigation of Dextrous Robots Using EVA Tools and Interfaces
NASA Technical Reports Server (NTRS)
Ambrose, Robert; Culbert, Christopher; Rehnmark, Frederik
2001-01-01
This investigation of robot capabilities with extravehicular activity (EVA) equipment looks at how improvements in dexterity are enabling robots to perform tasks once thought to be beyond machines. The approach is qualitative, using the Robonaut system at the Johnson Space Center (JSC), performing task trials that offer a quick look at this system's high degree of dexterity and the demands of EVA. Specific EVA tools attempted include tether hooks, power torque tools, and rock scoops, as well as conventional tools like scissors, wire strippers, forceps, and wrenches. More complex EVA equipment was also studied, with more complete tasks that mix tools, EVA hand rails, tethers, tools boxes, PIP pins, and EVA electrical connectors. These task trials have been ongoing over an 18 month period, as the Robonaut system evolved to its current 43 degree of freedom (DOF) configuration, soon to expand to over 50. In each case, the number of teleoperators is reported, with rough numbers of attempts and their experience level, with a subjective difficulty rating assigned to each piece of EVA equipment and function. JSC' s Robonaut system was successful with all attempted EVA hardware, suggesting new options for human and robot teams working together in space.
Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT)
NASA Technical Reports Server (NTRS)
Brown, Cheryl B.; Conger, Bruce C.; Miranda, Bruno M.; Bue, Grant C.; Rouen, Michael N.
2007-01-01
An effort was initiated by NASA/JSC in 2001 to develop an Extravehicular Activity System Sizing Analysis Tool (EVAS_SAT) for the sizing of Extravehicular Activity System (EVAS) architecture and studies. Its intent was to support space suit development efforts and to aid in conceptual designs for future human exploration missions. Its basis was the Life Support Options Performance Program (LSOPP), a spacesuit and portable life support system (PLSS) sizing program developed for NASA/JSC circa 1990. EVAS_SAT estimates the mass, power, and volume characteristics for user-defined EVAS architectures, including Suit Systems, Airlock Systems, Tools and Translation Aids, and Vehicle Support equipment. The tool has undergone annual changes and has been updated as new data have become available. Certain sizing algorithms have been developed based on industry standards, while others are based on the LSOPP sizing routines. The sizing algorithms used by EVAS_SAT are preliminary. Because EVAS_SAT was designed for use by members of the EVA community, subsystem familiarity on the part of the intended user group and in the analysis of results is assumed. The current EVAS_SAT is operated within Microsoft Excel 2003 using a Visual Basic interface system.
Antarctic Exploration Parallels for Future Human Planetary Exploration: A Workshop Report
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J. (Editor)
2002-01-01
Four Antarctic explorers were invited to a workshop at Johnson Space Center (JSC) to provide expert assessments of NASA's current understanding of future human exploration missions beyond low Earth orbit. These explorers had been on relatively sophisticated, extensive Antarctic expeditions with sparse or nonexistent support infrastructure in the period following World War II through the end of the International Geophysical Year. Their experience was similar to that predicted for early Mars or other planetary exploration missions. For example: one Antarctic a expedition lasted two years with only one planned resupply mission and contingency plans for no resupply missions should sea ice prevent a ship from reaching them; several traverses across Antarctica measured more than 1000 total miles, required several months to complete, and were made without maps (because they did not exist) and with only a few aerial photos of the route; and the crews of six to 15 were often international in composition. At JSC, the explorers were given tours of development, training, and scientific facilities, as well as documentation at operational scenarios for future planetary exploration. This report records their observations about these facilities and plans in answers to a series of questions provided to them before the workshop.
Performance Support Tools for Space Medical Operations
NASA Technical Reports Server (NTRS)
Byrne, Vicky; Schmid, Josef; Barshi, Immanuel
2010-01-01
Early Constellation space missions are expected to have medical capabilities similar to those currently on board the Space Shuttle and International Space Station (ISS). Flight surgeons on the ground in Mission Control will direct the Crew Medical Officer (CMO) during medical situations. If the crew is unable to communicate with the ground, the CMO will carry out medical procedures without the aid of a flight surgeon. In these situations, use of performance support tools can reduce errors and time to perform emergency medical tasks. The research presented here is part of the Human Factors in Training Directed Research Project of the Space Human Factors Engineering Project under the Space Human Factors and Habitability Element of the Human Research Program. This is a joint project consisting of human factors teams from the Johnson Space Center (JSC) and the Ames Research Center (ARC). Work on medical training has been conducted in collaboration with the Medical Training Group at JSC and with Wyle that provides medical training to crew members, biomedical engineers (BMEs), and flight surgeons under the Bioastronautics contract. Human factors personnel at Johnson Space Center have investigated medical performance support tools for CMOs and flight surgeons.
NASA Astrophysics Data System (ADS)
See, Thomas H.; Leago, Kimberly S.; Warren, Jack L.; Bernhard, Ronald P.; Zolensky, Michael E.
1994-03-01
Fiscal Year 1994 will bring to a close the initial investigative activities associated with the Long Duration Exposure Facility (LDEF). LDEF was a 14-faced spacecraft (i.e., 12-sided cylinder and two ends) which housed 54 different experimental packages in low-Earth orbit (LEO) from Apr. 1984 to Jan. 1990 (i.e., for approx. 5.75 years). Since LDEF's return, the Meteoroid & Debris Special Investigation Group (M&D SIG) has been examining various LDEF components in order to better understand and define the LEO particulate environment. Members of the M&D SIG at JSC in Houston, TX have been contributing to these studies by carefully examining and documenting all impact events found on LDEF's 6061-T6 aluminum Intercostals (i.e., one of the spacecraft's structural frame components). Unlike all other hardware on LDEF, the frame exposed significantly large surface areas of a single homogeneous material in all (i.e., 26) possible LDEF pointing directions. To date, 28 of the 68 Intercostals in the possession of the M&D SIG have been documented. This data, as well as similar information from various LDEF investigators, can be accessed through the M&D SIG Database which is maintained at JSC.
NASA Technical Reports Server (NTRS)
See, Thomas H.; Leago, Kimberly S.; Warren, Jack L.; Bernhard, Ronald P.; Zolensky, Michael E.
1994-01-01
Fiscal Year 1994 will bring to a close the initial investigative activities associated with the Long Duration Exposure Facility (LDEF). LDEF was a 14-faced spacecraft (i.e., 12-sided cylinder and two ends) which housed 54 different experimental packages in low-Earth orbit (LEO) from Apr. 1984 to Jan. 1990 (i.e., for approx. 5.75 years). Since LDEF's return, the Meteoroid & Debris Special Investigation Group (M&D SIG) has been examining various LDEF components in order to better understand and define the LEO particulate environment. Members of the M&D SIG at JSC in Houston, TX have been contributing to these studies by carefully examining and documenting all impact events found on LDEF's 6061-T6 aluminum Intercostals (i.e., one of the spacecraft's structural frame components). Unlike all other hardware on LDEF, the frame exposed significantly large surface areas of a single homogeneous material in all (i.e., 26) possible LDEF pointing directions. To date, 28 of the 68 Intercostals in the possession of the M&D SIG have been documented. This data, as well as similar information from various LDEF investigators, can be accessed through the M&D SIG Database which is maintained at JSC.
Stable isotope analysis of molecular oxygen from silicates and oxides using CO2 laser extraction
NASA Technical Reports Server (NTRS)
Perry, Eugene
1996-01-01
A laser-excited system for determination of the oxygen isotope composition of small quantities of silicate and oxide minerals was constructed and tested at JSC. This device is the first reported to use a commercially available helium cryostat to transfer and purify oxygen gas quantitatively within the system. The system uses oxygen gas instead of the conventional CO2 for mass spectrometer analyses. This modification of technique permits determination of all three stable oxygen isotopes, an essential requirement for oxygen isotope analysis of meteoritic material. Tests of the system included analysis of standard silicate materials NBS 28 and UWMG2 garnet, six SNC meteorites, and inclusions and chondrules from the Allende meteorite. Calibration with terrestrial standards was excellent. Meteorite values are close to published values and show no evidence of terrestrial oxygen contamination. The one limitation observed is that, in some runs on fine-grained SNC matrix material, sample results were affected by other samples in the sample holder within the reaction chamber. This reemphasizes the need for special precautions in dealing with fine-grained, reactive samples. Performance of the JSC instrument compares favorably with that of any other instrument currently producing published oxygen isotope data.
Paul, Arun George; Chandran, Bala; Sharma-Walia, Neelam
2014-01-01
The effective anti-tumorigenic potential of non-steroidal anti-inflammatory drugs (NSAIDs) and eicosonoid (EP; EP1–4) receptor antagonists prompted us to test their efficacy in Kaposi's sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV) related lymphomas. Our study demonstrated that (1) EP1–4 receptor protein levels vary among the various non-Hodgkin’s lymphoma (NHL) cell lines tested (BCBL-1:KSHV+/EBV−;BC-3: KSHV+/EBV−; Akata/EBV+: KSHV−/EBV+; and JSC-1 cells: KSHV+/EBV+ cells); (2) 5.0 µM of EP1 antagonist (SC-51322) had a significant anti-proliferative effect on BCBL-1, BC-3, Akata/EBV+, and JSC-1 cells; (3) 50.0 µM of EP2 antagonist (AH6809) was required to induce a significant anti-proliferative effect on BCBL-1, Akata/EBV+, and JSC-1 cells; (4) 5.0 µM of EP4 antagonist (GW 627368X) had a significant anti-proliferative effect on BC-3, Akata/EBV+, and JSC-1 cells; (5) COX-2 selective inhibitor celecoxib (5.0µM) had significant anti-proliferative effects on BCBL-1, BC-3, Akata/EBV+, and JSC-1 cells; and (6) a combination of 1.0µM each of celecoxib, SC-51322 and GW 627368X could potentiate the pro-apoptotic properties of celecoxib or vice-versa. Overall, our studies identified the synergistic anti-proliferative effect of NSAIDs and EP receptor blockers on KSHV and EBV related B cell malignancies. PMID:23523954
Feasibility Investigation for a Solar Power Generation Facility
NASA Technical Reports Server (NTRS)
Nathan, Lakshmi
2010-01-01
The Energy Policy Act of 2005 states that by fiscal year 2013, at least 7.5% of the energy consumed by the government must be renewable energy. In an effort to help meet this goal, Johnson Space Center (JSC) is considering installing a solar power generation facility. The purpose of this project is to conduct a feasibility investigation for such a facility. Because Kennedy Space Center (KSC) has a solar power generation facility, the first step in this investigation is to learn about KSC's facility and obtain information on how it was constructed. After collecting this information, the following must be determined: the amount of power desired, the size of the facility, potential locations for it, and estimated construction and maintenance costs. Contacts with JSC's energy provider must also be established to determine if a partnership would be agreeable to both parties. Lastly, all of this data must be analyzed to decide whether or not JSC should construct the facility. The results from analyzing the data collected indicate that a 200 kW facility would provide enough energy to meet 1% of JSC's energy demand. This facility would require less than 1 acre of land. In the map below, potential locations are shown in green. The solar power facility is projected to cost $2 M. So far, the information collected indicates that such a facility could be constructed. The next steps in this investigation include contacting JSC's energy provider, CenterPoint Energy, to discuss entering a partnership; developing a life cycle cost analysis to determine payback time; developing more detailed plans; and securing funding.
STS-30 Commander Walker and Pilot Grabe during JSC preflight press conference
NASA Technical Reports Server (NTRS)
1989-01-01
During preflight press conference, STS-30 Commander David M. Walker (right) and Pilot Ronald J. Grabe ponder questions from the news media. The event was held in the JSC Auditorium and Public Affairs Facility Bldg 2 briefing room. STS-30 mission will fly onboard Atlantis, Orbiter Vehicle (OV) 104, and is scheduled for an April 28 liftoff.
STS-53 Commander Walker adjusts LES prior to JSC emergency egress training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-53 Discovery, Orbiter Vehicle (OV) 103, Commander David M. Walker pulls at launch and entry suit (LES) neck ring and neck dam in an attempt to adjust it and/or loosen it. Walker appears uncomfortable and makes the adjustments in preparation for launch emergency egress bailout procedures in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
STS-47 MS Apt with LINHOF camera on JSC's Bldg 1 rooftop during training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) Jerome Apt sets LINHOF camera lens during photography training session conducted on JSC's Project Management Building Bldg 1 rooftop. Using such a high vantage point as this nine-floor facility, Apt was able to become familiar with Earth Observations camera hadware such as the LINHOF camera.
STS-52 MS Shepherd during camera equipment training on JSC's Bldg 1 rooftop
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) William M. Shepherd aims a 35mm camera at a distant subject from his vantage point atop the roof of JSC's nine-story Project Management Building Bldg 1. The training session familiarized Shepherd with camera equipment to be used in Earth observation documentation during STS-52.
STS-31 crewmembers review checklist with instructor on JSC's FB-SMS middeck
NASA Technical Reports Server (NTRS)
1988-01-01
STS-31 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) Bruce McCandless II (left) and Pilot Charles F. Bolden (right) discuss procedures with a training instructor on the middeck of JSC's fixed-based (FB) Shuttle Mission Simulator (SMS). The three are pointing to a checklist during this training simulation in the Mission Simulation and Training Facility Bldg 5.
Preflight Coverage of the STS-112 and Expedition 8 Crew during Egress Training
2002-08-08
JSC2002-01563 (8 August 2002) --- Astronaut Robert L. Curbeam, Jr., STS-116 mission specialist, uses the Sky-genie to lower himself from a simulated trouble-plagued shuttle in a training session in the Space Vehicle Mockup Facility at the Johnson Space Center (JSC). Curbeam is wearing a training version of the shuttle launch and entry suit.
STS-134 crew during food tasting session in JSC Food Lab.
2010-05-25
JSC2010-E-087709 (25 May 2010) --- NASA astronaut Mark Kelly (right), STS-134 commander; along with European Space Agency astronaut Roberto Vittori (center) and NASA astronaut Andrew Feustel, both mission specialists, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
STS-113 crew food tasting at bldg 17 food lab
2002-01-09
JSC2002-E-01668 (9 January 2002) --- The STS-113 crewmembers are briefed by dietitians during food tasting in the Flight Projects Division Laboratory at the Johnson Space Center (JSC). From front to back are astronauts James D. Wetherbee and Christopher J. (Gus) Loria, mission commander and pilot, respectively, and Michael E. Lopez-Alegria and John B. Herrington, both mission specialists.
STS-335 food tasting in the JSC Food Lab
2010-11-12
JSC2010-E-185484 (10 Nov. 2010) --- NASA astronauts Doug Hurley (left), STS-135 pilot; and Rex Walheim, mission specialist, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 food tasting in the JSC Food Lab
2010-11-12
JSC2010-E-185486 (10 Nov. 2010) --- NASA astronauts Chris Ferguson (left), STS-135 commander; and Doug Hurley, pilot, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-335 food tasting in the JSC Food Lab
2010-11-12
JSC2010-E-185481 (10 Nov. 2010) --- NASA astronauts Doug Hurley (left), STS-135 pilot; and Rex Walheim, mission specialist, participate in a food tasting session in the Habitability and Environmental Factors Office at NASA's Johnson Space Center. STS-135 is planned to be the final mission of the space shuttle program. Photo credit: NASA or National Aeronautics and Space Administration
STS-52 Mission Specialist (MS) Jernigan during food planning session at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Mission Specialist (MS) Tamara E. Jernigan sips a beverage from a plastic container using a straw. She appears to be pondering what beverages she would like to have on her 10-day flight this coming autumn. Other crewmembers joined Jernigan for this food planning session conducted by JSC's Man-Systems Division.
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00751 (15 March 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.
Photographic coverage of STS-112 during EVA 3 in VR Lab.
2002-08-21
JSC2002-E-34622 (21 August 2002) --- Astronaut David A. Wolf, STS-112 mission specialist, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Atlantis. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with ISS elements.
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00758 (15 March 2001) --- Astronaut Frederick W. Sturckow, STS-105 pilot, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.
STS-52 Commander Wetherbee, in LES/LEH, during JSC WETF bailout exercises
NASA Technical Reports Server (NTRS)
1992-01-01
STS-52 Columbia, Orbiter Vehicle (OV) 102, Commander James D. Wetherbee, fully outfitted in a launch and entry suit (LES) and launch and entry helmet (LEH), prepares for emergency egress (bailout) training exercise in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. The WETF's 25-ft deep pool will be used to simulate a water landing.
NASA Technical Reports Server (NTRS)
1990-01-01
Johnson Space Center (JSC) accomplishments in new and advanced concepts during 1989 are highlighted. This year, reports are grouped in sections, Medical Science, Solar System Sciences, Space Transportation Technology, and Space Systems Technology. Summary sections describing the role of JSC in each program are followed by descriptions of significant tasks. Descriptions are suitable for external consumption, free of technical jargon, and illustrated to increase ease of comprehension.
Life science payloads planning study integration facility survey results
NASA Technical Reports Server (NTRS)
Wells, G. W.; Brown, N. E.; Nelson, W. G.
1976-01-01
The integration facility survey effort described is structured to examine the facility resources needed to conduct life science payload (LSP) integration checkout activities at NASA-JSC. The LSP integration facility operations and functions are defined along with the LSP requirements for facility design. A description of available JSC life science facilities is presented and a comparison of accommodations versus requirements is reported.
2009-02-12
JSC2009-E-049945 (February 2009) --- Attired in Russian Sokol launch and entry suits, European Space Agency (ESA) astronaut Frank De Winne (right), Expedition 20 flight engineer and Expedition 21 commander; cosmonaut Roman Romanenko and NASA astronaut Nicole Stott, both Expedition 20/21 flight engineers, take a break from training in Star City, Russia to pose for a portrait. Photo credit: Gagarin Cosmonaut Training Center
2001-07-01
JSC2001-E-21574 (16 July 2001) --- ISS Orbit 1 flight director Sally Davis and Derek Hassman monitor International Space Station (ISS) issues at their consoles in the blue flight control room (BFCR) in Houston's Mission Control Center (MCC). At the time this photo was taken, the STS-104 and Expedition Two crews had joined efforts to perform a number of station-related tasks.
STS-47 MS Davis dons LES with technicians' help prior to JSC bailout training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, Mission Specialist (MS) N. Jan Davis, wearing a launch and entry suit (LES), looks on as technicians adjust her LES parachute pack prior to launch emergency egress (bailout) exercises in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A. Davis is making her first flight in space.
STS-45 Payload Specialist Frimout with technician before JSC egress training
NASA Technical Reports Server (NTRS)
1991-01-01
STS-45 Atlantis, Orbiter Vehicle (OV) 104, Payload Specialist Dirk D. Frimout (European Space Agency (ESA) crewmember from Belgium), wearing launch and entry suit (LES), waits while technician adjusts his parachute harness. Frimout along with other STS-45 crewmembers is preparing for side hatch emergency egress exercises in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9A.
STS-46 ESA MS Nicollier in life raft during water egress training at JSC WETF
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, European Space Agency (ESA) Mission Specialist (MS) Claude Nicollier, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in a one-person life raft during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
STS-39 MS Hieb floats in single person life raft in JSC's WETF Bldg 29 pool
NASA Technical Reports Server (NTRS)
1990-01-01
STS-39 Mission Specialist (MS) Richard J. Hieb, wearing launch and entry suit (LES) and launch and entry helmet (LEH), floats in single person life raft after landing in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool. During emergency egress bailout procedures, Hieb practiced procedures necessary for a water landing. Divers monitor Hieb's activity.
STS-26 Pilot Covey floats in life raft during JSC WETF exercises
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 Discovery, Orbiter Vehicle (OV) 103, Pilot Richard O. Covey, wearing the newly designed launch and entry suit (LES), floats in single-occupant life raft in JSC Weightless Environment Training Facility (WETF) Bldg 29 pool. The simulation of the escape and rescue operations utilized the crew escape system (CES) pole method of egress from the Space Shuttle.
STS-46 MS Chang-Diaz floats in life raft during water egress training at JSC
NASA Technical Reports Server (NTRS)
1992-01-01
STS-46 Atlantis, Orbiter Vehicle (OV) 104, Mission Specialist (MS) Franklin R. Chang-Diaz, wearing launch and entry suit (LES) and launch and entry helmet (LEH), relies on a one-person life raft to get him to 'safety' during a launch emergency egress (bailout) simulation conducted in JSC's Weightless Environment Training Facility (WETF) Bldg 29 pool.
2002-03-01
JSC2002-E-08143 (1 March 2002) --- Astronaut Charles O. Hobaugh, seated at the Spacecraft Communicator (CAPCOM) console in the Shuttle Flight Control Room of the Johnson Space Center's Mission Control Center, gives a thumbs up signal, obviously connected to improving weather at the launch site for the Space Shuttle Columbia several hundred miles away in Florida. Astronaut William A. Oefelein is partially obscured in the background.
STS-104 Preflight Emergency Egress Bailout Training at the NBL
2001-01-03
JSC2001-00018 (January 2001) --- Astronaut Janet L. Kavandi, STS-104 mission specialist, is assisted by suit technician George Brittingham with a training version of the shuttle launch and entry garment at the Neutral Buoyancy Laboratory (NBL) near Johnson Space Center (JSC). Kavandi will join four other astronauts for a June mission with the International Space Station (ISS).
STS-104 Crew Return, Ellington Field, Building 990
2001-07-26
JSC2001-E-22794 (25 July 2001) --- Astronaut Steven W. Lindsey, STS-104 mission commander, addresses a crowd at Ellington Fields Hangar 990 for a crew return ceremony. Seated from the left are Michael L. Gernhardt, James F. Reilly, both mission specialist, and Roy S. Estess, JSC Acting Director, along with Janet L. Kavandi, mission specialist, and Charles O. Hobaugh, pilot.
Gas Phase Pressure Effects on the Apparent Thermal Conductivity of JSC-1A Lunar Regolith Simulant
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Kleinhenz, Julie E.
2011-01-01
Gas phase pressure effects on the apparent thermal conductivity of a JSC-1A/air mixture have been experimentally investigated under steady state thermal conditions from 10 kPa to 100 kPa. The result showed that apparent thermal conductivity of the JSC-1A/air mixture decreased when pressure was lowered to 80 kPa. At 10 kPa, the conductivity decreased to 0.145 W/m/degree C, which is significantly lower than 0.196 W/m/degree C at 100 kPa. This finding is consistent with the results of previous researchers. The reduction of the apparent thermal conductivity at low pressures is ascribed to the Knudsen effect. Since the characteristic length of the void space in bulk JSC-1A varies over a wide range, both the Knudsen regime and continuum regime can coexist in the pore space. The volume ratio of the two regimes varies with pressure. Thus, as gas pressure decreases, the gas volume controlled by Knudsen regime increases. Under Knudsen regime the resistance to the heat flow is higher than that in the continuum regime, resulting in the observed pressure dependency of the apparent thermal conductivity.
Software Engineering for Human Spaceflight
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.
2014-01-01
The Spacecraft Software Engineering Branch of NASA Johnson Space Center (JSC) provides world-class products, leadership, and technical expertise in software engineering, processes, technology, and systems management for human spaceflight. The branch contributes to major NASA programs (e.g. ISS, MPCV/Orion) with in-house software development and prime contractor oversight, and maintains the JSC Engineering Directorate CMMI rating for flight software development. Software engineering teams work with hardware developers, mission planners, and system operators to integrate flight vehicles, habitats, robotics, and other spacecraft elements. They seek to infuse automation and autonomy into missions, and apply new technologies to flight processor and computational architectures. This presentation will provide an overview of key software-related projects, software methodologies and tools, and technology pursuits of interest to the JSC Spacecraft Software Engineering Branch.
STS-54 Commander Casper at airlock hatch on CCT middeck during JSC training
NASA Technical Reports Server (NTRS)
1992-01-01
STS-54 Endeavour, Orbiter Vehicle (OV) 105, Commander John H. Casper manipulates the airlock hatch and its equalization valves on the middeck of JSC's Crew Compartment Trainer (CCT). Casper is rehearsing the sequence of events necessary for extravehicular activity (EVA) egress for the upcoming STS-54 mission. Visible in the airlock is an extravehicular mobility unit (EMU). Two of the STS-54 crewmembers will don EMUs and egress through the EV hatch into the payload bay (PLB) after Casper closes the intravehicular (IV) hatch behind them. The EVA crewmembers will spend four-plus hours on a planned spacewalk to evaluate EVA techniques and gear for the Space Station Freedom (SSF). The CCT is located in JSC's Mockup and Integration Laboratory (MAIL) Bldg 9NE.
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Allton, J. H.; Zeigler, R. A.; McCubbin, F. M.
2017-01-01
The Apollo program's Lunar Receiving Laboratory (LRL), building 37 at NASA's Manned Spaceflight Center (MSC), now Johnson Space Center (JSC), in Houston, TX, was the world's first astronaut and extraterrestrial sample quarantine facility (Fig. 1). It was constructed by Warrior Construction Co. and Warrior-Natkin-National at a cost of $8.1M be-tween August 10, 1966 and June 26, 1967. In 1969, the LRL received and curated the first collection of extra-terrestrial samples returned to Earth; the rock and soil samples of the Apollo 11 mission. This year, the JSC Astromaterials Acquisition and Curation Office (here-after JSC curation) celebrates 50 years since the opening of the LRL and its legacy of laying the foundation for modern curation of extraterrestrial samples.
STS-47 crew during JSC fire fighting exercises in the Fire Training Pit
NASA Technical Reports Server (NTRS)
1992-01-01
STS-47 Endeavour, Orbiter Vehicle (OV) 105, crewmembers line up along water hoses during JSC fire fighting exercises held at JSC's Fire Training Pit. In the foreground are (left to right) Pilot Curtis L. Brown, Jr, holding the hose nozzle, Mission Specialist (MS) N. Jan Davis, MS and Payload Commander (PLC) Mark C. Lee, and backup Payload Specialist Stan Koszelak, partially visible at the end of the line. In the background, manning a second hose are backup Payload Specialist Takao Doi, MS Jerome Apt, and Commander Robert L. Gibson. A veteran fire fighter (behind Brown) stands between the two hoses giving instructions. The Fire Training Pit is located across from the Gilruth Center Bldg 207. Doi represents Japan's National Space Development Agency (NASDA).
Technicians test OV-102's aft fuselage LRU hydrogen recirculation pump
NASA Technical Reports Server (NTRS)
1990-01-01
Donald C. Buckner, a Lockheed mechanical lead technician, installs an aft fuselage line replaceable unit (LRU) liquid hydrogen recirculation pump from Columbia, Orbiter Vehicle (OV) 102 into JSC's Thermochemical Test Area (TTA) Support Laboratory Bldg 350 test stand. Technicians ran the pump package through the battery of leak tests. Preliminary indications showed only minor, acceptable leakage from the package and Kennedy Space Center (KSC) technicians have replaced a crushed seal on the prevalve of the main propulsion system they believe may have caused the STS-35 hydrogen leak. In addition to Buckner, (left to right) Larry Kilbourn, a Rockwell Service Center lead mechanical technician from Cape Canaveral, and John Dickerson, a quality inspector with EBASCO Services, also monitored the test at JSC. Photo taken by JSC photographer Benny Benavides.
Optical Extinction Measurements of Dust Density in the GMRO Regolith Test Bin
NASA Technical Reports Server (NTRS)
Lane, J.; Mantovani, J.; Mueller, R.; Nugent, M.; Nick, A.; Schuler, J.; Townsend, I.
2016-01-01
A regolith simulant test bin was constructed and completed in the Granular Mechanics and Regolith Operations (GMRO) Lab in 2013. This Planetary Regolith Test Bed (PRTB) is a 64 sq m x 1 m deep test bin, is housed in a climate-controlled facility, and contains 120 MT of lunar-regolith simulant, called Black Point-1 or BP-1, from Black Point, AZ. One of the current uses of the test bin is to study the effects of difficult lighting and dust conditions on Telerobotic Perception Systems to better assess and refine regolith operations for asteroid, Mars and polar lunar missions. Low illumination and low angle of incidence lighting pose significant problems to computer vision and human perception. Levitated dust on Asteroids interferes with imaging and degrades depth perception. Dust Storms on Mars pose a significant problem. Due to these factors, the likely performance of telerobotics is poorly understood for future missions. Current space telerobotic systems are only operated in bright lighting and dust-free conditions. This technology development testing will identify: (1) the impact of degraded lighting and environmental dust on computer vision and operator perception, (2) potential methods and procedures for mitigating these impacts, (3) requirements for telerobotic perception systems for asteroid capture, Mars dust storms and lunar regolith ISRU missions. In order to solve some of the Telerobotic Perception system problems, a plume erosion sensor (PES) was developed in the Lunar Regolith Simulant Bin (LRSB), containing 2 MT of JSC-1a lunar simulant. PES is simply a laser and digital camera with a white target. Two modes of operation have been investigated: (1) single laser spot - the brightness of the spot is dependent on the optical extinction due to dust and is thus an indirect measure of particle number density, and (2) side-scatter - the camera images the laser from the side, showing beam entrance into the dust cloud and the boundary between dust and void. Both methods must assume a mean particle size in order to extract a number density. The optical extinction measurement yields the product of the 2nd moment of the particle size distribution and the extinction efficiency Qe. For particle sizes in the range of interest (greater than 1 micrometer), Qe approximately equal to 2. Scaling up of the PES single laser and camera system is underway in the PRTB, where an array of lasers penetrate a con-trolled dust cloud, illuminating multiple targets. Using high speed HD GoPro video cameras, the evolution of the dust cloud and particle size density can be studied in detail.
Liu, Zonghao; Xiong, Dehua; Xu, Xiaobao; Arooj, Qudsia; Wang, Huan; Yin, Liyuan; Li, Wenhui; Wu, Huaizhi; Zhao, Zhixin; Chen, Wei; Wang, Mingkui; Wang, Feng; Cheng, Yi-Bing; He, Hongshan
2014-03-12
In this study, new pull-push arylamine-fluorene based organic dyes zzx-op1, zzx-op2, and zzx-op3 have been designed and synthesized for p-type dye-sensitized solar cells (p-DSCs). In zzx-op1, a di(p-carboxyphenyl)amine (DCPA) was used as an electron donor, a perylenemonoimide (PMID) as an electron acceptor, and a fluorene (FLU) unit with two aliphatic hexyl chains as a π-conjugated linker. In zzx-op2 and zzx-op3, a 3,4-ethylenedioxythiophene (EDOT) and a thiophene were inserted consecutively between PMID and FLU to tune the energy levels of the frontier molecular orbitals of the dyes. The structural modification broadened the spectral coverage from an onset of 700 nm for zzx-op1 to 750 nm for zzx-op3. The electron-rich EDOT and thiophene lifted up the HOMO (highest occupied molecular orbital) levels of zzx-op2 and zzx-op3, making their potential more negative than zzx-op1. When three dyes were employed in p-type DSCs with I(-)/I3(-) as a redox couple and NiO nanoparticles as hole materials, zzx-op1 exhibited impressive energy conversion efficiency of 0.184% with the open-circuit voltage (VOC) of 112 mV and the short-circuit current density (JSC) of 4.36 mA cm(-2) under AM 1.5G condition. Density functional theory calculations, transient photovoltage decay measurements, and electrochemical impedance spectroscopic studies revealed that zzx-op1 sensitized solar cell exhibited much higher charge injection efficiency (90.3%) than zzx-op2 (53.9%) and zzx-op3 (39.0%), indicating a trade-off between spectral broadening and electron injection driving force in p-type DSCs.
NASA Astrophysics Data System (ADS)
Prima, Eka Cahya; Hidayat, Novianto Nur; Yuliarto, Brian; Suyatman; Dipojono, Hermawan Kresno
2017-01-01
This study reports the novel spectroscopic investigations and enhanced the electron transfers of Citrus reticulata and Musa acuminata fruit peels as the photosensitizers for the dye-sensitized solar cells. The calculated TD-DFT-UB3LYP/6-31 + G(d,p)-IEFPCM(UAKS), experiment spectra of ultra-violet-visible spectroscopy, and Fourier transform infrared spectroscopy studies indicate the main flavonoid (hesperidin and gallocatechin) structures of the dye extracts. The optimized flavonoid structures are calculated using Density functional theory (DFT) at 6-31 + G(d,p) level. The rutinosyl group of the hesperidin pigment (Citrus reticulata) will be further investigated compared to the gallocatechin (Musa acuminata) pigment. The acidity of the dye extract is treated by adding 2% acetic acid. The energy levels of the HOMO-LUMO dyes are measured by a combined Tauc plot and cyclic voltammetry contrasted with the DFT data. The electrochemical impedance spectroscopy will be performed to model the dye electron transfer. As for the rutinosyl group presence and the acidic treatment, the acidified Citrus reticulata cell under continuous light exposure of 100 mW·cm- 2 yields a short-circuit current density (Jsc) of 3.23 mA/cm2, a photovoltage (Voc) of 0.48 V, and a fill factor of 0.45 corresponding to an energy conversion efficiency (η) of 0.71% because the shifting down HOMO-LUMO edges and the broadening dye's absorbance evaluated by a combined spectroscopic and TD-DFT method. The result also leads to the longest diffusion length of 32.2 μm, the fastest electron transit of 0.22 ms, and the longest electron lifetime of 4.29 ms.
Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells
NASA Astrophysics Data System (ADS)
Cacha, Brian Joseph Gonda
Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).
Flat H Frangible Joint Evolution
NASA Technical Reports Server (NTRS)
Diegelman, Thomas E.; Hinkel, Todd J.; Benjamin, Andrew; Rochon, Brian V.; Brown, Christopher W.
2016-01-01
Space vehicle staging and separation events require pyrotechnic devices. They are single-use mechanisms that cannot be tested, nor can failure-tolerant performance be demonstrated in actual flight articles prior to flight use. This necessitates the implementation of a robust design and test approach coupled with a fully redundant, failure-tolerant explosive mechanism to ensure that the system functions even in the event of a single failure. Historically, NASA has followed the single failure-tolerant (SFT) design philosophy for all human-rated spacecraft, including the Space Shuttle Program. Following the end of this program, aerospace companies proposed building the next generation human-rated vehicles with off-the-shelf, non-redundant, zero-failure-tolerant (ZFT) separation systems. Currently, spacecraft and launch vehicle providers for both the Orion and Commercial Crew Programs (CCPs) plan to deviate from the heritage safety approach and NASA's SFT human rating requirements. Both programs' partners have base-lined ZFT frangible joints for vehicle staging and fairing separation. These joints are commercially available from pyrotechnic vendors. Non-human-rated missions have flown them numerous times. The joints are relatively easy to integrate structurally within the spacecraft. In addition, the separation event is debris free, and the resultant pyro shock is lower than that of other design solutions. It is, however, a serious deficiency to lack failure tolerance. When used for critical applications on human-rated vehicles, a single failure could potentially lead to loss of crew (LOC) or loss of mission (LOM)). The Engineering and Safety & Mission Assurance directorates within the NASA Johnson Space Center took action to address this safety issue by initiating a project to develop a fully redundant, SFT frangible joint design, known as the Flat H. Critical to the ability to retrofit on launch vehicles being developed, the SFT mechanisms must fit within the same three-dimensional envelope as current designs as well as meet structural loads requirements. There is increased mass associated with the redundant design, and the goal is to minimize the weight impact as much as possible. These requirements presented significant challenges, both technically and financially; these challenges will be explored in this paper. Perhaps greater than the technical issues confronted during this design process, were the financial considerations. These were a significant part of the story of this design and development plan. Insufficient financial and labor resources were formidable barriers to completing this project. Nevertheless, JSC personnel successfully conducted several test series at JSC with very useful results. The many lessons learned drove design improvements, performance efficiency, and increased functional reliability. This paper examines the significant technical and financial challenges that these requirements posed to the project team. It discusses the evolution of the SFT frangible joint design, including optimization, testing, and successful partnering of the Johnson Space Center (JSC) engineering and JSC safety organizations, to enhance the flight safety margin for America's next generation of human-rated space vehicles.
STS-48 crewmembers, in LESs, prepare to for emergency egress training at JSC
1991-07-25
S91-43614 (25 July 1991) --- The astronaut crewmembers for NASA's STS 48 mission, attired in orange partial pressure garments used for Shuttle launch and entry, prepare to participate in an emergency egress training session at the Johnson Space Center. The crewmembers are, left to right, astronauts Mark N. Brown, James F. Buchli and Charles D. (Sam) Gemar, all mission specialists, and John O. Creighton, Mission commander, and Kenneth S. Reightler, pilot. STS 48 is currently scheduled for mid-September of this year.