Ávila-Jiménez, María Luisa; Coulson, Stephen James
2011-01-01
We aimed to describe the main Arctic biogeographical patterns of the Collembola, and analyze historical factors and current climatic regimes determining Arctic collembolan species distribution. Furthermore, we aimed to identify possible dispersal routes, colonization sources and glacial refugia for Arctic collembola. We implemented a Gaussian Mixture Clustering method on species distribution ranges and applied a distance- based parametric bootstrap test on presence-absence collembolan species distribution data. Additionally, multivariate analysis was performed considering species distributions, biodiversity, cluster distribution and environmental factors (temperature and precipitation). No clear relation was found between current climatic regimes and species distribution in the Arctic. Gaussian Mixture Clustering found common elements within Siberian areas, Atlantic areas, the Canadian Arctic, a mid-Siberian cluster and specific Beringian elements, following the same pattern previously described, using a variety of molecular methods, for Arctic plants. Species distribution hence indicate the influence of recent glacial history, as LGM glacial refugia (mid-Siberia, and Beringia) and major dispersal routes to high Arctic island groups can be identified. Endemic species are found in the high Arctic, but no specific biogeographical pattern can be clearly identified as a sign of high Arctic glacial refugia. Ocean currents patterns are suggested as being an important factor shaping the distribution of Arctic Collembola, which is consistent with Antarctic studies in collembolan biogeography. The clear relations between cluster distribution and geographical areas considering their recent glacial history, lack of relationship of species distribution with current climatic regimes, and consistency with previously described Arctic patterns in a series of organisms inferred using a variety of methods, suggest that historical phenomena shaping contemporary collembolan distribution can be inferred through biogeographical analysis. PMID:26467728
The numerical model of the sediment distribution pattern at Lampulo National fisheries port
NASA Astrophysics Data System (ADS)
Irham, M.; Setiawan, I.
2018-01-01
The spatial distribution of sediment pattern was studied at Lampulo Fisheries Port, Krueng Aceh estuarial area, Banda Aceh. The research was conducted using the numerical model of wave-induced currents at shallow water area. The study aims to understand how waves and currents react to the pattern of sediment distribution around the beach structure in that region. The study demonstrated that the port pool area had no sedimentation and erosion occurred because the port was protected by the jetty as the breakwater to defend the incoming waves toward the pool. The protected pool created a weak current circulation to distribute the sediments. On the other hand, the sediments were heavily distributed along the beach due to the existence of longshore currents near the shoreline (outside the port pool area). Meanwhile, at the estuarial area, the incoming fresh water flow responded to the coastal shallow water currents, generating Eddy-like flow at the mouth of the river.
School Finance Equalization Management System: An Overview.
ERIC Educational Resources Information Center
Educational Testing Service, Princeton, NJ. Education Policy Research Institute.
This overview acquaints prospective users with the School Finance Equalization Management System (SFEMS), a computer-based system designed to answer questions about state aid distribution. SFEMS can determine such things as the current pattern of aid distribution, the current pattern of tax effort, or the effect of alternative expenditure and…
Optimal joule heating of the subsurface
Berryman, James G.; Daily, William D.
1994-01-01
A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
Optimal joule heating of the subsurface
Berryman, J.G.; Daily, W.D.
1994-07-05
A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.
NASA Astrophysics Data System (ADS)
Qi, Chenglin; Huang, Yang; Zhan, Teng; Wang, Qinjin; Yi, Xiaoyan; Liu, Zhiqiang
2017-08-01
GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (EIS) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs. Project supported by the Natural Science Foundation of China (Nos. 61306051, 61306050) and the National High Technology Program of China (No. 2014AA032606).
Pinkernell, Stefan; Beszteri, Bánk
2014-08-01
Fragilariopsis kerguelensis, a dominant diatom species throughout the Antarctic Circumpolar Current, is coined to be one of the main drivers of the biological silicate pump. Here, we study the distribution of this important species and expected consequences of climate change upon it, using correlative species distribution modeling and publicly available presence-only data. As experience with SDM is scarce for marine phytoplankton, this also serves as a pilot study for this organism group. We used the maximum entropy method to calculate distribution models for the diatom F. kerguelensis based on yearly and monthly environmental data (sea surface temperature, salinity, nitrate and silicate concentrations). Observation data were harvested from GBIF and the Global Diatom Database, and for further analyses also from the Hustedt Diatom Collection (BRM). The models were projected on current yearly and seasonal environmental data to study current distribution and its seasonality. Furthermore, we projected the seasonal model on future environmental data obtained from climate models for the year 2100. Projected on current yearly averaged environmental data, all models showed similar distribution patterns for F. kerguelensis. The monthly model showed seasonality, for example, a shift of the southern distribution boundary toward the north in the winter. Projections on future scenarios resulted in a moderately to negligibly shrinking distribution area and a change in seasonality. We found a substantial bias in the publicly available observation datasets, which could be reduced by additional observation records we obtained from the Hustedt Diatom Collection. Present-day distribution patterns inferred from the models coincided well with background knowledge and previous reports about F. kerguelensis distribution, showing that maximum entropy-based distribution models are suitable to map distribution patterns for oceanic planktonic organisms. Our scenario projections indicate moderate effects of climate change upon the biogeography of F. kerguelensis.
Ordonez, Alejandro; Svenning, Jens-Christian
2017-02-23
Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.
Inputs and spatial distribution patterns of Cr in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Miao, Zhenqing; Huang, Xinmin; Wei, Linzhen; Feng, Ming
2018-03-01
Cr pollution in marine bays has been one of the critical environmental issues, and understanding the input and spatial distribution patterns is essential to pollution control. In according to the source strengths of the major pollution sources, the input patterns of pollutants to marine bay include slight, moderate and heavy, and the spatial distribution are corresponding to three block models respectively. This paper analyzed input patterns and distributions of Cr in Jiaozhou Bay, eastern China based on investigation on Cr in surface waters during 1979-1983. Results showed that the input strengths of Cr in Jiaozhou Bay could be classified as moderate input and slight input, and the input strengths were 32.32-112.30 μg L-1 and 4.17-19.76 μg L-1, respectively. The input patterns of Cr included two patterns of moderate input and slight input, and the horizontal distributions could be defined by means of Block Model 2 and Block Model 3, respectively. In case of moderate input pattern via overland runoff, Cr contents were decreasing from the estuaries to the bay mouth, and the distribution pattern was parallel. In case of moderate input pattern via marine current, Cr contents were decreasing from the bay mouth to the bay, and the distribution pattern was parallel to circular. The Block Models were able to reveal the transferring process of various pollutants, and were helpful to understand the distributions of pollutants in marine bay.
Distributed representations in memory: Insights from functional brain imaging
Rissman, Jesse; Wagner, Anthony D.
2015-01-01
Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171
Chung, Jonathan H; Oldham, Justin M; Montner, Steven M; Vij, Rekha; Adegunsoye, Ayodeji; Husain, Aliya N; Noth, Imre; Lynch, David A; Strek, Mary E
2018-05-01
The purpose of this study was to assess the diagnostic significance of CT patterns that cannot be classified according to current idiopathic pulmonary fibrosis (IPF) guidelines and of specific findings of the inconsistent with usual interstitial pneumonitis (UIP) pattern. Subjects with a multidisciplinary diagnosis of interstitial lung disease who had undergone surgical lung biopsy and chest CT within 1 year of each other were included in the study. The predominant distribution and pattern of disease were scored. Cases were classified as UIP, possible UIP, or inconsistent with UIP at chest CT according to 2011 IPF guidelines. Cases that could not be confidently categorized with current guidelines were annotated as indeterminate. UIP, possible UIP, and inconsistent with UIP CT patterns were associated with pathologic UIP in 89.6%, 81.6%, and 60.0% of subjects. An indeterminate CT pattern (7.7% [20/259]) was associated with a UIP pathologic diagnosis in 55.0% of cases. This finding was not statistically different from the findings in the group with the inconsistent with UIP CT pattern (p = 0.677) but was different from the findings in the UIP (p < 0.001) and possible UIP (p = 0.031) groups. In regard to specific findings of the inconsistent with UIP CT category, ground-glass opacity, air-trapping, consolidation, and axial distribution were associated with a non-UIP pathologic diagnosis; however, there was no significant association with zonal distribution. A substantial minority of cases cannot be confidently categorized according to current guidelines for IPF and differ diagnostically from the possible UIP and UIP CT categories. The term "inconsistent with UIP" is misleading and should be renamed.
Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A
2015-08-01
Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence. © 2015 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, S. A.; Plummer, G.; Fedor, J.
Mapping the distribution of currents inside a superconductor is usually performed indirectly through imaging of the stray magnetic fields above the surface. Here, we show that by direct imaging of the Doppler shift contribution to the quasiparticle excitation spectrum in the superconductor using low temperature scanning tunneling microscopy, we obtain directly the distribution of supercurrents inside the superconductor. We demonstrate the technique at the example of superconductor/ferromagnet hybrid structure that produces intricate current pattern consisting of combination Meissner shielding currents and Abrikosov vortex currents.
The analysis method of the DRAM cell pattern hotspot
NASA Astrophysics Data System (ADS)
Lee, Kyusun; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Hong, Aeran; Kim, Yonghyeon; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung
2015-03-01
It is increasingly difficult to determine degree of completion of the patterning and the distribution at the DRAM Cell Patterns. When we research DRAM Device Cell Pattern, there are three big problems currently, it is as follows. First, due to etch loading, it is difficult to predict the potential defect. Second, due to under layer topology, it is impossible to demonstrate the influence of the hotspot. Finally, it is extremely difficult to predict final ACI pattern by the photo simulation, because current patterning process is double patterning technology which means photo pattern is completely different from final etch pattern. Therefore, if the hotspot occurs in wafer, it is very difficult to find it. CD-SEM is the most common pattern measurement tool in semiconductor fabrication site. CD-SEM is used to accurately measure small region of wafer pattern primarily. Therefore, there is no possibility of finding places where unpredictable defect occurs. Even though, "Current Defect detector" can measure a wide area, every chip has same pattern issue, the detector cannot detect critical hotspots. Because defect detecting algorithm of bright field machine is based on image processing, if same problems occur on compared and comparing chip, the machine cannot identify it. Moreover this instrument is not distinguished the difference of distribution about 1nm~3nm. So, "Defect detector" is difficult to handle the data for potential weak point far lower than target CD. In order to solve those problems, another method is needed. In this paper, we introduce the analysis method of the DRAM Cell Pattern Hotspot.
Meier, E.S.; Edwards, T.C.; Kienast, Felix; Dobbertin, M.; Zimmermann, N.E.
2011-01-01
Aim During recent and future climate change, shifts in large-scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress-gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad-scale environmental data. We evaluated the variation of species co-occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates.Location Europe.Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co-occurrence patterns.Results Correlation analyses supported the stress-gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co-occurrence patterns may play a major role.Main conclusions Our results demonstrate the importance of species co-occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate-induced spatial segregation of the major tree species could have ecological and economic consequences. ?? 2010 Blackwell Publishing Ltd.
Turtle groups or turtle soup: dispersal patterns of hawksbill turtles in the Caribbean.
Blumenthal, J M; Abreu-Grobois, F A; Austin, T J; Broderick, A C; Bruford, M W; Coyne, M S; Ebanks-Petrie, G; Formia, A; Meylan, P A; Meylan, A B; Godley, B J
2009-12-01
Despite intense interest in conservation of marine turtles, spatial ecology during the oceanic juvenile phase remains relatively unknown. Here, we used mixed stock analysis and examination of oceanic drift to elucidate movements of hawksbill turtles (Eretmochelys imbricata) and address management implications within the Caribbean. Among samples collected from 92 neritic juvenile hawksbills in the Cayman Islands we detected 11 mtDNA control region haplotypes. To estimate contributions to the aggregation, we performed 'many-to-many' mixed stock analysis, incorporating published hawksbill genetic and population data. The Cayman Islands aggregation represents a diverse mixed stock: potentially contributing source rookeries spanned the Caribbean basin, delineating a scale of recruitment of 200-2500 km. As hawksbills undergo an extended phase of oceanic dispersal, ocean currents may drive patterns of genetic diversity observed on foraging aggregations. Therefore, using high-resolution Aviso ocean current data, we modelled movement of particles representing passively drifting oceanic juvenile hawksbills. Putative distribution patterns varied markedly by origin: particles from many rookeries were broadly distributed across the region, while others would appear to become entrained in local gyres. Overall, we detected a significant correlation between genetic profiles of foraging aggregations and patterns of particle distribution produced by a hatchling drift model (Mantel test, r = 0.77, P < 0.001; linear regression, r = 0.83, P < 0.001). Our results indicate that although there is a high degree of mixing across the Caribbean (a 'turtle soup'), current patterns play a substantial role in determining genetic structure of foraging aggregations (forming turtle groups). Thus, for marine turtles and other widely distributed marine species, integration of genetic and oceanographic data may enhance understanding of population connectivity and management requirements.
NASA Astrophysics Data System (ADS)
Graham, N. M.
2015-12-01
The evolution and speciation of plants is directly tied to the environment as the constrained stages of dispersal creates strong genetic differentiation among populations. This can result in differing genetic patterns between nuclear and chloroplast loci, where genes are inherited differently and dispersed via separate vectors. By developing distribution models based on genetic patterns found within a species, it is possible to begin understanding the influence of historic geomorphic and/or climatic processes on population evolution. If genetic patterns of the current range correlate with specific patterns of climate variability within the Pleistocene, it is possible that future shifts in species distribution in response to climate change can be more accurately modelled due to the historic signature that is found within inherited genes. Preliminary genetic analyses of Linanthus dichotomus, an annual herb distributed across California, suggests that the current taxonomic treatment does not accurately depict how this species is evolving. Genetic patterns of chloroplast genes suggest that populations are more correlated with biogeography than what the current nomenclature states. Additionally, chloroplast and nuclear genes show discrepancies in the dispersal across the landscape, suggesting pollinator driven gene flow overcoming seed dispersal boundaries. By comparing discrepancies between pollinator and seed induced gene flow we may be able to gain insight into historical pollinator communities within the Pleistocene. This information can then be applied to projected climate models to more accurately understand how species and/or communities will respond to a changing environment.
Zhang, Y; Joines, W T; Jirtle, R L; Samulski, T V
1993-08-01
The magnitude of E-field patterns generated by an annular array prototype device has been calculated and measured. Two models were used to describe the radiating sources: a simple linear dipole and a stripline antenna model. The stripline model includes detailed geometry of the actual antennas used in the prototype and an estimate of the antenna current based on microstrip transmission line theory. This more detailed model yields better agreement with the measured field patterns, reducing the rms discrepancy by a factor of about 6 (from approximately 23 to 4%) in the central region of interest where the SEM is within 25% of the maximum. We conclude that accurate modeling of source current distributions is important for determining SEM distributions associated with such heating devices.
Yun, Min Ju; Sim, Yeon Hyang; Cha, Seung I; Seo, Seon Hee; Lee, Dong Y
2017-11-08
Dye sensitize solar cells (DSSCs) have been considered as the promising alternatives silicon based solar cell with their characteristics including high efficiency under weak illumination and insensitive power output to incident angle. Therefore, many researches have been studied to improve the energy conversion efficiency of DSSCs. However the efficiency of DSSCs are still trapped at the around 10%. In this study, micro-scale hexagonal shape patterned photoanode have proposed to modify light distribution of photon. In the patterned electrode, the appearance efficiency have been obtained from 7.1% to 7.8% considered active area and the efficiency of 12.7% have been obtained based on the photoanode area. Enhancing diffusion of electrons and modification of photon distribution utilizing the morphology of the electrode are major factors to improving the performance of patterned electrode. Also, finite element method analyses of photon distributions were conducted to estimate morphological effect that influence on the photon distribution and current density. From our proposed study, it is expecting that patterned electrode is one of the solution to overcome the stagnant efficiency and one of the optimized geometry of electrode to modify photon distribution. Process of inter-patterning in photoanode has been minimized.
Statistical detection of patterns in unidimensional distributions by continuous wavelet transforms
NASA Astrophysics Data System (ADS)
Baluev, R. V.
2018-04-01
Objective detection of specific patterns in statistical distributions, like groupings or gaps or abrupt transitions between different subsets, is a task with a rich range of applications in astronomy: Milky Way stellar population analysis, investigations of the exoplanets diversity, Solar System minor bodies statistics, extragalactic studies, etc. We adapt the powerful technique of the wavelet transforms to this generalized task, making a strong emphasis on the assessment of the patterns detection significance. Among other things, our method also involves optimal minimum-noise wavelets and minimum-noise reconstruction of the distribution density function. Based on this development, we construct a self-closed algorithmic pipeline aimed to process statistical samples. It is currently applicable to single-dimensional distributions only, but it is flexible enough to undergo further generalizations and development.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... on: (1)The species' biology, range, and population trends, including: (a) Habitat requirements for... distribution patterns; (d) Historical and current population levels, and current and projected trends; and (e...
Mesh-matrix analysis method for electromagnetic launchers
NASA Technical Reports Server (NTRS)
Elliott, David G.
1989-01-01
The mesh-matrix method is a procedure for calculating the current distribution in the conductors of electromagnetic launchers with coil or flat-plate geometry. Once the current distribution is known the launcher performance can be calculated. The method divides the conductors into parallel current paths, or meshes, and finds the current in each mesh by matrix inversion. The author presents procedures for writing equations for the current and voltage relations for a few meshes to serve as a pattern for writing the computer code. An available subroutine package provides routines for field and flux coefficients and equation solution.
Venugopal, Sharmila; Boulant, Jack A.; Chen, Zhixiong; Travers, Joseph B.
2010-01-01
Neurons in the lower brainstem that control consummatory behavior are widely distributed in the reticular formation (RF) of the pons and medulla. The intrinsic membrane properties of neurons within this distributed system shape complex excitatory and inhibitory inputs from both orosensory and central structures implicated in homeostatic control to produce coordinated oromotor patterns. The current study explored the intrinsic membrane properties of neurons in the intermediate subdivision of the medullary reticular formation (IRt). Neurons in the IRt receive input from the overlying (gustatory) nucleus of the solitary tract and project to the oromotor nuclei. Recent behavioral pharmacology studies as well as computational modeling suggest that inhibition in the IRt plays an important role in the transition from a taste-initiated oromotor pattern of ingestion to one of rejection. The present study explored the impact of hyperpolarization on membrane properties. In response to depolarization, neurons responded with either a tonic discharge, an irregular/burst pattern or were spike-adaptive. A hyperpolarizing pre-pulse modulated the excitability of most (82%) IRt neurons to subsequent depolarization. Instances of both increased (30%) and decreased (52%) excitability were observed. Currents induced by the hyperpolarization included an outward 4-AP sensitive K+ current that suppressed excitability and an inward cation current that increased excitability. These currents are also present in other subpopulations of RF neurons that influence the oromotor nuclei and we discuss how these currents could alter ring characteristics to impact pattern generation. PMID:20338224
Ionospheric and Birkeland current distributions inferred from the MAGSAT magnetometer data
NASA Technical Reports Server (NTRS)
Zanetti, L. J.; Potemra, T. A.; Baumjohann, W.
1983-01-01
Ionospheric and field-aligned sheet current density distributions are presently inferred by means of MAGSAT vector magnetometer data, together with an accurate magnetic field model. By comparing Hall current densities inferred from the MAGSAT data and those inferred from simultaneously recorded ground based data acquired by the Scandinavian magnetometer array, it is determined that the former have previously been underestimated due to high damping of magnetic variations with high spatial wave numbers between the ionosphere and the MAGSAT orbit. Among important results of this study is noted the fact that the Birkeland and electrojet current systems are colocated. The analyses have shown a tendency for triangular rather than constant electrojet current distributions as a function of latitude, consistent with the statistical, uniform regions 1 and 2 Birkeland current patterns.
Wolf, S.C.
1970-01-01
In Monterey Bay, the highest concentrations of medium and fine sands occur nearshore between ten and thirty fathoms. Silt and clay accumulate in greater depths. Contours of median diameter roughly parallel the isobaths. Fine-grained materials are supplied to the bay region from erosion of cliffs which partly surround Monterey Bay, from sediment laden river discharge, and from continual reworking of widespread Pleistocene and Recent sea floor sediments. These sediments in turn are picked up by coastal currents and distributed over the shelf regions by present day current regimes. Studies of bottom currents over the shelf regions and in Monterey Canyon have revealed patterns which vary with seasonal changes. Current patterns during August and September exhibit remarkable symmetry about the axis of Monterey Submarine Canyon. Central Shelf currents north and south of Monterey Canyon flowed northwest at an average rate of 0.2 knots and south at 0.3 knots respectively. On the North Shelf between January and March currents flowed east to southeast at 0.3-0.5 knots with mirror image patterns above the South Shelf during the same period. Irregular current flow in the canyon indicates a complex current structure with frequent shifts in counterclockwise and clockwise direction over very short periods of time. Bottom topography of the canyon complex often causes localization of canyon currents. One particular observation at a depth of 51 fathoms indicated up-canyon flow at a rate of 0.2 knots. Most of the observed currents are related to seasonal variations, upwelling, ocean swell patterns, and to changes in the California and Davidson currents. Changes in current regimes are reflected in the patterns of sediment distribution and transport. Sediment transport is chiefly parallel to the isobaths, particularly on the North and South Shelf regions. Complex dispersal patterns are observed near Monterey Canyon and Moss Landing Harbor jetties. Longshore currents move sediments southward except near Monterey Canyon which acts as a physiographic barrier and the extreme southern end of the bay where currents are non persistent. Some sediments are also transported offshore by rip currents and other agencies and deposited in deeper, quieter waters. Supply of sediments to the canyon head results in over-filling and steepening with subsequent mass movement of sediments seaward followed by deposition in channels and on the broad deep sea fan. ?? 1970.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polgar, T.T.; Ulanowicz, R.E.; Pyne, D.A.
1975-09-01
This report presents in-depth analyses of current meter records obtained from the deployment of continuously recording current meters in the Potomac estuary in 1974. The analyses of transport characteristics are presented in relation to the distribution of striped bass ichthyoplankton in the tidal portion of the Potomac River. The characteristics of ichthyoplankton distributions are described in terms of longitudinal, lateral, and time patterns of abundances. Estimates are made of the production and survival of various ichthyoplankton stages.
Venugopal, S; Boulant, J A; Chen, Z; Travers, J B
2010-06-16
Neurons in the lower brainstem that control consummatory behavior are widely distributed in the reticular formation (RF) of the pons and medulla. The intrinsic membrane properties of neurons within this distributed system shape complex excitatory and inhibitory inputs from both orosensory and central structures implicated in homeostatic control to produce coordinated oromotor patterns. The current study explored the intrinsic membrane properties of neurons in the intermediate subdivision of the medullary reticular formation (IRt). Neurons in the IRt receive input from the overlying (gustatory) nucleus of the solitary tract and project to the oromotor nuclei. Recent behavioral pharmacology studies as well as computational modeling suggest that inhibition in the IRt plays an important role in the transition from a taste-initiated oromotor pattern of ingestion to one of rejection. The present study explored the impact of hyperpolarization on membrane properties. In response to depolarization, neurons responded with either a tonic discharge, an irregular/burst pattern or were spike-adaptive. A hyperpolarizing pre-pulse modulated the excitability of most (82%) IRt neurons to subsequent depolarization. Instances of both increased (30%) and decreased (52%) excitability were observed. Currents induced by the hyperpolarization included an outward 4-aminopyridine (4-AP) sensitive K+ current that suppressed excitability and an inward cation current that increased excitability. These currents are also present in other subpopulations of RF neurons that influence the oromotor nuclei and we discuss how these currents could alter firing characteristics to impact pattern generation. 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Peter, A B; Schittny, J C; Niggli, V; Reuter, H; Sigel, E
1991-08-01
Foreign mRNA was expressed in Xenopus laevis oocytes. Newly expressed ion currents localized in defined plasma membrane areas were measured using the two-electrode voltage clamp technique in combination with a specially designed chamber, that exposed only part of the surface on the oocytes to channel agonists or inhibitors. Newly expressed currents were found to be unequally distributed in the surface membrane of the oocyte. This asymmetry was most pronounced during the early phase of expression, when channels could almost exclusively be detected in the animal hemisphere of the oocyte. 4 d after injection of the mRNA, or later, channels could be found at a threefold higher density at the animal than at the vegetal pole area. The pattern of distribution was observed to be similar with various ion channels expressed from crude tissue mRNA and from cRNAs coding for rat GABAA receptor channel subunits. Electron microscopical analysis revealed very similar microvilli patterns at both oocyte pole areas. Thus, the asymmetric current distribution is not due to asymmetric surface structure. Upon incubation during the expression period in either colchicine or cytochalasin D, the current density was found to be equal in both pole areas. The inactive control substance beta-lumicolchicine had no effect on the asymmetry of distribution. Colchicine was without effect on the amplitude of the expressed whole cell current. Our measurements reveal a pathway for plasma membrane protein expression endogenous to the Xenopus oocyte, that may contribute to the formation and maintenance of polarity of this highly organized cell.
NASA Astrophysics Data System (ADS)
Vaidya, Manushka
Although 1.5 and 3 Tesla (T) magnetic resonance (MR) systems remain the clinical standard, the number of 7 T MR systems has increased over the past decade because of the promise of higher signal-to-noise ratio (SNR), which can translate to images with higher resolution, improved image quality and faster acquisition times. However, there are a number of technical challenges that have prevented exploiting the full potential of ultra-high field (≥ 7 T) MR imaging (MRI), such as the inhomogeneous distribution of the radiofrequency (RF) electromagnetic field and specific energy absorption rate (SAR), which can compromise image quality and patient safety. To better understand the origin of these issues, we first investigated the dependence of the spatial distribution of the magnetic field associated with a surface RF coil on the operating frequency and electrical properties of the sample. Our results demonstrated that the asymmetries between the transmit (B1+) and receive (B 1-) circularly polarized components of the magnetic field, which are in part responsible for RF inhomogeneity, depend on the electric conductivity of the sample. On the other hand, when sample conductivity is low, a high relative permittivity can result in an inhomogeneous RF field distribution, due to significant constructive and destructive interference patterns between forward and reflected propagating magnetic field within the sample. We then investigated the use of high permittivity materials (HPMs) as a method to alter the field distribution and improve transmit and receive coil performance in MRI. We showed that HPM placed at a distance from an RF loop coil can passively shape the field within the sample. Our results showed improvement in transmit and receive sensitivity overlap, extension of coil field-of-view, and enhancement in transmit/receive efficiency. We demonstrated the utility of this concept by employing HPM to improve performance of an existing commercial head coil for the inferior regions of the brain, where the specific coil's imaging efficiency was inherently poor. Results showed a gain in SNR, while the maximum local and head SAR values remained below the prescribed limits. We showed that increasing coil performance with HPM could improve detection of functional MR activation during a motor-based task for whole brain fMRI. Finally, to gain an intuitive understanding of how HPM improves coil performance, we investigated how HPM separately affects signal and noise sensitivity to improve SNR. For this purpose, we employed a theoretical model based on dyadic Green's functions to compare the characteristics of current patterns, i.e. the optimal spatial distribution of coil conductors, that would either maximize SNR (ideal current patterns), maximize signal reception (signal-only optimal current patterns), or minimize sample noise (dark mode current patterns). Our results demonstrated that the presence of a lossless HPM changed the relative balance of signal-only optimal and dark mode current patterns. For a given relative permittivity, increasing the thickness of the HPM altered the magnitude of the currents required to optimize signal sensitivity at the voxel of interest as well as decreased the net electric field in the sample, which is associated, via reciprocity, to the noise received from the sample. Our results also suggested that signal-only current patterns could be used to identify HPM configurations that lead to high SNR gain for RF coil arrays. We anticipate that physical insights from this work could be utilized to build the next generation of high performing RF coils integrated with HPM.
The structure, distribution, and biomass of the world's forests
Yude Pan; Richard A. Birdsey; Oliver L. Phillips; Robert B. Jackson
2013-01-01
Forests are the dominant terrestrial ecosystem on Earth. We review the environmental factors controlling their structure and global distribution and evaluate their current and future trajectory. Adaptations of trees to climate and resource gradients, coupled with disturbances and forest dynamics, create complex geographical patterns in forest assemblages and structures...
Li, Chunyan; Tripathi, Pradeep K; Armstrong, William E
2007-01-01
The firing pattern of magnocellular neurosecretory neurons is intimately related to hormone release, but the relative contribution of synaptic versus intrinsic factors to the temporal dispersion of spikes is unknown. In the present study, we examined the firing patterns of vasopressin (VP) and oxytocin (OT) supraoptic neurons in coronal slices from virgin female rats, with and without blockade of inhibitory and excitatory synaptic currents. Inhibitory postsynaptic currents (IPSCs) were twice as prevalent as their excitatory counterparts (EPSCs), and both were more prevalent in OT compared with VP neurons. Oxytocin neurons fired more slowly and irregularly than VP neurons near threshold. Blockade of Cl− currents (including tonic and synaptic currents) with picrotoxin reduced interspike interval (ISI) variability of continuously firing OT and VP neurons without altering input resistance or firing rate. Blockade of EPSCs did not affect firing pattern. Phasic bursting neurons (putative VP neurons) were inconsistently affected by broad synaptic blockade, suggesting that intrinsic factors may dominate the ISI distribution during this mode in the slice. Specific blockade of synaptic IPSCs with gabazine also reduced ISI variability, but only in OT neurons. In all cases, the effect of inhibitory blockade on firing pattern was independent of any consistent change in input resistance or firing rate. Since the great majority of IPSCs are randomly distributed, miniature events (mIPSCs) in the coronal slice, these findings imply that even mIPSCs can impart irregularity to the firing pattern of OT neurons in particular, and could be important in regulating spike patterning in vivo. For example, the increased firing variability that precedes bursting in OT neurons during lactation could be related to significant changes in synaptic activity. PMID:17332000
A biologically relevant method for considering patterns of oceanic retention in the Southern Ocean
NASA Astrophysics Data System (ADS)
Mori, Mao; Corney, Stuart P.; Melbourne-Thomas, Jessica; Klocker, Andreas; Sumner, Michael; Constable, Andrew
2017-12-01
Many marine species have planktonic forms - either during a larval stage or throughout their lifecycle - that move passively or are strongly influenced by ocean currents. Understanding these patterns of movement is important for informing marine ecosystem management and for understanding ecological processes generally. Retention of biological particles in a particular area due to ocean currents has received less attention than transport pathways, particularly for the Southern Ocean. We present a method for modelling retention time, based on the half-life for particles in a particular region, that is relevant for biological processes. This method uses geostrophic velocities at the ocean surface, derived from 23 years of satellite altimetry data (1993-2016), to simulate the advection of passive particles during the Southern Hemisphere summer season (from December to March). We assess spatial patterns in the retention time of passive particles and evaluate the processes affecting these patterns for the Indian sector of the Southern Ocean. Our results indicate that the distribution of retention time is related to bathymetric features and the resulting ocean dynamics. Our analysis also reveals a moderate level of consistency between spatial patterns of retention time and observations of Antarctic krill (Euphausia superba) distribution.
Children's Abstraction and Generalization of English Lexical Stress Patterns
ERIC Educational Resources Information Center
Redford, Melissa A.; Oh, Grace E.
2016-01-01
The current study investigated school-aged children's internalization of the distributional patterns of English lexical stress as a function of vocabulary size. Sixty children (5;3 to 8;3) participated in the study. The children were asked to blend two individually presented, equally stressed syllables to produce disyllabic nonwords with different…
Świetilik, Ryszard; Trojanowska, Marzena; Strzelecka, Monika; Bocho-Janiszewska, Anita
2015-01-01
Road dust (RD) retained on noise barriers was used as a monitor of emission of traffic-related metals from expressway. By using SEM/EDX analysis it has been revealed that the main components of this particulate were irregular fine aggregates and tire debris with a ragged porous structure and with inclusions derived from the road surface. The results of chemical fractionation showed that driving conditions influence strongly a distribution pattern of Cu, whereas the atmospheric corrosion process affects a distribution pattern of Zn. The distribution pattern of Cu originating only from vehicle braking emission was “isolated” from the distribution pattern of road traffic copper. The predicted comparative mobilities of the emitted metals form the order: Zn > Cu ≈ Mn > Pb > Fe. The high mobility of zinc (K = 0.61)may create a current inhalation hazard and may be a source of future environmental hazard in the areas adjacent to heavily trafficked roads.
Global marine bacterial diversity peaks at high latitudes in winter
Ladau, Joshua; Sharpton, Thomas J; Finucane, Mariel M; Jospin, Guillaume; Kembel, Steven W; O'Dwyer, James; Koeppel, Alexander F; Green, Jessica L; Pollard, Katherine S
2013-01-01
Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms. PMID:23514781
Predictive Spatial Analysis of Marine Mammal Habitats
2010-01-01
Therefore, it would be desirable to focus on biological components of their habitat to describe their patterns of distribution and abundance . For...difficult (and often impossible) to determine prey abundance and distribution in the ocean, even with commercially important species. We currently do...not have the tools to determine the distribution and abundance of these prey species at scales that are relevant to either marine mammals or the
Synchronization stability and pattern selection in a memristive neuronal network.
Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun
2017-11-01
Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.
Synchronization stability and pattern selection in a memristive neuronal network
NASA Astrophysics Data System (ADS)
Wang, Chunni; Lv, Mi; Alsaedi, Ahmed; Ma, Jun
2017-11-01
Spatial pattern formation and selection depend on the intrinsic self-organization and cooperation between nodes in spatiotemporal systems. Based on a memory neuron model, a regular network with electromagnetic induction is proposed to investigate the synchronization and pattern selection. In our model, the memristor is used to bridge the coupling between the magnetic flux and the membrane potential, and the induction current results from the time-varying electromagnetic field contributed by the exchange of ion currents and the distribution of charged ions. The statistical factor of synchronization predicts the transition of synchronization and pattern stability. The bifurcation analysis of the sampled time series for the membrane potential reveals the mode transition in electrical activity and pattern selection. A formation mechanism is outlined to account for the emergence of target waves. Although an external stimulus is imposed on each neuron uniformly, the diversity in the magnetic flux and the induction current leads to emergence of target waves in the studied network.
Staunton, Kyran M; Robson, Simon K A; Burwell, Chris J; Reside, April E; Williams, Stephen E
2014-01-01
With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group's primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region.
Staunton, Kyran M.; Robson, Simon K. A.; Burwell, Chris J.; Reside, April E.; Williams, Stephen E.
2014-01-01
With the impending threat of climate change, greater understanding of patterns of species distributions and richness and the environmental factors driving them are required for effective conservation efforts. Species distribution models enable us to not only estimate geographic extents of species and subsequent patterns of species richness, but also generate hypotheses regarding environmental factors determining these spatial patterns. Projected changes in climate can then be used to predict future patterns of species distributions and richness. We created distribution models for most of the flightless ground beetles (Carabidae) within the Wet Tropics World Heritage Area of Australia, a major component of regionally endemic invertebrates. Forty-three species were modelled and the environmental correlates of these distributions and resultant patterns of species richness were examined. Flightless ground beetles generally inhabit upland areas characterised by stable, cool and wet environmental conditions. These distribution and richness patterns are best explained using the time-stability hypothesis as this group’s primary habitat, upland rainforest, is considered to be the most stable regional habitat. Projected changes in distributions indicate that as upward shifts in distributions occur, species currently confined to lower and drier mountain ranges will be more vulnerable to climate change impacts than those restricted to the highest and wettest mountains. Distribution models under projected future climate change suggest that there will be reductions in range size, population size and species richness under all emission scenarios. Eighty-eight per cent of species modelled are predicted to decline in population size by over 80%, for the most severe emission scenario by the year 2080. These results suggest that flightless ground beetles are among the most vulnerable taxa to climate change impacts so far investigated in the Wet Tropics World Heritage Area. These findings have dramatic implications for all other flightless insect taxa and the future biodiversity of this region. PMID:24586362
Current and Future Patterns of Global Marine Mammal Biodiversity
Kaschner, Kristin; Tittensor, Derek P.; Ready, Jonathan; Gerrodette, Tim; Worm, Boris
2011-01-01
Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available. PMID:21625431
Patterns of Genetic Variation in Woody Plant Species in the Missouri Ozark Forest Ecosystem Project
Victoria L. Sork; Anthony Koop; Marie Ann de la Fuente; Paul Foster; Jay Raveill
1997-01-01
We quantified current patterns of genetic variation of three woody plant speciesâCarya tomentosa (Juglandaceae), Quercus alba (Fagaceae), and Sassafras albidum (Lauraceae)âdistributed throughout the nine Missouri Ozark Forest Ecosystem Project (MOFEP) study sites and evaluated the data in light of the MOFEP...
ERIC Educational Resources Information Center
Kim, Se-Kang
2010-01-01
The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…
Biogeography of Anurans from the Poorly Known and Threatened Coastal Sandplains of Eastern Brazil.
Xavier, Ariane Lima; Guedes, Thaís Barreto; Napoli, Marcelo Felgueiras
2015-01-01
The east coast of Brazil comprises an extensive area inserted in the Tropical Atlantic Domain and is represented by sandy plains of beach ridges commonly known as Restingas. The coastal environments are unique and house a rich amphibian fauna, the geographical distribution patterns of which are incipient. Biogeographical studies can explain the current distributional patterns and provide the identification of natural biogeographical units. These areas are important in elucidating the evolutionary history of the taxa and the areas where they occur. The aim of this study was to seek natural biogeographical units in the Brazilian sandy plains of beach ridges by means of distribution data of amphibians and to test the main predictions of the vicariance model to explain the patterns found. We revised and georeferenced data on the geographical distribution of 63 anuran species. We performed a search for latitudinal distribution patterns along the sandy coastal plains of Brazil using the non-metric multidimensional scaling method (NMDS) and the biotic element analysis to identify natural biogeographical units. The results showed a monotonic variation in anuran species composition along the latitudinal gradient with a break in the clinal pattern from 23°S to 25°S latitude (states of Rio de Janeiro to São Paulo). The major predictions of the vicariance model were corroborated by the detection of four biotic elements with significantly clustered distribution and by the presence of congeneric species distributed in distinct biotic elements. The results support the hypothesis that vicariance could be one of the factors responsible for the distribution patterns of the anuran communities along the sandy coastal plains of eastern Brazil. The results of the clusters are also congruent with the predictions of paleoclimatic models made for the Last Glacial Maximum of the Pleistocene, such as the presence of historical forest refugia and biogeographical patterns already detected for amphibians in the Atlantic Rainforest.
Biogeography of Anurans from the Poorly Known and Threatened Coastal Sandplains of Eastern Brazil
Xavier, Ariane Lima; Guedes, Thaís Barreto; Napoli, Marcelo Felgueiras
2015-01-01
The east coast of Brazil comprises an extensive area inserted in the Tropical Atlantic Domain and is represented by sandy plains of beach ridges commonly known as Restingas. The coastal environments are unique and house a rich amphibian fauna, the geographical distribution patterns of which are incipient. Biogeographical studies can explain the current distributional patterns and provide the identification of natural biogeographical units. These areas are important in elucidating the evolutionary history of the taxa and the areas where they occur. The aim of this study was to seek natural biogeographical units in the Brazilian sandy plains of beach ridges by means of distribution data of amphibians and to test the main predictions of the vicariance model to explain the patterns found. We revised and georeferenced data on the geographical distribution of 63 anuran species. We performed a search for latitudinal distribution patterns along the sandy coastal plains of Brazil using the non-metric multidimensional scaling method (NMDS) and the biotic element analysis to identify natural biogeographical units. The results showed a monotonic variation in anuran species composition along the latitudinal gradient with a break in the clinal pattern from 23°S to 25°S latitude (states of Rio de Janeiro to São Paulo). The major predictions of the vicariance model were corroborated by the detection of four biotic elements with significantly clustered distribution and by the presence of congeneric species distributed in distinct biotic elements. The results support the hypothesis that vicariance could be one of the factors responsible for the distribution patterns of the anuran communities along the sandy coastal plains of eastern Brazil. The results of the clusters are also congruent with the predictions of paleoclimatic models made for the Last Glacial Maximum of the Pleistocene, such as the presence of historical forest refugia and biogeographical patterns already detected for amphibians in the Atlantic Rainforest. PMID:26047484
Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z
2012-12-07
We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.
Ghosts of Cultivation Past - Native American Dispersal Legacy Persists in Tree Distribution.
Warren, Robert J
2016-01-01
A long-term assumption in ecology is that species distributions correspond with their niche requirements, but evidence that species can persist in unsuitable habitat for centuries undermines the link between species and habitat. Moreover, species may be more dependent on mutualist partners than specific habitats. Most evidence connecting indigenous cultures with plant dispersal is anecdotal, but historical records suggest that Native Americans transported and cultivated many species, including Gleditsia triacanthos ("Honey locust"). Gleditsia triacanthos was an important medicinal/culinary (e.g., sugar), cultural (e.g., game sticks) and spiritual tree for the Cherokee (southeastern U.S. Native Americans). This study tests the hypothesis that a Cherokee cultivation legacy drives current regional G. triacanthos distribution patterns. Gleditsia triacanthos occurs in rocky uplands and xeric fields, but inexplicably also occurs in mesic riverine corridors and floodplains where Cherokee once settled and farmed. I combined field experiments and surveys in the Southern Appalachian Mountain region (U.S.) to investigate G. triacanthos recruitment requirements and distribution patterns to determine whether there is a quantifiable G. triacanthos association with former Cherokee settlements. Moreover, I also investigated alternate dispersal mechanisms, such as stream transport and domestic cattle. The results indicate that a centuries-old legacy of Native American cultivation remains intact as G. triacanthos' current southern Appalachian distribution appears better explained Cherokee settlement patterns than habitat. The data indicate that the tree is severely dispersal limited in the region, only moving appreciable distances from former Cherokee settlements where cattle grazing is prevalent. Human land use legacy may play a long-term role in shaping species distributions, and pre-European settlement activity appears underrated as a factor influencing modern tree species distributions.
Ghosts of Cultivation Past - Native American Dispersal Legacy Persists in Tree Distribution
Warren, Robert J.
2016-01-01
A long-term assumption in ecology is that species distributions correspond with their niche requirements, but evidence that species can persist in unsuitable habitat for centuries undermines the link between species and habitat. Moreover, species may be more dependent on mutualist partners than specific habitats. Most evidence connecting indigenous cultures with plant dispersal is anecdotal, but historical records suggest that Native Americans transported and cultivated many species, including Gleditsia triacanthos ("Honey locust"). Gleditsia triacanthos was an important medicinal/culinary (e.g., sugar), cultural (e.g., game sticks) and spiritual tree for the Cherokee (southeastern U.S. Native Americans). This study tests the hypothesis that a Cherokee cultivation legacy drives current regional G. triacanthos distribution patterns. Gleditsia triacanthos occurs in rocky uplands and xeric fields, but inexplicably also occurs in mesic riverine corridors and floodplains where Cherokee once settled and farmed. I combined field experiments and surveys in the Southern Appalachian Mountain region (U.S.) to investigate G. triacanthos recruitment requirements and distribution patterns to determine whether there is a quantifiable G. triacanthos association with former Cherokee settlements. Moreover, I also investigated alternate dispersal mechanisms, such as stream transport and domestic cattle. The results indicate that a centuries-old legacy of Native American cultivation remains intact as G. triacanthos' current southern Appalachian distribution appears better explained Cherokee settlement patterns than habitat. The data indicate that the tree is severely dispersal limited in the region, only moving appreciable distances from former Cherokee settlements where cattle grazing is prevalent. Human land use legacy may play a long-term role in shaping species distributions, and pre-European settlement activity appears underrated as a factor influencing modern tree species distributions. PMID:26982877
Pfrommer, Andreas; Henning, Anke
2017-05-01
The ultimate intrinsic signal-to-noise ratio (SNR) is a coil independent performance measure to compare different receive coil designs. To evaluate this benchmark in a sample, a complete electromagnetic basis set is required. The basis set can be obtained by curl-free and divergence-free surface current distributions, which excite linearly independent solutions to Maxwell's equations. In this work, we quantitatively investigate the contribution of curl-free current patterns to the ultimate intrinsic SNR in a spherical head-sized model at 9.4 T. Therefore, we compare the ultimate intrinsic SNR obtained with having only curl-free or divergence-free current patterns, with the ultimate intrinsic SNR obtained from a combination of curl-free and divergence-free current patterns. The influence of parallel imaging is studied for various acceleration factors. Moreover results for different field strengths (1.5 T up to 11.7 T) are presented at specific voxel positions and acceleration factors. The full-wave electromagnetic problem is analytically solved using dyadic Green's functions. We show, that at ultra-high field strength (B 0 ⩾7T) a combination of curl-free and divergence-free current patterns is required to achieve the best possible SNR at any position in a spherical head-sized model. On 1.5- and 3T platforms, divergence-free current patterns are sufficient to cover more than 90% of the ultimate intrinsic SNR. Copyright © 2017 John Wiley & Sons, Ltd.
Schmidt, Marco; Muellner-Riehl, Alexandra Nora; Ogundipe, Oluwatoyin Temitayo; Paule, Juraj
2017-01-01
Processes shaping the African Guineo-Congolian rain forest, especially in the West African part, are not well understood. Recent molecular studies, based mainly on forest tree species, confirmed the previously proposed division of the western African Guineo-Congolian rain forest into Upper Guinea (UG) and Lower Guinea (LG) separated by the Dahomey Gap (DG). Here we studied nine populations in the area of the DG and the borders of LG and UG of the widespread liana species, Chasmanthera dependens (Menispermaceae) by amplified fragment length polymorphism (AFLP), a chloroplast DNA sequence marker, and modelled the distribution based on current as well as paleoclimatic data (Holocene Climate Optimum, ca. 6 kyr BP and Last Glacial Maximum, ca. 22 kyr BP). Current population genetic structure and geographical pattern of cpDNA was related to present as well as historical modelled distributions. Results from this study show that past historical factors played an important role in shaping the distribution of C. dependens across West Africa. The Cameroon Volcanic Line seems to represent a barrier for gene flow in the present as well as in the past. Distribution modelling proposed refugia in the Dahomey Gap, supported also by higher genetic diversity. This is in contrast with the phylogeographic patterns observed in several rainforest tree species and could be explained by either diverging or more relaxed ecological requirements of this liana species. PMID:28301470
Balachandar, Arjun; Prescott, Steven A
2018-05-01
Distinct spiking patterns may arise from qualitative differences in ion channel expression (i.e. when different neurons express distinct ion channels) and/or when quantitative differences in expression levels qualitatively alter the spike generation process. We hypothesized that spiking patterns in neurons of the superficial dorsal horn (SDH) of spinal cord reflect both mechanisms. We reproduced SDH neuron spiking patterns by varying densities of K V 1- and A-type potassium conductances. Plotting the spiking patterns that emerge from different density combinations revealed spiking-pattern regions separated by boundaries (bifurcations). This map suggests that certain spiking pattern combinations occur when the distribution of potassium channel densities straddle boundaries, whereas other spiking patterns reflect distinct patterns of ion channel expression. The former mechanism may explain why certain spiking patterns co-occur in genetically identified neuron types. We also present algorithms to predict spiking pattern proportions from ion channel density distributions, and vice versa. Neurons are often classified by spiking pattern. Yet, some neurons exhibit distinct patterns under subtly different test conditions, which suggests that they operate near an abrupt transition, or bifurcation. A set of such neurons may exhibit heterogeneous spiking patterns not because of qualitative differences in which ion channels they express, but rather because quantitative differences in expression levels cause neurons to operate on opposite sides of a bifurcation. Neurons in the spinal dorsal horn, for example, respond to somatic current injection with patterns that include tonic, single, gap, delayed and reluctant spiking. It is unclear whether these patterns reflect five cell populations (defined by distinct ion channel expression patterns), heterogeneity within a single population, or some combination thereof. We reproduced all five spiking patterns in a computational model by varying the densities of a low-threshold (K V 1-type) potassium conductance and an inactivating (A-type) potassium conductance and found that single, gap, delayed and reluctant spiking arise when the joint probability distribution of those channel densities spans two intersecting bifurcations that divide the parameter space into quadrants, each associated with a different spiking pattern. Tonic spiking likely arises from a separate distribution of potassium channel densities. These results argue in favour of two cell populations, one characterized by tonic spiking and the other by heterogeneous spiking patterns. We present algorithms to predict spiking pattern proportions based on ion channel density distributions and, conversely, to estimate ion channel density distributions based on spiking pattern proportions. The implications for classifying cells based on spiking pattern are discussed. © 2018 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
Pandit, Shubha N; Maitland, Bryan M; Pandit, Laxmi K; Poesch, Mark S; Enders, Eva C
2017-11-15
Climate change is affecting many freshwater species, particularly fishes. Predictions of future climate change suggest large and deleterious effects on species with narrow dispersal abilities due to limited hydrological connectivity. In turn, this creates the potential for population isolation in thermally unsuitable habitats, leading to physiological stress, species declines or possible extirpation. The current extent of many freshwater fish species' spatio-temporal distribution patterns and their sensitivity to thermal impacts from climate change - critical information for conservation planning - are often unknown. Carmine shiner (Notropis percobromus) is an ecologically important species listed as threatened or imperilled nationally (Canada) and regionally (South Dakota, United States) due to its restricted range and sensitivity to water quality and temperature. This research aimed to determine the current distribution and spatio-temporal variability in projected suitable habitat for Carmine shiner using niche-based modeling approaches (MaxEnt, BIOCLIM, and DOMAIN models). Statistically downscaled, bias-corrected Global Circulation Models (GCMs) data was used to model the distribution of Carmine shiner in central North America for the period of 2041-2060 (2050s). Maximum mean July temperature and temperature variability were the main factors in determining Carmine shiner distribution. Patterns of projected habitat change by the 2050s suggest the spatial extent of the current distribution of Carmine shiner would shift north, with >50% of the current distribution changing with future projections based on two Representative Concentrations Pathways for CO 2 emissions. Whereas the southern extent of the distribution would become unsuitable for Carmine shiner, suitable habitats are predicted to become available further north, if accessible. Importantly, the majority of habitat gains for Carmine shiner would be in areas currently inaccessible due to dispersal limitations, suggesting current populations may face an extinction debt within the next half century. These results provide evidence that Carmine shiner may be highly vulnerable to a warming climate and suggest that management actions - such as assisted migration - may be needed to mitigate impacts from climate change and ensure the long-term persistence of the species. Copyright © 2017 Elsevier B.V. All rights reserved.
Residual flow patterns and morphological changes along a macro- and meso-tidal coastline
NASA Astrophysics Data System (ADS)
Leonardi, Nicoletta; Plater, Andrew James
2017-11-01
The hydrodynamic and residual transport patterns arising from oscillating tidal motion have important consequences for the transport of sediments, and for the evolution of the shoreline, especially under macro- and meso-tidal conditions. For many locations there are significant uncertainties about residual currents and sediment transport characteristics, and their possible influence on the morphological evolution of the coastline and on the character of the bed. Herein we use the coastline of SE England as a test case to investigate possible changes in residual currents, and residual transport patterns from neap to spring tide, the reciprocal interaction between residuals and the character of the bed, and the morphological evolution of the coastline at a century timescale. We found that in the long term the morphology of the system evolves toward a dynamic equilibrium configuration characterized by smaller, and spatially constant residual transport patterns. While the spatial distribution of residual currents maintains a similar trend during both neap and spring tide, during spring tide and for large areas residual currents switch between northerly and southerly directions, and their magnitude is doubled. Residual eddies develop in regions characterized by the presence of sand bars due to the interaction of the tide with the varying topography. Residual transport patterns are also computed for various sediment fractions, and based on the hydrodynamics and sediment availability at the bottom. We found that the distribution of sediments on the bed is significantly correlated with the intensity of residuals. Finally, the majority of long-term morphological changes tend to develop or augment sand banks features, with an increase in elevation and steepening of the bank contours.
Jean Lienard; John Harrison; Nikolay Strigul
2015-01-01
Forested ecosystems are shaped by climate, soil and biotic interactions, resulting in constrained spatial distribution of species and biomes. Tolerance traits of species determine their fundamental ecological niche, while biotic interactions narrow tree distributions to the realized niche. In particular, shade, drought and waterlogging tolerances have been well-...
Spatial and temporal habitat-use patterns of wood turtles at the western edge of their distribution
Donald J. Brown; Mark D. Nelson; David J. Rugg; Richard R. Buech; Deahn M. Donner
2016-01-01
Wood Turtles (Glyptemys insculpta) are a state threatened species at the western edge of their geographic distribution in Minnesota, United States. There is currently little published information regarding habitat use of western populations to assist with conservation initiatives. The primary purpose of this study was to investigate habitat use of...
Pfrommer, Andreas; Henning, Anke
2018-03-13
The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength. © 2018 International Society for Magnetic Resonance in Medicine.
Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François
2014-05-01
Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco - the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity.
Leys, Marie; Petit, Eric J; El-Bahloul, Yasmina; Liso, Camille; Fournet, Sylvain; Arnaud, Jean-François
2014-01-01
Understanding the factors that contribute to population genetic divergence across a species' range is a long-standing goal in evolutionary biology and ecological genetics. We examined the relative importance of historical and ecological features in shaping the present-day spatial patterns of genetic structure in two related plant species, Beta vulgaris subsp. maritima and Beta macrocarpa. Using nuclear and mitochondrial markers, we surveyed 93 populations from Brittany (France) to Morocco – the southern limit of their species' range distribution. Whereas B. macrocarpa showed a genotypic structure and a high level of genetic differentiation indicative of selfing, the population genetic structure of B. vulgaris subsp. maritima was consistent with an outcrossing mating system. We further showed (1) a strong geographic clustering in coastal B. vulgaris subsp. maritima populations that highlighted the influence of marine currents in shaping different lineages and (2) a peculiar genetic structure of inland B. vulgaris subsp. maritima populations that could indicate the admixture of distinct evolutionary lineages and recent expansions associated with anthropogenic disturbances. Spatial patterns of nuclear diversity and differentiation also supported a stepwise recolonization of Europe from Atlantic-Mediterranean refugia after the last glacial period, with leading-edge expansions. However, cytoplasmic diversity was not impacted by postglacial recolonization: stochastic long-distance seed dispersal mediated by major oceanic currents may mitigate the common patterns of reduced cytoplasmic diversity observed for edge populations. Overall, the patterns we documented here challenge the general view of reduced genetic diversity at the edge of a species' range distribution and provide clues for understanding how life-history and major geographic features interact to shape the distribution of genetic diversity. PMID:24963380
DSA patterning options for logics and memory applications
NASA Astrophysics Data System (ADS)
Liu, Chi-Chun; Franke, Elliott; Mignot, Yann; LeFevre, Scott; Sieg, Stuart; Chi, Cheng; Meli, Luciana; Parnell, Doni; Schmidt, Kristin; Sanchez, Martha; Singh, Lovejeet; Furukawa, Tsuyoshi; Seshadri, Indira; De Silva, Ekmini Anuja; Tsai, Hsinyu; Lai, Kafai; Truong, Hoa; Farrell, Richard; Bruce, Robert; Somervell, Mark; Sanders, Daniel; Felix, Nelson; Arnold, John; Hetzer, David; Ko, Akiteru; Metz, Andrew; Colburn, Matthew; Corliss, Daniel
2017-03-01
The progress of three potential DSA applications, i.e. fin formation, via shrink, and pillars, were reviewed in this paper. For fin application, in addition to pattern quality, other important considerations such as customization and design flexibility were discussed. An electrical viachain study verified the DSA rectification effect on CD distribution by showing a tighter current distribution compared to that derived from the guiding pattern direct transfer without using DSA. Finally, a structural demonstration of pillar formation highlights the importance of pattern transfer in retaining both the CD and local CDU improvement from DSA. The learning from these three case studies can provide perspectives that may not have been considered thoroughly in the past. By including more important elements during DSA process development, the DSA maturity can be further advanced and move DSA closer to HVM adoption.
Karl, Herman A.; Carlson, P.R.
1987-01-01
Samples of total suspended matter (TSM) were collected at the surface over the northern outer continental margin of the Bering Sea during the summers of 1980 and 1981. Volume concentrations of surface TSM averaged 0.6 and 1.1 mg l-1 for 1980 and 1981, respectively. Organic matter, largely plankton, made up about 65% of the near-surface TSM for both years. Distributions of TSM suggested that shelf circulation patterns were characterized either by meso- and large- scale eddies or by cross-shelf components of flow superimposed on a general northwesterly net drift. These patterns may be caused by large submarine canyons which dominate the physiography of this part of the Bering Sea continental margin. ?? 1987.
The neutral wind 'flywheel' as a source of quiet-time, polar-cap currents
NASA Technical Reports Server (NTRS)
Lyons, L. R.; Walterscheid, R. L.; Killeen, T. L.
1985-01-01
The neutral wind pattern over the summer polar cap can be driven by plasma convection to resemble the convection pattern. For a north-south component of the interplanetary magnetic field Bz directed southward, the wind speeds in the conducting E-region can become approximately 25 percent of the electric field drift speeds. If convection ceases, this neutral wind distribution can drive a significant polar cap current system for approximately 6 hours. The currents are reversed from those driven by the electric fields for southward Bz, and the Hall and field-aligned components of the current system resemble those observed during periods of northward Bz. The current magnitudes are similar to those observed during periods of small, northward Bz; however, observations indicate that electric fields often contribute to the currents as much as, or more than, the neutral winds.
NASA Technical Reports Server (NTRS)
Zhu, L.; Schunk, R. W.; Sojka, J. J.
1991-01-01
The influence of the ionospheric conductance on the field-aligned current associated with a distorted two-cell convection pattern during northward IMF was investigated using the Heppner-Maynard (1987) convection model and the Utah State University conductivity model described by Rasmussen and Schunk (1987). Results show that the variation of the ionospheric conductivity distribution can significantly affect the features of the field-aligned current for northward IMF, where matching or mismatching between the conductance gradient and the convection electric field plays a key role. It was found that the increase of the field-aligned current in the polar cap observed during summer is mainly due to the increasing contribution from the Pedersen current, and that the increase of the field-aligned current in both the oval region and the evening-midnight sector during the active aurora period is mainly due to the increasing contribution from the Hall current.
NASA Astrophysics Data System (ADS)
Falcini, Federico; Palatella, Luigi; Cuttitta, Angela; Bignami, Francesco; Patti, Bernardo; Santoleri, Rosalia; Fiorentino, Fabio
2014-05-01
The European Anchovy (Engraulis encrasicolus, Linnaeus, 1758) is one of the most important resources of the Mediterranean Sea. Despite its abundance and relevance, the anchovy population off the Mediterranean coasts exhibits a patchy distribution. Moreover, its biology and the influence of environment on its variability is poorly known. We here use data from ichthyoplankton-surveys carried out during the peak spawning season in order to analyze abundance and age of anchovy larvae in the Strait of Sicily, with respect to sea surface dynamic and hydrographic parameter patterns. The Strait of Sicily dynamics is characterized by upwelling regions, fronts, vortices, and filaments, with a consequent complexity in the spatial distribution of oceanographic parameters and anchovy larvae. To investigate the role of mesoscale features and oceanographic environment on the latter, anchovy larvae observations were paired to remote sensing data (such as sea surface temperature, chlorophyll, primary production, surface wind speed as well as light attenuation, absorption, and particle backscattering coefficients) and Lagrangian and Eulerian numerical simulations results for ocean currents and larval transport. The subsequent analysis shows and quantifies how the Atlantic Ionian Stream (AIS, a meandering current of Atlantic origin) path and variability, as well as the upwelling-induced south Sicilian coastal current, have consequences for anchovy spawning and larvae distribution. These currents transport anchovy larvae towards the Sicilian coast's south-eastern tip, where larvae are then retained in a frontal structure. However, significant cross-shore transport events due to relatively cold filament-like baroclinic instabilities generated by wind-induced coastal upwelling were also observed. Finally, the larval age distribution qualitatively agrees well with this transport pattern.
Harmony Dalgleish; C. Dana Nelson; John Scrivani; Douglass Jacobs
2015-01-01
Restoration of foundation species, such as the American chestnut (Castanea dentata) that was devastated by an introduced fungus, can restore ecosystem function. Understanding both the current distribution as well as biogeographic patterns is important for restoration planning. We used United States Department of Agriculture Forest...
Aagesen, Lone; Biganzoli, Fernando; Bena, Julia; Godoy-Bürki, Ana C; Reinheimer, Renata; Zuloaga, Fernando O
2016-01-01
Grasses are ancestrally tropical understory species whose current dominance in warm open habitats is linked to the evolution of C4 photosynthesis. C4 grasses maintain high rates of photosynthesis in warm and water stressed environments, and the syndrome is considered to induce niche shifts into these habitats while adaptation to cold ones may be compromised. Global biogeographic analyses of C4 grasses have, however, concentrated on diversity patterns, while paying little attention to distributional limits. Using phylogenetic contrast analyses, we compared macro-climatic distribution limits among ~1300 grasses from the subfamily Panicoideae, which includes 4/5 of the known photosynthetic transitions in grasses. We explored whether evolution of C4 photosynthesis correlates with niche expansions, niche changes, or stasis at subfamily level and within the two tribes Paniceae and Paspaleae. We compared the climatic extremes of growing season temperatures, aridity, and mean temperatures of the coldest months. We found support for all the known biogeographic distribution patterns of C4 species, these patterns were, however, formed both by niche expansion and niche changes. The only ubiquitous response to a change in the photosynthetic pathway within Panicoideae was a niche expansion of the C4 species into regions with higher growing season temperatures, but without a withdrawal from the inherited climate niche. Other patterns varied among the tribes, as macro-climatic niche evolution in the American tribe Paspaleae differed from the pattern supported in the globally distributed tribe Paniceae and at family level.
NASA Astrophysics Data System (ADS)
Auras-Schudnagies, Anabelle; Kroon, Dick; Ganssen, Gerald; Hemleben, Christoph; Van Hinte, Jan E.
1989-10-01
Living planktonic foraminiferal and pteropod distribution patterns in the western Arabian Sea, Gulf of Aden and Red Sea, collected during two summer cruises (1984, 1985), reflect the hydrographical system that is mainly controlled by a combination of monsoonal winds and evaporation rates. Spinose species constitute the majority of the planktonic foraminiferal assemblages in the Red Sea during both monsoonal seasons. The non-spinose species Globorotalia menardii, Neogloboquadrina dutertrei and Pulleniatina obliquiloculata, which are always abundant in the Arabian Sea, are present only during winter inflow. The intensity and duration of these inflowing surface currents control their distribution pattern. Stable oxygen isotope ratios show that G. menardii survives but ceases to grow north of Bab el Mandeb, while N. dutertrei continues to grow. Trends in the foraminiferal distribution in surface waters compare well with those of the sea floor, as far as larger specimens (>250 μm) are concerned, but differ for the small ones. Surface distribution patterns of small-sized specimens and juvenile/neanic stages of large-sized fully grown species do not correspond to those in the core top samples. The distribution pattern of living pteropods in the Red Sea is closely related to distinct water masses and corresponds to the distribution in top core sediments. Pteropods are absent in the sediments of the Gulf of Aden and the western Arabian Sea due to dissolution. Peak abundances of various pteropods and foraminifers indicate the presence of local upwelling processes in the Bab el Mandeb area. Determining these dynamics allows for the reconstruction of ancient oceanic environments and climatic interactions in the area.
Synthesis of multiple shaped beam antenna patterns
NASA Technical Reports Server (NTRS)
Stutzman, W. L.; Coffey, E. L.
1973-01-01
Results are presented of research into the problem of finding an excitation of a given antenna such that the desired radiation pattern is approximated to within acceptable limits. This is to be done in such a fashion that boundary conditions involving hardware limitations may be inserted into the problem. The intended application is synthesis of multiple shaped beam antennas. Since this is perhaps the most difficult synthesis problem an antenna engineer is likely to encounter, the approach taken was to include as a by-product capability for synthesizing simpler patterns. The synthesis technique has been almost totally computerized. The class of antennas which may be synthesized with the computer program are those which may be represented as planar (continuous or discrete) current distributions. The technique is not limited in this sense and could indeed by extended to include, for example, the synthesis of conformal arrays or current distributions on the surface of reflectors. The antenna types which the program is set up to synthesize are: line source, rectangular aperture, circular aperture, linear array, rectangular array, and arbitrary planar array.
Distribution of electric currents in sunspots from photosphere to corona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosain, Sanjay; Démoulin, Pascal; López Fuentes, Marcelo
2014-09-20
We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z}more » has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.« less
NASA Astrophysics Data System (ADS)
Gusain, S.
2017-12-01
We study the hemispheric patterns in electric current helicity distribution on the Sun. Magnetic field vector in the photosphere is now routinely measured by variety of instruments. SOLIS/VSM of NSO observes full disk Stokes spectra in photospheric lines which are used to derive vector magnetograms. Hinode SP is a space based spectropolarimeter which has the same observable as SOLIS albeit with limited field-of-view (FOV) but high spatial resolution. SDO/HMI derives vector magnetograms from full disk Stokes measurements, with rather limited spectral resolution, from space in a different photospheric line. Further, these datasets now exist for several years. SOLIS/VSM from 2003, Hinode SP from 2006, and SDO HMI since 2010. Using these time series of vector magnetograms we compute the electric current density in active regions during solar cycle 24 and study the hemispheric distributions. Many studies show that the helicity parameters and proxies show a strong hemispheric bias, such that Northern hemisphere has preferentially negative and southern positive helicity, respectively. We will confirm these results for cycle 24 from three different datasets and evaluate the statistical significance of the hemispheric bias. Further, we discuss the solar cycle variation in the hemispheric helicity pattern during cycle 24 and discuss its implications in terms of solar dynamo models.
Estimation of electric fields and current from ground-based magnetometer data
NASA Technical Reports Server (NTRS)
Kamide, Y.; Richmond, A. D.
1984-01-01
Recent advances in numerical algorithms for estimating ionospheric electric fields and currents from groundbased magnetometer data are reviewed and evaluated. Tests of the adequacy of one such algorithm in reproducing large-scale patterns of electrodynamic parameters in the high-latitude ionosphere have yielded generally positive results, at least for some simple cases. Some encouraging advances in producing realistic conductivity models, which are a critical input, are pointed out. When the algorithms are applied to extensive data sets, such as the ones from meridian chain magnetometer networks during the IMS, together with refined conductivity models, unique information on instantaneous electric field and current patterns can be obtained. Examples of electric potentials, ionospheric currents, field-aligned currents, and Joule heating distributions derived from ground magnetic data are presented. Possible directions for future improvements are also pointed out.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... and taxonomy; (c) Historical and current range, including distribution patterns; (d) Historical and... Recognition of Distinct Vertebrate Population Segments (DPS policy) (February 7, 1996, 61 FR 4721), and...
Stygoregions – a promising approach to a bioregional classification of groundwater systems
Stein, Heide; Griebler, Christian; Berkhoff, Sven; Matzke, Dirk; Fuchs, Andreas; Hahn, Hans Jürgen
2012-01-01
Linked to diverse biological processes, groundwater ecosystems deliver essential services to mankind, the most important of which is the provision of drinking water. In contrast to surface waters, ecological aspects of groundwater systems are ignored by the current European Union and national legislation. Groundwater management and protection measures refer exclusively to its good physicochemical and quantitative status. Current initiatives in developing ecologically sound integrative assessment schemes by taking groundwater fauna into account depend on the initial classification of subsurface bioregions. In a large scale survey, the regional and biogeographical distribution patterns of groundwater dwelling invertebrates were examined for many parts of Germany. Following an exploratory approach, our results underline that the distribution patterns of invertebrates in groundwater are not in accordance with any existing bioregional classification system established for surface habitats. In consequence, we propose to develope a new classification scheme for groundwater ecosystems based on stygoregions. PMID:22993698
Macroecology of unicellular organisms - patterns and processes.
Soininen, Janne
2012-02-01
Macroecology examines the relationship between organisms and their environment at large spatial (and temporal) scales. Typically, macroecologists explain the large-scale patterns of abundance, distribution and diversity. Despite the difficulties in sampling and characterizing microbial diversity, macroecologists have recently also been interested in unicellular organisms. Here, I review the current advances made in microbial macroecology, as well as discuss related ecosystem functions. Overall, it seems that microorganisms suit surprisingly well to known species abundance distributions and show positive relationship between distribution and adundance. Microbial species-area and distance-decay relationships tend to be weaker than for macroorganisms, but nonetheless significant. Few findings on altitudinal gradients in unicellular taxa seem to differ greatly from corresponding findings for larger taxa, whereas latitudinal gradients among microorganisms have either been clearly evident or absent depending on the context. Literature also strongly emphasizes the role of spatial scale for the patterns of diversity and suggests that patterns are affected by species traits as well as ecosystem characteristics. Finally, I discuss the large role of local biotic and abiotic variables driving the community assembly in unicellular taxa and eventually dictating how multiple ecosystem processes are performed. Present review highlights the fact that most microorganisms may not differ fundamentally from larger taxa in their large-scale distribution patterns. Yet, review also shows that many aspects of microbial macroecology are still relatively poorly understood and specific patterns depend on focal taxa and ecosystem concerned. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Strong regularities in world wide web surfing
Huberman; Pirolli; Pitkow; Lukose
1998-04-03
One of the most common modes of accessing information in the World Wide Web is surfing from one document to another along hyperlinks. Several large empirical studies have revealed common patterns of surfing behavior. A model that assumes that users make a sequence of decisions to proceed to another page, continuing as long as the value of the current page exceeds some threshold, yields the probability distribution for the number of pages that a user visits within a given Web site. This model was verified by comparing its predictions with detailed measurements of surfing patterns. The model also explains the observed Zipf-like distributions in page hits observed at Web sites.
NASA Technical Reports Server (NTRS)
Comiso, J. C.; Mcclain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.
1993-01-01
Climatological data on the distribution of surface pigment fields in the entire southern ocean over a seasonal cycle are examined. The occurrence of intense phytoplankton blooms during austral summer months and during other seasons in different regions is identified and analyzed. The highest pigment concentrations are observed at high latitudes and over regions with water depths usually less than 600 m. Basin-scale pigment distribution shows a slightly asymmetric pattern of enhanced pigment concentrations about Antarctica, with enhanced concentrations extending to lower latitudes in the Atlantic and Indian sectors than in the Pacific sector. A general increase in pigment concentrations is evident from the low latitudes toward the Antarctic circumpolar region. Spatial relationships between pigment and archived geophysical data reveal significant correlation between pigment distributions and both bathymetry and wind stress, while general hemispheric scale patterns of pigment distributions are most coherent with the geostrophic flow of the Antarctic Circumpolar Current.
Tanaka, Hiroki; Okuda, Katsuhiro; Ohtani, Seiji; Asari, Masaru; Horioka, Kie; Isozaki, Shotaro; Hayakawa, Akira; Ogawa, Katsuhiro; Hiroshi, Shiono; Shimizu, Keiko
2018-05-01
Electrical injury is damage caused by an electrical current passing through the body. We have previously reported that irregular stripes crossing skeletal muscle fibers (python pattern) and multiple small nuclei arranged in the longitudinal direction of the muscle fibers (chained nuclear change) are uniquely observed by histopathological analysis in the skeletal muscle tissues of patients with electrical injury. However, it remains unclear whether these phenomena are caused by the electrical current itself or by the joule heat generated by the electric current passing through the body. To clarify the causes underlying these changes, we applied electric and heat injury to the exteriorized rat soleus muscle in situ. Although both the python pattern and chained nuclear change were induced by electric injury, only the python pattern was induced by heat injury. Furthermore, a chained nuclear change was induced in the soleus muscle cells by electric current flow in physiological saline at 40 °C ex vivo, but a python pattern was not observed. When the skeletal muscle was exposed to electrical injury in cardiac-arrested rats, a python pattern was induced within 5 h after cardiac arrest, but no chained nuclear change was observed. Therefore, a chained nuclear change is induced by an electrical current alone in tissues in vital condition, whereas a python pattern is caused by joule heat, which may occur shortly after death. The degree and distribution of these skeletal muscle changes may be useful histological markers for analyzing cases of electrical injury in forensic medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular phylogeny of the squeak beetles, a family with disjunct Palearctic-Australian range.
Hawlitschek, Oliver; Hendrich, Lars; Balke, Michael
2012-01-01
Many higher groups of plants and animals show distributional patterns which have been shown or have at some point in time been suggested to be correlated with plate tectonics and the ancient supercontinents Laurasia and Gondwana. Here, we study the family of squeak beetles (Coleoptera: Adephaga: Hygrobiidae) and its enigmatic distribution pattern, with one species in the Western Palearctic, one in China and four in Australia. We present a molecular phylogeny including five of the six extant species, showing the monophyly of the Australian radiation. We use a molecular clock approach, which indicates that Hygrobiidae is an ancient group dating back to the breakup of Pangea and discuss the possibility of vicariance as explanation for its current distribution. Copyright © 2011 Elsevier Inc. All rights reserved.
Hampton, M.A.; Bouma, A.H.; Frost, T.P.; Colburn, I.P.
1979-01-01
Surficial sediments of the Kodiak shelf, Gulf of Alaska, contain various amounts of volcanic ash whose physical properties indicate that it originated from the 1912 Katmai eruption. The distribution of ash is related to the shelf physiography and represents redistribution by oceanic circulation rather than the original depositional pattern from the volcanic event. The ash distribution can be used, in conjunction with the distribution of grain sizes, as an indicator of present-day sediment dispersal patterns on the shelf. No significant modern input of sediment is occurring on the Kodiak shelf, which is mostly covered by Pleistocene glacial deposits. Coarse-grained sediments on flat portions of shallow banks apparently are being winnowed, with the removed ash-rich fine material being deposited in shallow depressions on the banks and in three of the four major troughs that cut transversely across the shelf. The other major trough seems to be experiencing a relatively high-energy current regime, with little deposition of fine material. ?? 1979.
Martinez, Pablo Ariel; Andrade, Mayane Alves; Bidau, Claudio Juan
2018-06-01
The temporal pattern of co-occurrence of human beings and venomous species (scorpions, spiders, snakes) is changing. Thus, the temporal pattern of areas with risk of accidents with such species tends to become dynamic in time. We analyze the areas of occurrence of species of Tityus in Argentina and assess the impact of global climate change on their area of distribution by the construction of risk maps. Using data of occurrence of the species and climatic variables, we constructed models of species distribution (SMDs) under current and future climatic conditions. We also created maps that allow the detection of temporal shifts in the distribution patterns of each Tityus species. Finally, we developed risk maps for the analyzed species. Our results predict that climate change will have an impact on the distribution of Tityus species which will clearly expand to more southern latitudes, with the exception of T. argentinus. T. bahiensis, widely distributed in Brazil, showed a considerable increase of its potential area (ca. 37%) with future climate change. The species T. confluens and T. trivittatus that cause the highest number of accidents in Argentina are expected to show significant changes of their distributions in future scenarios. The former fact is worrying because Buenos Aires province is the more densely populated district in Argentina thus iable to become the most affected by T. trivittatus. These alterations of distributional patterns can lead to amplify the accident risk zones of venomous species, becoming an important subject of concern for public health policies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Geographical distribution of Musa gracilis Holttum in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Norfazlina, B.; Wickneswari, R.; Choong, C. Y.
2016-11-01
Musa gracilis (Musaceae) is placed under section Callimusa and was considered endemic to Peninsular Malaysia. The objective of this study was to evaluate the current occurrence of Musa gracilis in Peninsular Malaysia. The coordinates of each population was recorded using the Global Positioning System (GPS) and mapped to show the geographical distribution of Musa gracilis. This study revealed that Musa gracilis exhibits specific pattern of distribution, which exists only in a lowland areas on the eastern and southern part of Peninsular Malaysia.
Carvalho, Cristiano DE Santana; Nascimento, Nayla Fábia Ferreira DO; Araujo, Helder F P DE
2017-10-17
Rivers as barriers to dispersal and past forest refugia are two of the hypotheses proposed to explain the patterns of biodiversity in the Atlantic Forest. It has recently been shown that possible past refugia correspond to bioclimatically different regions, so we tested whether patterns of shared distribution of bird taxa in the Atlantic Forest are 1) limited by the Doce and São Francisco rivers or 2) associated with the bioclimatically different southern and northeastern regions. We catalogued lists of forest birds from 45 locations, 36 in the Atlantic forest and nine in Amazon, and used parsimony analysis of endemicity to identify groups of shared taxa. We also compared differences between these groups by permutational multivariate analysis of variance and identified the species that best supported the resulting groups. The results showed that the distribution of forest birds is divided into two main regions in the Atlantic Forest, the first with more southern localities and the second with northeastern localities. This distributional pattern is not delimited by riverbanks, but it may be associated with bioclimatic units, surrogated by altitude, that maintain current environmental differences between two main regions on Atlantic Forest and may be related to phylogenetic histories of taxa supporting the two groups.
Investigation of the environmental change pattern of Japan
NASA Technical Reports Server (NTRS)
Maruyasu, T. (Principal Investigator)
1973-01-01
The author has identified the following significant results. ERTS-1 imagery clearly identifies the relationships between the status of erosion, effluent patterns affected by the coastal current, and the cultural construction activities. Simple photographic techniques can be used for detecting water mass distribution separately from cloud cover and also noise caused by reflected sunlight from wave surfaces. Polluted water does not diffuse continuously into the oceanic water, but forms masses in the water in the Kuroshio area. The polluted or turbid water in the area just north of the Tomogashima Channel, the south outlet of the Osaka Bay, shows that the northward tidal current runs in a clockwise eddy at the tidal period when the imagery was taken. Such an eddy-like pattern of tidal current had never been revealed by conventional oceanographic data. A front between an oceanic water mass and a polluted water mass runs in a NW-SE direction in the central part of the Osaka Bay. The patterns of turbid water discharged from the Kii River and Yoshino River show a northward tidal current in the North Kii Straits. The pattern of lighter turbid or polluted water located in the northwest region of the North Kii straits suggests the existence of a clockwise eddy in the straits.
NASA Astrophysics Data System (ADS)
Luo, D.; Guan, Z.; Wang, C.; Yue, L.; Peng, L.
2017-06-01
Distribution of different parts to the assembly lines is significant for companies to improve production. Current research investigates the problem of distribution method optimization of a logistics system in a third party logistic company that provide professional services to an automobile manufacturing case company in China. Current research investigates the logistics leveling the material distribution and unloading platform of the automobile logistics enterprise and proposed logistics distribution strategy, material classification method, as well as logistics scheduling. Moreover, the simulation technology Simio is employed on assembly line logistics system which helps to find and validate an optimization distribution scheme through simulation experiments. Experimental results indicate that the proposed scheme can solve the logistic balance and levels the material problem and congestion of the unloading pattern in an efficient way as compared to the original method employed by the case company.
Diversity and Distribution Patterns in High Southern Latitude Sponges
Downey, Rachel V.; Griffiths, Huw J.; Linse, Katrin; Janussen, Dorte
2012-01-01
Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity. PMID:22911840
Heyer, W Ronald; Reid, Yana R
2003-03-01
The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.
Silva, Daniel P.; Vilela, Bruno; De Marco, Paulo; Nemésio, André
2014-01-01
The role of past connections between the two major South American forested biomes on current species distribution has been recognized a long time ago. Climatic oscillations that further separated these biomes have promoted parapatric speciation, in which many species had their continuous distribution split, giving rise to different but related species (i.e., different potential distributions and realized niche features). The distribution of many sister species of orchid bees follow this pattern. Here, using ecological niche models and niche analyses, we (1) tested the role of ecological niche differentiation on the divergence between sister orchid-bees (genera Eulaema and Eufriesea) from the Amazon and Atlantic forests, and (2) highlighted interesting areas for new surveys. Amazonian species occupied different realized niches than their Atlantic sister species. Conversely, species of sympatric but distantly related Eulaema bees occupied similar realized niches. Amazonian species had a wide potential distribution in South America, whereas Atlantic Forest species were more limited to the eastern coast of the continent. Additionally, we identified several areas in need of future surveys. Our results show that the realized niche of Atlantic-Amazonian sister species of orchid bees, which have been previously treated as allopatric populations of three species, had limited niche overlap and similarity. These findings agree with their current taxonomy, which treats each of those populations as distinct valid species. PMID:25422941
Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.
Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin
2018-03-12
Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.
Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals
Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin
2018-01-01
Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515
Examining current or future trade-offs for biodiversity conservation in north-eastern Australia.
Reside, April E; VanDerWal, Jeremy; Moilanen, Atte; Graham, Erin M
2017-01-01
With the high rate of ecosystem change already occurring and predicted to occur in the coming decades, long-term conservation has to account not only for current biodiversity but also for the biodiversity patterns anticipated for the future. The trade-offs between prioritising future biodiversity at the expense of current priorities must be understood to guide current conservation planning, but have been largely unexplored. To fill this gap, we compared the performance of four conservation planning solutions involving 662 vertebrate species in the Wet Tropics Natural Resource Management Cluster Region in north-eastern Australia. Input species data for the four planning solutions were: 1) current distributions; 2) projected distributions for 2055; 3) projected distributions for 2085; and 4) current, 2055 and 2085 projected distributions, and the connectivity between each of the three time periods for each species. The four planning solutions were remarkably similar (up to 85% overlap), suggesting that modelling for either current or future scenarios is sufficient for conversation planning for this region, with little obvious trade-off. Our analyses also revealed that overall, species with small ranges occurring across steep elevation gradients and at higher elevations were more likely to be better represented in all solutions. Given that species with these characteristics are of high conservation significance, our results provide confidence that conservation planning focused on either current, near- or distant-future biodiversity will account for these species.
Examining current or future trade-offs for biodiversity conservation in north-eastern Australia
VanDerWal, Jeremy; Moilanen, Atte; Graham, Erin M.
2017-01-01
With the high rate of ecosystem change already occurring and predicted to occur in the coming decades, long-term conservation has to account not only for current biodiversity but also for the biodiversity patterns anticipated for the future. The trade-offs between prioritising future biodiversity at the expense of current priorities must be understood to guide current conservation planning, but have been largely unexplored. To fill this gap, we compared the performance of four conservation planning solutions involving 662 vertebrate species in the Wet Tropics Natural Resource Management Cluster Region in north-eastern Australia. Input species data for the four planning solutions were: 1) current distributions; 2) projected distributions for 2055; 3) projected distributions for 2085; and 4) current, 2055 and 2085 projected distributions, and the connectivity between each of the three time periods for each species. The four planning solutions were remarkably similar (up to 85% overlap), suggesting that modelling for either current or future scenarios is sufficient for conversation planning for this region, with little obvious trade-off. Our analyses also revealed that overall, species with small ranges occurring across steep elevation gradients and at higher elevations were more likely to be better represented in all solutions. Given that species with these characteristics are of high conservation significance, our results provide confidence that conservation planning focused on either current, near- or distant-future biodiversity will account for these species. PMID:28222199
NASA Technical Reports Server (NTRS)
Klumpar, D. M. (Principal Investigator)
1982-01-01
Progress made in reducing MAGSAT data and displaying magnetic field perturbations caused primarily by external currents is reported. A periodic and repeatable perturbation pattern is described that arises from external current effects but appears as unique signatures associated with upper middle latitudes on the Earth's surface. Initial testing of the modeling procedure that was developed to compute the magnetic fields at satellite orbit due to current distributions in the ionosphere and magnetosphere is also discussed. The modeling technique utilizes a linear current element representation of the large scale space current system.
NASA Astrophysics Data System (ADS)
Wunsch, Marco; Betzler, Christian; Eberli, Gregor P.; Lindhorst, Sebastian; Lüdmann, Thomas; Reijmer, John J. G.
2018-01-01
New geophysical data from the leeward slope of Great Bahama Bank show how contour currents shape the slope and induce re-sedimentation processes. Along slope segments with high current control, drift migration and current winnowing at the toe of slope form a deep moat. Here, the slope progradation is inhibited by large channel incisions and the accumulation of large mass transport complexes, triggered by current winnowing. In areas where the slope is bathed by weaker currents, the accumulation of mass transport complexes and channel incision is rather controlled by the position of the sea level. Large slope failures were triggered during the Mid-Pleistocene transition and Mid-Brunhes event, both periods characterized by changes in the cyclicity or the amplitude of sea-level fluctuations. Within the seismic stratigraphic framework of third order sequences, four sequences of higher order were identified in the succession of the upper Pleistocene. These higher order sequences also show clear differences in function of the slope exposure to contour currents. Two stochastic models emphasize the role of the contour currents and slope morphology in the facies distribution in the upper Pleistocene sequences. In areas of high current influence the interplay of erosional and depositional processes form a complex facies pattern with downslope and along strike facies alterations. In zones with lower current influence, major facies alternations occur predominately in downslope direction, and a layer-cake pattern characterizes the along strike direction. Therefore, this study highlights that contour currents are an underestimated driver for the sediment distribution and architecture of carbonate slopes.
Immunohistochemical distribution of Ki67 in epidermis of thick glabrous skin of human digits.
Petrovic, Aleksandar; Petrovic, Vladimir; Milojkovic, Bobana; Nikolic, Ivan; Jovanovic, Dragan; Antovic, Aleksandra; Milic, Miroslav
2018-01-01
The glabrous skin on the flexor sides of hands and feet, compared to other integument regions, has thicker epidermis and more complex pattern of epidermal ridges, wherefore in microscopy is denominated as thick skin. The epidermis of this skin type has individually unique and permanent superficial patterns, called dermatoglyphics, which are maintained by regenerative potential of deep epidermal rete ridges, that interdigitate with adjacent dermis. Using light microscopy, we analyzed cadaveric big toes thick skin samples, described histology of deep epidermal ridges (intermediate, limiting, and transverse), and quantitatively evidenced their pattern of proliferation by immunohistochemical assessment of Ki67. Immunohistochemical distribution of Ki67 was confined to basal and suprabasal layers, with pattern of distribution specific for intermediate, limiting and transverse ridges that gradually transform within epidermal height. Deep epidermal ridges, interdigitating with dermal papillae, participate in construction of intricate epidermal base, whose possible role in epidermal regeneration was also discussed. Having a prominent morphology, this type of epidermis offers the best morphological insight in complexities of skin organization, and its understanding could challenge and improve currently accepted models of epidermal organization.
The Primary Dental Care Workforce.
ERIC Educational Resources Information Center
Neenan, M. Elaine; And Others
1993-01-01
A study describes the characteristics of the current primary dental care workforce (dentists, hygienists, assistants), its distribution, and its delivery system in private and public sectors. Graduate dental school enrollments, trends in patient visits, employment patterns, state dental activities, and workforce issues related to health care…
To predict the niche, model colonization and extinction
Yackulic, Charles B.; Nichols, James D.; Reid, Janice; Der, Ricky
2015-01-01
Ecologists frequently try to predict the future geographic distributions of species. Most studies assume that the current distribution of a species reflects its environmental requirements (i.e., the species' niche). However, the current distributions of many species are unlikely to be at equilibrium with the current distribution of environmental conditions, both because of ongoing invasions and because the distribution of suitable environmental conditions is always changing. This mismatch between the equilibrium assumptions inherent in many analyses and the disequilibrium conditions in the real world leads to inaccurate predictions of species' geographic distributions and suggests the need for theory and analytical tools that avoid equilibrium assumptions. Here, we develop a general theory of environmental associations during periods of transient dynamics. We show that time-invariant relationships between environmental conditions and rates of local colonization and extinction can produce substantial temporal variation in occupancy–environment relationships. We then estimate occupancy–environment relationships during three avian invasions. Changes in occupancy–environment relationships over time differ among species but are predicted by dynamic occupancy models. Since estimates of the occupancy–environment relationships themselves are frequently poor predictors of future occupancy patterns, research should increasingly focus on characterizing how rates of local colonization and extinction vary with environmental conditions.
Prediction-based dynamic load-sharing heuristics
NASA Technical Reports Server (NTRS)
Goswami, Kumar K.; Devarakonda, Murthy; Iyer, Ravishankar K.
1993-01-01
The authors present dynamic load-sharing heuristics that use predicted resource requirements of processes to manage workloads in a distributed system. A previously developed statistical pattern-recognition method is employed for resource prediction. While nonprediction-based heuristics depend on a rapidly changing system status, the new heuristics depend on slowly changing program resource usage patterns. Furthermore, prediction-based heuristics can be more effective since they use future requirements rather than just the current system state. Four prediction-based heuristics, two centralized and two distributed, are presented. Using trace driven simulations, they are compared against random scheduling and two effective nonprediction based heuristics. Results show that the prediction-based centralized heuristics achieve up to 30 percent better response times than the nonprediction centralized heuristic, and that the prediction-based distributed heuristics achieve up to 50 percent improvements relative to their nonprediction counterpart.
Vasconcelos, Tiago S; Prado, Vitor H M; da Silva, Fernando R; Haddad, Célio F B
2014-01-01
Anurans are a highly diverse group in the Atlantic Forest hotspot (AF), yet distribution patterns and species richness gradients are not randomly distributed throughout the biome. Thus, we explore how anuran species are distributed in this complex and biodiverse hotspot, and hypothesize that this group can be distinguished by different cohesive regions. We used range maps of 497 species to obtain a presence/absence data grid, resolved to 50×50 km grain size, which was submitted to k-means clustering with v-fold cross-validation to determine the biogeographic regions. We also explored the extent to which current environmental variables, topography, and floristic structure of the AF are expected to identify the cluster patterns recognized by the k-means clustering. The biogeographic patterns found for amphibians are broadly congruent with ecoregions identified in the AF, but their edges, and sometimes the whole extent of some clusters, present much less resolved pattern compared to previous classification. We also identified that climate, topography, and vegetation structure of the AF explained a high percentage of variance of the cluster patterns identified, but the magnitude of the regression coefficients shifted regarding their importance in explaining the variance for each cluster. Specifically, we propose that the anuran fauna of the AF can be split into four biogeographic regions: a) less diverse and widely-ranged species that predominantly occur in the inland semideciduous forests; b) northern small-ranged species that presumably evolved within the Pleistocene forest refugia; c) highly diverse and small-ranged species from the southeastern Brazilian mountain chain and its adjacent semideciduous forest; and d) southern species from the Araucaria forest. Finally, the high congruence among the cluster patterns and previous eco-regions identified for the AF suggests that preserving the underlying habitat structure helps to preserve the historical and ecological signals that underlie the geographic distribution of AF anurans.
Miceli, G; Silveri, M C; Romani, C; Caramazza, A
1989-04-01
We describe the patterns of omissions (and substitutions) of freestanding grammatical morphemes and the patterns of substitutions of bound grammatical morphemes in 20 so-called agrammatic patients. Extreme variation was observed in the patterns of omissions and substitutions of grammatical morphemes, both in terms of the distribution of errors for different grammatical morphemes as well as in terms of the distribution of omissions versus substitutions. Results are discussed in the context of current debates concerning the possibility of a theoretically motivated distinction between the clinical categories of agrammatism and paragrammatism and, more generally, concerning the theoretical usefulness of any clinical category. The conclusion is reached that the observed heterogeneity in the production of grammatical morphemes among putatively agrammatic patients renders the clinical category of agrammatism, and by extension all other clinical categories from the classical classification scheme (e.g., Broca's aphasia, Wernicke's aphasia, and so forth) to more recent classificatory attempts (e.g., surface dyslexia, deep dysgraphia, and so forth), theoretically useless.
Wennemann, L; Hummel, H E
2003-01-01
Field studies in corn (Zea mays L.) were conducted to evaluate distribution patterns of 4-methoxy-cinnamaldehyde (MCA) coated corn grits after aerial application with a Dromader fixed wing aircraft. The kairomone mimic MCA is synthetically available and a quite specific and efficient adult attractant for the invasive alien maize pest western corn rootworm (WCR) Diabrotica virgifera virgifera LeConte. Orientation disruptive properties of MCA for WCR when applied at unphysiologically high concentrations are currently under investigation. For successful implementation of the MCA disruption technique, the distribution patterns of MCA coated corn granules ('grits') in the field are important. Grits are degrained corn cobs, shredded to different sizes, coated with MCA and used as a carrier material to disseminate MCA vapors into corn fields. Granules of 10-12 mesh size were aerially applied eight times at rates ranging from 12.4 to 25.0 kg/ha. The goal is to evaluate distribution patterns of corn grits treated with MCA in three fields located at Csanadpalota, Kardoskút and Mezöhegyes in Southern Hungary between 2000 and 2002. Increasing rates reflect our attempts in finding and optimising the most even distribution of granules in the field. Field experiments were evaluated by collecting grits in 30-cm plastic saucers and by counting grits accumulated on corn plant parts. Variation in grit number per unit area and frequency of corn granule number per plant showed some transient technical application problems. Analysis of grits collected in the saucers revealed some statistical difference between the different application dates as well as differences in rates applied. Altogether grits in saucers were more evenly distributed in comparison to the grits collected on plant parts. As the corn plants age, their leaves and whorls present a smaller and smaller surface area where granules can accumulate. Altogether, however, grit distribution patterns indicate that aerial application is a viable tool for disseminating MCA in corn fields.
NASA Astrophysics Data System (ADS)
Egawa, K.; Furukawa, T.; Saeki, T.; Suzuki, K.; Narita, H.
2011-12-01
Natural gas hydrate-related sequences commonly provide unclear seismic images due to bottom simulating reflector, a seismic indicator of the theoretical base of gas hydrate stability zone, which usually causes problems for fully analyzing the detailed sedimentary structures and seismic facies. Here we propose an alternative technique to predict the distributional pattern of gas hydrate-related deep-sea turbidites with special reference to a Pleistocene forearc minibasin in the northeastern Nankai Trough area, off central Japan, from the integrated 3D structural and sedimentologic modeling. Structural unfolding and stratigraphic backstripping successively modeled a simple horseshoe-shaped paleobathymetry of the targeted turbidite sequence. Based on best-fit matching of net-to-gross ratio (or sand fraction) between the model and wells, subsequent turbidity current modeling on the restored paleobathymetric surface during a single flow event demonstrated excellent prediction results showing the morphologically controlled turbidity current evolution and selective turbidite sand distribution within the modeled minibasin. Also, multiple turbidity current modeling indicated the stacking sheet turbidites with regression and proximal/distal onlaps in the minibasin due to reflections off an opposing slope, whose sedimentary features are coincident with the seismic interpretation. Such modeling works can help us better understand the depositional pattern of gas hydrate-related, unconsolidated turbidites and also can improve gas hydrate reservoir characterization. This study was financially supported by MH21 Research Consortium.
On optimal current patterns for electrical impedance tomography.
Demidenko, Eugene; Hartov, Alex; Soni, Nirmal; Paulsen, Keith D
2005-02-01
We develop a statistical criterion for optimal patterns in planar circular electrical impedance tomography. These patterns minimize the total variance of the estimation for the resistance or conductance matrix. It is shown that trigonometric patterns (Isaacson, 1986), originally derived from the concept of distinguishability, are a special case of our optimal statistical patterns. New optimal random patterns are introduced. Recovering the electrical properties of the measured body is greatly simplified when optimal patterns are used. The Neumann-to-Dirichlet map and the optimal patterns are derived for a homogeneous medium with an arbitrary distribution of the electrodes on the periphery. As a special case, optimal patterns are developed for a practical EIT system with a finite number of electrodes. For a general nonhomogeneous medium, with no a priori restriction, the optimal patterns for the resistance and conductance matrix are the same. However, for a homogeneous medium, the best current pattern is the worst voltage pattern and vice versa. We study the effect of the number and the width of the electrodes on the estimate of resistivity and conductivity in a homogeneous medium. We confirm experimentally that the optimal patterns produce minimum conductivity variance in a homogeneous medium. Our statistical model is able to discriminate between a homogenous agar phantom and one with a 2 mm air hole with error probability (p-value) 1/1000.
Linear beam raster magnet driver based on H-bridge technique
Sinkine, Nikolai I.; Yan, Chen; Apeldoorn, Cornelis; Dail, Jeffrey Glenn; Wojcik, Randolph Frank; Gunning, William
2006-06-06
An improved raster magnet driver for a linear particle beam is based on an H-bridge technique. Four branches of power HEXFETs form a two-by-two switch. Switching the HEXFETs in a predetermined order and at the right frequency produces a triangular current waveform. An H-bridge controller controls switching sequence and timing. The magnetic field of the coil follows the shape of the waveform and thus steers the beam using a triangular rather than a sinusoidal waveform. The system produces a raster pattern having a highly uniform raster density distribution, eliminates target heating from non-uniform raster density distributions, and produces higher levels of beam current.
Ecology and evolution of pine life histories
Keeley, Jon E.
2012-01-01
Conclusion - Understanding the current pattern of pine distribution requires interpreting their evolution in terms of climate, geology, and fire. All three of these factors have played a role since the Mesozoic origin of the genus. All are important to the appropriate management of these resources.
NASA Astrophysics Data System (ADS)
Lin, Shi-Zeng; Ayala-Valenzuela, Oscar; McDonald, Ross D.; Bulaevskii, Lev N.; Holesinger, Terry G.; Ronning, Filip; Weisse-Bernstein, Nina R.; Williamson, Todd L.; Mueller, Alexander H.; Hoffbauer, Mark A.; Rabin, Michael W.; Graf, Matthias J.
2013-05-01
The fabrication of high-quality thin superconducting films is essential for single-photon detectors. Their device performance is crucially affected by their material parameters, thus requiring reliable and nondestructive characterization methods after the fabrication and patterning processes. Important material parameters to know are the resistivity, superconducting transition temperature, relaxation time of quasiparticles, and uniformity of patterned wires. In this work, we characterize micropatterned thin NbN films by using transport measurements in magnetic fields. We show that from the instability of vortex motion at high currents in the flux-flow state of the IV characteristic, the inelastic lifetime of quasiparticles can be determined to be about 2 ns. Additionally, from the depinning transition of vortices at low currents, as a function of magnetic field, the size distribution of grains can be extracted. This size distribution is found to be in agreement with the film morphology obtained from scanning electron microscopy and high-resolution transmission electron microscopy images.
Katz, Murray; Bonk, Stanley P.; Maricle, Donald L.; Abrams, Martin
1991-01-01
A fuel cell has a current collector plate (22) located between an electrode (20) and a separate plate (25). The collector plate has a plurality of arches (26, 28) deformed from a single flat plate in a checkerboard pattern. The arches are of sufficient height (30) to provide sufficient reactant flow area. Each arch is formed with sufficient stiffness to accept compressive load and sufficient resiliently to distribute the load and maintain electrical contact.
Louis Iverson; Anantha Prasad; Anantha Prasad
2003-01-01
FIA data are extremely valuable for evaluating regional variation in forest distribution. We have processed and summarized FIA data to show four patterns across the Eastern United States: 1) the number and density of FIA forested plots by state, 2) current importance values and frequencies for several species within 20 x 20 km blocks, 3) tree diversity by block, and 4...
Louis Iverson; Anantha Prasad
2002-01-01
FIA data are extremely valuable for evaluating regional variation in forest distribution. We have processed and summarized FIA data to show four patterns across the Eastern United States: 1) the number and density of FIA forested plots by state, 2) current importance values and frequencies for several species within 20 x 20 km blocks, 3) tree diversity by block, and 4...
Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.
2013-01-01
1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario, whereas two of four species would be severely restricted in range under moderatehigh emissions. Discrepancies in the two emission scenarios probably relate to the exclusion of behavioural adaptations from species-distribution models. 6.These model predictions illustrate possible impacts of climate change on narrow-range endemic crayfish populations. The predictions do not account for biotic interactions, migration, local habitat conditions or species adaptation. However, we identified the constraining landscape features acting on these populations that provide a framework for addressing habitat needs at a fine scale and developing targeted and systematic monitoring programmes.
Distributed Patterns of Reactivation Predict Vividness of Recollection.
St-Laurent, Marie; Abdi, Hervé; Buchsbaum, Bradley R
2015-10-01
According to the principle of reactivation, memory retrieval evokes patterns of brain activity that resemble those instantiated when an event was first experienced. Intuitively, one would expect neural reactivation to contribute to recollection (i.e., the vivid impression of reliving past events), but evidence of a direct relationship between the subjective quality of recollection and multiregional reactivation of item-specific neural patterns is lacking. The current study assessed this relationship using fMRI to measure brain activity as participants viewed and mentally replayed a set of short videos. We used multivoxel pattern analysis to train a classifier to identify individual videos based on brain activity evoked during perception and tested how accurately the classifier could distinguish among videos during mental replay. Classification accuracy correlated positively with memory vividness, indicating that the specificity of multivariate brain patterns observed during memory retrieval was related to the subjective quality of a memory. In addition, we identified a set of brain regions whose univariate activity during retrieval predicted both memory vividness and the strength of the classifier's prediction irrespective of the particular video that was retrieved. Our results establish distributed patterns of neural reactivation as a valid and objective marker of the quality of recollection.
NASA Astrophysics Data System (ADS)
Imajo, S.; Yoshikawa, A.; Uozumi, T.; Ohtani, S.; Nakamizo, A.; Chi, P. J.
2017-12-01
Pi2 magnetic oscillations on the dayside are considered to be produced by the ionospheric current that is driven by Pi2-associated electric fields from the high-latitude region, but this idea has not been quantitatively tested. The present study numerically tested the magnetospheric-ionospheric current system for Pi2 consisting of field-aligned currents (FACs) localized in the nightside auroral region, the perpendicular magnetospheric current flowing in the azimuthal direction, and horizontal ionospheric currents driven by the FACs. We calculated the spatial distribution of the ground magnetic field produced by these currents using the Biot-Savart law in a stationary state. The calculated magnetic field reproduced the observational features reported by previous studies; (1) the sense of the H component does not change a wide range of local time sectors at low latitudes; (2) the amplitude of the H component on the dayside is enhanced at the equator; (3) The D component reverses its phase near the dawn and dusk terminators; (4) the meridian of the D-component phase reversal near the dusk terminator is shifted more sunward than that near the dawn terminator; (5) the amplitude of the D component in the morning is larger than that in the early evening. We also derived the global distributions of observed equivalent currents for two Pi2 events. The spatial patterns of dayside equivalent currents were similar to the spatial pattern of numerically derived equivalent currents. The results indicate that the oscillation of the magnetospheric-ionospheric current system is a plausible explanation of Pi2s on the dayside and near the terminator. These results are included in an accepted paper by Imajo et al. [2017JGR, DOI: 10.1002/2017JA024246].
On the mechanism of pattern formation in glow dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Yajun; Li, Ben; Ouyang, Jiting, E-mail: jtouyang@bit.edu.cn
2016-01-15
The formation mechanism of pattern in glow dielectric barrier discharge is investigated by two-dimensional fluid modeling. Experimental results are shown for comparison. The simulation results show that the non-uniform distribution of space charges makes the discharge be enhanced in the high-density region but weakened in its neighborhood, which is considered as an activation-inhibition effect. This effect shows through during a current pulse (one discharge event) but also in a certain period of time after discharge that determines a driving frequency range for the non-uniformity of space charges to be enhanced. The effects of applied voltage, surface charge, electrode boundary, andmore » external field are also discussed. All these factors affect the formation of dielectric-barrier-discharge pattern by changing the distribution or the dynamics of space charges and hence the activation-inhibition effect of non-uniform space charges.« less
Castillo, Andrea G; Alò, Dominique; González, Benito A; Samaniego, Horacio
2018-01-01
The main goal of this contribution was to define the ecological niche of the guanaco ( Lama guanicoe ), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species ( L.g. cacsilensis and L.g. guanicoe ). We used maximum entropy to model lineage's climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important reduction of available quality habitats. From the evolutionary perspective, we describe the limitations of this taxon as it experiences forces imposed by climate change dynamics.
Castillo, Andrea G.; González, Benito A.
2018-01-01
Background The main goal of this contribution was to define the ecological niche of the guanaco (Lama guanicoe), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species (L.g. cacsilensis and L.g. guanicoe). Methods We used maximum entropy to model lineage’s climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. Results We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Discussion Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important reduction of available quality habitats. From the evolutionary perspective, we describe the limitations of this taxon as it experiences forces imposed by climate change dynamics. PMID:29868293
Hartfield, Matthew; Wright, Stephen I.; Agrawal, Aneil F.
2016-01-01
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. PMID:26584902
Hartfield, Matthew; Wright, Stephen I; Agrawal, Aneil F
2016-01-01
Many diploid organisms undergo facultative sexual reproduction. However, little is currently known concerning the distribution of neutral genetic variation among facultative sexual organisms except in very simple cases. Understanding this distribution is important when making inferences about rates of sexual reproduction, effective population size, and demographic history. Here we extend coalescent theory in diploids with facultative sex to consider gene conversion, selfing, population subdivision, and temporal and spatial heterogeneity in rates of sex. In addition to analytical results for two-sample coalescent times, we outline a coalescent algorithm that accommodates the complexities arising from partial sex; this algorithm can be used to generate multisample coalescent distributions. A key result is that when sex is rare, gene conversion becomes a significant force in reducing diversity within individuals. This can reduce genomic signatures of infrequent sex (i.e., elevated within-individual allelic sequence divergence) or entirely reverse the predicted patterns. These models offer improved methods for assessing null patterns of molecular variation in facultative sexual organisms. Copyright © 2016 by the Genetics Society of America.
Phytoplankton pigment patterns and wind forcing off central California
NASA Technical Reports Server (NTRS)
Abbott, Mark R.; Barksdale, Brett
1991-01-01
Mesoscale variability in phytoplankton pigment distributions of central California during the spring-summer upwelling season are studied via a 4-yr time series of high-resolution coastal zone color scanner imagery. Empirical orthogonal functions are used to decompose the time series of spatial images into its dominant modes of variability. The coupling between wind forcing of the upper ocean and phytoplankton distribution on mesoscales is investigated. Wind forcing, in particular the curl of the wind stress, was found to play an important role in the distribution of phytoplankton pigment in the California Current. The spring transition varies in timing and intensity from year to year but appears to be a recurrent feature associated with the rapid onset of the upwelling-favorable winds. Although the underlying dynamics may be dominated by processes other than forcing by wind stress curl, it appears that curl may force the variability of the filaments and hence the pigment patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo, Marcelo A.; Samaan, Nader A.; Makarov, Yuri V.
Voltage and reactive power system control is generally performed following usual patterns of loads, based on off-line studies for daily and seasonal operations. This practice is currently challenged by the inclusion of distributed renewable generation, such as solar. There has been focus on resolving this problem at the distribution level; however, the transmission and sub-transmission levels have received less attention. This paper provides a literature review of proposed methods and solution approaches to coordinate and optimize voltage control and reactive power management, with an emphasis on applications at transmission and sub-transmission level. The conclusion drawn from the survey is thatmore » additional research is needed in the areas of optimizing switch shunt actions and coordinating all available resources to deal with uncertain patterns from increasing distributed renewable generation in the operational time frame. These topics are not deeply explored in the literature.« less
NASA Astrophysics Data System (ADS)
Wolf, N.; Siegmund, A.; del Río, C.; Osses, P.; García, J. L.
2016-06-01
In the coastal Atacama Desert in Northern Chile plant growth is constrained to so-called `fog oases' dominated by monospecific stands of the genus Tillandsia. Adapted to the hyperarid environmental conditions, these plants specialize on the foliar uptake of fog as main water and nutrient source. It is this characteristic that leads to distinctive macro- and micro-scale distribution patterns, reflecting complex geo-ecological gradients, mainly affected by the spatiotemporal occurrence of coastal fog respectively the South Pacific Stratocumulus clouds reaching inlands. The current work employs remote sensing, machine learning and spatial pattern/GIS analysis techniques to acquire detailed information on the presence and state of Tillandsia spp. in the Tarapacá region as a base to better understand the bioclimatic and topographic constraints determining the distribution patterns of Tillandsia spp. Spatial and spectral predictors extracted from WorldView-3 satellite data are used to map present Tillandsia vegetation in the Tarapaca region. Regression models on Vegetation Cover Fraction (VCF) are generated combining satellite-based as well as topographic variables and using aggregated high spatial resolution information on vegetation cover derived from UAV flight campaigns as a reference. The results are a first step towards mapping and modelling the topographic as well as bioclimatic factors explaining the spatial distribution patterns of Tillandsia fog oases in the Atacama, Chile.
Current insights into phage biodiversity and biogeography.
Thurber, Rebecca Vega
2009-10-01
Phages exert tremendous ecological and evolutionary forces directly on their bacterial hosts. Phage induced cell lysis also indirectly contributes to organic and inorganic nutrient recycling. Phage abundance, diversity, and distribution are therefore important parameters in ecosystem function. The assumption that phage consortia are ubiquitous and homogenous across habitats (everything is everywhere) is currently being re-evaluated. New studies on phage biogeography have found that some phages are globally distributed while others are unique and perhaps endemic to specific environments. Furthermore, advances in technology have allowed scientists to conduct experiments aimed at analyzing phage consortia over temporal scales, and surprisingly have found reoccurring patterns. This review discusses currents in the field of phage ecology with particular focus on efforts to characterize phage diversity and biogeography across various spatial and temporal scales.
Measurement of Strain Distributions in Mouse Femora with 3D-Digital Speckle Pattern Interferometry
Yang, Lianxiang; Zhang, Ping; Liu, Sheng; Samala, Praveen R; Su, Min; Yokota, Hiroki
2007-01-01
Bone is a mechanosensitive tissue that adapts its mass, architecture and mechanical properties to external loading. Appropriate mechanical loads offer an effective means to stimulate bone remodeling and prevent bone loss. A role of in situ strain in bone is considered essential in enhancement of bone formation, and establishing a quantitative relationship between 3D strain distributions and a rate of local bone formation is important. Digital speckle pattern interferometry (DSPI) can achieve whole-field, non-contacting measurements of microscopic deformation for high-resolution determination of 3D strain distributions. However, the current system does not allow us to derive accurate strain distributions because of complex surface contours inherent to biological samples. Through development of a custom-made piezoelectric loading device as well as a new DSPI-based force calibration system, we built an advanced DSPI system and integrated local contour information to deformation data. Using a mouse femur in response to a knee loading modality as a model system, we determined 3D strain distributions and discussed effectiveness and limitations of the described system. PMID:18670581
Guidino, Chiara; Llapapasca, Miguel A; Silva, Sebastian; Alcorta, Belen; Pacheco, Aldo S
2014-01-01
Understanding the patterns of spatial and temporal distribution in threshold habitats of highly migratory and endangered species is important for understanding their habitat requirements and recovery trends. Herein, we present new data about the distribution of humpback whales (Megaptera novaeangliae) in neritic waters off the northern coast of Peru: an area that constitutes a transitional path from cold, upwelling waters to warm equatorial waters where the breeding habitat is located. Data was collected during four consecutive austral winter/spring seasons from 2010 to 2013, using whale-watching boats as platforms for research. A total of 1048 whales distributed between 487 groups were sighted. The spatial distribution of humpbacks resembled the characteristic segregation of whale groups according to their size/age class and social context in breeding habitats; mother and calf pairs were present in very shallow waters close to the coast, while dyads, trios or more whales were widely distributed from shallow to moderate depths over the continental shelf break. Sea surface temperatures (range: 18.2-25.9°C) in coastal waters were slightly colder than those closer to the oceanic realm, likely due to the influence of cold upwelled waters from the Humboldt Current system. Our results provide new evidence of the southward extension of the breeding region of humpback whales in the Southeast Pacific. Integrating this information with the knowledge from the rest of the breeding region and foraging grounds would enhance our current understanding of population dynamics and recovery trends of this species.
Guidino, Chiara; Llapapasca, Miguel A.; Silva, Sebastian; Alcorta, Belen; Pacheco, Aldo S.
2014-01-01
Understanding the patterns of spatial and temporal distribution in threshold habitats of highly migratory and endangered species is important for understanding their habitat requirements and recovery trends. Herein, we present new data about the distribution of humpback whales (Megaptera novaeangliae) in neritic waters off the northern coast of Peru: an area that constitutes a transitional path from cold, upwelling waters to warm equatorial waters where the breeding habitat is located. Data was collected during four consecutive austral winter/spring seasons from 2010 to 2013, using whale-watching boats as platforms for research. A total of 1048 whales distributed between 487 groups were sighted. The spatial distribution of humpbacks resembled the characteristic segregation of whale groups according to their size/age class and social context in breeding habitats; mother and calf pairs were present in very shallow waters close to the coast, while dyads, trios or more whales were widely distributed from shallow to moderate depths over the continental shelf break. Sea surface temperatures (range: 18.2–25.9°C) in coastal waters were slightly colder than those closer to the oceanic realm, likely due to the influence of cold upwelled waters from the Humboldt Current system. Our results provide new evidence of the southward extension of the breeding region of humpback whales in the Southeast Pacific. Integrating this information with the knowledge from the rest of the breeding region and foraging grounds would enhance our current understanding of population dynamics and recovery trends of this species. PMID:25391137
An automated model-based aim point distribution system for solar towers
NASA Astrophysics Data System (ADS)
Schwarzbözl, Peter; Rong, Amadeus; Macke, Ansgar; Säck, Jan-Peter; Ulmer, Steffen
2016-05-01
Distribution of heliostat aim points is a major task during central receiver operation, as the flux distribution produced by the heliostats varies continuously with time. Known methods for aim point distribution are mostly based on simple aim point patterns and focus on control strategies to meet local temperature and flux limits of the receiver. Lowering the peak flux on the receiver to avoid hot spots and maximizing thermal output are obviously competing targets that call for a comprehensive optimization process. This paper presents a model-based method for online aim point optimization that includes the current heliostat field mirror quality derived through an automated deflectometric measurement process.
NASA Technical Reports Server (NTRS)
Pirie, D. M.; Steller, D. D. (Principal Investigator)
1973-01-01
The author has identified the following significant results. Large scale sediment plumes from intermittent streams and rivers form detectable seasonal patterns on ERTS-1 imagery. The ocean current systems, as plotted from three California coast ERTS mosaics, were identified. Offshore patterns of sediment in areas such as the Santa Barbara Channel are traceable. These patterns extend offshore to heretofore unanticipated ranges as shown on the ERTS-1 imagery. Flying spot scanner enhancements of NASA tapes resulted in details of subtle and often invisible (to the eye) nearshore features. The suspended sediments off San Francisco and in Monterey Bay are emphasized in detail. These are areas of extremely changeable offshore sediment transport patterns. Computer generated contouring of radiance levels resulted in maps that can be used in determining surface and nearsurface suspended sediment distribution. Tentative calibrations of ERTS-1 spectral brightness against sediment load have been made using shipboard measurements. Information from the combined enhancement and interpretation techniques is applicable to operational coastal engineering programs.
NASA Astrophysics Data System (ADS)
Jensen, Kaare H.; Beecher, Sierra; Holbrook, N. Michele; Knoblauch, Michael
2014-11-01
Many biological systems use complex networks of vascular conduits to distribute energy over great distances. Examples include sugar transport in the phloem tissue of vascular plants and cytoplasmic streaming in some slime molds. Detailed knowledge of transport patterns in these systems is important for our fundamental understanding of energy distribution during development and for engineering of more efficient crops. Current techniques for quantifying transport in these microfluidic systems, however, only allow for the determination of either the flow speed or the concentration of material. Here we demonstrate a new method, based on confocal microscopy, which allows us to simultaneously determine velocity and solute concentration by tracking the dispersion of a tracer dye. We attempt to rationalize the observed transport patterns through consideration of constrained optimization problems.
Late Quaternary climate stability and the origins and future of global grass endemism.
Sandel, Brody; Monnet, Anne-Christine; Govaerts, Rafaël; Vorontsova, Maria
2017-01-01
Earth's climate is dynamic, with strong glacial-interglacial cycles through the Late Quaternary. These climate changes have had major consequences for the distributions of species through time, and may have produced historical legacies in modern ecological patterns. Unstable regions are expected to contain few endemic species, many species with strong dispersal abilities, and to be susceptible to the establishment of exotic species from relatively stable regions. We test these hypotheses with a global dataset of grass species distributions. We described global patterns of endemism, variation in the potential for rapid population spread, and exotic establishment in grasses. We then examined relationships of these response variables to a suite of predictor variables describing the mean, seasonality and spatial pattern of current climate and the temperature change velocity from the Last Glacial Maximum to the present. Grass endemism is strongly concentrated in regions with historically stable climates. It also depends on the spatial pattern of current climate, with many endemic species in areas with regionally unusual climates. There was no association between the proportion of annual species (representing potential population spread rates) and climate change velocity. Rather, the proportion of annual species depended very strongly on current temperature. Among relatively stable regions (<10 m year -1 ), increasing velocity decreased the proportion of species that were exotic, but this pattern reversed for higher-velocity regions (>10 m year -1 ). Exotic species were most likely to originate from relatively stable regions with climates similar to those found in their exotic range. Long-term climate stability has important influences on global endemism patterns, largely confirming previous work from other groups. Less well recognized is its role in generating patterns of exotic species establishment. This result provides an important historical context for the conjecture that climate change in the near future may promote species invasions. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Li, Jingrui; Liu, Shengfa; Shi, Xuefa; Feng, Xiuli; Fang, Xisheng; Cao, Peng; Sun, Xingquan; Wenxing, Ye; Khokiattiwong, Somkiat; Kornkanitnan, Narumol
2017-08-01
The clay mineral contents in 110 surface sediment samples collected from the middle of the Bay of Bengal were analyzed by X-ray diffraction (XRD) to investigate the provenance and transport patterns. The illite content was highest, followed by chlorite, kaolinite and then smectite, with average weight percent distributions of 52%, 22%, 14% and 12%, respectively. Illite and chlorite had similar distribution pattern, with higher contents in the northern and central areas and lower contents in the southern area, whereas smectite showed the opposite distribution pattern. Kaolinite show no obvious higher or lower areas and the southern ;belt; was one of the highest content areas. Based on the spatial distribution characteristics and cluster analysis results, the study area can be classified into two provinces. Province I covers the southwestern area and contains high concentrations of illite and smectite sediments. Province II covers most sites and is also characterized by high concentrations of illite, but the weight percent of smectite is only half of that of province I. According to a quantitative estimate using end-member clay minerals contents, the relative contributions from the Himalayan source and the Indian source are 63% and 37% on average, respectively. Integrative analysis indicates that the hydrodynamic environment in the study area, especially the turbidity and surface monsoonal circulation, plays an important role in the spatial distribution and dispersal of the clay fraction in the sediments. The sediments in province I are mainly from the Indian source transported by the East Indian Coastal Current (EICC) and the surface monsoon circulation with minor contributions from the Himalayan source while the sediments in province II are mainly from the Himalayan source transported by turbidity and surface monsoonal circulation with little contribution from Indian river materials.
Tsiagkas, Giannis; Nikolaou, Christoforos; Almirantis, Yannis
2014-12-01
CpG Islands (CGIs) are compositionally defined short genomic stretches, which have been studied in the human, mouse, chicken and later in several other genomes. Initially, they were assigned the role of transcriptional regulation of protein-coding genes, especially the house-keeping ones, while more recently there is found evidence that they are involved in several other functions as well, which might include regulation of the expression of RNA genes, DNA replication etc. Here, an investigation of their distributional characteristics in a variety of genomes is undertaken for both whole CGI populations as well as for CGI subsets that lie away from known genes (gene-unrelated or "orphan" CGIs). In both cases power-law-like linearity in double logarithmic scale is found. An evolutionary model, initially put forward for the explanation of a similar pattern found in gene populations is implemented. It includes segmental duplication events and eliminations of most of the duplicated CGIs, while a moderate rate of non-duplicated CGI eliminations is also applied in some cases. Simulations reproduce all the main features of the observed inter-CGI chromosomal size distributions. Our results on power-law-like linearity found in orphan CGI populations suggest that the observed distributional pattern is independent of the analogous pattern that protein coding segments were reported to follow. The power-law-like patterns in the genomic distributions of CGIs described herein are found to be compatible with several other features of the composition, abundance or functional role of CGIs reported in the current literature across several genomes, on the basis of the proposed evolutionary model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Timi, Juan T
2007-06-01
The use of parasites as biological tags in population studies of marine fish in the south-western Atlantic has proved to be a successful tool for discriminating stocks for all species to which it has been applied, namely: Scomber japonicus, Engraulis anchoita, Merluccius hubbsi and Cynoscion guatucupa, the latter studied on a broader geographic scale, including samples from Uruguayan and Brazilian waters. The distribution patterns of marine parasites are determined mainly by temperature-salinity profiles and by their association with specific masses of water. Analyses of distribution patterns of some parasite species in relation to gradients in environmental (oceanographic) conditions showed that latitudinal gradients in parasite distribution are common in the study area, and are probably directly related to water temperature. Indeed, temperature, which is a good predictor of latitudinal gradients of richness and diversity of species, shows a latitudinal pattern in south-western Atlantic coasts, decreasing southwards, due to the influence of subtropical and subantarctic marine currents flowing along the edge of the continental slope. This pattern also determines the distribution of zooplankton, with a characteristic specific composition in different water masses. The gradient in the distribution of parasites determines differential compositions of their communities at different latitudes, which makes possible the identification of different stocks of their fish hosts. Other features of the host-parasite systems contributing to the success of the parasitological method are: (1) parasites identified as good biological tags (i.e. anisakids) are widely distributed in the local fauna; (2) many of these species show low specificity and use paratenic hosts; and (3) the structure of parasite communities are, to a certain degree, predictable in time and space.
Kono, Yoshiko; Chung, Kuo-Fang; Chen, Chih-Hui; Hoshi, Yoshikazu; Setoguchi, Hiroaki; Chou, Chang-Hung; Oginuma, Kazuo; Peng, Ching-I
2012-01-01
Background and Aims Investigating intraspecific karyotypic and genetic variations jointly can provide unique insights into how historical, ecological and cytogenetic factors influence microevolution. A coastal herb, Lysimachia mauritiana, exhibits extensive karyotypic polymorphism and displays a complex cytogeographic pattern across the Ryukyus. To explore whether a similar degree of chromosomal variation exists south of the Ryukyus, and in an attempt to ascertain the mechanisms that may have generated the patterns, comprehensive sampling was conducted in Taiwan. Methods Karyotypes were analysed at mitotic metaphase for 550 individuals from 42 populations throughout Taiwan Proper and its adjacent islands. In addition, genetic variation was estimated using 12 allozymes (21 loci) of 314 individuals sampled from 12 localities. Key Results Four chromosome numbers and eight cytotypes, including four endemic cytotypes, were detected. Cytotype distributions were highly structured geographically, with single cytotypes present in most populations and four major cytotypes dominating the north, east and south of Taiwan and the Penghu Archipelago. Allozyme variation was very low and F-statistics indicated an extremely high level of population differentiation, implying limited gene flow among populations. Cluster analysis of allozyme variation uncovered four geographic groups, each corresponding perfectly to the four dominant cytotypes. The geographic structure of cytotype distribution and allozyme variation probably resulted from severe genetic drift triggered by genetic bottlenecks, suggesting that Taiwanese populations were likely to be derived from four independent founder events. In the few localities with multiple cytotypes, cytogeographic patterns and inferences of chromosomal evolution revealed a trend of northward dispersal, consistent with the course of the Kuroshio Current that has been influential in shaping the coastal biota of the region. Conclusions The data elucidate the patterns of colonization and the effects of the Kuroshio Current on the distribution of L. mauritiana in Taiwan. These inferences are highly relevant to other coastal plant species in the region and will stimulate further studies. PMID:23022678
Mori, Gustavo M; Zucchi, Maria I; Sampaio, Iracilda; Souza, Anete P
2015-04-10
Mangrove plants grow in the intertidal zone in tropical and subtropical regions worldwide. The global latitudinal distribution of the mangrove is mainly influenced by climatic and oceanographic features. Because of current climate changes, poleward range expansions have been reported for the major biogeographic regions of mangrove forests in the Western and Eastern Hemispheres. There is evidence that mangrove forests also responded similarly after the last glaciation by expanding their ranges. In this context, the use of genetic tools is an informative approach for understanding how historical processes and factors impact the distribution of mangrove species. We investigated the phylogeographic patterns of two Avicennia species, A. germinans and A. schaueriana, from the Western Hemisphere using nuclear and chloroplast DNA markers. Our results indicate that, although Avicennia bicolor, A. germinans and A. schaueriana are independent lineages, hybridization between A. schaueriana and A. germinans is a relevant evolutionary process. Our findings also reinforce the role of long-distance dispersal in widespread mangrove species such as A. germinans, for which we observed signs of transatlantic dispersal, a process that has, most likely, contributed to the breadth of the distribution of A. germinans. However, along the southern coast of South America, A. schaueriana is the only representative of the genus. The distribution patterns of A. germinans and A. schaueriana are explained by their different responses to past climate changes and by the unequal historical effectiveness of relative gene flow by propagules and pollen. We observed that A. bicolor, A. germinans and A. schaueriana are three evolutionary lineages that present historical and ongoing hybridization on the American continent. We also inferred a new evidence of transatlantic dispersal for A. germinans, which may have contributed to its widespread distribution. Despite the generally wider distribution of A. germinans, only A. schaueriana is found in southern South America, which may be explained by the different demographic histories of these two species and the larger proportion of gene flow produced by propagules rather than pollen in A. schaueriana. These results highlight that these species responded in different ways to past events, indicating that such differences may also occur in the currently changing world.
The Career Development Process for Women: Current Views and Programs
ERIC Educational Resources Information Center
Hansen, L. Sunny
1975-01-01
The article discusses (1) female career patterns, (2) female self-concepts and aspirations, and (3) women in the work force. Also discussed are occupational distribution and obstacles to the career development of women. Presented at the Annual Conference on Career Development and Vocational Education, Blacksburg, Virginia, March, 1974. (BW)
Red spruce/hardwood ecotones in the central Appalachians
Harold S. Adams; Steven L. Stephenson; David M. Lawrence; Mary Beth Adams; John D. Eisenback
1995-01-01
We are currently investigating patterns of species composition and distribution, ecologically important population processes, and microenvironmental gradients along ten permanent transects (each consisting of a series of. contiguous 10 x 10 m quadrats) established across the typically abrupt and narrow spruce/hardwood ecotone at seven localities in the mountains of...
Redefining & Leading the Academic Discipline in Australian Universities
ERIC Educational Resources Information Center
Harkin, Damien G.; Healy, Annah H.
2013-01-01
Disciplines have emerged as an alternative administrative structure to departments or schools in Australian universities. We presently investigate the pattern of discipline use and by way of case study examine a role for distributed leadership in discipline management. Over forty per cent of Australian universities currently employ disciplines,…
Background of Civil Defense and Current Damage Limiting Studies.
ERIC Educational Resources Information Center
Romm, Joseph
A brief history of civil defense administration precedes analysis of nuclear attack conditions and the influence of protective measures. Damage limitation procedure is explained in terms of--(1) blast effects, (2) radiation doses, (3) geographical fallout distribution patterns, and (4) national shelter needs. Major concept emphasis relates to--(1)…
Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk
2016-01-01
Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.
Tarvainen, O; Toivanen, V; Komppula, J; Kalvas, T; Koivisto, H
2014-02-01
The temporal stability of oxygen ion beams has been studied with the 14 GHz A-ECR at JYFL (University of Jyvaskyla, Department of Physics). A sector Faraday cup was employed to measure the distribution of the beam current oscillations across the beam profile. The spatial and temporal characteristics of two different oscillation "modes" often observed with the JYFL 14 GHz ECRIS are discussed. It was observed that the low frequency oscillations below 200 Hz are distributed almost uniformly. In the high frequency oscillation "mode," with frequencies >300 Hz at the core of the beam, carrying most of the current, oscillates with smaller amplitude than the peripheral parts of the beam. The results help to explain differences observed between the two oscillation modes in terms of the transport efficiency through the JYFL K-130 cyclotron. The dependence of the oscillation pattern on ion source parameters is a strong indication that the mechanisms driving the fluctuations are plasma effects.
Impacts of changing ocean circulation on the distribution of marine microplastic litter.
Welden, Natalie Ac; Lusher, Amy L
2017-05-01
Marine plastic pollution is currently a major scientific focus, with attention paid to its distribution and impacts within ecosystems. With recent estimates indicating that the mass of plastic released to the marine environment may reach 250 million metric tons by 2025, the effects of plastic on our oceans are set to increase. Distribution of microplastics, those plastics measuring less than 5 mm, are of increasing concern because they represent an increasing proportion of marine litter and are known to interact with species in a range of marine habitats. The local abundance of microplastic is dependent on a complex interaction between the scale of local plastic sources and prevailing environmental conditions; as a result, microplastic distribution is highly heterogeneous. Circulation models have been used to predict plastic distribution; however, current models do not consider future variation in circulation patterns and weather systems caused by a changing climate. In this study, we discuss the potential impacts of global climate change on the abundance and distribution of marine plastic pollution. Integr Environ Assess Manag 2017;13:483-487. © 2017 SETAC. © 2017 SETAC.
Cerón-Souza, Ivania; Gonzalez, Elena G; Schwarzbach, Andrea E; Salas-Leiva, Dayana E; Rivera-Ocasio, Elsie; Toro-Perea, Nelson; Bermingham, Eldredge; McMillan, W Owen
2015-08-01
Comparative phylogeography offers a unique opportunity to understand the interplay between past environmental events and life-history traits on diversification of unrelated but co-distributed species. Here, we examined the effects of the quaternary climate fluctuations and palaeomarine currents and present-day marine currents on the extant patterns of genetic diversity in the two most conspicuous mangrove species of the Neotropics. The black (Avicennia germinans, Avicenniaceae) and the red (Rhizophora mangle, Rhizophoraceae) mangroves have similar geographic ranges but are very distantly related and show striking differences on their life-history traits. We sampled 18 Atlantic and 26 Pacific locations for A. germinans (N = 292) and R. mangle (N = 422). We performed coalescence simulations using microsatellite diversity to test for evidence of population change associated with quaternary climate fluctuations. In addition, we examined whether patterns of genetic variation were consistent with the directions of major marine (historical and present day) currents in the region. Our demographic analysis was grounded within a phylogeographic framework provided by the sequence analysis of two chloroplasts and one flanking microsatellite region in a subsample of individuals. The two mangrove species shared similar biogeographic histories including: (1) strong genetic breaks between Atlantic and Pacific ocean basins associated with the final closure of the Central American Isthmus (CAI), (2) evidence for simultaneous population declines between the mid-Pleistocene and early Holocene, (3) asymmetric historical migration with higher gene flow from the Atlantic to the Pacific oceans following the direction of the palaeomarine current, and (4) contemporary gene flow between West Africa and South America following the major Atlantic Ocean currents. Despite the remarkable differences in life-history traits of mangrove species, which should have had a strong influence on seed dispersal capability and, thus, population connectivity, we found that vicariant events, climate fluctuations and marine currents have shaped the distribution of genetic diversity in strikingly similar ways.
Cerón-Souza, Ivania; Gonzalez, Elena G; Schwarzbach, Andrea E; Salas-Leiva, Dayana E; Rivera-Ocasio, Elsie; Toro-Perea, Nelson; Bermingham, Eldredge; McMillan, W Owen
2015-01-01
Comparative phylogeography offers a unique opportunity to understand the interplay between past environmental events and life-history traits on diversification of unrelated but co-distributed species. Here, we examined the effects of the quaternary climate fluctuations and palaeomarine currents and present-day marine currents on the extant patterns of genetic diversity in the two most conspicuous mangrove species of the Neotropics. The black (Avicennia germinans, Avicenniaceae) and the red (Rhizophora mangle, Rhizophoraceae) mangroves have similar geographic ranges but are very distantly related and show striking differences on their life-history traits. We sampled 18 Atlantic and 26 Pacific locations for A. germinans (N = 292) and R. mangle (N = 422). We performed coalescence simulations using microsatellite diversity to test for evidence of population change associated with quaternary climate fluctuations. In addition, we examined whether patterns of genetic variation were consistent with the directions of major marine (historical and present day) currents in the region. Our demographic analysis was grounded within a phylogeographic framework provided by the sequence analysis of two chloroplasts and one flanking microsatellite region in a subsample of individuals. The two mangrove species shared similar biogeographic histories including: (1) strong genetic breaks between Atlantic and Pacific ocean basins associated with the final closure of the Central American Isthmus (CAI), (2) evidence for simultaneous population declines between the mid-Pleistocene and early Holocene, (3) asymmetric historical migration with higher gene flow from the Atlantic to the Pacific oceans following the direction of the palaeomarine current, and (4) contemporary gene flow between West Africa and South America following the major Atlantic Ocean currents. Despite the remarkable differences in life-history traits of mangrove species, which should have had a strong influence on seed dispersal capability and, thus, population connectivity, we found that vicariant events, climate fluctuations and marine currents have shaped the distribution of genetic diversity in strikingly similar ways. PMID:26380680
Equilibrium of Global Amphibian Species Distributions with Climate
Munguía, Mariana; Rahbek, Carsten; Rangel, Thiago F.; Diniz-Filho, Jose Alexandre F.; Araújo, Miguel B.
2012-01-01
A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a complete lineage across its entire distribution. We measure departures of equilibrium with contemporary climate for the distributions of the world amphibian species. Specifically, we fitted bioclimatic envelopes for 5544 species using three presence-only models. We then measured the proportion of the modeled envelope that is currently occupied by the species, as a metric of equilibrium of species distributions with climate. The assumption was that the greater the difference between modeled bioclimatic envelope and the occupied distribution, the greater the likelihood that species distribution would not be at equilibrium with contemporary climate. On average, amphibians occupied 30% to 57% of their potential distributions. Although patterns differed across regions, there were no significant differences among lineages. Species in the Neotropic, Afrotropics, Indo-Malay, and Palaearctic occupied a smaller proportion of their potential distributions than species in the Nearctic, Madagascar, and Australasia. We acknowledge that our models underestimate non equilibrium, and discuss potential reasons for the observed patterns. From a modeling perspective our results support the view that at global scale bioclimatic envelope models might perform similarly across lineages but differently across regions. PMID:22511938
NASA Astrophysics Data System (ADS)
Yamashita, Cintia; Mello e Sousa, Silvia Helena de; Vicente, Thaisa Marques; Martins, Maria Virgínia; Nagai, Renata Hanae; Frontalini, Fabrizio; Godoi, Sueli Susana; Napolitano, Dante; Burone, Letícia; Carreira, Renato; Figueira, Rubens Cesar Lopes; Taniguchi, Nancy Kazumi; Rezende, Carlos Eduardo de; Koutsoukos, Eduardo Apostolos Machado
2018-05-01
Living (stained) benthic foraminifera from deep-sea stations in the Campos Basin, southeastern Brazilian continental margin, were investigated to understand their distribution patterns and ecology, as well as the oceanographic processes that control foraminiferal distribution. Sediments were collected from 1050 m to 1950 m of water depth during the austral winter of 2003, below the Intermediate Western Boundary Current (IWBC) and the Deep Water Boundary Current (DWBC). Based on statistical analysis, vertical flux of particulate organic matter and the grain size of sediment seem to be the main factors controlling the spatial distribution of benthic foraminifera. The middle slope (1050 m deep) is characterized by relatively high foraminiferal density and a predominance of phytodetritus-feeding foraminifera such as Epistominella exigua and Globocassidulina subglobosa. The occurrence of these species seems to reflect the Brazil Current System (BCS). The above-mentioned currents are associated with the relatively high vertical flux of particulate organic matter and the prevalence of sandy sediments, respectively. The lower slope (between 1350 and 1950 m of water depth) is marked by low foraminiferal density and assemblages composed of Bolivina spp. and Brizalina spp., with low particulate organic matter flux values, muddy sediments, and more refractory organic matter. The distribution of this group seems to be related to episodic fluxes of food particles to the seafloor, which are influenced by the BCS at the surface and are deposited under low deep current activity (DWBC).
Tunable Nanowire Patterning Using Standing Surface Acoustic Waves
Chen, Yuchao; Ding, Xiaoyun; Lin, Sz-Chin Steven; Yang, Shikuan; Huang, Po-Hsun; Nama, Nitesh; Zhao, Yanhui; Nawaz, Ahmad Ahsan; Guo, Feng; Wang, Wei; Gu, Yeyi; Mallouk, Thomas E.; Huang, Tony Jun
2014-01-01
Patterning of nanowires in a controllable, tunable manner is important for the fabrication of functional nanodevices. Here we present a simple approach for tunable nanowire patterning using standing surface acoustic waves (SSAW). This technique allows for the construction of large-scale nanowire arrays with well-controlled patterning geometry and spacing within 5 seconds. In this approach, SSAWs were generated by interdigital transducers (IDTs), which induced a periodic alternating current (AC) electric field on the piezoelectric substrate and consequently patterned metallic nanowires in suspension. The patterns could be deposited onto the substrate after the liquid evaporated. By controlling the distribution of the SSAW field, metallic nanowires were assembled into different patterns including parallel and perpendicular arrays. The spacing of the nanowire arrays could be tuned by controlling the frequency of the surface acoustic waves. Additionally, we observed 3D spark-shape nanowire patterns in the SSAW field. The SSAW-based nanowire-patterning technique presented here possesses several advantages over alternative patterning approaches, including high versatility, tunability, and efficiency, making it promising for device applications. PMID:23540330
NASA Technical Reports Server (NTRS)
Clauer, C. R.; Banks, P. M.
1986-01-01
The electrical coupling between the solar wind, magnetosphere, and ionosphere is studied. The coupling is analyzed using observations of high-latitude ion convection measured by the Sondre Stromfjord radar in Greenland and a computer simulation. The computer simulation calculates the ionospheric electric potential distribution for a given configuration of field-aligned currents and conductivity distribution. The technique for measuring F-region in velocities at high time resolution over a large range of latitudes is described. Variations in the currents on ionospheric plasma convection are examined using a model of field-aligned currents linking the solar wind with the dayside, high-latitude ionosphere. The data reveal that high-latitude ionospheric convection patterns, electric fields, and field-aligned currents are dependent on IMF orientation; it is observed that the electric field, which drives the F-region plasma curve, responds within about 14 minutes to IMF variations in the magnetopause. Comparisons of the simulated plasma convection with the ion velocity measurements reveal good correlation between the data.
Eight channel transmit array volume coil using on-coil radiofrequency current sources
Kurpad, Krishna N.; Boskamp, Eddy B.
2014-01-01
Background At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. Methods An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. Results B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. Conclusions Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner. PMID:24834418
Murta-Fonseca, Roberta A; Franco, Francisco L; Fernandes, Daniel Silva
2016-08-26
Hydrodynastes bicinctus was described with no type material or locality and it has two subspecies currently recognized that are not taxonomically well defined. We tested the validity of the two subspecies through meristic, morphometric, and color pattern characters. Two apparently distinct color patterns of H. bicinctus were noticed, one from the Cerrado open formations and the other from the Amazon rainforest. These aforementioned patterns, however, exhibited a high degree of geographic overlap and many specimens showed a blended pattern. Based on these results we propose synonymizing H. bicinctus schultzi with the nominal taxon. Furthermore, we designate a neotype for the species, present data on geographic distribution, and provide morphological descriptions of the hemipenis, cephalic glands, and skull.
Copilaș-Ciocianu, Denis; Grabowski, Michał; Pârvulescu, Lucian; Petrusek, Adam
2014-12-08
Inland epigean freshwater amphipods of Romania are diverse and abundant for this region has a favourable geographical position between the Balkans and the Black Sea. Excluding Ponto-Caspian species originating in brackish waters and freshwater subterranean taxa, there are 11 formally recognized epigean freshwater species recorded from this country. They belong to 3 genera, each representing a different family: Gammarus (Gammaridae, 8 species or species complexes), Niphargus (Niphargidae, 2 epigean species) and Synurella (Crangonyctidae, one species). Their large-scale distribution patterns nevertheless remain obscure due to insufficient data, consequently limiting biogeographical interpretations. We provide extensive new data with high resolution distribution maps, thus improving the knowledge of the ranges of these taxa. Gammarus species display substantial altitudinal variability and patchy, fragmented distribution patterns. They occur abundantly, particularly in springs and streams, from lowlands to sub-mountainous and mountainous regions. In the light of recent molecular research, we hypothesize that the complex geomorphological dynamics of the Carpathian region during the Late Tertiary probably contributed to their allopatric distribution pattern. Contrasting with Gammarus, the genera Niphargus and Synurella exhibit low altitudinal variability, broad ecological valences and overlapping distributions, being widespread throughout the lowlands. The current distribution of N. hrabei and N. valachicus seems to be linked to the extent of the Paratethys during the Early Pliocene or Pleistocene. We further discuss the taxonomic validity of two synonymized and one apparently undescribed taxon, and provide an updated pictorial identification key that includes all taxa and forms discussed in our study. The mosaic distribution of epigean freshwater amphipod species in Romania shows that this region is particularly suitable for phylo- and biogeographical analyses of this group.
Dental and phylogeographic patterns of variation in gorillas.
Pilbrow, Varsha
2010-07-01
Gorilla patterns of variation have great relevance for studies of human evolution. In this study, molar morphometrics were used to evaluate patterns of geographic variation in gorillas. Dental specimens of 323 adult individuals, drawn from the current distribution of gorillas in equatorial Africa were divided into 14 populations. Discriminant analyses and Mahalanobis distances were used to study population structure. Results reveal that: 1) the West and East African gorillas form distinct clusters, 2) the Cross River gorillas are well separated from the rest of the western populations, 3) gorillas from the Virunga mountains and the Bwindi Forest can be differentiated from the lowland gorillas of Utu and Mwenga-Fizi, 4) the Tshiaberimu gorillas are distinct from other eastern gorillas, and the Kahuzi-Biega gorillas are affiliated with them. These findings provide support for a species distinction between Gorilla gorilla and Gorilla beringei, with subspecies G. g. diehli, G. g. gorilla, G. b. graueri, G. b. beringei, and possibly, G. b. rex-pygmaeorum. Clear correspondence between dental and other patterns of taxonomic diversity demonstrates that dental data reveal underlying genetic patterns of differentiation. Dental distances increased predictably with altitude but not with geographic distances, indicating that altitudinal segregation explains gorilla patterns of population divergence better than isolation-by-distance. The phylogeographic pattern of gorilla dental metric variation supports the idea that Plio-Pleistocene climatic fluctuations and local mountain building activity in Africa affected gorilla phylogeography. I propose that West Africa comprised the historic center of gorilla distribution and experienced drift-gene flow equilibrium, whereas Nigeria and East Africa were at the periphery, where climatic instability and altitudinal variation promoted drift and genetic differentiation. This understanding of gorilla population structure has implications for gorilla conservation, and for understanding the distribution of sympatric chimpanzees and Plio-Pleistocene hominins.
NASA Astrophysics Data System (ADS)
Sandrini-Neto, L.; Lana, P. C.
2012-06-01
Heterogeneity in the distribution of organisms occurs at a range of spatial scales, which may vary from few centimeters to hundreds of kilometers. The exclusion of small-scale variability from routine sampling designs may confound comparisons at larger scales and lead to inconsistent interpretation of data. Despite its ecological and social-economic importance, little is known about the spatial structure of the mangrove crab Ucides cordatus in the southwest Atlantic. Previous studies have commonly compared densities at relatively broad scales, relying on alleged distribution patterns (e.g., mangroves of distinct composition and structure). We have assessed variability patterns of U. cordatus in mangroves of Paranaguá Bay at four levels of spatial hierarchy (10 s km, km, 10 s m and m) using a nested ANOVA and variance components measures. The potential role of sediment parameters, pneumatophore density, and organic matter content in regulating observed patterns was assessed by multiple regression models. Densities of total and non-commercial size crabs varied mostly at 10 s m to km scales. Densities of commercial size crabs differed at the scales of 10 s m and 10 s km. Variance components indicated that small-scale variation was the most important, contributing up to 70% of the crab density variability. Multiple regression models could not explain the observed variations. Processes driving differences in crab abundance were not related to the measured variables. Small-scale patchy distribution has direct implications to current management practices of U. cordatus. Future studies should consider processes operating at smaller scales, which are responsible for a complex mosaic of patches within previously described patterns.
Counter-current chromatography: simple process and confusing terminology.
Conway, Walter D
2011-09-09
The origin of counter-current chromatography is briefly stated, followed by a description of the mechanism of elution of solutes, which illustrates the elegance and simplicity of the technique. The CCC retention equation can be mentally derived from three facts; that a substance with a distribution coefficient of 0 elutes at the mobile phase solvent front (one mobile phase volume); and one with a distribution coefficient of 1 elutes at the column volume of mobile phase; and solutes with higher distribution coefficients elute at additional multiples of the stationary phase volume. The pattern corresponds to the classical solute retention equation for chromatography, V(R)=V(M)+K(C)V(S), K(C) not being limited to integer values. This allows the entire pattern of solute retention to be visualized on the chromatogram. The high volume fraction of stationary phase in CCC greatly enhances resolution. A survey of the names, symbols and definitions of several widely used chromatography and liquid-liquid distribution parameters in the IUPAC Gold Book and in a recent summary in LC-GC by Majors and Carr revealed numerous conflicts in both names and definitions. These will retard accurate dissemination of CCC research unless the discordance is resolved. It is proposed that the chromatography retention parameter, K(C), be called the distribution coefficient and that a new biphasic distribution parameter, K(Δ(A)), be defined for CCC and be called the species partition ratio. The definition of V(M) should be clarified. V(H) is suggested to represent the holdup volume and V(X) is suggested for the extra-column volume. H(V) and H(L) are suggested to represent the volume and length of a theoretical plate in CCC. Definitions of the phase ratio, β, conflict and should be clarified. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Otero, Jaime; Álvarez-Salgado, X. Antón; González, Ángel F.; Souto, Carlos; Gilcoto, Miguel; Guerra, Ángel
2016-02-01
Circulation patterns of coastal upwelling areas may have central consequences for the abundance and cross-shelf transport of the larval stages of many species. Previous studies have provided evidences that larvae distribution results from a combination of subtidal circulation, species-specific behaviour and larval sources. However, most of these works were conducted on organisms characterised by small-sized and abundant early life phases. Here, we studied the influence of the hydrography and circulation of the Ría de Vigo and adjacent shelf (NW Iberian upwelling system) on the paralarval abundance of two contrasting cephalopods, the benthic common octopus (Octopus vulgaris) and the pelagic squids (Loliginidae). We sampled repeatedly a cross-shore transect during the years 2003-2005 and used zero inflated models to accommodate the scarcity and patchy distribution of cephalopod paralarvae. The probability of catching early stages of both cephalopods was higher at night. Octopus paralarvae were more abundant in the surface layer at night whereas loliginids preferred the bottom layer regardless of the sampling time. Abundance of both cephalopods increased when shelf currents flowed polewards, water temperature was high and water column stability was low. The probability of observing an excess of zero catches decreased during the year for octopus and at high current speed for loliginids. In addition, the circulation pattern conditioned the body size distribution of both paralarvae; while the average size of the captured octopuses increased (decreased) with poleward currents at daylight (nighttime), squids were smaller with poleward currents regardless of the sampling time. These results contribute to the understanding of the effects that the hydrography and subtidal circulation of a coastal upwelling have on the fate of cephalopod early life stages.
Wörheide, Gert; Solé-Cava, Antonio M; Hooper, John N A
2005-04-01
Marine sponges are an ecologically important and highly diverse component of marine benthic communities, found in all the world's oceans, at all depths. Although their commercial potential and evolutionary importance is increasingly recognized, many pivotal aspects of their basic biology remain enigmatic. Knowledge of historical biogeographic affinities and biodiversity patterns is rudimentary, and there are still few data about genetic variation among sponge populations and spatial patterns of this variation. Biodiversity analyses of tropical Australasian sponges revealed spatial trends not universally reflected in the distributions of other marine phyla within the Indo-West Pacific region. At smaller spatial scales sponges frequently form heterogeneous, spatially patchy assemblages, with some empirical evidence suggesting that environmental variables such as light and/or turbidity strongly contribute to local distributions. There are no apparent latitudinal diversity gradients at larger spatial scales but stochastic processes, such as changing current patterns, the presence or absence of major carbonate platforms and historical biogeography, may determine modern day distributions. Studies on Caribbean oceanic reefs have revealed similar patterns, only weakly correlated with environmental factors. However, several questions remain where molecular approaches promise great potential, e.g., concerning connectivity and biogeographic relationships. Studies to date have helped to reveal that sponge populations are genetically highly structured and that historical processes might play an important role in determining such structure. Increasingly sophisticated molecular tools are now being applied, with results contributing significantly to a better understanding of poriferan microevolutionary processes and molecular ecology.
Palaeolake isolation and biogeographical process of freshwater fishes in the Yellow River.
Kang, Bin; Huang, Xiaoxia; Wu, Yunfei
2017-01-01
The Yellow River, one of the very few in the Earth, originated from many dispersive palaeolakes. Taking this unique advantage, we examined the roles of palaeolake isolation vs. geological processes vs. climate in determining current fish biogeographic pattern. We reviewed available data on fish species and their geographical distribution in the river, as well as palaeolake development, geological and climatic parameters. The 138 fish species recorded in the river could be divided into 8 biogeographic regions, corresponding to the distribution of palaeolakes and respective endemic species. Through variation partitioning analysis, palaeolake isolation was the most influential factor explaining 43.6% of the total variance on the current fish distribution. The Quaternary Ice Age produced a transitional distribution for fishes from the glacier to warm water, especially for the subfamily Schizothoracinae, which showed various degrees of specialisation along altitudes. We suggested that fish biogeography in the Yellow river was basically shaped by palaeolake isolation, and further carved under serials of geologic events and contemporary climate change.
Palaeolake isolation and biogeographical process of freshwater fishes in the Yellow River
Wu, Yunfei
2017-01-01
The Yellow River, one of the very few in the Earth, originated from many dispersive palaeolakes. Taking this unique advantage, we examined the roles of palaeolake isolation vs. geological processes vs. climate in determining current fish biogeographic pattern. We reviewed available data on fish species and their geographical distribution in the river, as well as palaeolake development, geological and climatic parameters. The 138 fish species recorded in the river could be divided into 8 biogeographic regions, corresponding to the distribution of palaeolakes and respective endemic species. Through variation partitioning analysis, palaeolake isolation was the most influential factor explaining 43.6% of the total variance on the current fish distribution. The Quaternary Ice Age produced a transitional distribution for fishes from the glacier to warm water, especially for the subfamily Schizothoracinae, which showed various degrees of specialisation along altitudes. We suggested that fish biogeography in the Yellow river was basically shaped by palaeolake isolation, and further carved under serials of geologic events and contemporary climate change. PMID:28406965
NASA Astrophysics Data System (ADS)
Demirel, Mehmet C.; Mai, Juliane; Mendiguren, Gorka; Koch, Julian; Samaniego, Luis; Stisen, Simon
2018-02-01
Satellite-based earth observations offer great opportunities to improve spatial model predictions by means of spatial-pattern-oriented model evaluations. In this study, observed spatial patterns of actual evapotranspiration (AET) are utilised for spatial model calibration tailored to target the pattern performance of the model. The proposed calibration framework combines temporally aggregated observed spatial patterns with a new spatial performance metric and a flexible spatial parameterisation scheme. The mesoscale hydrologic model (mHM) is used to simulate streamflow and AET and has been selected due to its soil parameter distribution approach based on pedo-transfer functions and the build in multi-scale parameter regionalisation. In addition two new spatial parameter distribution options have been incorporated in the model in order to increase the flexibility of root fraction coefficient and potential evapotranspiration correction parameterisations, based on soil type and vegetation density. These parameterisations are utilised as they are most relevant for simulated AET patterns from the hydrologic model. Due to the fundamental challenges encountered when evaluating spatial pattern performance using standard metrics, we developed a simple but highly discriminative spatial metric, i.e. one comprised of three easily interpretable components measuring co-location, variation and distribution of the spatial data. The study shows that with flexible spatial model parameterisation used in combination with the appropriate objective functions, the simulated spatial patterns of actual evapotranspiration become substantially more similar to the satellite-based estimates. Overall 26 parameters are identified for calibration through a sequential screening approach based on a combination of streamflow and spatial pattern metrics. The robustness of the calibrations is tested using an ensemble of nine calibrations based on different seed numbers using the shuffled complex evolution optimiser. The calibration results reveal a limited trade-off between streamflow dynamics and spatial patterns illustrating the benefit of combining separate observation types and objective functions. At the same time, the simulated spatial patterns of AET significantly improved when an objective function based on observed AET patterns and a novel spatial performance metric compared to traditional streamflow-only calibration were included. Since the overall water balance is usually a crucial goal in hydrologic modelling, spatial-pattern-oriented optimisation should always be accompanied by traditional discharge measurements. In such a multi-objective framework, the current study promotes the use of a novel bias-insensitive spatial pattern metric, which exploits the key information contained in the observed patterns while allowing the water balance to be informed by discharge observations.
Bécares, Juan; García-Tarrasón, Manuel; Villero, Dani; Bateman, Santiago; Jover, Lluís; García-Matarranz, Víctor; Sanpera, Carolina; Arcos, José Manuel
2015-01-01
Although the breeding ecology of Audouin’s gull has been widely studied, its spatial distribution patterns have received little attention. We assessed the foraging movements of 36 GPS-tracked adult Audouin’s gulls breeding at the Ebro Delta (NW Mediterranean), coinciding with the incubation period (May 2011). This also coincided with a trawling moratorium northwards from the colony. We modelled the distribution of the gulls by combining these tracking data with environmental variables (including fishing activities from Vessel Monitoring System, VMS), using Maxent. The modelling range included both marine and terrestrial areas. Models were produced separately for every 2h time interval across the day, and for 2 fishing activity scenarios (workdays vs. weekends), allowing to assess the spatio-temporal distribution patterns of the gulls and the degree of association with fisheries. During workdays, gull distribution at sea fully matched with fishing activities, both trawling (daylight) and purse-seining (nightime). Gulls tended to avoid the area under trawling moratorium, confirming the high influence of fisheries on the distribution patterns of this species. On weekends, gulls made lesser use of the sea and tended to increase the use of rice fields. Overall, Audouin’s gull activity was more intense during dailight hours, although birds also showed nocturnal activity, on both workdays and weekends. Nocturnal patterns at sea were more disperse during the latter, probably because these gulls are able to capture small pelagic fish at night in natural conditions, but tend to congregate around purse-seiners (which would enhance their foraging efficiency) in workdays. These results provide important insight for the management of this species. This is of particular relevance under the current scenario of European fisheries policies, since new regulations are aimed at eliminating discards, and this would likely influence Audouin’s gull populations. PMID:25875597
Kaky, Emad; Gilbert, Francis
2017-01-01
Climate change is one of the most difficult of challenges to conserving biodiversity, especially for countries with few data on the distributions of their taxa. Species distribution modelling is a modern approach to the assessment of the potential effects of climate change on biodiversity, with the great advantage of being robust to small amounts of data. Taking advantage of a recently validated dataset, we use the medicinal plants of Egypt to identify hotspots of diversity now and in the future by predicting the effect of climate change on the pattern of species richness using species distribution modelling. Then we assess how Egypt's current Protected Area network is likely to perform in protecting plants under climate change. The patterns of species richness show that in most cases the A2a 'business as usual' scenario was more harmful than the B2a 'moderate mitigation' scenario. Predicted species richness inside Protected Areas was higher than outside under all scenarios, indicating that Egypt's PAs are well placed to help conserve medicinal plants.
Civil war and the spread of AIDS in Central Africa.
Smallman-Raynor, M. R.; Cliff, A. D.
1991-01-01
Using ordinary least squares regression techniques this paper demonstrates, for the first time, that the classic association of war and disease substantially accounts for the presently observed geographical distribution of reported clinical AIDS cases in Uganda. Both the spread of HIV 1 infection in the 1980s, and the subsequent development of AIDS to its 1990 spatial pattern, are shown to be significantly and positively correlated with ethnic patterns of recruitment into the Ugandan National Liberation Army (UNLA) after the overthrow of Idi Amin some 10 years earlier in 1979. This correlation reflects the estimated mean incubation period of 8-10 years for HIV 1 and underlines the need for cognizance of historical factors which may have influenced current patterns of AIDS seen in Central Africa. The findings may have important implications for AIDS forecasting and control in African countries which have recently experienced war. The results are compared with parallel analyses of other HIV hypotheses advanced to account for the reported geographical distribution of AIDS in Uganda. PMID:1879492
Systematic Conservation Planning in the Face of Climate Change: Bet-Hedging on the Columbia Plateau
Schloss, Carrie A.; Lawler, Joshua J.; Larson, Eric R.; Papendick, Hilary L.; Case, Michael J.; Evans, Daniel M.; DeLap, Jack H.; Langdon, Jesse G. R.; Hall, Sonia A.; McRae, Brad H.
2011-01-01
Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts. PMID:22174897
Biodiversity of Saline and Brakish Marshes of the Indian River Lagoon: Historic and Current Patterns
NASA Technical Reports Server (NTRS)
Schmalzer, Paul A.
1995-01-01
The Indian River Lagoon (IRL) crosses a zone of climatic transition. Historically, marshes dominated saline and brackish environments in the north of the lagoon, while mangroves became important to the south. Distribution of marsh communities was influenced by hydrology, salinity, soil characteristics, and fire, as well as periodic freezes. Marshes of the IRL have been greatly modified since the 1940s. Despite significant modifications, marsh plant species have not been lost from the region, but community and landscape patterns have been greatly modified and ecosystem processes altered.
Fourier analysis of polar cap electric field and current distributions
NASA Technical Reports Server (NTRS)
Barbosa, D. D.
1984-01-01
A theoretical study of high-latitude electric fields and currents, using analytic Fourier analysis methods, is conducted. A two-dimensional planar model of the ionosphere with an enhanced conductivity auroral belt and field-aligned currents at the edges is employed. Two separate topics are treated. A field-aligned current element near the cusp region of the polar cap is included to investigate the modifications to the convection pattern by the east-west component of the interplanetary magnetic field. It is shown that a sizable one-cell structure is induced near the cusp which diverts equipotential contours to the dawnside or duskside, depending on the sign of the cusp current. This produces characteristic dawn-dusk asymmetries to the electric field that have been previously observed over the polar cap. The second topic is concerned with the electric field configuration obtained in the limit of perfect shielding, where the field is totally excluded equatorward of the auroral oval. When realistic field-aligned current distributions are used, the result is to produce severely distorted, crescent-shaped equipotential contours over the cap. Exact, analytic formulae applicable to this case are also provided.
Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk
2016-01-01
Global warming is likely leading to species’ distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr−1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities. PMID:27504632
Sandy beaches: state of the art of nematode ecology.
Maria, Tatiana F; Vanaverbeke, Jan; Vanreusel, Ann; Esteves, André M
2016-01-01
In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns (macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach nematode assemblages. This review will provide a substantial background on current knowledge of sandy-beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over decades, sandy beaches have been the scene of studies focusing on community and population ecology, both related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes. In other words, the physical factors are more important in structuring nematodes communities over large scale of distribution while biological interactions are largely important in finer-scale distributions. It has been accepted that biological interactions are assumed to be of minor importance because physical factors overshadow the biological interactions in sandy beach sediments; however, the most recent results from in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides nematodes are very promising organisms used to understand the effects of pollution and climate changes although these subjects are less studied in sandy beaches than distribution patterns.
Current density distributions and sputter marks in electron cyclotron resonance ion sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Panitzsch, Lauri; Peleikis, Thies; Boettcher, Stephan
2013-01-15
Most electron cyclotron resonance ion sources use hexapolar magnetic fields for the radial confinement of the plasma. The geometry of this magnetic structure is then-induced by charged particles-mapped onto the inner side of the plasma electrode via sputtering and deposition. The resulting structures usually show two different patterns: a sharp triangular one in the central region which in some cases is even sputtered deep into the material (referred to as thin groove or sharp structure), and a blurred but still triangular-like one in the surroundings (referred to as broad halo). Therefore, both patterns seem to have different sources. To investigatemore » their origins we replaced the standard plasma electrode by a custom-built plasma electrode acting as a planar, multi-segment current-detector. For different biased disc voltages, detector positions, and source biases (referred to the detector) we measured the electrical current density distributions in the plane of the plasma electrode. The results show a strong and sharply confined electron population with triangular shape surrounded by less intense and spatially less confined ions. Observed sputter- and deposition marks are related to the analysis of the results. Our measurements suggest that the two different patterns (thin and broad) indeed originate from different particle populations. The thin structures seem to be caused by the hot electron population while the broad marks seem to stem from the medium to highly charged ions. In this paper we present our measurements together with theoretical considerations and substantiate the conclusions drawn above. The validity of these results is also discussed.« less
The regional distribution of doctors in Mexico, 1930-1990: a policy assessment.
Nigenda, G
1997-02-01
The results of the doctor distributional policy in Mexico is evaluated. Despite the government's efforts to achieve a better distribution of doctors throughout the country between 1930 and 1990, important disparities still exist among geographic areas. Diverse factors ranging from the underdevelopment of some areas, to the resistance of doctors to leave the urban areas, are related to this unequal distribution. Early programmes aimed at redressing the original distribution in the 1930's had limited effects. In subsequent years, additional programmes were implemented. However, a lack of coordination and the short time span of many programmes produced only minor changes to the distributional pattern. Although in recent years the distribution has improved, southern states still suffer an acute scarcity while northern states have a relative abundance. Finally, the paper discusses how economic, political and social variables, as well as the structure of the health system, have shaped the current distribution of Mexican doctors.
Colferai, André S; Silva-Filho, Rodolfo Pinho; Martins, Aryse Moreira; Bugoni, Leandro
2017-06-15
Pollution from anthropogenic marine debris (AMD) is currently the most widely distributed and lasting anthropic impact in the marine environment, affecting hundreds of species, including all sea turtles. In this study, the patterns of AMD distribution along the gastrointestinal tract (GT) and their relationship with obstructions and faecalomas in 62 green turtles (Chelonia mydas) that died during rehabilitation in southern Brazil were determined. The GT was split in seven sections, corresponding to the natural organs and intestinal areas morphologically and physiologically distinct. Mean mass (4.24g) and area (146.74cm 2 ) of AMD in the stomach were higher than in other sections. The anterior portion of the rectum had the highest number of obstructions, followed by the stomach. AMD was associated with the obstructions, with positive correlation between faecalomas and AMD masses. Organs and subdivisions showed marked differences in susceptibility to obstructions caused by AMD, which deserves attention in clinical interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Discovery of fairy circles in Australia supports self-organization theory
Getzin, Stephan; Yizhaq, Hezi; Bell, Bronwyn; Erickson, Todd E.; Postle, Anthony C.; Katra, Itzhak; Tzuk, Omer; Zelnik, Yuval R.; Wiegand, Kerstin; Wiegand, Thorsten; Meron, Ehud
2016-01-01
Vegetation gap patterns in arid grasslands, such as the “fairy circles” of Namibia, are one of nature’s greatest mysteries and subject to a lively debate on their origin. They are characterized by small-scale hexagonal ordering of circular bare-soil gaps that persists uniformly in the landscape scale to form a homogeneous distribution. Pattern-formation theory predicts that such highly ordered gap patterns should be found also in other water-limited systems across the globe, even if the mechanisms of their formation are different. Here we report that so far unknown fairy circles with the same spatial structure exist 10,000 km away from Namibia in the remote outback of Australia. Combining fieldwork, remote sensing, spatial pattern analysis, and process-based mathematical modeling, we demonstrate that these patterns emerge by self-organization, with no correlation with termite activity; the driving mechanism is a positive biomass–water feedback associated with water runoff and biomass-dependent infiltration rates. The remarkable match between the patterns of Australian and Namibian fairy circles and model results indicate that both patterns emerge from a nonuniform stationary instability, supporting a central universality principle of pattern-formation theory. Applied to the context of dryland vegetation, this principle predicts that different systems that go through the same instability type will show similar vegetation patterns even if the feedback mechanisms and resulting soil–water distributions are different, as we indeed found by comparing the Australian and the Namibian fairy-circle ecosystems. These results suggest that biomass–water feedbacks and resultant vegetation gap patterns are likely more common in remote drylands than is currently known. PMID:26976567
Dietary Protein in Older Adults: Adequate Daily Intake but Potential for Improved Distribution.
Cardon-Thomas, Danielle K; Riviere, Timothy; Tieges, Zoë; Greig, Carolyn A
2017-02-23
Daily distribution of dietary protein may be important in protecting against sarcopenia, specifically in terms of per meal amounts relative to a proposed threshold for maximal response. The aims of this study were to determine total and per meal protein intake in older adults, as well as identifying associations with physical activity and sedentary behavior. Three-day food diaries recorded protein intake in 38 participants. Protein distribution, coefficient of variation (CV), and per meal amounts were calculated. Accelerometry was used to collect physical activity data as well as volume and patterns of sedentary time. Average intake was 1.14 g·kg -1 ·day -1 . Distribution was uneven (CV = 0.67), and 79% of participants reported <0.4 g·kg -1 protein content in at least 2/3 daily meals. Protein intake was significantly correlated with step count ( r = 0.439, p = 0.007) and negatively correlated with sedentary time ( r = -0.456, p = 0.005) and Gini index G, which describes the pattern of accumulation of sedentary time ( r = -0.421, p = 0.011). Total daily protein intake was sufficient; however, distribution did not align with the current literature; increasing protein intake may help to facilitate optimization of distribution. Associations between protein and other risk factors for sarcopenia may also inform protective strategies.
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2018-01-01
We thoroughly explored the physical origin of the efficiency decrease with increasing injection current and current crowding effect in 280 nm AlGaN-based flip-chip deep-ultraviolet (DUV) light-emitting diodes (LEDs). The current spreading length was experimentally determined to be much smaller in DUV LEDs than that in conventional InGaN-based visible LEDs. The severe self-heating caused by the low power conversion efficiency of DUV LEDs should be mainly responsible for the considerable decrease of efficiency when current crowding is present. The wall-plug efficiency of the DUV LEDs was markedly enhanced by using a well-designed p-electrode pattern to improve the current distribution.
NASA Astrophysics Data System (ADS)
Tschá, Marcel K.; Bachmann, Lutz; Abilhoa, Vinícius; Boeger, Walter A.
2017-05-01
The Atlantic coast of South America is characterized by a great diversity and endemism of fishes. Past eustatic changes that promoted cycles of isolation, expansion, and connection of coastal catchments are considered putative drivers of genetic differentiation and phylogenetic diversity. It is hypothesized that recent eustatic movements have left signs of impact on the demographic history and local distribution patterns of freshwater fishes. This study addressed the phylogeography and demographic history of two siluriform (Scleromystax barbatus, Rineloricaria sp.) and one characiform (Mimagoniates microlepis) fish species from the coastal plain of the state of Paraná, Paranaguá Bay, Brazil. Nucleotide sequence data of the mitochondrial cytochrome b gene support the hypothesis that the populations of the three species are genetically differentiated at all sampled catchments. Haplotype networks of these populations indicate different histories and include scenarios of secondary contact, population expansion, and isolation. Neutrality tests and the reconstructed patterns of demographic history in mismatch distributions were also consistent with population expansion in the western basins and, in general, secondary contact in the northern basins. Our results are consistent with the reconstructed paleodrainage in the region and with the hypothesis that recurrent reconnections and isolation of streams associated with eustatic changes have strongly influenced the current pattern of diversity, and reflect the distribution of freshwater fishes in this coastal hydrographic system.
Long-term changes in the planktonic cnidarian community in a mesoscale area of the NW Mediterranean
Gili, Josep-Maria; Grinyó, Jordi; Raya, Vanesa; Sabatés, Ana
2018-01-01
In the present work, possible long-term changes in the planktonic cnidarian community were investigated by analyzing (1) species and community spatial distribution patterns, (2) variations in abundance and (3) changes in species richness during three mesoscale surveys representative of the climatic and anthropogenic changes that have occurred during the last three decades (years: 1983, 2004 and 2011) in the NW Mediterranean. These surveys were conducted during the summer (June) along the Catalan coast. All surveys covered the same area, used the same sampling methodology, and taxonomic identification was conducted by the same team of experts. An increase in the abundance of total cnidaria was found from 1983 to 2011. The siphonophore Muggiaea atlantica and the hydromedusa Aglaura hemistoma were the most abundant species, while Muggiaea kochii presented the largest abundance increment over time. Temperature was the main environmental parameter driving significant differences in the cnidarian community composition, abundance and spatial distribution patterns among the surveys. Our results suggest that in the current climate change scenario, warm-water species abundances will be positively favored, and the community will suffer changes in their latitudinal distribution patterns. We consider it extremely important to study and monitor gelatinous zooplankton in mesoscale spatial areas to understand not only long-term changes in abundances but also changes in their spatial distributions since spatial changes are sensitive indicators of climate change. PMID:29715282
The Female Pattern Hair Loss: Review of Etiopathogenesis and Diagnosis
Vujovic, Anja; Del Marmol, Véronique
2014-01-01
Female pattern hair loss (FPHL) is the most common hair loss disorder in women. Initial signs may develop during teenage years leading to a progressive hair loss with a characteristic pattern distribution. The condition is characterized by progressive replacement of terminal hair follicles over the frontal and vertex regions by miniaturized follicles, that leads progressively to a visible reduction in hair density. Women diagnosed with FPHL may undergo significant impairment of quality of life. FPHL diagnosis is mostly clinical. Depending on patient history and clinical evaluation, further diagnostic testing may be useful. The purpose of the paper is to review the current knowledge about epidemiology, pathogenesis, clinical manifestations, and diagnosis of FPHL. PMID:24812631
Apparatus and method for phase fronts based on superluminal polarization current
Singleton, John [Los Alamos, NM; Ardavan, Houshang [Cambridge, GB; Ardavan, Arzhang [Cambridge, GB
2012-02-28
An apparatus and method for a radiation source involving phase fronts emanating from an accelerated, oscillating polarization current whose distribution pattern moves superluminally (that is, faster than light in vacuo). Theoretical predictions and experimental measurements using an existing prototype superluminal source show that the phase fronts from such a source can be made to be very complex. Consequently, it will be very difficult for an aircraft imaged by such a radiation to detect where this radiation has come from. Moreover, the complexity of the phase fronts makes it almost impossible for electronics on an aircraft to synthesize a rogue reflection. A simple directional antenna and timing system should, on the other hand, be sufficient for the radar operators to locate the aircraft, given knowledge of their own source's speed and modulation pattern.
ERIC Educational Resources Information Center
HATFIELD, ELIZABETH M.
CURRENT ESTIMATES AND SOME TREND DATA ARE PRESENTED ON THE FOLLOWING SUBJECTS -- POPULATION GROWTH (1940-1960), PREVALENCE OF LEGAL BLINDNESS, NEW CASES OF LEGAL BLINDNESS, AGE DISTRIBUTION OF LEGALLY BLIND PERSONS, CAUSES OF LEGAL BLINDNESS, CHANGING PATTERNS IN CAUSES OF LEGAL BLINDNESS, CASES OF GLAUCOMA, SCHOOL CHILDREN NEEDING EYE CARE,…
ERIC Educational Resources Information Center
Aharony, Noa
2012-01-01
The current study seeks to describe and analyze journal research publications in the top 10 Library and Information Science journals from 2007-8. The paper presents a statistical descriptive analysis of authorship patterns (geographical distribution and affiliation) and keywords. Furthermore, it displays a thorough content analysis of keywords and…
An overview of the floristic richness and conservation of the arid regions of northern Mexico
Laura Arriaga; Elizabeth Moreno; Claudia Aguilar
2005-01-01
The arid and semiarid regions of Northern Mexico harbor diverse, highly endemic, and geographically complex ecosystems. These share topographic and biogeographic similarities that can be used as an analytical framework to assess biodiversity patterns. This study presents the current status of vascular plant inventories for Mexican Aridamerica. The spatial distribution...
ERIC Educational Resources Information Center
Sutton, Farah
2012-01-01
This study examines the spatial distribution of educational attainment and then builds upon current predictive frameworks for understanding patterns of educational attainment by applying a spatial econometric method of analysis. The research from this study enables a new approach to the policy discussion on how to improve educational attainment…
Agency and Assemblage in Pattern Generalisation: A Materialist Approach to Learning
ERIC Educational Resources Information Center
Ferrara, Francesca; Ferrari, Giulia
2017-01-01
In this paper, we draw on the contemporary perspective of inclusive materialism offered by de Freitas and Sinclair to contribute to current discussions on the role of the body in the learning of mathematics. Using the notions of "distributed agency" and "assemblage," we illustrate the way in which three students engage with a…
Model uncertainties do not affect observed patterns of species richness in the Amazon.
Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael
2017-01-01
Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species.
Model uncertainties do not affect observed patterns of species richness in the Amazon
Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo
2017-01-01
Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics according to the study objective is also essential for estimating the impacts of climate change on species distribution. Yet from a conservation perspective, we show that Amazon endemic fauna is potentially vulnerable to climate change, due to expected reductions on suitable climate area. Climate-driven faunal movements are predicted towards the Andes mountains, which might work as climate refugia for migrating species. PMID:29023503
Local or distributed activation? The view from biology
NASA Astrophysics Data System (ADS)
Reimers, Mark
2011-06-01
There is considerable disagreement among connectionist modellers over whether to represent distinct properties by distinct nodes of a network or whether properties should be represented by patterns of activity across all nodes. This paper draws on the literature of neuroscience to say that a more subtle way of describing how different brain regions contribute to a behaviour, in terms of individual learning and in terms of degrees of importance, may render the current debate moot: both sides of the 'localist' versus 'distributed' debate emphasise different aspects of biology.
Life on the rocks: Multilocus phylogeography of rock hyrax (Procavia capensis) from southern Africa.
Maswanganye, K Amanda; Cunningham, Michael J; Bennett, Nigel C; Chimimba, Christian T; Bloomer, Paulette
2017-09-01
Understanding the role of geography and climatic cycles in determining patterns of biodiversity is important in comparative and evolutionary biology and conservation. We studied the phylogeographic pattern and historical demography of a rock-dwelling small mammal species from southern Africa, the rock hyrax Procavia capensis capensis. Using a multilocus coalescent approach, we assessed the influence of strong habitat dependence and fluctuating regional climates on genetic diversity. We sequenced a mitochondrial gene (cytochrome b) and two nuclear introns (AP5, PRKC1) supplemented with microsatellite genotyping, in order to assess evolutionary processes over multiple temporal scales. In addition, distribution modelling was used to investigate the current and predicted distribution of the species under different climatic scenarios. Collectively, the data reveal a complex history of isolation followed by secondary contact shaping the current intraspecific diversity. The cyt b sequences confirmed the presence of two previously proposed geographically and genetically distinct lineages distributed across the southern African Great Escarpment and north-western mountain ranges. Molecular dating suggests Miocene divergence of the lineages, yet there are no discernible extrinsic barriers to gene flow. The nuclear markers reveal incomplete lineage sorting or ongoing mixing of the two lineages. Although the microsatellite data lend some support to the presence of two subpopulations, there is weak structuring within and between lineages. These data indicate the presence of gene flow from the northern into the southern parts of the southern African sub-region likely following the secondary contact. The distribution modelling predictably reveal the species' preference for rocky areas, with stable refugia through time in the northern mountain ranges, the Great Escarpment, as well as restricted areas of the Northern Cape Province and the Cape Fold Mountains of South Africa. Different microclimatic variables appear to determine the distributional range of the species. Despite strong habitat preference, the micro-habitat offered by rocky crevices and unique life history traits likely promoted the adaptability of P. capensis, resulting in the widespread distribution and persistence of the species over a long evolutionary period. Spatio-temporal comparison of the evolutionary histories of other co-distributed species across the rocky landscapes of southern Africa will improve our understanding of the regional patterns of biodiversity and local endemism. Copyright © 2017 Elsevier Inc. All rights reserved.
Berck, B
1975-05-01
The new research reported herein was motivated by variations in distribution-persistence patterns of fumigant residues (BERCK, 1974). The current developmental program is still underway. In the meantime, measurement of picoliter amounts of SF6 in air by GC equipped with a Ni63 EC detector has been proven useful over an airflow range of 10(-4) to 50 mph, representing a factor of 500,000 in differences in air velocity. Diverse applications have been outlined herein. This is the first case on record where measurement of unassisted airflow in the interstitial air of stored grain has been successfully executed, and which enabled determination of airflow speeds in the range of 0.5 to 7.5 times 10(-4) mph (=3 to 45 inches per hour).
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1989-01-01
Sparse distributed memory was proposed be Pentti Kanerva as a realizable architecture that could store large patterns and retrieve them based on partial matches with patterns representing current sensory inputs. This memory exhibits behaviors, both in theory and in experiment, that resemble those previously unapproached by machines - e.g., rapid recognition of faces or odors, discovery of new connections between seemingly unrelated ideas, continuation of a sequence of events when given a cue from the middle, knowing that one doesn't know, or getting stuck with an answer on the tip of one's tongue. These behaviors are now within reach of machines that can be incorporated into the computing systems of robots capable of seeing, talking, and manipulating. Kanerva's theory is a break with the Western rationalistic tradition, allowing a new interpretation of learning and cognition that respects biology and the mysteries of individual human beings.
Ground-based studies of ionospheric convection associated with substorm expansion
NASA Technical Reports Server (NTRS)
Kamide, Y.; Richmond, A. D.; Emery, B. A.; Hutchins, C. F.; Ahn, B.-H.; De La Beaujardiere, O.; Foster, J. C.; Heelis, R. A.; Kroehl, H. W.; Rich, F. J.
1994-01-01
The instantaneous patterns of electric fields and currents in the high-latitude ionosphere are deduced by combining satellite and radar measurements of the ionospheric drift velocity, along with ground-based magnetometer observations for October 25, 1981. The period under study was characterized by a relatively stable southward interplanetary magnetic field (IMF), so that the obtained electric field patterns do reflect, in general, the state of sustained and enhanced plasma convection in the magnetosphere. During one of the satellite passes, however, an intense westward electrojet caused by a substorm intruded into the satellite (DE2) and radar (Chatanika, Alaska) field of view in the premidnight sector, providing a unique opportunity to differentiate the enhanced convection and substorm expansion fields. The distributions of the calculated electric potential for the expansion and maximum phases of the substorm show the first clear evidence of the coexistence of two physically different systems in the global convection pattern. The changes in the convection pattern during the substorm indicate that the large-scale potential distributions are indeed of general two-cell patterns representing the southward IMF status, but the night-morning cell has two positive peaks, one in the midnight sector and the other in the late morning hours, corresponding to the substorm expansion and the convection enhancement, respectively.
ElBasiouny, Sherif M.; Rymer, W. Zev; Heckman, C. J.
2012-01-01
Motoneuron discharge patterns reflect the interaction of synaptic inputs with intrinsic conductances. Recent work has focused on the contribution of conductances mediating persistent inward currents (PICs), which amplify and prolong the effects of synaptic inputs on motoneuron discharge. Certain features of human motor unit discharge are thought to reflect a relatively stereotyped activation of PICs by excitatory synaptic inputs; these features include rate saturation and de-recruitment at a lower level of net excitation than that required for recruitment. However, PIC activation is also influenced by the pattern and spatial distribution of inhibitory inputs that are activated concurrently with excitatory inputs. To estimate the potential contributions of PIC activation and synaptic input patterns to motor unit discharge patterns, we examined the responses of a set of cable motoneuron models to different patterns of excitatory and inhibitory inputs. The models were first tuned to approximate the current- and voltage-clamp responses of low- and medium-threshold spinal motoneurons studied in decerebrate cats and then driven with different patterns of excitatory and inhibitory inputs. The responses of the models to excitatory inputs reproduced a number of features of human motor unit discharge. However, the pattern of rate modulation was strongly influenced by the temporal and spatial pattern of concurrent inhibitory inputs. Thus, even though PIC activation is likely to exert a strong influence on firing rate modulation, PIC activation in combination with different patterns of excitatory and inhibitory synaptic inputs can produce a wide variety of motor unit discharge patterns. PMID:22031773
NASA Astrophysics Data System (ADS)
Shi, Y.; Eissenstat, D. M.; He, Y.; Davis, K. J.
2017-12-01
Most current biogeochemical models are 1-D and represent one point in space. Therefore, they cannot resolve topographically driven land surface heterogeneity (e.g., lateral water flow, soil moisture, soil temperature, solar radiation) or the spatial pattern of nutrient availability. A spatially distributed forest biogeochemical model with nitrogen transport, Flux-PIHM-BGC, has been developed by coupling a 1-D mechanistic biogeochemical model Biome-BGC (BBGC) with a spatially distributed land surface hydrologic model, Flux-PIHM, and adding an advection dominated nitrogen transport module. Flux-PIHM is a coupled physically based model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model, and is augmented by adding a topographic solar radiation module. Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as land surface heterogeneities caused by topography. In the coupled Flux-PIHM-BGC model, each Flux-PIHM model grid couples a 1-D BBGC model, while nitrogen is transported among model grids via surface and subsurface water flow. In each grid, Flux-PIHM provides BBGC with soil moisture, soil temperature, and solar radiation, while BBGC provides Flux-PIHM with spatially-distributed leaf area index. The coupled Flux-PIHM-BGC model has been implemented at the Susquehanna/Shale Hills Critical Zone Observatory. The model-predicted aboveground vegetation carbon and soil carbon distributions generally agree with the macro patterns observed within the watershed. The importance of abiotic variables (including soil moisture, soil temperature, solar radiation, and soil mineral nitrogen) in predicting aboveground carbon distribution is calculated using a random forest. The result suggests that the spatial pattern of aboveground carbon is controlled by the distribution of soil mineral nitrogen. A Flux-PIHM-BGC simulation without the nitrogen transport module is also executed. The model without nitrogen transport fails in predicting the spatial patterns of vegetation carbon, which indicates the importance of having a nitrogen transport module in spatially distributed ecohydrologic modeling.
Regional patterns of the change in annual-mean tropical rainfall under global warming
NASA Astrophysics Data System (ADS)
Huang, P.
2013-12-01
Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.
Sediment distribution and coastal processes in Cook Inlet, Alaska
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Gatto, L. W.; Mckim, H. L.; Petrone, A.
1973-01-01
Regional hydrologic and oceanographic relationships in Cook Inlet, Alaska have been recognized from sequential ERTS-1 MSS imagery. Current patterns are visible in the inlet because of differential concentrations of suspended sediment. The circulation patterns within Cook Inlet are controlled primarily by the interaction between the semi-diurnal tides and the counter clockwise Alaska current. In general, heavily sediment laden water is seen to be confined to portions of the inlet north of the Forelands and west of Kalgin Island. Tongues of clear oceanic water are observed to enter the inlet through Kennedy Channel along the east shoreline in the vicinity of Cape Elizabeth. A recurring counterclockwise circulation pattern observed around Kalgin Island seems to result from the interplay of the northerly moving water along the east shore and the southerly moving, sediment laden, water along the west side of the inlet. Prominent, fresh water plumes, heavily laden with sediment are visible at the mouths of all major rivers. Relect plumes from as many as three tidal stages have been recognized.
Characteristics of ionospheric convection and field-aligned current in the dayside cusp region
NASA Technical Reports Server (NTRS)
Lu, G.; Lyons, L. R.; Reiff, P. H.; Denig, W. F.; Beaujardiere, O. De LA; Kroehl, H. W.; Newell, P. T.; Rich, F. J.; Opgenoorth, H.; Persson, M. A. L.
1995-01-01
The assimilative mapping of ionospheric electrodynamics (AMIE) technique has been used to estimate global distributions of high-latitude ionospheric convection and field-aligned current by combining data obtained nearly simultaneously both from ground and from space. Therefore, unlike the statistical patterns, the 'snapshot' distributions derived by AMIE allow us to examine in more detail the distinctions between field-aligned current systems associated with separate magnetospheric processes, especially in the dayside cusp region. By comparing the field-aligned current and ionospheric convection patterns with the corresponding spectrograms of precipitating particles, the following signatures have been identified: (1) For the three cases studied, which all had an IMF with negative y and z components, the cusp precipitation was encountered by the DMSP satellites in the postnoon sector in the northern hemisphere and in the prenoon sector in the southern hemisphere. The equatorward part of the cusp in both hemispheres is in the sunward flow region and marks the beginning of the flow rotation from sunward to antisunward. (2) The pair of field-aligned currents near local noon, i.e., the cusp/mantle currents, are coincident with the cusp or mantle particle precipitation. In distinction, the field-aligned currents on the dawnside and duskside, i.e., the normal region 1 currents, are usually associated with the plasma sheet particle precipitation. Thus the cusp/mantle currents are generated on open field lines and the region 1 currents mainly on closed field lines. (3) Topologically, the cusp/mantle currents appear as an expansion of the region 1 currents from the dawnside and duskside and they overlap near local noon. When B(sub y) is negative, in the northern hemisphere the downward field-aligned current is located poleward of the upward current; whereas in the southern hemisphere the upward current is located poleward of the downward current. (4) Under the assumption of quasi-steady state reconnection, the location of the separatrix in the ionosphere is estimated and the reconnection velocity is calculated to be between 400 and 550 m/s. The dayside separatrix lies equatorward of the dayside convection throat in the two cases examined.
Rossetto, Maurizio; Ens, Emilie J; Honings, Thijs; Wilson, Peter D; Yap, Jia-Yee S; Costello, Oliver; Round, Erich R; Bowern, Claire
2017-01-01
Prehistoric human activities have contributed to the dispersal of many culturally important plants. The study of these traditional interactions can alter the way we perceive the natural distribution and dynamics of species and communities. Comprehensive research on native crops combining evolutionary and anthropological data is revealing how ancient human populations influenced their distribution. Although traditional diets also included a suite of non-cultivated plants that in some cases necessitated the development of culturally important technical advances such as the treatment of toxic seed, empirical evidence for their deliberate dispersal by prehistoric peoples remains limited. Here we integrate historic and biocultural research involving Aboriginal people, with chloroplast and nuclear genomic data to demonstrate Aboriginal-mediated dispersal of a non-cultivated rainforest tree. We assembled new anthropological evidence of use and deliberate dispersal of Castanospermum australe (Fabaceae), a non-cultivated culturally important riparian tree that produces toxic but highly nutritious water-dispersed seed. We validated cultural evidence of recent human-mediated dispersal by revealing genomic homogeneity across extensively dissected habitat, multiple catchments and uneven topography in the southern range of this species. We excluded the potential contribution of other dispersal mechanisms based on the absence of suitable vectors and current distributional patterns at higher elevations and away from water courses, and by analyzing a comparative sample from northern Australia. Innovative studies integrating evolutionary and anthropological data will continue to reveal the unexpected impact that prehistoric people have had on current vegetation patterns. A better understanding of how traditional practices shaped species' distribution and assembly will directly inform cultural heritage management strategies, challenge "natural" species distribution assumptions, and provide innovative baseline data for pro-active biodiversity management.
Ens, Emilie J.; Honings, Thijs; Wilson, Peter D.; Yap, Jia-Yee S.; Costello, Oliver; Round, Erich R.; Bowern, Claire
2017-01-01
Background Prehistoric human activities have contributed to the dispersal of many culturally important plants. The study of these traditional interactions can alter the way we perceive the natural distribution and dynamics of species and communities. Comprehensive research on native crops combining evolutionary and anthropological data is revealing how ancient human populations influenced their distribution. Although traditional diets also included a suite of non-cultivated plants that in some cases necessitated the development of culturally important technical advances such as the treatment of toxic seed, empirical evidence for their deliberate dispersal by prehistoric peoples remains limited. Here we integrate historic and biocultural research involving Aboriginal people, with chloroplast and nuclear genomic data to demonstrate Aboriginal-mediated dispersal of a non-cultivated rainforest tree. Results We assembled new anthropological evidence of use and deliberate dispersal of Castanospermum australe (Fabaceae), a non-cultivated culturally important riparian tree that produces toxic but highly nutritious water-dispersed seed. We validated cultural evidence of recent human-mediated dispersal by revealing genomic homogeneity across extensively dissected habitat, multiple catchments and uneven topography in the southern range of this species. We excluded the potential contribution of other dispersal mechanisms based on the absence of suitable vectors and current distributional patterns at higher elevations and away from water courses, and by analyzing a comparative sample from northern Australia. Conclusions Innovative studies integrating evolutionary and anthropological data will continue to reveal the unexpected impact that prehistoric people have had on current vegetation patterns. A better understanding of how traditional practices shaped species’ distribution and assembly will directly inform cultural heritage management strategies, challenge “natural” species distribution assumptions, and provide innovative baseline data for pro-active biodiversity management. PMID:29117184
NASA Astrophysics Data System (ADS)
Manson, F. J.; Loneragan, N. R.; Phinn, S. R.
2003-07-01
An assessment of the changes in the distribution and extent of mangroves within Moreton Bay, southeast Queensland, Australia, was carried out. Two assessment methods were evaluated: spatial and temporal pattern metrics analysis, and change detection analysis. Currently, about 15,000 ha of mangroves are present in Moreton Bay. These mangroves are important ecosystems, but are subject to disturbance from a number of sources. Over the past 25 years, there has been a loss of more than 3800 ha, as a result of natural losses and mangrove clearing (e.g. for urban and industrial development, agriculture and aquaculture). However, areas of new mangroves have become established over the same time period, offsetting these losses to create a net loss of about 200 ha. These new mangroves have mainly appeared in the southern bay region and the bay islands, particularly on the landward edge of existing mangroves. In addition, spatial patterns and species composition of mangrove patches have changed. The pattern metrics analysis provided an overview of mangrove distribution and change in the form of single metric values, while the change detection analysis gave a more detailed and spatially explicit description of change. An analysis of the effects of spatial scales on the pattern metrics indicated that they were relatively insensitive to scale at spatial resolutions less than 50 m, but that most metrics became sensitive at coarser resolutions, a finding which has implications for mapping of mangroves based on remotely sensed data.
Morphology and spatial patterns of Macrotermes mounds in the SE Katanga, D.R. Congo
NASA Astrophysics Data System (ADS)
Bazirake Mujinya, Basile; Mees, Florias; Erens, Hans; Baert, Geert; Van Ranst, Eric
2015-04-01
The spatial distribution patterns and morphological characteristics of Macrotermes falciger mounds were investigated in the Lubumbashi area, D.R. Congo. Examination of the spatial patterns of M. falciger mounds on high resolution satellite images reveals a mean areal number density of 2.9 ± 0.4 mounds ha-1. The high relative number of inactive mounds in the region, along with their regular distribution pattern, suggests that current termite mound occurrences are largely palaeostructures. Mound positions in the habitat are consistent with intraspecific competition rather than soil and substrate characteristics as controlling factor. Detailed morphological description of five deep termite-mound profiles (~7 m height/depth) shows that carbonate pedofeatures are present in all studied profiles, in contrast to the control soils. They mainly occur in the form of soft powdery masses, nodules and coatings on ped faces, all clearly pedogenic. Carbonate coatings occur mainly between 1 m above the soil surface and 1 m below that level in all mound profiles. Carbonate nodules do show a different distribution pattern at each site. Furthermore, when the studied profiles are considered to represent a toposequence, the stone layer occurs at greater depth in topographically low areas compared to crest and slope positions, which is mainly conditioned by erosion. The clay content of epigeal mounds increases from the summit to the toe slope, which can be largely related to differences in parent material. The Mn-Fe oxide concentrations occurring in all studied termite mound profiles reflect a seasonally high perched water table beneath the mound, which is more pronounced at the lower slope positions.
de Mello, Pietro L. H.; Machado, Ricardo B.; Nogueira, Cristiano de C.
2015-01-01
Little is known about the threat levels and impacts of habitat loss over the Cerrado Squamate fauna. The region is under severe habitat loss due to mechanized agriculture, accelerated by changes in the Brazilian National Forest Code. The Squamate fauna of the Cerrado is rich in endemics and is intrinsically associated with its surrounding microhabitats, which make up a mosaic of phitophysiognomies throughout the region. Herein we evaluate current conservation status of Squamate biogeographic patterns in the Brazilian Cerrado, the single savanna among global biodiversity hotspots. To do so, we first updated point locality data on 49 endemic Squamates pertaining to seven non-random clusters of species ranges in the Cerrado. Each cluster was assumed to be representative of different biogeographic regions, holding its own set of species, herein mapped according to their extent of occurrence (EOO). We then contrasted these data in four different scenarios, according to the presence or absence of habitat loss and the presence or absence of the current protected area (PA) cover. We searched for non-random patterns of habitat loss and PA coverage among these biogeographic regions throughout the Cerrado. Finally, with the species EOO as biodiversity layers, we used Zonation to discuss contemporary PA distribution, as well as to highlight current priority areas for conservation within the Cerrado. We ran Zonation under all four conservation scenarios mentioned above. We observed that habitat loss and PA coverage significantly differed between biogeographic regions. The southernmost biogeographic region is the least protected and the most impacted, with priority areas highly scattered in small, disjunct fragments. The northernmost biogeographic region (Tocantins-Serra Geral) is the most protected and least impacted, showing extensive priority areas in all Zonation scenarios. Therefore, current and past deforestation trends are severely threatening biogeographic patterns in the Cerrado. Moreover, PA distribution is spatially biased, and does not represent biogeographic divisions of the Cerrado. Consequently, we show that biogeographic patterns and processes are being erased at an accelerated pace, reinforcing the urgent need to create new reserves and to avoid the loss of the last remaining fragments of once continuous biogeographic regions. These actions are fundamental and urgent for conserving biogeographic and evolutionary information in this highly imperiled savanna hotspot. PMID:26252746
Barker, Brittany S.; Rodríguez-Robles, Javier A.; Cook, Joseph A.
2014-01-01
The effects of late Quaternary climate on distributions and evolutionary dynamics of insular species are poorly understood in most tropical archipelagoes. We used ecological niche models under past and current climate to derive hypotheses regarding how stable climatic conditions shaped genetic diversity in two ecologically distinctive frogs in Puerto Rico. Whereas the Mountain Coquí, Eleutherodactylus portoricensis, is restricted to montane forest in the Cayey and Luquillo Mountains, the Red-eyed Coquí, E. antillensis, is a habitat generalist distributed across the entire Puerto Rican Bank (Puerto Rico and the Virgin Islands, excluding St. Croix). To test our hypotheses, we conducted phylogeographic and population genetic analyses based on mitochondrial and nuclear loci of each species across their range in Puerto Rico. Patterns of population differentiation in E. portoricensis, but not in E. antillensis, supported our hypotheses. For E. portoricensis, these patterns include: individuals isolated by long-term unsuitable climate in the Río Grande de Loíza Basin in eastern Puerto Rico belong to different genetic clusters; past and current climate strongly predicted genetic differentiation; and Cayey and Luquillo Mountains populations split prior to the last interglacial. For E. antillensis, these patterns include: genetic clusters did not fully correspond to predicted long-term unsuitable climate; and past and current climate weakly predicted patterns of genetic differentiation. Genetic signatures in E. antillensis are consistent with a recent range expansion into western Puerto Rico, possibly resulting from climate change and anthropogenic influences. As predicted, regions with a large area of long-term suitable climate were associated with higher genetic diversity in both species, suggesting larger and more stable populations. Finally, we discussed the implications of our findings for developing evidence-based management decisions for E. portoricensis, a taxon of special concern. Our findings illustrate the role of persistent suitable climatic conditions in promoting the persistence and diversification of tropical island organisms. PMID:26508809
Barker, Brittany S; Rodríguez-Robles, Javier A; Cook, Joseph A
2015-08-01
The effects of late Quaternary climate on distributions and evolutionary dynamics of insular species are poorly understood in most tropical archipelagoes. We used ecological niche models under past and current climate to derive hypotheses regarding how stable climatic conditions shaped genetic diversity in two ecologically distinctive frogs in Puerto Rico. Whereas the Mountain Coquí, Eleutherodactylus portoricensis , is restricted to montane forest in the Cayey and Luquillo Mountains, the Red-eyed Coquí, E. antillensis , is a habitat generalist distributed across the entire Puerto Rican Bank (Puerto Rico and the Virgin Islands, excluding St. Croix). To test our hypotheses, we conducted phylogeographic and population genetic analyses based on mitochondrial and nuclear loci of each species across their range in Puerto Rico. Patterns of population differentiation in E. portoricensis , but not in E. antillensis , supported our hypotheses. For E. portoricensis , these patterns include: individuals isolated by long-term unsuitable climate in the Río Grande de Loíza Basin in eastern Puerto Rico belong to different genetic clusters; past and current climate strongly predicted genetic differentiation; and Cayey and Luquillo Mountains populations split prior to the last interglacial. For E. antillensis , these patterns include: genetic clusters did not fully correspond to predicted long-term unsuitable climate; and past and current climate weakly predicted patterns of genetic differentiation. Genetic signatures in E. antillensis are consistent with a recent range expansion into western Puerto Rico, possibly resulting from climate change and anthropogenic influences. As predicted, regions with a large area of long-term suitable climate were associated with higher genetic diversity in both species, suggesting larger and more stable populations. Finally, we discussed the implications of our findings for developing evidence-based management decisions for E. portoricensis , a taxon of special concern. Our findings illustrate the role of persistent suitable climatic conditions in promoting the persistence and diversification of tropical island organisms.
NASA Astrophysics Data System (ADS)
Kim, J.; Park, K.
2016-12-01
In order to evaluate the performance of operational forecast models in the Korea operational oceanographic system (KOOS) which has been developed by Korea Institute of Ocean Science and Technology (KIOST), a skill assessment (SA) tool has developed and provided multiple skill metrics including not only correlation and error skills by comparing predictions and observation but also pattern clustering with numerical models, satellite, and observation. The KOOS has produced 72 hours forecast information on atmospheric and hydrodynamic forecast variables of wind, pressure, current, tide, wave, temperature, and salinity at every 12 hours per day produced by operating numerical models such as WRF, ROMS, MOM5, WW-III, and SWAN and the SA has conducted to evaluate the forecasts. We have been operationally operated several kinds of numerical models such as WRF, ROMS, MOM5, MOHID, WW-III. Quantitative assessment of operational ocean forecast model is very important to provide accurate ocean forecast information not only to general public but also to support ocean-related problems. In this work, we propose a method of pattern clustering using machine learning method and GIS-based spatial analytics to evaluate spatial distribution of numerical models and spatial observation data such as satellite and HF radar. For the clustering, we use 10 or 15 years-long reanalysis data which was computed by the KOOS, ECMWF, and HYCOM to make best matching clusters which are classified physical meaning with time variation and then we compare it with forecast data. Moreover, for evaluating current, we develop extraction method of dominant flow and apply it to hydrodynamic models and HF radar's sea surface current data. By applying pattern clustering method, it allows more accurate and effective assessment of ocean forecast models' performance by comparing not only specific observation positions which are determined by observation stations but also spatio-temporal distribution of whole model areas. We believe that our proposed method will be very useful to examine and evaluate large amount of numerical modeling data as well as satellite data.
NASA Technical Reports Server (NTRS)
Kanerva, P.
1986-01-01
To determine the relation of the sparse, distributed memory to other architectures, a broad review of the literature was made. The memory is called a pattern memory because they work with large patterns of features (high-dimensional vectors). A pattern is stored in a pattern memory by distributing it over a large number of storage elements and by superimposing it over other stored patterns. A pattern is retrieved by mathematical or statistical reconstruction from the distributed elements. Three pattern memories are discussed.
NASA Astrophysics Data System (ADS)
Wei, Xuefeng F.; Grill, Warren M.
2005-12-01
Deep brain stimulation (DBS) electrodes are designed to stimulate specific areas of the brain. The most widely used DBS electrode has a linear array of 4 cylindrical contacts that can be selectively turned on depending on the placement of the electrode and the specific area of the brain to be stimulated. The efficacy of DBS therapy can be improved by localizing the current delivery into specific populations of neurons and by increasing the power efficiency through a suitable choice of electrode geometrical characteristics. We investigated segmented electrode designs created by sectioning each cylindrical contact into multiple rings. Prototypes of these designs, made with different materials and larger dimensions than those of clinical DBS electrodes, were evaluated in vitro and in simulation. A finite element model was developed to study the effects of varying the electrode characteristics on the current density and field distributions in an idealized electrolytic medium and in vitro experiments were conducted to measure the electrode impedance. The current density over the electrode surface increased towards the edges of the electrode, and multiple edges increased the non-uniformity of the current density profile. The edge effects were more pronounced over the end segments than over the central segments. Segmented electrodes generated larger magnitudes of the second spatial difference of the extracellular potentials, and thus required lower stimulation intensities to achieve the same level of neuronal activation as solid electrodes. For a fixed electrode conductive area, increasing the number of segments (edges) decreased the impedance compared to a single solid electrode, because the average current density over the segments increased. Edge effects played a critical role in determining the current density distributions, neuronal excitation patterns, and impedance of cylindrical electrodes, and segmented electrodes provide a means to increase the efficiency of DBS.
Content Representation in the Human Medial Temporal Lobe
Liang, Jackson C.; Wagner, Anthony D.
2013-01-01
Current theories of medial temporal lobe (MTL) function focus on event content as an important organizational principle that differentiates MTL subregions. Perirhinal and parahippocampal cortices may play content-specific roles in memory, whereas hippocampal processing is alternately hypothesized to be content specific or content general. Despite anatomical evidence for content-specific MTL pathways, empirical data for content-based MTL subregional dissociations are mixed. Here, we combined functional magnetic resonance imaging with multiple statistical approaches to characterize MTL subregional responses to different classes of novel event content (faces, scenes, spoken words, sounds, visual words). Univariate analyses revealed that responses to novel faces and scenes were distributed across the anterior–posterior axis of MTL cortex, with face responses distributed more anteriorly than scene responses. Moreover, multivariate pattern analyses of perirhinal and parahippocampal data revealed spatially organized representational codes for multiple content classes, including nonpreferred visual and auditory stimuli. In contrast, anterior hippocampal responses were content general, with less accurate overall pattern classification relative to MTL cortex. Finally, posterior hippocampal activation patterns consistently discriminated scenes more accurately than other forms of content. Collectively, our findings indicate differential contributions of MTL subregions to event representation via a distributed code along the anterior–posterior axis of MTL that depends on the nature of event content. PMID:22275474
NASA Technical Reports Server (NTRS)
Buzulukova, N.; Fok, M.-C.; Goldstein, J.; Valek, P.; McComas, D. J.; Brandt, P. C.
2010-01-01
We present a comparative study of ring current dynamics during strong and moderate storms. The ring current during the strong storm is studied with IMAGE/HENA data near the solar cycle maximum in 2000. The ring current during the moderate storm is studied using energetic neutral atom (ENA) data from the Two Wide-Angle Imaging Neutral- Atom Spectrometers (TWINS) mission during the solar minimum in 2008. For both storms, the local time distributions of ENA emissions show signatures of postmidnight enhancement (PME) during the main phases. To model the ring current and ENA emissions, we use the Comprehensive Ring Current Model (CRCM). CRCM results show that the main-phase ring current pressure peaks in the premidnight-dusk sector, while the most intense CRCM-simulated ENA emissions show PME signatures. We analyze two factors to explain this difference: the dependence of charge-exchange cross section on energy and pitch angle distributions of ring current. We find that the IMF By effect (twisting of the convection pattern due to By) is not needed to form the PME. Additionally, the PME is more pronounced for the strong storm, although relative shielding and hence electric field skewing is well developed for both events.
Influence of the Yellow Sea Warm Current on phytoplankton community in the central Yellow Sea
NASA Astrophysics Data System (ADS)
Liu, Xin; Chiang, Kuo-Ping; Liu, Su-Mei; Wei, Hao; Zhao, Yuan; Huang, Bang-Qin
2015-12-01
In early spring, a hydrological front emerges in the central Yellow Sea, resulting from the intrusion of the high temperature and salinity Yellow Sea Warm Current (YSWC). The present study, applying phytoplankton pigments and flow cytometry measurements in March of 2007 and 2009, focuses on the biogeochemical effects of the YSWC. The nutrients fronts were coincident with the hydrological front, and a positive linear relationship between nitrate and salinity was found in the frontal area. This contrast with the common situation of coastal waters where high salinity values usually correlate with poor nutrients. We suggested nutrient concentrations of the YSWC waters might have been enhanced by mixing with the local nutrient-rich waters when it invaded the Yellow Sea from the north of the Changjiang estuary. In addition, our results indicate that the relative abundance of diatoms ranged from 26% to 90%, showing a higher value in the YSCC than in YSWC waters. Similar distributions were found between diatoms and dinoflagellates, however the cyanobacteria and prasinophytes showed an opposite distribution pattern. Good correlations were found between the pigments and flow cytometry observations on the picophytoplankton groups. Prasinophytes might be the major contributor to pico-eukaryotes in the central Yellow Sea as similar distributional patterns and significant correlations between them. It seems that the front separates the YSWC from the coastal water, and different phytoplankton groups are transported in these water masses and follow their movement. These results imply that the YSWC plays important roles in the distribution of nutrients, phytoplankton biomass and also in the community structure of the central Yellow Sea.
FracPaQ: a MATLAB™ Toolbox for the Quantification of Fracture Patterns
NASA Astrophysics Data System (ADS)
Healy, D.; Rizzo, R. E.; Cornwell, D. G.; Timms, N.; Farrell, N. J.; Watkins, H.; Gomez-Rivas, E.; Smith, M.
2016-12-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying the fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The method presented is inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. Planned future releases will incorporate multi-scale analyses based on a wavelet method to look for scale transitions, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern.
Shi, Xiao-Jun; Zhang, Ming-Li
2015-03-01
Zygophyllum xanthoxylon, a desert species, displaying a broad east-west continuous distribution pattern in arid Northwestern China, can be considered as a model species to investigate the biogeographical history of this region. We sequenced two chloroplast DNA spacers (psbK-psbI and rpl32-trnL) in 226 individuals from 31 populations to explore the phylogeographical structure. Median-joining network was constructed and analysis of AMOVA, SMOVA, neutrality tests and distribution analysis were used to examine genetic structure and potential range expansion. Using species distribution modeling, the geographical distribution of Z. xanthoxylon was modeled during the present and at the Last Glacial Maximum (LGM). Among 26 haplotypes, one was widely distributed, but most was restricted to either the eastern or western region. The populations with the highest levels of haplotype diversity were found in the Tianshan Mountains and its surroundings in the west, and the Helan Mountains and Alxa Plateau in the east. AMOVA and SAMOVA showed that over all populations, the species lacks phylogeographical structure, which is speculated to be the result of its specific biology. Neutrality tests and mismatch distribution analysis support past range expansions of the species. Comparing the current distribution to those cold and dry conditions in LGM, Z. xanthoxylon had a shrunken and more fragmented range during LGM. Based on the evidences from phylogeographical patterns, distribution of genetic variability, and paleodistribution modeling, Z. xanthoxylon is speculated most likely to have originated from the east and migrated westward via the Hexi Corridor.
Distribution of biogenic silica and quartz in recent deep-sea sediments
NASA Astrophysics Data System (ADS)
Leinen, Margaret; Cwienk, Douglas; Heath, G. Ross; Biscaye, Pierre E.; Kolla, V.; Thiede, Jørn; Dauphin, J. Paul
1986-03-01
All available quartz and biogenic silica concentrations from deep-sea surface sediments were intercalibrated, plotted, and contoured on a calcium-carbonate-free basis. The maps show highest concentrations of biogenic silica (opal) along the west African coast, along equatorial divergences in all oceans, and at the Polar Front in the southern Indian Ocean. These are all areas where upwelling is strong and there is high biological productivity. Quartz in pelagic sediments deposited far from land is generally eolian in origin. Its distribution reflects dominant wind systems in the Pacific, but in much of the Atlantic and Indian oceans the distribution pattern is strongly modified by turbidite deposition and bottom current processes.
NASA Astrophysics Data System (ADS)
Chi, Cheng; Liu, Chi-Chun; Meli, Luciana; Guo, Jing; Parnell, Doni; Mignot, Yann; Schmidt, Kristin; Sanchez, Martha; Farrell, Richard; Singh, Lovejeet; Furukawa, Tsuyoshi; Lai, Kafai; Xu, Yongan; Sanders, Daniel; Hetzer, David; Metz, Andrew; Burns, Sean; Felix, Nelson; Arnold, John; Corliss, Daniel
2017-03-01
In this study, the integrity and the benefits of the DSA shrink process were verified through a via-chain test structure, which was fabricated by either DSA or baseline litho/etch process for via layer formation while metal layer processes remain the same. The nearest distance between the vias in this test structure is below 60nm, therefore, the following process components were included: 1) lamella-forming BCP for forming self-aligned via (SAV), 2) EUV printed guiding pattern, and 3) PS-philic sidewall. The local CDU (LCDU) of minor axis was improved by 30% after DSA shrink process. We compared two DSA Via shrink processes and a DSA_Control process, in which guiding patterns (GP) were directly transferred to the bottom OPL without DSA shrink. The DSA_Control apparently resulted in larger CD, thus, showed much higher open current and shorted the dense via chains. The non-optimized DSA shrink process showed much broader current distribution than the improved DSA shrink process, which we attributed to distortion and dislocation of the vias and ineffective SAV. Furthermore, preliminary defectivity study of our latest DSA process showed that the primary defect mode is likely to be etch-related. The challenges, strategies applied to improve local CD uniformity and electrical current distribution, and potential adjustments were also discussed.
A generic set of HF antennas for use with spherical model expansions
NASA Astrophysics Data System (ADS)
Katal, Nedim
1990-03-01
An antenna engineering handbook and database program has been constructed by engineers at the Lawrence Livermore National Laboratory (LLNL) using the Numerical Electromagnetics Code (NEC) antenna modeling program to prepare data performance on tactical field communication antennas used by the Army. It is desirable to have this information installed on a personnel computer (PC), using relational database techniques to select antennas based on performance criteria. This thesis obtains and analyses current distributions and radiation pattern data by using NEC for the following set of four (4) high frequency (HF) tactical generic antennas to be used in future spherical mode expansion work: a quarter wavelength basic whip, a one-wavelength horizontal quad Loop, a 564-foot longwire, and a sloping vee beam dipole. The results of this study show that the basic whip antenna provides good groundwave communication, but it has poor near vertical incident skywave (NVIS) performance. The current distribution has the characteristics of standing waves. The horizontal quad loop antenna is good for night vision imaging systems (NVIS) and medium range skywave communications. The current distribution is sinusoidal and continuous around the loop. The long wire antenna allows short, medium and long range communications and a standing wave current distribution occurs along the antenna axis due to non-termination. The sloping vee beam antenna favors long range communication and the current distribution is mainly that of travelling sinusoidal waves. Because of their well-known efficiency, the basic whip and quad loop can be used as reference standards for the spherical mode expansion work. The longwire and sloping vee beam antenna are unwieldy, but they are effective as base station antennas.
A living fossil tale of Pangaean biogeography.
Murienne, Jerome; Daniels, Savel R; Buckley, Thomas R; Mayer, Georg; Giribet, Gonzalo
2014-01-22
The current distributions of widespread groups of terrestrial animals and plants are supposedly the result of a mixture of either vicariance owing to continental split or more recent trans-oceanic dispersal. For organisms exhibiting a vicariant biogeographic pattern-achieving their current distribution by riding on the plates of former supercontinents-this view is largely inspired by the belief that Pangaea lacked geographical or ecological barriers, or that extinctions and dispersal would have erased any biogeographic signal since the early Mesozoic. We here present a time-calibrated molecular phylogeny of Onychophora (velvet worms), an ancient and exclusively terrestrial panarthropod group distributed throughout former Pangaean landmasses. Our data not only demonstrate that trans-oceanic dispersal does not need be invoked to explain contemporary distributions, but also reveal that the early diversification of the group pre-dates the break-up of Pangaea, maintaining regionalization even in landmasses that have remained contiguous throughout the history of the group. These results corroborate a growing body of evidence from palaeontology, palaeogeography and palaeoclimatic modelling depicting ancient biogeographic regionalization over the continuous landmass of Pangaea.
Re-Shuffling of Species with Climate Disruption: A No-Analog Future for California Birds?
Stralberg, Diana; Jongsomjit, Dennis; Howell, Christine A.; Snyder, Mark A.; Alexander, John D.; Wiens, John A.; Root, Terry L.
2009-01-01
By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just future changes in the distribution of individual species, but including the potential for unprecedented changes in community composition and unanticipated consequences of novel species assemblages. PMID:19724641
Parallel Electric Field on Auroral Magnetic Field Lines.
NASA Astrophysics Data System (ADS)
Yeh, Huey-Ching Betty
1982-03-01
The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field lines to maintain current continuity. In a steady state, this model of simple electrostatic acceleration without anomalous resistivity also predicts observable relations between global parallel currents and parallel potential drops and between global energy deposition and parallel potential drops. The temperature, density, and species of the unaccelerated charge carriers are the relevant parameters of the model. The dusk-dawn -noon asymmetry of the global (phi)(,(PARLL)) distribution can be explained by the above steady-state (phi)(,(PARLL)) process if we associate the source regions of upward Birkeland current carriers in Region 1, Region 2, and the cusp region with the plasma sheet boundary layer, the near-Earth plasma sheet, and the magnetosheath, respectively. The results of this study provide observational information on the global distribution of parallel potential drops and the prevailing process of generating and maintaining potential gradients (parallel electric fields) along auroral magnetic field lines.
Molecular basis of natural variation and environmental control of trichome patterning
Hauser, Marie-Theres
2014-01-01
Trichomes are differentiated epidermal cells on above ground organs of nearly all land plants. They play important protective roles as structural defenses upon biotic attacks such as herbivory, oviposition and fungal infections, and against abiotic stressors such as drought, heat, freezing, excess of light, and UV radiation. The pattern and density of trichomes is highly variable within natural population suggesting tradeoffs between traits positively affecting fitness such as resistance and the costs of trichome production. The spatial distribution of trichomes is regulated through a combination of endogenous developmental programs and external signals. This review summarizes the current understanding on the molecular basis of the natural variation and the role of phytohormones and environmental stimuli on trichome patterning. PMID:25071803
Environmental and economic sustainability of the Mediterranean Diet.
Germani, Alessia; Vitiello, Valeria; Giusti, Anna Maria; Pinto, Alessandro; Donini, Lorenzo Maria; del Balzo, Valeria
2014-12-01
The Mediterranean diet (MD) has been proposed as a healthy dietary pattern for disease prevention. However, little information exists on the cost and on the environmental impact of such a dietary model. We compared the environmental impact and the costs of the current food consumption pattern of the Italian population and the Mediterranean model in order to investigate its overall sustainability. The environmental impact was calculated on the basis of three indexes, i.e. Carbon, Ecological and Water Footprint. The costs (Euro) per person of the MD and of the current Italian household food expenditure were considered on a weekly basis according to the 2013 data from the Observatory prices and tariffs of the Ministry of Economic Development and the service SMS consumers of the Ministry of Agriculture, Food and Forestry. The MD resulted to produce a lower environmental impact than the current food consumption of the Italian population. The monthly expenditure of the MD is slightly higher in the overall budget compared to the current expenditure allocated to food by the Italian population, but there is a substantial difference in the distribution of budget according to the different food groups.
Plume-tracking robots: a new application of chemical sensors.
Ishid, H; Nakamoto, T; Moriizumi, T; Kikas, T; Janata, J
2001-04-01
Many animals have the ability to search for odor sources by tracking their plumes. Some of the key features of this search behavior have been successfully transferred to robot platforms, although the capabilities of animals are still beyond the current level of sensor technologies. The examples described in this paper are (1) incorporating into a wheeled robot the upwind surges and casting used by moths in tracking pheromone plumes, (2) extracting useful information from the response patterns of a chemical sensor array patterned after the spatially distributed chemoreceptors of some animals, and (3) mimicking the fanning behavior of silkworm moths to enhance the reception of chemical signals by drawing molecules from one direction. The achievements so far and current efforts are reviewed to illustrate the steps to be taken toward future development of this technology.
Rodrigues, Ana S. B.; Silva, Sara E.; Marabuto, Eduardo; Silva, Diogo N.; Wilson, Mike R.; Thompson, Vinton; Yurtsever, Selçuk; Halkka, Antti; Borges, Paulo A. V.; Quartau, José A.; Paulo, Octávio S.; Seabra, Sofia G.
2014-01-01
Philaenus spumarius is a widespread insect species in the Holarctic region. Here, by focusing on the mtDNA gene COI but also using the COII and Cyt b genes and the nuclear gene EF-1α, we tried to explain how and when its current biogeographic pattern evolved by providing time estimates of the main demographic and evolutionary events and investigating its colonization patterns in and out of Eurasia. Evidence of recent divergence and expansion events at less than 0.5 Ma ago indicate that climate fluctuations in the Mid-Late Pleistocene were important in shaping the current phylogeographic pattern of the species. Data support a first split and differentiation of P. spumarius into two main mitochondrial lineages: the “western”, in the Mediterranean region and the “eastern”, in Anatolia/Caucasus. It also supports a following differentiation of the “western” lineage into two sub-lineages: the “western-Mediterranean”, in Iberia and the “eastern-Mediterranean” in the Balkans. The recent pattern seems to result from postglacial range expansion from Iberia and Caucasus/Anatolia, thus not following one of the four common paradigms. Unexpected patterns of recent gene-flow events between Mediterranean peninsulas, a close relationship between Iberia and North Africa, as well as high levels of genetic diversity being maintained in northern Europe were found. The mitochondrial pattern does not exactly match to the nuclear pattern suggesting that the current biogeographic pattern of P. spumarius may be the result of both secondary admixture and incomplete lineage sorting. The hypothesis of recent colonization of North America from both western and northern Europe is corroborated by our data and probably resulted from accidental human translocations. A probable British origin for the populations of the Azores and New Zealand was revealed, however, for the Azores the distribution of populations in high altitude native forests is somewhat puzzling and may imply a natural colonization of the archipelago. PMID:24892429
Accurate step-hold tracking of smoothly varying periodic and aperiodic probability.
Ricci, Matthew; Gallistel, Randy
2017-07-01
Subjects observing many samples from a Bernoulli distribution are able to perceive an estimate of the generating parameter. A question of fundamental importance is how the current percept-what we think the probability now is-depends on the sequence of observed samples. Answers to this question are strongly constrained by the manner in which the current percept changes in response to changes in the hidden parameter. Subjects do not update their percept trial-by-trial when the hidden probability undergoes unpredictable and unsignaled step changes; instead, they update it only intermittently in a step-hold pattern. It could be that the step-hold pattern is not essential to the perception of probability and is only an artifact of step changes in the hidden parameter. However, we now report that the step-hold pattern obtains even when the parameter varies slowly and smoothly. It obtains even when the smooth variation is periodic (sinusoidal) and perceived as such. We elaborate on a previously published theory that accounts for: (i) the quantitative properties of the step-hold update pattern; (ii) subjects' quick and accurate reporting of changes; (iii) subjects' second thoughts about previously reported changes; (iv) subjects' detection of higher-order structure in patterns of change. We also call attention to the challenges these results pose for trial-by-trial updating theories.
Nonprincipal plane scattering of flat plates and pattern control of horn antennas
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Polka, Lesley A.; Liu, Kefeng
1989-01-01
Using the geometrical theory of diffraction, the traditional method of high frequency scattering analysis, the prediction of the radar cross section of a perfectly conducting, flat, rectangular plate is limited to principal planes. Part A of this report predicts the radar cross section in nonprincipal planes using the method of equivalent currents. This technique is based on an asymptotic end-point reduction of the surface radiation integrals for an infinite wedge and enables nonprincipal plane prediction. The predicted radar cross sections for both horizontal and vertical polarizations are compared to moment method results and experimental data from Arizona State University's anechoic chamber. In part B, a variational calculus approach to the pattern control of the horn antenna is outlined. The approach starts with the optimization of the aperture field distribution so that the control of the radiation pattern in a range of directions can be realized. A control functional is thus formulated. Next, a spectral analysis method is introduced to solve for the eigenfunctions from the extremal condition of the formulated functional. Solutions to the optimized aperture field distribution are then obtained.
NASA Astrophysics Data System (ADS)
Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan
2015-03-01
The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.
Synchrony of two uncoupled neurons under half wave sine current stimulation
NASA Astrophysics Data System (ADS)
Peng, Yueping; Wang, Jue; Jian, Zhong
2009-04-01
Two uncoupled Hindmarsh-Rose neurons under different initial discharge patterns are stimulated by the half wave sine current; and the synchronization mechanism of the two neurons is discussed by analyzing their membrane potentials and their interspike interval (ISI) distribution. Under the half wave sine current stimulation, the two uncoupled neurons under different initial conditions, whose parameter r (the parameter r is related to the membrane penetration of calcium ion, and reflects the changing speed of the slow adaptation current) is different or the same, can realize discharge synchronization (phase synchronization) or the full synchronization (state synchronization). The synchronization characteristics are mainly related to the frequency and the amplitude of the half wave sine current, and are little related to the parameter r and the initial state of the two neurons. This investigation shows the mechanism of the current's amplitude and its frequency affecting the synchronization process of neurons, and the neurons' discharge patterns and synchronization process can be adjusted and controlled by the current's amplitude and its frequency. This result is of far reaching importance to study synchronization and encode of many neurons or neural network, and provides the theoretic basis for studying the mechanism of some nervous diseases such as epilepsy and Alzheimer's disease by the slow wave of EEG.
Surface-plasmon distributed-feedback quantum cascade lasers operating pulsed, room temperature
NASA Astrophysics Data System (ADS)
Bousseksou, A.; Chassagneux, Y.; Coudevylle, J. R.; Colombelli, R.; Sirtori, C.; Patriarche, G.; Beaudoin, G.; Sagnes, I.
2009-08-01
We report distributed-feedback surface-plasmon quantum cascade lasers operating at λ ≈7.6μm. The distributed feedback is obtained by the sole patterning of the top metal contact on a surface plasmon waveguide. Single mode operation with more than 30dB side mode suppression ratio is obtained in pulsed mode and at room temperature. A careful experimental study confirms that by varying the grating duty cycle, one can reduce the waveguide losses with respect to standard, unpatterned surface-plasmon devices. This allows one to reduce the laser threshold current of more than a factor of 2 in the 200-300K temperature range. This approach may lead to a fabrication technology for midinfrared distributed-feedback lasers based on a very simple processing.
A Motion-Based Feature for Event-Based Pattern Recognition
Clady, Xavier; Maro, Jean-Matthieu; Barré, Sébastien; Benosman, Ryad B.
2017-01-01
This paper introduces an event-based luminance-free feature from the output of asynchronous event-based neuromorphic retinas. The feature consists in mapping the distribution of the optical flow along the contours of the moving objects in the visual scene into a matrix. Asynchronous event-based neuromorphic retinas are composed of autonomous pixels, each of them asynchronously generating “spiking” events that encode relative changes in pixels' illumination at high temporal resolutions. The optical flow is computed at each event, and is integrated locally or globally in a speed and direction coordinate frame based grid, using speed-tuned temporal kernels. The latter ensures that the resulting feature equitably represents the distribution of the normal motion along the current moving edges, whatever their respective dynamics. The usefulness and the generality of the proposed feature are demonstrated in pattern recognition applications: local corner detection and global gesture recognition. PMID:28101001
Biodiversity and biogeography of the atmosphere
Womack, Ann M.; Bohannan, Brendan J. M.; Green, Jessica L.
2010-01-01
The variation of life has predominantly been studied on land and in water, but this focus is changing. There is a resurging interest in the distribution of life in the atmosphere and the processes that underlie patterns in this distribution. Here, we review our current state of knowledge about the biodiversity and biogeography of the atmosphere, with an emphasis on micro-organisms, the numerically dominant forms of aerial life. We present evidence to suggest that the atmosphere is a habitat for micro-organisms, and not purely a conduit for terrestrial and aquatic life. Building on a rich history of research in terrestrial and aquatic systems, we explore biodiversity patterns that are likely to play an important role in the emerging field of air biogeography. We discuss the possibility of a more unified understanding of the biosphere, one that links knowledge about biodiversity and biogeography in the lithosphere, hydrosphere and atmosphere. PMID:20980313
Effects of gender and regional dialect on prosodic patterns in American English
Clopper, Cynthia G.; Smiljanic, Rajka
2011-01-01
While cross-dialect prosodic variation has been well established for many languages, most variationist research on regional dialects of American English has focused on the vowel system. The current study was designed to explore prosodic variation in read speech in two regional varieties of American English: Southern and Midland. Prosodic dialect variation was analyzed in two domains: speaking rate and the phonetic expression of pitch movements associated with accented and phrase-final syllables. The results revealed significant effects of regional dialect on the distributions of pauses, pitch accents, and phrasal-boundary tone combinations. Significant effects of talker gender were also observed on the distributions of pitch accents and phrasal-boundary tone combinations. The findings from this study demonstrate that regional and gender identity features are encoded in part through prosody, and provide further motivation for the close examination of prosodic patterns across regional and social varieties of American English. PMID:21686317
Plate tectonics drive tropical reef biodiversity dynamics
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F.; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J.; de Santana, Charles N.; Heine, Christian; Mouillot, David; Bellwood, David R.; Pellissier, Loïc
2016-01-01
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics. PMID:27151103
Plate tectonics drive tropical reef biodiversity dynamics.
Leprieur, Fabien; Descombes, Patrice; Gaboriau, Théo; Cowman, Peter F; Parravicini, Valeriano; Kulbicki, Michel; Melián, Carlos J; de Santana, Charles N; Heine, Christian; Mouillot, David; Bellwood, David R; Pellissier, Loïc
2016-05-06
The Cretaceous breakup of Gondwana strongly modified the global distribution of shallow tropical seas reshaping the geographic configuration of marine basins. However, the links between tropical reef availability, plate tectonic processes and marine biodiversity distribution patterns are still unknown. Here, we show that a spatial diversification model constrained by absolute plate motions for the past 140 million years predicts the emergence and movement of diversity hotspots on tropical reefs. The spatial dynamics of tropical reefs explains marine fauna diversification in the Tethyan Ocean during the Cretaceous and early Cenozoic, and identifies an eastward movement of ancestral marine lineages towards the Indo-Australian Archipelago in the Miocene. A mechanistic model based only on habitat-driven diversification and dispersal yields realistic predictions of current biodiversity patterns for both corals and fishes. As in terrestrial systems, we demonstrate that plate tectonics played a major role in driving tropical marine shallow reef biodiversity dynamics.
Guo, Weijun; Wu, Guoxiang; Xu, Tiaojian; Li, Xueyan; Ren, Xiaozhong; Hao, Yanni
2018-02-01
The discharge of petroleum hydrocarbons (PHs; ~10,000tons annually) into the Bohai Sea, a shallow inland sea in China, presents a serious threat to the marine environment. To evaluate the effects of PHs pollution and estimate the corresponding environmental capacity, we have developed a genetic algorithm-based coupled hydrodynamic/transport for simulating PHs concentration evolution and distribution from July 2006 to October 2007, with the predicted values being in good agreement with monitoring results. Importantly, the mean PHs concentrations and seasonal concentration variations were primarily determined by external loading, i.e., currents were shown to drive PHs transport, reconfigure local PHs patterns, and increase PHs concentration in water masses, even at large distances from discharge sources. The developed model could realistically simulate PHs distribution and evolution, thus being a useful tool for estimating the seasonal environmental capacity of PHs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Schwalm, Donelle; Epps, Clinton W; Rodhouse, Thomas J; Monahan, William B; Castillo, Jessica A; Ray, Chris; Jeffress, Mackenzie R
2016-04-01
Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species' niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species' niches, resulting in predictions that are generally limited to climate-occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place-based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence-absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981-2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local-scale differences in the realized niche of the American pika. This variation resulted in diverse and - in some cases - highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place-based approach to species distribution modeling that includes fine-scale factors when assessing current and future climate impacts on species' distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas. © 2015 John Wiley & Sons Ltd.
Rose, Hannah; Caminade, Cyril; Bolajoko, Muhammad Bashir; Phelan, Paul; van Dijk, Jan; Baylis, Matthew; Williams, Diana; Morgan, Eric R
2016-03-01
Recent climate change has resulted in changes to the phenology and distribution of invertebrates worldwide. Where invertebrates are associated with disease, climate variability and changes in climate may also affect the spatio-temporal dynamics of disease. Due to its significant impact on sheep production and welfare, the recent increase in diagnoses of ovine haemonchosis caused by the nematode Haemonchus contortus in some temperate regions is particularly concerning. This study is the first to evaluate the impact of climate change on H. contortus at a continental scale. A model of the basic reproductive quotient of macroparasites, Q0 , adapted to H. contortus and extended to incorporate environmental stochasticity and parasite behaviour, was used to simulate Pan-European spatio-temporal changes in H. contortus infection pressure under scenarios of climate change. Baseline Q0 simulations, using historic climate observations, reflected the current distribution of H. contortus in Europe. In northern Europe, the distribution of H. contortus is currently limited by temperatures falling below the development threshold during the winter months and within-host arrested development is necessary for population persistence over winter. In southern Europe, H. contortus infection pressure is limited during the summer months by increased temperature and decreased moisture. Compared with this baseline, Q0 simulations driven by a climate model ensemble predicted an increase in H. contortus infection pressure by the 2080s. In northern Europe, a temporal range expansion was predicted as the mean period of transmission increased by 2-3 months. A bimodal seasonal pattern of infection pressure, similar to that currently observed in southern Europe, emerges in northern Europe due to increasing summer temperatures and decreasing moisture. The predicted patterns of change could alter the epidemiology of H. contortus in Europe, affect the future sustainability of contemporary control strategies, and potentially drive local adaptation to climate change in parasite populations. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami
2012-03-01
There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (<0.3 mm shell length, indicative of settlement patterns) in relation to physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.
Gao, L M; Möller, M; Zhang, X-M; Hollingsworth, M L; Liu, J; Mill, R R; Gibby, M; Li, D-Z
2007-11-01
We studied the phylogeography of Chinese yew (Taxus wallichiana), a tree species distributed over most of southern China and adjacent regions. A total of 1235 individuals from 50 populations from China and North Vietnam were analysed for chloroplast DNA variation using polymerase chain reaction-restriction fragment length polymorphism of the trnL-F intron-spacer region. A total of 19 different haplotypes were distinguished. We found a very high level of population differentiation and a strong phylogeographic pattern, suggesting low levels of recurrent gene flow among populations. Haplotype differentiation was most marked along the boundary between the Sino-Himalayan and Sino-Japanese Forest floristic subkingdoms, with only one haplotype being shared among these two subkingdoms. The Malesian and Sino-Himalayan Forest subkingdoms had five and 10 haplotypes, respectively, while the relatively large Sino-Japanese Forest subkingdom had only eight. The strong geography-haplotype correlation persisted at the regional floristic level, with most regions possessing a unique set of haplotypes, except for the central China region. Strong landscape effects were observed in the Hengduan and Dabashan mountains, where steep mountains and valleys might have been natural dispersal barriers. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest the existence of several localized refugia during the last glaciation from which the present-day distribution may be derived. The pattern of haplotype distribution across China and North Vietnam corresponded well with the current taxonomic delineation of the three intraspecific varieties of T. wallichiana.
Focusing on attention: the effects of working memory capacity and load on selective attention.
Ahmed, Lubna; de Fockert, Jan W
2012-01-01
Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals). The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled attention.
Zhou, Yi-Biao; Liang, Song; Wang, Qi-Xing; Gong, Yu-Han; Nie, Shi-Jiao; Nan, Lei; Yang, Ai-Hui; Liao, Qiang; Song, Xiu-Xia; Jiang, Qing-Wu
2014-03-10
HIV-, HCV- and HIV/HCV co-infections among drug users have become a rapidly emerging global public health problem. In order to constrain the dual epidemics of HIV/AIDS and drug use, China has adopted a methadone maintenance treatment program (MMTP) since 2004. Studies of the geographic heterogeneity of HIV and HCV infections at a local scale are sparse, which has critical implications for future MMTP implementation and health policies covering both HIV and HCV prevention among drug users in China. This study aimed to characterize geographic patterns of HIV and HCV prevalence at the township level among drug users in a Yi Autonomous Prefecture, Southwest of China. Data on demographic and clinical characteristics of all clients in the 11 MMTP clinics of the Yi Autonomous Prefecture from March 2004 to December 2012 were collected. A GIS-based geographic analysis involving geographic autocorrelation analysis and geographic scan statistics were employed to identify the geographic distribution pattern of HIV-, HCV- and co-infections among drug users. A total of 6690 MMTP clients was analyzed. The prevalence of HIV-, HCV- and co-infections were 25.2%, 30.8%, and 10.9% respectively. There were significant global and local geographic autocorrelations for HIV-, HCV-, and co-infection. The Moran's I was 0.3015, 0.3449, and 0.3155, respectively (P < 0.0001). Both the geographic autocorrelation analysis and the geographic scan statistical analysis showed that HIV-, HCV-, and co-infections in the prefecture exhibited significant geographic clustering at the township level. The geographic distribution pattern of each infection group was different. HIV-, HCV-, and co-infections among drug users in the Yi Autonomous Prefecture all exhibited substantial geographic heterogeneity at the township level. The geographic distribution patterns of the three groups were different. These findings imply that it may be necessary to inform or invent site-specific intervention strategies to better devote currently limited resource to combat these two viruses.
Hydrodynamically-driven distribution of lanternfish larvae in the Southeast Brazilian Bight
NASA Astrophysics Data System (ADS)
Namiki, Cláudia; Katsuragawa, Mario; Napolitano, Dante Campagnoli; Zani-Teixeira, Maria de Lourdes; Mattos, Rafael Augusto de; Silveira, Ilson Carlos Almeida da
2017-06-01
This study analyzes the influence of the Brazil Current and Ekman transport on the distribution of lanternfish larvae in the Southeast Brazilian Bight during summer and winter. Larvae of 19 taxa of lanternfish were identified, and Diaphus spp. and M. affine were the most abundant. Three water masses were present in the area: Coastal Water, Tropical Water and South Atlantic Central Water. Lanternfish larvae were associated with the Tropical Water in both seasons. During summer, species of Lampanyctinae were associated with the shallowest layers and Myctophinae in the deepest layers. In winter most species of both subfamilies were associated with intermediate depths, probably because greater mixing of water masses occurred at the surface and 100 m depth, limiting their distribution. During both cruises, the presence of lanternfish larvae in the continental shelf was related to the pattern of Tropical Water intrusion, which was mostly driven by the mesoscale activity of the Brazil Current and its interaction with the continental shelf.
NASA Technical Reports Server (NTRS)
Stephens, G. K.; Sitnov, M. I.; Ukhorskiy, A. Y.; Roelof, E. C.; Tsyganenko, N. A.; Le, G.
2016-01-01
The structure of storm time currents in the inner magnetosphere, including its innermost region inside 4R(sub E), is studied for the first time using a modification of the empirical geomagnetic field model TS07D and new data from Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms missions. It is shown that the model, which uses basis-function expansions instead of ad hoc current modules to approximate the magnetic field, consistently improves its resolution and magnetic field reconstruction with the increase of the number of basis functions and resolves the spatial structure and evolution of the innermost eastward current. This includes a connection between the westward ring current flowing largely at R > or approx. 3R(sub E) and the eastward ring current concentrated at R < or approx. 3R(sub E) resulting in a vortex current pattern. A similar pattern coined 'banana current' was previously inferred from the pressure distributions based on the energetic neutral atom imaging and first-principles ring current simulations. The morphology of the equatorial currents is dependent on storm phase. During the main phase, it is complex, with several asymmetries forming banana currents. Near SYM-H minimum, the banana current is strongest, is localized in the evening-midnight sector, and is more structured compared to the main phase. It then weakens during the recovery phase resulting in the equatorial currents to become mostly azimuthally symmetric.
Krüger, Julia; Bohrmann, Johannes
2015-01-16
Bioelectric phenomena have been found to exert influence on various developmental and regenerative processes. Little is known about their possible functions and the cellular mechanisms by which they might act during Drosophila oogenesis. In developing follicles, characteristic extracellular current patterns and membrane-potential changes in oocyte and nurse cells have been observed that partly depend on the exchange of protons, potassium ions and sodium ions. These bioelectric properties have been supposed to be related to various processes during oogenesis, e. g. pH-regulation, osmoregulation, cell communication, cell migration, cell proliferation, cell death, vitellogenesis and follicle growth. Analysing in detail the spatial distribution and activity of the relevant ion-transport mechanisms is expected to elucidate the roles that bioelectric phenomena play during oogenesis. To obtain an overview of bioelectric patterning along the longitudinal and transversal axes of the developing follicle, the spatial distributions of membrane potentials (Vmem), intracellular pH (pHi) and various membrane-channel proteins were studied systematically using fluorescent indicators, fluorescent inhibitors and antisera. During mid-vitellogenic stages 9 to 10B, characteristic, stage-specific Vmem-patterns in the follicle-cell epithelium as well as anteroposterior pHi-gradients in follicle cells and nurse cells were observed. Corresponding distribution patterns of proton pumps (V-ATPases), voltage-dependent L-type Ca(2+)-channels, amiloride-sensitive Na(+)-channels and Na(+),H(+)-exchangers (NHE) and gap-junction proteins (innexin 3) were detected. In particular, six morphologically distinguishable follicle-cell types are characterized on the bioelectric level by differences concerning Vmem and pHi as well as specific compositions of ion channels and carriers. Striking similarities between Vmem-patterns and activity patterns of voltage-dependent Ca(2+)-channels were found, suggesting a mechanism for transducing bioelectric signals into cellular responses. Moreover, gradients of electrical potential and pH were observed within single cells. Our data suggest that spatial patterning of Vmem, pHi and specific membrane-channel proteins results in bioelectric signals that are supposed to play important roles during oogenesis, e. g. by influencing spatial coordinates, regulating migration processes or modifying the cytoskeletal organization. Characteristic stage-specific changes of bioelectric activity in specialized cell types are correlated with various developmental processes.
NASA Astrophysics Data System (ADS)
Jamshidieini, Bahman; Fazaee, Reza
2016-05-01
Distribution network components connect machines and other loads to electrical sources. If resistance or current of any component is more than specified range, its temperature may exceed the operational limit which can cause major problems. Therefore, these defects should be found and eliminated according to their severity. Although infra-red cameras have been used for inspection of electrical components, maintenance prioritization of distribution cubicles is mostly based on personal perception and lack of training data prevents engineers from developing image processing methods. New research on the spatial control chart encouraged us to use statistical approaches instead of the pattern recognition for the image processing. In the present study, a new scanning pattern which can tolerate heavy autocorrelation among adjacent pixels within infra-red image was developed and for the first time combination of kernel smoothing, spatial control charts and local robust regression were used for finding defects within heterogeneous infra-red images of old distribution cubicles. This method does not need training data and this advantage is crucially important when the training data is not available.
High biodiversity on a deep-water reef in the eastern Fram Strait.
Meyer, Kirstin S; Soltwedel, Thomas; Bergmann, Melanie
2014-01-01
We report on the distribution and abundance of megafauna on a deep-water rocky reef (1796-2373 m) in the Fram Strait, west of Svalbard. Biodiversity and population density are high, with a maximum average of 26.7±0.9 species m(-2) and 418.1±49.6 individuals m(-2) on the east side of the reef summit. These figures contrast with the surrounding abyssal plain fauna, with an average of only 18.1±1.4 species and 29.4±4.3 individuals m(-2) (mean ± standard error). The east side of the reef summit, where the highest richness and density of fauna are found, faces into the predominant bottom current, which likely increases in speed to the summit and serves as a source of particulate food for the numerous suspension feeders present there. We conclude that the observed faunal distribution patterns could be the result of hydrodynamic patterns and food availability above and around the reef. To our knowledge, this study is the first to describe the distribution and diversity of benthic fauna on a rocky reef in deep water.
Ali, Syed Shujait; Yu, Yan; Pfosser, Martin; Wetschnig, Wolfgang
2012-01-01
Background and Aims Subfamily Hyacinthoideae (Hyacinthaceae) comprises more than 400 species. Members are distributed in sub-Saharan Africa, Madagascar, India, eastern Asia, the Mediterranean region and Eurasia. Hyacinthoideae, like many other plant lineages, show disjunct distribution patterns. The aim of this study was to reconstruct the biogeographical history of Hyacinthoideae based on phylogenetic analyses, to find the possible ancestral range of Hyacinthoideae and to identify factors responsible for the current disjunct distribution pattern. Methods Parsimony and Bayesian approaches were applied to obtain phylogenetic trees, based on sequences of the trnL-F region. Biogeographical inferences were obtained by applying statistical dispersal-vicariance analysis (S-DIVA) and Bayesian binary MCMC (BBM) analysis implemented in RASP (Reconstruct Ancestral State in Phylogenies). Key Results S-DIVA and BBM analyses suggest that the Hyacinthoideae clade seem to have originated in sub-Saharan Africa. Dispersal and vicariance played vital roles in creating the disjunct distribution pattern. Results also suggest an early dispersal to the Mediterranean region, and thus the northward route (from sub-Saharan Africa to Mediterranean) of dispersal is plausible for members of subfamily Hyacinthoideae. Conclusions Biogeographical analyses reveal that subfamily Hyacinthoideae has originated in sub-Saharan Africa. S-DIVA indicates an early dispersal event to the Mediterranean region followed by a vicariance event, which resulted in Hyacintheae and Massonieae tribes. By contrast, BBM analysis favours dispersal to the Mediterranean region, eastern Asia and Europe. Biogeographical analysis suggests that sub-Saharan Africa and the Mediterranean region have played vital roles as centres of diversification and radiation within subfamily Hyacinthoideae. In this bimodal distribution pattern, sub-Saharan Africa is the primary centre of diversity and the Mediterranean region is the secondary centre of diversity. Sub-Saharan Africa was the source area for radiation toward Madagascar, the Mediterranean region and India. Radiations occurred from the Mediterranean region to eastern Asia, Europe, western Asia and India. PMID:22039008
Marine Biodiversity in the Caribbean: Regional Estimates and Distribution Patterns
Miloslavich, Patricia; Díaz, Juan Manuel; Klein, Eduardo; Alvarado, Juan José; Díaz, Cristina; Gobin, Judith; Escobar-Briones, Elva; Cruz-Motta, Juan José; Weil, Ernesto; Cortés, Jorge; Bastidas, Ana Carolina; Robertson, Ross; Zapata, Fernando; Martín, Alberto; Castillo, Julio; Kazandjian, Aniuska; Ortiz, Manuel
2010-01-01
This paper provides an analysis of the distribution patterns of marine biodiversity and summarizes the major activities of the Census of Marine Life program in the Caribbean region. The coastal Caribbean region is a large marine ecosystem (LME) characterized by coral reefs, mangroves, and seagrasses, but including other environments, such as sandy beaches and rocky shores. These tropical ecosystems incorporate a high diversity of associated flora and fauna, and the nations that border the Caribbean collectively encompass a major global marine biodiversity hot spot. We analyze the state of knowledge of marine biodiversity based on the geographic distribution of georeferenced species records and regional taxonomic lists. A total of 12,046 marine species are reported in this paper for the Caribbean region. These include representatives from 31 animal phyla, two plant phyla, one group of Chromista, and three groups of Protoctista. Sampling effort has been greatest in shallow, nearshore waters, where there is relatively good coverage of species records; offshore and deep environments have been less studied. Additionally, we found that the currently accepted classification of marine ecoregions of the Caribbean did not apply for the benthic distributions of five relatively well known taxonomic groups. Coastal species richness tends to concentrate along the Antillean arc (Cuba to the southernmost Antilles) and the northern coast of South America (Venezuela – Colombia), while no pattern can be observed in the deep sea with the available data. Several factors make it impossible to determine the extent to which these distribution patterns accurately reflect the true situation for marine biodiversity in general: (1) highly localized concentrations of collecting effort and a lack of collecting in many areas and ecosystems, (2) high variability among collecting methods, (3) limited taxonomic expertise for many groups, and (4) differing levels of activity in the study of different taxa. PMID:20689856
The Effects of Normal Metal Stripes on TES Performance
NASA Technical Reports Server (NTRS)
Wakeham, Nick; Adams, J. S.; Bandler, S. R.; Chervenak, J. A.; Datesman, A. M.; Eckart, M. E.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Miniussi, A. R.;
2017-01-01
Exploring the effects of size and geometry of normal metal features on the transition shapes and performance of transition-edge sensor microcalorimeters. The spectral resolution of transition-edge sensor (TES) microcalorimeters is very sensitive to the specific dependencies of the resistance R in the superconducting transition on the current I, magnetic field B, and temperature T. In particular, it has been shown that transitions that are very steep in (R,T) space lead to a significant noise term, in excess of conventional expectations. This so-called unexplained noise is known to be reduced by the addition of normal metal stripes across the TES perpendicular to the direction of current flow. These normal metal stripes have been shown to drastically alter the oscillatory patterns seen in measurements of the critical current as a function of magnetic field. However, there are many remaining questions about the exact impact of the stripes on current distributions within the TES, the Fraunhofer pattern and, therefore, the shape of the R(I, B, T) surface. Through measurements of the resistance under DC bias of TES devices of various sizes, with different stripe patterns and dimensions, we will discuss how these stripes can affect the R(I, B, T) surface. In addition, using measurements and analysis of the noise spectra of various devices we will present how these changes to the stripe pattern may affect the performance of the TES. In particular, we will discuss strategies to reduce the presence of localized discontinuities in the derivative of R, associated with increased noise, while maintaining the globally low levels of unexplained noise currently achieved with conventional metal stripe patterns. Implementing these strategies is a path towards producing large arrays with highly uniform transitions and high spectral resolution. These large uniform arrays will be required for future x-ray astronomy applications, such as the X-IFU on ATHENA.
Distributional properties of relative phase in bimanual coordination.
James, Eric; Layne, Charles S; Newell, Karl M
2010-10-01
Studies of bimanual coordination have typically estimated the stability of coordination patterns through the use of the circular standard deviation of relative phase. The interpretation of this statistic depends upon the assumption of a von Mises distribution. The present study tested this assumption by examining the distributional properties of relative phase in three bimanual coordination patterns. There were significant deviations from the von Mises distribution due to differences in the kurtosis of distributions. The kurtosis depended upon the relative phase pattern performed, with leptokurtic distributions occurring in the in-phase and antiphase patterns and platykurtic distributions occurring in the 30° pattern. Thus, the distributional assumptions needed to validly and reliably use the standard deviation are not necessarily present in relative phase data though they are qualitatively consistent with the landscape properties of the intrinsic dynamics.
An Exploration of WFC3/IR Dark Current Variation
NASA Astrophysics Data System (ADS)
Sunnquist, B.; Baggett, S.; Long, K. S.
2017-02-01
We use a collection of darks spanning September 2009 to June 2016 to study variations in the dark current in the IR detector on WFC3. Although the darks possess a similar signal pattern across the detector, we find that their median dark rates vary by as much as 0.014 DN/s (0.032 e-/s). The distribution of these median values has a triangular shape with a mean and standard deviation of 0.021 ± 0.0029 DN/s (0.049 ± 0.0069 e-/s). We observe a long term time-dependence in the inboard vertical reference pixel and zeroth read signals; however, these differences do not noticeably affect the calibrated dark signals, and we conclude that the WFC3/IR dark current levels continue to remain stable since launch. The inboard reference pixel signals exhibit a unique, but consistent, pattern around the detector, but this pattern does not evolve noticeably with the median of the science pixels, and a quadrant or row-based reference pixel subtraction strategy does not reduce the spread between the median dark rates. We notice a slight drift in the inboard reference pixel signals up the dark ramps, and the intensity of this drift is related to the median dark current in the science pixels. This holds true using either the horizontal or vertical reference pixels and for darks with a variety of sample sequences.
Electrical changes of the polar ionosphere during magnetospheric substorms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, B.H.; Kamide, Y.; Akasofu, S.H.
1986-05-01
Changes of the distribution of the potential, electric fields, ionospheric currents, field-aligned currents, the Joule heat production rate, the particle energy injection rate and the total energy dissipation rate are examined in detail by comparing them at a presubstorm epoch and the maximum epoch for several substorms on March 17, 18, and 19, 1978. The data sets are obtained on the basis of the magnetic records from the six International Magnetospheric Study meridian chains of observatories by using the computer code developed by Kamide e-italict-italic a-italicl-italic. (1981) and the conductivity model developed by Ahn et al. (1983b). A number ofmore » global features that are found to be common to most of the substorms examined in this study include the following: (1) The positive potential cell in the morning sector extends into the evening sector during substorms. (2) When it is intensified, the westward electrojet on the nightside tends to flow equatorward of the positive potential ridge. (3) The so-called ''Harang discontinuity'' may be identified as the ridge of the negative potential cell. (4) The distribution of field- aligned currents determined by our method is more complicated than the statistical pattern obtained by polar orbiting satellites. (5) The basic ionospheric current pattern is fundamentally the same during a fairly quiet period, a slightly disturbed period and a substorm period. (6) The highest Joule heat production occurs along the westward extension of the westward electrojet, while the particle energy injection rate is high along the westward electrojet in the morning sector.« less
Investigation of environmental change pattern in Japan. Utilization of LANDSAT-2 data for fisheries
NASA Technical Reports Server (NTRS)
Maruyasu, T.; Watanabe, T. (Principal Investigator)
1977-01-01
The author has identified the following significant results. MSS data provided extensive and simultaneous information about marine environmental conditions, such as the shift of the Kuroshio, fall and rise of coastal water mass, distribution of water masses, locations of vortex and current rips, exchanges of water between embayment and open ocean effluent rivers, fertility of plankton, red tide, pollution, etc.
ERIC Educational Resources Information Center
Utah State Office of Education, Salt Lake City.
Equity effects of program growth and diversification on the Utah public education finance system are examined. The degree to which student and taxpayer equity are achieved by district formulas of the Minimum School Program are assessed by analysis of school-related taxation and spending over time, current distribution patterns of state support,…
Fully Scalable Porous Metal Electrospray Propulsion
2012-03-20
particular emphasis on the variation of specific impulse for multi-modal propulsion is currently carried out by MIT and the Busek Company under an...Beam profile distributions in the negative (left) and positive (center) modes as visualized directly thorough a multi-channel plate and phosphor...screen. These profiles are parabolic (right) indicating the non-thermal character of these type of ion beams. Microscopic Image of pattern imprinted on Si
Neuromuscular Control of Rapid Linear Accelerations in Fish
2016-06-22
2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. Tufts University Research... Control of Rapid Linear Accelerations in Fish Report Title In this project, we measured muscle activity, body movements, and flow patterns during linear
Urban Ecology: Patterns of Population Growth and Ecological Effects
Wayne C. Zipperer; Steward T.A. Pickett
2012-01-01
Currently, over 50% of the worldâs population lives in urban areas. By 2050, this estimate is expected to be 70%. This urban growth, however, is not uniformly distributed around the world. The majority of it will occur in developing nations and create megacities whose populations exceed at least 10 million people. Not all urban areas, however, are growing. Some are...
Mobility of maerl-siliciclastic mixtures: Impact of waves, currents and storm events
NASA Astrophysics Data System (ADS)
Joshi, Siddhi; Duffy, Garret Patrick; Brown, Colin
2017-04-01
Maerl beds are free-living, non-geniculate coralline algae habitats which form biogenic reefs with high micro-scale complexity supporting a diversity and abundance of rare epifauna and epiflora. These habitats are highly mobile in shallow marine environments where substantial maerl beds co-exist with siliciclastic sediment, exemplified by our study site of Galway Bay. Coupled hydrodynamic-wave-sediment transport models have been used to explore the transport patterns of maerl-siliciclastic sediment during calm summer conditions and severe winter storms. The sediment distribution is strongly influenced by storm waves even in water depths greater than 100 m. Maerl is present at the periphery of wave-induced residual current gyres during storm conditions. A combined wave-current Sediment Mobility Index during storm conditions shows correlation with multibeam backscatter and surficial sediment distribution. A combined wave-current Mobilization Frequency Index during storm conditions acts as a physical surrogate for the presence of maerl-siliciclastic mixtures in Galway Bay. Both indices can provide useful integrated oceanographic and sediment information to complement coupled numerical hydrodynamic, sediment transport and erosion-deposition models.
Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser.
Lo, Yen-Hua; Wu, Yu-Chang; Hsu, Shun-Chieh; Hwang, Yi-Chia; Chen, Bai-Ci; Lin, Chien-Chung
2014-06-02
The dynamic behavior of a monolithic dual-wavelength distributed feedback laser was fully investigated and mapped. The combination of different driving currents for master and slave lasers can generate a wide range of different operational modes, from single mode, period 1 to chaos. Both the optical and microwave spectrum were recorded and analyzed. The detected single mode signal can continuously cover from 15GHz to 50GHz, limited by photodetector bandwidth. The measured optical four-wave-mixing pattern indicates that a 70GHz signal can be generated by this device. By applying rate equation analysis, the important laser parameters can be extracted from the spectrum. The extracted relaxation resonant frequency is found to be 8.96GHz. With the full operational map at hand, the suitable current combination can be applied to the device for proper applications.
NASA Technical Reports Server (NTRS)
Roble, R. G.; Hays, P. B.
1979-01-01
The paper presents a model of global atmospheric electricity used to examine the effect of upper atmospheric generators on the global electrical circuit. The model represents thunderstorms as dipole current generators randomly distributed in areas of known thunderstorm frequency; the electrical conductivity in the model increases with altitude, and electrical effects are coupled with a passive magnetosphere along geomagnetic field lines. The large horizontal-scale potential differences at ionospheric heights map downward into the lower atmosphere where the perturbations in the ground electric field are superimposed on the diurnal variation. Finally, changes in the upper atmospheric conductivity due to solar flares, polar cap absorptions, and Forbush decreases are shown to alter the downward mapping of the high-latitude potential pattern and the global distribution of fields and currents.
NASA Astrophysics Data System (ADS)
Tenfjord, P.; Østgaard, N.; Snekvik, K.; Laundal, K. M.; Reistad, J. P.; Haaland, S.; Milan, S. E.
2015-11-01
We used the Lyon-Fedder-Mobarry global magnetohydrodynamics model to study the effects of the interplanetary magnetic field (IMF) By component on the coupling between the solar wind and magnetosphere-ionosphere system. When the IMF reconnects with the terrestrial magnetic field with IMF By≠0, flux transport is asymmetrically distributed between the two hemispheres. We describe how By is induced in the closed magnetosphere on both the dayside and nightside and present the governing equations. The magnetosphere imposes asymmetric forces on the ionosphere, and the effects on the ionospheric flow are characterized by distorted convection cell patterns, often referred to as "banana" and "orange" cell patterns. The flux asymmetrically added to the lobes results in a nonuniform induced By in the closed magnetosphere. By including the dynamics of the system, we introduce a mechanism that predicts asymmetric Birkeland currents at conjugate foot points. Asymmetric Birkeland currents are created as a consequence of y directed tension contained in the return flow. Associated with these currents, we expect fast localized ionospheric azimuthal flows present in one hemisphere but not necessarily in the other. We also present current density measurements from Active Magnetosphere and Planetary Electrodynamics Response Experiment that are consistent with this picture. We argue that the induced By produces asymmetrical Birkeland currents as a consequence of asymmetric stress balance between the hemispheres. Such an asymmetry will also lead to asymmetrical foot points and asymmetries in the azimuthal flow in the ionosphere. These phenomena should therefore be treated in a unified way.
Advection by ocean currents modifies phytoplankton size structure.
Font-Muñoz, Joan S; Jordi, Antoni; Tuval, Idan; Arrieta, Jorge; Anglès, Sílvia; Basterretxea, Gotzon
2017-05-01
Advection by ocean currents modifies phytoplankton size structure at small scales (1-10 cm) by aggregating cells in different regions of the flow depending on their size. This effect is caused by the inertia of the cells relative to the displaced fluid. It is considered that, at larger scales (greater than or equal to 1 km), biological processes regulate the heterogeneity in size structure. Here, we provide observational evidence of heterogeneity in phytoplankton size structure driven by ocean currents at relatively large scales (1-10 km). Our results reveal changes in the phytoplankton size distribution associated with the coastal circulation patterns. A numerical model that incorporates the inertial properties of phytoplankton confirms the role of advection on the distribution of phytoplankton according to their size except in areas with enhanced nutrient inputs where phytoplankton dynamics is ruled by other processes. The observed preferential concentration mechanism has important ecological consequences that range from the phytoplankton level to the whole ecosystem. © 2017 The Author(s).
Girardclos, S.; Baster, I.; Wildi, W.; Pugin, A.; Rachoud-Schneider, A. -M.
2003-01-01
The Late-Glacial and Holocene sedimentary history of the Hauts-Monts area (western Lake Geneva, Switzerland) is reconstructed combining high resolution seismic stratigraphy and well-dated sedimentary cores. Six reflections and seismic units are defined and represented by individual isopach maps, which are further combined to obtain a three-dimensional age-depth model. Slumps, blank areas and various geometries are identified using these seismic data. The sediment depositional areas have substantially changed throughout the lake during the end of the Late-Glacial and the Holocene. These changes are interpreted as the result of variations in the intensity of deep lake currents and the frequency of strong winds determining the distribution of sediment input from the Versoix River and from reworking of previously deposited sediments within the lacustrine basin. The identified changes in sediment distribution allowed us to reconstruct the lake's deep-current history and the evolution of dominant strong wind regimes from the Preboreal to present times.
Stable distribution and long-range correlation of Brent crude oil market
NASA Astrophysics Data System (ADS)
Yuan, Ying; Zhuang, Xin-tian; Jin, Xiu; Huang, Wei-qiang
2014-11-01
An empirical study of stable distribution and long-range correlation in Brent crude oil market was presented. First, it is found that the empirical distribution of Brent crude oil returns can be fitted well by a stable distribution, which is significantly different from a normal distribution. Second, the detrended fluctuation analysis for the Brent crude oil returns shows that there are long-range correlation in returns. It implies that there are patterns or trends in returns that persist over time. Third, the detrended fluctuation analysis for the Brent crude oil returns shows that after the financial crisis 2008, the Brent crude oil market becomes more persistence. It implies that the financial crisis 2008 could increase the frequency and strength of the interdependence and correlations between the financial time series. All of these findings may be used to improve the current fractal theories.
Understanding high magnitude flood risk: evidence from the past
NASA Astrophysics Data System (ADS)
MacDonald, N.
2009-04-01
The average length of gauged river flow records in the UK is ~25 years, which presents a problem in determining flood risk for high-magnitude flood events. Severe floods have been recorded in many UK catchments during the past 10 years, increasing the uncertainty in conventional flood risk estimates based on river flow records. Current uncertainty in flood risk has implications for society (insurance costs), individuals (personal vulnerability) and water resource managers (flood/drought risk). An alternative approach is required which can improve current understanding of the flood frequency/magnitude relationship. Historical documentary accounts are now recognised as a valuable resource when considering the flood frequency/magnitude relationship, but little consideration has been given to the temporal and spatial distribution of these records. Building on previous research based on British rivers (urban centre): Ouse (York), Trent (Nottingham), Tay (Perth), Severn (Shrewsbury), Dee (Chester), Great Ouse (Cambridge), Sussex Ouse (Lewes), Thames (Oxford), Tweed (Kelso) and Tyne (Hexham), this work considers the spatial and temporal distribution of historical flooding. The selected sites provide a network covering many of the largest river catchments in Britain, based on urban centres with long detailed documentary flood histories. The chronologies offer an opportunity to assess long-term patterns of flooding, indirectly determining periods of climatic variability and potentially increased geomorphic activity. This research represents the first coherent large scale analysis undertaken of historical multi-catchment flood chronologies, providing an unparalleled network of sites, permitting analysis of the spatial and temporal distribution of historical flood patterns on a national scale.
Differences in dehydration tolerance among populations of a gametophyte-only fern.
Chambers, Sally M; Watkins, J E; Sessa, Emily B
2017-04-01
For many plant species, historical climatic conditions may have left lasting imprints that are detectable in contemporary populations. Additionally, if these historical conditions also prevented gene flow among populations, these populations may be differentiated with respect to one another and their contemporary environmental conditions. For the fern, Vittaria appalachiana , one theory is that historical conditions during the Pleistocene largely shaped both the distribution and lack of sporophyte production. Our goals-based on this theory-were to examine physiological differences among and within populations spanning the species' geographic range, and the contribution of historical climatic conditions to this differentiation. We exposed explants from five populations to four drying treatments and examined differences in physiological response. Additionally, we examined the role of historical and current climatic conditions in driving the observed population differentiation. Populations differ in their ability to tolerate varying levels of dehydration, displaying a pattern of countergradient selection. Exposure to historical and contemporary climatic conditions, specifically variation in temperature and precipitation regimes, resulted in population divergence observed among contemporary populations. Historical conditions have shaped not only the distribution of V. appalachiana , but also its current physiological limitations. Results from this study support the hypothesis that climatic conditions during the Pleistocene are responsible for the distribution of this species, and may be responsible for the observed differences in dehydration tolerance. Additionally, dehydration tolerance may be the driving factor for previously reported patterns of countergradient selection in this species. © 2017 Botanical Society of America.
NASA Astrophysics Data System (ADS)
Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Birbriezca, L. C.; Vasquez-Yeomans, L.; Cordero, E. S.
2008-05-01
The coastal waters of south Florida, including the coral reefs of NOAA's Florida Keys National Marine Sanctuary (FKNMS), are directly connected by means of strong ocean currents with upstream waters of the western Caribbean Sea and the Gulf of Mexico. The Caribbean Current and the Loop Current provide a rapid conduit for transport from Mexican and Belizean coral reefs, located off the eastern shore of the Yucatan Peninsula, to nearshore regions of northern Cuba, Florida, and the Bahamas. Interdisciplinary cruise data collected in August 2002, March 2006 and January 2007 aboard the NOAA Ship Gordon Gunter, in combination with satellite-tracked surface drifter trajectories and remote sensing imagery, clearly show the highly variable and dynamic nature of the regional current regimes and provide a means of quantifying the potential pathways and transport rates of the coastal waters and their biological and chemical constituents from one region to another. Results from these cruises and ancillary data show that the study areas are connected with rapid transport time scales, and that frontal eddies and gyres play an important role in establishing the time and length scales of this connectivity. Such direct physical connectivity between the coral reef biota of these geographically separated spawning grounds via ocean currents may have an important influence on the degree of biological connectivity between regional larval populations. Initial analyses of ichthyoplankton surveys and inshore collections along the Yucatan mesoamerican reef suggest large scale variability in both local recruitment and large scale spatial distribution. Despite strong northward flowing currents, inshore collections indicate that local recruitment in some areas is strongly influenced by small scale circulation patterns. However, the distribution of spawning aggregations along the Yucatan coast suggests a larger role for the Caribbean Current. Determining the interactions between the larger scale circulation patterns and the smaller scale biological processes is a key research objective for understanding the observed regional population connections.
NASA Astrophysics Data System (ADS)
Boehlert, George W.; Watson, William; Sun, L. Charles
1992-04-01
Ichthyoplankton and oceanographic sampling was conducted in November 1984 in waters surrounding Johnston Atoll (16°44'N, 169°32'W), a small, isolated atoll in the central Pacific Ocean. The typical flow pattern in this region is westward; the nearest island is in the Hawaiian Archipelago, 760 km away. Most collections were dominated by oceanic taxa. In the 0-50 m stratum, larval densities were relatively uniform horizontally, but densities down-current of the island tended to be higher, and fish eggs were concentrated there. In the 50-100 m stratum, larval abundance on the down-current side of the island was markedly higher than either up-current or farther down-current. Oceanic taxa did not display this pattern, while marked areas of very high abundance characterized the island-related taxa, the most abundant including the gobiid Eviota epiphanes and the apogonid Pseudamiops sp. Estimates of geostrophic flow indicate that the region down-current of the atoll was one of return flow associated with apparent mesoscale eddies or meanders north and west of the island. This region may serve as a down-current retention area for the pelagic larvae of island-related taxa and may facilitate recruitment back to the source populations.
Statistical Patterns in Movie Rating Behavior
2015-01-01
Currently, users and consumers can review and rate products through online services, which provide huge databases that can be used to explore people’s preferences and unveil behavioral patterns. In this work, we investigate patterns in movie ratings, considering IMDb (the Internet Movie Database), a highly visited site worldwide, as a source. We find that the distribution of votes presents scale-free behavior over several orders of magnitude, with an exponent very close to 3/2, with exponential cutoff. It is remarkable that this pattern emerges independently of movie attributes such as average rating, age and genre, with the exception of a few genres and of high-budget films. These results point to a very general underlying mechanism for the propagation of adoption across potential audiences that is independent of the intrinsic features of a movie and that can be understood through a simple spreading model with mean-field avalanche dynamics. PMID:26322899
Statistical Patterns in Movie Rating Behavior.
Ramos, Marlon; Calvão, Angelo M; Anteneodo, Celia
2015-01-01
Currently, users and consumers can review and rate products through online services, which provide huge databases that can be used to explore people's preferences and unveil behavioral patterns. In this work, we investigate patterns in movie ratings, considering IMDb (the Internet Movie Database), a highly visited site worldwide, as a source. We find that the distribution of votes presents scale-free behavior over several orders of magnitude, with an exponent very close to 3/2, with exponential cutoff. It is remarkable that this pattern emerges independently of movie attributes such as average rating, age and genre, with the exception of a few genres and of high-budget films. These results point to a very general underlying mechanism for the propagation of adoption across potential audiences that is independent of the intrinsic features of a movie and that can be understood through a simple spreading model with mean-field avalanche dynamics.
Simple robot suggests physical interlimb communication is essential for quadruped walking
Owaki, Dai; Kano, Takeshi; Nagasawa, Ko; Tero, Atsushi; Ishiguro, Akio
2013-01-01
Quadrupeds have versatile gait patterns, depending on the locomotion speed, environmental conditions and animal species. These locomotor patterns are generated via the coordination between limbs and are partly controlled by an intraspinal neural network called the central pattern generator (CPG). Although this forms the basis for current control paradigms of interlimb coordination, the mechanism responsible for interlimb coordination remains elusive. By using a minimalistic approach, we have developed a simple-structured quadruped robot, with the help of which we propose an unconventional CPG model that consists of four decoupled oscillators with only local force feedback in each leg. Our robot exhibits good adaptability to changes in weight distribution and walking speed simply by responding to local feedback, and it can mimic the walking patterns of actual quadrupeds. Our proposed CPG-based control method suggests that physical interaction between legs during movements is essential for interlimb coordination in quadruped walking. PMID:23097501
Simple robot suggests physical interlimb communication is essential for quadruped walking.
Owaki, Dai; Kano, Takeshi; Nagasawa, Ko; Tero, Atsushi; Ishiguro, Akio
2013-01-06
Quadrupeds have versatile gait patterns, depending on the locomotion speed, environmental conditions and animal species. These locomotor patterns are generated via the coordination between limbs and are partly controlled by an intraspinal neural network called the central pattern generator (CPG). Although this forms the basis for current control paradigms of interlimb coordination, the mechanism responsible for interlimb coordination remains elusive. By using a minimalistic approach, we have developed a simple-structured quadruped robot, with the help of which we propose an unconventional CPG model that consists of four decoupled oscillators with only local force feedback in each leg. Our robot exhibits good adaptability to changes in weight distribution and walking speed simply by responding to local feedback, and it can mimic the walking patterns of actual quadrupeds. Our proposed CPG-based control method suggests that physical interaction between legs during movements is essential for interlimb coordination in quadruped walking.
NASA Astrophysics Data System (ADS)
Mihanovic, H.; Vilibic, I.
2014-12-01
Herein we present three recent oceanographic studies performed in the Adriatic Sea (the northernmost arm of the Mediterranean Sea), where Self-Organizing Maps (SOM) method, an unsupervised neural network method capable of recognizing patterns in various types of datasets, was applied to environmental data. The first study applied the SOM method to a long (50 years) series of thermohaline, dissolved oxygen and nutrient data measured over a deep (1200 m) Southern Adriatic Pit, in order to extract characteristic deep water mass patterns and their temporal variability. Low-dimensional SOM solutions revealed that the patterns were not sensitive to nutrients but were determined mostly by temperature, salinity and DO content; therefore, the water masses in the region can be traced by using no nutrient data. The second study encompassed the classification of surface current patterns measured by HF radars over the northernmost part of the Adriatic, by applying the SOM method to the HF radar data and operational mesoscale meteorological model surface wind fields. The major output from this study was a high correlation found between characteristic ocean current distribution patterns with and without wind data introduced to the SOM, implying the dominant wind driven dynamics over a local scale. That nominates the SOM method as a basis for generating very fast real-time forecast models over limited domains, based on the existing atmospheric forecasts and basin-oriented ocean experiments. The last study classified the sea ambient noise distributions in a habitat area of bottlenose dolphin, connecting it to the man-made noise generated by different types of vessels. Altogether, the usefulness of the SOM method has been recognized in different aspects of basin-scale ocean environmental studies, and may be a useful tool in future investigations of understanding of the multi-disciplinary dynamics over a basin, including the creation of operational environmental forecasting systems.
NASA Technical Reports Server (NTRS)
Hoopes, J. A.; Wu, D. S.; Ganatra, R.
1973-01-01
Effluent concentration distributions from the waste water discharge of the Kraft Division Mill, Consolidated Paper Company, into the Wisconsin River at Wisconsin Rapids, Wisconsin, is investigated. Effluent concentrations were determined from measurements of the temperature distribution, using temperature as a tracer. Measurements of the velocity distribution in the vicinity of the outfall were also made. Due to limitations in the extent of the field observations, the analysis and comparison of the measurements is limited to the region within about 300 feet from the outfall. Effects of outfall submergence, of buoyancy and momentum of the effluent and of the pattern and magnitude of river currents on these characteristics are considered.
Comparison of storm-time changes of geomagnetic field at ground and at MAGSAT altitudes, part 3
NASA Technical Reports Server (NTRS)
Dejesusparada, N. (Principal Investigator); Kane, R. P.; Trivedi, N. B.
1982-01-01
The latitudinal distributions of delta H, delta X, delta Y, and delta Z were studied for quiet and disturbed periods. For quiet periods, the average patterns showed some variations common to dusk and dawn, thus indicating probable ground anomaly. However, there were significant differences too between dusk and dawn, indicating considerable diurnal variation effects. Particularly in delta Y, these effects were large and were symmetric about the dip equator. For disturbed day passes, the quiet day patterns were considered as base levels and the latter were subtracted from the former. The resulting residual latitudinal patterns were, on the average, symmetric about the geographical equator. However, individual passes showed considerable north-south asymmetries, probably indicating meanderings of the central plane of the magnetospheric ring current.
Pattern of burn injury in hang-glider pilots.
Campbell, D C; Nano, T; Pegg, S P
1996-06-01
High-voltage electrical injury has been well documented in a number of situations, such as the occupational hazard of linesmen and construction workers, and in the context of overhead railway power lines. Two cases of hang-glider pilots contacting 11,000-volt power lines have recently been treated in the Royal Brisbane Hospital Burns Unit. They demonstrate an interesting pattern of injury, not described in current burns literature, involving both hand and lower abdominal burns. Both patients sustained full-thickness patches of burn injury, with underlying muscle damage and peripheral neurological injury. This distribution of injury seems to be closely related to the design of the hang glider.
Patterns and determinants of mammal species occurrence in India
Karanth, K.K.; Nichols, J.D.; Hines, J.E.; Karanth, K.U.; Christensen, N.L.
2009-01-01
Many Indian mammals face range contraction and extinction, but assessments of their population status are hindered by the lack of reliable distribution data and range maps. 2. We estimated the current geographical ranges of 20 species of large mammals by applying occupancy models to data from country-wide expert. We modelled species in relation to ecological and social covariates (protected areas, landscape characteristics and human influences) based on a priori hypotheses about plausible determinants of mammalian distribution patterns. 3. We demonstrated that failure to incorporate detection probability in distribution survey methods underestimated habitat occupancy for all species. 4. Protected areas were important for the distribution of 16 species. However, for many species much of their current range remains unprotected. The availability of evergreen forests was important for the occurrence of 14 species, temperate forests for six species, deciduous forests for 15 species and higher altitude habitats for two species. Low human population density was critical for the occurrence of five species, while culturally based tolerance was important for the occurrence of nine other species. 5. Rhino Rhinoceros unicornis, gaur Bos gaurus and elephant Elephas maximus showed the most restricted ranges among herbivores, and sun bear Helarctos malayanus, brown bear Ursus arctos and tiger Panthera tigris were most restricted among carnivores. While cultural tolerance has helped the survival of some mammals, legal protection has been critically associated with occurrence of most species. 6. Synthesis and applications. Extent of range is an important determinant of species conservation status. Understanding the relationship of species occurrence with ecological and socio-cultural covariates is important for identification and management of key conservation areas. The combination of occupancy models with field data from country-wide experts enables reliable estimation of species range and habitat associations for conservation at regional scales. ?? 2009 British Ecological Society.
Variation in recombination frequency and distribution across eukaryotes: patterns and processes
Feulner, Philine G. D.; Johnston, Susan E.; Santure, Anna W.; Smadja, Carole M.
2017-01-01
Recombination, the exchange of DNA between maternal and paternal chromosomes during meiosis, is an essential feature of sexual reproduction in nearly all multicellular organisms. While the role of recombination in the evolution of sex has received theoretical and empirical attention, less is known about how recombination rate itself evolves and what influence this has on evolutionary processes within sexually reproducing organisms. Here, we explore the patterns of, and processes governing recombination in eukaryotes. We summarize patterns of variation, integrating current knowledge with an analysis of linkage map data in 353 organisms. We then discuss proximate and ultimate processes governing recombination rate variation and consider how these influence evolutionary processes. Genome-wide recombination rates (cM/Mb) can vary more than tenfold across eukaryotes, and there is large variation in the distribution of recombination events across closely related taxa, populations and individuals. We discuss how variation in rate and distribution relates to genome architecture, genetic and epigenetic mechanisms, sex, environmental perturbations and variable selective pressures. There has been great progress in determining the molecular mechanisms governing recombination, and with the continued development of new modelling and empirical approaches, there is now also great opportunity to further our understanding of how and why recombination rate varies. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’. PMID:29109219
Spaggiari, S; Baruffi, S; Macchi, E; Traversa, M; Arisi, G; Taccardi, B
1986-11-01
We tried to establish whether some of the manifestations of electrical anisotropy previously observed on the canine ventricular epicardium during the spread of excitation were also present during repolarization, with the appropriate polarity. To this end we determined the potential distribution on the ventricular surface of exposed dog hearts during ventricular excitation and repolarization. The ventricles were paced by means of epicardial or intramural electrodes. During the early stages of ventricular excitation following epicardial pacing we observed typical, previously described potential patterns, with negative, elliptical equipotential lines surrounding the pacing site, and two maxima aligned along the direction of subepicardial fibers. Intramural pacing gave rise to similar patterns. The axis joining the maxima, however, was oriented along the direction of intramural fibers. The repolarization potential pattern relating to epicardial excitation exhibited some features similar to those observed during the spread of excitation, namely the presence of families of elliptical equipotential lines around the pacing site, with pairs of potential extrema along the major or minor axes of the ellipses or both. The location of the extrema and the distribution of the epicardial potential gradients during repolarization suggested the presence of anisotropic current generators mainly oriented along the direction of deep myocardial fibers, with some contribution from more superficial sources which were oriented along the direction of subepicardial fibers. Deep stimulation elicited more complicated epicardial patterns whose interpretation is still obscure. We conclude that the electrical anisotropy of the heart affects the distribution of repolarization potentials and probably the strength of electrical generators during ventricular repolarization.
Turner, Trudy R.; Coetzer, Willem G.; Schmitt, Christopher A.; Lorenz, Joseph G.; Freimer, Nelson B.; Grobler, J. Paul
2015-01-01
Objectives Vervet monkeys are common in most tree-rich areas of South Africa, but their absence from grassland and semi-desert areas of the country suggest potentially restricted and mosaic local population patterns that may have relevance to local phenotype patterns and selection. A portion of the mtDNA control region was sequenced to study patterns of genetic differentiation. Materials and Methods DNA was extracted and mtDNA sequences were obtained from 101 vervet monkeys at 15 localities which represent both an extensive (widely across the distribution range) and intensive (more than one troop at most of the localities) sampling strategy. Analyses utilized Arlequin 3.1, MEGA 6, BEAST v1.5.2 and Network V3.6.1 Results The dataset contained 26 distinct haplotypes, with six populations fixed for single haplotypes. Pairwise P-distance among population pairs showed significant differentiation among most population pairs, but with non-significant differences among populations within some regions. Populations were grouped into three broad clusters in a maximum likelihood phylogenetic tree and a haplotype network. These clusters correspond to (i) north-western, northern and north-eastern parts of the distribution range as well as the northern coastal belt; (ii) central areas of the country; and (iii) southern part of the Indian Ocean coastal belt, and adjacent inland areas. Discussion Apparent patterns of genetic structure correspond to current and past distribution of suitable habitat, geographic barriers to gene flow, geographic distance and female philopatry. However, further work on nuclear markers and other genomic data is necessary to confirm these results. PMID:26265297
Mukherjee, Shomita; Krishnan, Anand; Tamma, Krishnapriya; Home, Chandrima; Navya, R; Joseph, Sonia; Das, Arundhati; Ramakrishnan, Uma
2010-10-29
Comparative phylogeography links historical population processes to current/ecological processes through congruent/incongruent patterns of genetic variation among species/lineages. Despite high biodiversity, India lacks a phylogeographic paradigm due to limited comparative studies. We compared the phylogenetic patterns of Indian populations of jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis). Given similarities in their distribution within India, evolutionary histories, body size and habits, congruent patterns of genetic variation were expected. We collected scats from various biogeographic zones in India and analyzed mtDNA from 55 jungle cats (460 bp NADH5, 141 bp cytochrome b) and 40 leopard cats (362 bp NADH5, 202 bp cytochrome b). Jungle cats revealed high genetic variation, relatively low population structure and demographic expansion around the mid-Pleistocene. In contrast, leopard cats revealed lower genetic variation and high population structure with a F(ST) of 0.86 between North and South Indian populations. Niche-model analyses using two approaches (BIOCLIM and MaxEnt) support absence of leopard cats from Central India, indicating a climate associated barrier. We hypothesize that high summer temperatures limit leopard cat distribution and that a rise in temperature in the peninsular region of India during the LGM caused the split in leopard cat population in India. Our results indicate that ecological variables describing a species range can predict genetic patterns. Our study has also resolved the confusion over the distribution of the leopard cat in India. The reciprocally monophyletic island population in the South mandates conservation attention.
Mukherjee, Shomita; Krishnan, Anand; Tamma, Krishnapriya; Home, Chandrima; R, Navya; Joseph, Sonia; Das, Arundhati; Ramakrishnan, Uma
2010-01-01
Background Comparative phylogeography links historical population processes to current/ecological processes through congruent/incongruent patterns of genetic variation among species/lineages. Despite high biodiversity, India lacks a phylogeographic paradigm due to limited comparative studies. We compared the phylogenetic patterns of Indian populations of jungle cat (Felis chaus) and leopard cat (Prionailurus bengalensis). Given similarities in their distribution within India, evolutionary histories, body size and habits, congruent patterns of genetic variation were expected. Methodology/Principal Findings We collected scats from various biogeographic zones in India and analyzed mtDNA from 55 jungle cats (460 bp NADH5, 141 bp cytochrome b) and 40 leopard cats (362 bp NADH5, 202 bp cytochrome b). Jungle cats revealed high genetic variation, relatively low population structure and demographic expansion around the mid-Pleistocene. In contrast, leopard cats revealed lower genetic variation and high population structure with a F ST of 0.86 between North and South Indian populations. Niche-model analyses using two approaches (BIOCLIM and MaxEnt) support absence of leopard cats from Central India, indicating a climate associated barrier. We hypothesize that high summer temperatures limit leopard cat distribution and that a rise in temperature in the peninsular region of India during the LGM caused the split in leopard cat population in India. Conclusions/Significance Our results indicate that ecological variables describing a species range can predict genetic patterns. Our study has also resolved the confusion over the distribution of the leopard cat in India. The reciprocally monophyletic island population in the South mandates conservation attention. PMID:21060831
McCloskey, Sarah E.; Uher-Koch, Brian D.; Schmutz, Joel A.; Fondell, Thomas F.
2018-01-01
Identifying post-breeding migration and wintering distributions of migratory birds is important for understanding factors that may drive population dynamics. Red-throated Loons (Gavia stellata) are widely distributed across Alaska and currently have varying population trends, including some populations with recent periods of decline. To investigate population differentiation and the location of migration pathways and wintering areas, which may inform population trend patterns, we used satellite transmitters (n = 32) to describe migration patterns of four geographically separate breeding populations of Red-throated Loons in Alaska. On average (± SD) Red-throated Loons underwent long (6,288 ± 1,825 km) fall and spring migrations predominantly along coastlines. The most northern population (Arctic Coastal Plain) migrated westward to East Asia and traveled approximately 2,000 km farther to wintering sites than the three more southerly populations (Seward Peninsula, Yukon-Kuskokwim Delta, and Copper River Delta) which migrated south along the Pacific coast of North America. These migration paths are consistent with the hypothesis that Red-throated Loons from the Arctic Coastal Plain are exposed to contaminants in East Asia. The three more southerly breeding populations demonstrated a chain migration pattern in which the more northerly breeding populations generally wintered in more northerly latitudes. Collectively, the migration paths observed in this study demonstrate that some geographically distinct breeding populations overlap in wintering distribution while others use highly different wintering areas. Red-throated Loon population trends in Alaska may therefore be driven by a wide range of effects throughout the annual cycle.
Grivet, Delphine; Deguilloux, Marie-France; Petit, Remy J; Sork, Victoria L
2006-11-01
Phylogeography allows the inference of evolutionary processes that have shaped the current distribution of genealogical lineages across a landscape. In this perspective, comparative phylogeographical analyses are useful in detecting common historical patterns by either comparing different species within the same area within a continent or by comparing similar species in different areas. Here, we analyse one taxon (the white oak, genus Quercus, subgenus Quercus, section Quercus) that is widespread worldwide, and we evaluate its phylogeographical pattern on two different continents: western North America and Western Europe. The goals of the present study are: (i) to compare the chloroplast genetic diversity found in one California oak species vs. that found in the extensively studied European oak species (in France and the Iberian Peninsula); (ii) to contrast the geographical structure of haplotypes between these two taxa and test for a phylogeographical structure for the California species. For this purpose, we used the same six maternally inherited chloroplast microsatellite markers and a similar sampling strategy. The haplotype diversity within site as well as the differentiation among sites was alike in both taxa, but the Californian species has higher allelic richness with a greater number of haplotypes (39 vs. 11 in the European white oak complex). Furthermore, in California these 39 haplotypes are distributed locally in patches while in the European oaks haplotypes are distributed into lineages partitioned longitudinally. These contrasted patterns could indicate that gene movement in California oak populations have been more stable in response to past climatic and geological events, in contrast to their European counterparts.
Global Distribution of Polaromonas Phylotypes - Evidence for a Highly Successful Dispersal Capacity
Darcy, John L.; Lynch, Ryan C.; King, Andrew J.; Robeson, Michael S.; Schmidt, Steven K.
2011-01-01
Bacteria from the genus Polaromonas are dominant phylotypes in clone libraries and culture collections from polar and high-elevation environments. Although Polaromonas has been found on six continents, we do not know if the same phylotypes exist in all locations or if they exhibit genetic isolation by distance patterns. To examine their biogeographic distribution, we analyzed all available, long-read 16S rRNA gene sequences of Polaromonas phylotypes from glacial and periglacial environments across the globe. Using genetic isolation by geographic distance analyses, including Mantel tests and Mantel correlograms, we found that Polaromonas phylotypes are globally distributed showing weak isolation by distance patterns at global scales. More focused analyses using discrete, equally sampled distances classes, revealed that only two distance classes (out of 12 total) showed significant spatial structuring. Overall, our analyses show that most Polaromonas phylotypes are truly globally distributed, but that some, as yet unknown, environmental variable may be selecting for unique phylotypes at a minority of our global sites. Analyses of aerobiological and genomic data suggest that Polaromonas phylotypes are globally distributed as dormant cells through high-elevation air currents; Polaromonas phylotypes are common in air and snow samples from high altitudes, and a glacial-ice metagenome and the two sequenced Polaromonas genomes contain the gene hipA, suggesting that Polaromonas can form dormant cells. PMID:21897856
Improvement of kink characteristic of proton-implanted VCSEL with ITO overcoating
NASA Astrophysics Data System (ADS)
Lai, Fang-I.; Chang, Ya-Hsien; Laih, Li-Hong; Kuo, Hao-chung; Wang, S. C.
2004-06-01
Proton implanted VCSEL has been demonstrated with good reliability and decent modulation speed up to 1.25 Gb/s. However, kinks in current vs light output (L-I) has been always an issue in the gain-guided proton implant VCSEL. The kink related jitter and noise performance made it difficult to meet 2.5 Gb/s (OC-48) requirement. The kinks in L-I curve can be attributed to non-uniform carrier distribution induced non-uniform gain distribution within emission area. In this paper, the effects of a Ti/ITO transparent over-coating on the proton-implanted AlGaAs/GaAs VCSELs (15um diameter aperture) are investigated. The kinks distribution in L-I characteristics from a 2 inch wafer is greatly improved compared to conventional process. These VCSELs exhibit nearly kink-free L-I output performance with threshold currents ~3 mA, and the slope efficiencies ~ 0.25 W/A. The near-field emission patterns suggest the Ti/ITO over-coating facilitates the current spreading and uniform carrier distribution of the top VCSEL contact thus enhancing the laser performance. Finally, we performed high speed modulation measurement. The eye diagram of proton-implanted VCSELs with Ti/ITO transparent over-coating operating at 2.125 Gb/s with 10mA bias and 9dB extinction ratio shows very clean eye with jitter less than 35 ps.
NASA Astrophysics Data System (ADS)
Orlov, Timofey; Sadkov, Sergey; Panchenko, Evgeniy; Zverev, Andrey
2017-04-01
Peatlands occupy a significant share of the cryolithozone area. They are currently experiencing an intense affection by oil and gas field development, as well as by the construction of infrastructure. That poses the importance of the peatland studies, including those dealing with the forecast of peatland evolution. Earlier we conducted a similar probabilistic modelling for the areas of thermokarst development. Principle points of that were: 1. Appearance of a thermokarst depression within an area given is the random event which probability is directly proportional to the size of the area ( Δs). For small sites the probability of one thermokarst depression to appear is much greater than that for several ones, i.e. p1 = γ Δs + o (Δs) pk = o (Δs) \\quad k=2,3 ... 2. Growth of a new thermokarst depression is a random variable independent on other depressions' growth. It happens due to thermoabrasion and, hence, is directly proportional to the amount of heat in the lake and is inversely proportional to the lateral surface area of the lake depression. By using this model, we are able to get analytically two main laws of the morphological pattern for lake thermokarst plains. First, the distribution of a number of thermokarst depressions (centers) at a random plot obey the Poisson law: P(k,s) = (γ s)^k/k! e-γ s. where γ is an average number of depressions per area unit, s is a square of a trial sites. Second, lognormal distribution of diameters of thermokarst lakes is true at any time, i.e. density distribution is given by the equation: fd (x,t)=1/√{2πσ x √{t}} e-
Seafloor environments in the Long Island Sound estuarine system
Knebel, H.J.; Signell, R.P.; Rendigs, R. R.; Poppe, L.J.; List, J.H.
1999-01-01
Four categories of modern seafloor sedimentary environments have been identified and mapped across the large, glaciated, topographically complex Long Island Sound estuary by means of an extensive regional set of sidescan sonographs, bottom samples, and video-camera observations and supplemental marine-geologic and modeled physical-oceanographic data. (1) Environments of erosion or nondeposition contain sediments which range from boulder fields to gravelly coarse-to-medium sands and appear on the sonographs either as patterns with isolated reflections (caused by outcrops of glacial drift and bedrock) or as patterns of strong backscatter (caused by coarse lag deposits). Areas of erosion or nondeposition were found across the rugged seafloor at the eastern entrance of the Sound and atop bathymetric highs and within constricted depressions in other parts of the basin. (2) Environments of bedload transport contain mostly coarse-to-fine sand with only small amounts of mud and are depicted by sonograph patterns of sand ribbons and sand waves. Areas of bedload transport were found primarily in the eastern Sound where bottom currents have sculptured the surface of a Holocene marine delta and are moving these sediments toward the WSW into the estuary. (3) Environments of sediment sorting and reworking comprise variable amounts of fine sand and mud and are characterized either by patterns of moderate backscatter or by patterns with patches of moderate-to-weak backscatter that reflect a combination of erosion and deposition. Areas of sediment sorting and reworking were found around the periphery of the zone of bedload transport in the eastern Sound and along the southern nearshore margin. They also are located atop low knolls, on the flanks of shoal complexes, and within segments of the axial depression in the western Sound. (4) Environments of deposition are blanketed by muds and muddy fine sands that produce patterns of uniformly weak backscatter. Depositional areas occupy broad areas of the basin floor in the western part of the Sound. The regional distribution of seafloor environments reflects fundamental differences in marine-geologic conditions between the eastern and western parts of the Sound. In the funnel-shaped eastern part, a gradient of strong tidal currents coupled with the net nontidal (estuarine) bottom drift produce a westward progression of environments ranging from erosion or nondeposition at the narrow entrance to the Sound, through an extensive area of bedload transport, to a peripheral zone of sediment sorting. In the generally broader western part of the Sound, a weak tidal-current regime combined with the production of particle aggregates by biologic or chemical processes, cause large areas of deposition that are locally interrupted by a patchy distribution of various other environments where the bottom currents are enhanced by and interact with the seafloor topography.
Chávez-Moreno, C K; Tecante, A; Casas, A; Claps, L E
2011-01-01
The distribution pattern of species of the genus Dactylopius Costa in Mexico was analyzed in relation to the distribution of their host plants (subfamily Opuntioideae) to evaluate the specificity of the insect-host association. The distribution of Dactylopius currently recognized is narrower than that of its hosts and probably is not representative. Therefore, a broader distribution of the Dactylopius species in correspondence with those of their hosts was hypothesized. Insects and their hosts were collected and georeferenced in 14 states of Mexico from 2005 to 2007. The distribution areas, maps, and habitat characteristics of Dactylopius, Opuntia sensu stricto, Nopalea and Cylindropuntia were determined on the basis of field collections and examination of museum collections. This information was complemented with information from the exhaustive examination of microscope slides from a local insect collection, plants from local herbaria, and literature reviews. The current distribution of the genus Dactylopius and its hosts included 22 and 25 states of Mexico, respectively, and Dactylopius had a continuous distribution according to its hosts, broader than recognized hitherto. The new georeferenced records of the five Mexican Dactylopius species are reported. Insects with morphological characteristics of D. confusus combined with those of D. salmianus were identified, as well as insects with characteristics of D. opuntiae combined with those of D. salmianus. These records suggest that the number of local Dactylopius species could be higher than previously thought or that possible new processes of hybridization between native and introduced species may be occurring.
Currie, David R.; McClatchie, Sam; Middleton, John F.; Nayar, Sasi
2012-01-01
We sampled the demersal fish community of the Bonney Canyon, South Australia at depths (100–1,500 m) and locations that are poorly known. Seventy-eight species of demersal fish were obtained from 12 depth-stratified trawls along, and to either side, of the central canyon axis. Distributional patterns in species richness and biomass were highly correlated. Three fish assemblage groupings, characterised by small suites of species with narrow depth distributions, were identified on the shelf, upper slope and mid slope. The assemblage groupings were largely explained by depth (ρw = 0.78). Compared to the depth gradient, canyon-related effects are weak or occur at spatial or temporal scales not sampled in this study. A conceptual physical model displayed features consistent with the depth zonational patterns in fish, and also indicated that canyon upwelling can occur. The depth zonation of the fish assemblage was associated with the depth distribution of water masses in the area. Notably, the mid-slope community (1,000 m) coincided with a layer of Antarctic Intermediate Water, the upper slope community (500 m) resided within the core of the Flinders Current, and the shelf community was located in a well-mixed layer of surface water (<450 m depth). PMID:22253907
Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)
Langer, Max C.; Sterli, Juliana
2018-01-01
Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa–Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous–Palaeogene or the Eocene–Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages. PMID:29657780
Meléndez, María José; Báez, José Carlos; Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David
2017-01-01
Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea.
Phylogeny, biogeography and diversification patterns of side-necked turtles (Testudines: Pleurodira)
NASA Astrophysics Data System (ADS)
Ferreira, Gabriel S.; Bronzati, Mario; Langer, Max C.; Sterli, Juliana
2018-03-01
Pleurodires or side-necked turtles are today restricted to freshwater environments of South America, Africa-Madagascar and Australia, but in the past they were distributed much more broadly, being found also on Eurasia, India and North America, and marine environments. Two hypotheses were proposed to explain this distribution; in the first, vicariance would have shaped the current geographical distribution and, in the second, extinctions constrained a previously widespread distribution. Here, we aim to reconstruct pleurodiran biogeographic history and diversification patterns based on a new phylogenetic hypothesis recovered from the analysis of the largest morphological dataset yet compiled for the lineage, testing which biogeographical process prevailed during its evolutionary history. The resulting topology generally agrees with previous hypotheses of the group and shows that most diversification shifts were related to the exploration of new niches, e.g. littoral or marine radiations. In addition, as other turtles, pleurodires do not seem to have been much affected by either the Cretaceous-Palaeogene or the Eocene-Oligocene mass extinctions. The biogeographic analyses highlight the predominance of both anagenetic and cladogenetic dispersal events and support the importance of transoceanic dispersals as a more common driver of area changes than previously thought, agreeing with previous studies with other non-turtle lineages.
Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.
Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya
2015-10-01
The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.
Climate change and fishing: a century of shifting distribution in North Sea cod
Engelhard, Georg H; Righton, David A; Pinnegar, John K
2014-01-01
Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time-series spanning 1913–2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod – mostly in the deeper, northern- and north-easternmost parts of the North Sea – is almost opposite to that during most of the Twentieth Century – mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3½ decades by data from fisheries-independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish. PMID:24375860
Wind Power Generation Design Considerations.
1984-12-01
DISTRIBUTION 4 I o ....................................... . . . e . * * TABLES Number Page I Wind Turbine Characteristics II 0- 2 Maximum Economic Life II 3...Ratio of Blade Tip Speed to Wind Speed 10 4 Interference with Microwave and TV Reception by Wind Turbines 13 5 Typical Flow Patterns Over Two...18 * 12 Annual Mean Wind Power Density 21 5 FIGURES (Cont’d) Number Page 13 Wind - Turbine /Generator Types Currently Being Tested on Utility Sites 22 14
2008-11-24
ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public...for current usage. It now reads: “My organization has committed adequate budget and resources to interorganizational collaboration.” This statement ...Mean Item Standard Deviation My organization commits adequate human and financial resources to training with other organizations. 1 3.3 1.4 My
E. Ashley Steel; Ariel Muldoon; Rebecca L. Flitcroft; Julie C. Firman; Kara J. Anlauf-Dunn; Kelly M. Burnett; Robert J. Danehy
2017-01-01
The Oregon Coast landscape displays strong spatial patterns in air temperature, precipitation, and geology, which can confound our ability to detect relationships among land management, instream conditions, and fish at broad spatial scales. Despite this structure, we found that a suite of immutable or intrinsic attributes (e.g., reach gradient, drainage area, elevation...
Study on temporal variation and spatial distribution for rural poverty in China based on GIS
NASA Astrophysics Data System (ADS)
Feng, Xianfeng; Xu, Xiuli; Wang, Yingjie; Cui, Jing; Mo, Hongyuan; Liu, Ling; Yan, Hong; Zhang, Yan; Han, Jiafu
2009-07-01
Poverty is one of the most serious challenges all over the world, is an obstacle to hinder economics and agriculture in poverty area. Research on poverty alleviation in China is very useful and important. In this paper, we will explore the comprehensive poverty characteristics in China, analyze the current poverty status, spatial distribution and temporal variations about rural poverty in China, and to category the different poverty types and their spatial distribution. First, we achieved the gathering and processing the relevant data. These data contain investigation data, research reports, statistical yearbook, censuses, social-economic data, physical and anthrop geographical data, etc. After deeply analysis of these data, we will get the distribution of poverty areas by spatial-temporal data model according to different poverty given standard in different stages in China to see the poverty variation and the regional difference in County-level. Then, the current poverty status, spatial pattern about poverty area in villages-level will be lucubrated; the relationship among poverty, environment (including physical and anthrop geographical factors) and economic development, etc. will be expanded. We hope our research will enhance the people knowledge of poverty in China and contribute to the poverty alleviation in China.
Santos, Michele Devido Dos; Cavenaghi, Vitor Breseghello; Mac-Kay, Ana Paula Machado Goyano; Serafim, Vitor; Venturi, Alexandre; Truong, Dennis Quangvinh; Huang, Yu; Boggio, Paulo Sérgio; Fregni, Felipe; Simis, Marcel; Bikson, Marom; Gagliardi, Rubens José
2017-01-01
Patients undergoing the same neuromodulation protocol may present different responses. Computational models may help in understanding such differences. The aims of this study were, firstly, to compare the performance of aphasic patients in naming tasks before and after one session of transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS) and sham, and analyze the results between these neuromodulation techniques; and secondly, through computational model on the cortex and surrounding tissues, to assess current flow distribution and responses among patients who received tDCS and presented different levels of results from naming tasks. Prospective, descriptive, qualitative and quantitative, double blind, randomized and placebo-controlled study conducted at Faculdade de Ciências Médicas da Santa Casa de São Paulo. Patients with aphasia received one session of tDCS, TMS or sham stimulation. The time taken to name pictures and the response time were evaluated before and after neuromodulation. Selected patients from the first intervention underwent a computational model stimulation procedure that simulated tDCS. The results did not indicate any statistically significant differences from before to after the stimulation.The computational models showed different current flow distributions. The present study did not show any statistically significant difference between tDCS, TMS and sham stimulation regarding naming tasks. The patients'responses to the computational model showed different patterns of current distribution.
Fagan, Jeffrey A; Sides, Paul J; Prieve, Dennis C
2004-06-08
Electroosmotic flow in the vicinity of a colloidal particle suspended over an electrode accounts for observed changes in the average height of the particle when the electrode passes alternating current at 100 Hz. The main findings are (1) electroosmotic flow provides sufficient force to move the particle and (2) a phase shift between the purely electrical force on the particle and the particle's motion provides evidence of an E2 force acting on the particle. The electroosmotic force in this case arises from the boundary condition applied when faradaic reactions occur on the electrode. The presence of a potential-dependent electrode reaction moves the likely distribution of electrical current at the electrode surface toward uniform current density around the particle. In the presence of a particle the uniform current density is associated with a nonuniform potential; thus, the electric field around the particle has a nonzero radial component along the electrode surface, which interacts with unbalanced charge in the diffuse double layer on the electrode to create a flow pattern and impose an electroosmotic-flow-based force on the particle. Numerical solutions are presented for these additional height-dependent forces on the particle as a function of the current distribution on the electrode and for the time-dependent probability density of a charged colloidal particle near a planar electrode with a nonuniform electrical potential boundary condition. The electrical potential distribution on the electrode, combined with a phase difference between the electric field in solution and the electrode potential, can account for the experimentally observed motion of particles in ac electric fields in the frequency range from approximately 10 to 200 Hz.
Harrison, Matthew T; Tardieu, François; Dong, Zhanshan; Messina, Carlos D; Hammer, Graeme L
2014-03-01
Global climate change is predicted to increase temperatures, alter geographical patterns of rainfall and increase the frequency of extreme climatic events. Such changes are likely to alter the timing and magnitude of drought stresses experienced by crops. This study used new developments in the classification of crop water stress to first characterize the typology and frequency of drought-stress patterns experienced by European maize crops and their associated distributions of grain yield, and second determine the influence of the breeding traits anthesis-silking synchrony, maturity and kernel number on yield in different drought-stress scenarios, under current and future climates. Under historical conditions, a low-stress scenario occurred most frequently (ca. 40%), and three other stress types exposing crops to late-season stresses each occurred in ca. 20% of cases. A key revelation shown was that the four patterns will also be the most dominant stress patterns under 2050 conditions. Future frequencies of low drought stress were reduced by ca. 15%, and those of severe water deficit during grain filling increased from 18% to 25%. Despite this, effects of elevated CO2 on crop growth moderated detrimental effects of climate change on yield. Increasing anthesis-silking synchrony had the greatest effect on yield in low drought-stress seasonal patterns, whereas earlier maturity had the greatest effect in crops exposed to severe early-terminal drought stress. Segregating drought-stress patterns into key groups allowed greater insight into the effects of trait perturbation on crop yield under different weather conditions. We demonstrate that for crops exposed to the same drought-stress pattern, trait perturbation under current climates will have a similar impact on yield as that expected in future, even though the frequencies of severe drought stress will increase in future. These results have important ramifications for breeding of maize and have implications for studies examining genetic and physiological crop responses to environmental stresses. © 2013 John Wiley & Sons Ltd.
Efficient Third-Order Distributed Feedback Laser with Enhanced Beam Pattern
NASA Technical Reports Server (NTRS)
Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor); Kao, Tsung-Yu (Inventor)
2015-01-01
A third-order distributed feedback laser has an active medium disposed on a substrate as a linear array of segments having a series of periodically spaced interstices therebetween and a first conductive layer disposed on a surface of the active medium on each of the segments and along a strip from each of the segments to a conductive electrical contact pad for application of current along a path including the active medium. Upon application of a current through the active medium, the active medium functions as an optical waveguide, and there is established an alternating electric field, at a THz frequency, both in the active medium and emerging from the interstices. Spacing of adjacent segments is approximately half of a wavelength of the THz frequency in free space or an odd integral multiple thereof, so that the linear array has a coherence length greater than the length of the linear array.
Cristiano, Maykon Passos; Clemes Cardoso, Danon; Fernandes-Salomão, Tânia Maria; Heinze, Jürgen
2016-01-01
Past climate changes often have influenced the present distribution and intraspecific genetic diversity of organisms. The objective of this study was to investigate the phylogeography and historical demography of populations of Acromyrmex striatus (Roger, 1863), a leaf-cutting ant species restricted to the open plains of South America. Additionally, we modeled the distribution of this species to predict its contemporary and historic habitat. From the partial sequences of the mitochondrial gene cytochrome oxidase I of 128 A. striatus workers from 38 locations we estimated genetic diversity and inferred historical demography, divergence time, and population structure. The potential distribution areas of A. striatus for current and quaternary weather conditions were modeled using the maximum entropy algorithm. We identified a total of 58 haplotypes, divided into five main haplogroups. The analysis of molecular variance (AMOVA) revealed that the largest proportion of genetic variation is found among the groups of populations. Paleodistribution models suggest that the potential habitat of A. striatus may have decreased during the Last Interglacial Period (LIG) and expanded during the Last Maximum Glacial (LGM). Overall, the past potential distribution recovered by the model comprises the current potential distribution of the species. The general structuring pattern observed was consistent with isolation by distance, suggesting a balance between gene flow and drift. Analysis of historical demography showed that populations of A. striatus had remained constant throughout its evolutionary history. Although fluctuations in the area of their potential historic habitat occurred during quaternary climate changes, populations of A. striatus are strongly structured geographically. However, explicit barriers to gene flow have not been identified. These findings closely match those in Mycetophylax simplex, another ant species that in some areas occurs in sympatry with A. striatus. Ecophysiological traits of this species and isolation by distance may together have shaped the phylogeographic pattern. PMID:26734939
Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau.
Luo, Zhenhua; Jiang, Zhigang; Tang, Songhua
2015-01-01
Climate change has significant impacts on species' distributions and diversity patterns. Understanding range shifts and changes in richness gradients under climate change is crucial for conservation. The Tibetan Plateau, home to wild yak, chiru, and kiang, contains a biome with many endemic ungulates. It is highly sensitive to climate change and a region that merits particular attention with regard to the impacts of global climate change on its biomes. Maximum entropy approaches were used to estimate current and future potential distributions, in response to climate change, for 22 ungulate species. We used three general circulation (MK3, HADCM3, MIROC3_2-MED) and three emissions scenarios (Bl, A1B, A2) to derive estimated future measurements of 14 environmental variables over three time periods (2020, 2050, 2080), and then modeled species distributions using these predicted environmental measurements for each time period under two dispersal hypotheses (full and zero, respectively). This resulted in a total of 6160 prediction models. We found that these ungulates, on average, may lose 30-50% of their distributional areas, depending on the dispersal scenarios. In addition, 55-68% of the ungulate species were predicted to become locally endangered under the different dispersal assumptions, 23-32% to become locally critically endangered, and 4-7 endemic species to become globally endangered. Furthermore, ungulate species ranges may experience average poleward shifts of ~300 km. We also predict west-to-east reductions in species richness: southeastern mountainous areas currently have the highest species richness, but are predicted to face the greatest diversity losses, whereas the northern areas are predicted to see increasing numbers of ungulate species in the 21st century. Our study indicates much more severe range reductions of ungulates on the Tibetan Plateau than those anticipated elsewhere in the world, and species richness patterns will change dramatically with climate change. For conservation, we suggest (1) securing existing protected areas, and (2) establishing new nature reserves to counterbalance climate change impacts.
Population trends and distribution of Common Murre Uria aalge colonies in Washington, 1996-2015
Thomas, Susan M; Lyons, James E.
2017-01-01
Periodic assessments of population trends and changes in spatial distribution are valuable for managing marine birds and their breeding habitats, particularly when evaluating long-term response to threats such as oil spills, predation pressure, and changing ocean conditions. We evaluated recent trends in abundance and distribution of the Common Murre Uria aalge within Copalis, Quillayute Needles, and Flattery Rocks National Wildlife Refuges, which include all murre colonies in Washington except one, off-refuge, on Tatoosh Island. In 1996-2001 and 2010-2015, aerial photographic surveys were conducted during the incubation phase (mid-June through mid-July) each year. Using images from film (1996-2001) and digital (2010-2015) cameras that included all parts of each colony, we manually counted murres. We estimated population trend as annual percent change in whole-colony counts using an overdispersed Poisson regression model. Overall, numbers of murres counted at breeding colonies in Washington increased by 8.8% per year (95% CI 3.0%-14.9%) during 1996–2015. The overall statewide increase was driven by an increase at colonies in northern Washington of approximately 11% per year (95% CI 4.5%-17.8%). Despite an increasing trend, abundance remains lower than levels in the late 1970s, and the spatial distribution has changed. Colonies in southern Washington - where murres were historically the most abundant - are no longer active, or only minimally so, whereas colonies in the north - which were rarely active in the early 1970s - are now the largest. There was high variability in spatial distribution among years, a pattern that indicates a need for coordinated monitoring and movement studies throughout the California Current System to understand dispersal and colonization. Our results indicate that future management of refuge islands could protect both current and historic colony locations, given the patterns of colony dynamics and the uncertainty about long-term effects of a changing ocean ecosystem and predation pressure on the status of murres.
Yang, Zhi; Wu, Youqian; Wu, Shihua
2016-01-29
Despite of substantial developments of extraction and separation techniques, isolation of natural products from natural resources is still a challenging task. In this work, an efficient strategy for extraction and isolation of multi-component natural products has been successfully developed by combination of systematic two-phase liquid-liquid extraction-(13)C NMR pattern recognition and following conical counter-current chromatography separation. A small-scale crude sample was first distributed into 9 systematic hexane-ethyl acetate-methanol-water (HEMWat) two-phase solvent systems for determination of the optimum extraction solvents and partition coefficients of the prominent components. Then, the optimized solvent systems were used in succession to enrich the hydrophilic and lipophilic components from the large-scale crude sample. At last, the enriched components samples were further purified by a new conical counter-current chromatography (CCC). Due to the use of (13)C NMR pattern recognition, the kinds and structures of major components in the solvent extracts could be predicted. Therefore, the method could collect simultaneously the partition coefficients and the structural information of components in the selected two-phase solvents. As an example, a cytotoxic extract of podophyllotoxins and flavonoids from Dysosma versipellis (Hance) was selected. After the systematic HEMWat system solvent extraction and (13)C NMR pattern recognition analyses, the crude extract of D. versipellis was first degreased by the upper phase of HEMWat system (9:1:9:1, v/v), and then distributed in the two phases of the system of HEMWat (2:8:2:8, v/v) to obtain the hydrophilic lower phase extract and lipophilic upper phase extract, respectively. These extracts were further separated by conical CCC with the HEMWat systems (1:9:1:9 and 4:6:4:6, v/v). As results, total 17 cytotoxic compounds were isolated and identified. In general, whole results suggested that the strategy was very efficient for the systematic extraction and isolation of biological active components from the complex biomaterials. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wachter, Paul; Höppner, Kathrin; Jacobeit, Jucundus; Diedrich, Erhard
2015-04-01
West Antarctica and the Antarctic Peninsula are in the focus of current studies on a changing environment and climate of the polar regions. A recently founded Junior Researchers Group at the German Aerospace Center (DLR) is studying changing processes in cryosphere and atmosphere above the Antarctic Peninsula. It is the aim of the group to make use of long-term remote sensing data sets of the land and ice surfaces and the atmosphere in order to characterize environmental changes in this highly sensitive region. One of the PhD projects focuses on the investigation of the 3D temperature distribution patterns above the Antarctic Peninsula. Temperature data sets ranging from MODIS land surface temperatures up to middle atmosphere data of AURA/MLS will be evaluated over the last approx. 12 years. This 3-dimensional view allows comprehensive investigations of the thermal structure and spatio-temporal characteristics of the southern polar atmosphere. Tropospheric data sets will be analyzed by multivariate statistical methods and will allow the identification of dominant atmospheric circulation patterns as well as their temporal variability. An overview of the data sets and first results will be presented.
Shinkareva, Svetlana V; Mason, Robert A; Malave, Vicente L; Wang, Wei; Mitchell, Tom M; Just, Marcel Adam
2008-01-02
Previous studies have succeeded in identifying the cognitive state corresponding to the perception of a set of depicted categories, such as tools, by analyzing the accompanying pattern of brain activity, measured with fMRI. The current research focused on identifying the cognitive state associated with a 4s viewing of an individual line drawing (1 of 10 familiar objects, 5 tools and 5 dwellings, such as a hammer or a castle). Here we demonstrate the ability to reliably (1) identify which of the 10 drawings a participant was viewing, based on that participant's characteristic whole-brain neural activation patterns, excluding visual areas; (2) identify the category of the object with even higher accuracy, based on that participant's activation; and (3) identify, for the first time, both individual objects and the category of the object the participant was viewing, based only on other participants' activation patterns. The voxels important for category identification were located similarly across participants, and distributed throughout the cortex, focused in ventral temporal perceptual areas but also including more frontal association areas (and somewhat left-lateralized). These findings indicate the presence of stable, distributed, communal, and identifiable neural states corresponding to object concepts.
Chikungunya, climate change, and human rights.
Meason, Braden; Paterson, Ryan
2014-06-14
Chikungunya is a re-emerging arbovirus that causes significant morbidity and some mortality. Global climate change leading to warmer temperatures and changes in rainfall patterns allow mosquito vectors to thrive at altitudes and at locations where they previously have not, ultimately leading to a spread of mosquito-borne diseases. While mutations to the chikungunya virus are responsible for some portion of the re-emergence, chikungunya epidemiology is closely tied with weather patterns in Southeast Asia. Extrapolation of this regional pattern, combined with known climate factors impacting the spread of malaria and dengue, summate to a dark picture of climate change and the spread of this disease from south Asia and Africa into Europe and North America. This review describes chikungunya and collates current data regarding its spread in which climate change plays an important part. We also examine human rights obligations of States and others to protect against this disease. Copyright © 2014 Meason, Paterson. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
Woodfield, Helen K; Cazenave-Gassiot, Amaury; Haslam, Richard P; Guschina, Irina A; Wenk, Markus R; Harwood, John L
2018-03-01
With dwindling available agricultural land, concurrent with increased demand for oil, there is much current interest in raising oil crop productivity. We have been addressing this issue by studying the regulation of oil accumulation in oilseed rape (Brassica napus L). As part of this research we have carried out a detailed lipidomic analysis of developing seeds. The molecular species distribution in individual lipid classes revealed quite distinct patterns and showed where metabolic connections were important. As the seeds developed, the molecular species distributions changed, especially in the period of early (20days after flowering, DAF) to mid phase (27DAF) of oil accumulation. The patterns of molecular species of diacylglycerol, phosphatidylcholine and acyl-CoAs were used to predict the possible relative contributions of diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase to triacylglycerol production. Our calculations suggest that DGAT may hold a more important role in influencing the molecular composition of TAG. Enzyme selectivity had an important influence on the final molecular species patterns. Our data contribute significantly to our understanding of lipid accumulation in the world's third most important oil crop. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Staunton, Kyran M; Nakamura, Akihiro; Burwell, Chris J; Robson, Simon K A; Williams, Stephen E
2016-01-01
Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of relatively distinct assemblages containing a high level of regional endemic species. Species richness was most strongly and positively associated with historical and current climatic stabilities and negatively associated with severity of recent disturbance (treefalls). Assemblage composition was associated with latitude and historical and current climatic conditions. Although the results need to be interpreted carefully due to inter-correlation between historical and current climatic variables, our study is in agreement with the hypothesis that upland refugia provided stable climatic conditions since the last glacial maximum, and supported a diverse fauna of flightless beetle species. These findings are important for conservation management as upland habitats become increasingly threatened by climate change.
Staunton, Kyran M.; Nakamura, Akihiro; Burwell, Chris J.; Robson, Simon K. A.; Williams, Stephen E.
2016-01-01
Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of relatively distinct assemblages containing a high level of regional endemic species. Species richness was most strongly and positively associated with historical and current climatic stabilities and negatively associated with severity of recent disturbance (treefalls). Assemblage composition was associated with latitude and historical and current climatic conditions. Although the results need to be interpreted carefully due to inter-correlation between historical and current climatic variables, our study is in agreement with the hypothesis that upland refugia provided stable climatic conditions since the last glacial maximum, and supported a diverse fauna of flightless beetle species. These findings are important for conservation management as upland habitats become increasingly threatened by climate change. PMID:27192085
Modern sedimentary environments in Boston Harbor, Massachusetts
Knebel, H.J.; Rendigs, R. R.; Bothner, Michael H.
1991-01-01
Analyses of sidescan-sonar records supplemented by available bathymetric, sedimentary, subbottom, and bottom-current data reveal the distributions of the following three categories of sedimentary environments within the glaciated, topographically complex Boston Harbor estuary in Massachusetts. 1) Environments of erosion appear on the sonographs either as patterns with isolated strong reflections or as uniform patterns of strong reflectivity. These patterns define outcrops of bedrock or till and coarse lag deposits that are being scoured and winnowed by tidal- and wave-induced currents. Erosional areas are located primarily along mainland and insular shores, within large channels that have strong tidal currents, atop submerged ridges and knolls, and across much of the harbor entrance. 2) Environments of deposition are depicted on the sidescan-sonar records as smooth, featureless surfaces that have low to moderate reflectivity. Depositional environments are found predominantly over shallow subtidal flats and in broad bathymetric lows where tidal currents are weak. Sediments within depositional areas are organic-rich sandy and clayey silts that are accumulating at rates ranging from 0.01 to 0.11 g/cm 2 /yr or 4000 to 46,100 metric tons/yr. The cumulative mass of modern mud in harbor depocenters is 24.3 million metric tons. 3) Environments of sediment reworking constitute areas affected by a combination of erosional and depositional processes. They are characterized on the sonographs by mosaics of light and dark patches produced by relatively subtle and gradational changes in reflectivity. Reworked sediments have diverse grain sizes that overlap and are transitional between those of the other two sedimentary environments, and they are indicative of highly variable bottom currents.
Guo, Hongyu; Pennings, Steven C
2012-01-01
Understanding of how plant communities are organized and will respond to global changes requires an understanding of how plant species respond to multiple environmental gradients. We examined the mechanisms mediating the distribution patterns of tidal marsh plants along an estuarine gradient in Georgia (USA) using a combination of field transplant experiments and monitoring. Our results could not be fully explained by the "competition-to-stress hypothesis" (the current paradigm explaining plant distributions across estuarine landscapes). This hypothesis states that the upstream limits of plant distributions are determined by competition, and the downstream limits by abiotic stress. We found that competition was generally strong in freshwater and brackish marshes, and that conditions in brackish and salt marshes were stressful to freshwater marsh plants, results consistent with the competition-to-stress hypothesis. Four other aspects of our results, however, were not explained by the competition-to-stress hypothesis. First, several halophytes found the freshwater habitat stressful and performed best (in the absence of competition) in brackish or salt marshes. Second, the upstream distribution of one species was determined by the combination of both abiotic and biotic (competition) factors. Third, marsh productivity (estimated by standing biomass) was a better predictor of relative biotic interaction intensity (RII) than was salinity or flooding, suggesting that productivity is a better indicator of plant stress than salinity or flooding gradients. Fourth, facilitation played a role in mediating the distribution patterns of some plants. Our results illustrate that even apparently simple abiotic gradients can encompass surprisingly complex processes mediating plant distributions.
Han, Qingxiang; Higashi, Hiroyuki; Mitsui, Yuki; Setoguchi, Hiroaki
2015-01-01
Coastal plants with simple linear distribution ranges along coastlines provide a suitable system for improving our understanding of patterns of intra-specific distributional history and genetic variation. Due to the combination of high seed longevity and high dispersibility of seeds via seawater, we hypothesized that wild radish would poorly represent phylogeographic structure at the local scale. On the other hand, we also hypothesized that wild radish populations might be geographically differentiated, as has been exhibited by their considerable phenotypic variations along the islands of Japan. We conducted nuclear DNA microsatellite loci and chloroplast DNA haplotype analyses for 486 samples and 144 samples, respectively, from 18 populations to investigate the phylogeographic structure of wild radish in Japan. Cluster analysis supported the existence of differential genetic structures between the Ryukyu Islands and mainland Japan populations. A significant strong pattern of isolation by distance and significant evidence of a recent bottleneck were detected. The chloroplast marker analysis resulted in the generation of eight haplotypes, of which two haplotypes (A and B) were broadly distributed in most wild radish populations. High levels of variation in microsatellite loci were identified, whereas cpDNA displayed low levels of genetic diversity within populations. Our results indicate that the Kuroshio Current would have contributed to the sculpting of the phylogeographic structure by shaping genetic gaps between isolated populations. In addition, the Tokara Strait would have created a geographic barrier between the Ryukyu Islands and mainland Japan. Finally, extant habitat disturbances (coastal erosion), migration patterns (linear expansion), and geographic characteristics (small islands and sea currents) have influenced the expansion and historical population dynamics of wild radish. Our study is the first to record the robust phylogeographic structure in wild radish between the Ryukyu Islands and mainland Japan, and might provide new insight into the genetic differentiation of coastal plants across islands. PMID:26247202
Ahmad, Firoz; Lad, Purnima; Bhatia, Simi; Das, Bibhu Ranjan
2015-01-01
KIT and PDGFRA gene mutations are the major genetic alterations seen in gastrointestinal stromal tumors (GISTs) and are being used clinically for predicting response to imatinib therapy. In the current study, we set out to explore the frequency and distribution pattern of c-KIT (exons 9, 11 and 13) and PDGFRA (exons 12 and 18) by direct sequencing in a series of 70 Indian GIST cases. Overall, 27 (38.5 %) and 4 (5.7 %) of the cases had c-KIT and PDGFRA mutations, respectively. Majority of KIT mutations involved exon 11 (85.7 %), followed by exon 9 (14.3 %), while none showed exon 13 mutation. Most exon 9 mutations showed Ala503-Tyr504 duplication, while one had novel point mutation at codon 476 (S476G). In contrast to exon 9 mutations, most exon 11 mutations were in-frame deletions (79 %, 19/24), predominantly at codons 550-560, while remaining exon 11 mutant cases were point mutations at codons 559, 560, 568, 573 and 575. Interestingly, P573T, Q556_V560delinsH, Q575H and Q575_P577 were novel variations observed in exon 11. The PDGFRA mutations were seen mostly in exon 18, which showed point mutation at codon 842 (D842V), while exon 12 showed a novel indel variation (V561_H570delinsT). No significant correlation between c-KIT/PDGFRA mutations and clinicopathological data was observed. In conclusion, this study highlights the frequency and distribution pattern of c-KIT/PDGFRA mutation in Indian cohort. The current study identified novel variations that added new insights into the genetic heterogeneity of GIST patients. Furthermore, this is the first study to report the presence of PDGFRA mutation from Indian subcontinent.
NASA Astrophysics Data System (ADS)
Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.
2013-12-01
Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the most sensitive to toxic air contaminants in the Sierra Nevada-Southern Cascades region.
Cetacean distributions relative to ocean processes in the northern California Current System
NASA Astrophysics Data System (ADS)
Tynan, Cynthia T.; Ainley, David G.; Barth, John A.; Cowles, Timothy J.; Pierce, Stephen D.; Spear, Larry B.
2005-01-01
Associations between cetacean distributions, oceanographic features, and bioacoustic backscatter were examined during two process cruises in the northern California Current System (CCS) during late spring and summer 2000. Line-transect surveys of cetaceans were conducted across the shelf and slope, out to 150 km offshore from Newport, Oregon (44.6°N) to Crescent City, California (41.9°N), in conjunction with multidisciplinary mesoscale and fine-scale surveys of ocean and ecosystem structure. Occurrence patterns (presence/absence) of cetaceans were compared with hydrographic and ecological variables (e.g., sea surface salinity, sea surface temperature, thermocline depth, halocline depth, chlorophyll maximum, distance to the center of the equatorward jet, distance to the shoreward edge of the upwelling front, and acoustic backscatter at 38, 120, 200 and 420 kHz) derived from a towed, undulating array and a bioacoustic system. Using a multiple logistic regression model, 60.2% and 94.4% of the variation in occurrence patterns of humpback whales Megaptera novaeangliae during late spring and summer, respectively, were explained. Sea surface temperature, depth, and distance to the alongshore upwelling front were the most important environmental variables during June, when humpbacks occurred over the slope (200-2000 m). During August, when humpbacks concentrated over a submarine bank (Heceta Bank) and off Cape Blanco, sea surface salinity was the most important variable, followed by latitude and depth. Humpbacks did not occur in the lowest salinity water of the Columbia River plume. For harbor porpoise Phocoena phocoena, the model explained 79.2% and 70.1% of the variation in their occurrence patterns during June and August, respectively. During spring, latitude, sea surface salinity, and thermocline gradient were the most important predictors. During summer, latitude and distance to the inshore edge of the upwelling front were the most important variables. Typically a coastal species, harbor porpoises extended their distribution farther offshore at Heceta Bank and at Cape Blanco, where they were associated with the higher chlorophyll concentrations in these regions. Pacific white-sided dolphin Lagenorhynchus obliquidens was the most numerous small cetacean in early June, but was rare during August. The model explained 44.5% of the variation in their occurrence pattern, which was best described by distance to the upwelling front and acoustic backscatter at 38 kHz. The model of the occurrence pattern of Dall's porpoise Phocoenoides dalli was more successful when mesoscale variability in the CCS was higher during summer. Thus, the responses of cetaceans to biophysical features and upwelling processes in the northern CCS were both seasonally and spatially specific. Heceta Bank and associated flow-topography interactions were very important to a cascade of trophic dynamics that ultimately influenced the distribution of foraging cetaceans. The higher productivity associated with upwelling near Cape Blanco also had a strong influence on the distribution of cetaceans.
FracPaQ: a MATLAB™ toolbox for the quantification of fracture patterns
NASA Astrophysics Data System (ADS)
Healy, David; Rizzo, Roberto; Farrell, Natalie; Watkins, Hannah; Cornwell, David; Gomez-Rivas, Enrique; Timms, Nick
2017-04-01
The patterns of fractures in deformed rocks are rarely uniform or random. Fracture orientations, sizes, shapes and spatial distributions often exhibit some kind of order. In detail, there may be relationships among the different fracture attributes e.g. small fractures dominated by one orientation, larger fractures by another. These relationships are important because the mechanical (e.g. strength, anisotropy) and transport (e.g. fluids, heat) properties of rock depend on these fracture patterns and fracture attributes. This presentation describes an open source toolbox to quantify fracture patterns, including distributions in fracture attributes and their spatial variation. Software has been developed to quantify fracture patterns from 2-D digital images, such as thin section micrographs, geological maps, outcrop or aerial photographs or satellite images. The toolbox comprises a suite of MATLAB™ scripts based on published quantitative methods for the analysis of fracture attributes: orientations, lengths, intensity, density and connectivity. An estimate of permeability in 2-D is made using a parallel plate model. The software provides an objective and consistent methodology for quantifying fracture patterns and their variations in 2-D across a wide range of length scales. Our current focus for the application of the software is on quantifying crack and fracture patterns in and around fault zones. There is a large body of published work on the quantification of relatively simple joint patterns, but fault zones present a bigger, and arguably more important, challenge. The methods presented are inherently scale independent, and a key task will be to analyse and integrate quantitative fracture pattern data from micro- to macro-scales. New features in this release include multi-scale analyses based on a wavelet method to look for scale transitions, support for multi-colour traces in the input file processed as separate fracture sets, and combining fracture traces from multiple 2-D images to derive the statistically equivalent 3-D fracture pattern expressed as a 2nd rank crack tensor.
Global biogeography of human infectious diseases.
Murray, Kris A; Preston, Nicholas; Allen, Toph; Zambrana-Torrelio, Carlos; Hosseini, Parviez R; Daszak, Peter
2015-10-13
The distributions of most infectious agents causing disease in humans are poorly resolved or unknown. However, poorly known and unknown agents contribute to the global burden of disease and will underlie many future disease risks. Existing patterns of infectious disease co-occurrence could thus play a critical role in resolving or anticipating current and future disease threats. We analyzed the global occurrence patterns of 187 human infectious diseases across 225 countries and seven epidemiological classes (human-specific, zoonotic, vector-borne, non-vector-borne, bacterial, viral, and parasitic) to show that human infectious diseases exhibit distinct spatial grouping patterns at a global scale. We demonstrate, using outbreaks of Ebola virus as a test case, that this spatial structuring provides an untapped source of prior information that could be used to tighten the focus of a range of health-related research and management activities at early stages or in data-poor settings, including disease surveillance, outbreak responses, or optimizing pathogen discovery. In examining the correlates of these spatial patterns, among a range of geographic, epidemiological, environmental, and social factors, mammalian biodiversity was the strongest predictor of infectious disease co-occurrence overall and for six of the seven disease classes examined, giving rise to a striking congruence between global pathogeographic and "Wallacean" zoogeographic patterns. This clear biogeographic signal suggests that infectious disease assemblages remain fundamentally constrained in their distributions by ecological barriers to dispersal or establishment, despite the homogenizing forces of globalization. Pathogeography thus provides an overarching context in which other factors promoting infectious disease emergence and spread are set.
Mechanisms of Firing Patterns in Fast-Spiking Cortical Interneurons
Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David
2007-01-01
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na+, delayed-rectifier K+, and slowly inactivating d-type K+ conductances. The model is analyzed using nonlinear dynamical system theory. For small Na+ window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, g d, and it is delayed for larger g d. As g d further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na+ window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their g d and in the strength of their Na+ window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction. PMID:17696606
Mechanisms of firing patterns in fast-spiking cortical interneurons.
Golomb, David; Donner, Karnit; Shacham, Liron; Shlosberg, Dan; Amitai, Yael; Hansel, David
2007-08-01
Cortical fast-spiking (FS) interneurons display highly variable electrophysiological properties. Their spike responses to step currents occur almost immediately following the step onset or after a substantial delay, during which subthreshold oscillations are frequently observed. Their firing patterns include high-frequency tonic firing and rhythmic or irregular bursting (stuttering). What is the origin of this variability? In the present paper, we hypothesize that it emerges naturally if one assumes a continuous distribution of properties in a small set of active channels. To test this hypothesis, we construct a minimal, single-compartment conductance-based model of FS cells that includes transient Na(+), delayed-rectifier K(+), and slowly inactivating d-type K(+) conductances. The model is analyzed using nonlinear dynamical system theory. For small Na(+) window current, the neuron exhibits high-frequency tonic firing. At current threshold, the spike response is almost instantaneous for small d-current conductance, gd, and it is delayed for larger gd. As gd further increases, the neuron stutters. Noise substantially reduces the delay duration and induces subthreshold oscillations. In contrast, when the Na(+) window current is large, the neuron always fires tonically. Near threshold, the firing rates are low, and the delay to firing is only weakly sensitive to noise; subthreshold oscillations are not observed. We propose that the variability in the response of cortical FS neurons is a consequence of heterogeneities in their gd and in the strength of their Na(+) window current. We predict the existence of two types of firing patterns in FS neurons, differing in the sensitivity of the delay duration to noise, in the minimal firing rate of the tonic discharge, and in the existence of subthreshold oscillations. We report experimental results from intracellular recordings supporting this prediction.
The Consequences of Saturn’s Rotating Asymmetric Ring Current
NASA Astrophysics Data System (ADS)
Southwood, D. J.; Kivelson, M. G.
2009-12-01
The plasma and field behavior in the dipolar region of the Saturnian magnetosphere is described, based primarily on interpretation of the magnetic field behavior measured by the Cassini spacecraft. Previous authors, such as Provan and Khurana, have pointed out that the regular pulses in field strength at around 10.8 hrs period detected in this region imply the existence not only of a symmetric ring current but also of a partial ring current. Once spacecraft motion in local time has been allowed for, one finds a close to sinusoidal variation with azimuth and time of the magnetic signal. Hence the partial ring current appears to quasi-rigidly rotate about the planetary axis at the same 10.8 hr period as the pulsing of the Saturn kilometric radiation. We point out that, independent of whether the excess current is due to asymmetry in flux tube population or in plasma beta (pressure normalized to field pressure), such a current gives rise to a rotating circulation system. The compressional field pattern is consistent with an m = 1 pattern of circulation. The fairly uniform inner magnetosphere cam magnetic signature predicted on the basis of inner magnetosphere transverse field components in our past work is modified in a systematic way by the partial ring current effects. The circulation due to the partial ring current has its own set of distributed field aligned currents (FACs). The rotating transverse perturbation field components are twisted by the FACs so that the radial field is reduced at low L-shells and increased at larger L. Overall the cam field is depressed at low L and enhanced as one approaches the boundary of the cam region at L = 10-12. In practice the system must also respond to some local time effects. Loss of plasma is easier on the night-side and flanks than on the day-side and so a day-night asymmetry is imposed tending to increase the perturbation field amplitudes by night. The FACs driven by the asymmetric ring current should be broadly distributed throughout the cam region and correspondingly are associated with smaller current densities than those associated with the more narrowly confined cam current system on the outer edge of the cam. Accordingly the intense fluxes of electrons that give rise to the SKR signals are associated with the upward elements of the latter current system.
Zhang, Jian-Qiang; Meng, Shi-Yong; Rao, Guang-Yuan
2014-01-01
The evolution and current distribution of the Sino-Tibetan flora have been greatly affected by historical geological events, such as the uplift of the Qinghai-Tibetan Plateau (QTP), and Quaternary climatic oscillations. Rhodiola kirilowii, a perennial herb with its distribution ranging from the southeastern QTP and the Hengduan Mountains (HM) to adjacent northern China and central Asia, provides an excellent model to examine and disentangle the effect of both geological orogeny and climatic oscillation on the evolutionary history of species with such distribution patterns. We here conducted a phylogeographic study using sequences of two chloroplast fragments (trnL-F and trnS-G) and internal transcribed spacers in 29 populations of R. kirilowii. A total of 25 plastid haplotypes and 12 ITS ribotypes were found. Molecular clock estimation revealed deep divergence between the central Asian populations and other populations from the HM and northern China; this split occurred ca. 2.84 million year ago. The majority of populations from the mountains of northern China were dominated by a single haplotype or ribotype, while populations of the HM harbored both high genetic diversity and high haplotype diversity. This distribution pattern indicates that HM was either a diversification center or a refugium for R. kirilowii during the Quaternary climatic oscillations. The present distribution of this species on mountains in northern China may have resulted from a rapid glacial population expansion from the HM. This expansion was confirmed by the mismatch distribution analysis and negative Tajima's D and Fu's FS values, and was dated to ca. 168 thousand years ago. High genetic diversity and population differentiation in both plastid and ITS sequences were revealed; these imply restricted gene flow between populations. A distinct isolation-by-distance pattern was suggested by the Mantel test. Our results show that in old lineages, populations may harbour divergent genetic forms that are sufficient to maintain or even increase overall genetic diversity despite fragmentation and low within-population variation.
Zhang, Jian-Qiang; Meng, Shi-Yong; Rao, Guang-Yuan
2014-01-01
The evolution and current distribution of the Sino-Tibetan flora have been greatly affected by historical geological events, such as the uplift of the Qinghai-Tibetan Plateau (QTP), and Quaternary climatic oscillations. Rhodiola kirilowii, a perennial herb with its distribution ranging from the southeastern QTP and the Hengduan Mountains (HM) to adjacent northern China and central Asia, provides an excellent model to examine and disentangle the effect of both geological orogeny and climatic oscillation on the evolutionary history of species with such distribution patterns. We here conducted a phylogeographic study using sequences of two chloroplast fragments (trnL-F and trnS-G) and internal transcribed spacers in 29 populations of R. kirilowii. A total of 25 plastid haplotypes and 12 ITS ribotypes were found. Molecular clock estimation revealed deep divergence between the central Asian populations and other populations from the HM and northern China; this split occurred ca. 2.84 million year ago. The majority of populations from the mountains of northern China were dominated by a single haplotype or ribotype, while populations of the HM harbored both high genetic diversity and high haplotype diversity. This distribution pattern indicates that HM was either a diversification center or a refugium for R. kirilowii during the Quaternary climatic oscillations. The present distribution of this species on mountains in northern China may have resulted from a rapid glacial population expansion from the HM. This expansion was confirmed by the mismatch distribution analysis and negative Tajima's D and Fu's F S values, and was dated to ca. 168 thousand years ago. High genetic diversity and population differentiation in both plastid and ITS sequences were revealed; these imply restricted gene flow between populations. A distinct isolation-by-distance pattern was suggested by the Mantel test. Our results show that in old lineages, populations may harbour divergent genetic forms that are sufficient to maintain or even increase overall genetic diversity despite fragmentation and low within-population variation. PMID:25389750
Marrone, Federico; Lo Brutto, Sabrina; Hundsdoerfer, Anna K; Arculeo, Marco
2013-01-01
Our comprehension of the phylogeny and diversity of most inland-water crustaceans is currently hampered by their pronounced morphological bradytely, which contributed to the affirmation of the "Cosmopolitanism Paradigm" of freshwater taxa. However, growing evidence of the existence of cryptic diversity and molecular regionalism is available for calanoid copepods, thus stressing the need for careful morphological and molecular studies in order to soundly investigate the systematics, diversity and distribution patterns of the group. Diaptomid copepods were here chosen as model taxa, and the morphological and molecular diversity of the species belonging to the west-Mediterranean diaptomid subgenus Occidodiaptomus were investigated with the aim of comparing the patterns of morphological and molecular evolution in freshwater copepods. Three species currently lumped under the binomen Hemidiaptomus (Occidodiaptomus) ingens and two highly divergent clades within H. (O.) roubaui were distinguished, thus showing an apparent discordance between the molecular distances recorded and Occidodiaptomus morphological homogeneity, and highlighting a noteworthy decoupling between the morphological and molecular diversity in the subgenus. Current Occidodiaptomus diversity pattern is ascribed to a combined effect of ancient vicariance and recent dispersal events. It is stressed that the lack of sound calibration points for the molecular clock makes it difficult to soundly temporally frame the diversification events of interest in the taxon studied, and thus to asses the role of morphological bradytely and of accelerated molecular evolutionary rates in shaping the current diversity of the group. Copyright © 2012 Elsevier Inc. All rights reserved.
Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent
NASA Astrophysics Data System (ADS)
Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon
This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.
Study of the marine environment of the northern Gulf of California
NASA Technical Reports Server (NTRS)
Hendrickson, J. R. (Principal Investigator)
1972-01-01
The author has identified the following significant results. Preliminary analysis of the first three months of ERTS-1 imagery have revealed that the MSS images have particular utility for study of turbidity patterns, current phenomena, and bathymetry throughout the test area. Early indications are that well defined spatial distributions of turbidity exist in the northern Gulf of California, and that for any one point in time, these distributions vary with depth. From a single set of images, as many as 3 turbidity maps may be generated, each indicating a vertical spatial relationship of the turbidity masses. The spatial distribution of turbidity masses depend partially upon the coincident currents. In the band of deepest penetration, a map can be gathered which roughly corresponds to the bathymetry of the area. The extreme tides in the northern Gulf of California result in vast areas which can be classified as intertidal mud flats. Information on the amount of exposure at the varying tidal states is important in analysis of these mud flat areas as nursery ground for Mexican commercial fisheries.
Can We "Future-Proof" Marine Conservation Planning?
NASA Astrophysics Data System (ADS)
Pinsky, M. L.; Rogers, L. A.
2016-02-01
Marine conservation and marine spatial planning strategies worldwide are designed around biogeographic patterns, often under the assumption that these patterns are relatively stable. With climate change, however, distributions are shifting rapidly as species seek more suitable conditions. Here, we use distribution projections from 2006-2100 for 360 marine species in North America to evaluate the effectiveness of the current marine protected area (MPA) network and to test climate-ready planning approaches. We consider both expected community changes and the uncertainty in those projections. We find that existing MPAs are likely to lose more species over the coming century than other locations on the continental shelf. We also find substantial shifts in the location of high- and low-value regions, which can complicate conservation planning. However, planning portfolios can be developed that perform much better in the face of changes expected over the coming century. The theory and practice of marine spatial planning and marine conservation can be substantially more responsive to our dynamic ocean.
Unequal household carbon footprints in China
NASA Astrophysics Data System (ADS)
Wiedenhofer, Dominik; Guan, Dabo; Liu, Zhu; Meng, Jing; Zhang, Ning; Wei, Yi-Ming
2017-01-01
Households' carbon footprints are unequally distributed among the rich and poor due to differences in the scale and patterns of consumption. We present distributional focused carbon footprints for Chinese households and use a carbon-footprint-Gini coefficient to quantify inequalities. We find that in 2012 the urban very rich, comprising 5% of population, induced 19% of the total carbon footprint from household consumption in China, with 6.4 tCO2/cap. The average Chinese household footprint remains comparatively low (1.7 tCO2/cap), while those of the rural population and urban poor, comprising 58% of population, are 0.5-1.6 tCO2/cap. Between 2007 and 2012 the total footprint from households increased by 19%, with 75% of the increase due to growing consumption of the urban middle class and the rich. This suggests that a transformation of Chinese lifestyles away from the current trajectory of carbon-intensive consumption patterns requires policy interventions to improve living standards and encourage sustainable consumption.
NASA Astrophysics Data System (ADS)
Afifah, M. R. Nurul; Aziz, A. Che; Roslan, M. Kamal
2015-09-01
Sediment samples were collected from the shallow marine from Kuala Besar, Kelantan outwards to the basin floor of South China Sea which consisted of quaternary bottom sediments. Sixty five samples were analysed for their grain size distribution and statistical relationships. Basic statistical analysis like mean, standard deviation, skewness and kurtosis were calculated and used to differentiate the depositional environment of the sediments and to derive the uniformity of depositional environment either from the beach or river environment. The sediments of all areas were varied in their sorting ranging from very well sorted to poorly sorted, strongly negative skewed to strongly positive skewed, and extremely leptokurtic to very platykurtic in nature. Bivariate plots between the grain-size parameters were then interpreted and the Coarsest-Median (CM) pattern showed the trend suggesting relationships between sediments influenced by three ongoing hydrodynamic factors namely turbidity current, littoral drift and waves dynamic, which functioned to control the sediments distribution pattern in various ways.
Methods, caveats and the future of large-scale microelectrode recordings in the non-human primate
Dotson, Nicholas M.; Goodell, Baldwin; Salazar, Rodrigo F.; Hoffman, Steven J.; Gray, Charles M.
2015-01-01
Cognitive processes play out on massive brain-wide networks, which produce widely distributed patterns of activity. Capturing these activity patterns requires tools that are able to simultaneously measure activity from many distributed sites with high spatiotemporal resolution. Unfortunately, current techniques with adequate coverage do not provide the requisite spatiotemporal resolution. Large-scale microelectrode recording devices, with dozens to hundreds of microelectrodes capable of simultaneously recording from nearly as many cortical and subcortical areas, provide a potential way to minimize these tradeoffs. However, placing hundreds of microelectrodes into a behaving animal is a highly risky and technically challenging endeavor that has only been pursued by a few groups. Recording activity from multiple electrodes simultaneously also introduces several statistical and conceptual dilemmas, such as the multiple comparisons problem and the uncontrolled stimulus response problem. In this perspective article, we discuss some of the techniques that we, and others, have developed for collecting and analyzing large-scale data sets, and address the future of this emerging field. PMID:26578906
Spatiotemporal Analysis of the Ebola Hemorrhagic Fever in West Africa in 2014
NASA Astrophysics Data System (ADS)
Xu, M.; Cao, C. X.; Guo, H. F.
2017-09-01
Ebola hemorrhagic fever (EHF) is an acute hemorrhagic diseases caused by the Ebola virus, which is highly contagious. This paper aimed to explore the possible gathering area of EHF cases in West Africa in 2014, and identify endemic areas and their tendency by means of time-space analysis. We mapped distribution of EHF incidences and explored statistically significant space, time and space-time disease clusters. We utilized hotspot analysis to find the spatial clustering pattern on the basis of the actual outbreak cases. spatial-temporal cluster analysis is used to analyze the spatial or temporal distribution of agglomeration disease, examine whether its distribution is statistically significant. Local clusters were investigated using Kulldorff's scan statistic approach. The result reveals that the epidemic mainly gathered in the western part of Africa near north Atlantic with obvious regional distribution. For the current epidemic, we have found areas in high incidence of EVD by means of spatial cluster analysis.
The importance of offshore origination revealed through ophiuroid phylogenomics.
Bribiesca-Contreras, Guadalupe; Verbruggen, Heroen; Hugall, Andrew F; O'Hara, Timothy D
2017-07-12
Our knowledge of macro-evolutionary processes in the deep sea is poor, leading to much speculation about whether the deep sea is a source or sink of evolutionary adaptation. Here, we use a phylogenetic approach, on large molecular (688 species, 275 kbp) and distributional datasets (104 513 records) across an entire class of marine invertebrates (Ophiuroidea), to infer rates of bathymetric range shift over time between shallow and deep water biomes. Biome conservation is evident through the phylogeny, with the majority of species in most clades distributed within the same bathome. Despite this, bathymetric shifts have occurred. We inferred from ancestral reconstructions that eurybathic or intermediate distributions across both biomes were a transitional state and direct changes between shallow and deep sea did not occur. The macro-evolutionary pattern of bathome shift appeared to reflect micro-evolutionary processes of bathymetric speciation. Results suggest that most of the oldest clades have a deep-sea origin, but multiple colonization events indicate that the evolution of this group conforms neither to a simple onshore-offshore hypothesis, nor the opposite pattern. Both shallow and deep bathomes have played an important role in generating the current diversity of this major benthic class. © 2017 The Author(s).
Drivers of Cape Verde archipelagic endemism in keyhole limpets.
Cunha, Regina L; Assis, Jorge M; Madeira, Celine; Seabra, Rui; Lima, Fernando P; Lopes, Evandro P; Williams, Suzanne T; Castilho, Rita
2017-02-02
Oceanic archipelagos are the ideal setting for investigating processes that shape species assemblages. Focusing on keyhole limpets, genera Fissurella and Diodora from Cape Verde Islands, we used an integrative approach combining molecular phylogenetics with ocean transport simulations to infer species distribution patterns and analyse connectivity. Dispersal simulations, using pelagic larval duration and ocean currents as proxies, showed a reduced level of connectivity despite short distances between some of the islands. It is suggested that dispersal and persistence driven by patterns of oceanic circulation favouring self-recruitment played a primary role in explaining contemporary species distributions. Mitochondrial and nuclear data revealed the existence of eight Cape Verde endemic lineages, seven within Fissurella, distributed across the archipelago, and one within Diodora restricted to Boavista. The estimated origins for endemic Fissurella and Diodora were 10.2 and 6.7 MY, respectively. Between 9.5 and 4.5 MY, an intense period of volcanism in Boavista might have affected Diodora, preventing its diversification. Having originated earlier, Fissurella might have had more opportunities to disperse to other islands and speciate before those events. Bayesian analyses showed increased diversification rates in Fissurella possibly promoted by low sea levels during Plio-Pleistocene, which further explain differences in species richness between both genera.
Acquiring and processing verb argument structure: distributional learning in a miniature language.
Wonnacott, Elizabeth; Newport, Elissa L; Tanenhaus, Michael K
2008-05-01
Adult knowledge of a language involves correctly balancing lexically-based and more language-general patterns. For example, verb argument structures may sometimes readily generalize to new verbs, yet with particular verbs may resist generalization. From the perspective of acquisition, this creates significant learnability problems, with some researchers claiming a crucial role for verb semantics in the determination of when generalization may and may not occur. Similarly, there has been debate regarding how verb-specific and more generalized constraints interact in sentence processing and on the role of semantics in this process. The current work explores these issues using artificial language learning. In three experiments using languages without semantic cues to verb distribution, we demonstrate that learners can acquire both verb-specific and verb-general patterns, based on distributional information in the linguistic input regarding each of the verbs as well as across the language as a whole. As with natural languages, these factors are shown to affect production, judgments and real-time processing. We demonstrate that learners apply a rational procedure in determining their usage of these different input statistics and conclude by suggesting that a Bayesian perspective on statistical learning may be an appropriate framework for capturing our findings.
Assessment of Rip-Current Hazards Using Alongshore Topographic Anisotropy at Bondi Beach, Australia
NASA Astrophysics Data System (ADS)
Hartman, K.; Trimble, S. M.; Bishop, M. P.; Houser, C.
2016-12-01
Rip currents are a relatively high-velocity flow of water away from the beach common in coastal environments. As beach morphology adapts to sediment fluxes and wave climate, it is essential to be able to assess rip-current hazard conditions. Furthermore, it is essential to be able to characterize the scale-dependent bathymetric morphology that governs the extent and magnitude of a rip current. Consequently, our primary objective is to assess the alongshore distribution of topographic anisotropy, in order to identify rip-current hazard locations. Specifically, we utilized multi-band satellite imagery to generate a bathymetric digital elevation model (DEM) for Bondi Beach Australia, and collected field data to support our analysis. Scale-dependent spatial analysis of the DEM was conducted to assess the directional dependence of topographic relief, the magnitude of topographic anisotropy, and the degree of anisotropic symmetry. We displayed anisotropy parameters as images and false-color composites to visualize morphological conditions associated with rip channels. Our preliminary results indicate that rip channels generally have a higher anisotropy index and orthogonal orientation compared to dissipative or reflective beach anisotropy and orientation. Scale-dependent variations in anisotropy can be used to assess the spatial extent of rip currents. Furthermore, well-defined rip channels exhibit positive symmetry, while variations in the distribution of symmetry reflect sediment-flux variations alongshore. These results clearly reveal that a well-developed rip channel can be identified and assessed using topographic anisotropy, as scale-dependent anisotropy patterns are unique when compared to the surrounding bathymetry and terrain. In this way, it is possible to evaluate the alongshore distribution of rip currents. Alongshore topographic anisotropy data will be extremely important as input into hazard assessment studies and the development of hazard decision support systems.
Current Flow in the Bubble and Stripe Phases
NASA Astrophysics Data System (ADS)
Friess, B.; Umansky, V.; von Klitzing, K.; Smet, J. H.
2018-03-01
The spontaneous ordering of spins and charges in geometric patterns is currently under scrutiny in a number of different material systems. A topic of particular interest is the interaction of such ordered phases with itinerant electrons driven by an externally imposed current. It not only provides important information on the charge ordering itself but potentially also allows manipulating the shape and symmetry of the underlying pattern if current flow is strong enough. Unfortunately, conventional transport methods probing the macroscopic resistance suffer from the fact that the voltage drop along the sample edges provides only indirect information on the bulk properties because a complex current distribution is elicited by the inhomogeneous ground state. Here, we promote the use of surface acoustic waves to study these broken-symmetry phases and specifically address the bubble and stripe phases emerging in high-quality two-dimensional electron systems in GaAs /AlGaAs heterostructures as prototypical examples. When driving a unidirectional current, we find a surprising discrepancy between the sound propagation probing the bulk of the sample and the voltage drop along the sample edges. Our results prove that the current-induced modifications observed in resistive transport measurements are in fact a local phenomenon only, leaving the majority of the sample unaltered. More generally, our findings shed new light on the extent to which these ordered electron phases are impacted by an external current and underline the intrinsic advantages of acoustic measurements for the study of such inhomogeneous phases.
Trębicki, Piotr; Dáder, Beatriz; Vassiliadis, Simone; Fereres, Alberto
2017-12-01
Carbon dioxide (CO 2 ) is the main anthropogenic gas which has drastically increased since the industrial revolution, and current concentrations are projected to double by the end of this century. As a consequence, elevated CO 2 is expected to alter the earths' climate, increase global temperatures and change weather patterns. This is likely to have both direct and indirect impacts on plants, insect pests, plant pathogens and their distribution, and is therefore problematic for the security of future food production. This review summarizes the latest findings and highlights current knowledge gaps regarding the influence of climate change on insect, plant and pathogen interactions with an emphasis on agriculture and food production. Direct effects of climate change, including increased CO 2 concentration, temperature, patterns of rainfall and severe weather events that impact insects (namely vectors of plant pathogens) are discussed. Elevated CO 2 and temperature, together with plant pathogen infection, can considerably change plant biochemistry and therefore plant defense responses. This can have substantial consequences on insect fecundity, feeding rates, survival, population size, and dispersal. Generally, changes in host plant quality due to elevated CO 2 (e.g., carbon to nitrogen ratios in C3 plants) negatively affect insect pests. However, compensatory feeding, increased population size and distribution have also been reported for some agricultural insect pests. This underlines the importance of additional research on more targeted, individual insect-plant scenarios at specific locations to fully understand the impact of a changing climate on insect-plant-pathogen interactions. © 2017 Institute of Zoology, Chinese Academy of Sciences.
McClure, Meredith L; Burdett, Christopher L; Farnsworth, Matthew L; Lutman, Mark W; Theobald, David M; Riggs, Philip D; Grear, Daniel A; Miller, Ryan S
2015-01-01
Wild pigs (Sus scrofa), also known as wild swine, feral pigs, or feral hogs, are one of the most widespread and successful invasive species around the world. Wild pigs have been linked to extensive and costly agricultural damage and present a serious threat to plant and animal communities due to their rooting behavior and omnivorous diet. We modeled the current distribution of wild pigs in the United States to better understand the physiological and ecological factors that may determine their invasive potential and to guide future study and eradication efforts. Using national-scale wild pig occurrence data reported between 1982 and 2012 by wildlife management professionals, we estimated the probability of wild pig occurrence across the United States using a logistic discrimination function and environmental covariates hypothesized to influence the distribution of the species. Our results suggest the distribution of wild pigs in the U.S. was most strongly limited by cold temperatures and availability of water, and that they were most likely to occur where potential home ranges had higher habitat heterogeneity, providing access to multiple key resources including water, forage, and cover. High probability of occurrence was also associated with frequent high temperatures, up to a high threshold. However, this pattern is driven by pigs' historic distribution in warm climates of the southern U.S. Further study of pigs' ability to persist in cold northern climates is needed to better understand whether low temperatures actually limit their distribution. Our model highlights areas at risk of invasion as those with habitat conditions similar to those found in pigs' current range that are also near current populations. This study provides a macro-scale approach to generalist species distribution modeling that is applicable to other generalist and invasive species.
The fate of endemic insects of the Andean region under the effect of global warming.
Montemayor, Sara I; Melo, María Cecilia; Scattolini, María Celeste; Pocco, Martina E; Del Río, María Guadalupe; Dellapé, Gimena; Scheibler, Erica E; Roig, Sergio A; Cazorla, Carla G; Dellapé, Pablo M
2017-01-01
Three independent but complementary lines of research have provided evidence for the recognition of refugia: paleontology, phylogeography and species distributional modelling (SDM). SDM assesses the ecological requirements of a species based on its known occurrences and enables its distribution to be projected on past climatological reconstructions. One advantage over the other two approaches is that it provides an explicit link to environment and geography, thereby enabling the analysis of a large number of taxa in the search for more general refugia patterns. We propose a methodology for using SDM to recognize biogeographical patterns of endemic insects from Southern South America. We built species distributional models for 59 insect species using Maxent. The species analyzed in the study have narrow niche breadth and were classified into four assemblages according to the ecoregion they inhabit. Models were built for the Late Pleistocene, Mid-Holocene and Present. Through the procedure developed for this study we used the models to recognize: Late Pleistocene refugia; areas with high species richness during all three periods; climatically constant areas (in situ refugia); consistent patterns among in situ refugia, Pleistocene refugia and current distribution of endemic species. We recognized two adjacent Pleistocene refugia with distinct climates; four in situ refugia, some of which are undergoing a process of fragmentation and retraction or enlargement. Interestingly, we found a congruent pattern among in situ refugia, Pleistocene refugia and endemic species. Our results seem to be consistent with the idea that long-term climate stability is known to have a key role in promoting persistence of biodiversity in an area. Our Pleistocene and in situ refugia are consistent with refugia identified in studies focusing on different taxa and applying other methodologies, showing that the method developed can be used to identify such areas and prove their importance for conservation.
The fate of endemic insects of the Andean region under the effect of global warming
Montemayor, Sara I.; Scattolini, María Celeste; Pocco, Martina E.; del Río, María Guadalupe; Dellapé, Gimena; Scheibler, Erica E.; Roig, Sergio A.; Cazorla, Carla G.; Dellapé, Pablo M.
2017-01-01
Three independent but complementary lines of research have provided evidence for the recognition of refugia: paleontology, phylogeography and species distributional modelling (SDM). SDM assesses the ecological requirements of a species based on its known occurrences and enables its distribution to be projected on past climatological reconstructions. One advantage over the other two approaches is that it provides an explicit link to environment and geography, thereby enabling the analysis of a large number of taxa in the search for more general refugia patterns. We propose a methodology for using SDM to recognize biogeographical patterns of endemic insects from Southern South America. We built species distributional models for 59 insect species using Maxent. The species analyzed in the study have narrow niche breadth and were classified into four assemblages according to the ecoregion they inhabit. Models were built for the Late Pleistocene, Mid-Holocene and Present. Through the procedure developed for this study we used the models to recognize: Late Pleistocene refugia; areas with high species richness during all three periods; climatically constant areas (in situ refugia); consistent patterns among in situ refugia, Pleistocene refugia and current distribution of endemic species. We recognized two adjacent Pleistocene refugia with distinct climates; four in situ refugia, some of which are undergoing a process of fragmentation and retraction or enlargement. Interestingly, we found a congruent pattern among in situ refugia, Pleistocene refugia and endemic species. Our results seem to be consistent with the idea that long-term climate stability is known to have a key role in promoting persistence of biodiversity in an area. Our Pleistocene and in situ refugia are consistent with refugia identified in studies focusing on different taxa and applying other methodologies, showing that the method developed can be used to identify such areas and prove their importance for conservation. PMID:29036214
Zigouris, Joanna; Schaefer, James A.; Fortin, Clément; Kyle, Christopher J.
2013-01-01
Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species’ responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n = 209 this study, n = 774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine’s Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This pattern is suggestive of colonization occurring in accordance with glacial retreat, and supports expansion from a single refugium. These data are significant relative to current discussions on the conservation status of this species across its range. PMID:24386287
Zigouris, Joanna; Schaefer, James A; Fortin, Clément; Kyle, Christopher J
2013-01-01
Interglacial-glacial cycles of the Quaternary are widely recognized in shaping phylogeographic structure. Patterns from cold adapted species can be especially informative - in particular, uncovering additional glacial refugia, identifying likely recolonization patterns, and increasing our understanding of species' responses to climate change. We investigated phylogenetic structure of the wolverine, a wide-ranging cold adapted carnivore, using a 318 bp of the mitochondrial DNA control region for 983 wolverines (n=209 this study, n=774 from GenBank) from across their full Holarctic distribution. Bayesian phylogenetic tree reconstruction and the distribution of observed pairwise haplotype differences (mismatch distribution) provided evidence of a single rapid population expansion across the wolverine's Holarctic range. Even though molecular evidence corroborated a single refugium, significant subdivisions of population genetic structure (0.01< ΦST <0.99, P<0.05) were detected. Pairwise ΦST estimates separated Scandinavia from Russia and Mongolia, and identified five main divisions within North America - the Central Arctic, a western region, an eastern region consisting of Ontario and Quebec/Labrador, Manitoba, and California. These data are in contrast to the nearly panmictic structure observed in northwestern North America using nuclear microsatellites, but largely support the nuclear DNA separation of contemporary Manitoba and Ontario wolverines from northern populations. Historic samples (c. 1900) from the functionally extirpated eastern population of Quebec/Labrador displayed genetic similarities to contemporary Ontario wolverines. To understand these divergence patterns, four hypotheses were tested using Approximate Bayesian Computation (ABC). The most supported hypothesis was a single Beringia incursion during the last glacial maximum that established the northwestern population, followed by a west-to-east colonization during the Holocene. This pattern is suggestive of colonization occurring in accordance with glacial retreat, and supports expansion from a single refugium. These data are significant relative to current discussions on the conservation status of this species across its range.
Yu, Xubiao; Ladewig, Samantha; Bao, Shaowu; Toline, Catherine A; Whitmire, Stefanie; Chow, Alex T
2018-02-01
To investigate the occurrence and distribution of microplastics in the southeastern coastal region of the United States, we quantified the amount of microplastics in sand samples from multiple coastal sites and developed a predictive model to understand the drift of plastics via ocean currents. Sand samples from eighteen National Park Service (NPS) beaches in the Southeastern Region were collected and microplastics were isolated from each sample. Microplastic counts were compared among sites and local geography was used to make inferences about sources and modes of distribution. Samples were analyzed to identify the composition of particles using Fourier transform infrared spectroscopy (FTIR). To predict the spatiotemporal distribution and movements of particles via coastal currents, a Regional Ocean Modeling System (ROMS) was applied. Microplastics were detected in each of the sampled sites although abundance among sites was highly variable. Approximately half of the samples were dominated by thread-like and fibrous materials as opposed to beads and particles. Results of FTIR suggested that 24% consisted of polyethylene terephthalate (PET), while about 68% of the fibers tested were composed of man-made cellulosic materials such as rayon. Based on published studies examining sources of microplastics, the shape of the particles found here (mostly fibers) and the presence of PET, we infer the source of microplastics in coastal areas is mainly from urban areas, such as wastewater discharge, rather than breakdown of larger marine debris drifting in the ocean. Local geographic features, e.g., the nearness of sites to large rivers and urbanized areas, explain variance in amount of microplastics among sites. Additionally, the distribution of simulated particles is explained by ocean current patterns; computer simulations were correlated with field observations, reinforcing the idea that ocean currents can be a good predictor of the fate and distribution of microplastics at the sites sampled here. Copyright © 2017 Elsevier B.V. All rights reserved.
The effects of dispersal patterns on marine reserves: does the tail wag the dog?
Lockwood, Dale R; Hastings, Alan; Botsford, Louis W
2002-05-01
The concept of marine reserves as a method of improving management of fisheries is gaining momentum. While the list of benefits from reserves is frequently promoted, precise formulations of theory to support reserve design are not fully developed. To determine the size of reserves and the distances between reserves an understanding of the requirements for persistence of local populations is required. Unfortunately, conditions for persistence are poorly characterized, as are the larval dispersal patterns on which persistence depends. With the current paucity of information regarding meroplanktonic larval transport processes, understanding the robustness of theoretical results to larval dispersal is of key importance. From this formulation a broad range of dispersal patterns are analyzed. Larval dispersal is represented by a probability distribution that defines the fraction of successful settlers from an arbitrary location, the origin of the distribution, to any other location along the coast. While the effects of specific dispersal patterns have been investigated for invasion processes, critical habitat size and persistence issues have generally been addressed with only one or two dispersal types. To that end, we formulate models based on integrodifference equations that are spatially continuous and temporally discrete. We consider a range of dispersal distributions from leptokurtic to platykurtic. The effect of different dispersal patterns is considered for a single isolated reserve of varying size receiving no external larvae, as well as multiple reserves with varying degrees of connectivity. While different patterns result in quantitative differences in persistence, qualitatively similar effects across all patterns are seen in both single- and multiple reserve models. Persistence in an isolated reserve requires a size that is approximately twice the mean dispersal distance and regardless of the dispersal pattern the population in a patch is not persistent if the reserve size is reduced to just the mean dispersal distance. With an idealized coastline structure consisting of an infinite line of equally spaced reserves separated by regions of coastline in which reproduction is nil, the relative settlement as a function of the fraction of coastline and size of reserve is qualitatively very similar over a broad range of dispersal patterns. The upper limit for the minimum fraction of coastline held in reserve is about 40%. As the fraction of coastline is reduced, the minimum size of reserve becomes no more than 1.25 times the mean dispersal distance.
Curtis H. Flather; Carolyn Hull Sieg; Michael S. Knowles; Jason McNees
2003-01-01
This indicator measures the portion of a species' historical distribution that is currently occupied as a surrogate measure of genetic diversity. Based on data for 1,642 terrestrial animals associated with forests, most species (88 percent) were found to fully occupy their historic range - at least as measured by coarse state-level occurrence patterns. Of the 193...
Color speckle in laser displays
NASA Astrophysics Data System (ADS)
Kuroda, Kazuo
2015-07-01
At the beginning of this century, lighting technology has been shifted from discharge lamps, fluorescent lamps and electric bulbs to solid-state lighting. Current solid-state lighting is based on the light emitting diodes (LED) technology, but the laser lighting technology is developing rapidly, such as, laser cinema projectors, laser TVs, laser head-up displays, laser head mounted displays, and laser headlamps for motor vehicles. One of the main issues of laser displays is the reduction of speckle noise1). For the monochromatic laser light, speckle is random interference pattern on the image plane (retina for human observer). For laser displays, RGB (red-green-blue) lasers form speckle patterns independently, which results in random distribution of chromaticity, called color speckle2).
Matching genetics with oceanography: directional gene flow in a Mediterranean fish species.
Schunter, C; Carreras-Carbonell, J; Macpherson, E; Tintoré, J; Vidal-Vijande, E; Pascual, A; Guidetti, P; Pascual, M
2011-12-01
Genetic connectivity and geographic fragmentation are two opposing mechanisms determining the population structure of species. While the first homogenizes the genetic background across populations the second one allows their differentiation. Therefore, knowledge of processes affecting dispersal of marine organisms is crucial to understand their genetic distribution patterns and for the effective management of their populations. In this study, we use genetic analyses of eleven microsatellites in combination with oceanographic satellite and dispersal simulation data to determine distribution patterns for Serranus cabrilla, a ubiquitous demersal broadcast spawner, in the Mediterranean Sea. Pairwise population F(ST) values ranged between -0.003 and 0.135. Two genetically distinct clusters were identified, with a clear division located between the oceanographic discontinuities at the Ibiza Channel (IC) and the Almeria-Oran Front (AOF), revealing an admixed population in between. The Balearic Front (BF) also appeared to dictate population structure. Directional gene flow on the Spanish coast was observed as S. cabrilla dispersed from west to east over the AOF, from north to south on the IC and from south of the IC towards the Balearic Islands. Correlations between genetic and oceanographic data were highly significant. Seasonal changes in current patterns and the relationship between ocean circulation patterns and spawning season may also play an important role in population structure around oceanographic fronts. © 2011 Blackwell Publishing Ltd.
Ley, A C; Hardy, O J
2014-08-01
Gene flow within and between species is a fundamental process shaping the evolutionary history of taxa. However, the extent of hybridization and reinforcement is little documented in the tropics. Here we explore the pattern of gene flow between three sister species from the herbaceous genus Marantochloa (Marantaceae), sympatrically distributed in the understorey of the African rainforest, using data from the chloroplast and nuclear genomes (DNA sequences and AFLP). We found highly contrasting patterns: while there was no evidence of gene flow between M. congensis and M. monophylla, species identity between M. monophylla and M. incertifolia was maintained despite considerable gene flow. We hypothesize that M. incertifolia originated from an ancient hybridization event between M. congensis and M. monophylla, considering the current absence of hybridization between the two assumed parent species, the rare presence of shared haplotypes between all three species and the high percentage of haplotypes shared by M. incertifolia with each of the two parent species. This example is contrasted with two parapatrically distributed species from the same family in the genus Haumania forming a hybrid zone restricted to the area of overlap. This work illustrates the diversity of speciation/introgression patterns that can potentially occur in the flora of tropical Africa. Copyright © 2014 Elsevier Inc. All rights reserved.
How to interpret methylation sensitive amplified polymorphism (MSAP) profiles?
Fulneček, Jaroslav; Kovařík, Aleš
2014-01-06
DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is particularly useful in studies of epigenetic variation. However, electrophoretic patterns produced by the method are rather difficult to interpret, particularly when MspI and HpaII isoschizomers are used because these enzymes are methylation-sensitive, and any C within the CCGG recognition motif can be methylated in plant DNA. Here, we evaluate MSAP patterns with respect to current knowledge of the enzyme activities and the level and distribution of 5-methylcytosine in plant and vertebrate genomes. We discuss potential caveats related to complex MSAP patterns and provide clues regarding how to interpret them. We further show that addition of combined HpaII + MspI digestion would assist in the interpretation of the most controversial MSAP pattern represented by the signal in the HpaII but not in the MspI profile. We recommend modification of the MSAP protocol that definitely discerns between putative hemimethylated mCCGG and internal CmCGG sites. We believe that our view and the simple improvement will assist in correct MSAP data interpretation.
2014-01-01
Background HIV-, HCV- and HIV/HCV co-infections among drug users have become a rapidly emerging global public health problem. In order to constrain the dual epidemics of HIV/AIDS and drug use, China has adopted a methadone maintenance treatment program (MMTP) since 2004. Studies of the geographic heterogeneity of HIV and HCV infections at a local scale are sparse, which has critical implications for future MMTP implementation and health policies covering both HIV and HCV prevention among drug users in China. This study aimed to characterize geographic patterns of HIV and HCV prevalence at the township level among drug users in a Yi Autonomous Prefecture, Southwest of China. Methods Data on demographic and clinical characteristics of all clients in the 11 MMTP clinics of the Yi Autonomous Prefecture from March 2004 to December 2012 were collected. A GIS-based geographic analysis involving geographic autocorrelation analysis and geographic scan statistics were employed to identify the geographic distribution pattern of HIV-, HCV- and co-infections among drug users. Results A total of 6690 MMTP clients was analyzed. The prevalence of HIV-, HCV- and co-infections were 25.2%, 30.8%, and 10.9% respectively. There were significant global and local geographic autocorrelations for HIV-, HCV-, and co-infection. The Moran’s I was 0.3015, 0.3449, and 0.3155, respectively (P < 0.0001). Both the geographic autocorrelation analysis and the geographic scan statistical analysis showed that HIV-, HCV-, and co-infections in the prefecture exhibited significant geographic clustering at the township level. The geographic distribution pattern of each infection group was different. Conclusion HIV-, HCV-, and co-infections among drug users in the Yi Autonomous Prefecture all exhibited substantial geographic heterogeneity at the township level. The geographic distribution patterns of the three groups were different. These findings imply that it may be necessary to inform or invent site-specific intervention strategies to better devote currently limited resource to combat these two viruses. PMID:24612875
Pauliuk, Stefan; Kondo, Yasushi; Nakamura, Shinichiro; Nakajima, Kenichi
2017-01-01
Substantial amounts of post-consumer scrap are exported to other regions or lost during recovery and remelting, and both export and losses pose a constraint to desires for having regionally closed material cycles. To quantify the challenges and trade-offs associated with closed-loop metal recycling, we looked at the material cycles from the perspective of a single material unit and trace a unit of material through several product life cycles. Focusing on steel, we used current process parameters, loss rates, and trade patterns of the steel cycle to study how steel that was originally contained in high quality applications such as machinery or vehicles with stringent purity requirements gets subsequently distributed across different regions and product groups such as building and construction with less stringent purity requirements. We applied MaTrace Global, a supply-driven multiregional model of steel flows coupled to a dynamic stock model of steel use. We found that, depending on region and product group, up to 95% of the steel consumed today will leave the use phase of that region until 2100, and that up to 50% can get lost in obsolete stocks, landfills, or slag piles until 2100. The high losses resulting from business-as-usual scrap recovery and recycling can be reduced, both by diverting postconsumer scrap into long-lived applications such as buildings and by improving the recovery rates in the waste management and remelting industries. Because the lifetimes of high-quality (cold-rolled) steel applications are shorter and remelting occurs more often than for buildings and infrastructure, we found and quantified a tradeoff between low losses and high-quality applications in the steel cycle. Furthermore, we found that with current trade patterns, reduced overall losses will lead to higher fractions of secondary steel being exported to other regions. Current loss rates, product lifetimes, and trade patterns impede the closure of the steel cycle.
A system for learning statistical motion patterns.
Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve
2006-09-01
Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.
Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography
He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling
2016-01-01
With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment. PMID:26902520
Unravelling biodiversity, evolution and threats to conservation in the Sahara-Sahel.
Brito, José C; Godinho, Raquel; Martínez-Freiría, Fernando; Pleguezuelos, Juan M; Rebelo, Hugo; Santos, Xavier; Vale, Cândida G; Velo-Antón, Guillermo; Boratyński, Zbyszek; Carvalho, Sílvia B; Ferreira, Sónia; Gonçalves, Duarte V; Silva, Teresa L; Tarroso, Pedro; Campos, João C; Leite, João V; Nogueira, Joana; Alvares, Francisco; Sillero, Neftalí; Sow, Andack S; Fahd, Soumia; Crochet, Pierre-André; Carranza, Salvador
2014-02-01
Deserts and arid regions are generally perceived as bare and rather homogeneous areas of low diversity. The Sahara is the largest warm desert in the world and together with the arid Sahel displays high topographical and climatic heterogeneity, and has experienced recent and strong climatic oscillations that have greatly shifted biodiversity distribution and community composition. The large size, remoteness and long-term political instability of the Sahara-Sahel, have limited knowledge on its biodiversity. However, over the last decade, there have been an increasing number of published scientific studies based on modern geomatic and molecular tools, and broad sampling of taxa of these regions. This review tracks trends in knowledge about biodiversity patterns, processes and threats across the Sahara-Sahel, and anticipates needs for biodiversity research and conservation. Recent studies are changing completely the perception of regional biodiversity patterns. Instead of relatively low species diversity with distribution covering most of the region, studies now suggest a high rate of endemism and larger number of species, with much narrower and fragmented ranges, frequently limited to micro-hotspots of biodiversity. Molecular-based studies are also unravelling cryptic diversity associated with mountains, which together with recent distribution atlases, allows identifying integrative biogeographic patterns in biodiversity distribution. Mapping of multivariate environmental variation (at 1 km × 1 km resolution) of the region illustrates main biogeographical features of the Sahara-Sahel and supports recently hypothesised dispersal corridors and refugia. Micro-scale water-features present mostly in mountains have been associated with local biodiversity hotspots. However, the distribution of available data on vertebrates highlights current knowledge gaps that still apply to a large proportion of the Sahara-Sahel. Current research is providing insights into key evolutionary and ecological processes, including causes and timing of radiation and divergence for multiple taxa, and associating the onset of the Sahara with diversification processes for low-mobility vertebrates. Examples of phylogeographic patterns are showing the importance of allopatric speciation in the Sahara-Sahel, and this review presents a synthetic overview of the most commonly hypothesised diversification mechanisms. Studies are also stressing that biodiversity is threatened by increasing human activities in the region, including overhunting and natural resources prospection, and in the future by predicted global warming. A representation of areas of conflict, landmines, and natural resources extraction illustrates how human activities and regional insecurity are hampering biodiversity research and conservation. Although there are still numerous knowledge gaps for the optimised conservation of biodiversity in the region, a set of research priorities is provided to identify the framework data needed to support regional conservation planning. © 2013 The Authors. Biological Reviews © 2013 Cambridge Philosophical Society.
The Identity Mapping Project: Demographic differences in patterns of distributed identity.
Gilbert, Richard L; Dionisio, John David N; Forney, Andrew; Dorin, Philip
2015-01-01
The advent of cloud computing and a multi-platform digital environment is giving rise to a new phase of human identity called "The Distributed Self." In this conception, aspects of the self are distributed into a variety of 2D and 3D digital personas with the capacity to reflect any number of combinations of now malleable personality traits. In this way, the source of human identity remains internal and embodied, but the expression or enactment of the self becomes increasingly external, disembodied, and distributed on demand. The Identity Mapping Project (IMP) is an interdisciplinary collaboration between psychology and computer Science designed to empirically investigate the development of distributed forms of identity. Methodologically, it collects a large database of "identity maps" - computerized graphical representations of how active someone is online and how their identity is expressed and distributed across 7 core digital domains: email, blogs/personal websites, social networks, online forums, online dating sites, character based digital games, and virtual worlds. The current paper reports on gender and age differences in online identity based on an initial database of distributed identity profiles.
Large-Scale Spatial Distribution Patterns of Gastropod Assemblages in Rocky Shores
Miloslavich, Patricia; Cruz-Motta, Juan José; Klein, Eduardo; Iken, Katrin; Weinberger, Vanessa; Konar, Brenda; Trott, Tom; Pohle, Gerhard; Bigatti, Gregorio; Benedetti-Cecchi, Lisandro; Shirayama, Yoshihisa; Mead, Angela; Palomo, Gabriela; Ortiz, Manuel; Gobin, Judith; Sardi, Adriana; Díaz, Juan Manuel; Knowlton, Ann; Wong, Melisa; Peralta, Ana C.
2013-01-01
Gastropod assemblages from nearshore rocky habitats were studied over large spatial scales to (1) describe broad-scale patterns in assemblage composition, including patterns by feeding modes, (2) identify latitudinal pattern of biodiversity, i.e., richness and abundance of gastropods and/or regional hotspots, and (3) identify potential environmental and anthropogenic drivers of these assemblages. Gastropods were sampled from 45 sites distributed within 12 Large Marine Ecosystem regions (LME) following the NaGISA (Natural Geography in Shore Areas) standard protocol (www.nagisa.coml.org). A total of 393 gastropod taxa from 87 families were collected. Eight of these families (9.2%) appeared in four or more different LMEs. Among these, the Littorinidae was the most widely distributed (8 LMEs) followed by the Trochidae and the Columbellidae (6 LMEs). In all regions, assemblages were dominated by few species, the most diverse and abundant of which were herbivores. No latitudinal gradients were evident in relation to species richness or densities among sampling sites. Highest diversity was found in the Mediterranean and in the Gulf of Alaska, while highest densities were found at different latitudes and represented by few species within one genus (e.g. Afrolittorina in the Agulhas Current, Littorina in the Scotian Shelf, and Lacuna in the Gulf of Alaska). No significant correlation was found between species composition and environmental variables (r≤0.355, p>0.05). Contributing variables to this low correlation included invasive species, inorganic pollution, SST anomalies, and chlorophyll-a anomalies. Despite data limitations in this study which restrict conclusions in a global context, this work represents the first effort to sample gastropod biodiversity on rocky shores using a standardized protocol across a wide scale. Our results will generate more work to build global databases allowing for large-scale diversity comparisons of rocky intertidal assemblages. PMID:23967204
Diversification patterns in cosmopolitan earthworms: similar mode but different tempo.
Fernández, Rosa; Novo, Marta; Marchán, Daniel F; Díaz Cosín, Darío J
2016-01-01
Comparative phylogeography of widespread species that span the same geographic areas can elucidate the influence of historical events on current patterns of biodiversity, identify patterns of co-vicariance, and therefore aid the understanding of general evolutionary processes. Soil-dwelling animals present characteristics that make them suitable for testing the effect of the palaeogeographical events on their distribution and diversification, such as their low vagility and population structure. In this study, we shed light on the spatial lineage diversification and cladogenesis of two widely-distributed cosmopolitan and invasive earthworms (Aporrectodea rosea and A. trapezoides) in their putative ancestral area of origin, the Western Palearctic, and a few populations in North America. Molecular analyses were conducted on mitochondrial and nuclear markers from 220 (A. rosea) and 198 (A. trapezoides) individuals collected in 56 and 57 localities, respectively. We compared the lineage diversification pattern, genetic variability and cladogenesis in both species. Our findings showed that both species underwent a similar diversification from the Western Mediterranean plates to (i) Northern Europe and (ii) the Iberian Peninsula, establishing their two main lineages. Their diversification was in concordance with the main palaeogeographical events in the Iberian Peninsula and Western Mediterranean, followed by a later colonization of North America from individuals derived exclusively from the Eurosiberian lineage. Their diversification occurred at different times, with the diversification of A. rosea being potentially more ancient. Cladogenesis in both species seems to have been modelled only by the Mediterranean plate shifts, ignoring historical climatic oscillations such as the Messinian salinity crisis. Their high genetic variability, strong population structure, lack of gene flow and stepping-stone-like cladogenesis suggest the existence of different cryptic lineages. Our results may indicate a recurrent event in invasive earthworms within their ancestral distribution areas in the Western Palearctic. Copyright © 2015 Elsevier Inc. All rights reserved.
Bertolo, Andrea; Blanchet, F. Guillaume; Magnan, Pierre; Brodeur, Philippe; Mingelbier, Marc; Legendre, Pierre
2012-01-01
Larval dispersal is a crucial factor for fish recruitment. For fishes with relatively small-bodied larvae, drift has the potential to play a more important role than active habitat selection in determining larval dispersal; therefore, we expect small-bodied fish larvae to be poorly associated with habitat characteristics. To test this hypothesis, we used as model yellow perch (Perca flavescens), whose larvae are among the smallest among freshwater temperate fishes. Thus, we analysed the habitat association of yellow perch larvae at multiple spatial scales in a large shallow fluvial lake by explicitly modelling directional (e.g. due to water currents) and non-directional (e.g. due to aggregation) spatial patterns. This allowed us to indirectly assess the relative roles of drift (directional process) and potential habitat choice on larval dispersal. Our results give weak support to the drift hypothesis, whereas yellow perch show a strong habitat association at unexpectedly small sizes, when compared to other systems. We found consistent non-directional patterns in larvae distributions at both broad and medium spatial scales but only few significant directional components. The environmental variables alone (e.g. vegetation) generally explained a significant and biologically relevant fraction of the variation in fish larvae distribution data. These results suggest that (i) drift plays a minor role in this shallow system, (ii) larvae display spatial patterns that only partially covary with environmental variables, and (iii) larvae are associated to specific habitats. By suggesting that habitat association potentially includes an active choice component for yellow perch larvae, our results shed new light on the ecology of freshwater fish larvae and should help in building more realistic recruitment models. PMID:23185585
NASA Astrophysics Data System (ADS)
Bucklin, A. C.; Batta Lona, P. G.; Maas, A. E.; O'Neill, R. J.; Wiebe, P. H.
2015-12-01
In response to the changing Antarctic climate, the Southern Ocean salp Salpa thompsoni has shown altered patterns of distribution and abundance that are anticipated to have profound impacts on pelagic food webs and ecosystem dynamics. The physiological and molecular processes that underlay ecological function and biogeographical distribution are key to understanding present-day dynamics and predicting future trajectories. This study examined transcriptome-wide patterns of gene expression in relation to biological and physical oceanographic conditions in coastal, shelf and offshore waters of the Western Antarctic Peninsula (WAP) region during austral spring and summer 2011. Based on field observations and collections, seasonal changes in the distribution and abundance of salps of different life stages were associated with differences in water mass structure of the WAP. Our observations are consistent with previous suggestions that bathymetry and currents in Bransfield Strait could generate a retentive cell for an overwintering population of S. thompsoni, which may generate the characteristic salp blooms found throughout the region later in summer. The statistical analysis of transcriptome-wide patterns of gene expression revealed differences among salps collected in different seasons and from different habitats (i.e., coastal versus offshore) in the WAP. Gene expression patterns also clustered by station in austral spring - but not summer - collections, suggesting stronger heterogeneity of environmental conditions. During the summer, differentially expressed genes covered a wider range of functions, including those associated with stress responses. Future research using novel molecular transcriptomic / genomic characterization of S. thompsoni will allow more complete understanding of individual-, population-, and species-level responses to environmental variability and prediction of future dynamics of Southern Ocean food webs and ecosystems.
Crop yield response to climate change varies with crop spatial distribution pattern
Leng, Guoyong; Huang, Maoyi
2017-05-03
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
Crop yield response to climate change varies with crop spatial distribution pattern
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, Guoyong; Huang, Maoyi
The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less
Lewin, Keith F.
1997-04-15
A multi-port valve for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO.sub.2) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets therethrough disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending therethrough disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind.
Lewin, K.F.
1997-04-15
A multi-port valve is described for regulating, as a function of ambient air having varying wind velocity and wind direction in an open-field control area, the distribution of a fluid, particularly carbon dioxide (CO{sub 2}) gas, in a fluid distribution system so that the control area remains generally at an elevated fluid concentration or level of said fluid. The multi-port valve generally includes a multi-port housing having a plurality of outlets there through disposed in a first pattern of outlets and at least one second pattern of outlets, and a movable plate having a plurality of apertures extending there through disposed in a first pattern of apertures and at least one second pattern of apertures. The first pattern of apertures being alignable with the first pattern of outlets and the at least one second pattern of apertures being alignable with the second pattern of outlets. The first pattern of apertures has a predetermined orientation with the at least one second pattern of apertures. For an open-field control area subject to ambient wind having a low velocity from any direction, the movable plate is positioned to equally distribute the supply of fluid in a fluid distribution system to the open-field control area. For an open-field control area subject to ambient wind having a high velocity from a given direction, the movable plate is positioned to generally distribute a supply of fluid in a fluid distribution system to that portion of the open-field control area located upwind. 7 figs.
Larkum, M E; Zhu, J J; Sakmann, B
2001-01-01
Double, triple and quadruple whole-cell voltage recordings were made simultaneously from different parts of the apical dendritic arbor and the soma of adult layer 5 (L5) pyramidal neurons. We investigated the membrane mechanisms that support the conduction of dendritic action potentials (APs) between the dendritic and axonal AP initiation zones and their influence on the subsequent AP pattern. The duration of the current injection to the distal dendritic initiation zone controlled the degree of coupling with the axonal initiation zone and the AP pattern. Two components of the distally evoked regenerative potential were pharmacologically distinguished: a rapidly rising peak potential that was TTX sensitive and a slowly rising plateau-like potential that was Cd2+ and Ni2+ sensitive and present only with longer-duration current injection. The amplitude of the faster forward-propagating Na+-dependent component and the amplitude of the back-propagating AP fell into two classes (more distinctly in the forward-propagating case). Current injection into the dendrite altered propagation in both directions. Somatic current injections that elicited single Na+ APs evoked bursts of Na+ APs when current was injected simultaneously into the proximal apical dendrite. The mechanism did not depend on dendritic Na+–Ca2+ APs. A three-compartment model of a L5 pyramidal neuron is proposed. It comprises the distal dendritic and axonal AP initiation zones and the proximal apical dendrite. Each compartment contributes to the initiation and to the pattern of AP discharge in a distinct manner. Input to the three main dendritic arbors (tuft dendrites, apical oblique dendrites and basal dendrites) has a dominant influence on only one of these compartments. Thus, the AP pattern of L5 pyramids reflects the laminar distribution of synaptic activity in a cortical column. PMID:11389204
NASA Astrophysics Data System (ADS)
Gérardin, Maxime; Brigode, Pierre; Bernardara, Pietro; Gailhard, Joël; Garçon, Rémy; Paquet, Emmanuel; Ribstein, Pierre
2013-04-01
The MEWP (Multi-Exponential Weather Pattern, Garavaglia et al. 2010) distribution is part of the operational method in use at EDF (Electricité de France) for computing dam spillways design floods, i.e. the magnitude of the flood that occurs at a given return period. The return periods of interest lie in the 100 - 10,000 years range. Relying on a purposely-designed classification of atmospheric circulations into weather patterns, and assigning a catchment-specific asymptotical coefficient to each of these patterns, the MEWP distribution provides the daily areal rainfall as a function of the return period. In its current state, the method relies on the implicit assumption of climate stationnarity. In this work we seek to introduce climate change into the MEWP framework. Since the MEWP distribution basically contains two sorts of parameters, namely frequencies of the weather patterns, and magnitudes of the events occurring within each of these patterns, we examine the plausible evolution of these two sets of parameters under climate change, and the sensitivity of the final result to these two sorts of changes. On the one hand, the future frequencies are assessed thanks to GCM outputs from CMIP5, and significant, albeit not greater than the internal variability, changes are observed. On the other hand, the future magnitudes can be suspected to follow the Clausius-Clapeyron relationship (e.g. Pall et al., 2007, and Lenderink et van Meijgaard, 2008). We assess the validity of this hypothesis on the observed daily areal precipitation series for more than a hundred catchments in France. The sensitivity analysis shows that, for the return periods at stake, the impact of frequency changes is small relative to that of magnitude changes, while this would not be true for smaller return periods. Therefore, we propose to incorporate climate change into the MEWP distribution in a simple but realistic way, by taking account of the magnitude change only. We conclude with some insights into the next steps that will allow a more sophisticated representation of climate change in the MEWP distribution. References: Garavaglia, F., J. Gailhard, E. Paquet, M. Lang, R. Garçon, and P. Bernardara. 2010. "Introducing a Rainfall Compound Distribution Model Based on Weather Patterns Sub-sampling." Hydrology and Earth System Sciences 14 (6): 951-964. doi:10.5194/hess-14-951-2010. Lenderink, Geert, and Erik van Meijgaard. 2008. "Increase in Hourly Precipitation Extremes Beyond Expectations from Temperature Changes." Nature Geoscience 1 (8) (July 20): 511-514. doi:10.1038/ngeo262. Pall, P., MR Allen, and DA Stone. 2007. "Testing the Clausius-Clapeyron Constraint on Changes in Extreme Precipitation Under CO 2 Warming." Climate Dynamics 28 (4): 351-363.
Comparison between Single-Walled CNT, Multi-Walled CNT, and Carbon Nanotube-Fiber Pyrograf III
NASA Astrophysics Data System (ADS)
Mousa, Marwan S.
2018-02-01
Single-Walled CNT (SWCNTs), Multi-walled Carbon Nanotubes (MWCNTs), and Carbon Nanotube-Fibers Pyrograf III PR-1 (CNTFs) were deposited by chemical vapor deposition under vacuum pressure value of (10-7mbar). Their structures were investigated by field emission microscopy. Carbon Nano-Fibers Pyrograf III PR-1 showed an average fiber diameter within the range of 100-200 nm and a length of (30-100) μm. Single-walled Carbon Nanotubes were produced by high-pressure Carbon Monoxide process with an average diameter ranging between (1-4) nm and a length of (1-3) μm. Thin Multiwall Carbon Nanotube of carbon purity (90%) showed an average diameter tube (9.5 nm) with a high-aspect-ratio (>150). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For the three types of emitters, a single spot pattern for the electron spatial; distributions were observed, with emission current fluctuations in some voltage region.
Zhu, Qin; Liao, Bo-Yong; Li, Pei; Li, Jun-Cheng; Deng, Xiao-Mei; Chen, Xiao-Yang
2017-01-01
Machilus pauhoi Kanehira is an important timber species in China. A provenance trial was recently set up to evaluate the growth performance of trees from different localities, with the aim of designing seed transfer guidelines. Here, we tested twelve nuclear microsatellite markers derived from other species of the Lauraceae family and investigated population genetic structure in M. pauhoi. Both the number of observed alleles per locus (Na) and the polymorphic information content (PIC) significantly decreased against the latitude, but showed an insignificant decrease against the longitude. Heterozygosity (Ho) and gene diversity (h) exhibited a weak correlation with geographic location. Private alleles were present in multiple populations, and a moderate level of population genetic differentiation was detected (Gst = 0.1691). The joint pattern of genetic diversity (Na, PIC, Ho, and h) suggests that general northeastward dispersal led to the current distribution of M. pauhoi. Significant but weak effects of isolation-by-distance (IBD) occurred, implicating the mountain ranges as the major barrier to gene flow. Both STRUCTURE and hierarchical clustering analyses showed three distinct groups of populations related to the physical connectivity among mountain ranges. A priority in designing genetic conservation should be given to the populations at the southwest side of the species’ distribution. This conservation strategy can also be combined with the pattern of adaptive genetic variation from the provenance trial for comprehensive genetic resource management of native M. pauhoi. PMID:28886133
The Cluster Variation Method: A Primer for Neuroscientists.
Maren, Alianna J
2016-09-30
Effective Brain-Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables , is defined in terms of a single interaction enthalpy parameter ( h ) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found.
Intermodal transport and distribution patterns in ports relationship to hinterland
NASA Astrophysics Data System (ADS)
Dinu, O.; Dragu, V.; Ruscă, F.; Ilie, A.; Oprea, C.
2017-08-01
It is of great importance to examine all interactions between ports, terminals, intermodal transport and logistic actors of distribution channels, as their optimization can lead to operational improvement. Proposed paper starts with a brief overview of different goods types and allocation of their logistic costs, with emphasis on storage component. Present trend is to optimize storage costs by means of port storage area buffer function, by making the best use of free storage time available, most of the ports offer. As a research methodology, starting point is to consider the cost structure of a generic intermodal transport (storage, handling and transport costs) and to link this to intermodal distribution patterns most frequently cast-off in port relationship to hinterland. The next step is to evaluate storage costs impact on distribution pattern selection. For a given value of port free storage time, a corresponding value of total storage time in the distribution channel can be identified, in order to substantiate a distribution pattern shift. Different scenarios for transport and handling costs variation, recorded when distribution pattern shift, are integrated in order to establish the reaction of the actors involved in port related logistic and intermodal transport costs evolution is analysed in order to optimize distribution pattern selection.
The Cluster Variation Method: A Primer for Neuroscientists
Maren, Alianna J.
2016-01-01
Effective Brain–Computer Interfaces (BCIs) require that the time-varying activation patterns of 2-D neural ensembles be modelled. The cluster variation method (CVM) offers a means for the characterization of 2-D local pattern distributions. This paper provides neuroscientists and BCI researchers with a CVM tutorial that will help them to understand how the CVM statistical thermodynamics formulation can model 2-D pattern distributions expressing structural and functional dynamics in the brain. The premise is that local-in-time free energy minimization works alongside neural connectivity adaptation, supporting the development and stabilization of consistent stimulus-specific responsive activation patterns. The equilibrium distribution of local patterns, or configuration variables, is defined in terms of a single interaction enthalpy parameter (h) for the case of an equiprobable distribution of bistate (neural/neural ensemble) units. Thus, either one enthalpy parameter (or two, for the case of non-equiprobable distribution) yields equilibrium configuration variable values. Modeling 2-D neural activation distribution patterns with the representational layer of a computational engine, we can thus correlate variational free energy minimization with specific configuration variable distributions. The CVM triplet configuration variables also map well to the notion of a M = 3 functional motif. This paper addresses the special case of an equiprobable unit distribution, for which an analytic solution can be found. PMID:27706022
Analysis of microstrip patch antennas using finite difference time domain method
NASA Astrophysics Data System (ADS)
Reineix, Alain; Jecko, Bernard
1989-11-01
The study of microstrip patch antennas is directly treated in the time domain, using a modified finite-difference time-domain (FDTD) method. Assuming an appropriate choice of excitation, the frequency dependence of the relevant parameters can readily be found using the Fourier transform of the transient current. The FDTD method allows a rigorous treatment of one or several dielectric interfaces. Different types of excitation can be taken into consideration (coaxial, microstrip lines, etc.). Plotting the spatial distribution of the current density gives information about the resonance modes. The usual frequency-depedent parameters (input impedance, radiation pattern) are given for several examples.
NASA Astrophysics Data System (ADS)
Zaba, Katherine D.; Rudnick, Daniel L.
2016-02-01
Large-scale patterns of positive temperature anomalies persisted throughout the surface waters of the North Pacific Ocean during 2014-2015. In the Southern California Current System, measurements by our sustained network of underwater gliders reveal the coastal effects of the recent warming. Regional upper ocean temperature anomalies were greatest since the initiation of the glider network in 2006. Additional observed physical anomalies included a depressed thermocline, high stratification, and freshening; induced biological consequences included changes in the vertical distribution of chlorophyll fluorescence. Contemporaneous surface heat flux and wind strength perturbations suggest that local anomalous atmospheric forcing caused the unusual oceanic conditions.
Eide, Arne
2017-12-01
Climate change is expected to influence spatial and temporal distributions of fish stocks. The aim of this paper is to compare climate change impact on a fishery with other factors impacting the performance of fishing fleets. The fishery in question is the Northeast Arctic cod fishery, a well-documented fishery where data on spatial and temporal distributions are available. A cellular automata model is developed for the purpose of mimicking possible distributional patterns and different management alternatives are studied under varying assumptions on the fleets' fishing aptitude. Fisheries management and fishing aptitude, also including technological development and local knowledge, turn out to have the greatest impact on the spatial distribution of the fishing effort, when comparing the IPCC's SRES A1B scenario with repeated sequences of the current environmental situation over a period of 45 years. In both cases, the highest profits in the simulation period of 45 years are obtained at low exploitation levels and moderate fishing aptitude.
NASA Astrophysics Data System (ADS)
Li, Zaoyang; Qi, Xiaofang; Liu, Lijun; Zhou, Genshu
2018-02-01
The alternating current (AC) in the resistance heater for generating heating power can induce a magnetic field in the silicon melt during directional solidification (DS) of silicon ingots. We numerically study the influence of such a heater-generating magnetic field on the silicon melt flow and temperature distribution in an industrial DS process. 3D simulations are carried out to calculate the Lorentz force distribution as well as the melt flow and heat transfer in the entire DS furnace. The pattern and intensity of silicon melt flow as well as the temperature distribution are compared for cases with and without Lorentz force. The results show that the Lorentz force induced by the heater-generating magnetic field is mainly distributed near the top and side surfaces of the silicon melt. The melt flow and temperature distribution, especially those in the upper part of the silicon region, can be influenced significantly by the magnetic field.
2011-01-01
Background The continuing spread of the Asian tiger mosquito Aedes albopictus in Europe is of increasing public health concern due to the potential risk of new outbreaks of exotic vector-borne diseases that this species can transmit as competent vector. We predicted the most favorable areas for a short term invasion of Ae. albopictus in north-eastern Italy using reconstructed daily satellite data time series (MODIS Land Surface Temperature maps, LST). We reconstructed more than 11,000 daily MODIS LST maps for the period 2001-09 (i.e. performed spatial and temporal gap-filling) in an Open Source GIS framework. We aggregated these LST maps over time and identified the potential distribution areas of Ae. albopictus by adapting published temperature threshold values using three variables as predictors (0°C for mean January temperatures, 11°C for annual mean temperatures and 1350 growing degree days filtered for areas with autumnal mean temperatures > 11°C). The resulting maps were integrated into the final potential distribution map and this was compared with the known current distribution of Ae. albopictus in north-eastern Italy. Results LST maps show the microclimatic characteristics peculiar to complex terrains, which would not be visible in maps commonly derived from interpolated meteorological station data. The patterns of the three indicator variables partially differ from each other, while winter temperature is the determining limiting factor for the distribution of Ae. albopictus. All three variables show a similar spatial pattern with some local differences, in particular in the northern part of the study area (upper Adige valley). Conclusions Reconstructed daily land surface temperature data from satellites can be used to predict areas of short term invasion of the tiger mosquito with sufficient accuracy (200 m pixel resolution size). Furthermore, they may be applied to other species of arthropod of medical interest for which temperature is a relevant limiting factor. The results indicate that, during the next few years, the tiger mosquito will probably spread toward northern latitudes and higher altitudes in north-eastern Italy, which will considerably expand the range of the current distribution of this species. PMID:21812983
NASA Astrophysics Data System (ADS)
Otto, F. E. L.; Mitchell, D.; Sippel, S.; Black, M. T.; Dittus, A. J.; Harrington, L. J.; Mohd Saleh, N. H.
2014-12-01
A shift in the distribution of socially-relevant climate variables such as daily minimum winter temperatures and daily precipitation extremes, has been attributed to anthropogenic climate change for various mid-latitude regions. However, while there are many process-based arguments suggesting also a change in the shape of these distributions, attribution studies demonstrating this have not currently been undertaken. Here we use a very large initial condition ensemble of ~40,000 members simulating the European winter 2013/2014 using the distributed computing infrastructure under the weather@home project. Two separate scenarios are used:1. current climate conditions, and 2. a counterfactual scenario of "world that might have been" without anthropogenic forcing. Specifically focusing on extreme events, we assess how the estimated parameters of the Generalized Extreme Value (GEV) distribution vary depending on variable-type, sampling frequency (daily, monthly, …) and geographical region. We find that the location parameter changes for most variables but, depending on the region and variables, we also find significant changes in scale and shape parameters. The very large ensemble allows, furthermore, to assess whether such findings in the fitted GEV distributions are consistent with an empirical analysis of the model data, and whether the most extreme data still follow a known underlying distribution that in a small sample size might otherwise be thought of as an out-lier. The ~40,000 member ensemble is simulated using 12 different SST patterns (1 'observed', and 11 best guesses of SSTs with no anthropogenic warming). The range in SSTs, along with the corresponding changings in the NAO and high-latitude blocking inform on the dynamics governing some of these extreme events. While strong tele-connection patterns are not found in this particular experiment, the high number of simulated extreme events allows for a more thorough analysis of the dynamics than has been performed before. Therefore, combining extreme value theory with very large ensemble simulations allows us to understand the dynamics of changes in extreme events which is not possible just using the former but also shows in which cases statistics combined with smaller ensembles give as valid results as very large initial conditions.
Dalmaris, Eleftheria; Ramalho, Cristina E; Poot, Pieter; Veneklaas, Erik J; Byrne, Margaret
2015-11-01
A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia. Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution. Parsimony analysis of haplotype relationships was conducted, a haplotype network was prepared, and haplotype and nucleotide diversity were calculated. Species distribution modelling was undertaken using Maxent models based on extant species occurrences and projected to climate models of the last glacial maximum (LGM). A structured pattern of diversity was identified, with the presence of two groups that followed a climatic gradient from mesic to semi-arid regions. Most populations were represented by a single haplotype, but many haplotypes were shared among populations, with some having widespread distributions. A putative refugial area with high haplotype diversity was identified at the centre of the species distribution. Species distribution modelling showed high climatic suitability at the LGM and high climatic stability in the central region where higher genetic diversity was found, and low suitability elsewhere, consistent with a pattern of range contraction. Combination of phylogeography and paleo-distribution modelling can provide an evolutionary context for climate-driven tree decline, as both can be used to cross-validate evidence for refugia and contraction under harsh climatic conditions. This approach identified a central refugial area in the test species E. wandoo, with more recent expansion into peripheral areas from where it had contracted at the LGM. This signature of contraction from lower rainfall areas is consistent with current observations of decline on the semi-arid margin of the range, and indicates low capacity to tolerate forecast climatic change. Identification of a paleo-historical context for current tree decline enables conservation interventions to focus on maintaining genetic diversity, which provides the evolutionary potential for adaptation to climate change. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Heneghan, Steven J; Bordley, James; Dietz, Patrick A; Gold, Michael S; Jenkins, Paul L; Zuckerman, Randall J
2005-11-01
The purpose of this study is to determine the differences between rural and urban surgeons with regard to practice patterns, factors in choosing a practice location, and educational needs. A list of surgeons obtained from the American Medical Association was examined using the Office of Management and Budget definition of rural. Seventeen hundred rural surgeons were mailed surveys; 421 responded. One hundred fourteen urban surgeons were contacted by telephone. Questions were designed to measure job and community satisfaction, factors influencing their decision to practice in their current location, spectrum and volume of cases, and their perceived educational needs. Age distribution did not differ markedly between urban and rural surgeons. Motivation to practice in their current location varied considerably between urban and rural surgeons. Both groups equally rated quality of life as the leading factor influencing their current practice location. Urban surgeons rated other factors, such as income, practice growth, hospital facilities, and proximity to family, higher than rural surgeons. Practice patterns and educational needs also varied between the two groups. Rural surgeons performed more procedures per year with more variety in procedure type. Both groups felt that additional training in advanced laparoscopic techniques would be helpful, and rural surgeons felt that additional training in the surgical subspecialty areas was important. Although rural and urban surgeons do not differ in age or the importance of lifestyle in deciding career location, different factors do impact their choice of location. Practice pattern and educational needs varied markedly between rural and urban general surgeons.
Localization of Defensive Chemicals in Two Congeneric Butterflies (Euphydryas, Nymphalidae).
Mason, Peri A; Deane Bowers, M
2017-05-01
Many insect species sequester compounds acquired from their host plants for defense against natural enemies. The distribution of these compounds is likely to affect both their efficacy as defenses, and their costs. In this study we examined the distribution of sequestered iridoid glycosides (IGs) in two congeneric species of nymphalid butterfly, Euphydryas anicia and E. phaeton, and found that the pattern of localization of IGs differed between the two species. Although IG concentrations were quite high in the heads of both species, the relative concentrations in wings and abdomens differed substantially. Euphydryas anicia had relatively high IG concentrations in their abdomens and low IG concentrations in their wings, whereas the reverse was true in E. phaeton. We interpret these results in light of two current hypotheses regarding where sequestered chemicals should be localized: that they should be found in wings, which would allow non-lethal sampling by predators; and that their distribution is constrained by the distribution of tissue types to which sequestered compounds bind. We also offer the third hypothesis, that costs of storage may differ among body parts, and that the localization of compounds may reflect a cost-reduction strategy. Results from E. phaeton were consistent with all three of these non-mutually exclusive hypotheses, whereas results from E. anicia were only consistent with the notion that tissue bias among body parts plays a role in IG distribution. The finding that these two congeneric butterflies exhibit different patterns of IG localization suggests that they have been shaped by different selection regimes.
Weiner, Agnes K M; Weinkauf, Manuel F G; Kurasawa, Atsushi; Darling, Kate F; Kucera, Michal; Grimm, Guido W
2014-01-01
Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates.
Rossetto, Maurizio; Allen, Chris B; Thurlby, Katie A G; Weston, Peter H; Milner, Melita L
2012-08-20
Four of the five species of Telopea (Proteaceae) are distributed in a latitudinal replacement pattern on the south-eastern Australian mainland. In similar circumstances, a simple allopatric speciation model that identifies the origins of genetic isolation within temporal geographic separation is considered as the default model. However, secondary contact between differentiated lineages can result in similar distributional patterns to those arising from a process of parapatric speciation (where gene flow between lineages remains uninterrupted during differentiation). Our aim was to use the characteristic distributional patterns in Telopea to test whether it reflected the evolutionary models of allopatric or parapatric speciation. Using a combination of genetic evidence and environmental niche modelling, we focused on three main questions: do currently described geographic borders coincide with genetic and environmental boundaries; are there hybrid zones in areas of secondary contact between closely related species; did species distributions contract during the last glacial maximum resulting in distributional gaps even where overlap and hybridisation currently occur? Total genomic DNA was extracted from 619 individuals sampled from 36 populations representing the four species. Seven nuclear microsatellites (nSSR) and six chloroplast microsatellites (cpSSR) were amplified across all populations. Genetic structure and the signature of admixture in overlap zones was described using the Bayesian clustering methods implemented in STUCTURE and NewHybrids respectively. Relationships between chlorotypes were reconstructed as a median-joining network. Environmental niche models were produced for all species using environmental parameters from both the present day and the last glacial maximum (LGM).The nSSR loci amplified a total of 154 alleles, while data for the cpSSR loci produced a network of six chlorotypes. STRUCTURE revealed an optimum number of five clusters corresponding to the four recognised species with the additional division of T. speciosissima into populations north and south of the Shoalhaven River valley. Unexpectedly, the northern disjunct population of T. oreades grouped with T. mongaensis and was identified as a hybrid swarm by the Bayesian assignment test implemented in NewHybrids. Present day and LGM environmental niche models differed dramatically, suggesting that distributions of all species had repeatedly expanded and contracted in response to Pleistocene climatic oscillations and confirming strongly marked historical distributional gaps among taxes. Genetic structure and bio-climatic modeling results are more consistent with a history of allopatric speciation followed by repeated episodes of secondary contact and localised hybridisation, rather than with parapatric speciation. This study on Telopea shows that the evidence for temporal exclusion of gene flow can be found even outside obvious geographical contexts, and that it is possible to make significant progress towards excluding parapatric speciation as a contributing evolutionary process.
NASA Astrophysics Data System (ADS)
Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.
2008-05-01
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.
2008-05-20
In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV,more » a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.« less
Focusing on Attention: The Effects of Working Memory Capacity and Load on Selective Attention
Ahmed, Lubna; de Fockert, Jan W.
2012-01-01
Background Working memory (WM) is imperative for effective selective attention. Distractibility is greater under conditions of high (vs. low) concurrent working memory load (WML), and in individuals with low (vs. high) working memory capacity (WMC). In the current experiments, we recorded the flanker task performance of individuals with high and low WMC during low and high WML, to investigate the combined effect of WML and WMC on selective attention. Methodology/Principal Findings In Experiment 1, distractibility from a distractor at a fixed distance from the target was greater when either WML was high or WMC was low, but surprisingly smaller when both WML was high and WMC low. Thus we observed an inverted-U relationship between reductions in WM resources and distractibility. In Experiment 2, we mapped the distribution of spatial attention as a function of WMC and WML, by recording distractibility across several target-to-distractor distances. The pattern of distractor effects across the target-to-distractor distances demonstrated that the distribution of the attentional window becomes dispersed as WM resources are limited. The attentional window was more spread out under high compared to low WML, and for low compared to high WMC individuals, and even more so when the two factors co-occurred (i.e., under high WML in low WMC individuals). The inverted-U pattern of distractibility effects in Experiment 1, replicated in Experiment 2, can thus be explained by differences in the spread of the attentional window as a function of WM resource availability. Conclusions/Significance The current findings show that limitations in WM resources, due to either WML or individual differences in WMC, affect the spatial distribution of attention. The difference in attentional constraining between high and low WMC individuals demonstrated in the current experiments helps characterise the nature of previously established associations between WMC and controlled attention. PMID:22952636
Geography of current and future global mammal extinction risk
Shoemaker, Kevin T.; Weinstein, Ben; Costa, Gabriel C.; Brooks, Thomas M.; Ceballos, Gerardo; Radeloff, Volker C.; Rondinini, Carlo; Graham, Catherine H.
2017-01-01
Identifying which species are at greatest risk, what makes them vulnerable, and where they are distributed are central goals for conservation science. While knowledge of which factors influence extinction risk is increasingly available for some taxonomic groups, a deeper understanding of extinction correlates and the geography of risk remains lacking. Here, we develop a predictive random forest model using both geospatial and mammalian species’ trait data to uncover the statistical and geographic distributions of extinction correlates. We also explore how this geography of risk may change under a rapidly warming climate. We found distinctive macroecological relationships between species-level risk and extinction correlates, including the intrinsic biological traits of geographic range size, body size and taxonomy, and extrinsic geographic settings such as seasonality, habitat type, land use and human population density. Each extinction correlate exhibited ranges of values that were especially associated with risk, and the importance of different risk factors was not geographically uniform across the globe. We also found that about 10% of mammals not currently recognized as at-risk have biological traits and occur in environments that predispose them towards extinction. Southeast Asia had the most actually and potentially threatened species, underscoring the urgent need for conservation in this region. Additionally, nearly 40% of currently threatened species were predicted to experience rapid climate change at 0.5 km/year or more. Biological and environmental correlates of mammalian extinction risk exhibit distinct statistical and geographic distributions. These results provide insight into species-level patterns and processes underlying geographic variation in extinction risk. They also offer guidance for future conservation research focused on specific geographic regions, or evaluating the degree to which species-level patterns mirror spatial variation in the pressures faced by populations within the ranges of individual species. The added impacts from climate change may increase the susceptibility of at-risk species to extinction and expand the regions where mammals are most vulnerable globally. PMID:29145486
La Sorte, Frank A; Fink, Daniel; Blancher, Peter J; Rodewald, Amanda D; Ruiz-Gutierrez, Viviana; Rosenberg, Kenneth V; Hochachka, Wesley M; Verburg, Peter H; Kelling, Steve
2017-12-01
Understanding the susceptibility of highly mobile taxa such as migratory birds to global change requires information on geographic patterns of occurrence across the annual cycle. Neotropical migrants that breed in North America and winter in Central America occur in high concentrations on their non-breeding grounds where they spend the majority of the year and where habitat loss has been associated with population declines. Here, we use eBird data to model weekly patterns of abundance and occurrence for 21 forest passerine species that winter in Central America. We estimate species' distributional dynamics across the annual cycle, which we use to determine how species are currently associated with public protected areas and projected changes in climate and land-use. The effects of global change on the non-breeding grounds is characterized by decreasing precipitation, especially during the summer, and the conversion of forest to cropland, grassland, or peri-urban. The effects of global change on the breeding grounds are characterized by increasing winter precipitation, higher temperatures, and the conversion of forest to peri-urban. During spring and autumn migration, species are projected to encounter higher temperatures, forests that have been converted to peri-urban, and increased precipitation during spring migration. Based on current distributional dynamics, susceptibility to global change is characterized by the loss of forested habitats on the non-breeding grounds, warming temperatures during migration and on the breeding grounds, and declining summer rainfall on the non-breeding grounds. Public protected areas with low and medium protection status are more prevalent on the non-breeding grounds, suggesting that management opportunities currently exist to mitigate near-term non-breeding habitat losses. These efforts would affect more individuals of more species during a longer period of the annual cycle, which may create additional opportunities for species to respond to changes in habitat or phenology that are likely to develop under climate change. © 2017 John Wiley & Sons Ltd.
Geography of current and future global mammal extinction risk.
Davidson, Ana D; Shoemaker, Kevin T; Weinstein, Ben; Costa, Gabriel C; Brooks, Thomas M; Ceballos, Gerardo; Radeloff, Volker C; Rondinini, Carlo; Graham, Catherine H
2017-01-01
Identifying which species are at greatest risk, what makes them vulnerable, and where they are distributed are central goals for conservation science. While knowledge of which factors influence extinction risk is increasingly available for some taxonomic groups, a deeper understanding of extinction correlates and the geography of risk remains lacking. Here, we develop a predictive random forest model using both geospatial and mammalian species' trait data to uncover the statistical and geographic distributions of extinction correlates. We also explore how this geography of risk may change under a rapidly warming climate. We found distinctive macroecological relationships between species-level risk and extinction correlates, including the intrinsic biological traits of geographic range size, body size and taxonomy, and extrinsic geographic settings such as seasonality, habitat type, land use and human population density. Each extinction correlate exhibited ranges of values that were especially associated with risk, and the importance of different risk factors was not geographically uniform across the globe. We also found that about 10% of mammals not currently recognized as at-risk have biological traits and occur in environments that predispose them towards extinction. Southeast Asia had the most actually and potentially threatened species, underscoring the urgent need for conservation in this region. Additionally, nearly 40% of currently threatened species were predicted to experience rapid climate change at 0.5 km/year or more. Biological and environmental correlates of mammalian extinction risk exhibit distinct statistical and geographic distributions. These results provide insight into species-level patterns and processes underlying geographic variation in extinction risk. They also offer guidance for future conservation research focused on specific geographic regions, or evaluating the degree to which species-level patterns mirror spatial variation in the pressures faced by populations within the ranges of individual species. The added impacts from climate change may increase the susceptibility of at-risk species to extinction and expand the regions where mammals are most vulnerable globally.
Patterns in Calabi-Yau Distributions
NASA Astrophysics Data System (ADS)
He, Yang-Hui; Jejjala, Vishnu; Pontiggia, Luca
2017-09-01
We explore the distribution of topological numbers in Calabi-Yau manifolds, using the Kreuzer-Skarke dataset of hypersurfaces in toric varieties as a testing ground. While the Hodge numbers are well-known to exhibit mirror symmetry, patterns in frequencies of combination thereof exhibit striking new patterns. We find pseudo-Voigt and Planckian distributions with high confidence and exact fit for many substructures. The patterns indicate typicality within the landscape of Calabi-Yau manifolds of various dimension.
Climate change and fishing: a century of shifting distribution in North Sea cod.
Engelhard, Georg H; Righton, David A; Pinnegar, John K
2014-08-01
Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time-series spanning 1913-2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod - mostly in the deeper, northern- and north-easternmost parts of the North Sea - is almost opposite to that during most of the Twentieth Century - mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3 1/2 decades by data from fisheries-independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish. © 2013 Crown copyright. Global Change Biology published by John Wiley & Sons Ltd. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.
Lieverse, Angela R; Weber, Andrzej W; Bazaliiskiy, Vladimir Ivanovich; Goriunova, Olga Ivanovna; Savel'ev, Nikolai Aleksandrovich
2007-01-01
This examination of osteoarthritis in Siberia's Cis-Baikal region focuses on the reconstruction of mid-Holocene mobility and activity patterns with particular interest in an alleged fifth millennium BC biocultural hiatus. Five cemetery populations--two representing the pre-hiatus Kitoi culture (6800-4900 BC) and three the post-hiatus Serovo-Glaskovo (4200-1000 BC)-are considered. The objective is to investigate osteoarthritic prevalence and distribution (patterning) within and among these populations in order to reconstruct mobility and activity patterns among the Cis-Baikal foragers, and to test for possible disparities that may reflect differing adaptive strategies. The data reveal that levels of activity remained relatively constant throughout the mid-Holocene but that mobility and specific activity patterns did not. Although results are consistent with the current understanding of distinct Kitoi and Serovo-Glaskovo subsistence regimes, specifically the lower residential mobility and narrower resource base of the former, they also draw attention to adaptive characteristics shared by all occupants of the Cis-Baikal. (c) 2006 Wiley-Liss, Inc
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
Ye, Ye; Cheong, Kang Hao; Cen, Yu-wan; Xie, Neng-gang
2016-01-01
A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed. PMID:27845430
Effects of behavioral patterns and network topology structures on Parrondo’s paradox
NASA Astrophysics Data System (ADS)
Ye, Ye; Cheong, Kang Hao; Cen, Yu-Wan; Xie, Neng-Gang
2016-11-01
A multi-agent Parrondo’s model based on complex networks is used in the current study. For Parrondo’s game A, the individual interaction can be categorized into five types of behavioral patterns: the Matthew effect, harmony, cooperation, poor-competition-rich-cooperation and a random mode. The parameter space of Parrondo’s paradox pertaining to each behavioral pattern, and the gradual change of the parameter space from a two-dimensional lattice to a random network and from a random network to a scale-free network was analyzed. The simulation results suggest that the size of the region of the parameter space that elicits Parrondo’s paradox is positively correlated with the heterogeneity of the degree distribution of the network. For two distinct sets of probability parameters, the microcosmic reasons underlying the occurrence of the paradox under the scale-free network are elaborated. Common interaction mechanisms of the asymmetric structure of game B, behavioral patterns and network topology are also revealed.
Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa
NASA Astrophysics Data System (ADS)
Hauffe, T.; Schultheiß, R.; Van Bocxlaer, B.; Prömmel, K.; Albrecht, C.
2016-09-01
Species diversity and how it is structured on a continental scale is influenced by stochastic, ecological, and evolutionary driving forces, but hypotheses on determining factors have been mainly examined for terrestrial and marine organisms. The extant diversity of African freshwater mollusks is in general well assessed to facilitate conservation strategies and because of the medical importance of several taxa as intermediate hosts for tropical parasites. This historical accumulation of knowledge has, however, not resulted in substantial macroecological studies on the spatial distribution of freshwater mollusks. Here, we use continental distribution data and a recently developed method of random and cohesive allocation of species distribution ranges to test the relative importance of various factors in shaping species richness of Bivalvia and Gastropoda. We show that the mid-domain effect, that is, a hump-shaped richness gradient in a geographically bounded system despite the absence of environmental gradients, plays a minor role in determining species richness of freshwater mollusks in sub-Saharan Africa. The western branch of the East African Rift System was included as dispersal barrier in richness models, but these simulation results did not fit observed diversity patterns significantly better than models where this effect was not included, which suggests that the rift has played a more complex role in generating diversity patterns. Present-day precipitation and temperature explain richness patterns better than Eemian climatic condition. Therefore, the availability of water and energy for primary productivity during the past does not influence current species richness patterns much, and observed diversity patterns appear to be in equilibrium with contemporary climate. The availability of surface waters was the best predictor of bivalve and gastropod richness. Our data indicate that habitat diversity causes the observed species-area relationship, and hence, that environmental heterogeneity is a principal driver of freshwater mollusk richness on a continental scale.
NASA Astrophysics Data System (ADS)
Martinez Baquero, G. F.; Furnans, J.; Hudson, C.; Magan, C.
2012-12-01
Management decisions on rivers and associated habitats require sound tools to identify major drivers for spatial and temporal variations of temperature and related water quality variables. 3D hydrodynamic and water quality models are key components to abstract flow dynamics in complex river systems as they allow extrapolating available observations to ungaged locations and alternative scenarios. The data collection and model development are intended to support the Mid-Columbia Fisheries Enhancement Group in conjunction with the Benton Conservation District in efforts to understand how seasonal flow patterns in the Yakima and Columbia rivers interact with the Yakima delta geometry to cause the relatively high water temperatures previously observed west of Bateman Island. These high temperatures are suspected of limiting salmonid success in the area, possibly contributing to adjustments in migration patterns and increased predation. The Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP) are used to model flow patterns and enable simulations of temperature distributions and water quality parameters at the confluence. Model development is supported by a bathymetric campaign in 2011 to evaluate delta geometry and to construct the EFDC domain, a sonar river survey in 2012 to measure velocity profiles and to enable model calibration, and a continuous collection of temperature and dissolved oxygen records from Level Scout probes at key locations during last year to drive water quality simulations. The current model is able to reproduce main flow features observed at the confluence and is being prepared to integrate previous and current temperature observations. The final model is expected to evaluate scenarios for the removal or alteration of the Bateman Island Causeway. Alterations to the causeway that permit water passage to the south of Bateman Island are likely to dramatically alter the water flow patterns through the Yakima and Columbia River confluence, which in turn will alter water temperature distributions, sediment transport pathways, and salmonid migration routes.
The phylogenetic distribution of extrafloral nectaries in plants.
Weber, Marjorie G; Keeler, Kathleen H
2013-06-01
Understanding the evolutionary patterns of ecologically relevant traits is a central goal in plant biology. However, for most important traits, we lack the comprehensive understanding of their taxonomic distribution needed to evaluate their evolutionary mode and tempo across the tree of life. Here we evaluate the broad phylogenetic patterns of a common plant-defence trait found across vascular plants: extrafloral nectaries (EFNs), plant glands that secrete nectar and are located outside the flower. EFNs typically defend plants indirectly by attracting invertebrate predators who reduce herbivory. Records of EFNs published over the last 135 years were compiled. After accounting for changes in taxonomy, phylogenetic comparative methods were used to evaluate patterns of EFN evolution, using a phylogeny of over 55 000 species of vascular plants. Using comparisons of parametric and non-parametric models, the true number of species with EFNs likely to exist beyond the current list was estimated. To date, EFNs have been reported in 3941 species representing 745 genera in 108 families, about 1-2 % of vascular plant species and approx. 21 % of families. They are found in 33 of 65 angiosperm orders. Foliar nectaries are known in four of 36 fern families. Extrafloral nectaries are unknown in early angiosperms, magnoliids and gymnosperms. They occur throughout monocotyledons, yet most EFNs are found within eudicots, with the bulk of species with EFNs being rosids. Phylogenetic analyses strongly support the repeated gain and loss of EFNs across plant clades, especially in more derived dicot families, and suggest that EFNs are found in a minimum of 457 independent lineages. However, model selection methods estimate that the number of unreported cases of EFNs may be as high as the number of species already reported. EFNs are widespread and evolutionarily labile traits that have repeatedly evolved a remarkable number of times in vascular plants. Our current understanding of the phylogenetic patterns of EFNs makes them powerful candidates for future work exploring the drivers of their evolutionary origins, shifts, and losses.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T
2013-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns.
NASA Astrophysics Data System (ADS)
Field, John C.; Elliger, Carl; Baltz, Ken; Gillespie, Graham E.; Gilly, William F.; Ruiz-Cooley, R. I.; Pearse, Devon; Stewart, Julia S.; Matsubu, William; Walker, William A.
2013-10-01
From 2002 to 2010, the jumbo squid (Dosidicus gigas) has been regularly encountered in large numbers throughout the California Current System (CCS). This species, usually found in subtropical waters, could affect coastal pelagic ecosystems and fisheries as both predator and prey. Neither the abundance of jumbo squid nor the optimal ocean conditions in which they flourish are well known. To understand better the potential impacts of this species on both commercial fisheries and on food-web structure we collected nearly 900 specimens from waters of the CCS, covering over 20° of latitude, over a range of depths and seasons. We used demographic information (size, sex, and maturity state) and analyzed stomach contents using morphological and molecular methods to best understand the foraging ecology of this species in different habitats of the CCS. Squid were found to consume a broad array of prey. Prey in offshore waters generally reflected the forage base reported in previous studies (mainly mesopelagic fishes and squids), whereas in more coastal waters (shelf, shelf break and slope habitats) squid foraged on a much broader mix that included substantial numbers of coastal pelagic fishes (Pacific herring and northern anchovy, as well as osmerids and salmonids in northern waters) and groundfish (Pacific hake, several species of rockfish and flatfish). We propose a seasonal movement pattern, based on size and maturity distributions along with qualitative patterns of presence or absence, and discuss the relevance of both the movement and distribution of jumbo squid over space and time. We find that jumbo squid are a generalist predator, which feeds primarily on small, pelagic or mesopelagic micronekton but also on larger fishes when they are available. We also conclude that interactions with and potential impacts on ecosystems likely vary over space and time, in response to both seasonal movement patterns and highly variable year-to-year abundance of the squid themselves.
Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.
2014-01-01
Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns. PMID:24501591
Bossu, Christen M; Beaulieu, Jeremy M; Ceas, Patrick A; Near, Thomas J
2013-11-01
The alteration in palaeodrainage river connections has shaped patterns of speciation, genetic diversity and the geographical distribution of the species-rich freshwater fauna of North America. The integration of ancestral range reconstruction methods and divergence time estimates provides an opportunity to infer palaeodrainage connectivity and test alternative palaeodrainage hypotheses. Members of the Orangethroat Darter clade, Ceasia, are endemic to southeastern North America and occur north and south of the Pleistocene glacial front, a distributional pattern that makes this clade of closely related species an ideal system to investigate the number and location of glacial refugia and compare alternative hypotheses regarding the proposed evolution of the Teays-Mahomet palaeodrainage. This study utilized time-calibrated mitochondrial and nuclear gene phylogenies and present-day geographical distributions to investigate hypothesized Teays-Mahomet River connections through time using a dispersal-extinction-cladogenesis (DEC) framework. Results of DEC ancestral area reconstructions indicate that the Teays-Mahomet River was a key dispersal route between disjunct highland regions connecting the Mississippi River tributaries to the Old-Ohio Drainage minimally at two separate occasions during the Pleistocene. There was a dynamic interplay between palaeodrainage connections through time and postglacial range expansion from three glacial refugia that shaped the current genetic structure and geographical distributions of the species that comprise Ceasia. © 2013 John Wiley & Sons Ltd.
Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David
2017-01-01
Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea. PMID:28406963
Lin, Risa J; Jaeger, Dieter
2011-05-01
In previous studies we used the technique of dynamic clamp to study how temporal modulation of inhibitory and excitatory inputs control the frequency and precise timing of spikes in neurons of the deep cerebellar nuclei (DCN). Although this technique is now widely used, it is limited to interpreting conductance inputs as being location independent; i.e., all inputs that are biologically distributed across the dendritic tree are applied to the soma. We used computer simulations of a morphologically realistic model of DCN neurons to compare the effects of purely somatic vs. distributed dendritic inputs in this cell type. We applied the same conductance stimuli used in our published experiments to the model. To simulate variability in neuronal responses to repeated stimuli, we added a somatic white current noise to reproduce subthreshold fluctuations in the membrane potential. We were able to replicate our dynamic clamp results with respect to spike rates and spike precision for different patterns of background synaptic activity. We found only minor differences in the spike pattern generation between focal or distributed input in this cell type even when strong inhibitory or excitatory bursts were applied. However, the location dependence of dynamic clamp stimuli is likely to be different for each cell type examined, and the simulation approach developed in the present study will allow a careful assessment of location dependence in all cell types.
NASA Astrophysics Data System (ADS)
Sumekar, W.; Al-Baarri, A. N.; Kurnianto, E.
2018-01-01
Marketing distribution is an important of the strategy in business development in agroindustries. The aim of the research was to introduce marketing (distribution pattern, margin and marketing efficiency) at the salted egg agro industries in Brebes Regency. Survey method had been conducted on 52 salted egg agro industries which had active PIRT certificate. The data collection was conducted by means of interview and observation. Descriptive analysis was used to determine the marketing distribution of salted eggs. Marketing efficiency was obtained by calculating marketing margin and farmer share. The results show that the salted egg agro industries implemented two marketing distribution patterns; direct marketing pattern (consumer→producers) and indirect marketing pattern (producer→retailer→consumer). The number of the salted egg agro industries which apply indirect marketing pattern is 57.69%. The implementation of direct and indirect marketing patterns was classified as efficient according to the farmer’s share values of 87.13% and 78.21%. It can be recommended the direct marketing.
Climate-Induced Range Shifts and Possible Hybridisation Consequences in Insects
Sánchez-Guillén, Rosa Ana; Muñoz, Jesús; Rodríguez-Tapia, Gerardo; Feria Arroyo, T. Patricia; Córdoba-Aguilar, Alex
2013-01-01
Many ectotherms have altered their geographic ranges in response to rising global temperatures. Current range shifts will likely increase the sympatry and hybridisation between recently diverged species. Here we predict future sympatric distributions and risk of hybridisation in seven Mediterranean ischnurid damselfly species (I. elegans, I. fountaineae, I. genei, I. graellsii, I. pumilio, I. saharensis and I. senegalensis). We used a maximum entropy modelling technique to predict future potential distribution under four different Global Circulation Models and a realistic emissions scenario of climate change. We carried out a comprehensive data compilation of reproductive isolation (habitat, temporal, sexual, mechanical and gametic) between the seven studied species. Combining the potential distribution and data of reproductive isolation at different instances (habitat, temporal, sexual, mechanical and gametic), we infer the risk of hybridisation in these insects. Our findings showed that all but I. graellsii will decrease in distributional extent and all species except I. senegalensis are predicted to have northern range shifts. Models of potential distribution predicted an increase of the likely overlapping ranges for 12 species combinations, out of a total of 42 combinations, 10 of which currently overlap. Moreover, the lack of complete reproductive isolation and the patterns of hybridisation detected between closely related ischnurids, could lead to local extinctions of native species if the hybrids or the introgressed colonising species become more successful. PMID:24260411
Lateral and vertical distribution of downstream migrating juvenile sea lamprey
Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen
2018-01-01
Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.
Children's inequity aversion depends on culture: a cross-cultural comparison.
Paulus, Markus
2015-04-01
Recent work showed the presence of strong forms of inequity aversion in young children. When presented with an uneven number of items, children would rather tend to throw one item away than to distribute them unequally between two anonymous others. The current study examined whether or not this pattern is a universal part of typical development by investigating 6- and 7-year-old Ugandan children. Results revealed that the Ugandan children, in contrast to their U.S. peers, tended to distribute the resources unequally rather than to throw the remaining resource away. This points to cross-cultural differences in the development of children's fairness-related decision making. Copyright © 2014 Elsevier Inc. All rights reserved.
Kooyman, Robert M; Rossetto, Maurizio; Sauquet, Hervé; Laffan, Shawn W
2013-01-01
Identify patterns of change in species distributions, diversity, concentrations of evolutionary history, and assembly of Australian rainforests. We used the distribution records of all known rainforest woody species in Australia across their full continental extent. These were analysed using measures of species richness, phylogenetic diversity (PD), phylogenetic endemism (PE) and phylogenetic structure (net relatedness index; NRI). Phylogenetic structure was assessed using both continental and regional species pools. To test the influence of growth-form, freestanding and climbing plants were analysed independently, and in combination. Species richness decreased along two generally orthogonal continental axes, corresponding with wet to seasonally dry and tropical to temperate habitats. The PE analyses identified four main areas of substantially restricted phylogenetic diversity, including parts of Cape York, Wet Tropics, Border Ranges, and Tasmania. The continental pool NRI results showed evenness (species less related than expected by chance) in groups of grid cells in coastally aligned areas of species rich tropical and sub-tropical rainforest, and in low diversity moist forest areas in the south-east of the Great Dividing Range and in Tasmania. Monsoon and drier vine forests, and moist forests inland from upland refugia showed phylogenetic clustering, reflecting lower diversity and more relatedness. Signals for evenness in Tasmania and clustering in northern monsoon forests weakened in analyses using regional species pools. For climbing plants, values for NRI by grid cell showed strong spatial structuring, with high diversity and PE concentrated in moist tropical and subtropical regions. Concentrations of rainforest evolutionary history (phylo-diversity) were patchily distributed within a continuum of species distributions. Contrasting with previous concepts of rainforest community distribution, our findings of continuous distributions and continental connectivity have significant implications for interpreting rainforest evolutionary history and current day ecological processes, and for managing rainforest diversity in changing circumstances.
Krushelnycky, P.D.; Joe, S.M.; Medeiros, A.C.; Daehler, C.C.; Loope, L.L.
2005-01-01
Analysis of long-term patterns of invasion can reveal the importance of abiotic factors in influencing invasion dynamics, and can help predict future patterns of spread. In the case of the invasive Argentine ant (Linepithema humile), most prior studies have investigated this species' limitations in hot and dry climates. However, spatial and temporal patterns of spread involving two ant populations over the course of 30 years at a high elevation site in Hawaii suggest that cold and wet conditions have influenced both the ant's distribution and its rate of invasion. In Haleakala National Park on Maui, we found that a population invading at lower elevation is limited by increasing rainfall and presumably by associated decreasing temperatures. A second, higher elevation population has spread outward in all directions, but rates of spread in different directions appear to have been strongly influenced by differences in elevation and temperature. Patterns of foraging activity were strongly tied to soil temperatures, supporting the hypothesis that variation in temperature can influence rates of spread. Based on past patterns of spread, we predicted a total potential range that covers nearly 50% of the park and 75% of the park's subalpine habitats. We compared this rough estimate with point predictions derived from a degree-day model for Argentine ant colony reproduction, and found that the two independent predictions match closely when soil temperatures are used in the model. The cold, wet conditions that have influenced Argentine ant invasion at this site are likely to be influential at other locations in this species' current and future worldwide distribution. ?? 2005 Blackwell Publishing Ltd.
Tomitaka, Shinichiro; Kawasaki, Yohei; Ide, Kazuki; Yamada, Hiroshi; Miyake, Hirotsugu; Furukawa, Toshiaki A; Furukaw, Toshiaki A
2016-01-01
In a previous study, we reported that the distribution of total depressive symptoms scores according to the Center for Epidemiologic Studies Depression Scale (CES-D) in a general population is stable throughout middle adulthood and follows an exponential pattern except for at the lowest end of the symptom score. Furthermore, the individual distributions of 16 negative symptom items of the CES-D exhibit a common mathematical pattern. To confirm the reproducibility of these findings, we investigated the distribution of total depressive symptoms scores and 16 negative symptom items in a sample of Japanese employees. We analyzed 7624 employees aged 20-59 years who had participated in the Northern Japan Occupational Health Promotion Centers Collaboration Study for Mental Health. Depressive symptoms were assessed using the CES-D. The CES-D contains 20 items, each of which is scored in four grades: "rarely," "some," "much," and "most of the time." The descriptive statistics and frequency curves of the distributions were then compared according to age group. The distribution of total depressive symptoms scores appeared to be stable from 30-59 years. The right tail of the distribution for ages 30-59 years exhibited a linear pattern with a log-normal scale. The distributions of the 16 individual negative symptom items of the CES-D exhibited a common mathematical pattern which displayed different distributions with a boundary at "some." The distributions of the 16 negative symptom items from "some" to "most" followed a linear pattern with a log-normal scale. The distributions of the total depressive symptoms scores and individual negative symptom items in a Japanese occupational setting show the same patterns as those observed in a general population. These results show that the specific mathematical patterns of the distributions of total depressive symptoms scores and individual negative symptom items can be reproduced in an occupational population.
The current status of opisthorchiasis and clonorchiasis in the Mekong Basin
Sithithaworn, Paiboon; Andrews, Ross H.; Van De, Nguyen; Wongsaroj, Thitima; Sinuon, Muth; Odermatt, Peter; Nawa, Yukifumi; Liang, Song; Brindley, Paul J.; Sripa, Banchob
2013-01-01
This review highlights the current status and control of liver fluke infections in the Mekong Basin countries where Opisthorchis and Clonorchis are highly endemic. Updated data on prevalence and distribution have been summarized from presentations in the “96 Years of Opisthorchiasis. International Congress of Liver Flukes”. It is disturbing that despite treatment and control programs have been in place for decades, all countries of the Lower Mekong Basin are still highly endemic with O. viverrini and/or C. sinensis as well as alarmingly high levels of CCA incidence. A common pattern that is emerging in each country is the difference in transmission of O. viverrini between lowlands which have high prevalence versus highlands which have low prevalence. This seems to be associated with wetlands, flooding patterns and human movement and settlement. A more concerted effort from all community, educational, public health and government sectors is necessary to successfully combat this fatal liver disease of the poor. PMID:21893213
Near bottom velocity and suspended solids measurements in San Francisco Bay, California
Gartner, Jeffrey W.; Cheng, Ralph T.; Cacchione, David A.; Tate, George B.
1997-01-01
Ability to accurately measure long-term time-series of turbulent mean velocity distribution within the bottom boundary layer (BBL) in addition to suspended solids concentration (SSC) is critical to understanding complex processes controlling transport, resuspension, and deposition of suspended sediments in bays and estuaries. A suite of instruments, including broad band acoustic Doppler current profilers (BB-ADCPs), capable of making very high resolution measurement of velocity profiles in the BBL, was deployed in the shipping channel of South San Francisco Bay (South Bay), California in an investigation of sediment dynamics during March and April 1995. Results of field measurements provide information to calculate suspended solids flux (SSF) at the site. Calculations show striking patterns; residual SSF varies through the spring-neap tidal cycle. Significant differences from one spring tide to another are caused by differences in tidal current diurnal inequalities. Winds from significant storms establish residual circulation patterns that may affect magnitude of residual SSF more than increased tidal energy at spring tides.
2007-01-26
ocean affects calcifying organisms, such as corals , with significant effects to reefs , the ecosystems they support, and their ability to pro- tect...water coral reefs , to open- ocean systems. For example, increasing ocean acidity, altered biogeochemistry, changing current patterns, loss of sea ice...for example, large swings in the populations of commercial fisheries, changes in seabird-population distributions, and coral - reef -bleaching events
NASA Astrophysics Data System (ADS)
Barth, Daniel S.; Sutherling, William; Engle, Jerome; Beatty, Jackson
1984-01-01
Neuromagnetic measurements were performed on 17 subjects with focal seizure disorders. In all of the subjects, the interictal spike in the scalp electroencephalogram was associated with an orderly extracranial magnetic field pattern. In eight of these subjects, multiple current sources underlay the magnetic spike complex. The multiple sources within a given subject displayed a fixed chronological sequence of discharge, demonstrating a high degree of spatial and temporal organization within the interictal focus.
Seagrass meadows (Posidonia oceanica) distribution and trajectories of change
Telesca, Luca; Belluscio, Andrea; Criscoli, Alessandro; Ardizzone, Giandomenico; Apostolaki, Eugenia T.; Fraschetti, Simonetta; Gristina, Michele; Knittweis, Leyla; Martin, Corinne S.; Pergent, Gérard; Alagna, Adriana; Badalamenti, Fabio; Garofalo, Germana; Gerakaris, Vasilis; Louise Pace, Marie; Pergent-Martini, Christine; Salomidi, Maria
2015-01-01
Posidonia oceanica meadows are declining at alarming rates due to climate change and human activities. Although P. oceanica is considered the most important and well-studied seagrass species of the Mediterranean Sea, to date there has been a limited effort to combine all the spatial information available and provide a complete distribution of meadows across the basin. The aim of this work is to provide a fine-scale assessment of (i) the current and historical known distribution of P. oceanica, (ii) the total area of meadows and (iii) the magnitude of regressive phenomena in the last decades. The outcomes showed the current spatial distribution of P. oceanica, covering a known area of 1,224,707 ha, and highlighted the lack of relevant data in part of the basin (21,471 linear km of coastline). The estimated regression of meadows amounted to 34% in the last 50 years, showing that this generalised phenomenon had to be mainly ascribed to cumulative effects of multiple local stressors. Our results highlighted the importance of enforcing surveys to assess the status and prioritize areas where cost-effective schemes for threats reduction, capable of reversing present patterns of change and ensuring P. oceanica persistence at Mediterranean scale, could be implemented. PMID:26216526
Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei).
Chen, Wei-Jen; Lavoué, Sébastien; Mayden, Richard L
2013-08-01
The biogeography of the mega-diverse, freshwater, and globally distributed Otophysi has received considerable attention. This attraction largely stems from assumptions as to their ancient origin, the clade being almost exclusively freshwater, and their suitability as to explanations of trans-oceanic distributions. Despite multiple hypotheses explaining present-day distributions, problems remain, precluding more parsimonious explanations. Underlying previous hypotheses are alternative phylogenies for Otophysi, uncertainties as to temporal diversification and assumptions integral to various explanations. We reexamine the origin and early diversification of this clade based on a comprehensive time-calibrated, molecular-based phylogenetic analysis and event-based approaches for ancestral range inference of lineages. Our results do not corroborate current phylogenetic classifications of otophysans. We demonstrate Siluriformes are never sister to Gymnotiformes and Characiformes are most likely nonmonophyletic. Divergence time estimates specify a split between Cypriniformes and Characiphysi with the fragmentation of Pangea. The early diversification of characiphysans either predated, or was contemporary with, the separation of Africa and South America, and involved a combination of within- and between-continental divergence events for these lineages. The intercontinental diversification of siluroids and characoids postdated major intercontinental tectonic fragmentations (<90 Mya). Post-tectonic drift dispersal events are hypothesized to account for their current distribution patterns. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.
Rekha Sarma, Roshmi; Munsi, Madhushree; Neelavara Ananthram, Aravind
2015-01-01
The Giant African Snail (Achatina fulica) is considered to be one the world’s 100 worst invasive alien species. The snail has an impact on native biodiversity, and on agricultural and horticultural crops. In India, it is known to feed on more than fifty species of native plants and agricultural crops and also outcompetes the native snails. It was introduced into India in 1847 and since then it has spread all across the country. In this paper, we use ecological niche modeling (ENM) to assess the distribution pattern of Giant African Snail (GAS) under different climate change scenarios. The niche modeling results indicate that under the current climate scenario, Eastern India, peninsular India and the Andaman and Nicobar Islands are at high risk of invasion. The three different future climate scenarios show that there is no significant change in the geographical distribution of invasion prone areas. However, certain currently invaded areas will be more prone to invasion in the future. These regions include parts of Bihar, Southern Karnataka, parts of Gujarat and Assam. The Andaman and Nicobar and Lakshadweep Islands are highly vulnerable to invasion under changed climate. The Central Indian region is at low risk due to high temperature and low rainfall. An understanding of the invasion pattern can help in better management of this invasive species and also in formulating policies for its control. PMID:26618637
Sarma, Roshmi Rekha; Munsi, Madhushree; Ananthram, Aravind Neelavara
2015-01-01
The Giant African Snail (Achatina fulica) is considered to be one the world's 100 worst invasive alien species. The snail has an impact on native biodiversity, and on agricultural and horticultural crops. In India, it is known to feed on more than fifty species of native plants and agricultural crops and also outcompetes the native snails. It was introduced into India in 1847 and since then it has spread all across the country. In this paper, we use ecological niche modeling (ENM) to assess the distribution pattern of Giant African Snail (GAS) under different climate change scenarios. The niche modeling results indicate that under the current climate scenario, Eastern India, peninsular India and the Andaman and Nicobar Islands are at high risk of invasion. The three different future climate scenarios show that there is no significant change in the geographical distribution of invasion prone areas. However, certain currently invaded areas will be more prone to invasion in the future. These regions include parts of Bihar, Southern Karnataka, parts of Gujarat and Assam. The Andaman and Nicobar and Lakshadweep Islands are highly vulnerable to invasion under changed climate. The Central Indian region is at low risk due to high temperature and low rainfall. An understanding of the invasion pattern can help in better management of this invasive species and also in formulating policies for its control.
Niemiller, Matthew L; McCandless, James R; Reynolds, R Graham; Caddle, James; Near, Thomas J; Tillquist, Christopher R; Pearson, William D; Fitzpatrick, Benjamin M
2013-04-01
Climatic and geological processes associated with glaciation cycles during the Pleistocene have been implicated in influencing patterns of genetic variation and promoting speciation of temperate flora and fauna. However, determining the factors promoting divergence and speciation is often difficult in many groups because of our limited understanding of potential vicariant barriers and connectivity between populations. Pleistocene glacial cycles are thought to have significantly influenced the distribution and diversity of subterranean invertebrates; however, impacts on subterranean aquatic vertebrates are less clear. We employed several hypothesis-driven approaches to assess the impacts of Pleistocene climatic and geological changes on the Northern Cavefish, Amblyopsis spelaea, whose current distribution occurs near the southern extent of glacial advances in North America. Our results show that the modern Ohio River has been a significant barrier to dispersal and is correlated with patterns of genetic divergence. We infer that populations were isolated in two refugia located north and south of the Ohio River during the most recent two glacial cycles with evidence of demographic expansion in the northern isolate. Finally, we conclude that climatic and geological processes have resulted in the formation of cryptic forms and advocate recognition of two distinct phylogenetic lineages currently recognized as A. spelaea. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.
Suspended particulate loads and transports in the nepheloid layer of the abyssal Atlantic Ocean
Biscaye, P.E.; Eittreim, S.L.
1977-01-01
Vertical profiles of light scattering from over 1000 L-DGO nephelometer stations in the Atlantic Ocean have been used to calculate mass concentrations of suspended particles based on a calibration from the western North American Basin. From these data are plotted the distributions of particulate concentrations at clear water and in the more turbid near-bottom water. Clear water is the broad minimum in concentration and light scattering that occurs at varying mid-depths in the water column. Concentrations at clear water are as much as one-to-two orders of magnitude lower than those in surface water but still reflect a similar geographic distribution: relatively higher concentrations at ocean margins, especially underneath upwelling areas, and the lowest concentrations underneath central gyre areas. These distributions within the clear water reflect surface-water biogenic productivity, lateral injection of particles from shelf areas and surface circulation patterns and require that the combination of downward vertical and horizontal transport processes of particles retain this pattern throughout the upper water column. Below clear water, the distribution of standing crops of suspended particulate concentrations in the lower water column are presented. The integration of mass of all particles per unit area (gross particulate standing crop) reflects a relative distribution similar to that at the surface and at clear water levels, superimposed on which is the strong imprint of boundary currents along the western margins of the Atlantic. Reducing the gross particulate standing crop by the integral of the concentration of clear water yields a net particulate standing crop. The distribution of this reflects primarily the interaction of circulating abyssal waters with the ocean bottom, i.e. a strong nepheloid layer which is coincident with western boundary currents and which diminishes in intensity equatorward. The resuspended particulate loads in the nepheloid layer of the basins west of the Mid-Atlantic Ridge, resulting from interaction of abyssal currents with the bottom, range from ??? 2 ?? 106 tons in the equatorial Guyana Basin to ??? 50 ?? 106 tons in the North American Basin. The total resuspended particulate load in the western basins (111 ?? 106 tons) is almost an order of magnitude greater than that in the basins east of the Mid-Atlantic Ridge (13 ?? 106 tons). The net northward flux of resuspended particles carried in the AABW drops from ??? 8 ?? 106 tons/year between the southern and northern ends of the Brazil Basin and remains ??? 1 ?? 106 tons/year across the Guyana Basin. ?? 1977.
NavP: Structured and Multithreaded Distributed Parallel Programming
NASA Technical Reports Server (NTRS)
Pan, Lei
2007-01-01
We present Navigational Programming (NavP) -- a distributed parallel programming methodology based on the principles of migrating computations and multithreading. The four major steps of NavP are: (1) Distribute the data using the data communication pattern in a given algorithm; (2) Insert navigational commands for the computation to migrate and follow large-sized distributed data; (3) Cut the sequential migrating thread and construct a mobile pipeline; and (4) Loop back for refinement. NavP is significantly different from the current prevailing Message Passing (MP) approach. The advantages of NavP include: (1) NavP is structured distributed programming and it does not change the code structure of an original algorithm. This is in sharp contrast to MP as MP implementations in general do not resemble the original sequential code; (2) NavP implementations are always competitive with the best MPI implementations in terms of performance. Approaches such as DSM or HPF have failed to deliver satisfying performance as of today in contrast, even if they are relatively easy to use compared to MP; (3) NavP provides incremental parallelization, which is beyond the reach of MP; and (4) NavP is a unifying approach that allows us to exploit both fine- (multithreading on shared memory) and coarse- (pipelined tasks on distributed memory) grained parallelism. This is in contrast to the currently popular hybrid use of MP+OpenMP, which is known to be complex to use. We present experimental results that demonstrate the effectiveness of NavP.
Towards a globally optimized crop distribution: Integrating water use, nutrition, and economic value
NASA Astrophysics Data System (ADS)
Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.
2016-12-01
Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for `sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing sustainable production has not been considered to date. To this end, we ask: Is it possible to increase crop production and economic value while minimizing water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of yields and evapotranspiration for 14 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvements in calorie (+12%) and protein (+51%) production, economic output (+41%) and water demand (-5%). This approach can also incorporate the impact of future climate on cropland suitability, and as such, be used to provide optimized cropping patterns under climate change. Thus, our study provides a novel tool towards achieving sustainable intensification that can be used to recommend optimal crop distributions in the face of a changing climate while simultaneously accounting for food security, freshwater resources, and livelihoods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinheimer, A.L.
Radiolarian distributions and physical oceanographic data from the Santa Barbara basin indicate the following. Strong anti-El Nino periods can be characterized by (1) intermediate radiolarian density, (2) high percentage of transition-central radiolarian fauna, and (3) low percentage and number of warm-water radiolarian fauna. This distribution pattern is attributed to strong wind-driven upwelling and reduced northward transport by the California Countercurrent during anti-El Nino periods. Strong El Nino periods are typically (1) high in radiolarian density, and (2) low in percentage but high in number of warm-water fauna. This distribution is attributed to reduced wind-driven upwelling, enhanced northward countercurrent transport, andmore » geostrophic doming of the cold-water masses in the shear zone between the California Current and California Countercurrent.« less
An exploratory study of the potential of LIBS for visualizing gunshot residue patterns.
López-López, María; Alvarez-Llamas, César; Pisonero, Jorge; García-Ruiz, Carmen; Bordel, Nerea
2017-04-01
The study of gunshot residue (GSR) patterns can assist in the reconstruction of shooting incidences. Currently, there is a real need of methods capable of furnishing simultaneous elemental analysis with higher specificity for the GSR pattern visualization. Laser-Induced Breakdown Spectroscopy (LIBS) provides a multi-elemental analysis of the sample, requiring very small amounts of material and no sample preparation. Due to these advantages, this study aims at exploring the potential of LIBS imaging for the visualization of GSR patterns. After the spectral characterization of individual GSR particles, the distribution of Pb, Sb and Ba over clothing targets, shot from different distances, were measured in laser raster mode. In particular, an array of spots evenly spaced at 800μm, using a stage displacement velocity of 4mm/s and a laser frequency of 5Hz was employed (e.g. an area of 130×165mm 2 was measured in less than 3h). A LIBS set-up based on the simultaneous use of two spectrographs with iCCD cameras and a motorized stage was used. This set-up allows obtaining information from two different wavelength regions (258-289 and 446-463nm) from the same laser induced plasma, enabling the simultaneous detection of the three characteristic elements (Pb, Sb, and Ba) of GSR particles from conventional ammunitions. The ability to visualize the 2D distribution GSR pattern by LIBS may have an important application in the forensic field, especially for the ballistics area. Copyright © 2017 Elsevier B.V. All rights reserved.
Passive larval transport explains recent gene flow in a Mediterranean gorgonian
NASA Astrophysics Data System (ADS)
Padrón, Mariana; Costantini, Federica; Baksay, Sandra; Bramanti, Lorenzo; Guizien, Katell
2018-06-01
Understanding the patterns of connectivity is required by the Strategic Plan for Biodiversity 2011-2020 and will be used to guide the extension of marine protection measures. Despite the increasing accuracy of ocean circulation modelling, the capacity to model the population connectivity of sessile benthic species with dispersal larval stages can be limited due to the potential effect of filters acting before or after dispersal, which modulates offspring release or settlement, respectively. We applied an interdisciplinary approach that combined demographic surveys, genetic methods (assignment tests and coalescent-based analyses) and larval transport simulations to test the relative importance of demographics and ocean currents in shaping the recent patterns of gene flow among populations of a Mediterranean gorgonian ( Eunicella singularis) in a fragmented rocky habitat (Gulf of Lion, NW Mediterranean Sea). We show that larval transport is a dominant driver of recent gene flow among the populations, and significant correlations were found between recent gene flow and larval transport during an average single dispersal event when the pelagic larval durations (PLDs) ranged from 7 to 14 d. Our results suggest that PLDs that efficiently connect populations distributed over a fragmented habitat are filtered by the habitat layout within the species competency period. Moreover, a PLD ranging from 7 to 14 d is sufficient to connect the fragmented rocky substrate of the Gulf of Lion. The rocky areas located in the centre of the Gulf of Lion, which are currently not protected, were identified as essential hubs for the distribution of migrants in the region. We encourage the use of a range of PLDs instead of a single value when estimating larval transport with biophysical models to identify potential connectivity patterns among a network of Marine Protected Areas or even solely a seascape.
NASA Astrophysics Data System (ADS)
Kanaji, Yu; Okazaki, Makoto; Miyashita, Tomio
2017-06-01
Spatial patterns of distribution, abundance, and species diversity of small odontocetes including species in the Delphinidae and Phocoenidae families were investigated using long-term dedicated sighting survey data collected between 1983 and 2006 in the North Pacific. Species diversity indices were calculated from abundance estimated using density surface modeling of line-transect data. The estimated abundance ranged from 19,521 individuals in killer whale to 1,886,022 in pantropical spotted dolphin. The predicted density maps showed that the habitats of small odontocetes corresponded well with distinct oceanic domains. Species richness was estimated to be highest between 30 and 40°N where warm- and cold-water currents converge. Simpson's Diversity Index showed latitudinal diversity gradients of decreasing species numbers toward the poles. Higher diversity was also estimated in the coastal areas and the zonal areas around 35-42°N. Coastal-offshore gradients and latitudinal gradients are known for many taxa. The zonal areas around 35°N and 40°N coincide with the Kuroshio Current and its extension and the subarctic boundary, respectively. These results suggest that the species diversity of small odontocetes primarily follows general patterns of latitudinal and longitudinal gradients, while the confluence of faunas originating in distinct water masses increases species diversify in frontal waters around 30-40°N. Population densities tended to be higher for the species inhabiting higher latitudes, but were highest for intermediate latitudes at approximately 35-40°N. According to latitudinal gradients in water temperature and biological productivity, the costs for thermoregulation will decrease in warmer low latitudes, while feeding efficiency will increase in colder high latitudes. These trade-offs could optimize population density in intermediate latitudes.
On the diffraction pattern of bundled rare-earth silicide nanowires on Si(0 0 1).
Timmer, F; Bahlmann, J; Wollschläger, J
2017-11-01
Motivated by the complex diffraction pattern observed for bundled rare-earth silicide nanowires on the Si(0 0 1) surface, we investigate the influence of the width and the spacing distribution of the nanowires on the diffraction pattern. The diffraction pattern of the bundled rare-earth silicide nanowires is analyzed by the binary surface technique applying a kinematic approach to diffraction. Assuming a categorical distribution for the (individual) nanowire size and a Poisson distribution for the size of the spacing between adjacent nanowire-bundles, we are able to determine the parameters of these distributions and derive an expression for the distribution of the nanowire-bundle size. Additionally, the comparison of our simulations to the experimental diffraction pattern reveal that a (1 × 1)-periodicity on top of the nanowires has to be assumed for a good match.
NASA Astrophysics Data System (ADS)
Bormann, K.; Hedrick, A. R.; Marks, D. G.; Painter, T. H.
2017-12-01
The spatial and temporal distribution of snow water resources (SWE) in the mountains has been examined extensively through the use of models, in-situ networks and remote sensing techniques. However, until the Airborne Snow Observatory (http://aso.jpl.nasa.gov), our understanding of SWE dynamics has been limited due to a lack of well-constrained spatial distributions of SWE in complex terrain, particularly at high elevations and at regional scales (100km+). ASO produces comprehensive snow depth measurements and well-constrained SWE products providing the opportunity to re-examine our current understanding of SWE distributions with a robust and rich data source. We collected spatially-distributed snow depth and SWE data from over 150 individual ASO acquisitions spanning seven basins in California during the five-year operational period of 2013 - 2017. For each of these acquisitions, we characterized the spatial distribution of snow depth and SWE and examined how these distributions changed with time during snowmelt. We compared these distribution patterns between each of the seven basins and finally, examined the predictability of the SWE distributions using statistical extrapolations through both space and time. We compare and contrast these observationally-based characteristics with those from a physically-based snow model to highlight the strengths and weaknesses of the implementation of our understanding of SWE processes in the model environment. In practice, these results may be used to support or challenge our current understanding of mountain SWE dynamics and provide techniques for enhanced evaluation of high-resolution snow models that go beyond in-situ point comparisons. In application, this work may provide guidance on the potential of ASO to guide backfilling of sparse spaceborne measurements of snow depth and snow water equivalent.
The subtle role of climate change on population genetic structure in Canada lynx.
Row, Jeffrey R; Wilson, Paul J; Gomez, Celine; Koen, Erin L; Bowman, Jeff; Thornton, Daniel; Murray, Dennis L
2014-07-01
Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic-climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west-to-east) across the Pacific-North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041-2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east-west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns. © 2014 John Wiley & Sons Ltd.
Investigation of mode partition noise in Fabry-Perot laser diode
NASA Astrophysics Data System (ADS)
Guo, Qingyi; Deng, Lanxin; Mu, Jianwei; Li, Xun; Huang, Wei-Ping
2014-09-01
Passive optical network (PON) is considered as the most appealing access network architecture in terms of cost-effectiveness, bandwidth management flexibility, scalability and durability. And to further reduce the cost per subscriber, a Fabry-Perot (FP) laser diode is preferred as the transmitter at the optical network units (ONUs) because of its lower cost compared to distributed feedback (DFB) laser diode. However, the mode partition noise (MPN) associated with the multi-longitudinal-mode FP laser diode becomes the limiting factor in the network. This paper studies the MPN characteristics of the FP laser diode using the time-domain simulation of noise-driven multi-mode laser rate equation. The probability density functions are calculated for each longitudinal mode. The paper focuses on the investigation of the k-factor, which is a simple yet important measure of the noise power, but is usually taken as a fitted or assumed value in the penalty calculations. In this paper, the sources of the k-factor are studied with simulation, including the intrinsic source of the laser Langevin noise, and the extrinsic source of the bit pattern. The photon waveforms are shown under four simulation conditions for regular or random bit pattern, and with or without Langevin noise. The k-factors contributed by those sources are studied with a variety of bias current and modulation current. Simulation results are illustrated in figures, and show that the contribution of Langevin noise to the k-factor is larger than that of the random bit pattern, and is more dominant at lower bias current or higher modulation current.
Analysis of the access patterns at GSFC distributed active archive center
NASA Technical Reports Server (NTRS)
Johnson, Theodore; Bedet, Jean-Jacques
1996-01-01
The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC) has been operational for more than two years. Its mission is to support existing and pre Earth Observing System (EOS) Earth science datasets, facilitate the scientific research, and test Earth Observing System Data and Information System (EOSDIS) concepts. Over 550,000 files and documents have been archived, and more than six Terabytes have been distributed to the scientific community. Information about user request and file access patterns, and their impact on system loading, is needed to optimize current operations and to plan for future archives. To facilitate the management of daily activities, the GSFC DAAC has developed a data base system to track correspondence, requests, ingestion and distribution. In addition, several log files which record transactions on Unitree are maintained and periodically examined. This study identifies some of the users' requests and file access patterns at the GSFC DAAC during 1995. The analysis is limited to the subset of orders for which the data files are under the control of the Hierarchical Storage Management (HSM) Unitree. The results show that most of the data volume ordered was for two data products. The volume was also mostly made up of level 3 and 4 data and most of the volume was distributed on 8 mm and 4 mm tapes. In addition, most of the volume ordered was for deliveries in North America although there was a significant world-wide use. There was a wide range of request sizes in terms of volume and number of files ordered. On an average 78.6 files were ordered per request. Using the data managed by Unitree, several caching algorithms have been evaluated for both hit rate and the overhead ('cost') associated with the movement of data from near-line devices to disks. The algorithm called LRU/2 bin was found to be the best for this workload, but the STbin algorithm also worked well.
2013-01-01
Background The origins and dispersal of Plasmodium vivax to its current worldwide distribution remains controversial. Although progress on P. vivax genetics and genomics has been achieved worldwide, information concerning New World parasites remains fragmented and largely incomplete. More information on the genetic diversity in Latin America (LA) is needed to better explain current patterns of parasite dispersion and evolution. Methods Plasmodium vivax circumsporozoite protein gene polymorphism was investigated using polymerase chain reaction amplification and restriction fragment length polymorphism (PCR-RFLP), and Sanger sequencing in isolates from the Pacific Ocean coast of Mexico, Nicaragua, and Peru. In conjunction with worldwide sequences retrieved from the Genbank, mismatch distribution analysis of central repeat region (CRR), frequency estimation of unique repeat types and phylogenetic analysis of the 3′ terminal region, were performed to obtain an integrative view of the genetic relationships between regional and worldwide isolates. Results Four RFLP subtypes, vk210a, b, c and d were identified in Southern Mexico and three subtypes vk210a, e and f in Nicaragua. The nucleotide sequences showed that Mexican vk210a and all Nicaraguan isolates were similar to other American parasites. In contrast, vk210b, c and d were less frequent, had a domain ANKKAEDA in their carboxyl end and clustered with Asian isolates. All vk247 isolates from Mexico and Peru had identical RFLP pattern. Their nucleotide sequences showed two copies of GGQAAGGNAANKKAGDAGA at the carboxyl end. Differences in mismatch distribution parameters of the CRR separate vk247 from most vk210 isolates. While vk247 isolates display a homogeneous pattern with no geographical clustering, vk210 isolates display a heterogeneous geographically clustered pattern which clearly separates LA from non-American isolates, except vk210b, c and d from Southern Mexico. Conclusions The presence of vk210a in Mexico and vk210e, f and g in Nicaragua are consistent with other previously reported LA isolates and reflect their circulation throughout the continent. The vk210b, c and d are novel genotypes in LA. Their genetic relationships and low variability within these vk210 and/or within the vk247 parasites in Southern Mexico suggest its recent introduction and/or recent expansion to this region. The global analysis of P. vivax csp suggests this parasite introduction to the region and likely LA by different independent events. PMID:23855807
Dynamical Networks Characterization of Space Weather Events
NASA Astrophysics Data System (ADS)
Orr, L.; Chapman, S. C.; Dods, J.; Gjerloev, J. W.
2017-12-01
Space weather can cause disturbances to satellite systems, impacting navigation technology and telecommunications; it can cause power loss and aviation disruption. A central aspect of the earth's magnetospheric response to space weather events are large scale and rapid changes in ionospheric current patterns. Space weather is highly dynamic and there are still many controversies about how the current system evolves in time. The recent SuperMAG initiative, collates ground-based vector magnetic field time series from over 200 magnetometers with 1-minute temporal resolution. In principle this combined dataset is an ideal candidate for quantification using dynamical networks. Network properties and parameters allow us to characterize the time dynamics of the full spatiotemporal pattern of the ionospheric current system. However, applying network methodologies to physical data presents new challenges. We establish whether a given pair of magnetometers are connected in the network by calculating their canonical cross correlation. The magnetometers are connected if their cross correlation exceeds a threshold. In our physical time series this threshold needs to be both station specific, as it varies with (non-linear) individual station sensitivity and location, and able to vary with season, which affects ground conductivity. Additionally, the earth rotates and therefore the ground stations move significantly on the timescales of geomagnetic disturbances. The magnetometers are non-uniformly spatially distributed. We will present new methodology which addresses these problems and in particular achieves dynamic normalization of the physical time series in order to form the network. Correlated disturbances across the magnetometers capture transient currents. Once the dynamical network has been obtained [1][2] from the full magnetometer data set it can be used to directly identify detailed inferred transient ionospheric current patterns and track their dynamics. We will show our first results that use network properties such as cliques and clustering coefficients to map these highly dynamic changes in ionospheric current patterns.[l] Dods et al, J. Geophys. Res 120, doi:10.1002/2015JA02 (2015). [2] Dods et al, J. Geophys. Res. 122, doi:10.1002/2016JA02 (2017).
Zhang, Bing; Xia, Yu; Wen, Xianghua; Wang, Xiaohui; Yang, Yunfeng; Zhou, Jizhong; Zhang, Yu
2016-01-01
Bacterial pathogenicity and antibiotic resistance are of concern for environmental safety and public health. Accumulating evidence suggests that wastewater treatment plants (WWTPs) are as an important sink and source of pathogens and antibiotic resistance genes (ARGs). Virulence genes (encoding virulence factors) are good indicators for bacterial pathogenic potentials. To achieve a comprehensive understanding of bacterial pathogenic potentials and antibiotic resistance in WWTPs, bacterial virulence genes and ARGs in 19 WWTPs covering a majority of latitudinal zones of China were surveyed by using GeoChip 4.2. A total of 1610 genes covering 13 virulence factors and 1903 genes belonging to 11 ARG families were detected respectively. The bacterial virulence genes exhibited significant spatial distribution patterns of a latitudinal biodiversity gradient and a distance-decay relationship across China. Moreover, virulence genes tended to coexist with ARGs as shown by their strongly positive associations. In addition, key environmental factors shaping the overall virulence gene structure were identified. This study profiles the occurrence, composition and distribution of virulence genes and ARGs in current WWTPs in China, and uncovers spatial patterns and important environmental variables shaping their structure, which may provide the basis for further studies of bacterial virulence factors and antibiotic resistance in WWTPs. PMID:27907117
Luo, Lian-Cong; Qin, Bo-Qiang; Zhu, Guang-Wei
2004-01-01
Investigation was made into sediment depth at 723 irregularly scattered measurement points which cover all the regions in Taihu Lake, China. The combination of successive correction scheme and geostatistical method was used to get all the values of recent sediment thickness at the 69 x 69 grids in the whole lake. The results showed that there is the significant difference in sediment depth between the eastern area and the western region, and most of the sediments are located in the western shore-line and northern regimes but just a little in the center and eastern parts. The notable exception is the patch between the center and Xishan Island where the maximum sediment depth is more than 4.0 m. This sediment distribution pattern is more than likely related to the current circulation pattern induced by the prevailing wind-forcing in Taihu Lake. The numerical simulation of hydrodynamics can strong support the conclusion. Sediment effects on water quality was also studied and the results showed that the concentrations of TP, TN and SS in the western part are obviously larger than those in the eastern regime, which suggested that more nutrients can be released from thicker sediment areas.
Mora, Matías Sebastián; Mapelli, Fernando J; López, Aldana; Gómez Fernández, María Jimena; Mirol, Patricia M; Kittlein, Marcelo J
2017-12-01
Studies of genetic differentiation in fragmented environments help us to identify those landscape features that most affect gene flow and dispersal patterns. Particularly, the assessment of the relative significance of intrinsic biological and environmental factors affecting the genetic structure of populations becomes crucial. In this work, we assess the current dispersal patterns and population structure of Ctenomys "chasiquensis", a vulnerable and endemic subterranean rodent distributed on a small area in Central Argentina, using 9 polymorphic microsatellite loci. We use landscape genetics approaches to assess the relationship between genetic connectivity among populations and environmental attributes. Our analyses show that populations of C. "chasiquensis" are moderately to highly structured at a regional level. This pattern is most likely the outcome of substantial gene flow on the more homogeneous sand dune habitat of the Northwest of its distributional range, in conjunction with an important degree of isolation of eastern and southwestern populations, where the optimal habitat is surrounded by a highly fragmented landscape. Landscape genetics analysis suggests that habitat quality and longitude were the environmental factors most strongly associated with genetic differentiation/uniqueness of populations. In conclusion, our results indicate an important genetic structure in this species, even at a small spatial scale, suggesting that contemporary habitat fragmentation increases population differentiation.
THE MOLECULAR PATHOLOGY OF MELANOMA: AN INTEGRATED TAXONOMY OF MELANOCYTIC NEOPLASIA
Bastian, Boris C.
2016-01-01
Melanomas are comprised of multiple biologically distinct categories, which differ in cell of origin, age of onset, clinical and histologic presentation, pattern of metastasis, ethnic distribution, causative role of UV radiation, predisposing germ line alterations, mutational processes, and patterns of somatic mutations. Neoplasms are initiated by gain of function mutations in one of several primary oncogenes, typically leading to benign melanocytic nevi with characteristic histologic features. The progression of nevi is restrained by multiple tumor suppressive mechanisms. Secondary genetic alterations override these barriers and promote intermediate or overtly malignant tumors along distinct progression trajectories. The current knowledge about pathogenesis, clinical, histological and genetic features of primary melanocytic neoplasms is reviewed and integrated into a taxonomic framework. PMID:24460190
Singh, Jyotsana; Sundaresan, Suba; Manoharan, Anand; Shet, Anita
2017-08-16
Streptococcus pneumoniae is a leading cause of childhood diseases that result in significant morbidity and mortality in India. Commercially licensed and available pneumococcal conjugate vaccines (PCVs) include ten (PCV-10) and 13 (PCV-13) pneumococcal serotypes. Vaccines with other serotype combinations are under development. Reviewing and reporting trends and distribution of pneumococcal serotypes causing invasive pneumococcal disease in India will be useful for policy making as PCV is being introduced into India's universal immunization program. We conducted a systematic literature review of hospital based observational studies (both peer reviewed and gray literature published in English) from India available from January 1990 to December 2016. Studies that documented data on the prevalence of serotype distribution and the antimicrobial resistance pattern of S. pneumoniae in children≤5years of age were included. We screened a total number of 116 studies, of which 109 studies were excluded. Final analysis included seven studies. The most frequent pneumococcal serotypes causing invasive disease among children≤5years were 14, 1, 19F, 6B, 5, 6A, 9V and 23F. Serotype 14 and 19A were represented in most of the geographical regions studied in the reviewed articles. Currently available PCV formulations included 67.3-78.4% of all serotypes contributing to IPD among Indian children≤5years. Pneumococcal resistance to trimethoprim/sulfamethoxazole, erythromycin, penicillin, chloramphenicol, levofloxacin and cefotaxime was seen in 81%, 37%, 10%, 8%, 6% and 4% of all pneumococcal isolates respectively, while vancomycin resistance was not reported. The present review demonstrates that up to 78.4% of reported invasive pneumococcal disease in children≤5years in India are currently caused by serotypes that are included in the available licensed PCVs. However, sentinel surveillance must be continued in representative parts of the country to assess the changing trends in distribution of pneumococcal serotypes and their implication for vaccine selection and rollout in India. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hess, Steven C.; Leopold, Christina R.; Kendall, Steven J.
2015-01-01
The Hakalau Forest Unit (HFU) of Big Island National Wildlife Refuge Complex (BINWRC) has intensively managed feral cattle (Bos taurus) and pigs (Sus scrofa) and monitored non-native ungulate presence and distribution during surveys of all managed areas since 1988. We: 1) provide results from recent ungulate surveys at HFU to determine current feral pig abundance and distribution; 2) present results of surveys of ungulate presence and distribution at the Kona Forest Unit (KFU); 3) present results of surveys of weed presence and cover at both refuge units; and 4) present baseline results from long-term vegetation monitoring plots at KFU. Overall pig abundance appears to have decreased at HFU, although not significantly, over the period from 2010 to 2014. Management units 2 and 4 contained the majority of pigs at HFU. Pig density outside of adjacent managed areas has declined significantly from 2010 to 2014 for unknown reasons. Ungulate sign occurred in > 50% of plots at KFU during the November 2012 and September 2013 surveys, but ungulate sign occurred in < 28% of plots during three other surveys. The ability to differentiate sign of ungulate species remains problematic at KFU. Changes in weed cover do not yet demonstrate any strong temporal pattern. Spatial patterns are more pronounced; however, some weed species may not be reliably represented due to observers’ abilities to recognize less common weeds. Nonetheless, the distribution and cover of fireweed (Senecio madagascariensis) at KFU may have increased over the study period. Vegetation surveys documented baseline floristic composition and forest structure at KFU. It is not known if this current amount of emerging cover is sufficient for long-term self-sustaining forest canopy regeneration; however, numerous ‘ōhi‘a seedlings were found in the wet forest and mesic ‘ōhi‘a habitats, indicating an ample viable seed source and robust potential for forest regeneration.
Carr, Christina M.; Hardy, Sarah M.; Brown, Tanya M.; Macdonald, Tara A.; Hebert, Paul D. N.
2011-01-01
Background Although polychaetes are one of the dominant taxa in marine communities, their distributions and taxonomic diversity are poorly understood. Recent studies have shown that many species thought to have broad distributions are actually a complex of allied species. In Canada, 12% of polychaete species are thought to occur in Atlantic, Arctic, and Pacific Oceans, but the extent of gene flow among their populations has not been tested. Methodology/Principal Findings Sequence variation in a segment of the mitochondrial cytochrome c oxidase I (COI) gene was employed to compare morphological versus molecular diversity estimates, to examine gene flow among populations of widespread species, and to explore connectivity patterns among Canada's three oceans. Analysis of 1876 specimens, representing 333 provisional species, revealed 40 times more sequence divergence between than within species (16.5% versus 0.38%). Genetic data suggest that one quarter of previously recognized species actually include two or more divergent lineages, indicating that richness in this region is currently underestimated. Few species with a tri-oceanic distribution showed genetic cohesion. Instead, large genetic breaks occur between Pacific and Atlantic-Arctic lineages, suggesting their long-term separation. High connectivity among Arctic and Atlantic regions and low connectivity with the Pacific further supports the conclusion that Canadian polychaetes are partitioned into two distinct faunas. Conclusions/Significance Results of this study confirm that COI sequences are an effective tool for species identification in polychaetes, and suggest that DNA barcoding will aid the recognition of species overlooked by the current taxonomic system. The consistent geographic structuring within presumed widespread species suggests that historical range fragmentation during the Pleistocene ultimately increased Canadian polychaete diversity and that the coastal British Columbia fauna played a minor role in Arctic recolonization following deglaciation. This study highlights the value of DNA barcoding for providing rapid insights into species distributions and biogeographic patterns in understudied groups. PMID:21829451
NASA Astrophysics Data System (ADS)
Li, Tao; Li, Tuan-Jie
2018-04-01
The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.
NASA Astrophysics Data System (ADS)
Little, S.; Wood, P. J.; Elliott, M.
2017-11-01
Coastal and estuarine systems worldwide are under threat from global climate change, with potential consequences including an increase in salinities and incursion of saltwater into areas currently subject to tidal and non-tidal freshwater regimes. It is commonly assumed that climate-driven increases in estuarine salinities and saline incursion will be directly reflected in an upstream shift in species distributions and patterns of community composition based on salinity tolerance. This study examined the responses of benthos to medium-term salinity changes in two macrotidal river-estuary systems in SE England to test whether these responses may be representative of climate-induced salinity changes over the long-term. The study reinforced the effect of salinity, related to tidal incursion, as the primary environmental driver of benthic species distribution and community composition. Salinity, however, acted within a hierarchy of factors followed by substratum type, with biotic competition and predator-prey relationships superimposed on these. The assumption that increasing salinities will be directly reflected in a shift in species distributions and patterns of community composition upstream over the long-term was shown to be over simplistic and not representative of a complex and highly variable system. Relative Sea Level Rise (RSLR) projections were predicted to increase estuarine salinities and saline incursion in the study estuaries, which together with projected reductions in river flow will have important consequences for estuarine structure and function, particularly in tidal limnetic zones, despite estuarine communities being pre-adapted to cope with fluctuating salinities. The study identified, however, that limnic-derived fauna inhabiting these zones may demonstrate greater tolerance to salinity change than is currently recognised, and may persist where salinity increases are gradual and zones unbounded.
Alwan, Nisreen; Esmaeili, Hamid-Reza; Krupp, Friedhelm
2016-01-01
Capoeta damascina was earlier considered by many authors as one of the most common freshwater fish species found throughout the Levant, Mesopotamia, Turkey, and Iran. However, owing to a high variation in morphological characters among and within its various populations, 17 nominal species were described, several of which were regarded as valid by subsequent revising authors. Capoeta damascina proved to be a complex of closely related species, which had been poorly studied. The current study aims at defining C. damascina and the C. damascina species complex. It investigates phylogenetic relationships among the various members of the C. damascina complex, based on mitochondrial and nuclear DNA sequences. Phylogenetic relationships were projected against paleogeographical events to interpret the geographic distribution of the taxa under consideration in relation to the area's geological history. Samples were obtained from throughout the geographic range and were subjected to genetic analyses, using two molecular markers targeting the mitochondrial cytochrome oxidase I (n = 103) and the two adjacent divergence regions (D1-D2) of the nuclear 28S rRNA genes (n = 65). Six closely related species were recognized within the C. damascina complex, constituting two main lineages: A western lineage represented by C. caelestis, C. damascina, and C. umbla and an eastern lineage represented by C. buhsei, C. coadi, and C. saadii. The results indicate that speciation of these taxa is rather a recent event. Dispersal occurred during the Pleistocene, resulting in present-day distribution patterns. A coherent picture of the phylogenetic relationships and evolutionary history of the C. damascina species complex is drawn, explaining the current patterns of distribution as a result of paleogeographic events and ecological adaptations.
Alwan, Nisreen; Esmaeili, Hamid-Reza; Krupp, Friedhelm
2016-01-01
Capoeta damascina was earlier considered by many authors as one of the most common freshwater fish species found throughout the Levant, Mesopotamia, Turkey, and Iran. However, owing to a high variation in morphological characters among and within its various populations, 17 nominal species were described, several of which were regarded as valid by subsequent revising authors. Capoeta damascina proved to be a complex of closely related species, which had been poorly studied. The current study aims at defining C. damascina and the C. damascina species complex. It investigates phylogenetic relationships among the various members of the C. damascina complex, based on mitochondrial and nuclear DNA sequences. Phylogenetic relationships were projected against paleogeographical events to interpret the geographic distribution of the taxa under consideration in relation to the area’s geological history. Samples were obtained from throughout the geographic range and were subjected to genetic analyses, using two molecular markers targeting the mitochondrial cytochrome oxidase I (n = 103) and the two adjacent divergence regions (D1-D2) of the nuclear 28S rRNA genes (n = 65). Six closely related species were recognized within the C. damascina complex, constituting two main lineages: A western lineage represented by C. caelestis, C. damascina, and C. umbla and an eastern lineage represented by C. buhsei, C. coadi, and C. saadii. The results indicate that speciation of these taxa is rather a recent event. Dispersal occurred during the Pleistocene, resulting in present-day distribution patterns. A coherent picture of the phylogenetic relationships and evolutionary history of the C. damascina species complex is drawn, explaining the current patterns of distribution as a result of paleogeographic events and ecological adaptations. PMID:27309854
R. Flitcroft; K. Burnett; J. Snyder; G. Reeves; L. Ganio
2014-01-01
Patterns of salmon distribution throughout a riverscape may be expected to change over time in response to environmental conditions and population sizes. Changing patterns of use, including identification of consistently occupied locations, are informative for conservation and recovery planning. We explored interannual patterns of distribution by juvenile Coho Salmon...
Cenozoic seismic stratigraphy of the SW Bermuda Rise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mountain, G.S.; Driscoll, N.W.; Miller, K.G.
1985-01-01
The seismic Horizon A-Complex (Tucholke, 1979) readily explains reflector patterns observed along the western third of the Bermuda Rise; farther east, basement is much more rugged and gravity flows shed from local topographic highs complicate the stratigraphy. Distal turbidites on the southwestern Bermuda Rise onlap reflector A* from the west, suggesting early Paleocene mass wasting of the North American margin. Locally erosive bottom currents cut into the middle Eocene section of the SW Bermuda Rise; these northward flowing currents preceded those that formed reflector Au along the North American margin near the Eocene-Oligocene boundary. Southward flowing currents swift enough tomore » erode the sea floor and to form reflector Au did not reach as far east as the SW Bermuda Rise. Instead, the main effect of these Au currents was to pirate sediment into contour-following geostrophic flows along the North American margin and to deprive the deep basin and the Bermuda Rise of sediment transported down-slope. Consequently, post-Eocene sediments away from the margin are fine-grained muds. Deposition of these muds on the SW Bermuda Rise was controlled by northward flowing bottom currents. The modern Hatteras Abyssal Plain developed in the late Neogene as turbidites once again onlapped the SW Bermuda Rise. Today, these deposits extend farthest east in fracture zone valleys and in the swales between sediment waves. Northward flowing currents continue at present to affect sediment distribution patterns along the western edge of the Bermuda Rise.« less
Australian barnacles (Cirripedia: Thoracica), distributions and biogeographical affinities.
Jones, Diana S
2012-09-01
Currently, 279 barnacle species are recognized in Australia waters. The barnacle fauna of tropical Australia exhibits high species diversity (221), with a high incidence of tropical species (87 Indo-west Pacific [IWP], 16 West Pacific and 65 Indo-Malayan), a low species endemicity (8), and 44 cosmopolitan and 1 Australasian species. Conversely, that of temperate Australia shows lower species diversity (129), with a lower incidence of tropical species (26 IWP, 10 West Pacific and 25 Indo-Malayan), higher species endemicity (23), 37 cosmopolitan, 6 Australasian species, and 3 Australasian/Antarctic species. Distributions corroborate the general patterns demonstrated by the shallow-water biota of northern tropical and southern temperate Australian biogeographic provinces. Tropical and temperate provinces grade into each other in a broad overlap zone along both the western and eastern Australian coasts. This overlap zone is essentially a transitional region, with the gradual replacement of a tropical barnacle fauna in the north by a predominantly temperate barnacle fauna in the south. Both western and eastern Australian coasts are bounded by major poleward-flowing warm currents that have considerable influence on the marine flora and fauna, distributing tropical species of many taxa much farther south than could be predicted by latitude. Currently, 16 barnacle species introduced into Australian waters are identified, although this number may increase in the future due to new port developments and increased shipping arrivals.
How to interpret Methylation Sensitive Amplified Polymorphism (MSAP) profiles?
2014-01-01
Background DNA methylation plays a key role in development, contributes to genome stability, and may also respond to external factors supporting adaptation and evolution. To connect different types of stimuli with particular biological processes, identifying genome regions with altered 5-methylcytosine distribution at a genome-wide scale is important. Many researchers are using the simple, reliable, and relatively inexpensive Methylation Sensitive Amplified Polymorphism (MSAP) method that is particularly useful in studies of epigenetic variation. However, electrophoretic patterns produced by the method are rather difficult to interpret, particularly when MspI and HpaII isoschizomers are used because these enzymes are methylation-sensitive, and any C within the CCGG recognition motif can be methylated in plant DNA. Results Here, we evaluate MSAP patterns with respect to current knowledge of the enzyme activities and the level and distribution of 5-methylcytosine in plant and vertebrate genomes. We discuss potential caveats related to complex MSAP patterns and provide clues regarding how to interpret them. We further show that addition of combined HpaII + MspI digestion would assist in the interpretation of the most controversial MSAP pattern represented by the signal in the HpaII but not in the MspI profile. Conclusions We recommend modification of the MSAP protocol that definitely discerns between putative hemimethylated mCCGG and internal CmCGG sites. We believe that our view and the simple improvement will assist in correct MSAP data interpretation. PMID:24393618
Elevational patterns of genetic variation in the cosmopolitan moss Bryum argenteum (Bryaceae).
Pisa, Sergio; Werner, Olaf; Vanderpoorten, Alain; Magdy, Mahmoud; Ros, Rosa M
2013-10-01
The Baas Becking tenet posits that 'everything is everywhere, but the environment selects' to explain cosmopolitan distributions in highly vagile taxa. Bryophyte species show wider distributions than vascular plants and include examples of truly cosmopolitan ranges, which have been interpreted as a result of high dispersal capacities and ecological plasticity. In the current study, we documented patterns of genetic structure and diversity in the cosmopolitan moss Bryum argenteum along an elevational gradient to determine if genetic diversity and structure is homogenized by intense migrations in the lack of ecological differentiation. • 60 specimens were collected in the Sierra Nevada Mountains (Spain) between 100 and 2870 m and sequenced for ITS and rps4. Comparative analyses, genetic diversity estimators, and Mantel's tests were employed to determine the relationship between genetic variation, elevation, and geographic distance and to look for signs of demographic shifts. • Genetic diversity peaked above 1900 m and no signs of demographic shifts were detected at any elevation. There was a strong phylogenetic component in elevational variation. Genetic variation was significantly correlated with elevation, but not with geographic distance. • The results point to the long-term persistence of Bryum argenteum in a range that was glaciated during the Late Pleistocene. Evidence for an environmentally driven pattern of genetic differentiation suggests adaptive divergence. This supports the Baas Becking tenet and indicates that ecological specialization might play a key role in explaining patterns of genetic structure in cosmopolitan mosses.
Littleton, Helen X; Daigger, Glen T; Strom, Peter F
2007-06-01
A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.
Wood, Dustin A; Fisher, Robert N; Reeder, Tod W
2008-02-01
Mitochondrial DNA (mtDNA) sequence variation was examined in 131 individuals of the Rosy Boa (Lichanura trivirgata) from across the species range in southwestern North America. Bayesian inference and nested clade phylogeographic analyses (NCPA) were used to estimate relationships and infer evolutionary processes. These patterns were evaluated as they relate to previously hypothesized vicariant events and new insights are provided into the biogeographic and evolutionary processes important in Baja California and surrounding North American deserts. Three major lineages (Lineages A, B, and C) are revealed with very little overlap. Lineage A and B are predominately separated along the Colorado River and are found primarily within California and Arizona (respectively), while Lineage C consists of disjunct groups distributed along the Baja California peninsula as well as south-central Arizona, southward along the coastal regions of Sonora, Mexico. Estimated divergence time points (using a Bayesian relaxed molecular clock) and geographic congruence with postulated vicariant events suggest early extensions of the Gulf of California and subsequent development of the Colorado River during the Late Miocene-Pliocene led to the formation of these mtDNA lineages. Our results also suggest that vicariance hypotheses alone do not fully explain patterns of genetic variation. Therefore, we highlight the importance of dispersal to explain these patterns and current distribution of populations. We also compare the mtDNA lineages with those based on morphological variation and evaluate their implications for taxonomy.
Wood, D.A.; Fisher, R.N.; Reeder, T.W.
2008-01-01
Mitochondrial DNA (mtDNA) sequence variation was examined in 131 individuals of the Rosy Boa (Lichanura trivirgata) from across the species range in southwestern North America. Bayesian inference and nested clade phylogeographic analyses (NCPA) were used to estimate relationships and infer evolutionary processes. These patterns were evaluated as they relate to previously hypothesized vicariant events and new insights are provided into the biogeographic and evolutionary processes important in Baja California and surrounding North American deserts. Three major lineages (Lineages A, B, and C) are revealed with very little overlap. Lineage A and B are predominately separated along the Colorado River and are found primarily within California and Arizona (respectively), while Lineage C consists of disjunct groups distributed along the Baja California peninsula as well as south-central Arizona, southward along the coastal regions of Sonora, Mexico. Estimated divergence time points (using a Bayesian relaxed molecular clock) and geographic congruence with postulated vicariant events suggest early extensions of the Gulf of California and subsequent development of the Colorado River during the Late Miocene-Pliocene led to the formation of these mtDNA lineages. Our results also suggest that vicariance hypotheses alone do not fully explain patterns of genetic variation. Therefore, we highlight the importance of dispersal to explain these patterns and current distribution of populations. We also compare the mtDNA lineages with those based on morphological variation and evaluate their implications for taxonomy. ?? 2007 Elsevier Inc. All rights reserved.
Barreto, Cintia F; Vilela, Claudia G; Baptista-Neto, José A; Barth, Ortrud M
2012-09-01
Aiming to investigate the deposition of pollen grains and spores in Guanabara Bay, Rio de Janeiro State, 61 surface sediment samples were analyzed. The results showed that the current deposition of palynomorphs in surface sediments of Guanabara Bay represents the regional vegetation of this hydrographic basin. The differential distribution of palynomorphs followed a pattern influenced by bathymetry, tidal currents speed, discharge of numerous rivers, and by human activity. The dominance of representatives of Field Vegetation reflects the changes of the original flora caused by intense human activities in the region. The continued presence and richness of pollen types of rain forest in the samples indicates that their source area might be the vegetation from riparian border of rivers in the western sector of the Bay, where the mangrove vegetation is being preserved. The large amount of damaged palynomorphs may be related to abrasion that occurs during river transport, indicating removal or reworking from their areas of origin.
NASA Technical Reports Server (NTRS)
Pandey, P. C.
1982-01-01
Eight subsets using two to five frequencies of the SEASAT scanning multichannel microwave radiometer are examined to determine their potential in the retrieval of atmospheric water vapor content. Analysis indicates that the information concerning the 18 and 21 GHz channels are optimum for water vapor retrieval. A comparison with radiosonde observations gave an rms accuracy of approximately 0.40 g sq cm. The rms accuracy of precipitable water using different subsets was within 10 percent. Global maps of precipitable water over oceans using two and five channel retrieval (average of two and five channel retrieval) are given. Study of these maps reveals the possibility of global moisture distribution associated with oceanic currents and large scale general circulation in the atmosphere. A stable feature of the large scale circulation is noticed. The precipitable water is maximum over the Bay of Bengal and in the North Pacific over the Kuroshio current and shows a general latitudinal pattern.
Distribution of Leptospira serogroups in cattle herds and dogs in France.
Ayral, Florence C; Bicout, Dominique J; Pereira, Helena; Artois, Marc; Kodjo, Angeli
2014-10-01
A retrospective study was conducted to identify and describe the distribution pattern of Leptospira serogroups in domestic animals in France. The population consisted of cattle herds and dogs with clinically suspected leptospirosis that were tested at the "Laboratoire des Leptospires" between 2008 and 2011. The laboratory database was queried for records of cattle and dogs in which seroreactivity in Leptospira microagglutination tests was consistent with a recent or current infection, excluding vaccine serogroups in dogs. A total of 394 cattle herds and 232 dogs were diagnosed with clinical leptospirosis, and the results suggested infection by the Leptospira serogroup Australis in 43% and 63%, respectively; by the Leptospira serogroup Grippotyphosa in 17% and 9%, respectively; and by the Leptospira serogroup Sejroe in 33% and 6%, respectively. This inventory of infecting Leptospira serogroups revealed that current vaccines in France are not fully capable of preventing the clinical form of the disease. © The American Society of Tropical Medicine and Hygiene.
NASA Astrophysics Data System (ADS)
Müller, Benjamin; Bernhardt, Matthias; Jackisch, Conrad; Schulz, Karsten
2016-09-01
For understanding water and solute transport processes, knowledge about the respective hydraulic properties is necessary. Commonly, hydraulic parameters are estimated via pedo-transfer functions using soil texture data to avoid cost-intensive measurements of hydraulic parameters in the laboratory. Therefore, current soil texture information is only available at a coarse spatial resolution of 250 to 1000 m. Here, a method is presented to derive high-resolution (15 m) spatial topsoil texture patterns for the meso-scale Attert catchment (Luxembourg, 288 km2) from 28 images of ASTER (advanced spaceborne thermal emission and reflection radiometer) thermal remote sensing. A principle component analysis of the images reveals the most dominant thermal patterns (principle components, PCs) that are related to 212 fractional soil texture samples. Within a multiple linear regression framework, distributed soil texture information is estimated and related uncertainties are assessed. An overall root mean squared error (RMSE) of 12.7 percentage points (pp) lies well within and even below the range of recent studies on soil texture estimation, while requiring sparser sample setups and a less diverse set of basic spatial input. This approach will improve the generation of spatially distributed topsoil maps, particularly for hydrologic modeling purposes, and will expand the usage of thermal remote sensing products.
Polanski, A; Kimmel, M; Chakraborty, R
1998-05-12
Distribution of pairwise differences of nucleotides from data on a sample of DNA sequences from a given segment of the genome has been used in the past to draw inferences about the past history of population size changes. However, all earlier methods assume a given model of population size changes (such as sudden expansion), parameters of which (e.g., time and amplitude of expansion) are fitted to the observed distributions of nucleotide differences among pairwise comparisons of all DNA sequences in the sample. Our theory indicates that for any time-dependent population size, N(tau) (in which time tau is counted backward from present), a time-dependent coalescence process yields the distribution, p(tau), of the time of coalescence between two DNA sequences randomly drawn from the population. Prediction of p(tau) and N(tau) requires the use of a reverse Laplace transform known to be unstable. Nevertheless, simulated data obtained from three models of monotone population change (stepwise, exponential, and logistic) indicate that the pattern of a past population size change leaves its signature on the pattern of DNA polymorphism. Application of the theory to the published mtDNA sequences indicates that the current mtDNA sequence variation is not inconsistent with a logistic growth of the human population.
Drivers of Cape Verde archipelagic endemism in keyhole limpets
Cunha, Regina L.; Assis, Jorge M.; Madeira, Celine; Seabra, Rui; Lima, Fernando P.; Lopes, Evandro P.; Williams, Suzanne T.; Castilho, Rita
2017-01-01
Oceanic archipelagos are the ideal setting for investigating processes that shape species assemblages. Focusing on keyhole limpets, genera Fissurella and Diodora from Cape Verde Islands, we used an integrative approach combining molecular phylogenetics with ocean transport simulations to infer species distribution patterns and analyse connectivity. Dispersal simulations, using pelagic larval duration and ocean currents as proxies, showed a reduced level of connectivity despite short distances between some of the islands. It is suggested that dispersal and persistence driven by patterns of oceanic circulation favouring self-recruitment played a primary role in explaining contemporary species distributions. Mitochondrial and nuclear data revealed the existence of eight Cape Verde endemic lineages, seven within Fissurella, distributed across the archipelago, and one within Diodora restricted to Boavista. The estimated origins for endemic Fissurella and Diodora were 10.2 and 6.7 MY, respectively. Between 9.5 and 4.5 MY, an intense period of volcanism in Boavista might have affected Diodora, preventing its diversification. Having originated earlier, Fissurella might have had more opportunities to disperse to other islands and speciate before those events. Bayesian analyses showed increased diversification rates in Fissurella possibly promoted by low sea levels during Plio-Pleistocene, which further explain differences in species richness between both genera. PMID:28150720
Hou, Yan; Lou, Anru
2014-01-01
The phylogeographical patterns of Rhodiola dumulosa, an alpine plant species restrictedly growing in the crevices of rock piles, were investigated based on 4 fragments of the chloroplast genome. To cover the full distribution of R. dumulosa in China, 19 populations from 3 major disjunct distribution areas (northern, central, and northwestern China) were sampled. A total of 5881bp (after alignment) of chloroplast DNA (cpDNA) from 100 individuals were sequenced. The combined cpDNA data set yielded 36 haplotypes. The total genetic diversity of R. dumulosa was remarkably high (H(T) = 0.981). The interpopulation genetic differentiation was significantly large (F(ST) = 0.8537, P < 0.001), possibly due to the long-term isolation of the natural populations. N(ST) was significantly larger than G(ST) (P < 0.001), indicating the presence of phylogeographical structure among the R. dumulosa populations. We propose 2 migration steps to explain the current distribution of R. dumulosa in China. First, this species migrated from refugia in the Qinghai-Tibetan Plateau to northern areas via the intervening highlands when temperatures increased; second, the highland populations migrated toward the mountaintops when temperatures increased further because R. dumulosa is adapted to cold environments. During the second migration step, the common ancestral haplotypes may have been gradually lost.
Tournebize, Rémi; Manel, Stéphanie; Vigouroux, Yves; Munoz, François; de Kochko, Alexandre
2017-01-01
Past climate fluctuations shaped the population dynamics of organisms in space and time, and have impacted their present intra-specific genetic structure. Demo-genetic modelling allows inferring the way past demographic and migration dynamics have determined this structure. Amborella trichopoda is an emblematic relict plant endemic to New Caledonia, widely distributed in the understory of non-ultramafic rainforests. We assessed the influence of the last glacial climates on the demographic history and the paleo-distribution of 12 Amborella populations covering the whole current distribution. We performed coalescent genetic modelling of these dynamics, based on both whole-genome resequencing and microsatellite genotyping data. We found that the two main genetic groups of Amborella were shaped by the divergence of two ancestral populations during the last glacial maximum. From 12,800 years BP, the South ancestral population has expanded 6.3-fold while the size of the North population has remained stable. Recent asymmetric gene flow between the groups further contributed to the phylogeographical pattern. Spatially explicit coalescent modelling allowed us to estimate the location of ancestral populations with good accuracy (< 22 km) and provided indications regarding the mid-elevation pathways that facilitated post-glacial expansion. PMID:28820899
Khormi, Hassan M; Kumar, Lalit
2016-11-21
We used the Model for Interdisciplinary Research on Climate-H climate model with the A2 Special Report on Emissions Scenarios for the years 2050 and 2100 and CLIMEX software for projections to illustrate the potential impact of climate change on the spatial distributions of malaria in China, India, Indochina, Indonesia, and The Philippines based on climate variables such as temperature, moisture, heat, cold and dryness. The model was calibrated using data from several knowledge domains, including geographical distribution records. The areas in which malaria has currently been detected are consistent with those showing high values of the ecoclimatic index in the CLIMEX model. The match between prediction and reality was found to be high. More than 90% of the observed malaria distribution points were associated with the currently known suitable climate conditions. Climate suitability for malaria is projected to decrease in India, southern Myanmar, southern Thailand, eastern Borneo, and the region bordering Cambodia, Malaysia and the Indonesian islands, while it is expected to increase in southern and south-eastern China and Taiwan. The climatic models for Anopheles mosquitoes presented here should be useful for malaria control, monitoring, and management, particularly considering these future climate scenarios.
Guo, Hao; Zhang, Xiong; Chen, Hongjun; Zhang, Peiyuan; Liu, Honggang; Chang, Hudong; Zhao, Wei; Liao, Qinghua; Cui, Yiping
2013-09-09
GaN-based light-emitting diodes (LEDs) on patterned sapphire substrate (PSS) with patterned composite SiO(2)/Al(2)O(3) passivation layers and TiO(2)/Al(2)O(3) distributed Bragg reflector (DBR) backside reflector have been proposed and fabricated. Highly passivated Al(2)O(3) layer deposited on indium tin oxide (ITO) layer with excellent uniformity and quality has been achieved with atomic layer deposition (ALD) technology. With a 60 mA current injection, an enhancement of 21.6%, 59.7%, and 63.4% in the light output power (LOP) at 460 nm wavelength was realized for the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers, the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layers and Ag mirror + 3-pair TiO(2)/SiO(2) DBR backside reflector, and the LED with the patterned composite SiO(2)/Al(2)O(3) passivation layer and Ag mirror + 3-pair ALD-grown TiO(2)/Al(2)O(3) DBR backside reflector as compared with the conventional LED only with a single SiO(2) passivation layer, respectively.
NASA Technical Reports Server (NTRS)
Maruyasu, T.; Shoji, D. (Principal Investigator)
1976-01-01
The author has identified the following significant results. From ocean current analysis, it is concluded that the vortex was formed when the stream axis of the Kuroshio was gradually approaching Shiono Misaki. The sea surface temperatures in the area were found to be nearly homogenious having the values of 27.3 to 27.8C. Transparency of the water was better on the east side of Shiono Misaki than on the west side, the values being 20 to 27 m against 13m. Surface salinity distribution had a considerably high value of 33.7% on the east side, decreasing toward the west to become 32%.
The Effect of Fatigue Cracks on Fastener Flexibility, Load Distribution and Fatigue Crack Growth
2012-05-01
fastener will transfer within a given fastener pattern. iv iv However, current methods do not account for the change in flexibility at a fastener...affects the growth of the crack. Thus, as the effect of the crack starts to impact the load transfer of the joint there is a need to account for...not account for spectrum loading but typically were cycled from 1g to limit or maximum flight load and then correlated to measured usage using
Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.
Lu, Xiqun; Shi, Jinhui; Liu, Ran; Guan, Chunying
2012-07-30
We propose, design and experimentally demonstrate highly-dispersive electromagnetically induced transparency (EIT) in planar symmetric metamaterials actively switched and controlled by angles of incidence. Full-wave simulation and measurement results show EIT phenomena, trapped-mode excitations and the associated local field enhancement of two symmetric metamaterials consisting of symmetrically split rings (SSR) and a fishscale (FS) metamaterial pattern, respectively, strongly depend on angles of incidence. The FS metamaterial shows much broader spectral splitting than the SSR metamaterial due to the surface current distribution variation.
Luckhaupt, Sara E.; Dahlhamer, James M.; Ward, Brian W.; Sweeney, Marie H.; Sestito, John P.; Calvert, Geoffrey M.
2015-01-01
Background Patterns of prevalence and work-relatedness of carpal tunnel syndrome (CTS) among workers offer clues about risk factors and targets for prevention. Methods Data from an occupational health supplement to the 2010 National Health Interview Survey were used to estimate the prevalence of self-reported clinician-diagnosed CTS overall and by demographic characteristics. The proportion of these cases self-reported to have been attributed to work by clinicians was also examined overall and by demographic characteristics. In addition, the distribution of industry and occupation (I&O) categories to which work-related cases of CTS were attributed was compared to the distribution of I&O categories of employment among current/recent workers. Results Data were available for 27,157 adults, including 17,524 current/recent workers. The overall lifetime prevalence of clinician-diagnosed CTS among current/recent workers was 6.7%. The 12-month prevalence was 3.1%, representing approximately 4.8 million workers with current CTS; 67.1% of these cases were attributed to work by clinicians, with overrepresentation of certain I&O categories. Conclusions CTS affected almost 5 million U.S. workers in 2010, with prevalence varying by demographic characteristics and I&O. PMID:22495886
Spaide, Richard F
2016-10-01
To investigate flow characteristics of the choriocapillaris using optical coherence tomography angiography. Retrospective observational case series. Visualization of flow in individual choriocapillary vessels is below the current resolution limit of optical coherence tomography angiography instruments, but areas of absent flow signal, called flow voids, are resolvable. The central macula was imaged with the Optovue RTVue XR Avanti using a 10-μm slab thickness in 104 eyes of 80 patients who ranged in age from 24 to 99 years of age. Automatic local thresholding of the resultant raw data with the Phansalkar method was analyzed with generalized estimating equations. The distribution of flow voids vs size of the voids was highly skewed. The data showed a linear log-log plot and goodness-of-fit methods showed the data followed a power law distribution over the relevant range. A slope intercept relationship was also evaluated for the log transform and significant predictors for variables included age, hypertension, pseudodrusen, and the presence of late age-related macular degeneration (AMD) in the fellow eye. The pattern of flow voids forms a scale invariant pattern in the choriocapillaris starting at a size much smaller than a choroidal lobule. Age and hypertension affect the choriocapillaris, a flat layer of capillaries that may serve as an observable surrogate for the neural or systemic microvasculature. Significant alterations detectable in the flow pattern in eyes with pseudodrusen and in eyes with late AMD in the fellow eye offer diagnostic possibilities and impact theories of disease pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.
Pilots' Visual Scan Patterns and Attention Distribution During the Pursuit of a Dynamic Target.
Yu, Chung-San; Wang, Eric Min-Yang; Li, Wen-Chin; Braithwaite, Graham; Greaves, Matthew
2016-01-01
The current research was to investigate pilots' visual scan patterns in order to assess attention distribution during air-to-air maneuvers. A total of 30 qualified mission-ready fighter pilots participated in this research. Eye movement data were collected by a portable head-mounted eye-tracking device, combined with a jet fighter simulator. To complete the task, pilots had to search for, pursue, and lock on a moving target while performing air-to-air tasks. There were significant differences in pilots' saccade duration (ms) in three operating phases, including searching (M = 241, SD = 332), pursuing (M = 311, SD = 392), and lock-on (M = 191, SD = 226). Also, there were significant differences in pilots' pupil sizes (pixel(2)), of which the lock-on phase was the largest (M = 27,237, SD = 6457), followed by pursuit (M = 26,232, SD = 6070), then searching (M = 25,858, SD = 6137). Furthermore, there were significant differences between expert and novice pilots in the percentage of fixation on the head-up display (HUD), time spent looking outside the cockpit, and the performance of situational awareness (SA). Experienced pilots have better SA performance and paid more attention to the HUD, but focused less outside the cockpit when compared with novice pilots. Furthermore, pilots with better SA performance exhibited a smaller pupil size during the operational phase of lock on while pursuing a dynamic target. Understanding pilots' visual scan patterns and attention distribution are beneficial to the design of interface displays in the cockpit and in developing human factors training syllabi to improve the safety of flight operations.
Timing and patterns of diversification in the Neotropical bat genus Pteronotus (Mormoopidae).
Pavan, Ana C; Marroig, Gabriel
2017-03-01
We investigate the biogeographic processes related to the origin and current patterns of distribution of the extant species of the genus Pteronotus. This clade of insectivorous bats is widely distributed in the Neotropical Region and has recently gone through a taxonomic update which increased more than twice its diversity. Using six molecular markers of 15 Pteronotus lineages ranging from Mexico to Central Brazil, we reconstruct a time-calibrated tree and infer molecular evolutionary rates for this bat genus. In addition, estimates of range evolution across phylogeny were obtained through statistical model testing among six different biogeographic models. The origin of the genus Pteronotus occurred approximately 16million years ago (Ma), with initial cladogenesis events being evenly distributed across the phylogeny. Divergence between most closely related species is recent, falling in the Pleistocene period less than 2.6Ma. Mainland lineages present congruent patterns of north versus south continent splitting while insular clades differ in their time of arrival in the Caribbean Islands. Temporal and geographic range estimates for early nodes of Pteronotus phylogeny suggest a central role of Neogene tectonic reorganizations of Central America in the group diversification process. Also, South American colonization by Pteronotus occurred early in the genus history. Founder-event speciation was an important mode of lineage splitting in Pteronotus, with two independent dispersal jumps having occurred to the Greater Antilles. Finally, Pleistocenic sea-level variation and climatic oscillations are possibly associated with divergence between sister-species and recent ages of MRCA for Pteronotus species. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Motanated, Kannipa; Tice, Michael M.
2016-05-01
Hydraulic transformations in turbidity currents are commonly driven by or reflected in changes in suspended sediment concentrations, but changes preceding transformations can be difficult to diagnose because they do not produce qualitative changes in resultant deposits. This study integrates particle settling experiments and in situ detection of hydraulically contrasting particles in turbidites in order to infer changes in suspended sediment concentration during deposition of massive (Bouma Ta) sandstone divisions. Because grains of contrasting density are differentially sorted during hindered settling from dense suspensions, relative grading patterns can be used to estimate suspended sediment concentrations and interpret hydraulic evolution of the depositing turbidity currents. Differential settling of dense particles (aluminum ballotini) through suspensions of hydraulically coarser light particles (silica ballotini) with volumetric concentration, Cv, were studied in a thin vessel by using particle-image-velocimetry. At high Cv, aluminum particles were less retarded than co-sedimenting silica particles, and effectively settled as hydraulically coarser grains. This was because particles were entrained into clusters dominated by the settling behavior of the silica particles. Terminal settling velocities of both particles converged at Cv ≥ 25%, and particle sorting was diminished. The results of settling experiments were applied to understand settling of analogous feldspar and zircon grains in natural turbidity flows. Distributions of light and heavy mineral grains in massive sandstones, Bouma Ta divisions, of turbidites from the Middle Permian Brushy Canyon Formation were observed in situ by X-ray fluorescence microscopy (μXRF). Hydraulic sorting of these grains resulted in characteristic patterns of zirconium abundance that decreased from base to top within Ta divisions. These profiles resulted from upward fining of zircon grains with respect to co-occurring feldspar grains. Although calculated settling velocity distributions for zircon grains in structureless sandstones were slower than those for feldspar grains at infinite dilution, calculated settling velocity distributions for zircon and feldspar grains in overlying black siltstone layers were identical. This evidence suggests that these sandstone divisions were deposited from hyperconcentrated suspensions where particle segregation was diminished and hydraulically fine grains were entrained with hydraulically coarse particles. Hydraulic fining of zircon grains during deposition implies that the suspended sediment concentration at the bases of turbidity currents increased even as the overall current evolved toward lower density as reflected by cessation of Ta deposition and by hydraulic equivalence of zircon and feldspar grains in overlying low-density turbiditic siltstones. This evolution likely resulted from volumetric collapse of the turbidity currents.
Remote-sensing based approach to forecast habitat quality under climate change scenarios.
Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.
Remote-sensing based approach to forecast habitat quality under climate change scenarios
Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier
2017-01-01
As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501
Robust sky light polarization detection with an S-wave plate in a light field camera.
Zhang, Wenjing; Zhang, Xuanzhe; Cao, Yu; Liu, Haibo; Liu, Zejin
2016-05-01
The sky light polarization navigator has many advantages, such as low cost, no decrease in accuracy with continuous operation, etc. However, current celestial polarization measurement methods often suffer from low performance when the sky is covered by clouds, which reduce the accuracy of navigation. In this paper we introduce a new method and structure based on a handheld light field camera and a radial polarizer, composed of an S-wave plate and a linear polarizer, to detect the sky light polarization pattern across a wide field of view in a single snapshot. Each micro-subimage has a special intensity distribution. After extracting the texture feature of these subimages, stable distribution information of the angle of polarization under a cloudy sky can be obtained. Our experimental results match well with the predicted properties of the theory. Because the polarization pattern is obtained through image processing, rather than traditional methods based on mathematical computation, this method is less sensitive to errors of pixel gray value and thus has better anti-interference performance.
NASA Astrophysics Data System (ADS)
Gaitan, S.; ten Veldhuis, J. A. E.
2015-06-01
Cities worldwide are challenged by increasing urban flood risks. Precise and realistic measures are required to reduce flooding impacts. However, currently implemented sewer and topographic models do not provide realistic predictions of local flooding occurrence during heavy rain events. Assessing other factors such as spatially distributed rainfall, socioeconomic characteristics, and social sensing, may help to explain probability and impacts of urban flooding. Several spatial datasets have been recently made available in the Netherlands, including rainfall-related incident reports made by citizens, spatially distributed rain depths, semidistributed socioeconomic information, and buildings age. Inspecting the potential of this data to explain the occurrence of rainfall related incidents has not been done yet. Multivariate analysis tools for describing communities and environmental patterns have been previously developed and used in the field of study of ecology. The objective of this paper is to outline opportunities for these tools to explore urban flooding risks patterns in the mentioned datasets. To that end, a cluster analysis is performed. Results indicate that incidence of rainfall-related impacts is higher in areas characterized by older infrastructure and higher population density.
Reconnaissance of marine resources
NASA Technical Reports Server (NTRS)
Szekielda, K.-H.; Suszkowski, D. J.; Tabor, P. S.
1975-01-01
A test area along the NW Coast of Africa was used during the Skylab mission to study the distribution of temperature and plankton. The S190B Earth Terrain Camera with a spectral film response of 0.4-0.7 micrometers allowed qualitative estimates of the distribution patterns of suspended material. Differentiation between inorganic particles and phytoplankton could be made by comparing the green band and the red band of the S190A Camera System. The pictorial display of data obtained from the S191 scanning radiometer in the 10-11 micrometer atmospheric window allowed a detailed interpretation of the temperature distribution in the area where cold upwelled water reaches the euphotic zone. The comparison between infrared data and the imageries taken simultaneously indicated the origin of the cold water as well as the pathway within the Canary current. A fish survey carried out almost simultaneously in the area, by echosounding, showed high correlation between the position of good fishing grounds and the distribution of plankton as detected by remote sensing detectors on Skylab.
Zhang, Pan; Hu, Rijun; Zhu, Longhai; Wang, Peng; Yin, Dongxiao; Zhang, Lianjie
2017-06-15
Heavy metals (Cu, Pb, Cr, Cd and As) contents in surface sediments from western Laizhou Bay were analysed to evaluate the spatial distribution pattern and their contamination level. As was mainly concentrated in the coastal area near the estuaries and the other metals were mainly concentrated in the central part of the study area. The heavy metals were present at unpolluted levels overall evaluated by the sediment quality guidelines and geoaccumulation index. Principal component analysis suggest that Cu, Pb and Cd were mainly sourced from natural processes and As was mainly derived from anthropogenic inputs. Meanwhile, Cr originated from both natural processes and anthropogenic contributions. Tidal currents, sediments and human activities were important factors affecting the distribution of heavy metals. The heavy metal environment was divided into four subareas to provide a reference for understanding the distribution and pollution of heavy metals in the estuary-bay system. Copyright © 2017 Elsevier Ltd. All rights reserved.
A robust close-range photogrammetric target extraction algorithm for size and type variant targets
NASA Astrophysics Data System (ADS)
Nyarko, Kofi; Thomas, Clayton; Torres, Gilbert
2016-05-01
The Photo-G program conducted by Naval Air Systems Command at the Atlantic Test Range in Patuxent River, Maryland, uses photogrammetric analysis of large amounts of real-world imagery to characterize the motion of objects in a 3-D scene. Current approaches involve several independent processes including target acquisition, target identification, 2-D tracking of image features, and 3-D kinematic state estimation. Each process has its own inherent complications and corresponding degrees of both human intervention and computational complexity. One approach being explored for automated target acquisition relies on exploiting the pixel intensity distributions of photogrammetric targets, which tend to be patterns with bimodal intensity distributions. The bimodal distribution partitioning algorithm utilizes this distribution to automatically deconstruct a video frame into regions of interest (ROI) that are merged and expanded to target boundaries, from which ROI centroids are extracted to mark target acquisition points. This process has proved to be scale, position and orientation invariant, as well as fairly insensitive to global uniform intensity disparities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamana, Manohar; Mather, Barry A
A library of load variability classes is created to produce scalable synthetic data sets using historical high-speed raw data. These data are collected from distribution monitoring units connected at the secondary side of a distribution transformer. Because of the irregular patterns and large volume of historical high-speed data sets, the utilization of current load characterization and modeling techniques are challenging. Multi-resolution analysis techniques are applied to extract the necessary components and eliminate the unnecessary components from the historical high-speed raw data to create the library of classes, which are then utilized to create new synthetic load data sets. A validationmore » is performed to ensure that the synthesized data sets contain the same variability characteristics as the training data sets. The synthesized data sets are intended to be utilized in quasi-static time-series studies for distribution system planning studies on a granular scale, such as detailed PV interconnection studies.« less
Local and Widely Distributed EEG Activity in Schizophrenia With Prevalence of Negative Symptoms.
Grin-Yatsenko, Vera A; Ponomarev, Valery A; Pronina, Marina V; Poliakov, Yury I; Plotnikova, Irina V; Kropotov, Juri D
2017-09-01
We evaluated EEG frequency abnormalities in resting state (eyes closed and eyes open) EEG in a group of chronic schizophrenia patients as compared with healthy subjects. The study included 3 methods of analysis of deviation of EEG characteristics: genuine EEG, current source density (CSD), and group independent component (gIC). All 3 methods have shown that the EEG in schizophrenia patients is characterized by enhanced low-frequency (delta and theta) and high-frequency (beta) activity in comparison with the control group. However, the spatial pattern of differences was dependent on the type of method used. Comparative analysis has shown that increased EEG power in schizophrenia patients apparently concerns both widely spatially distributed components and local components of signal. Furthermore, the observed differences in the delta and theta range can be described mainly by the local components, and those in the beta range mostly by spatially widely distributed ones. The possible nature of the widely distributed activity is discussed.
1/f oscillations in a model of moth populations oriented by diffusive pheromones
NASA Astrophysics Data System (ADS)
Barbosa, L. A.; Martins, M. L.; Lima, E. R.
2005-01-01
An individual-based model for the population dynamics of Spodoptera frugiperda in a homogeneous environment is proposed. The model involves moths feeding plants, mating through an anemotaxis search (i.e., oriented by odor dispersed in a current of air), and dying due to resource competition or at a maximum age. As observed in the laboratory, the females release pheromones at exponentially distributed time intervals, and it is assumed that the ranges of the male flights follow a power-law distribution. Computer simulations of the model reveal the central role of anemotaxis search for the persistence of moth population. Such stationary populations are exponentially distributed in age, exhibit random temporal fluctuations with 1/f spectrum, and self-organize in disordered spatial patterns with long-range correlations. In addition, the model results demonstrate that pest control through pheromone mass trapping is effective only if the amounts of pheromone released by the traps decay much slower than the exponential distribution for calling female.
Opell, Brent D.; Haddad, Charles R.; Raven, Robert J.; Soto, Eduardo M.; Ramírez, Martín J.
2016-01-01
Closely related organisms with transoceanic distributions have long been the focus of historical biogeography, prompting the question of whether long-distance dispersal, or tectonic-driven vicariance shaped their current distribution. Regarding the Southern Hemisphere continents, this question deals with the break-up of the Gondwanan landmass, which has also affected global wind and oceanic current patterns since the Miocene. With the advent of phylogenetic node age estimation and parametric bioinformatic advances, researchers have been able to disentangle historical evolutionary processes of taxa with greater accuracy. In this study, we used the coastal spider genus Amaurobioides to investigate the historical biogeographical and evolutionary processes that shaped the modern-day distribution of species of this exceptional genus of spiders. As the only genus of the subfamily Amaurobioidinae found on three Southern Hemisphere continents, its distribution is well-suited to study in the context of Gondwanic vicariance versus long-distance, transoceanic dispersal. Ancestral species of the genus Amaurobioides appear to have undergone several long-distance dispersal events followed by successful establishments and speciation, starting from the mid-Miocene through to the Pleistocene. The most recent common ancestor of all present-day Amaurobioides species is estimated to have originated in Africa after arriving from South America during the Miocene. From Africa the subsequent dispersals are likely to have taken place predominantly in an eastward direction. The long-distance dispersal events by Amaurobioides mostly involved transoceanic crossings, which we propose occurred by rafting, aided by the Antarctic Circumpolar Current and the West Wind Drift. PMID:27732621
Exploring the ring current of carbon nanotubes by first-principles calculations.
Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian; Bao, Xinhe
2015-02-01
Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields.
Exploring the ring current of carbon nanotubes by first-principles calculations
Ren, Pengju; Zheng, Anmin; Xiao, Jianping; Pan, Xiulian
2015-01-01
Ring current is a fundamental concept to understand the nuclear magnetic resonance (NMR) properties and aromaticity for conjugated systems, such as carbon nanotubes (CNTs). Employing the recently developed gauge including projector augmented wave (GIPAW) method, we studied the ring currents of CNTs systematically and visualized their distribution. The ring current patterns are determined by the semiconducting or metallic properties of CNTs. The discrepancy is mainly caused by the axial component of external magnetic fields, whereas the radial component induced ring currents are almost independent of the electronic structures of CNTs, where the intensities of the ring currents are linearly related to the diameters of the CNTs. Although the ring currents induced by the radial component are more intense than those by the axial component, only the latter determines the overall NMR responses and aromaticity of the CNTs as well. Furthermore, the semiconducting CNTs are more aromatic than their metallic counterparts due to the existence of delocalized ring currents on the semiconducting CNTs. These fundamental features are of vital importance for the development of CNT-based nanoelectronics and applications in magnetic fields. PMID:29560175
Dopamine D2-receptor blockade enhances decoding of prefrontal signals in humans.
Kahnt, Thorsten; Weber, Susanna C; Haker, Helene; Robbins, Trevor W; Tobler, Philippe N
2015-03-04
The prefrontal cortex houses representations critical for ongoing and future behavior expressed in the form of patterns of neural activity. Dopamine has long been suggested to play a key role in the integrity of such representations, with D2-receptor activation rendering them flexible but weak. However, it is currently unknown whether and how D2-receptor activation affects prefrontal representations in humans. In the current study, we use dopamine receptor-specific pharmacology and multivoxel pattern-based functional magnetic resonance imaging to test the hypothesis that blocking D2-receptor activation enhances prefrontal representations. Human subjects performed a simple reward prediction task after double-blind and placebo controlled administration of the D2-receptor antagonist amisulpride. Using a whole-brain searchlight decoding approach we show that D2-receptor blockade enhances decoding of reward signals in the medial orbitofrontal cortex. Examination of activity patterns suggests that amisulpride increases the separation of activity patterns related to reward versus no reward. Moreover, consistent with the cortical distribution of D2 receptors, post hoc analyses showed enhanced decoding of motor signals in motor cortex, but not of visual signals in visual cortex. These results suggest that D2-receptor blockade enhances content-specific representations in frontal cortex, presumably by a dopamine-mediated increase in pattern separation. These findings are in line with a dual-state model of prefrontal dopamine, and provide new insights into the potential mechanism of action of dopaminergic drugs. Copyright © 2015 the authors 0270-6474/15/354104-08$15.00/0.
Movement of foraging Tundra Swans explained by spatial pattern in cryptic food densities.
Klaassen, Raymond H G; Nolet, Bart A; Bankert, Daniëlle
2006-09-01
We tested whether Tundra Swans use information on the spatial distribution of cryptic food items (below ground Sago pondweed tubers) to shape their movement paths. In a continuous environment, swans create their own food patches by digging craters, which they exploit in several feeding bouts. Series of short (<1 m) intra-patch movements alternate with longer inter-patch movements (>1 m). Tuber biomass densities showed a positive spatial auto-correlation at a short distance (<3 m), but not at a larger distance (3-8 m). Based on the spatial pattern of the food distribution (which is assumed to be pre-harvest information for the swan) and the energy costs and benefits for different food densities at various distances, we calculated the optimal length of an inter-patch movement. A swan that moves to the patch with the highest gain rate was predicted to move to the adjacent patch (at 1 m) if the food density in the current patch had been high (>25 g/m2) and to a more distant patch (at 7-8 m) if the food density in the current patch had been low (<25 g/m2). This prediction was tested by measuring the response of swans to manipulated tuber densities. In accordance with our predictions, swans moved a long distance (>3 m) from a low-density patch and a short distance (<3 m) from a high-density patch. The quantitative agreement between prediction and observation was greater for swans feeding in pairs than for solitary swans. The result of this movement strategy is that swans visit high-density patches at a higher frequency than on offer and, consequently, achieve a 38% higher long-term gain rate. Swans also take advantage of spatial variance in food abundance by regulating the time in patches, staying longer and consuming more food from rich than from poor patches. We can conclude that the shape of the foraging path is a reflection of the spatial pattern in the distribution of tuber densities and can be understood from an optimal foraging perspective.
Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.
2008-01-01
Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.
Chand, Prerna; Kamiya, Takahiro
2016-12-18
The genus Xestoleberis has a global distribution, and although they are predominant in shallow marine environments adapted to both sediment and algal habitats, only two species of this genus, Xestoleberis curta (Brady, 1866) and Xestoleberis variegata Brady, 1880, have previously been reported from the Fiji archipelago. Herein we report seven new species of the genus Xestoleberis from intertidal environments of fringing reef flats of the Fiji Islands: Xestoleberis becca n. sp., Xestoleberis concava n. sp., Xestoleberis gracilariaii n. sp., Xestoleberis marcula n. sp., Xestoleberis natuvuensis n. sp., Xestoleberis penna n. sp. and Xestoleberis petrosa n. sp. With the exception of X. becca n. sp., Xestoleberis species show restricted distribution within Fijian waters. The possible causes for their distribution patterns are suggested to be physical barriers imposed by the fast flowing Bligh Water currents, and islands separated by deep ocean waters.
Biogeography of photoautotrophs in the high polar biome
Pointing, Stephen B.; Burkhard Büdel; Convey, Peter; Gillman, Len N.; Körner, Christian; Leuzinger, Sebastian; Vincent, Warwick F.
2015-01-01
The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favorable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on diversity of polar photoautotrophs and to the current status of plants in Arctic and Antarctic conservation policy frameworks. PMID:26442009
Tomographic determination of the power distribution in electron beams
Teruya, Alan T.; Elmer, John W.
1996-01-01
A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.
Tomographic determination of the power distribution in electron beams
Teruya, A.T.; Elmer, J.W.
1996-12-10
A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.
Temporal and spatial variation of heat-related illness using 911 medical dispatch data.
Bassil, Kate L; Cole, Donald C; Moineddin, Rahim; Craig, Alan M; Lou, W Y Wendy; Schwartz, Brian; Rea, Elizabeth
2009-07-01
The adverse effect of hot weather on health in urban communities is of increasing public health concern, particularly given trends in climate change. To demonstrate the potential public health applications of monitoring 911 medical dispatch data for heat-related illness (HRI), using historical data for the summer periods (June 1-August 31) during 2002-2005 in Toronto, Ontario, Canada. The temporal distribution of the medical dispatch calls was described in relation to a current early warning system and emergency department data from the National Ambulatory Care Reporting System (NACRS). Geospatial methods were used to map the percentage of heat-related calls in each Toronto neighborhood over the study period. The temporal pattern of 911 calls for HRI was similar, and sometimes peaked earlier, than current heat health warning systems (HHWS). The pattern of calls was similar to NACRS HRI visits, with the exception of 2005 where 911 calls peaked earlier. Areas of the city with a relatively higher burden of HRI included low income inner-city neighborhoods, areas with high rates of street-involved individuals, and areas along the waterfront which include summer outdoor recreational activities. Identifying the temporal trends and geospatial patterns of these important environmental health events has the potential to direct targeted public health interventions to mitigate associated morbidity and mortality.
de Souza, Érica Martinha Silva; Gross, Maria Claudia; Silva, Carlos Eduardo Faresin E; Sotero-Caio, Cibele Gomes; Feldberg, Eliana
2017-01-01
Species in the subgenus Artibeus Leach, 1821 are widely distributed in Brazil. Conserved karyotypes characterize the group with identical diploid number and chromosome morphology. Recent studies suggested that the heterochromatin distribution and accumulation patterns can vary among species. In order to assess whether variation can also occur within species, we have analyzed the chromosomal distribution of constitutive heterochromatin in A. planirostris (Spix, 1823) and A. lituratus (Olfers, 1818) from Central Amazon (North Brazil) and contrasted our findings with those reported for other localities in Brazil. In addition, Ag-NOR staining and FISH with 18S rDNA, telomeric, and LINE-1 probes were performed to assess the potential role that these different repetitive markers had in shaping the current architecture of heterochromatic regions. Both species presented interindividual variation of constitutive heterochromatin. In addition, in A. planirostris the centromeres of most chromosomes are enriched with LINE-1, colocated with pericentromeric heterochromatin blocks. Overall, our data indicate that amplification and differential distribution of the investigated repetitive DNAs might have played a significant role in shaping the chromosome architecture of the subgenus Artibeus.
de Souza, Érica Martinha Silva; Gross, Maria Claudia; Silva, Carlos Eduardo Faresin e; Sotero-Caio, Cibele Gomes; Feldberg, Eliana
2017-01-01
Abstract Species in the subgenus Artibeus Leach, 1821 are widely distributed in Brazil. Conserved karyotypes characterize the group with identical diploid number and chromosome morphology. Recent studies suggested that the heterochromatin distribution and accumulation patterns can vary among species. In order to assess whether variation can also occur within species, we have analyzed the chromosomal distribution of constitutive heterochromatin in A. planirostris (Spix, 1823) and A. lituratus (Olfers, 1818) from Central Amazon (North Brazil) and contrasted our findings with those reported for other localities in Brazil. In addition, Ag-NOR staining and FISH with 18S rDNA, telomeric, and LINE-1 probes were performed to assess the potential role that these different repetitive markers had in shaping the current architecture of heterochromatic regions. Both species presented interindividual variation of constitutive heterochromatin. In addition, in A. planirostris the centromeres of most chromosomes are enriched with LINE-1, colocated with pericentromeric heterochromatin blocks. Overall, our data indicate that amplification and differential distribution of the investigated repetitive DNAs might have played a significant role in shaping the chromosome architecture of the subgenus Artibeus. PMID:29114357
The debt of nations and the distribution of ecological impacts from human activities
Srinivasan, U. Thara; Carey, Susan P.; Hallstein, Eric; Higgins, Paul A. T.; Kerr, Amber C.; Koteen, Laura E.; Smith, Adam B.; Watson, Reg; Harte, John; Norgaard, Richard B.
2008-01-01
As human impacts to the environment accelerate, disparities in the distribution of damages between rich and poor nations mount. Globally, environmental change is dramatically affecting the flow of ecosystem services, but the distribution of ecological damages and their driving forces has not been estimated. Here, we conservatively estimate the environmental costs of human activities over 1961–2000 in six major categories (climate change, stratospheric ozone depletion, agricultural intensification and expansion, deforestation, overfishing, and mangrove conversion), quantitatively connecting costs borne by poor, middle-income, and rich nations to specific activities by each of these groups. Adjusting impact valuations for different standards of living across the groups as commonly practiced, we find striking imbalances. Climate change and ozone depletion impacts predicted for low-income nations have been overwhelmingly driven by emissions from the other two groups, a pattern also observed for overfishing damages indirectly driven by the consumption of fishery products. Indeed, through disproportionate emissions of greenhouse gases alone, the rich group may have imposed climate damages on the poor group greater than the latter's current foreign debt. Our analysis provides prima facie evidence for an uneven distribution pattern of damages across income groups. Moreover, our estimates of each group's share in various damaging activities are independent from controversies in environmental valuation methods. In a world increasingly connected ecologically and economically, our analysis is thus an early step toward reframing issues of environmental responsibility, development, and globalization in accordance with ecological costs. PMID:18212119
Siyadatpanah, Abolghasem; Sharif, Mehdi; Daryani, Ahmad; Sarvi, Shahabeddin; Kohansal, Mohammad Hasan; Barzegari, Saeed; Pagheh, Abdol Sattar; Gholami, Shirzad
2018-06-01
Giardia lamblia is the most prevalent intestinal parasites of humans in Iran and other in the world although information on geographical distribution of giardiasis plays significant role in identifying communities at high risk, little attention has been paid to study human giardiasis using geographical information system. Therefore, the aim of the current study was to determine temporal and spatial patterns of human giardiasis distribution to identify possible high risk areas and seasons in northern Iran. A total of 4788 people referred to health centers in the Mazandaran Province of northern Iran were surveyed January to December 2015. From each person stool sample and questionnaire with socio-demographic data were collected. Giardia infection was diagnosed using direct wet mount, formalin ether concentration and trichrome staining. The results were analyzed using Moran Local Indicators of spatial association and geographically weighted regression. The overall prevalence of Giardia infection was 4.6% (222/4788), and was significantly higher among those aged 5-9 years compared to their older peers ( P < 0.0001). Our data showed a significant dependency between the prevalence of G. lamblia and age, job, residence, season and height from the sea ( P < 0.0001). The results of this study provided a precise and specific spatial and temporal pattern of human giardiasis distribution in the Mazandaran Province, Iran. These evidences should be considered for proper control of disease decisions and strategies.
Spatial dynamics of warehousing and distribution in California : METRANS UTC draft 15-27.
DOT National Transportation Integrated Search
2017-01-01
The purpose of this research is to document and analyze the location patterns of warehousing and distribution activity in California. The growth of California's warehousing and distribution (W&D) activities and their spatial patterns is affected by s...
NASA Astrophysics Data System (ADS)
Paula, J.; Dornelas, M.; Flores, A. A. V.
2003-02-01
Information on recruitment processes of mangrove crustaceans is very limited, in spite of the great importance of these environments for the coastal zone. This study describes the settlement patterns of brachyuran crabs at Ponta Rasa mangrove swamp, Inhaca Island, in order to assess if settlement patterns reflect adult distribution. Hoghair filter collectors were deployed at different strata within the mangrove, and at the adjacent intertidal flat as control. Sampling was conducted daily for a period of 82 days. The collected megalopae were reared in the laboratory to assess their moulting competency and to enable identification. Settlement intensity was tested for association with wind stress, from different directions and averaged over time lags up to 6 days. A total of 960 megalopae settled during this study. Only 8% of the megalopae that settled at the control site belonged to mangrove dwelling species. Settlers inside Ponta Rasa swamp were exclusively mangrove species. Ilyograpsus paludicola settled mainly among Rhizophora mucronata and the mixed area of Ceriops tagal and Bruguiera gymnorrhiza, where adults occur, and Perisesarma guttatum, the most abundant sesarmid at Ponta Rasa, settled mainly at the creek. Neosarmatium meinerti settled among Avicennia marina pnematophores, very close to the adult populations. Megalopae of mangrove taxa that settled outside the mangrove took longer to moult than the ones settling inside the swamp. In the intertidal areas of the mangrove, settlers took an average of 1-2 days to moult, whereas in subtidal areas time to moult was on an average 3-5 days. Thus, both distribution of settlers and moulting competency suggest that settling follows adult distribution. Tides have a strong influence on settlement at Ponta Rasa, with the effect that, due to the high sill at the entrance, neap tides do not penetrate the mangrove. The analysis of settlement data suggested a significant effect of wind-driven transport on onshore migration. There is however no obvious interpretation for the pattern observed. Probably, the distribution of different larval patches and the complex dynamic structure of currents within Maputo Bay and adjacent areas influence the settlement pattern.
Shi, Jiaqin; Huang, Shunmou; Fu, Donghui; Yu, Jinyin; Wang, Xinfa; Hua, Wei; Liu, Shengyi; Liu, Guihua; Wang, Hanzhong
2013-01-01
Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with respect to motif length, type and repeat number. Interestingly, several microsatellite characteristics seemed to be constant in plant evolution, which can be well explained by the general biological rules. PMID:23555856
Grefenstette, John J; Brown, Shawn T; Rosenfeld, Roni; DePasse, Jay; Stone, Nathan T B; Cooley, Phillip C; Wheaton, William D; Fyshe, Alona; Galloway, David D; Sriram, Anuroop; Guclu, Hasan; Abraham, Thomas; Burke, Donald S
2013-10-08
Mathematical and computational models provide valuable tools that help public health planners to evaluate competing health interventions, especially for novel circumstances that cannot be examined through observational or controlled studies, such as pandemic influenza. The spread of diseases like influenza depends on the mixing patterns within the population, and these mixing patterns depend in part on local factors including the spatial distribution and age structure of the population, the distribution of size and composition of households, employment status and commuting patterns of adults, and the size and age structure of schools. Finally, public health planners must take into account the health behavior patterns of the population, patterns that often vary according to socioeconomic factors such as race, household income, and education levels. FRED (a Framework for Reconstructing Epidemic Dynamics) is a freely available open-source agent-based modeling system based closely on models used in previously published studies of pandemic influenza. This version of FRED uses open-access census-based synthetic populations that capture the demographic and geographic heterogeneities of the population, including realistic household, school, and workplace social networks. FRED epidemic models are currently available for every state and county in the United States, and for selected international locations. State and county public health planners can use FRED to explore the effects of possible influenza epidemics in specific geographic regions of interest and to help evaluate the effect of interventions such as vaccination programs and school closure policies. FRED is available under a free open source license in order to contribute to the development of better modeling tools and to encourage open discussion of modeling tools being used to evaluate public health policies. We also welcome participation by other researchers in the further development of FRED.
Patterns of genetic diversity in three plant lineages endemic to the Cape Verde Islands.
Romeiras, Maria M; Monteiro, Filipa; Duarte, M Cristina; Schaefer, Hanno; Carine, Mark
2015-05-15
Conservation of plant diversity on islands relies on a good knowledge of the taxonomy, distribution and genetic diversity of species. In recent decades, a combination of morphology- and DNA-based approaches has become the standard for investigating island plant lineages and this has led, in some cases, to the discovery of previously overlooked diversity, including 'cryptic species'. The flora of the Cape Verde archipelago in the North Atlantic is currently thought to comprise ∼740 vascular plant species, 92 of them endemics. Despite the fact that it is considered relatively well known, there has been a 12 % increase in the number of endemics in the last two decades. Relatively few of the Cape Verde plant lineages have been included in genetic studies so far and little is known about the patterns of diversification in the archipelago. Here we present an updated list for the endemic Cape Verde flora and analyse diversity patterns for three endemic plant lineages (Cynanchum, Globularia and Umbilicus) based on one nuclear (ITS) and four plastid DNA regions. In all three lineages, we find genetic variation. In Cynanchum, we find two distinct haplotypes with no clear geographical pattern, possibly reflecting different ploidy levels. In Globularia and Umbilicus, differentiation is evident between populations from northern and southern islands. Isolation and drift resulting from the small and fragmented distributions, coupled with the significant distances separating the northern and southern islands, could explain this pattern. Overall, our study suggests that the diversity in the endemic vascular flora of Cape Verde is higher than previously thought and further work is necessary to characterize the flora. Published by Oxford University Press on behalf of the Annals of Botany Company.
Stevens, Richard D; Tello, J Sebastián; Gavilanez, María Mercedes
2013-01-01
Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km(2) grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota.
Stevens, Richard D.; Tello, J. Sebastián; Gavilanez, María Mercedes
2013-01-01
Inference involving diversity gradients typically is gathered by mechanistic tests involving single dimensions of biodiversity such as species richness. Nonetheless, because traits such as geographic range size, trophic status or phenotypic characteristics are tied to a particular species, mechanistic effects driving broad diversity patterns should manifest across numerous dimensions of biodiversity. We develop an approach of stronger inference based on numerous dimensions of biodiversity and apply it to evaluate one such putative mechanism: the mid-domain effect (MDE). Species composition of 10,000-km2 grid cells was determined by overlaying geographic range maps of 133 noctilionoid bat taxa. We determined empirical diversity gradients in the Neotropics by calculating species richness and three indices each of phylogenetic, functional and phenetic diversity for each grid cell. We also created 1,000 simulated gradients of each examined metric of biodiversity based on a MDE model to estimate patterns expected if species distributions were randomly placed within the Neotropics. For each simulation run, we regressed the observed gradient onto the MDE-expected gradient. If a MDE drives empirical gradients, then coefficients of determination from such an analysis should be high, the intercept no different from zero and the slope no different than unity. Species richness gradients predicted by the MDE fit empirical patterns. The MDE produced strong spatially structured gradients of taxonomic, phylogenetic, functional and phenetic diversity. Nonetheless, expected values generated from the MDE for most dimensions of biodiversity exhibited poor fit to most empirical patterns. The MDE cannot account for most empirical patterns of biodiversity. Fuller understanding of latitudinal gradients will come from simultaneous examination of relative effects of random, environmental and historical mechanisms to better understand distribution and abundance of the current biota. PMID:23451099
NASA Technical Reports Server (NTRS)
He, Maosheng; Vogt, Joachim; Luehr, Hermann; Sorbalo, Eugen; Blagau, Adrian; Le, Guan; Lu, Gang
2012-01-01
Ten years of CHAMP magnetic field measurements are integrated into MFACE, a model of field-aligned currents (FACs) using empirical orthogonal functions (EOFs). EOF1 gives the basic Region-1/Region-2 pattern varying mainly with the interplanetary magnetic field Bz component. EOF2 captures separately the cusp current signature and By-related variability. Compared to existing models, MFACE yields significantly better spatial resolution, reproduces typically observed FAC thickness and intensity, improves on the magnetic local time (MLT) distribution, and gives the seasonal dependence of FAC latitudes and the NBZ current signature. MFACE further reveals systematic dependences on By, including 1) Region-1/Region-2 topology modifications around noon; 2) imbalance between upward and downward maximum current density; 3) MLT location of the Harang discontinuity. Furthermore, our procedure allows quantifying response times of FACs to solar wind driving at the bow shock nose: we obtain 20 minutes and 35-40 minutes lags for the FAC density and latitude, respectively.
PI and fuzzy logic controllers for shunt Active Power Filter--a report.
P, Karuppanan; Mahapatra, Kamala Kanta
2012-01-01
This paper presents a shunt Active Power Filter (APF) for power quality improvements in terms of harmonics and reactive power compensation in the distribution network. The compensation process is based only on source current extraction that reduces the number of sensors as well as its complexity. A Proportional Integral (PI) or Fuzzy Logic Controller (FLC) is used to extract the required reference current from the distorted line-current, and this controls the DC-side capacitor voltage of the inverter. The shunt APF is implemented with PWM-current controlled Voltage Source Inverter (VSI) and the switching patterns are generated through a novel Adaptive-Fuzzy Hysteresis Current Controller (A-F-HCC). The proposed adaptive-fuzzy-HCC is compared with fixed-HCC and adaptive-HCC techniques and the superior features of this novel approach are established. The FLC based shunt APF system is validated through extensive simulation for diode-rectifier/R-L loads. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Signatures of active and passive optimized Lévy searching in jellyfish.
Reynolds, Andy M
2014-10-06
Some of the strongest empirical support for Lévy search theory has come from telemetry data for the dive patterns of marine predators (sharks, bony fishes, sea turtles and penguins). The dive patterns of the unusually large jellyfish Rhizostoma octopus do, however, sit outside of current Lévy search theory which predicts that a single search strategy is optimal. When searching the water column, the movement patterns of these jellyfish change over time. Movement bouts can be approximated by a variety of Lévy and Brownian (exponential) walks. The adaptive value of this variation is not known. On some occasions movement pattern data are consistent with the jellyfish prospecting away from a preferred depth, not finding an improvement in conditions elsewhere and so returning to their original depth. This 'bounce' behaviour also sits outside of current Lévy walk search theory. Here, it is shown that the jellyfish movement patterns are consistent with their using optimized 'fast simulated annealing'--a novel kind of Lévy walk search pattern--to locate the maximum prey concentration in the water column and/or to locate the strongest of many olfactory trails emanating from more distant prey. Fast simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a large search space. This new finding shows that the notion of active optimized Lévy walk searching is not limited to the search for randomly and sparsely distributed resources, as previously thought, but can be extended to embrace other scenarios, including that of the jellyfish R. octopus. In the presence of convective currents, it could become energetically favourable to search the water column by riding the convective currents. Here, it is shown that these passive movements can be represented accurately by Lévy walks of the type occasionally seen in R. octopus. This result vividly illustrates that Lévy walks are not necessarily the result of selection pressures for advantageous searching behaviour but can instead arise freely and naturally from simple processes. It also shows that the family of Lévy walkers is vastly larger than previously thought and includes spores, pollens, seeds and minute wingless arthropods that on warm days disperse passively within the atmospheric boundary layer. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Primo, Ana Lígia; Azeiteiro, Ulisses M.; Marques, Sónia C.; Ré, Pedro; Pardal, Miguel A.
2012-07-01
Vertical distribution and migration pattern of ichthyoplankton assemblage in the Mondego estuary were investigated in relation to diel and tidal cycle. Summer and winter communities were sampled, at surface and bottom, over a diel cycle during spring and neap tides at a fixed station at the mouth of the estuary. Summer presented higher larvae density mainly of Pomatoschistus spp., Gobius niger and Parablennius pilicornis. Main species in winter assemblages were Pomatoschistus spp. and Sardina pilchardus. There were no differences between depth stratums across diel or tide cycle. Nevertheless, main species larval densities showed significant periodic variation associated with tide (M2) and diel (K1) cycles presenting generally, higher density at night and around low tide. Conversely, vertical patterns observed could not be related with diel or tidal cycle. Tough, main species presented some extent of vertical migration. Vertical patterns observed appear to be related to seasonal stratification and river flow, increasing amplitude during periods of less stratification and lower water currents. Present study provides a better understanding of ichthyoplankton vertical movement patterns and of small scale dynamics at the interface of two coastal European systems.
Social Network Concordance in Food Choice Among Spouses, Friends, and Siblings
Jacques, Paul F.; Christakis, Nicholas A.
2011-01-01
Objectives. We investigated whether eating behaviors were concordant among diverse sets of social ties. Methods. We analyzed the socioeconomic and demographic distribution of eating among 3418 members of the Framingham Heart Study observed from 1991 to 2001. We used a data-classification procedure to simplify choices into 7 nonoverlapping patterns that we matched with information on social network ties. We used correlation analysis to examine eating associations among 4 types of peers (spouses, friends, brothers, and sisters). Longitudinal multiple logistic regression was used to evaluate evidence for peer influences on eating. Results. Of all peer types, spouses showed the strongest concordances in eating patterns over time after adjustment for social contextual factors. Across all peers, the eating pattern most likely to be shared by socially connected individuals was “alcohol and snacks.” Models estimating one's current eating pattern on the basis of a peer's prior eating provided supportive evidence of a social influence process. Conclusions. Certain eating patterns appeared to be socially transmissible across different kinds of relationships. These findings represent an important step in specifying the relevant social environment in the study of health behaviors to include eating. PMID:21940920
Wetlands explain most in the genetic divergence pattern of Oncomelania hupensis.
Liang, Lu; Liu, Yang; Liao, Jishan; Gong, Peng
2014-10-01
Understanding the divergence patterns of hosts could shed lights on the prediction of their parasite transmission. No effort has been devoted to understand the drivers of genetic divergence pattern of Oncomelania hupensis, the only intermediate host of Schistosoma japonicum. Based on a compilation of two O. hupensis gene datasets covering a wide geographic range in China and an array of geographical distance and environmental dissimilarity metrics built from earth observation data and ecological niche modeling, we conducted causal modeling analysis via simple, partial Mantel test and local polynomial fitting to understand the interactions among isolation-by-distance, isolation-by-environment, and genetic divergence. We found that geography contributes more to genetic divergence than environmental isolation, and among all variables involved, wetland showed the strongest correlation with the genetic pairwise distances. These results suggested that in China, O. hupensis dispersal is strongly linked to the distribution of wetlands, and the current divergence pattern of both O. hupensis and schistosomiasis might be altered due to the changed wetland pattern with the accomplishment of the Three Gorges Dam and the South-to-North water transfer project. Copyright © 2014 Elsevier B.V. All rights reserved.