Thermodynamic model of natural, medieval and nuclear waste glass durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.M.; Plodinec, M.J.
1983-01-01
A thermodynamic model of glass durability based on hydration of structural units has been applied to natural glass, medieval window glasses, and glasses containing nuclear waste. The relative durability predicted from the calculated thermodynamics correlates directly with the experimentally observed release of structural silicon in the leaching solution in short-term laboratory tests. By choosing natural glasses and ancient glasses whose long-term performance is known, and which bracket the durability of waste glasses, the long-term stability of nuclear waste glasses can be interpolated among these materials. The current Savannah River defense waste glass formulation is as durable as natural basalt frommore » the Hanford Reservation (10/sup 6/ years old). The thermodynamic hydration energy is shown to be related to the bond energetics of the glass. 69 references, 2 figures, 1 table.« less
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.
1991-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.; Hiel, C. C.
1990-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.
1999-01-01
Spacecraft in low Earth orbit (LEO) are subjected to many components of the environment, which can cause them to degrade much more rapidly than intended and greatly shorten their functional life. The atomic oxygen, ultraviolet radiation, and cross contamination present in LEO can affect sensitive surfaces such as thermal control paints, multilayer insulation, solar array surfaces, and optical surfaces. The LEO Spacecraft Materials Test (LEO-SMT) program is being conducted to assess the effects of simulated LEO exposure on current spacecraft materials to increase understanding of LEO degradation processes as well as to enable the prediction of in-space performance and durability. Using ground-based simulation facilities to test the durability of materials currently flying in LEO will allow researchers to compare the degradation evidenced in the ground-based facilities with that evidenced on orbit. This will allow refinement of ground laboratory test systems and the development of algorithms to predict the durability and performance of new materials in LEO from ground test results. Accurate predictions based on ground tests could reduce development costs and increase reliability. The wide variety of national and international materials being tested represent materials being functionally used on spacecraft in LEO. The more varied the types of materials tested, the greater the probability that researchers will develop and validate predictive models for spacecraft long-term performance and durability. Organizations that are currently participating in the program are ITT Research Institute (USA), Lockheed Martin (USA), MAP (France), SOREQ Nuclear Research Center (Israel), TNO Institute of Applied Physics (The Netherlands), and UBE Industries, Ltd. (Japan). These represent some of the major suppliers of thermal control and sensor materials currently flying in LEO. The participants provide materials that are exposed to selected levels of atomic oxygen, vacuum ultraviolet radiation, contamination, or synergistic combined environments at the NASA Lewis Research Center. Changes in characteristics that could affect mission performance or lifetime are then measured. These characteristics include changes in mass, solar absorptance, and thermal emittance. The durability of spacecraft materials from U.S. suppliers is then compared with those of materials from other participating countries. Lewis will develop and validate performance and durability prediction models using this ground data and available space data. NASA welcomes the opportunity to consider additional international participants in this program, which should greatly aid future spacecraft designers as they select materials for LEO missions.
RESULTS OF THE FY09 ENHANCED DOE HIGH LEVEL WASTE MELTER THROUGHPUT STUDIES AT SRNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, F.; Edwards, T.
2010-06-23
High-level waste (HLW) throughput (i.e., the amount of waste processed per unit time) is a function of two critical parameters: waste loading (WL) and melt rate. For the Waste Treatment and Immobilization Plant (WTP) at the Hanford Site and the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), increasing HLW throughput would significantly reduce the overall mission life cycle costs for the Department of Energy (DOE). The objective of this task is to develop data, assess property models, and refine or develop the necessary models to support increased WL of HLW at SRS. It is a continuationmore » of the studies initiated in FY07, but is under the specific guidance of a Task Change Request (TCR)/Work Authorization received from DOE headquarters (Project Number RV071301). Using the data generated in FY07, FY08 and historical data, two test matrices (60 glasses total) were developed at the Savannah River National Laboratory (SRNL) in order to generate data in broader compositional regions. These glasses were fabricated and characterized using chemical composition analysis, X-ray Diffraction (XRD), viscosity, liquidus temperature (TL) measurement and durability as defined by the Product Consistency Test (PCT). The results of this study are summarized below: (1) In general, the current durability model predicts the durabilities of higher waste loading glasses quite well. A few of the glasses exhibited poorer durability than predicted. (2) Some of the glasses exhibited anomalous behavior with respect to durability (normalized leachate for boron (NL [B])). The quenched samples of FY09EM21-02, -07 and -21 contained no nepheline or other wasteform affecting crystals, but have unacceptable NL [B] values (> 10 g/L). The ccc sample of FY09EM21-07 has a NL [B] value that is more than one half the value of the quenched sample. These glasses also have lower concentrations of Al{sub 2}O{sub 3} and SiO{sub 2}. (3) Five of the ccc samples (EM-13, -14, -15, -29 and -30) completely crystallized with both magnetite and nepheline, and still had extremely low NL [B] values. These particular glasses have more CaO present than any of the other glasses in the matrix. It appears that while all of the glasses contain nepheline, the NL [B] values decrease as the CaO concentration increases from 2.3 wt% to 4.3 wt%. A different form of nepheline may be created at higher concentrations of CaO that does not significantly reduce glass durability. (4) The T{sub L} model appears to be under-predicting the measured values of higher waste loading glasses. Trends in T{sub L} with composition are not evident in the data from these studies. (5) A small number of glasses in the FY09 matrix have measured viscosities that are much lower than the viscosity range over which the current model was developed. The decrease in viscosity is due to a higher concentration of non-bridging oxygens (NBO). A high iron concentration is the cause of the increase in NBO. Durability, viscosity and T{sub L} data collected during FY07 and FY09 that specifically targeted higher waste loading glasses was compiled and assessed. It appears that additional data may be required to expand the coverage of the T{sub L} and viscosity models for higher waste loading glasses. In general, the compositional regions of the higher waste loading glasses are very different than those used to develop these models. On the other hand, the current durability model seems to be applicable to the new data. At this time, there is no evidence to modify this model; however additional experimental studies should be conducted to determine the cause of the anomalous durability data.« less
Controllable Bidirectional dc Power Sources For Large Loads
NASA Technical Reports Server (NTRS)
Tripp, John S.; Daniels, Taumi S.
1995-01-01
System redesigned for greater efficiency, durability, and controllability. Modern electronically controlled dc power sources proposed to supply currents to six electromagnets used to position aerodynamic test model in wind tunnel. Six-phase bridge rectifier supplies load with large current at voltage of commanded magnitude and polarity. Current-feedback circuit includes current-limiting feature giving some protection against overload.
Thermal fatigue durability for advanced propulsion materials
NASA Technical Reports Server (NTRS)
Halford, Gary R.
1989-01-01
A review is presented of thermal and thermomechanical fatigue (TMF) crack initiation life prediction and cyclic constitutive modeling efforts sponsored recently by the NASA Lewis Research Center in support of advanced aeronautical propulsion research. A brief description is provided of the more significant material durability models that were created to describe TMF fatigue resistance of both isotropic and anisotropic superalloys, with and without oxidation resistant coatings. The two most significant crack initiation models are the cyclic damage accumulation model and the total strain version of strainrange partitioning. Unified viscoplastic cyclic constitutive models are also described. A troika of industry, university, and government research organizations contributed to the generation of these analytic models. Based upon current capabilities and established requirements, an attempt is made to project which TMF research activities most likely will impact future generation propulsion systems.
NASA Astrophysics Data System (ADS)
Srinivas, Vikram; Menon, Sandeep; Osterman, Michael; Pecht, Michael G.
2013-08-01
Solder durability models frequently focus on the applied strain range; however, the rate of applied loading, or strain rate, is also important. In this study, an approach to incorporate strain rate dependency into durability estimation for solder interconnects is examined. Failure data were collected for SAC105 solder ball grid arrays assembled with SAC305 solder that were subjected to displacement-controlled torsion loads. Strain-rate-dependent (Johnson-Cook model) and strain-rate-independent elastic-plastic properties were used to model the solders in finite-element simulation. Test data were then used to extract damage model constants for the reduced-Ag SAC solder. A generalized Coffin-Manson damage model was used to estimate the durability. The mechanical fatigue durability curve for reduced-silver SAC solder was generated and compared with durability curves for SAC305 and Sn-Pb from the literature.
Application of carbon nanoclusters in electronics
NASA Astrophysics Data System (ADS)
Krachkovskaya, T. M.; Sahadji, G. V.; Emelyanov, A. S.; Silaeva, M. V.
2018-04-01
Nanocarbon material (Ugleron and Astralens) is used for the first time for the production of metal porous cathode (MPC). It can be assumed that its implementation in the MPC matrix can change the mechanism and rate of occurrence of three-phase reactions of formation of active elements and oxygen and, thereby, improve its emission properties. The new technology of manufacturing MPC is aimed at solving the problem of increasing the durability of electro vacuum devices - more than 100,000 hours. The obtained results are intended for use in technologies for manufacturing of electron sources for electro vacuum devices used in space communication and navigation systems. In addition, they can be useful for other areas of electronics that use a metal-porous thermal cathode as sources of electron emission. There are manufactured models with the use of Ugleron and Astralens in a sponge and emission substance. A layout using Ugleron in the emission substance is tested for durability and currently has an operating time of 40,000 hours. A model with the use of Astralens and Ugleron in a sponge and emission substance respectively is tested for maximum current density. To date, it shows results comparable to the standard cathode. However, there is a suggestion that cathodes with Astralens and Ugleron have a lower evaporation rate of the active substance. There is predicted longer durability than for the standard cathode at the same emissivity.
USDA-ARS?s Scientific Manuscript database
Tanning of animal hides produces leather, a durable, flexible material that is stabilized against putrefaction. Chrome-tanned wet blue, aldehyde crosslinked wet white, and vegetable tanned hides are major contributors to current leather production. Although the chemistries involved are significant...
Coating WPC's using co-extrusion to improve durability
Nicole M. Stark; Laurent M. Matuana
2007-01-01
Wood-plastic composites (WPCs) have been gaining market share in the residential construction industry as lumber for decking, roof tiles, and siding. The durability of these materials in exterior environments is just beginning to be understood. Current research suggests that controlling moisture absorption by the composite is key to improving durability. Methods to...
A latent-period duration model for wheat stem rust
USDA-ARS?s Scientific Manuscript database
Wheat stem rust caused by Puccinia graminis subsp. graminis (Pgg) is a highly destructive disease of wheat and other small grains. The discovery of a Pgg race (Ug99) that overcomes durable resistance in wheat raises concerns for global wheat production and food security. There is currently no mat...
Durability, value, and reliability of selected electric powered wheelchairs.
Fass, Megan V; Cooper, Rory A; Fitzgerald, Shirley G; Schmeler, Mark; Boninger, Michael L; Algood, S David; Ammer, William A; Rentschler, Andrew J; Duncan, John
2004-05-01
To compare the durability, value, and reliability of selected electric powered wheelchairs (EPWs), purchased in 1998. Engineering standards tests of quality and performance. A rehabilitation engineering center. Fifteen EPWs: 3 each of the Jazzy, Quickie, Lancer, Arrow, and Chairman models. Not applicable. Wheelchairs were evaluated for durability (lifespan), value (durability, cost), and reliability (rate of repairs) using 2-drum and curb-drop machines in accordance with the standards of the American National Standards Institute and Rehabilitation Engineering and Assistive Technology Society of North America. The 5 brands differed significantly (P
Research on durability of a concrete continuous rigid frame bridge
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-05-01
The research on the durability of concrete structures has also become one of the most important topics for discussion at international academic institutions and conferences. This paper summarizes and reviews the current research on the durability of bridge structure of the bridge at the index relationship between state lifetime and structure durability. According to the actual situation in this paper on a continuous rigid frame bridge China of Yunnan as an example, this bridge was completed and opened to traffic during the first half of the year, a series of tests are carried out for the durability problem. It is found that all the indicators are good within six months after the bridge opened to traffic, but durability issues should be further studied in future monitoring efforts.
NASA Astrophysics Data System (ADS)
Bassuoni, Mohamed Tamer F.
The growing use of self-consolidating concrete (SCC) in various infrastructure applications exposed to sulfate-rich environments necessitates conducting comprehensive research to evaluate its durability to external sulfate attack. Since the reliability and adequacy of standard sulfate immersion tests have been questioned, the current thesis introduced an integrated testing approach for assessing the durability of a wide scope of SCC mixtures to external sulfate attack. This testing approach involved progressive levels of complexity from single to multiple damage processes. A new series of sulfate attack tests involving multiple field-like parameters and combined damage mechanisms (various cations, controlled pH, wetting-drying, partial immersion, freezing-thawing, and cyclic cold-hot conditions with or without sustained flexural loading) were designed to evaluate the performance (suitability) of the SCC mixtures under various sulfate attack exposure scenarios. The main mixture design variables of SCC included the type of binder (single, binary, ternary and quaternary), air-entrainment, sand-to-aggregate mass ratio and hybrid fibre reinforcement. The comprehensive database and knowledge obtained from this research were used to develop smart models (fuzzy and neuro-fuzzy inference systems) based on artificial-intelligence to evaluate and predict the performance of the SCC mixtures under various sulfate attack exposure regimes implemented in this study. In full immersion tests involving high concentration sodium and magnesium sulfate solutions with controlled pH, the low penetrability of SCC was responsible for the high durability of specimens. Ternary and quaternary cementitious systems with or without limestone materials provided a passivating layer, with or without acid neutralization capacity, which protected SCC from severe damage in the aggressive sulfuric acid and ammonium sulfate solutions. In contrast to conclusions drawn from the sodium sulfate immersion tests, the combined sulfate attack tests captured performance risks and complex damage mechanisms associated with the SCC pore structure and constituent materials. Sodium sulfate attack with wetting-drying cycles and/or partial immersion under temperate-hot conditions synergistically caused significant damage to specimens, especially to quaternary cementitious systems having very fine pore structure, due to the build-up of salt crystals and sulfate reaction products. The deleterious effects of sulfate reaction products and salt crystallization on all cementitious systems were more severe under the combined sodium sulfate and freezing-thawing exposure, with a potential of sudden brittle failure. Laboratory experiments in the current work documented evidence for the occurrence of thaumasite sulfate attack (TSA) in cementitious systems containing limestone filler, not only under cold but also under temperate-hot conditions, which made specimens more vulnerable to damage in the combined sulfate attack tests. The field-like combined exposure of sodium sulfate, cyclic environments and flexural loading had synergistic effects on SCC specimens and caused the coexistence of multiple-complex degradation mechanisms (sulfate attack, TSA, stress-corrosion, salt crystallization, surface scaling and corrosion of surface steel fibres) depending on the mixture design variables. The current thesis demonstrates that relying only on sulfate immersion tests to evaluate the performance of cement-based materials can be risky. It also shows that linear and deterministic modeling of the performance of concrete structures under external sulfate attack is unrealistic. Fuzzy and adaptive-neuro fuzzy inference systems developed in the current thesis accurately and rationally predicted the serviceability, deterioration in engineering properties and time to failure of the SCC mixtures under the various sulfate attack exposure regimes adopted in the integrated testing approach. A durability evaluation factor from multiple performance criteria was created for the ammonium sulfate exposure. Environmental charts were developed to determine the level of aggression associated with sodium sulfate attack from temperature, RH and degree of wetting-drying expected in service. This novel modeling approach showed promising success in handling complex durability topics such as the sulfate attack of concrete, which involves non-linearity, ambiguity and interface with operator approximation. The current thesis provides needed fundamental knowledge on the durability of a wide scope of SCC mixtures to various sulfate attack exposure scenarios. It elucidates complex deterioration mechanisms and failure modes of cement-based materials under multi-mechanistic aging processes. It also proposes carefully engineered integrated sulfate attack tests that replicate various sulfate attack exposure regimes, which could be refined and standardized in the future. In addition, the current work introduced original knowledge-based smart models capable of handling uncertainty and providing reliable predictions for the behaviour of concrete under external sulfate attack. The models do not require conducting exhaustive laboratory experiments and/or making assumptions, thus facilitating the selection of optimum concrete mixtures for a specified exposure. Overall, this research should effectively contribute to the development of performance-based standards and specifications for, and improvement of durability-based design and life-cycle analysis of concrete structures subjected to external sulfate attack. Keywords. Sulfate attack, self-consolidating concrete, integrated testing, composite cements, air-entrainment, hybrid fibres, full immersion, cations, pH, wetting-drying, partial immersion, freezing-thawing, cyclic cold-hot conditions, flexural loading, thaumasite, salt crystallization, fuzzy, neuro-fuzzy, systems.
Stirling engine - Approach for long-term durability assessment
NASA Technical Reports Server (NTRS)
Tong, Michael T.; Bartolotta, Paul A.; Halford, Gary R.; Freed, Alan D.
1992-01-01
The approach employed by NASA Lewis for the long-term durability assessment of the Stirling engine hot-section components is summarized. The approach consists of: preliminary structural assessment; development of a viscoplastic constitutive model to accurately determine material behavior under high-temperature thermomechanical loads; an experimental program to characterize material constants for the viscoplastic constitutive model; finite-element thermal analysis and structural analysis using a viscoplastic constitutive model to obtain stress/strain/temperature at the critical location of the hot-section components for life assessment; and development of a life prediction model applicable for long-term durability assessment at high temperatures. The approach should aid in the provision of long-term structural durability and reliability of Stirling engines.
Carbon nanocages: a new support material for Pt catalyst with remarkably high durability.
Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong
2014-03-24
Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for "real world" application.
J.E. Winandy; P.K. Lebow; J.F. Murphy
2002-01-01
Research programs throughout North America are increasingly focusing on understanding and defining the salient issues of wood durability and maintaining and extending the serviceability of existing wood structures. This report presents the findings and implications of a 10-year research program, carried out at the USDA Forest Service, Forest Products Laboratory, to...
Sustainability and durability analysis of reinforced concrete structures
NASA Astrophysics Data System (ADS)
Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.
2017-09-01
The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.
Highly Dispersed Alloy Catalyst for Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivek S. Murthi; Izzo, Elise; Bi, Wu
2013-01-08
Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them withmore » existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.« less
Adhesive groups and how they relate to the durability of bonded wood
Charles R. Frihart
2009-01-01
There is a need to develop models that evaluate the interaction of wood adhesives at the macroscopic level to explain observations on the durability of bonded wood laminate products with changing moisture conditions. This paper emphasizes a model that relates durability to strain on the bondline caused by wood swelling. The effect of this strain is discussed in...
NASA Astrophysics Data System (ADS)
Jørgensen, Peter R.; Clausen, Liselotte; Larsen, Flemming
The pesticide metabolite BAM (2,6-dichlorbenzamide) is the most frequently found pesticide contaminant in Danish groundwater. In 1999 BAM was found in 26% of Danish water supply wells and the drinking water standard (0.1 µg/L) was exceeded in 11% of the wells. BAM is a metabolite from the active ingredient dichlobenil (DCB), which was used for non-agricultural total weed protection during 1966 1997. By using the numerical codes FRAC3Dvs and MODFLOW/MT3D it is the aim of the study to evaluate the extent and durability of the BAM pollution in Danish groundwater and to recommend planning strategies to avoid or minimize BAM in future water supply. The modeling was based on the total amount sold of the DCB (29.000 ton/year) combined with data for sorption and degradation of the DCB and BAM measured from comprehensive laboratory experiments with soil material representing root zone and main aquifer soil types in Denmark. As a main result the laboratory experiments revealed that BAM was only very slowly degraded in the root zone, while no degradation was observed in the sub-soil environments. Combining these model in-put data with representative data for the main aquifer types and overriding fractured clay aquitards, the modeling indicates that more than 99% of infiltrated dichlobenile has been transformed to its metabolite BAM (approximately 500 tons in total), and that currently (year 2001) approximately 100% of this compound appears widely in the groundwater and/or in the above aquitards. The modeling shows that the BAM pollution will appear in the groundwater with a high frequency in extensive parts of Denmark during the following 20 years to more than 100 years. The highest current BAM concentrations, but however also the shortest durability of the BAM pollution, will occur in contaminated aquifers, which are not covered with clay layers. Short durability in such areas is furthermore dependent on the lack of further up-stream BAM sources. The modeling moreover indicates that aquifers will be less vulnerable in contaminated areas with high run-of in the surface layers and small groundwater recharge. In contrast to the current vulnerability of the free water table aquifers, BAM contamination underneath thick clay layers (30 m or more) will not break through to the aquifers before year 2050 to 2070. However, hereafter the BAM concentration will increase until approximately year 2150. Hence, the modeling indicates that water extraction may proceed without influence of the BAM pollution from aquifers underneath thick clay aquitards until the middle or late end of the current century, and hereafter, may be moved to areas with no clay layers above aquifers, since such aquifers will have no measurable concentrations of BAM after approximately year 2050. The modeling moreover show that the extent and future evolution of the BAM pollution is a strong function of local geological and hydrological conditions, which indicates a promising potential for minimizing problems for the water supply through planning and management. The project was funded by the Danish Environmental Protection Agency and the EU-project "PEGASE".
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, Sung R.; Ghosn, Louis J.; Miller, Robert A.
2004-01-01
Ceramic thermal/environmental barrier coatings for SiC-based ceramics will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. However, the coating durability remains a major concern with the ever-increasing temperature requirements. Currently, advanced T/EBC systems, which typically include a high temperature capable zirconia- (or hahia-) based oxide top coat (thermal barrier) on a less temperature capable mullite/barium-strontium-aluminosilicate (BSAS)/Si inner coat (environmental barrier), are being developed and tested for higher temperature capability Sic combustor applications. In this paper, durability of several thermal/environmental barrier coating systems on SiC/SiC ceramic matrix composites was investigated under laser simulated engine thermal gradient cyclic, and 1650 C (3000 F) test conditions. The coating cracking and delamination processes were monitored and evaluated. The effects of temperature gradients and coating configurations on the ceramic coating crack initiation and propagation were analyzed using finite element analysis (FEA) models based on the observed failure mechanisms, in conjunction with mechanical testing results. The environmental effects on the coating durability will be discussed. The coating design approach will also be presented.
Legemate, Jaap D; Kamphuis, Guido M; Freund, Jan Erik; Baard, Joyce; Zanetti, Stefano P; Catellani, Michele; Oussoren, Harry W; de la Rosette, Jean J
2018-03-10
Flexible ureteroscopy is an established treatment modality for evaluating and treating abnormalities in the upper urinary tract. Reusable ureteroscope (USC) durability is a significant concern. To evaluate the durability of the latest generation of digital and fiber optic reusable flexible USCs and the factors affecting it. Six new flexible USCs from Olympus and Karl Storz were included. The primary endpoint for each USC was its first repair. Data on patient and treatment characteristics, accessory device use, ureteroscopy time, image quality, USC handling, disinfection cycles, type of damage, and deflection loss were collected prospectively. Ureteroscopy. USC durability was measured as the total number of uses and ureteroscopy time before repair. USC handling and image quality were scored. After every procedure, maximal ventral and dorsal USC deflection were documented on digital images. A total of 198 procedures were performed. The median number of procedures was 27 (IQR 16-48; 14h) for the six USCs overall, 27 (IQR 20-56; 14h) for the digital USCs, and 24 (range 10-37; 14h) for the fiber optic USCs. Image quality remained high throughout the study for all six USCs. USC handling and the range of deflection remained good under incremental use. Damage to the distal part of the shaft and shaft coating was the most frequent reason for repair, and was related to intraoperative manual forcing. A limitation of this study is its single-center design. The durability of the latest reusable flexible USCs in the current study was limited to 27 uses (14h). Damage to the flexible shaft was the most important limitation to the durability of the USCs evaluated. Prevention of intraoperative manual forcing of flexible USCs maximizes their overall durability. Current flexible ureteroscopes proved to be durable. Shaft vulnerability was the most important limiting factor affecting durability. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Environmental Barrier Coating (EBC) Durability Modeling; An Overview and Preliminary Analysis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; Bhatt, R. T.; Grady, J. E.; Zhu, D.
2012-01-01
A study outlining a fracture mechanics based model that is being developed to investigate crack growth and spallation of environmental barrier coating (EBC) under thermal cycling conditions is presented. A description of the current plan and a model to estimate thermal residual stresses in the coating and preliminary fracture mechanics concepts for studying crack growth in the coating are also discussed. A road map for modeling life and durability of the EBC and the results of FEA model(s) developed for predicting thermal residual stresses and the cracking behavior of the coating are generated and described. Further initial assessment and preliminary results showed that developing a comprehensive EBC life prediction model incorporating EBC cracking, degradation and spalling mechanism under stress and temperature gradients typically seen in turbine components is difficult. This is basically due to mismatch in thermal expansion difference between sub-layers of EBC as well as between EBC and substrate, diffusion of moisture and oxygen though the coating, and densification of the coating during operating conditions as well as due to foreign object damage, the EBC can also crack and spall from the substrate causing oxidation and recession and reducing the design life of the EBC coated substrate.
Brown, Philip S.; Bhushan, Bharat
2015-01-01
Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716
Product lifetime, energy efficiency and climate change: A case study of air conditioners in Japan.
Nishijima, Daisuke
2016-10-01
This study proposed a modelling technique for estimating life-cycle CO2 emissions of durable goods by considering changes in product lifetime and energy efficiency. The stock and flow of durable goods was modelled by Weibull lifetime distributions and the trend in annual energy efficiency (i.e., annual electricity consumption) of an "average" durable good was formulated as a reverse logistic curve including a technologically critical value (i.e., limit energy efficiency) with respect to time. I found that when the average product lifetime is reduced, there is a trade-off between the reduction in emissions during product use (use phase), due to the additional purchases of new, more energy-efficient air conditioners, and the increase in emissions arising from the additional production of new air conditioners stimulated by the reduction of the average product lifetime. A scenario analysis focused on residential air conditioners in Japan during 1972-2013 showed that for a reduction of average lifetime of 1 year, if the air conditioner energy efficiency limit can be improved by 1.4% from the estimated current efficiency level, then CO2 emissions can be reduced by approximately the same amount as for an extension of average product lifetime of 1 year. Copyright © 2016 Elsevier Ltd. All rights reserved.
Optical Basicity and Nepheline Crystallization in High Alumina Glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Carmen P.; McCloy, John S.; Schweiger, M. J.
2011-02-25
The purpose of this study was to find compositions that increase waste loading of high-alumina wastes beyond what is currently acceptable while avoiding crystallization of nepheline (NaAlSiO4) on slow cooling. Nepheline crystallization has been shown to have a large impact on the chemical durability of high-level waste glasses. It was hypothesized that there would be some composition regions where high-alumina would not result in nepheline crystal production, compositions not currently allowed by the nepheline discriminator. Optical basicity (OB) and the nepheline discriminator (ND) are two ways of describing a given complex glass composition. This report presents the theoretical and experimentalmore » basis for these models. They are being studied together in a quadrant system as metrics to explore nepheline crystallization and chemical durability as a function of waste glass composition. These metrics were calculated for glasses with existing data and also for theoretical glasses to explore nepheline formation in Quadrant IV (passes OB metric but fails ND metric), where glasses are presumed to have good chemical durability. Several of these compositions were chosen, and glasses were made to fill poorly represented regions in Quadrant IV. To evaluate nepheline formation and chemical durability of these glasses, quantitative X-ray diffraction (XRD) analysis and the Product Consistency Test were conducted. A large amount of quantitative XRD data is collected here, both from new glasses and from glasses of previous studies that had not previously performed quantitative XRD on the phase assemblage. Appendix A critically discusses a large dataset to be considered for future quantitative studies on nepheline formation in glass. Appendix B provides a theoretical justification for choice of the oxide coefficients used to compute the OB criterion for nepheline formation.« less
NASA Astrophysics Data System (ADS)
Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Loginov, Alexander P.; Mosiyash, Denis S.; Akchurin, Garif G.
2018-04-01
The paper provides a justification and a comparative analysis of the scaling directions of the developed and investigated planar triode field emission cathode unit with the aim of increasing the maximum field current density up to 0.75 A-cm-2 without sacrificing durability. The design features of the vacuum device with a planar structure provided low-voltage control - at 150 V in the mode of long-term durability and not more than 250 V in the mode of the maximum permissible emission current.
Carbon nanocages: A new support material for Pt catalyst with remarkably high durability
Wang, Xiao Xia; Tan, Zhe Hua; Zeng, Min; Wang, Jian Nong
2014-01-01
Low durability is the major challenge hindering the large-scale implementation of proton exchange membrane fuel cell (PEMFC) technology, and corrosion of carbon support materials of current catalysts is the main cause. Here, we describe the finding of remarkably high durability with the use of a novel support material. This material is based on hollow carbon nanocages developed with a high degree of graphitization and concurrent nitrogen doping for oxidation resistance enhancement, uniform deposition of fine Pt particles, and strong Pt-support interaction. Accelerated degradation testing shows that such designed catalyst possesses a superior electrochemical activity and long-term stability for both hydrogen oxidation and oxygen reduction relative to industry benchmarks of current catalysts. Further testing under conditions of practical fuel cell operation reveals almost no degradation over long-term cycling. Such a catalyst of high activity, particularly, high durability, opens the door for the next-generation PEMFC for “real world” application. PMID:24658614
Durability reliability analysis for corroding concrete structures under uncertainty
NASA Astrophysics Data System (ADS)
Zhang, Hao
2018-02-01
This paper presents a durability reliability analysis of reinforced concrete structures subject to the action of marine chloride. The focus is to provide insight into the role of epistemic uncertainties on durability reliability. The corrosion model involves a number of variables whose probabilistic characteristics cannot be fully determined due to the limited availability of supporting data. All sources of uncertainty, both aleatory and epistemic, should be included in the reliability analysis. Two methods are available to formulate the epistemic uncertainty: the imprecise probability-based method and the purely probabilistic method in which the epistemic uncertainties are modeled as random variables. The paper illustrates how the epistemic uncertainties are modeled and propagated in the two methods, and shows how epistemic uncertainties govern the durability reliability.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned CMC components to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing advanced environmental barrier coating systems, the coating integrations with next generation CMC turbine components having improved environmental stability, cyclic durability and system performance will be described. The development trends for turbine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
Barber, Grant E; Yajnik, Vijay; Khalili, Hamed; Giallourakis, Cosmas; Garber, John; Xavier, Ramnik; Ananthakrishnan, Ashwin N
2016-12-01
One-fifth of patients with Crohn's disease (CD) are primary non-responders to anti-tumor necrosis factor (anti-TNF) therapy, and an estimated 10-15% will fail therapy annually. Little is known about the genetics of response to anti-TNF therapy. The aim of our study was to identify genetic factors associated with primary non-response (PNR) and loss of response to anti-TNFs in CD. From a prospective registry, we characterized the response of 427 CD patients to their first anti-TNF therapy. Patients were designated as achieving primary response, durable response, and non-durable response based on clinical, endoscopic, and radiologic criteria. Genotyping was performed on the Illumina Immunochip. Separate genetic scores based on presence of predictive genetic alleles were calculated for PNR and durable response and performance of clinical and genetics models were compared. From 359 patients, 36 were adjudged to have PNR (10%), 200 had durable response, and 74 had non-durable response. PNRs had longer disease duration and were more likely to be smokers. Fifteen risk alleles were associated with PNR. Patients with PNR had a significantly higher genetic risk score (GRS) (P =8 × 10 -12 ). A combined clinical-genetic model more accurately predicted PNR when compared with a clinical only model (0.93 vs. 0.70, P <0.001). Sixteen distinct single nucleotide polymorphisms predicted durable response with a higher GRS (P =7 × 10 -13 ). The GRSs for PNR and durable response were not mutually correlated, suggesting distinct mechanisms. Genetic risk alleles can predict primary non-response and durable response to anti-TNF therapy in CD.
NASA Technical Reports Server (NTRS)
Halford, Gary R.; Shah, Ashwin; Arya, Vinod K.; Krause, David L.; Bartolotta, Paul A.
2002-01-01
Deep-space missions require onboard electric power systems with reliable design lifetimes of up to 10 yr and beyond. A high-efficiency Stirling radioisotope power system is a likely candidate for future deep-space missions and Mars rover applications. To ensure ample durability, the structurally critical heater head of the Stirling power convertor has undergone extensive computational analyses of operating temperatures (up to 650 C), stresses, and creep resistance of the thin-walled Inconel 718 bill of material. Durability predictions are presented in terms of the probability of survival. A benchmark structural testing program has commenced to support the analyses. This report presents the current status of durability assessments.
DOT National Transportation Integrated Search
2015-05-01
Freezing and thawing damage is the most common cause of distress in : Kansas pavements. Many locally available aggregates in Kansas do not : meet current standards for use in concrete pavements because of poor : freeze-thaw durability. The use of nan...
DOT National Transportation Integrated Search
2015-05-01
Freezing and thawing damage is the most common cause of distress in Kansas pavements. Many : locally available aggregates in Kansas do not meet current standards for use in concrete pavements because : of poor freeze-thaw durability. The use of nanot...
40 CFR 86.094-13 - Light-duty exhaust durability programs.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and Heavy-Duty Engines, and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled... selection methods, durability data vehicle compliance requirements, in-use verification requirements... provisions of § 86.094-25. (3) Vehicle/component selection method. Durability data vehicles shall be selected...
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2015-01-01
Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is a key to enable the applications of the envisioned 2700-3000F EBC - CMC systems to help achieve next generation engine performance and durability goals. This paper will primarily address the performance requirements and design considerations of environmental barrier coatings for turbine engine applications. The emphasis is placed on current NASA candidate environmental barrier coating systems for SiCSiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, cyclic durability, erosion-impact resistance, and long-term system performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be discussed.
Out of hospital point of care ultrasound: current use models and future directions.
Nelson, B P; Sanghvi, A
2016-04-01
Ultrasound has evolved from a modality that was once exclusively reserved to certain specialities of its current state, in which its portability and durability lend to its broadly increasing applications. This review describes portable ultrasound in the hospital setting and its comparison to gold standard imaging modalities. Also, this review summarizes current literature describing portable ultrasound use in prehospital, austere and remote environments, highlighting successes and barriers to use in these environments. Prehospital ultrasound has the ability to increase diagnostic ability and allow for therapeutic intervention in the field. In austere environments, ultrasound may be the only available imaging modality and thus can guide diagnosis, therapeutics and determine which patients may need emergent transfer to a healthcare facility. The most cutting edge applications of portable ultrasound employ telemedicine to obtain and transmit ultrasound images. This technology and ability to transmit images via satellite and cellular transmission can allow for even novice users to obtain interpretable images in austere environments. Portable ultrasound uses have steadily grown and will continue to do so with the introduction of more portable and durable technologies. As applications continue to grow, certain technologic considerations and future directions are explored.
Progressive failure methodologies for predicting residual strength and life of laminated composites
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Obrien, T. Kevin
1991-01-01
Two progressive failure methodologies currently under development by the Mechanics of Materials Branch at NASA Langley Research Center are discussed. The damage tolerance/fail safety methodology developed by O'Brien is an engineering approach to ensuring adequate durability and damage tolerance by treating only delamination onset and the subsequent delamination accumulation through the laminate thickness. The continuum damage model developed by Allen and Harris employs continuum damage laws to predict laminate strength and life. The philosophy, mechanics framework, and current implementation status of each methodology are presented.
NASA Astrophysics Data System (ADS)
Palaniswamy, Hariharasudhan; Kanthadai, Narayan; Roy, Subir; Beauchesne, Erwan
2011-08-01
Crash, NVH (Noise, Vibration, Harshness), and durability analysis are commonly deployed in structural CAE analysis for mechanical design of components especially in the automotive industry. Components manufactured by stamping constitute a major portion of the automotive structure. In CAE analysis they are modeled at a nominal state with uniform thickness and no residual stresses and strains. However, in reality the stamped components have non-uniformly distributed thickness and residual stresses and strains resulting from stamping. It is essential to consider the stamping information in CAE analysis to accurately model the behavior of the sheet metal structures under different loading conditions. Especially with the current emphasis on weight reduction by replacing conventional steels with aluminum and advanced high strength steels it is imperative to avoid over design. Considering this growing need in industry, a highly automated and robust method has been integrated within Altair Hyperworks® to initialize sheet metal components in CAE models with stamping data. This paper demonstrates this new feature and the influence of stamping data for a full car frontal crash analysis.
TTK Chitra tilting disc heart valve model TC2: An assessment of fatigue life and durability.
Subhash, N N; Rajeev, Adathala; Sujesh, Sreedharan; Muraleedharan, C V
2017-08-01
Average age group of heart valve replacement in India and most of the Third World countries is below 30 years. Hence, the valve for such patients need to be designed to have a service life of 50 years or more which corresponds to 2000 million cycles of operation. The purpose of this study was to assess the structural performance of the TTK Chitra tilting disc heart valve model TC2 and thereby address its durability. The TC2 model tilting disc heart valves were assessed to evaluate the risks connected with potential structural failure modes. To be more specific, the studies covered the finite element analysis-based fatigue life prediction and accelerated durability testing of the tilting disc heart valves for nine different valve sizes. First, finite element analysis-based fatigue life prediction showed that all nine valve sizes were in the infinite life region. Second, accelerated durability test showed that all nine valve sizes remained functional for 400 million cycles under experimental conditions. The study ensures the continued function of TC2 model tilting disc heart valves over duration in excess of 50 years. The results imply that the TC2 model valve designs are structurally safe, reliable and durable.
An empirical model for optimal highway durability in cold regions.
DOT National Transportation Integrated Search
2016-03-10
We develop an empirical tool to estimate optimal highway durability in cold regions. To test the model, we assemble a data set : containing all highway construction and maintenance projects in Arizona and Washington State from 1990 to 2014. The data ...
Prediction of glass durability as a function of environmental conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C M
1988-01-01
A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medievalmore » window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.« less
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2016-01-01
This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.
Co-extrusion of WPCs with a clear cap layer to improve color stability
Nicole M. Stark; Laurent M. Matuana
2009-01-01
Wood-plastic composites (WPCs) have been gaining market share in residential construction applications such as lumber for decking, roof tiles, and siding. The durability of these materials in exterior environments is just beginning to be understood. Current research suggests that controlling moisture absorption by the composite is key to improving durability. Methods...
Comparative durability of timber bridges in the USA
James P. Wacker; Brian K. Brashaw
2017-01-01
As engineers begin to utilize life-cycle-cost design approaches for timber bridges, there is a necessity for more reliable data about their durability and expected service life. This paper summarizes a comprehensive effort to assess the current condition of more than one hundred timber highway bridge superstructures throughout the United States. This national study was...
Green technology for durable finishing of viscose fibers via self-formation of AuNPs.
Emam, Hossam E; El-Hawary, Nancy S; Ahmed, Hanan B
2017-03-01
Sensitivity of dyes' colors to the surrounding environment causes lower durability and stability of color, which reflects the importance of durable finishing treatment. Current technique offered antimicrobial/durable finishing of viscose fibers through direct formation of AuNPs inside fibers macromolecules without using any external agents. By using the reducing properties of cellulose in viscose, Au +3 was reduced to AuNPs and CHO/OH of cellulose subsequently were oxidized to COOH. For comparison, two different media were used; aqueous and alkaline. Increasing the reactivity and accessibility of cellulose macromolecules in alkali leaded to enlargement of the reduction process and more incorporation of AuNPs. Size of AuNPs inside fiber was recorded to be in range of 22-112nm and 14-100nm, in case of using aqueous and alkaline medium, respectively. Structure and properties of fibers were not changed by treatment according to XRD and ATR-FTIR data. The treated fibers were acquired durable violet color by the action of LSPR for AuNPs and darker color obtained using higher Au +3 concentration. The treated fibers exhibited good inhibition against different pathogenic microbes including bacteria and fungi. One-pot, quite simple, inexpensive, green and industrial viable are the significant advantages of the current technique for viscose finishing (pigmentation and antimicrobial action). Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Jianyun; Ersan, Yusuf Cagatay; Boon, Nico; De Belie, Nele
2016-04-01
The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.
NASA Astrophysics Data System (ADS)
Sun, Feiran; Sun, Zhenguo; Chen, Qiang
2016-02-01
In order to improve the ultrasonic wave amplitude excited by electromagnetic acoustic transducers (EMATs), many researchers have proposed models. But they always ignored displacement current or the effect of the permittivity of the air or the metal sample during modeling, due to its low permittivity. However, more durable dielectric materials are replacing or coating with metals in many applications which have a much higher permittivity than air or metal sample so that the effect of permittivity cannot be ignored. Based on an analytical model, the effect of the permittivity of coating layer on the eddy current generated in an aluminum sample by EMAT has been studied. The analytical analysis indicates that the eddy current density excited by the spiral coil of EMAT slowly increases in the beginning and then decreases rapidly while the permittivity increases, and it has much relation to the thickness of the coating layer and the exciting frequency, which is verified by the simulation result.
NASA Astrophysics Data System (ADS)
Amano, Tomoki; Kondo, Hiroki; Takeda, Keigo; Ishikawa, Kenji; Kano, Hiroyuki; Hiramatsu, Mineo; Sekine, Makoto; Hori, Masaru
2016-09-01
We recently have established ultrahigh-speed synthesis method of nanographene materials employing in-liquid plasma, and reported high durability of Pt/nanographene composites as a fuel cell catalyst. Crystallinity and domain size of nanographene materials were essential to their durability. However, their mechanism is not clarified yet. In this study, we investigated the oxygen reduction reaction using three-types of nanographene materials with different crystallinity and domain sizes, which were synthesized using ethanol, 1-propanol and 1-butanol, respectively. According to our previous studies, the nanographene material synthesized using the lower molecular weight alcohol has the higher crystallinity and larger domain size. Pt nanoparticles were supported on the nanographene surfaces by reducing 8 wt% H2PtCl6 diluted with H2O. Oxygen reduction current densities at a potential of 0.2 V vs. RHE were 5.43, 5.19 and 3.69 mA/cm2 for the samples synthesized using ethanol, 1-propanol and 1-butanol, respectively. This means that the higher crystallinity nanographene showed the larger oxygen reduction current density. The controls of crystallinity and domain size of nanographene materials are essential to not only their durability but also highly efficiency as catalyst electrodes.
Jessop, Zita M; Javed, Muhammad; Otto, Iris A; Combellack, Emman J; Morgan, Siân; Breugem, Corstiaan C; Archer, Charles W; Khan, Ilyas M; Lineaweaver, William C; Kon, Moshe; Malda, Jos; Whitaker, Iain S
2016-01-28
Recent advances in regenerative medicine place us in a unique position to improve the quality of engineered tissue. We use auricular cartilage as an exemplar to illustrate how the use of tissue-specific adult stem cells, assembly through additive manufacturing and improved understanding of postnatal tissue maturation will allow us to more accurately replicate native tissue anisotropy. This review highlights the limitations of autologous auricular reconstruction, including donor site morbidity, technical considerations and long-term complications. Current tissue-engineered auricular constructs implanted into immune-competent animal models have been observed to undergo inflammation, fibrosis, foreign body reaction, calcification and degradation. Combining biomimetic regenerative medicine strategies will allow us to improve tissue-engineered auricular cartilage with respect to biochemical composition and functionality, as well as microstructural organization and overall shape. Creating functional and durable tissue has the potential to shift the paradigm in reconstructive surgery by obviating the need for donor sites.
Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection.
Pilet-Nayel, Marie-Laure; Moury, Benoît; Caffier, Valérie; Montarry, Josselin; Kerlan, Marie-Claire; Fournet, Sylvain; Durel, Charles-Eric; Delourme, Régine
2017-01-01
Quantitative resistance has gained interest in plant breeding for pathogen control in low-input cropping systems. Although quantitative resistance frequently has only a partial effect and is difficult to select, it is considered more durable than major resistance (R) genes. With the exponential development of molecular markers over the past 20 years, resistance QTL have been more accurately detected and better integrated into breeding strategies for resistant varieties with increased potential for durability. This review summarizes current knowledge on the genetic inheritance, molecular basis, and durability of quantitative resistance. Based on this knowledge, we discuss how strategies that combine major R genes and QTL in crops can maintain the effectiveness of plant resistance to pathogens. Combining resistance QTL with complementary modes of action appears to be an interesting strategy for breeding effective and potentially durable resistance. Combining quantitative resistance with major R genes has proven to be a valuable approach for extending the effectiveness of major genes. In the plant genomics era, improved tools and methods are becoming available to better integrate quantitative resistance into breeding strategies. Nevertheless, optimal combinations of resistance loci will still have to be identified to preserve resistance effectiveness over time for durable crop protection.
NASA Astrophysics Data System (ADS)
Ekolu, O. S.
2015-11-01
Amongst the scientific community, the interest in durability of concrete structures has been high for quite a long time of over 40 years. Of the various causes of degradation of concrete structures, corrosion is the most widespread durability problem and carbonation is one of the two causes of steel reinforcement corrosion. While much scientific understanding has been gained from the numerous carbonation studies undertaken over the past years, it is still presently not possible to accurately predict carbonation and apply it in design of structures. This underscores the complex nature of the mechanisms as influenced by several interactive factors. Based on critical literature and some experience of the author, it is found that there still exist major challenges in establishing a mathematical constitutive relation for realistic carbonation prediction. While most current models employ permeability /diffusion as the main model property, analysis shows that the most practical material property would be compressive strength, which has a low coefficient of variation of 20% compared to 30 to 50% for permeability. This important characteristic of compressive strength, combined with its merit of simplicity and data availability at all stages of a structure's life, promote its potential use in modelling over permeability. By using compressive strength in carbonation prediction, the need for accelerated testing and permeability measurement can be avoided. This paper attempts to examine the issues associated with carbonation prediction, which could underlie the current lack of a sound established prediction method. Suggestions are then made for possible employment of different or alternative approaches.
NASA Astrophysics Data System (ADS)
Inagaki, S.; Sueoka, S.; Harafuji, K.
2017-06-01
Three surface modifications of indium tin oxide (ITO) are experimentally investigated to improve the performance of small-molecule organic solar cells (OSCs) with an ITO/anode buffer layer (ABL)/copper phthalocyanine (CuPc)/fullerene/bathocuproine/Ag structure. An ultrathin Ag ABL and ultraviolet (UV)-ozone treatment of ITO independently improve the durability of OSCs against illumination stress. The thin pentacene ABL provides good ohmic contact between the ITO and the CuPc layer, thereby producing a large short-circuit current. The combined use of the abovementioned three modifications collectively achieves both better initial performance and durability against illumination stress.
Emerging materials: what will durable materials look like in 2020?
Jerrold E. Winandy
2002-01-01
What materials will emerge from todayâs research ideas to become the commonly accepted building products of 2020? What will durable materials look like in 2020? This paper attempts to address these questions by considering some current trends and then presenting a series of ideas of what the next 2 decades may hold from an emerging materials standpoint for North...
Evolutionary model of an anonymous consumer durable market
NASA Astrophysics Data System (ADS)
Kaldasch, Joachim
2011-07-01
An analytic model is presented that considers the evolution of a market of durable goods. The model suggests that after introduction goods spread always according to a Bass diffusion. However, this phase will be followed by a diffusion process for durable consumer goods governed by a variation-selection-reproduction mechanism and the growth dynamics can be described by a replicator equation. The theory suggests that products play the role of species in biological evolutionary models. It implies that the evolution of man-made products can be arranged into an evolutionary tree. The model suggests that each product can be characterized by its product fitness. The fitness space contains elements of both sites of the market, supply and demand. The unit sales of products with a higher product fitness compared to the mean fitness increase. Durables with a constant fitness advantage replace other goods according to a logistic law. The model predicts in particular that the mean price exhibits an exponential decrease over a long time period for durable goods. The evolutionary diffusion process is directly related to this price decline and is governed by Gompertz equation. Therefore it is denoted as Gompertz diffusion. Describing the aggregate sales as the sum of first, multiple and replacement purchase the product life cycle can be derived. Replacement purchase causes periodic variations of the sales determined by the finite lifetime of the good (Juglar cycles). The model suggests that both, Bass- and Gompertz diffusion may contribute to the product life cycle of a consumer durable. The theory contains the standard equilibrium view of a market as a special case. It depends on the time scale, whether an equilibrium or evolutionary description is more appropriate. The evolutionary framework is used to derive also the size, growth rate and price distribution of manufacturing business units. It predicts that the size distribution of the business units (products) is lognormal, while the growth rates exhibit a Laplace distribution. Large price deviations from the mean price are also governed by a Laplace distribution (fat tails). These results are in agreement with empirical findings. The explicit comparison of the time evolution of consumer durables with empirical investigations confirms the close relationship between price decline and Gompertz diffusion, while the product life cycle can be described qualitatively for a long time period.
NASA Astrophysics Data System (ADS)
Baker, Andrew M.
Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices which generate electricity from the electrochemical reaction of hydrogen and oxygen. Currently, widespread adoption of PEM fuel cell technology is hindered by low component durability and high costs. In this work, strategies were investigated to improve the mechanical and chemical durability of the ion conducting polymer, or ionomer, which comprises the PEM, in order to directly address these limitations. Owing to their exceptional mechanical properties, carbon nanotubes (CNTs) were investigated for mechanical reinforcement of the PEM. Because of their electronic conductivity, which diminishes cell performance, two strategies were developed to enable the use of CNTs as PEM reinforcement. These systems result in enhanced mechanical properties without sacrificing performance of the PEM during operation. Further, when coated with ceria (CeO2), which scavenges radicals that are generated during operation and cause PEM chemical degradation by attacking vulnerable chemical groups in the ionomer, MWCNTs further improved PEM chemical durability. During cell fabrication, conditioning, and discharge, Ce rapidly migrates between the PEM and catalyst layers (CLs), which reduces catalyst efficiency and leaves areas of the cell defenseless against radical attacks. Therefore, in order to stabilize Ce and localize it to areas of highest radical generation, it is critical to understand and identify the relative influences of different migration mechanisms. Using a novel elemental analysis technique, Ce migration was characterized due to potential and concentration gradients, water flux, and degradation of Ce-exchanged sulfonic acid groups within the PEM. Additionally, Zr-doped ceria was employed to resist migration due to ionomer degradation which improved cell durability, without reducing performance, resulting in PEM Ce stabilization near its initial concentrations after > 1,400 hours of testing. Ce was not observed to leave the cell during stress testing, however, it does irreversibly accumulate in the CLs, which reduces its scavenging efficacy in the system. In order to model Ce migration during fuel cell operation, the relevant Ce transport coefficients were determined under a range of conditions. This knowledge enables the development of additional system control and material engineering strategies to mitigate Ce migration in order to reduce performance losses and improve cell durability.
Lightweight, durable lead-acid batteries
Lara-Curzio, Edgar [Lenoir City, TN; An, Ke [Knoxville, TX; Kiggans, Jr., James O.; Dudney, Nancy J [Knoxville, TN; Contescu, Cristian I [Knoxville, TN; Baker, Frederick S [Oak Ridge, TN; Armstrong, Beth L [Clinton, TN
2011-09-13
A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
Lightweight, durable lead-acid batteries
Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L
2013-05-21
A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2016-01-01
This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corum, J.M.; Simpson, W.A. Jr.; Sun, C.T.
1995-07-01
A key unanswered question that must be addressed before polymeric composites will be widely used in automotive structural components is their known durability. Major durability issues are the effects that cyclic loadings, creep, automotive fluid environments, and low-energy impacts have on dimensional stability, strength, and stiffness throughout the required life of a composite component. This report reviews the current state of understanding in each of these areas. It also discusses the limited information that exists on one of the prime candidate materials for automotive structural applications--an isocyanurate reinforced with a continuous strand, swirl mat. Because of the key role thatmore » nondestructive evaluations must play in understanding damage development and progression, a chapter is included on ultrasonic techniques. A final chapter then gives conclusions and recommendations for research needed to resolve the various durability issues. These recommendations will help provide a sound basis for program planning for the Durability of Lightweight Composite Structures Project sponsored by the US Department of Energy in cooperation with the Automotive Composites Consortium of Chrysler, Ford, and General Motors.« less
Wilkins, Nicolas J; Rawson, Katherine A
2013-10-01
In Rickard, Lau, and Pashler's (2008) investigation of the lag effect on memory-based automaticity, response times were faster and proportion of trials retrieved was higher at the end of practice for short lag items than for long lag items. However, during testing after a delay, response times were slower and proportion of trials retrieved was lower for short lag items than for long lag items. The current study investigated the extent to which the lag effect on the durability of memory-based automaticity is due to interference or to the loss of memory strength with time. Participants repeatedly practiced alphabet subtraction items in short lag and long lag conditions. After practice, half of the participants were immediately tested and the other half were tested after a 7-day delay. Results indicate that the lag effect on the durability of memory-based automaticity is primarily due to interference. We discuss potential modification of current memory-based processing theories to account for these effects. © 2013.
Environmental durability of ceramics and ceramic composites
NASA Technical Reports Server (NTRS)
Fox, Dennis S.
1992-01-01
An account is given of the current understanding of the environmental durability of both monolithic ceramics and ceramic-matrix composites, with a view to the prospective development of methods for the characterization, prediction, and improvement of ceramics' environmental durability. Attention is given to the environmental degradation behaviors of SiC, Si3N4, Al2O3, and glass-ceramic matrix compositions. The focus of corrosion prevention in Si-based ceramics such as SiC and Si3N4 is on the high and low sulfur fuel combustion-product effects encountered in heat engine applications of these ceramics; sintering additives and raw material impurities are noted to play a decisive role in ceramics' high temperature environmental response.
Toward improved durability in advanced aircraft engine hot sections
NASA Technical Reports Server (NTRS)
Sokolowski, Daniel E. (Editor)
1989-01-01
The conference on durability improvement methods for advanced aircraft gas turbine hot-section components discussed NASA's Hot Section Technology (HOST) project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.
Directable weathering of concave rock using curvature estimation.
Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew
2010-01-01
We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.
Nitta, S; Yambe, T; Katahira, Y; Sonobe, T; Saijoh, Y; Naganuma, S; Akiho, H; Kakinuma, Y; Tanaka, M; Miura, M
1991-12-01
To evaluate the various basic designs of the pump chambers used in the ventricular assist devices (VADs), hydrodynamic endurance test was performed from the viewpoint of the durability of the prosthetic valves used in the VAD. For the hydrodynamic analysis, we designed three basic types of pump (sac type, diaphragm type, and pusher plate type) using the same material and having the same capacity and shape. Prosthetic valves in these VADs were tested from the standpoint of the water hammer effect, which affects the valve durability, to determine which pump design would be most durable as a prosthetic valve in the VAD. The water-hammer phenomenon was evaluated using the maximum pressure gradient (MPG) across the prosthetic valve in the moc circulatory loop. Maximum pump output was recorded when we used the diaphragm type model, and minimum MPG in the commonly used driving condition of the VAD were recorded when we used the sac type model. The results suggest that the sac type VAD model is the most durable design for the prosthetic value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SealSim 1.1 is a state-of-the-art, Microsoft Windows based computer program developed for the U.S. Department of Energy by Aspen Research Corporation with Contracted support from TNO TPD. It is intended to be used by manufacturers, engineers, educators, students, architects, and others to help determine the relative durability of Insulating Glass Units (IGU). As a function of time, SealSim 1.1 simulates the behaviour of an Insulating Glass Unit, exposed to realistic or user-defined weather climates. Stresses and strains in the IGU are calculated as a function of time, together with temperature distributions, gas permeation effects (gas loss, desiccant loading), dew pointmore » temperature, U-factor, etc. The current version of SealSim 1.1 supports double-glazing Units. where the spacer system is either a Thermo Plastic Spacer (TPS) or Box type spacer. For the determination of solar properties of glazing systems, SealSim 1.1 uses the Tntemational Glazing Database of LBNL, which is also used by OPTICS and WINDOW. The goal of the SealSim 1.1 simulations is to predict the IGU's average lifetime, expressed in terms of the "Durability Index", together with the associated failure mechanisms. The Durability Index of a particular IGU and its most probable failure mechanism can be compared with other IGU's. How the predicted Durability Index relates to the actual durability of an IGU is not known, simply because sufficient experimental data is lacking for describing the behaviour of IG Units over extended periods of time together with a lack of knowledge of the conditions it is subjected to and initial state of the CU at the time of manufacturing. In order to simulate the IGU behaviour in time, the conditions of the IGU must be defined; together with the weather and or climate that the IGU is subjected to. Using physical models of the IGU, SealSim 1.1 calculates tte response of the CU in time. These physical models are described in more detail in separate documents provided with the SealSim 1.1 program. Though much care was taken to test the correct implementation of physical sub models in SealSim 1.1, make the graphical user interface intuitive, making it robust, and to check all options that are available in SealSim 1.1, it will certainly suffer from the deficiencies of a first release. Aspen Research Corporation 1700 Buerkle Road St Paul, Minnesota 55110« less
NASA Astrophysics Data System (ADS)
Wendel, Christopher H.; Gao, Zhan; Barnett, Scott A.; Braun, Robert J.
2015-06-01
Electrical energy storage is expected to be a critical component of the future world energy system, performing load-leveling operations to enable increased penetration of renewable and distributed generation. Reversible solid oxide cells, operating sequentially between power-producing fuel cell mode and fuel-producing electrolysis mode, have the capability to provide highly efficient, scalable electricity storage. However, challenges ranging from cell performance and durability to system integration must be addressed before widespread adoption. One central challenge of the system design is establishing effective thermal management in the two distinct operating modes. This work leverages an operating strategy to use carbonaceous reactant species and operate at intermediate stack temperature (650 °C) to promote exothermic fuel-synthesis reactions that thermally self-sustain the electrolysis process. We present performance of a doped lanthanum-gallate (LSGM) electrolyte solid oxide cell that shows high efficiency in both operating modes at 650 °C. A physically based electrochemical model is calibrated to represent the cell performance and used to simulate roundtrip operation for conditions unique to these reversible systems. Design decisions related to system operation are evaluated using the cell model including current density, fuel and oxidant reactant compositions, and flow configuration. The analysis reveals tradeoffs between electrical efficiency, thermal management, energy density, and durability.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1987-01-01
A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on May 12 and 13, 1987, at the NASA Lewis research Center. Aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics were discussed.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis J.
2015-01-01
Advanced environmental barrier coating (EBC) systems for low emission SiCSiC CMC combustors and turbine airfoils have been developed to meet next generation engine emission and performance goals. This presentation will highlight the developments of NASAs current EBC system technologies for SiC-SiC ceramic matrix composite combustors and turbine airfoils, their performance evaluation and modeling progress towards improving the engine SiCSiC component temperature capability and long-term durability. Our emphasis has also been placed on the fundamental aspects of the EBC-CMC creep and fatigue behaviors, and their interactions with turbine engine oxidizing and moisture environments. The EBC-CMC environmental degradation and failure modes, under various simulated engine testing environments, in particular involving high heat flux, high pressure, high velocity combustion conditions, will be discussed aiming at quantifying the protective coating functions, performance and durability, and in conjunction with damage mechanics and fracture mechanics approaches.
Degradation mechanisms and accelerated testing in PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, Rodney L; Mukundan, Rangachary
2010-01-01
The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise frommore » component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.« less
Improving the Efficiency and Durability of Reversible Solid Oxide Cells for Energy Storage
NASA Astrophysics Data System (ADS)
Hughes, Gareth Allen
This thesis presents research on the use of solid oxide cells (SOCs) as energy storage devices, and covers methods to improve their efficiency and durability for this use. It specifically covers two main topics: the durability of the oxygen electrode under forced alternating current, and the effect of pressurization on various oxygen electrode materials. Additionally, research was completed on thermodynamic modeling of a pressurized SOC energy storage system, and a new experimental testing apparatus was constructed to enable investigation of SOC samples operating under pressure. Forced alternating current using a symmetric sample structure was used to simulate the operation of a reversible SOC, effectively isolating the measurement of the performance response of the oxygen electrode. Cells consisting of La 0.8Sr0.2MnO3-delta - 8mol% Y2O 3-stabilized ZrO2 (LSM-YSZ) oxygen electrodes on YSZ electrolytes were tested. Early testing utilizing Ag current collectors showed that forced currents and the elevated operating temperature of SOCs cause silver to vaporize and deposit at the active region of the electrode. To avoid this artifact, a new test setup utilizing LSM current collectors was created. It was found that a shorter current cycling time of 1 hour helps prevent degradation compared to 12 hour cycles. Additionally, both cycling times showed improvement compared cells operated with dc current. Further study showed that operating at current densities of 0.8 A/cm2 and below can prevent degradation entirely. Pressurization of oxygen electrodes showed, as expected, that polarization resistance decreases with increasing oxygen pressure. The materials tested were LSM-YSZ and La0.6Sr0.4Fe0.8Co0.2 O3-d - Ce0.8Gd0.2O1.95 (LSCF-GDC), both in single-phase and composite electrode structures. Additionally, LSM-infiltrated YSZ was tested. The resistance typically decreased following power-law behavior with exponents ranging from -0.17 to -0.30, with similar trends found in all material systems and electrode structures. The electrodes showed resistance decreases of factors between 1.4 and 3.5 on going from 0.1 atm O2 to 10 atm O2. The electrodes containing LSM each showed distinct features in their frequency responses and capacitances, while the two LSCF containing electrode showed very similar features. The resistance decreases were attributed to decreased charge transfer reaction limitations and accelerated adsorption and surface migration of oxygen ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
Ahluwalia, R. K.; Wang, X.; Peng, J. -K.; ...
2018-04-25
Here, the durability of de-alloyed platinum-nickel catalysts supported on high-surface area carbon (d-PtNi/C) in optimized electrodes and membrane electrode assemblies (MEAs) under an accelerated stress test (AST) protocol is investigated with the objective of developing a quantitative understanding of the degradation mechanisms and their relationship to the electrode structure, pre-conditioning, and operating conditions. It is found that the cell degradation can be mitigated by controlling the voltage cycle, acid washing the MEA to remove Ni contaminants that enter the electrode and membrane during fabrication, and monitoring the operating conditions. For example, the electrochemical surface area (ECSA) loss is <25% aftermore » 30,000 triangle cycles with 0.925 V upper potential limit if the MEA is acid washed and extensive diagnostics are avoided. The parameters that exacerbate the cell degradation also accelerate the rate at which Ni leaches out from the catalyst. A mechanistic model is presented for the degradation in performance of d-PtNi/C electrodes. The model correlates a) the degradation in ORR mass and specific activities with ECSA and Ni losses, b) the decrease in limiting current density ( iL), which is inversely proportional to the O 2 mass transport resistance, with the degradation in catalyst roughness factor, and c) the increase in mass transfer overpotentials with the reduced current density, i/iL .« less
Electrocatalysts by atomic layer deposition for fuel cell applications
Cheng, Niancai; Shao, Yuyan; Liu, Jun; ...
2016-01-22
Here, fuel cells are a promising technology solution for reliable and clean energy because they offer high energy conversion efficiency and low emission of pollutants. However, high cost and insufficient durability are considerable challenges for widespread adoption of polymer electrolyte membrane fuel cells (PEMFCs) in practical applications. Current PEMFCs catalysts have been identified as major contributors to both the high cost and limited durability. Atomic layer deposition (ALD) is emerging as a powerful technique for solving these problems due to its exclusive advantages over other methods. In this review, we summarize recent developments of ALD in PEMFCs with a focusmore » on design of materials for improved catalyst activity and durability. New research directions and future trends have also been discussed.« less
Long-term micro-Deval durability of andesite aggregate
NASA Astrophysics Data System (ADS)
Czinder, Balázs; Török, Ákos
2017-04-01
Micro-Deval tests have been intensively used for analysing aggregate durability. The tests procedure described in details in the European Norm (EN 1097-1:2011). The current research intends to evaluate the long term durability of andesite aggregate by using extended micro-Deval tests. Andesite aggregate from Recsk (Hungary) was used for the tests. The tested andesite is a massive porphyritic biotite amphibol andesite that was formed during Eocene volcanism and forms a part of Mátra Mountains volcanic complex in NE Hungary. The aggregates were crushed and screened. Size fractions of 10.0/14.0 mm representing minimum and maximum grain sizes were used in the tests. 500 g of aggregate specimens were loaded in the steel drum and 2500 ml of water was added besides the 5000 g of steel balls into the device. The steel balls have a diameter of 10 mm according to EN. The test material - in the first stage - was subjected to 12,000 revolutions in the drum. This number is suggested by the EN. The micro-Deval coefficient was calculated after this first stage. Further wear of the andesitic material was tested by using additional revolutions. The increase in revolutions of the drum was in 12,000 rotation steps, reached 48,000 revolutions as a maximum. The tests were aimed to model the wear of aggregate on a longer term. It was also used to assess the durability of the aggregate when it is applied in engineering structures. The micro-Deval test results suggest that additional revolutions caused additional loss in material, i.e. increase in micro-Deval coefficient. A correlation is suggested between the revolution and andesite wear.
WOODSTOVE DURABILITY TESTING PROTOCOL
The report discusses the development of an accelerated laboratory test to simulate in-home woodstove aging and degradation. nown as a stress test, the protocol determines the long-term durability of woodstove models in a 1- to 2-week time frame. wo avenues of research have been t...
NASA Technical Reports Server (NTRS)
Brinson, H. F.
1985-01-01
The utilization of adhesive bonding for composite structures is briefly assessed. The need for a method to determine damage initiation and propagation for such joints is outlined. Methods currently in use to analyze both adhesive joints and fiber reinforced plastics is mentioned and it is indicated that all methods require the input of the mechanical properties of the polymeric adhesive and composite matrix material. The mechanical properties of polymers are indicated to be viscoelastic and sensitive to environmental effects. A method to analytically characterize environmentally dependent linear and nonlinear viscoelastic properties is given. It is indicated that the methodology can be used to extrapolate short term data to long term design lifetimes. That is, the method can be used for long term durability predictions. Experimental results for near adhesive resins, polymers used as composite matrices and unidirectional composite laminates is given. The data is fitted well with the analytical durability methodology. Finally, suggestions are outlined for the development of an analytical methodology for the durability predictions of adhesively bonded composite structures.
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Mccollum, Timothy A.
1994-01-01
The need for efficient, cost effective sources of electrical power in space has led to the development of photovoltaic power systems which make use of novel refractive solar concentrators. These concentrators have been conceived in both point-focus and linear-focus designs. Current concentrator lenses are fabricated from flexible silicones with Fresnel facets along their inside surface. To insure the efficient operation of these power systems, the concentrator lenses must be durable and the silicone material must remain specularly transmitting over a reasonable lifetime in low Earth orbit (LEO) and other space environments. Because of the vulnerability of silicones to atomic oxygen and ultraviolet radiation in LEO these lenses have been coated with a multi-layer metal oxide protective coating. The objective of this research was to evaluate the LEO durability of the multilayer coated silicone for advanced refractive photovoltaic concentrator arrays with respect to optical properties and microstructure. Flat metal oxide coated silicone samples were exposed to ground-laboratory and in-space atomic oxyqen for durability evaluation.
Durability of Ti-6Al-4V/LaRC-PETI-5 adhesive bonded system for HSCT applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parvatareddy, H.; Pasricha, A.; Dillard, D.A.
1996-12-31
Structural adhesive joints are being widely used and studied as alternatives to conventional fasteners in the aerospace, automotive, and other industries. Adhesive bonding offers advantages such as lower weight and lower manufacturing costs. Furthermore, high performance adhesives which are currently being synthesized (e.g. epoxies, phenolics, acrylics, thermoplastic polyimides) offer other useful properties such as higher modulus, higher toughness, and stability at high temperatures. In the present study, the durability of the Ti-6Al-4V/LaRC PETI-5 adhesive bonded system is being evaluated utilizing double cantilever beam (DCB) fracture specimens. These DCB tests have been used extensively to study adhesive joints. The current studymore » is part of a comprehensive study to develop a durable material system for application in the proposed mach 2.4 high speed civil transport (HSCT) aircraft. According to the design criteria, the material system to be used on the aircraft should be durable for over 60,000 hours of flight encountering temperatures during flight in the range of 177{degrees}C. Physical aging and chemical aging of the adhesive material are some of the important issues which have to be evaluated and taken into consideration for predicting the bond durability. In order to simulate the service environment conditions of the HSCT, the Ti-6Al-4V/LaRC PETI-5 bonds were aged in one of three temperatures; 150, 177, and 204{degrees}C, at one of three different environments; atmospheric air, and reduced air pressures of 2 psi air (13.8 KPa) and 0.2 psi air (1.38 KPa).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C. M.; Edwards, T. B.; Trivelpiece, C. L.
Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the DWPF since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it has been poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than relying on statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models formmore » the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to determine, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). One of the process models within PCCS is known as the Thermodynamic Hydration Energy Reaction MOdel (THERMO™). The DWPF will soon be receiving increased concentrations of TiO 2-, Na 2O-, and Cs 2O-enriched wastes from the Salt Waste Processing Facility (SWPF). The SWPF has been built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to validate the existing TiO 2 term in THERMO™ beyond 2.0 wt% in the DWPF, new durability data were developed over the target range of 2.00 to 6.00 wt% TiO 2 and evaluated against the 1995 durability model. The durability was measured by the 7-day Product Consistency Test. This study documents the adequacy of the existing THERMO™ terms. It is recommended that the modified THERMO™ durability models and the modified property acceptable region limits for the durability constraints be incorporated in the next revision of the technical bases for PCCS and then implemented into PCCS. It is also recommended that an reduction of constraints of 4 wt% Al 2O 3 be implemented with no restrictions on the amount of alkali in the glass for TiO 2 values ≥2 wt%. The ultimate limit on the amount of TiO 2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge batch, the waste loading of the sludge batch, and the frit used for vitrification.« less
Effect of Applied Current Density on Cavitation-Erosion Characteristics for Anodized Al Alloy.
Lee, Seung-Jun; Kim, Seong-Jong
2018-02-01
Surface finishing is as important as selection of material to achieve durability. Surface finishing is a process to provide surface with the desired performance and features by applying external forces such as thermal energy or stress. This study investigated the optimum supply current density for preventing from cavitation damages by applying to an anodizing technique that artificially forms on the surface an oxide coating that has excellent mechanical characteristics, such as hardness, wear resistance. Result of hardness test, the greater hardness was associated with greater brittleness, resulting in deleterious characteristics. Consequently, under conditions such as the electrolyte concentration of 10 vol.%, the processing time of 40 min, the electrolyte temperature of 10 °C, and the current density of 20 mA/cm2 were considered to be the optimum anodizing conditions for improvement of durability in seawater.
NASA Astrophysics Data System (ADS)
Xing, Yan; Shen, Tong; Guo, Ting; Wang, Xiuli; Xia, Xinhui; Gu, Changdong; Tu, Jiangping
2018-04-01
Si/C composites are currently the most commercially viable next-generation lithium-ion battery anode materials due to their high specific capacity. However, there are still many obstacles need to be overcome such as short cycle life and poor conductivity. In this work, we design and successfully synthesis an excellent durable double-conductive core-shell structure p-Si-Ag/C composites. Interestingly, this well-designed structure offers remarkable conductivity (both internal and external) due to the introduction of silver particles and carbon layer. The carbon layer acts as a protective layer to maintain the integrity of the structure as well as avoids the direct contact of silicon with electrolyte. As a result, the durable double-conductive core-shell structure p-Si-Ag/C composites exhibit outstanding cycling stability of roughly 1000 mAh g-1 after 200 cycles at a current density of 0.2 A g-1 and retain 765 mAh g-1 even at a high current density of 2 A g-1, indicating a great improvement in electrochemical performance compared with traditional silicon electrode. Our research results provide a novel pathway for production of high-performance Si-based anodes to extending the cycle life and specific capacity of commercial lithium ion batteries.
Martin, Caitlin; Sun, Wei
2015-01-01
Transcatheter aortic valve (TAV) intervention is now the standard-of-care treatment for inoperable patients and a viable alternative treatment option for high-risk patients with symptomatic aortic stenosis. While the procedure is associated with lower operative risk and shorter recovery times than traditional surgical aortic valve (SAV) replacement, TAV intervention is still not considered for lower-risk patients due in part to concerns about device durability. It is well known that bioprosthetic SAVs have limited durability, and TAVs are generally assumed to have even worse durability, yet there is little long-term data to confirm this suspicion. In this study, TAV and SAV leaflet fatigue due to cyclic loading was investigated through finite element analysis by implementing a computational soft tissue fatigue damage model to describe the behavior of the pericardial leaflets. Under identical loading conditions and with identical leaflet tissue properties, the TAV leaflets sustained higher stresses, strains, and fatigue damage compared to the SAV leaflets. The simulation results suggest that the durability of TAVs may be significantly reduced compared to SAVs to about 7.8 years. The developed computational framework may be useful in optimizing TAV design parameters to improve leaflet durability, and assessing the effects of underexpanded, elliptical, or non-uniformly expanded stent deployment on TAV durability. PMID:26294354
Combustor liner durability analysis
NASA Technical Reports Server (NTRS)
Moreno, V.
1981-01-01
An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.
Development of improved-durability plasma sprayed ceramic coatings for gas turbine engines
NASA Technical Reports Server (NTRS)
Sumner, I. E.; Ruckle, D. L.
1980-01-01
As part of a NASA program to reduce fuel consumption of current commercial aircraft engines, methods were investigated for improving the durability of plasma sprayed ceramic coatings for use on vane platforms in the JT9D turbofan engine. Increased durability concepts under evaluation include use of improved strain tolerant microstructures and control of the substrate temperature during coating application. Initial burner rig tests conducted at temperatures of 1010 C (1850 F) indicate that improvements in cyclic life greater than 20:1 over previous ceramic coating systems were achieved. Three plasma sprayed coating systems applied to first stage vane platforms in the high pressure turbine were subjected to a 100-cycle JT9D engine endurance test with only minor damage occurring to the coatings.
Gekeler, Katrin; Bartz-Schmidt, Karl Ulrich; Sachs, Helmut; MacLaren, Robert E; Stingl, Katarina; Zrenner, Eberhart; Gekeler, Florian
2018-05-01
The purpose of this review is to provide an update on the efforts to restore vision through subretinal implants in patients with degenerative retinal diseases. In addition to the current technique and its latest improvements, it will focus on the surgical technique of implantation as well as explantation and reimplantation. The durability of the current subretinal implant RETINA IMPLANT Alpha AMS has increased substantially compared with the predecessor model RETINA IMPLANT Alpha IMS. According to validated examinations in the laboratory, a median lifetime of 4.7 years will be reached in clinical use; in similar examinations, the previous model has reached only 8 months. Visual function has slightly increased. The surgical technique for subretinal implants is complex and demanding for ophthalmic surgeons, as it is multifaceted and combines novel surgical steps in areas, which are not commonly entered such as the suprachoroidal and the subretinal space. The surgical approach for implantation has matured considerably and has led to successful implantation in 64 patient cases. Surgical challenges are now mainly encountered with the exact subfoveal positioning of the device. The explantation procedure is relatively straight-forward because the implant can be withdrawn in a reverse direction along the already existent subretinal path. Reimplantations, however, are more challenging because some degree of scar tissue may exist along the path of the chip and around the scleral trapdoor. Nevertheless, reimplantations have now been carried out successfully in four patients. The new RETINA IMPLANT Alpha AMS shows significantly improved durability compared with the predecessor model RETINA IMPLANT Alpha IMS. The subretinal implant offers excellent visual results but requires experienced surgeons. Explantation of devices is straight-forward, and reimplantations are challenging but have been successful in four patients.
Ochman, Alexander R; Lipinski, Christopher A; Handler, Jeffrey A; Reaume, Andrew G; Saporito, Michael S
2012-07-01
MLR-1023 [Tolimidone; CP-26154; 2(1H)-pyrimidinone, 5-(3-methylphenoxy)] is an allosteric Lyn kinase activator that reduces blood glucose levels in mice subjected to an oral glucose tolerance test (J Pharmacol Exp Ther 342:15-22, 2012). The current studies were designed to define the role of insulin in MLR-1023-mediated blood glucose lowering, to evaluate it in animal models of type 2 diabetes, and to compare it to the activities of selected existing diabetes therapeutics. Results from these studies show that in an acute oral glucose tolerance test MLR-1023 evoked a dose-dependent blood glucose-lowering response that was equivalent in magnitude to that of metformin without eliciting a hypoglycemic response. In streptozotocin-treated, insulin-depleted mice, MLR-1023 administration did not affect blood glucose levels. However, MLR-1023 potentiated the glucose-lowering activity of exogenously administered insulin, showing that MLR-1023-mediated blood glucose lowering was insulin-dependent. In a hyperinsulinemic/euglycemic clamp study, orally administered MLR-1023 increased the glucose infusion rate required to sustain blood glucose levels, demonstrating that MLR-1023 increased insulin receptor sensitivity. In chronically treated db/db mice, MLR-1023 elicited a dose-dependent and durable glucose-lowering effect, reduction in HbA1c levels and preservation of pancreatic β-cells. The magnitude of effect was equivalent to that seen with rosiglitazone but with a faster onset of action and without causing weight gain. These studies show that MLR-1023 is an insulin receptor-potentiating agent that produces a rapid-onset and durable blood glucose-lowering activity in diabetic animals.
Phase VI Glove Durability Testing
NASA Technical Reports Server (NTRS)
Mitchell, Kathryn
2011-01-01
The current state-of-the-art space suit gloves, the Phase VI gloves, have an operational life of 25 -- 8 hour Extravehicular Activities (EVAs) in a dust free, manufactured microgravity EVA environment. Future planetary outpost missions create the need for space suit gloves which can endure up to 90 -- 8 hour traditional EVAs or 576 -- 45 minute suit port-based EVAs in a dirty, uncontrolled planetary environment. Prior to developing improved space suit gloves for use in planetary environments, it is necessary to understand how the current state-of-the-art performs in these environments. The Phase VI glove operational life has traditionally been certified through cycle testing consisting of International Space Station (ISS)-based EVA tasks in a clean environment, and glove durability while performing planetary EVA tasks in a dirty environment has not previously been characterized. Testing was performed in the spring of 2010 by the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD) to characterize the durability of the Phase VI Glove and identify areas of the glove design which need improvement to meet the requirements of future NASA missions. Lunar simulant was used in this test to help replicate the dirty lunar environment, and generic planetary surface EVA tasks were performed during testing. A total of 50 manned, pressurized test sessions were completed in the Extravehicular Mobility Unit (EMU) using one pair of Phase VI gloves as the test article. The 50 test sessions were designed to mimic the total amount of pressurized cycling the gloves would experience over a 6 month planetary outpost mission. The gloves were inspected periodically throughout testing, to assess their condition at various stages in the test and to monitor the gloves for failures. Additionally, motion capture and force data were collected during 18 of the 50 test sessions to assess the accuracy of the cycle model predictions used in testing and to feed into the development of improved cycle model tables. This paper provides a detailed description of the test hardware and methodology, shares the results of the testing, and provides recommendations for future work.
NASA Astrophysics Data System (ADS)
Zhao, Yichao; Xiao, Xinyan; Ye, Zhihao; Ji, Qiang; Xie, Wei
2018-02-01
A mechanical durable superhydrophobic copper-plated stainless steel mesh was successfully fabricated by an electrodeposition process and 1-octadecanethiol modification. The as-prepared superhydrophobic mesh displays water contact angle of 153° and shows excellent anti-corrosion and water-oil separation properties in the condition of 0.1 A/cm2 current density for 35 s. In comparison with bare stainless steel mesh, the corrosion current of the as-prepared superhydrophobic mesh is close to 1/6 of the former. Meanwhile, the as-prepared superhydrophobic mesh could continuously separate oil from oil-water mixtures. The separation efficiency of continuous separation is as high as 96% and shows less than 1% decrease after ten cycles.
NASA Technical Reports Server (NTRS)
Arnon, N.; Trela, W.
1983-01-01
The objective was to assess current ceramic materials, fabrication processes, reliability prediction, and stator durability when subjected to simulated automotive gas turbine engine operating conditions. Ceramic one-piece stators were fabricated of two materials, silicon nitride and silicon carbide, using two near-net-shape processes, slip casting and injection molding. Non-destructive evaluation tests were conducted on all stators identifying irregularities which could contribute to failures under durability testing. Development of the test rig and automatic control system for repeatably controlling air flow rate and temperature over a highly transient durability duty cycle is discussed. Durability results are presented for repeated thermal cycle testing of the ceramic one-piece stators. Two duty cycles were used, encompassing the temperature ranges of 704 to 1204 C (1300 to 2200 F) and 871 to 1371 C (1600 to 2500 F). Tests were conducted on 28 stators, accumulating 135,551 cycles in 2441 hours of hot testing. Cyclic durability for the ceramic one-piece stator was demonstrated to be in excess of 500 hours, accumulating over 28,850 thermal cycles. Ceramic interface forces were found to be the significant factor in limiting stator life rather than the scatter in material strength properties or the variation in component defects encountered.
Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding
NASA Technical Reports Server (NTRS)
Palmieri, Frank L.; Watson, Kent A.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J.; Hopkins, John W.; Connell, John W.
2012-01-01
Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability.
Durable Tactile Glove for Human or Robot Hand
NASA Technical Reports Server (NTRS)
Butzer, Melissa; Diftler, Myron A.; Huber, Eric
2010-01-01
A glove containing force sensors has been built as a prototype of tactile sensor arrays to be worn on human hands and anthropomorphic robot hands. The force sensors of this glove are mounted inside, in protective pockets; as a result of this and other design features, the present glove is more durable than earlier models.
NASA Astrophysics Data System (ADS)
Fujii, R.; Imahori, Y.; Nakakmura, M.; Takada, M.; Kamada, S.; Hamano, T.; Hoshi, M.; Sato, H.; Itami, J.; Abe, Y.; Fuse, M.
2012-12-01
The neutron source for Boron Neutron Capture Therapy (BNCT) is in the transition stage from nuclear reactor to accelerator based neutron source. Generation of low energy neutron can be achieved by 7Li (p, n) 7Be reaction using accelerator based neutron source. Development of small-scale and safe neutron source is within reach. The melting point of lithium that is used for the target is low, and durability is questioned for an extended use at a high current proton beam. In order to test its durability, we have irradiated lithium with proton beam at the same level as the actual current density, and found no deterioration after 3 hours of continuous irradiation. As a result, it is suggested that lithium target can withstand proton irradiation at high current, confirming suitability as accelerator based neutron source for BNCT.
Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busby, Colin
Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goalmore » is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions, the direct-coated MEA outperformed the commercial baseline MEA, and did so through a process that delivers MEAs at $92.35/m2 at a volume of 500,000 systems per year, according to Strategic Analysis (SA) estimates.« less
Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng
2015-02-25
The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.
Durability assessments of concrete using electrical properties and acoustic emission testing
NASA Astrophysics Data System (ADS)
Todak, Heather N.
Premature damage deterioration has been observed in pavement joints throughout the Midwestern region of the United States. Over time, severe joint damage creates a transportation safety concern and the necessary repairs can be an extreme economic burden. The deterioration is due in part to freeze-thaw damage associated with fluid accumulation at the pavement joints. This very preventable problem is an indication that current specifications and construction practices for freeze-thaw durability of concrete are inadequate. This thesis serves to create a better understanding of moisture ingress, freeze-thaw damage mechanisms, and the effect of variations in mixture properties on freeze-thaw behavior of concrete. The concepts of the nick point degree of saturation, sorptivity rates, and critical degree of saturation are discussed. These factors contribute to service life, defined in this study as the duration of time a concrete element remains below levels of critical saturation which are required for damage development to initiate. A theoretical model and a simple experimental procedure are introduced which help determine the nick point for a series of 32 concrete mixtures with unique mixture proportions and air entrainment properties. This simple experimental procedure is also presented as a method to measure important electrical properties in order to establish the formation factor, a valuable measure of concrete transport properties. The results of freeze-thaw testing with acoustic emission monitoring are presented to help understand and quantify damage development in concrete specimens when conditioned to various degrees of saturation. This procedure was used to study the relationship between air entrainment properties and the critical degree of saturation. Applying the concepts of degree of saturation and sorptivity, a performance-based model is proposed as a new approach to specifications for freeze-thaw durability. Finally, a conceptual model is presented to illustrate the effect of various changes in mixture proportions and air void properties on service life.
Progressive Damage Modeling of Durable Bonded Joint Technology
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.
NASA Astrophysics Data System (ADS)
Lei, Mingfeng; Lin, Dayong; Liu, Jianwen; Shi, Chenghua; Ma, Jianjun; Yang, Weichao; Yu, Xiaoniu
2018-03-01
For the purpose of investigating lining concrete durability, this study derives a modified chloride diffusion model for concrete based on the odd continuation of boundary conditions and Fourier transform. In order to achieve this, the linear stress distribution on a sectional structure is considered, detailed procedures and methods are presented for model verification and parametric analysis. Simulation results show that the chloride diffusion model can reflect the effects of linear stress distribution of the sectional structure on the chloride diffusivity with reliable accuracy. Along with the natural environmental characteristics of practical engineering structures, reference value ranges of model parameters are provided. Furthermore, a chloride diffusion model is extended for the consideration of multi-factor coupling of linear stress distribution, chloride concentration and diffusion time. Comparison between model simulation and typical current research results shows that the presented model can produce better considerations with a greater universality.
Quantitative risk assessment of durable glass fibers.
Fayerweather, William E; Eastes, Walter; Cereghini, Francesco; Hadley, John G
2002-06-01
This article presents a quantitative risk assessment for the theoretical lifetime cancer risk from the manufacture and use of relatively durable synthetic glass fibers. More specifically, we estimate levels of exposure to respirable fibers or fiberlike structures of E-glass and C-glass that, assuming a working lifetime exposure, pose a theoretical lifetime cancer risk of not more than 1 per 100,000. For comparability with other risk assessments we define these levels as nonsignificant exposures. Nonsignificant exposure levels are estimated from (a) the Institute of Occupational Medicine (IOM) chronic rat inhalation bioassay of durable E-glass microfibers, and (b) the Research Consulting Company (RCC) chronic inhalation bioassay of durable refractory ceramic fibers (RCF). Best estimates of nonsignificant E-glass exposure exceed 0.05-0.13 fibers (or shards) per cubic centimeter (cm3) when calculated from the multistage nonthreshold model. Best estimates of nonsignificant C-glass exposure exceed 0.27-0.6 fibers/cm3. Estimates of nonsignificant exposure increase markedly for E- and C-glass when non-linear models are applied and rapidly exceed 1 fiber/cm3. Controlling durable fiber exposures to an 8-h time-weighted average of 0.05 fibers/cm3 will assure that the additional theoretical lifetime risk from working lifetime exposures to these durable fibers or shards is kept below the 1 per 100,000 level. Measured airborne exposures to respirable, durable glass fibers (or shards) in glass fiber manufacturing and fabrication operations were compared with the nonsignificant exposure estimates described. Sampling results for B-sized respirable E-glass fibers at facilities that manufacture or fabricate small-diameter continuous-filament products, from those that manufacture respirable E-glass shards from PERG (process to efficiently recycle glass), from milled fiber operations, and from respirable C-glass shards from Flakeglass operations indicate very low median exposures of 0, 0.0002, 0.007, 0.008, and 0.0025 fibers (or shards)/cm3, respectively using the NIOSH 7400 Method ("B" rules). Durable glass fiber exposures for various applications must be well characterized to ensure that they are kept below nonsignificant levels (e.g., 0.05 fibers/cm3) as defined in this risk assessment.
Evaluation of ceramics for stator application: Gas turbine engine report
NASA Technical Reports Server (NTRS)
Trela, W.; Havstad, P. H.
1978-01-01
Current ceramic materials, component fabrication processes, and reliability prediction capability for ceramic stators in an automotive gas turbine engine environment are assessed. Simulated engine duty cycle testing of stators conducted at temperatures up to 1093 C is discussed. Materials evaluated are SiC and Si3N4 fabricated from two near-net-shape processes: slip casting and injection molding. Stators for durability cycle evaluation and test specimens for material property characterization, and reliability prediction model prepared to predict stator performance in the simulated engine environment are considered. The status and description of the work performed for the reliability prediction modeling, stator fabrication, material property characterization, and ceramic stator evaluation efforts are reported.
Solid-State Water Electrolysis with an Alkaline Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, YJ; Chen, G; Mendoza, AJ
2012-06-06
We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cellmore » with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.« less
A facile method of fabricating mechanical durable anti-icing coatings based on CeO2 microparticles
NASA Astrophysics Data System (ADS)
Wang, Pengren; Peng, Chaoyi; Wu, Binrui; Yuan, Zhiqing; Yang, Fubiao; Zeng, Jingcheng
2015-07-01
Compromising between hydrophobicity and mechanical durability may be a feasible approach to fabricating usable anti-icing coatings. This work improves the contact angle of current commercial anti-icing coatings applied to wind turbine blades dramatically and keeps relatively high mechanical durability. CeO2 microparticles and diluent were mixed with fluorocarbon resin to fabricate high hydrophobic coatings on the glass fiber reinforced epoxy composite substrates. The proportion of CeO2 microparticles and diluent influences the contact angles significantly. The optimum mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1, which leads to the highest contact angle close to 140°. The microscopy analysis shows that the CeO2 microparticles form nano/microscale hierarchical structure on the surface of the coatings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Elizabeth D.; Pallin, Simon B.; Boudreaux, Philip R.
The indoor air temperature and relative humidity in residential buildings significantly affect material moisture durability, HVAC system performance, and occupant comfort. Therefore, indoor climate data is generally required to define boundary conditions in numerical models that evaluate envelope durability and equipment performance. However, indoor climate data obtained from field studies is influenced by weather, occupant behavior and internal loads, and is generally unrepresentative of the residential building stock. Likewise, whole-building simulation models typically neglect stochastic variables and yield deterministic results that are applicable to only a single home in a specific climate. The
Design and fabrication of durable owner-built wind turbine blades
NASA Astrophysics Data System (ADS)
Queeney, R. A.
To find the configuration of materials that will produce lightweight, durable wind tubine blades, a composite material blade consisting of an aluminum tubing spar, a foam insulating filler and a glass reinforced plastic skin was analyzed. Various tensile and creep tests were conducted on model blades, and a computer analysis determined the best configuration for the blade.
40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified in § 86.1805, or (ii) At least 75 percent of the full useful life mileage. In which case, the... Durability demonstration procedures for refueling emissions. This section applies to 2008 and later model... emission levels and deterioration in actual use over the full useful life of candidate in-use vehicles of...
Thick thermal barrier coatings for diesel engines
NASA Technical Reports Server (NTRS)
Beardsley, M. Brad
1995-01-01
Caterpillar's approach to applying thick thermal barrier coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective Caterpillar's program to date has been to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impeded the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.
Thick thermal barrier coatings for diesel engines
NASA Technical Reports Server (NTRS)
Beardsley, M. B.
1995-01-01
Caterpillar's approach to applying Thick Thermal Barrier Coatings (TTBC's) to diesel engine combustion chambers has been to use advanced modeling techniques to predict engine conditions and combine this information with fundamental property evaluation of TTBC systems to predict engine performance and TTBC stress states. Engine testing has been used to verify the predicted performance of the TTBC systems and provide information on failure mechanisms. The objective of Caterpillar's subcontract with ORNL is to advance the fundamental understanding of thick thermal barrier coating systems. Previous reviews of thermal barrier coating technology concluded that the current level of understanding of coating system behavior is inadequate and the lack of fundamental understanding may impede the application of TTBC's to diesel engines. Areas of TTBC technology being examined in this program include powder characteristics and chemistry; bond coat composition; coating design, microstructure, and thickness as they affect properties, durability, and reliability; and TTBC 'aging' effects (microstructural and property changes) under diesel engine operating conditions. Methods to evaluate the reliability and durability of TTBC's have been developed that attempt to understand the fundamental strength of TTBC's for particular stress states.
NASA Astrophysics Data System (ADS)
Luna, Julio; Jemei, Samir; Yousfi-Steiner, Nadia; Husar, Attila; Serra, Maria; Hissel, Daniel
2016-10-01
In this work, a nonlinear model predictive control (NMPC) strategy is proposed to improve the efficiency and enhance the durability of a proton exchange membrane fuel cell (PEMFC) power system. The PEMFC controller is based on a distributed parameters model that describes the nonlinear dynamics of the system, considering spatial variations along the gas channels. Parasitic power from different system auxiliaries is considered, including the main parasitic losses which are those of the compressor. A nonlinear observer is implemented, based on the discretised model of the PEMFC, to estimate the internal states. This information is included in the cost function of the controller to enhance the durability of the system by means of avoiding local starvation and inappropriate water vapour concentrations. Simulation results are presented to show the performance of the proposed controller over a given case study in an automotive application (New European Driving Cycle). With the aim of representing the most relevant phenomena that affects the PEMFC voltage, the simulation model includes a two-phase water model and the effects of liquid water on the catalyst active area. The control model is a simplified version that does not consider two-phase water dynamics.
Adoptive Cell Transfer Therapy
Dudley, Mark E.; Rosenberg, Steven A.
2008-01-01
Adoptive cell transfer therapy has developed into a potent and effective treatment for patients with metastatic melanoma. Current application of this therapy relies on the ex vivo generation of highly active, highly avid tumor-reactive lymphocyte cultures from endogenous tumor infiltrating lymphocytes or on the genetic engineering of cells using antigen receptor genes to express de novo tumor antigen recognition. When anti-tumor lymphocyte cultures are administered to autologous patients with high dose interleukin-2 following a lymphodepleting conditioning regimen, the cells can expand in vivo, traffic to tumor, and mediate tumor regression and durable objective clinical responses. Current investigation seeks to improve the methods for generating and administering the lymphocyte cultures, and future clinical trials aim to improve durable response rates and extend the patient populations that are candidates for treatment. PMID:18083376
Probabilistic modeling of the indoor climates of residential buildings using EnergyPlus
Buechler, Elizabeth D.; Pallin, Simon B.; Boudreaux, Philip R.; ...
2017-04-25
The indoor air temperature and relative humidity in residential buildings significantly affect material moisture durability, HVAC system performance, and occupant comfort. Therefore, indoor climate data is generally required to define boundary conditions in numerical models that evaluate envelope durability and equipment performance. However, indoor climate data obtained from field studies is influenced by weather, occupant behavior and internal loads, and is generally unrepresentative of the residential building stock. Likewise, whole-building simulation models typically neglect stochastic variables and yield deterministic results that are applicable to only a single home in a specific climate. The
NASA Technical Reports Server (NTRS)
Brinson, R. F.
1985-01-01
A method for lifetime or durability predictions for laminated fiber reinforced plastics is given. The procedure is similar to but not the same as the well known time-temperature-superposition principle for polymers. The method is better described as an analytical adaptation of time-stress-super-position methods. The analytical constitutive modeling is based upon a nonlinear viscoelastic constitutive model developed by Schapery. Time dependent failure models are discussed and are related to the constitutive models. Finally, results of an incremental lamination analysis using the constitutive and failure model are compared to experimental results. Favorable results between theory and predictions are presented using data from creep tests of about two months duration.
Lorenz, Lena M; Overgaard, Hans J; Massue, Dennis J; Mageni, Zawadi D; Bradley, John; Moore, Jason D; Mandike, Renata; Kramer, Karen; Kisinza, William; Moore, Sarah J
2014-12-13
Long-Lasting Insecticidal Nets (LLINs) are one of the major malaria vector control tools, with most countries adopting free or subsidised universal coverage campaigns of populations at-risk from malaria. It is essential to understand LLIN durability so that public health policy makers can select the most cost effective nets that last for the longest time, and estimate the optimal timing of repeated distribution campaigns. However, there is limited knowledge from few countries of the durability of LLINs under user conditions. This study investigates LLIN durability in eight districts of Tanzania, selected for their demographic, geographic and ecological representativeness of the country as a whole. We use a two-stage approach: First, LLINs from recent national net campaigns will be evaluated retrospectively in 3,420 households. Those households will receive one of three leading LLIN products at random (Olyset®, PermaNet®2.0 or Netprotect®) and will be followed up for three years in a prospective study to compare their performance under user conditions. LLIN durability will be evaluated by measuring Attrition (the rate at which nets are discarded by households), Bioefficacy (the insecticidal efficacy of the nets measured by knock-down and mortality of mosquitoes), Chemical content (g/kg of insecticide available in net fibres) and physical Degradation (size and location of holes). In addition, we will extend the current national mosquito insecticide Resistance monitoring program to additional districts and use these data sets to provide GIS maps for use in health surveillance and decision making by the National Malaria Control Program (NMCP). The data will be of importance to policy makers and vector control specialists both in Tanzania and the SSA region to inform best practice for the maintenance of high and cost-effective coverage and to maximise current health gains in malaria control.
Modeling the long-term durability of concrete barriers in the context of low-activity waste storage
NASA Astrophysics Data System (ADS)
Protière, Y.; Samson, E.; Henocq, P.
2013-07-01
The paper investigates the long-term durability of concrete barriers in contact with a cementitious wasteform designed to immobilize low-activity nuclear waste. The high-pH pore solution of the wasteform contains high concentration level of sulfate, nitrate, nitrite and alkalis. The multilayer concrete/wasteform system was modeled using a multiionic reactive transport model accounting for coupling between species, dissolution/ precipitation reactions, and feedback effect. One of the primary objectives was to investigate the risk associated with the presence of sulfate in the wasteform on the durability of concrete. Simulation results showed that formation of expansive phases, such as gypsum and ettringite, into the concrete barrier was not extensive. Based on those results, it was not possible to conclude that concrete would be severely damaged, even after 5,000 years. Lab work was performed to provide data to validate the modeling results. Paste samples were immersed in sulfate contact solutions and analyzed to measure the impact of the aggressive environment on the material. The results obtained so far tend to confirm the numerical simulations.
Zhou, Min; Weng, Qunhong; Popov, Zakhar I; Yang, Yijun; Antipina, Liubov Yu; Sorokin, Pavel B; Wang, Xi; Bando, Yoshio; Golberg, Dmitri
2018-05-22
Electrocatalytic hydrogen evolution reaction (HER) in alkaline solution is hindered by its sluggish kinetics toward water dissociation. Nickel-based catalysts, as low-cost and effective candidates, show great potentials to replace platinum (Pt)-based materials in the alkaline media. The main challenge regarding this type of catalysts is their relatively poor durability. In this work, we conceive and construct a charge-polarized carbon layer derived from carbon quantum dots (CQDs) on Ni 3 N nanostructure (Ni 3 N@CQDs) surfaces, which simultaneously exhibit durable and enhanced catalytic activity. The Ni 3 N@CQDs shows an overpotential of 69 mV at a current density of 10 mA cm -2 in a 1 M KOH aqueous solution, lower than that of Pt electrode (116 mV) at the same conditions. Density functional theory (DFT) simulations reveal that Ni 3 N and interfacial oxygen polarize charge distributions between originally equal C-C bonds in CQDs. The partially negatively charged C sites become effective catalytic centers for the key water dissociation step via the formation of new C-H bond (Volmer step) and thus boost the HER activity. Furthermore, the coated carbon is also found to protect interior Ni 3 N from oxidization/hydroxylation and therefore guarantees its durability. This work provides a practical design of robust and durable HER electrocatalysts based on nonprecious metals.
Relative sliding durability of two candidate high temperature oxide fiber seal materials
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce M.
1991-01-01
A test program to determine the relative sliding durability of two candidate ceramic fibers for high temperature sliding seal applications is described. Pin on disk tests were used to evaluate potential seal materials. Friction during the tests and fiber wear, indicated by the extent of fibers broken in a test bundle or yarn, was measured at the end of a test. In general, friction and wear increase with test temperature. This may be due to a reduction in fiber strength, a change in the surface chemistry at the fiber/counterface interface due to oxidation, adsorption and/or desorption of surface species and, to a lesser extent, an increase in counterface surface roughness due to oxidation at elevated temperatures. The relative fiber durability correlates with tensile strength indicating that tensile data, which is more readily available than sliding durability data, may be useful in predicting fiber wear behavior under various conditions. A simple model developed using dimensional analysis shows that the fiber durability is related to a dimensionless parameter which represents the ratio of the fiber strength to the fiber stresses imposed by sliding.
Better concrete mixes for rapid repair in Wisconsin : research brief.
DOT National Transportation Integrated Search
2017-07-04
Research Benefits : Confirmed that Wisconsins current CIP rapid-repair concretes perform adequately : Recommended mixture improvements to alleviate construction difficulties : Determined that increasing the durability of rapid repair c...
Durability enhancement of intermetallics electrocatalysts via N-anchor effect for fuel cells.
Li, Xiang; An, Li; Chen, Xin; Zhang, Nanlin; Xia, Dingguo; Huang, Weifeng; Chu, Wangsheng; Wu, Ziyu
2013-11-18
Insufficient durability and catalytic activity of oxygen reduction reaction (ORR) electrocatalyst are key issues that have to be solved for the practical application of low temperature fuel cell. This paper introduces a new catalyst design strategy using N-anchor to promote the corrosion resistance of electrocatalyst. The as-synthesized N-Pt3Fe1/C shows a high electrocatalytic activity and a superior durability towards ORR. The kinetic current density of N-Pt3Fe1/C as normalized by ECSA is still as high as 0.145 mA cm(-2) and only 7% loss after 20,000 potential cycles from 0.6 to 1.2 V (vs. NHE) in O2-bubbling perchloric acid solution, whereas Pt3Fe1/C shows 49% loss under the same tests. The N-anchor approach offers novel opportunities for the development of ORR catalyst with excellent electrochemical properties.
Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie
2015-11-25
Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum-nickel hydroxide-graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts.
Durability Challenges for Next Generation of Gas Turbine Engine Materials
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
2012-01-01
Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.
Huang, Wenjing; Wang, Hongtao; Zhou, Jigang; Wang, Jian; Duchesne, Paul N.; Muir, David; Zhang, Peng; Han, Na; Zhao, Feipeng; Zeng, Min; Zhong, Jun; Jin, Chuanhong; Li, Yanguang; Lee, Shuit-Tong; Dai, Hongjie
2015-01-01
Active and durable electrocatalysts for methanol oxidation reaction are of critical importance to the commercial viability of direct methanol fuel cell technology. Unfortunately, current methanol oxidation electrocatalysts fall far short of expectations and suffer from rapid activity degradation. Here we report platinum–nickel hydroxide–graphene ternary hybrids as a possible solution to this long-standing issue. The incorporation of highly defective nickel hydroxide nanostructures is believed to play the decisive role in promoting the dissociative adsorption of water molecules and subsequent oxidative removal of carbonaceous poison on neighbouring platinum sites. As a result, the ternary hybrids exhibit exceptional activity and durability towards efficient methanol oxidation reaction. Under periodic reactivations, the hybrids can endure at least 500,000 s with negligible activity loss, which is, to the best of our knowledge, two to three orders of magnitude longer than all available electrocatalysts. PMID:26602295
Hou, Huidan; Xu, Qingkai; Pang, Yaokun; Li, Lei; Wang, Jiulin; Zhang, Chi; Sun, Chunwen
2017-08-01
Storing energy harvested by triboelectric nanogenerators (TENGs) from ambient mechanical motion is still a great challenge for achieving low-cost and environmental benign power sources. Here, an all-solid-state Na-ion battery with safe and durable performance used for efficient storing pulsed energy harvested by the TENG is demonstrated. The solid-state sodium-ion batteries are charged by galvanostatic mode and pulse mode with the TENG, respectively. The all-solid-state sodium-ion battery displays excellent cyclic performance up to 1000 cycles with a capacity retention of about 85% even at a high charge and discharge current density of 48 mA g -1 . When charged by the TENG, an energy conversion efficiency of 62.3% is demonstrated. The integration of TENGs with the safe and durable all-solid-state sodium-ion batteries is potential for providing more stable power output for self-powered systems.
Thermo-mechanical simulations of early-age concrete cracking with durability predictions
NASA Astrophysics Data System (ADS)
Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis
2017-09-01
Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.
Onstad, David; Crain, Philip; Crespo, Andre; Hutchison, William; Buntin, David; Porter, Pat; Catchot, Angus; Cook, Don; Pilcher, Clint; Flexner, Lindsey; Higgins, Laura
2016-01-01
We created a deterministic, frequency-based model of the evolution of resistance by corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), to insecticidal traits expressed in crops planted in the heterogeneous landscapes of the southern United States. The model accounts for four generations of selection by insecticidal traits each year. We used the model results to investigate the influence of three factors on insect resistance management (IRM): 1) how does adding a third insecticidal trait to both corn and cotton affect durability of the products, 2) how does unstructured corn refuge influence IRM, and 3) how do block refuges (50% compliance) and blended refuges compare with regard to IRM? When Bt cotton expresses the same number of insecticidal traits, Bt corn with three insecticidal traits provides longer durability than Bt corn with two pyramided traits. Blended refuge provides similar durability for corn products compared with the same level of required block refuge when the rate of refuge compliance by farmers is 50%. Results for Mississippi and Texas are similar, but durabilities for corn traits are surprisingly lower in Georgia, where unstructured corn refuge is the highest of the three states, but refuge for Bt cotton is the lowest of the three states. Thus, unstructured corn refuge can be valuable for IRM but its influence is determined by selection for resistance by Bt cotton. PMID:26637533
47 CFR 80.855 - Radiotelephone transmitter.
Code of Federal Regulations, 2010 CFR
2010-10-01
... series network of 10 ohms resistance and 200 picofarads capacitance, or an artificial antenna of 50 ohms... protected from excessive currents and voltages. (g) A durable nameplate must be mounted on the transmitter...
Durability evaluation of reversible solid oxide cells
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.
2013-11-01
An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Farmer, Serene; McCue, Terry R.; Harder, Bryan; Hurst, Janet B.
2017-01-01
Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, environmental durable environmental barrier coating systems. In this paper, the durability and performance of advanced Electron Beam-Physical Vapor Deposition (EB-PVD) NASA HfO2-Si and YbGdSi(O) EBC bond coat top coat systems for SiCSiC CMC have been summarized. The high temperature thermomechanical creep, fatigue and oxidation resistance have been investigated in the laboratory simulated high-heat-flux environmental test conditions. The advanced NASA EBC systems showed promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.
ERIC Educational Resources Information Center
Pate, Judy; Malone, Charles
2000-01-01
Interviews with 20 employees 5 years after a factory closure explored pre- and postlayoff experiences and perceptions of current employers. The experience of the violation of the psychological contract affected perceptions of loyalty, commitment, and trust that were transferred to the current employer. (SK)
NASA Technical Reports Server (NTRS)
Smith, A. L.
1980-01-01
The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.
Medicare Beneficiary Satisfaction with Durable Medical Equipment Suppliers
Hoerger, Thomas J.; Finkelstein, Eric A.; Bernard, Shulamit L.
2001-01-01
CMS has recently launched a series of initiatives to control Medicare spending on durable medical equipment (DME) and prosthetics, orthotics, and supplies (DMEPOS). An important question is how these initiatives will affect beneficiary satisfaction. Using survey data, we analyze Medicare beneficiary satisfaction with DMEPOS suppliers in two Florida counties. Our results show that beneficiaries are currently highly satisfied with their DMEPOS suppliers. Beneficiary satisfaction is positively related to rapid delivery, training, dependability, and frequency of service. Results of our analysis can be used as baseline estimates in evaluating CMS initiatives to reduce Medicare payments for DMEPOS. PMID:12500367
Shrinkage and durability study of bridge deck concrete.
DOT National Transportation Integrated Search
2010-12-01
The Mississippi Department of Transportation is incorporating changes to material : specifications and construction procedures for bridge decks in an effort to reduce shrinkage : cracking. These changes are currently being implemented into a limited ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-02-16
Building Science Corporation collaborated with ICI Homes in Daytona Beach, FL on a 2008 prototype Showcase House that demonstrates the energy efficiency and durability upgrades that ICI currently promotes through its in-house efficiency program called EFactor.
Evaluation of the durability of 3D printed keys produced by computational processing of image data
NASA Astrophysics Data System (ADS)
Straub, Jeremy; Kerlin, Scott
2016-05-01
Possession of a working 3D printed key can, for most practical purposes, convince observers that an illicit attempt to gain premises access is authorized. This paper seeks to assess three things. First, work has been performed to determine how easily the data for making models of keys can be obtained through manual measurement. It then presents work done to create a model of the key and determine how easy key modeling could be (particularly after a first key of a given key `blank' has been made). Finally, it seeks to assess the durability of the keys produced using 3D printing.
NASA Astrophysics Data System (ADS)
Zhai, Yanling; Zhu, Zhijun; Lu, Xiaolin; Zhou, H. Susan
2016-10-01
The direct ethanol fuel cell is an emerging energy conversion device for which palladium is considered as the one of the most effective components for anode catalyst, however, its widespread application has been still limited by the activity and durability of the anode catalyst. In this work, AuPd alloy networks (NWs) are synthesized using H2PdCl4 and HAuCl4 as precursors reduced by NaBH4 in the presence of sodium citrate (SC). The results reveal that SC plays significant role in network structure, resulting in the enhanced electrocatalytic activity of the catalyst. This self-supported AuPd NWs catalyst exhibits much higher electrochemical catalytic activity than commercial Pd/C catalyst toward ethanol electrooxidation in alkaline solution. Significantly, AuPd NWs catalyst shows extremely high durability at the beginning of the chronoamperometry test, and as high as 49% of the mass current density (1.41 A/mgPd) remains after 4000 s current-time test at -0.3 V (vs. Ag/AgCl) in N2-saturated KOH-ethanol solution. This strategy provides a facile method for the preparation of alloy networks with high electrochemical activity, and can be potentially expanded to a variety of electrochemical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, D.
2011-10-01
Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deteriorationmore » that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.« less
REDUCTION OF CONSTRAINTS FOR COUPLED OPERATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raszewski, F.; Edwards, T.
2009-12-15
The homogeneity constraint was implemented in the Defense Waste Processing Facility (DWPF) Product Composition Control System (PCCS) to help ensure that the current durability models would be applicable to the glass compositions being processed during DWPF operations. While the homogeneity constraint is typically an issue at lower waste loadings (WLs), it may impact the operating windows for DWPF operations, where the glass forming systems may be limited to lower waste loadings based on fissile or heat load limits. In the sludge batch 1b (SB1b) variability study, application of the homogeneity constraint at the measurement acceptability region (MAR) limit eliminated muchmore » of the potential operating window for DWPF. As a result, Edwards and Brown developed criteria that allowed DWPF to relax the homogeneity constraint from the MAR to the property acceptance region (PAR) criterion, which opened up the operating window for DWPF operations. These criteria are defined as: (1) use the alumina constraint as currently implemented in PCCS (Al{sub 2}O{sub 3} {ge} 3 wt%) and add a sum of alkali constraint with an upper limit of 19.3 wt% ({Sigma}M{sub 2}O < 19.3 wt%), or (2) adjust the lower limit on the Al{sub 2}O{sub 3} constraint to 4 wt% (Al{sub 2}O{sub 3} {ge} 4 wt%). Herman et al. previously demonstrated that these criteria could be used to replace the homogeneity constraint for future sludge-only batches. The compositional region encompassing coupled operations flowsheets could not be bounded as these flowsheets were unknown at the time. With the initiation of coupled operations at DWPF in 2008, the need to revisit the homogeneity constraint was realized. This constraint was specifically addressed through the variability study for SB5 where it was shown that the homogeneity constraint could be ignored if the alumina and alkali constraints were imposed. Additional benefit could be gained if the homogeneity constraint could be replaced by the Al{sub 2}O{sub 3} and sum of alkali constraint for future coupled operations processing based on projections from Revision 14 of the High Level Waste (HLW) System Plan. As with the first phase of testing for sludge-only operations, replacement of the homogeneity constraint with the alumina and sum of alkali constraints will ensure acceptable product durability over the compositional region evaluated. Although these study glasses only provide limited data in a large compositional region, the approach and results are consistent with previous studies that challenged the homogeneity constraint for sludge-only operations. That is, minimal benefit is gained by imposing the homogeneity constraint if the other PCCS constraints are satisfied. The normalized boron releases of all of the glasses are well below the Environmental Assessment (EA) glass results, regardless of thermal history. Although one of the glasses had a normalized boron release of approximately 10 g/L and was not predictable, the glass is still considered acceptable. This particular glass has a low Al{sub 2}O{sub 3} concentration, which may have attributed to the anomalous behavior. Given that poor durability has been previously observed in other glasses with low Al{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} concentrations, including the sludge-only reduction of constraints study, further investigations appear to be warranted. Based on the results of this study, it is recommended that the homogeneity constraint (in its entirety with the associated low frit/high frit constraints) be eliminated for coupled operations as defined by Revision 14 of the HLW System Plan with up to 2 wt% TiO{sub 2}. The use of the alumina and sum of alkali constraints should be continued along with the variability study to determine the predictability of the current durability models and/or that the glasses are acceptable with respect to durability. The use of a variability study for each batch is consistent with the glass product control program and it will help to assess new streams or compositional changes. It is also recommended that the influence of alumina and alkali on durability be studied in greater detail. Limited data suggests that there may be a need to adjust the lower Al{sub 2}O{sub 3} limit and/or the upper alkali limit in order to prevent the fabrication of unacceptable glasses. An in-depth evaluation of all previous data as well as any new data would help to better define an alumina and alkali combination that would avoid potential phase separation and ensure glass durability.« less
Evaluation of alternative snowplowable markers and snowplowing procedures.
DOT National Transportation Integrated Search
2013-06-01
The objectives of this study were to investigate viable alternatives to the currently approved snowplowable raised pavement marker and alternative methods and equipment used to snowplow roadways. The study included evaluating any potential durable an...
Durability of Effects of Group Counseling with Institutionalized Delinquent Females
ERIC Educational Resources Information Center
Redfering, David L.
1973-01-01
The current study is a one-year follow-up of an earlier report that group counseling with institutionalized delinquent females resulted in significant gains in the connotative meanings of several concepts. (Author)
Jermal G. Chandler; Charles R. Frihart
2005-01-01
Is the hydroxymethylated resorcinol (HMR) primer unique or can a melamine- based primer also increase the wet wood strength of epoxy bonds? Although the exact reason for poor durability with some wood adhesives is not known, the HMR priming agent was found to facilitate durable bonds in most cases tested. A model of cell wall stabilization that is believed to be the...
Lifecycle Verification of Tank Liner Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anovitz, Lawrence; Smith, Barton
2014-03-01
This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties andmore » to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2« less
NASA Astrophysics Data System (ADS)
Aldrin, John C.; Annis, Charles; Sabbagh, Harold A.; Lindgren, Eric A.
2016-02-01
A comprehensive approach to NDE and SHM characterization error (CE) evaluation is presented that follows the framework of the `ahat-versus-a' regression analysis for POD assessment. Characterization capability evaluation is typically more complex with respect to current POD evaluations and thus requires engineering and statistical expertise in the model-building process to ensure all key effects and interactions are addressed. Justifying the statistical model choice with underlying assumptions is key. Several sizing case studies are presented with detailed evaluations of the most appropriate statistical model for each data set. The use of a model-assisted approach is introduced to help assess the reliability of NDE and SHM characterization capability under a wide range of part, environmental and damage conditions. Best practices of using models are presented for both an eddy current NDE sizing and vibration-based SHM case studies. The results of these studies highlight the general protocol feasibility, emphasize the importance of evaluating key application characteristics prior to the study, and demonstrate an approach to quantify the role of varying SHM sensor durability and environmental conditions on characterization performance.
Turbine Engine Hot Section Technology 1986
NASA Technical Reports Server (NTRS)
1986-01-01
The Turbine Engine Hot Section Technology (HOST) Project of the NASA Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine durability problems. Presentations were made concerning the hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes. The presentations were divided into six sessions: Instrumentation, Combustion, Turbine Heat Transfer, Structural Analysis, Fatigue and Fracture, and Surface Protection. Topics discussed included modeling of thermal and fluid-flow phenomena, structural analysis, fatigue and fracture, surface protective coatings, constitutive behavior of materials, stress-strain response, and life-prediction methods. Researchers from industry, academia, and government presented results of their work sponsored by the HOST project.
Thermal blanket metallic film groundstrap and second surface mirror vulnerability to arc discharges
NASA Technical Reports Server (NTRS)
Inouye, G. T.; Sanders, N. L.; Komatsu, G. K.; Valles, J. R.; Sellen, J. M., Jr.
1979-01-01
Available data on the geosynchronous orbit energetic plasma environment were examined, and a crude model was generated to permit an estimation to be made of the number of arc discharges per year to which a thermal blanket groundstrap would be subjected. Laboratory experiments and a survey of the literature on arc discharge characteristics were performed to define typical and worst case arc discharge current waveforms. In-air tests of different groundstrap configurations to a standardized test pulse were performed and a wide variability of durability values were found. A groundstrap technique, not used thus far, was found to be far superior than the others.
NASA Technical Reports Server (NTRS)
Bowyer, J. M.
1984-01-01
The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.
Electrically conductive concrete : a laboratory study.
DOT National Transportation Integrated Search
1987-01-01
In the cathodic protection of existing reinforced concrete bridge decks, there is a need for a simple secondary-anode system to facilitate the distribution of direct current over the structure being protected. It is believed that a durable, electrica...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boguslaev, V.A.
1995-11-01
The {open_quotes}Motor Sich{close_quotes} plant - formerly the Zaporozh`e Engine Plant - has been a major contributor to the genesis and development of the domestic aviation industry. More than 20,000 engines made at the plant are currently operating in 18 domestic models of airplanes and helicopters, while roughly 4000 of the factory`s engines are in use abroad. Also, 998 mobile gas-turbine power plants of the PAES-2500 type are presently in service in and outside the CIS. Successes such as these are the result of the tremendous effort put forth by plant personnel and close collaboration with aircraft designers and buyers andmore » scientific-research institutes on engine manufacture, operation, and servicing. Their contributions have made it possible to improve the strength and reliability of engines AI-20, AI-241 AI-25, AI-25TL, and TVZ-117. These models are renowned most of all for their durability, surpassing comparable foreign makes with respect to length of service. Engines AI-20, AI-24, and AI-25 have an average service life of 200,000 h, versus the 50,000 h life of foreign counterparts {open_quotes}Tyne,{close_quotes} {open_quotes}Dart,{close_quotes} and TE.731. At present, engine model D-18T is still not the equal of comparable foreign-made engines in terms of reliability and service life. This can be attributed to both to the problems associated with designing high-thrust engines and to the lack of adequate diagnostic systems. After several problems are resolved, new-generation engines D-36, D-136, and D-18 will provide new levels of reliability and durability. The durability of the D-36 is presently limited by the life of the casing of the combustor (6053 cycles) and the disks of the low- and high-pressure compressors (6500-7000 cycles). The life of the D-18T is restricted mainly by the life of the rotor blades in the high-pressure turbine, defects in the disks of the high-pressure compressor, and other problems.« less
Hammarlund, Erika; Thomas, Archana; Poore, Elizabeth A.; Amanna, Ian J.; Rynko, Abby E.; Mori, Motomi; Chen, Zunqiu; Slifka, Mark K.
2016-01-01
Background. Many adult immunization schedules recommend that tetanus and diphtheria vaccination be performed every 10 years. In light of current epidemiological trends of disease incidence and rates of vaccine-associated adverse events, the 10-year revaccination schedule has come into question. Methods. We performed cross-sectional analysis of serum antibody titers in 546 adult subjects stratified by age or sex. All serological results were converted to international units after calibration with international serum standards. Results. Approximately 97% of the population was seropositive to tetanus and diphtheria as defined by a protective serum antibody titer of ≥0.01 IU/mL. Mean antibody titers were 3.6 and 0.35 IU/mL against tetanus and diphtheria, respectively. Antibody responses to tetanus declined with an estimated half-life of 14 years (95% confidence interval, 11–17 years), whereas antibody responses to diphtheria were more long-lived and declined with an estimated half-life of 27 years (18–51 years). Mathematical models combining antibody magnitude and duration predict that 95% of the population will remain protected against tetanus and diphtheria for ≥30 years without requiring further booster vaccination. Conclusions. These studies demonstrate that durable levels of protective antitoxin immunity exist in the majority of vaccinated individuals. Together, this suggests that it may no longer be necessary to administer booster vaccinations every 10 years and that the current adult vaccination schedule for tetanus and diphtheria should be revisited. PMID:27060790
NASA Astrophysics Data System (ADS)
Snelgrove, Kailah B.; Saleh, Joseph Homer
2016-10-01
The average design lifetime of satellites continues to increase, in part due to the expectation that the satellite cost per operational day decreases monotonically with increased design lifetime. In this work, we challenge this expectation by revisiting the durability choice problem for spacecraft in the face of reduced launch price and under various cost of durability models. We first provide a brief overview of the economic thought on durability and highlight its limitations as they pertain to our problem (e.g., the assumption of zero marginal cost of durability). We then investigate the merging influence of spacecraft cost of durability and launch price, and we identify conditions that give rise cost-optimal design lifetimes that are shorter than the longest lifetime technically achievable. For example, we find that high costs of durability favor short design lifetimes, and that under these conditions the optimal choice is relatively robust to reduction in launch prices. By contrast, lower costs of durability favor longer design lifetimes, and the optimal choice is highly sensitive to reduction in launch price. In both cases, reduction in launch prices translates into reduction of the optimal design lifetime. Our results identify a number of situations for which satellite operators would be better served by spacecraft with shorter design lifetimes. Beyond cost issues and repeat purchases, other implications of long design lifetime include the increased risk of technological slowdown given the lower frequency of purchases and technology refresh, and the increased risk for satellite operators that the spacecraft will be technologically obsolete before the end of its life (with the corollary of loss of value and competitive advantage). We conclude with the recommendation that, should pressure to extend spacecraft design lifetime continue, satellite manufacturers should explore opportunities to lease their spacecraft to operators, or to take a stake in the ownership of the asset on orbit.
Mini-Laparoscopy: Instruments and Economics.
Shadduck, Phillip P; Paquentin, Eduardo Moreno; Carvalho, Gustavo L; Redan, Jay A
2015-11-01
Mini-laparoscopy (Mini) was pioneered more than 20 years ago, initially with instruments borrowed from other specialties and subsequently with tools designed specifically for Mini. Early adoption of Mini was inhibited though by the limitations of these first-generation instruments, especially functionality and durability. Newer generation Mini instruments have recently become available with improved effector tips, a choice of shaft diameters and lengths, better shaft insulation and electrosurgery capability, improved shaft strength and rotation, more ergonomic handles, low-friction trocar options, and improved instrument durability. Improvements are also occurring in imaging and advanced energy for Mini. The current status of mini-laparoscopy instruments and economics are presented.
Martinez, Jeannette C; Caprio, Michael A; Friedenberg, Nicholas A
2018-02-09
It has long been recognized that pest population dynamics can affect the durability of a pesticide, but dose remains the primary component of insect resistance management (IRM). For transgenic pesticidal traits such as Bt (Bacillus thuringiensis Berliner (Bacillales: Bacillaceae)), dose (measured as the mortality of susceptibles caused by a toxin) is a relatively fixed characteristic and often falls below the standard definition of high dose. Hence, it is important to understand how pest population dynamics modify durability and what targets they present for IRM. We used a deterministic model of a generic arthropod pest to examine how timing and strength of density dependence interacted with population growth rate and Bt mortality to affect time to resistance. As in previous studies, durability typically reached a minimum at intermediate doses. However, high population growth rates could eliminate benefits of high dose. The timing of density dependence had a more subtle effect. If density dependence operated simultaneously with Bt mortality, durability was insensitive to its strengths. However, if density dependence was driven by postselection densities, decreasing its strength could increase durability. The strength of density dependence could affect durability of both single traits and pyramids, but its influence depended on the timing of density dependence and size of the refuge. Our findings suggest the utility of a broader definition of high dose, one that incorporates population-dynamic context. That maximum growth rates and timing and strength of interactions causing density dependent mortality can all affect durability, also highlights the need for ecologically integrated approaches to IRM research. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Low Cost High Performance Nanostructured Spectrally Selective Coating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Sungho
2017-04-05
Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guidedmore » by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.« less
Takahashi, Shuntaro; Chiba, Hiroshi; Kato, Takashi; Endo, Shota; Hayashi, Takehiro; Todoroki, Naoto; Wadayama, Toshimasa
2015-07-28
The oxygen reduction reaction (ORR) activity and durability of various Au(x)/Pt100 nanoparticles (where x is the atomic ratio of Au against Pt) are evaluated herein. The samples were fabricated on a highly-oriented pyrolytic graphite substrate at 773 K through sequential arc-plasma depositions of Pt and Au. The electrochemical hydrogen adsorption charges (electrochemical surface area), particularly the characteristic currents caused by the corner and edge sites of the Pt nanoparticles, decrease with increasing Au atomic ratio (x). In contrast, the specific ORR activities of the Au(x)/Pt100 samples were dependent on the atomic ratios of Pt and Au: the Au28/Pt100 sample showed the highest specific activity among all the investigated samples (x = 0-42). As for ORR durability evaluated by applying potential cycles between 0.6 and 1.0 V in oxygen-saturated 0.1 M HClO4, Au28/Pt100 was the most durable sample against the electrochemical potential cycles. The results clearly showed that the Au atoms located at coordinatively-unsaturated sites, e.g. at the corners or edges of the Pt nanoparticles, can improve the ORR durability by suppressing unsaturated-site-induced degradation of the Pt nanoparticles.
High Thermal Conductivity Polymer Matrix Composites (PMC) for Advanced Space Radiators
NASA Technical Reports Server (NTRS)
Shin, E. Eugene; Bowman, Cheryl; Beach, Duane
2007-01-01
High temperature polymer matrix composites (PMC) reinforced with high thermal conductivity (approx. 1000 W/mK) pitch-based carbon fibers are evaluated for a facesheet/fin structure of large space radiator systems. Significant weight reductions along with improved thermal performance, structural integrity and space durability toward its metallic counterparts were envisioned. Candidate commercial resin systems including Cyanate Esters, BMIs, and polyimide were selected based on thermal capabilities and processability. PMC laminates were designed to match the thermal expansion coefficient of various metal heat pipes or tubes. Large, but thin composite panels were successfully fabricated after optimizing cure conditions. Space durability of PMC with potential degradation mechanisms was assessed by simulated thermal aging tests in high vacuum, 1-3 x 10(exp -6) torr, at three temperatures, 227 C, 277 C, and 316 C for up to one year. Nanocomposites with vapor-grown carbon nano-fibers and exfoliated graphite flakes were attempted to improve thermal conductivity (TC) and microcracking resistance. Good quality nanocomposites were fabricated and evaluated for TC and durability including radiation resistance. TC was measured in both in-plan and thru-the-thickness directions, and the effects of microcracks on TC are also being evaluated. This paper will discuss the systematic experimental approaches, various performance-durability evaluations, and current subcomponent design and fabrication/manufacturing efforts.
Moisture Durability with Vapor-Permeable Insulating Sheathing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepage, R.; Lstiburek, J.
2013-09-01
Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of differentmore » climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.« less
Moisture Durability with Vapor-Permeable Insulating Sheathing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepage, R.; Lstiburek, J.
2013-09-01
Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range ofmore » different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggles-Wrenn, M.B.
2003-10-06
The Durability of Lightweight Composite Structures Project was established at Oak Ridge National Laboratory (ORNL) by the U.S. Department of Energy to provide the experimentally-based, durability-driven design guidelines necessary to assure long-term structural integrity of automotive composite components. The initial focus of the ORNL Durability Project was on composite materials consisting of polyurethane reinforced with E-glass. Current focus of the project is on composite materials reinforced with carbon fibers. The primary purpose of this report is to provide the individual specimen test date. Basic mechanical property testing and results for two chopped-fiber composite materials, one reinforced with glass- and themore » other with carbon fiber are provided. Both materials use the same polyurethane matrix. Preforms for both materials were produced using the P4 process. Behavioral trends, effects of temperature and environment, and corresponding design knockdown factors are established for both materials. Effects of prior short-time loads and of prior thermal cycling are discussed.« less
Environmental durability of polymer concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmese, G.R.; Chawalwala, A.J.
1996-12-31
Over the past two decades, polymer concrete has increasingly been used for a number of applications including piping, machine bases, chemically resistant flooring, and bridge overlays. Currently, the use of polymer concrete as a wear surface for polymeric composite bridge decks is being investigated. Polymer concrete is a particulate composite comprised of mineral aggregate bound by a polymeric matrix. Such materials possess significantly higher mechanical properties than Portland cement concrete. However, the mechanical characteristics and environmental durability of polymer concrete are influenced by a number of factors. Among these are the selection of aggregate and resin, surface treatment, and curemore » conditions. In this work the influence of matrix selection and cure history on the environmental durability of polymer concrete was investigated. Particular attention was given to the effects of water on composite properties and to the mechanisms by which degradation occurs. The basalt-based polymer concrete systems investigated were susceptible to attack by water. Furthermore, results suggest that property loss associated with water exposure was primarily a result of interfacial weakening.« less
Micro-deval coarse aggregate test evaluation
DOT National Transportation Integrated Search
2001-05-01
Studded tire use in Oregon results in millions of dollars of pavement damage annually. Accurate tests are needed to qualify durable aggregate for pavements to resist studded tire damage. ODOT currently uses the Los Angeles abrasion test as one of the...
The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence.
Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J
2017-01-01
The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald's (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are significantly more durable in the external environment. The results of bioinformatics analysis correspond well with epidemiological data, that is, non-vector-borne pathogens with sit-and-wait potentials have higher number of virulence and durability genes compared with other bacterial groups. However, the conclusions are constrained by the relatively small bacterial sample size and non-standardized experimental data.
The Sit-and-Wait Hypothesis in Bacterial Pathogens: A Theoretical Study of Durability and Virulence
Wang, Liang; Liu, Zhanzhong; Dai, Shiyun; Yan, Jiawei; Wise, Michael J.
2017-01-01
The intriguing sit-and-wait hypothesis predicts that bacterial durability in the external environment is positively correlated with their virulence. Since its first proposal in 1987, the hypothesis has been spurring debates in terms of its validity in the field of bacterial virulence. As a special case of the vector-borne transmission versus virulence tradeoff, where vector is now replaced by environmental longevity, there are only sporadic studies over the last three decades showing that environmental durability is possibly linked with virulence. However, no systematic study of these works is currently available and epidemiological analysis has not been updated for the sit-and-wait hypothesis since the publication of Walther and Ewald’s (2004) review. In this article, we put experimental evidence, epidemiological data and theoretical analysis together to support the sit-and-wait hypothesis. According to the epidemiological data in terms of gain and loss of virulence (+/-) and durability (+/-) phenotypes, we classify bacteria into four groups, which are: sit-and-wait pathogens (++), vector-borne pathogens (+-), obligate-intracellular bacteria (--), and free-living bacteria (-+). After that, we dive into the abundant bacterial proteomic data with the assistance of bioinformatics techniques in order to investigate the two factors at molecular level thanks to the fast development of high-throughput sequencing technology. Sequences of durability-related genes sourced from Gene Ontology and UniProt databases and virulence factors collected from Virulence Factor Database are used to search 20 corresponding bacterial proteomes in batch mode for homologous sequences via the HMMER software package. Statistical analysis only identified a modest, and not statistically significant correlation between mortality and survival time for eight non-vector-borne bacteria with sit-and-wait potentials. Meanwhile, through between-group comparisons, bacteria with higher host-mortality are significantly more durable in the external environment. The results of bioinformatics analysis correspond well with epidemiological data, that is, non-vector-borne pathogens with sit-and-wait potentials have higher number of virulence and durability genes compared with other bacterial groups. However, the conclusions are constrained by the relatively small bacterial sample size and non-standardized experimental data. PMID:29209284
Takahashi, Nana; Iwasa, Fuminori; Inoue, Yuuki; Morisaki, Hirobumi; Ishihara, Kazuhiko; Baba, Kazuyoshi
2014-08-01
The polymer 2-methacryloyloxyethyl phosphorylcholine is currently used on medical devices to prevent infection. Denture plaque-associated infection is regarded as a source of serious dental and medical complications in the elderly population, and denture hygiene, therefore, is an issue of considerable importance for denture wearers. Furthermore, because denture bases are exposed to mechanical stresses, for example, denture brushing, the durability of the coating is important for retaining the antiadhesive function of 2-methacryloyloxyethyl phosphorylcholine. The purpose of this study is to investigate the durability and antiadhesive activity of two 2-methacryloyloxyethyl phosphorylcholine polymer coating techniques: poly-2-methacryloyloxyethyl phosphorylcholine grafting and poly-2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate coating. It was revealed that 2-methacryloyloxyethyl phosphorylcholine polymer coating of the denture base resin polymethyl methacrylate decreases bacterial biofilm formation. Durability was examined by rhodamine staining and elemental surface analysis and by determining the wetting properties of the 2-methacryloyloxyethyl phosphorylcholine polymer-modified polymethyl methacrylate after a friction test that comprised 500 brushing cycles. Antiadhesive activity was examined by using a Streptococcus mutans biofilm formation assay. Poly-2-methacryloyloxyethyl phosphorylcholine-grafted polymethyl methacrylate retained 2-methacryloyloxyethyl phosphorylcholine units and antiadhesive activity even after repetitive mechanical stress, whereas co-n-butyl methacrylate-coated polymethyl methacrylate did not. These results demonstrated that graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on denture surfaces may contribute to the durability of the coating and prevent microbial retention. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Solé, M; Valera, M; Gómez, M D; Sölkner, J; Molina, A; Mészáros, G
2017-05-01
Longevity/durability is a relevant trait in racehorses. Genetic analysis and knowledge of factors that influence number of harness race starts would be advantageous for both horse welfare and the equine industry. To perform a genetic analysis on harness racing using number of races as a measure of longevity/durability and to identify factors associated with career length in Spanish Trotter Horses (STH). Longitudinal study. Performance data (n = 331,970) on the STH population for harness racing at national level between 1990 and 2014 were used. A grouped data model was fitted to assess factors influencing the risk of ending harness racing career and to estimate the heritability and breeding values for total number of harness races starts as an indicator of horses' longevity and durability. The model included sex, age at first race and first start earnings as time-independent effects, and the calendar year, driver, trainer, racetrack category and season of competition as time-dependent effects. Across the whole dataset, the average number of harness races horses achieved in Spain was 54.7 races, and this was associated with the horses' sex, age at first race and first start earnings, calendar year, driver, racetrack category, and season. The heritability estimated (0.17 ± 0.01) for number of harness race starts indicates that a beneficial response to direct genetic selection can be expected. Data on horses' health status were not available. Horses' total number of harness race starts is a promising tool for genetic analysis and the evaluation of racing longevity and durability. The estimated heritability provides evidence to support the application of genetic selection of total career number of races to improve longevity/durability of STH. © 2016 EVJ Ltd.
Bezuidenhout, Deon; Williams, David F; Zilla, Peter
2015-01-01
Efficient function and long-term durability without the need for anticoagulation, coupled with the ability to be accommodated in many different types of patient, are the principal requirements of replacement heart valves. Although the clinical use of valves appeared to have remained steady for several decades, the evolving demands for the elderly and frail patients typically encountered in the developed world, and the needs of much younger and poorer rheumatic heart disease patients in the developing world have now necessitated new paradigms for heart valve technologies and associated materials. This includes further consideration of durable elastomeric materials. The use of polymers to produce flexible leaflet valves that have the benefits of current commercial bioprosthetic and mechanical valves without any of their deficiencies has been held desirable since the mid 1950s. Much attention has been focused on thermoplastic polyurethanes in view of their generally good physico-chemical properties and versatility in processing, coupled with the improving biocompatibility and stability of recent formulations. Accelerated in vitro durability of between 600 and 1000 million cycles has been achieved using polycarbonate urethanes, and good resistance to degradation, calcification and thrombosis in vivo has been shown with some polysiloxane-based polyurethanes. Nevertheless, polymeric valves have remained relegated to use in temporary ventricular assist devices for bridging heart failure patients to transplantation. Some recent studies suggest that there is a greater degree of instability in thermoplastic materials than hitherto believed so that significant challenges remain in the search for the combination of durability and biocompatibility that would allow polymeric valves to become a clinical reality for surgical implantation. Perhaps more importantly, they could become candidates for use in situations where minimally invasive transcatheter procedures are used to replace diseased valves. Being amenable to relatively inexpensive mass production techniques, the attainment of this goal could benefit very large numbers of patients in developing and emerging countries who currently have no access to treatment for rheumatic heart disease that is so prevalent in these areas. This review discusses the evolution and current status of polymeric valves in wide-ranging circumstances.
Scanning the welded joints of aluminium alloys using subminiature eddy-current transducers
NASA Astrophysics Data System (ADS)
Dmitriev, Sergey; Ishkov, Alexey; Malikov, Vladimir; Sagalakov, Anatoly
2018-03-01
Aluminium has a reputation for ease of use, strength and durability. In addition to its exceptional aesthetic properties, solid aluminium does not burn. As architects, contractors, consultants and real estate owners look to meet stringent safety requirements in the construction and refurbishment of high-rise constructions for both residential and commercial uses, aluminium cladding provides an alternative that is not only safe but that is also durable and attractive. One of the ways to connect elements into a aluminium construction is welding. friction stir welding is one of the most efficient. The authors developed a measuring system based on subminiaturized eddy-current transducers aimed at examining locally the defects of welded joints in aluminium-magnesium alloy plates connected by means of friction stir welding. The authors made a modification of the Delyann filter, which allowed them to increase considerably the signal-noise relations. The dependency of the eddy-current transducer response on defects was provided, i.e. concealed cuts and openings inside the welded joint, at the frequencies of 100-10000 Hz of the exciting winding.
De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura
2016-01-01
Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146
De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D; Costantino, Maria Laura
2015-11-01
Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy; the latter display better fluid dynamic behavior but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the hemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of 2 groups of newly developed supra-annular, trileaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. 2 types of Poli-Valves made of SBC and differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. A pulse duplicator designed ad hoc allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the behavior of the valve. Both types of Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by the ISO 5840 Standard. Results were compared with 5 mechanical heart valves (MHVs) and 5 tissue heart valves (THVs), currently available on the market. Based on these results, PHVs based on styrenic block copolymers, as are Poli-Valves, can be considered a promising alternative for heart valve replacement in the near future.
Micro-Deval coarse aggregate test evaluation : final report.
DOT National Transportation Integrated Search
2001-05-01
Studded tire use in Oregon results in millions of dollars of pavement damage annually. Accurate tests are needed to qualify durable aggregate for pavements to resist studded tire damage. ODOT currently uses the Los Angeles abrasion test as one of the...
Assessing cryogenic testing of aggregates for concrete pavements
DOT National Transportation Integrated Search
1995-02-01
Damage to concrete pavements caused by freeze-thaw deterioration of concrete aggregate remains a serious problem. Current tests for determining an aggregate's freeze-thaw durability can take up to 70 days to perform and results from these tests don't...
Durable, cost-effective pavement markings phase I : synthesis of current research.
DOT National Transportation Integrated Search
2001-06-01
Pavement marking technology is a continually evolving subject. There are numerous types of : materials used in the field today, including (but not limited to) paint, epoxy, tape, and : thermoplastic. Each material has its own set of unique characteri...
Quantitative models for aggregate: some types and examples from Oklahoma carbonate rocks
Bliss, James D.
1999-01-01
Evaluation of data for three engineering variable--absorption, bulk specific gravity, and freeze-thaw durability (350 cycles)--was made for quarries in carbonate rocks in Oklahoma that supply aggregate. It was found that lower Palrozoic carbonate rocks (Cambrian through Devonian) are likely to make a better quality aggregate than upper Paleozoic (Mississippian to Permian) carbonate rocks. In addition, freeze-thaw durability can be forecast from absorption and is exemplary for lower Paleozoic carbonate rocks.
CMC Research at NASA Glenn in 2015: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2015-01-01
As part of NASAs Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700F CMC for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiC/SiC composites with Environmental Barrier Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knights, Shanna; Harvey, David
The durability of PEM fuel cells is a primary requirement for large scale commercialization of these power systems in transportation and stationary market applications which target operational lifetimes of 5,000 hours and 60,000 hours by 2020, respectively. Key degradation modes contributing to fuel cell lifetime limitations have been largely associated with the platinum-based cathode catalyst layer. Furthermore, as fuel cells are driven to low cost materials and lower catalyst loadings in order to meet the cost targets for commercialization, the catalyst durability has become even more important. While over the past few years significant progress has been made in identifyingmore » the underlying causes of fuel cell degradation and key parameters that greatly influence the degradation rates, many gaps with respect to knowledge of the driving mechanisms still exist; in particular, the acceleration of the mechanisms due to different membrane compositions remains an area not well understood. The focus of this project extension was to enhance the predictive capability of the PEM Fuel Cell Performance & Durability Model called FC-APOLLO (Application Package for Open-source Long Life Operation) by including interaction effects of membrane transport properties such as water transport, changes in proton conductivity, and overall water uptake/adsorption and the state of the catalyst layer local conditions to further understand the driving forces for platinum dissolution.« less
Performance Evaluation and Modeling of Erosion Resistant Turbine Engine Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Miller, Robert A.; Zhu, Dongming; Kuczmarski, Maria
2008-01-01
The erosion resistant turbine thermal barrier coating system is critical to the rotorcraft engine performance and durability. The objective of this work was to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and thermal gradient environments, thus validating a new thermal barrier coating turbine blade technology for future rotorcraft applications. A high velocity burner rig based erosion test approach was established and a new series of rare earth oxide- and TiO2/Ta2O5- alloyed, ZrO2-based low conductivity thermal barrier coatings were designed and processed. The low conductivity thermal barrier coating systems demonstrated significant improvements in the erosion resistance. A comprehensive model based on accumulated strain damage low cycle fatigue is formulated for blade erosion life prediction. The work is currently aiming at the simulated engine erosion testing of advanced thermal barrier coated turbine blades to establish and validate the coating life prediction models.
Estimating Price Elasticity using Market-Level Appliance Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujita, K. Sydny
This report provides and update to and expansion upon our 2008 LBNL report “An Analysis of the Price Elasticity of Demand for Appliances,” in which we estimated an average relative price elasticity of -0.34 for major household appliances (Dale and Fujita 2008). Consumer responsiveness to price change is a key component of energy efficiency policy analysis; these policies influence consumer purchases through price both explicitly and implicitly. However, few studies address appliance demand elasticity in the U.S. market and public data sources are generally insufficient for rigorous estimation. Therefore, analysts have relied on a small set of outdated papers focusedmore » on limited appliance types, assuming long-term elasticities estimated for other durables (e.g., vehicles) decades ago are applicable to current and future appliance purchasing behavior. We aim to partially rectify this problem in the context of appliance efficiency standards by revisiting our previous analysis, utilizing data released over the last ten years and identifying additional estimates of durable goods price elasticities in the literature. Reviewing the literature, we find the following ranges of market-level price elasticities: -0.14 to -0.42 for appliances; -0.30 to -1.28 for automobiles; -0.47 to -2.55 for other durable goods. Brand price elasticities are substantially higher for these product groups, with most estimates -2.0 or more elastic. Using market-level shipments, sales value, and efficiency level data for 1989-2009, we run various iterations of a log-log regression model, arriving at a recommended range of short run appliance price elasticity between -0.4 and -0.5, with a default value of -0.45.« less
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George
2015-03-01
Efforts to update and improve turbine engine components in meeting flights safety and durability requirements are commitments that engine manufacturers try to continuously fulfill. Most of their concerns and developments energies focus on the rotating components as rotor disks. These components typically undergo rigorous operating conditions and are subject to high centrifugal loadings which subject them to various failure mechanisms. Thus, developing highly advanced health monitoring technology to screen their efficacy and performance is very essential to their prolonged service life and operational success. Nondestructive evaluation techniques are among the many screening methods that presently are being used to pre-detect hidden flaws and mini cracks prior to any appalling events occurrence. Most of these methods or procedures are confined to evaluating material's discontinuities and other defects that have mature to a point where failure is eminent. Hence, development of more robust techniques to pre-predict faults prior to any catastrophic events in these components is highly vital. This paper is focused on presenting research activities covering the ongoing research efforts at NASA Glenn Research Center (GRC) rotor dynamics laboratory in support of developing a fault detection system for key critical turbine engine components. Data obtained from spin test experiments of a rotor disk that relates to investigating behavior of blade tip clearance, tip timing and shaft displacement based on measured data acquired from sensor devices such as eddy current, capacitive and microwave are presented. Additional results linking test data with finite element modeling to characterize the structural durability of a cracked rotor as it relays to the experimental tests and findings is also presented. An obvious difference in the vibration response is shown between the notched and the baseline no notch rotor disk indicating the presence of some type of irregularity.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2014-01-01
Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when integrated with advanced EBC top coats, showed promise to achieve 1500 C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and long-term durability.
Modeling reinforced concrete durability.
DOT National Transportation Integrated Search
2014-06-01
This project developed a next-generation modeling approach for projecting the extent of : reinforced concrete corrosion-related damage, customized for new and existing Florida Department of : Transportation bridges and suitable for adapting to broade...
Parbat, Dibyangana
2017-01-01
Bioinspired underwater super-oil-wettability (superoleophilic/superoleophobic) properties are emerging as a potential avenue for developing smart materials for addressing issues related to healthcare, environment, energy, etc. However, the inherent poor durability of the materials that are mostly developed using polymeric hydrogel, metal oxide coatings and electrostatic multilayers often challenges the application of these wettability properties in practical scenarios. Here, ‘amine-reactive’ polymeric multilayers of nano-complex were developed to fabricate ‘internal’ underwater superoleophobic/superoleophilic coatings with impeccable physical/chemical durability. This allows the super-wetting properties to exist beyond the surface of the material and remain intact even after severe physical damage including erosion of the material and continuous exposure to an artificial-marine environment for more than 80 days. Moreover, this current design allowed for independent revalidation of some key hypotheses with direct experimental demonstrations, and provided a basis to develop highly durable super-oil-wettability properties under water. It is believed that this contemporary study will make a worthwhile contribution on developing multifunctional materials for widespread practical applications by exploiting these super-oil-wetting properties. PMID:28989639
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1994-01-01
International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.
Overview of CMC (Ceramic Matrix Composite) Research at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Grady, Joseph E.; Bhatt, Ramakrishna T.; Wiesner, Valerie L.; Zhu, Dongming
2016-01-01
In support of NASAs Aeronautics Research Mission, the Glenn Research Center has developed and assessed various constituents for a high temperature (2700F) SiCSiC CMC system for turbine engine applications. Combinations of highly creep-resistant SiC fibers, advanced 3D weaves, durable environmental barrier coatings (EBCs), and a 2700F-capable hybrid SiC matrix are being developed evaluated. The resulting improvements in CMC mechanical properties and durability will be summarized. The development and validation of models for predicting the effects of the environment on the durability of CMCs and EBCs and other operating-environment challenges including the effect of CMAS (calcium magnesium aluminosilicate) degradation of EBCs will be discussed. Progress toward the development of CMC joining technology for 2400F joint applications will also be reviewed.
NASA Technical Reports Server (NTRS)
Harris, Charles E. (Editor)
1994-01-01
The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.
Novel Biomaterials Used in Medical 3D Printing Techniques.
Tappa, Karthik; Jammalamadaka, Udayabhanu
2018-02-07
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.
NASA Technical Reports Server (NTRS)
Smith, Craig; Harder, Bryan; Zhu, Dongming; Bhatt, Ramakrishna; Kalluri, Sreeramesh
2017-01-01
Ceramic matrix composites (CMCs) such as SiC/SiC are currently being designed and implemented in high temperature sections of aerospace turbine engines. Such components will be subject to through-thickness thermal gradients, which may affect the durability. In this study, SiC/SiC CMCs with a hybrid chemical vapor infiltrated (CVI) and polymer infiltration and pyrolysis (PIP) matrix were loaded in tension while one surface was heated with a laser and the opposite surface was cooled. Issues associated with laser testing will be discussed, along with initial results for coated and uncoated samples.
Teli, M D; Sheikh, Javed
2012-06-01
Chitosan can be best utilized as safe antibacterial agent for textiles but there is always a limitation of its durability. The chitin containing shellfish waste is available in huge quantities, but very low quantities are utilized for extraction of high value products like chitosan. In the current work chitosan was extracted from shrimp shells and then used as antibacterial exhaust finishing agent for grafted bamboo rayon. Chitosan bound bamboo rayon was then evaluated for antibacterial activity against both gram positive and gram negative bacteria. The product showed antibacterial activity against both types of bacterias which was durable till 30 washes. Copyright © 2012 Elsevier B.V. All rights reserved.
Stanley, Daphne A; Honko, Anna N; Asiedu, Clement; Trefry, John C; Lau-Kilby, Annie W; Johnson, Joshua C; Hensley, Lisa; Ammendola, Virginia; Abbate, Adele; Grazioli, Fabiana; Foulds, Kathryn E; Cheng, Cheng; Wang, Lingshu; Donaldson, Mitzi M; Colloca, Stefano; Folgori, Antonella; Roederer, Mario; Nabel, Gary J; Mascola, John; Nicosia, Alfredo; Cortese, Riccardo; Koup, Richard A; Sullivan, Nancy J
2014-10-01
Ebolavirus disease causes high mortality, and the current outbreak has spread unabated through West Africa. Human adenovirus type 5 vectors (rAd5) encoding ebolavirus glycoprotein (GP) generate protective immunity against acute lethal Zaire ebolavirus (EBOV) challenge in macaques, but fail to protect animals immune to Ad5, suggesting natural Ad5 exposure may limit vaccine efficacy in humans. Here we show that a chimpanzee-derived replication-defective adenovirus (ChAd) vaccine also rapidly induced uniform protection against acute lethal EBOV challenge in macaques. Because protection waned over several months, we boosted ChAd3 with modified vaccinia Ankara (MVA) and generated, for the first time, durable protection against lethal EBOV challenge.
Reflecting on the tensions faced by a community-based multicultural health navigator service.
Henderson, Saras; Kendall, Elizabeth
2014-11-01
The community navigator model was developed to assist four culturally and linguistically diverse communities (Sudanese, Burmese, Pacific Islander Group, Afghani) in south-east Queensland to negotiate the Australian health system and promote health. Using participatory action research, we developed the model in partnership with community leaders and members, the local health department and two non-governmental organisations. Following implementation, we evaluated the model, with the results published elsewhere. However, our evaluation revealed that although the model was accepted by the communities and was associated with positive health outcomes, the financial, social and organisational durability of the model was problematic. Ironically, this situation was inadvertently created by critical decisions made during the development process to enhance the durability and acceptability of the model. This paper explores these critical decisions, our rationale for making those decisions and the four hidden tensions that subsequently emerged. Using a reflective case study method to guide our analysis, we provide possible resolutions to these tensions that may promote the longevity and utility of similar models in the future. WHAT IS KNOWN ABOUT THE TOPIC?: The use of community navigators to assist culturally diverse communities to access health services is not new. Many benefits have been documented for communities, individuals and heath service providers following the use of such models. What is not well documented is how to maintain these models in a safe and cost-effective way within the Australian health system while respecting cultural and community practices and reducing the burden of service delivery on the navigators. WHAT DOES THIS PAPER ADD?: This paper provides a perspective on how the development of community-based service models inherently places them in a position of tension that must be resolved if they are to be long lasting. Four core tensions experienced during the development and implementation of our model in south-east Queensland are explored to develop potential resolutions. WHAT ARE THE IMPLICATIONS FOR PRACTICE?: Reducing the tensions inherent in culturally appropriate community-based service models will increase the durability of the approach. By addressing these tensions, we can create a more durable pool of community navigators that can facilitate community empowerment, self-governance of health issues and a sense of community ownership of health services.
Computational modeling of unsteady loads in tidal boundary layers
NASA Astrophysics Data System (ADS)
Alexander, Spencer R.
As ocean current turbines move from the design stage into production and installation, a better understanding of oceanic turbulent flows and localized loading is required to more accurately predict turbine performance and durability. In the present study, large eddy simulations (LES) are used to measure the unsteady loads and bending moments that would be experienced by an ocean current turbine placed in a tidal channel. The LES model captures currents due to winds, waves, thermal convection, and tides, thereby providing a high degree of physical realism. Probability density functions, means, and variances of unsteady loads are calculated, and further statistical measures of the turbulent environment are also examined, including vertical profiles of Reynolds stresses, two-point correlations, and velocity structure functions. The simulations show that waves and tidal velocity had the largest impact on the strength of off-axis turbine loads. By contrast, boundary layer stability and wind speeds were shown to have minimal impact on the strength of off- axis turbine loads. It is shown both analytically and using simulation results that either transverse velocity structure functions or two-point transverse velocity spatial correlations are good predictors of unsteady loading in tidal channels.
Dynamic behavior and deformation analysis of the fish cage system using mass-spring model
NASA Astrophysics Data System (ADS)
Lee, Chun Woo; Lee, Jihoon; Park, Subong
2015-06-01
Fish cage systems are influenced by various oceanic conditions, and the movements and deformation of the system by the external forces can affect the safety of the system itself, as well as the species of fish being cultivated. Structural durability of the system against environmental factors has been major concern for the marine aquaculture system. In this research, a mathematical model and a simulation method were presented for analyzing the performance of the large-scale fish cage system influenced by current and waves. The cage system consisted of netting, mooring ropes, floats, sinkers and floating collar. All the elements were modeled by use of the mass-spring model. The structures were divided into finite elements and mass points were placed at the mid-point of each element, and mass points were connected by springs without mass. Each mass point was applied to external and internal forces, and total force was calculated in every integration step. The computation method was applied to the dynamic simulation of the actual fish cage systems rigged with synthetic fiber and copper wire simultaneously influenced by current and waves. Here, we also tried to find a relevant ratio between buoyancy and sinking force of the fish cages. The simulation results provide improved understanding of the behavior of the structure and valuable information concerning optimum ratio of the buoyancy to sinking force according to current speeds.
Materials and Manufacturing Technology Directorate Thermal Sciences and Materials Branch (Overview)
2010-09-01
Molecular Mechanics for thermo-mechanical response Materials Characterization • CNT modified durable thermal interface ( DTI ) • MEMS-based RTD micro...stabilization. Surface Characterization by Atomic Force Microscopy: Probing Thermal, Electrical, and Mechanical Properties Heater Current Path Anchor Leg 50 µm
DOT National Transportation Integrated Search
2016-10-01
Concrete freeze-thaw durability is prominently linked to the air void system within the concrete. : Concrete pavements in Kansas undergo repetitive freeze-thaw cycles. Total air content measurements : currently used on fresh concrete do not provide a...
DOT National Transportation Integrated Search
2016-10-01
Concrete freeze-thaw durability is prominently linked to the air void system : within the concrete. Concrete pavements in Kansas undergo repetitive : freeze-thaw cycles. Total air content measurements currently used on fresh : concrete do not provide...
Surface resistivity as an alternative for rapid chloride permeability test of hardened concrete.
DOT National Transportation Integrated Search
2015-03-01
Kansas experiences harsh winters that require frequent use of de-icing salts, making it critical to the long-term : durability of concrete structures that the permeability is kept under control. Under current KDOT specification, the : Rapid Chloride ...
NASA GRC Fatigue Crack Initiation Life Prediction Models
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
2002-01-01
Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.
NASA GRC Fatigue Crack Initiation Life Prediction Models
NASA Astrophysics Data System (ADS)
Arya, Vinod K.; Halford, Gary R.
2002-10-01
Metal fatigue has plagued structural components for centuries, and it remains a critical durability issue in today's aerospace hardware. This is true despite vastly improved and advanced materials, increased mechanistic understanding, and development of accurate structural analysis and advanced fatigue life prediction tools. Each advance is quickly taken advantage of to produce safer, more reliable, more cost effective, and better performing products. In other words, as the envelope is expanded, components are then designed to operate just as close to the newly expanded envelope as they were to the initial one. The problem is perennial. The economic importance of addressing structural durability issues early in the design process is emphasized. Tradeoffs with performance, cost, and legislated restrictions are pointed out. Several aspects of structural durability of advanced systems, advanced materials and advanced fatigue life prediction methods are presented. Specific items include the basic elements of durability analysis, conventional designs, barriers to be overcome for advanced systems, high-temperature life prediction for both creep-fatigue and thermomechanical fatigue, mean stress effects, multiaxial stress-strain states, and cumulative fatigue damage accumulation assessment.
Progressive fracture of fiber composites
NASA Technical Reports Server (NTRS)
Irvin, T. B.; Ginty, C. A.
1983-01-01
Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.
1987-10-01
durability test at 800 C, 95% r.h. 71 SEM photomicrograph at 1600 x of E-8385 film spun coat . from a 2 wt% solution onto a ferrotype plate. .I 72 Theoretical ...TiO2 to the high energy side. While Auger line shapes theoretically yield oxidation state information, stoichiometry conclusions from experi- 0 mental...the justification for the methods chosen in this work. ,*p-* ., Fadley et al. [37] present a detailed theoretical discussion on quantitative XPS
CMC Research at NASA Glenn in 2016: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2016-01-01
As part of NASA's Aeronautical Sciences project, Glenn Research Center has developed advanced fiber and matrix constituents for a 2700 degrees Fahrenheit CMC (Ceramic Matrix Composite) for turbine engine applications. Fiber and matrix development and characterization will be reviewed. Resulting improvements in CMC mechanical properties and durability will be summarized. Plans for 2015 will be described, including development and validation of models predicting effects of the engine environment on durability of SiCSiC composites with Environmental Barrier Coatings (EBCs).
Overview of mechanics of materials branch activities in the computational structures area
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1992-01-01
Base programs and system programs are discussed. The base programs include fundamental research of composites and metals for airframes leading to characterization of advanced materials, models of behavior, and methods for predicting damage tolerance. Results from the base programs support the systems programs, which change as NASA's missions change. The National Aerospace Plane (NASP), Advanced Composites Technology (ACT), Airframe Structural Integrity Program (Aging Aircraft), and High Speed Research (HSR) programs are currently being supported. Airframe durability is one of the key issues in each of these system programs. The base program has four major thrusts, which will be reviewed subsequently. Additionally, several technical highlights will be reviewed for each thrust.
Mechanical and Durability Properties of Fly Ash Based Concrete Exposed to Marine Environment
NASA Astrophysics Data System (ADS)
Kagadgar, Sarfaraz Ahmed; Saha, Suman; Rajasekaran, C.
2017-06-01
Efforts over the past few years for improving the performance of concrete suggest that cement replacement with mineral admixtures can enhance the strength and durability of concrete. Feasibility of producing good quality concrete by using alccofine and fly ash replacements is investigated and also the potential benefits from their incorporation were looked into. In this study, an attempt has been made to assess the performance of concrete in severe marine conditions exposed upto a period of 150 days. This work investigates the influence of alccofine and fly ash as partial replacement of cement in various percentages (Alccofine - 5% replacement to cement content) and (fly ash - 0%, 15%, 30%, 50% & 60% to total cementitious content) on mechanical and durability properties (Permit ion permeability test and corrosion current density) of concrete. Usage of alccofine and high quantity of fly ash as additional cementitious materials in concrete has resulted in higher workability of concrete. Inclusion of alccofine shows an early strength gaining property whereas fly ash results in gaining strength at later stage. Concrete mixes containing 5% alccofine with 15% fly ash replacement reported greater compressive strength than the other concrete mixes cured in both curing conditions. Durability test conducted at 56 and 150 days indicated that concrete containing higher percentages of fly ash resulted in lower permeability as well lesser corrosion density.
G.T. Kirker; A.B. Blodgett; S. Lebow; C.A. Clausen
2013-01-01
Extractive content and composition is a vital component of naturally durable woods; however, variability in extractives can limit their usefulness in the field. Two extractive-free, non-durable wood species were pressure treated with ethanol-toluene extractives from 8 durable wood species. Extracted Southern pine, Paulownia and unextracted Southern pine blocks were...
DOT National Transportation Integrated Search
2013-06-01
This report summarizes a research project aimed at developing degradation models for bridge decks in the state of Michigan based on durability mechanics. A probabilistic framework to implement local-level mechanistic-based models for predicting the c...
Eger, J E; Hamm, R L; Demark, J J; Chin-Heady, E; Tolley, M P; Benson, E P; Zungoli, P A; Smith, M S; Spomer, N A
2014-06-01
A durable termite bait containing 0.5% noviflumuron was evaluated for physical durability, retention of active ingredient, consumption by termites, and toxicity to termites over 5 yr in field studies at locations in Indiana, Mississippi, and South Carolina. Plots in Indiana and Mississippi included both natural rainfall and irrigated plots, while plots in South Carolina received only natural rainfall. Samples collected every 3 mo for the first 4 yr were evaluated for consumption with a 7 d no-choice bioassay using Reticulitermes flavipes (Kollar). Consumption and toxicity of 5 yr samples were evaluated in similar bioassays conducted for 42 d. Durable baits received from field sites had some cracking, and a small amount of external flaking, but no major deterioration based on visual observation. There were no significant differences in noviflumuron concentration over the 5-yr period and no trend toward reduced concentrations of noviflumuron over time. Consumption of aged durable baits over 4 yr was variable, but termites usually consumed more aged durable bait than fresh durable bait and the differences were frequently significant. There were some exceptions, but termites consumed significantly more fresh durable bait than aged durable bait in only 4% of observations. When 5 yr samples were evaluated, consumption was lowest for fresh durable bait and termites consumed significantly more aged durable bait from irrigated plots in Indiana and from both natural and irrigated plots in Mississippi than fresh durable bait. Survival of termites fed blank durable bait was significantly higher than that for termites fed any of the baits containing noviflumuron and there were no significant differences in survival among the noviflumuron durable baits. Our results suggest that the bait would be durable for at least 5 yr and possibly longer under most environmental conditions.
Self-centeredness and selflessness: happiness correlates and mediating psychological processes.
Dambrun, Michael
2017-01-01
The main objective of this research was to test central assumptions from the Self-centeredness/Selflessness Happiness Model. According to this model, while self-centered psychological functioning induces fluctuating happiness, authentic-durable happiness results from selflessness. Distinct mediating processes are supposed to account for these relationships: afflictive affects (e.g., anger, fear, jealousy, frustration) in the case of the former, and both emotional stability and feelings of harmony in the case of the latter. We tested these hypotheses in two studies based on heterogeneous samples of citizens ( n = 547). Factor analyses revealed that self-centeredness (assessed through egocentrism and materialism) and selflessness (assessed through self-transcendence and connectedness to other) were two distinct psychological constructs. Second, while self-centeredness was positively and significantly related to fluctuating happiness, selflessness was positively and significantly related to authentic-durable happiness. Finally, distinct psychological processes mediated these relationships (study 2). On one hand, the relationship between self-centeredness and fluctuating happiness was fully mediated by afflictive affects. On the other hand, emotional stability and the feeling of being in harmony partially mediated the relation between selflessness and authentic-durable happiness.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2017-01-01
Environmental barrier coatings (EBCs) are considered technologically important because of the critical needs and their ability to effectively protect the turbine hot-section SiC/SiC ceramic matrix composite (CMC) components in harsh engine combustion environments. The development of NASA's advanced environmental barrier coatings have been aimed at significantly improved the coating system temperature capability, stability, erosion-impact, and CMAS resistance for SiC/SiC turbine airfoil and combustors component applications. The NASA environmental barrier coating developments have also emphasized thermo-mechanical creep and fatigue resistance in simulated engine heat flux and environments. Experimental results and models for advanced EBC systems will be presented to help establishing advanced EBC composition design methodologies, performance modeling and life predictions, for achieving prime-reliant, durable environmental coating systems for 2700-3000 F engine component applications. Major technical barriers in developing environmental barrier coating systems and the coating integration with next generation composites having further improved temperature capability, environmental stability, EBC-CMC fatigue-environment system durability will be discussed.
Determination of Stone-Mastic Asphalt Concrete Durability
NASA Astrophysics Data System (ADS)
Yastremsky, D. A.; Abaidullina, T. N.; Chepur, P. V.
2018-05-01
The paper is focused on determination of durability of the stone-mastic asphalt (SMA) concrete, containing various stabilizing additives: "Armidon" (authors’ development) and "Viatop". At the first stage of experiments, the APA method was used to determine the rutting in the SMA containing these additives. Strength test for only top layers of asphalt concrete surface is insufficient for the calculation of the pavement fatigue resistance limits. Due to this fact, a comprehensive approach was employed which incorporates the interaction of the surface and subgrade natural soil. To analyze the road surface stress-strain state and to determine the durability margin, a numerical model was used (describes the processes of fatigue life). The model was developed basing on the finite element method (FEM) in the ANSYS program. Conducted studies and numerical calculations allowed obtaining the minimum and maximum stress values in the structure affected zones and in the zones of plastic deformations occurrence in artificial and natural bases. It allows predicting deformation processes during repeated wheel loads caused by moving vehicles. In course of studies, the results of static stresses in the pavement were also obtained.
Prediction model for carbonation depth of concrete subjected to freezing-thawing cycles
NASA Astrophysics Data System (ADS)
Xiao, Qian Hui; Li, Qiang; Guan, Xiao; Xian Zou, Ying
2018-03-01
Through the indoor simulation test of the concrete durability under the coupling effect of freezing-thawing and carbonation, the variation regularity of concrete neutralization depth under freezing-thawing and carbonation was obtained. Based on concrete carbonation mechanism, the relationship between the air diffusion coefficient and porosity in concrete was analyzed and the calculation method of porosity in Portland cement concrete and fly ash cement concrete was investigated, considering the influence of the freezing-thawing damage on the concrete diffusion coefficient. Finally, a prediction model of carbonation depth of concrete under freezing-thawing circumstance was established. The results obtained using this prediction model agreed well with the experimental test results, and provided a theoretical reference and basis for the concrete durability analysis under multi-factor environments.
Successes and Current Projects in Corrosion and Durability | Concentrating
, V.V. Roddatis, A. Meffre, G.C. Glatzmaier, S. Doppiu, and X. Py, Compatibility of a post-industrial Storage. N. Calvet, A. Meffre, J.C. Gomez, R. Olivès, X. Py, G. Glatzmaier, and S. Doppiu, Post
33 CFR 149.650 - What are the requirements for single point moorings and their attached hoses?
Code of Federal Regulations, 2010 CFR
2010-07-01
... designed for the protection of the environment and for durability under combined wind, wave, and current forces of the most severe storm that can be expected to occur at the port in any 100-year period. The...
Turbine Engine Hot Section Technology, 1985
NASA Technical Reports Server (NTRS)
1985-01-01
The Turbine Engine Section Technology (HOST) Project Office of the Lewis Research Center sponsored a workshop to discuss current research pertinent to turbine engine hot section durability problems. Presentations were made concerning hot section environment and the behavior of combustion liners, turbine blades, and turbine vanes.
DOT National Transportation Integrated Search
2015-11-01
Most departments of transportation, including Indiana, currently use the Superpave mixture design method to design asphalt mixtures. : This method specifies that the optimum asphalt content for a given gradation be selected at 4 percent air voids. Du...
DOT National Transportation Integrated Search
2015-03-01
Kansas experiences harsh winters that require frequent use of de-icing salts, making it : critical to the long-term durability of concrete structures that the permeability is kept : under control. Under current KDOT specification, the Rapid Chloride ...
Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J
2017-08-28
Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Béléké, Alexis Bienvenu; Higuchi, Eiji; Inoue, Hiroshi; Mizuhata, Minoru
2014-02-01
We report the durability of the optimized nickel-aluminum layered double hydroxide/carbon (Ni-Al LDH/C) composite prepared by liquid phase deposition (LPD) as cathode active materials in nickel metal hydride (Ni-MH) secondary battery. The positive electrode was used for charge-discharge measurements under two different current: 5 mA for 300 cycles in half-cell conditions, and 5.8 mA for 569 cycles in battery regime, respectively. The optimized Ni-Al LDH/C composite exhibits a good lifespan and stability with the capacity retention above 380 mA h gcomp-1 over 869 cycles. Cyclic voltammetry shows that the α-Ni(OH)2/γ-NiOOH redox reaction is maintained even after 869 cycles, and the higher current regime is beneficial in terms of materials utilization. X-ray diffraction (XRD) patterns of the cathode after charge and discharge confirms that the α-Ni(OH)2/γ-NiOOH redox reaction occurs without any intermediate phase.
Lee, Jiho; Kim, Wonbin; Kim, Woong
2014-08-27
A critical problem with stretchable supercapacitors developed to date has been evaporation of a volatile component of their electrolyte, causing failure. In this work, we demonstrated successful use of an ionic-liquid-based nonvolatile gel (ion-gel) electrolyte in carbon nanotube (CNT)-based stretchable supercapacitors. The CNT/ion-gel supercapacitors showed high capacitance retention (96.6%) over 3000 stretch cycles at 20% strain. The high durability against stretch cycles was achieved by introducing microroughness at the interfaces between different materials. The microroughness was produced by the simple process of imprinting the surface microstructure of office paper onto a poly(dimethylsiloxane) substrate; the surface texture is reproduced in successive current collector and CNT layers. Adhesion between the different layers was strengthened by this roughness and prevented delamination over repeated stretch cycles. The addition of a CNT layer decreased the sensitivity of electrical characteristics to stretching. Moreover, the ion-gel increases the operating voltage window (3 V) and hence the energy density. We believe our demonstration will greatly contribute to the development of flexible and/or stretchable energy-storage devices with high durability.
Leddy, Michael T; Belter, Joseph T; Gemmell, Kevin D; Dollar, Aaron M
2015-01-01
Additive manufacturing techniques are becoming more prominent and cost-effective as 3D printing becomes higher quality and more inexpensive. The idea of 3D printed prosthetics components promises affordable, customizable devices, but these systems currently have major shortcomings in durability and function. In this paper, we propose a fabrication method for custom composite prostheses utilizing additive manufacturing, allowing for customizability, as well the durability of professional prosthetics. The manufacturing process is completed using 3D printed molds in a multi-stage molding system, which creates a custom finger or palm with a lightweight epoxy foam core, a durable composite outer shell, and soft urethane gripping surfaces. The composite material was compared to 3D printed and aluminum materials using a three-point bending test to compare stiffness, as well as gravimetric measurements to compare weight. The composite finger demonstrates the largest stiffness with the lowest weight compared to other tested fingers, as well as having customizability and lower cost, proving to potentially be a substantial benefit to the development of upper-limb prostheses.
Large Engine Technology Program. Task 21: Rich Burn Liner for Near Term Experimental Evaluations
NASA Technical Reports Server (NTRS)
Hautman, D. J.; Padget, F. C.; Kwoka, D.; Siskind, K. S.; Lohmann, R. P.
2005-01-01
The objective of the task reported herein, which was conducted as part of the NASA sponsored Large Engine Technology program, was to define and evaluate a near-term rich-zone liner construction based on currently available materials and fabrication processes for a Rich-Quench-Lean combustor. This liner must be capable of operation at the temperatures and pressures of simulated HSCT flight conditions but only needs sufficient durability for limited duration testing in combustor rigs and demonstrator engines in the near future. This must be achieved at realistic cooling airflow rates since the approach must not compromise the emissions, performance, and operability of the test combustors, relative to the product engine goals. The effort was initiated with an analytical screening of three different liner construction concepts. These included a full cylinder metallic liner and one with multiple segments of monolithic ceramic, both of which incorporated convective cooling on the external surface using combustor airflow that bypassed the rich zone. The third approach was a metallic platelet construction with internal convective cooling. These three metal liner/jacket combinations were tested in a modified version of an existing Rich-Quench-Lean combustor rig to obtain data for heat transfer model refinement and durability verification.
NASA Astrophysics Data System (ADS)
Zhao, Xia; Chen, Changwei; Xu, Weichen; Zhu, Qingjun; Ge, Chengyue; Hou, Baorong
2017-09-01
Defects in protective-coating systems on steel surfaces are inevitable in practical engineering applications. A composite coating system, including a primer, middle coat and topcoat, were used to protect carbon steel from corrosion in a marine environment. Two environmental additives, glass fibers and thiourea, were applied in the middle coat to modify the coating system. The long-term corrosion durability and self-healing ability of the scratched coating system were evaluated by multiple methods. Results of the electrochemical technologies indicated that the coating system that contained 0.5 wt.% fibers and 0.5 wt.% thiourea presented good corrosion protection and self-healing for carbon steel when immersed in 3.5% NaCl for 120 d. Evolution of localized corrosion factors with time, as obtained from the current distribution showed that fibers combined with thiourea could inhibit the occurrence of local corrosion in scratched coating systems and retarded the corrosion development significantly. Surface characterization suggested that adequate thiourea could be absorbed uniformly on fibers for a long time to play an important role in protecting the carbon steel. Finally, schematic models were established to demonstrate the action of fibers and thiourea on the exposed surface of the carbon steel and the scratched coating system in the entire deterioration process.
2016-11-04
This rule updates and makes revisions to the End-Stage Renal Disease (ESRD) Prospective Payment System (PPS) for calendar year 2017. It also finalizes policies for coverage and payment for renal dialysis services furnished by an ESRD facility to individuals with acute kidney injury. This rule also sets forth requirements for the ESRD Quality Incentive Program, including the inclusion of new quality measures beginning with payment year (PY) 2020 and provides updates to programmatic policies for the PY 2018 and PY 2019 ESRD QIP. This rule also implements statutory requirements for bid surety bonds and state licensure for the Durable Medical Equipment, Prosthetics, Orthotics, and Supplies (DMEPOS) Competitive Bidding Program (CBP). This rule also expands suppliers' appeal rights in the event of a breach of contract action taken by CMS, by revising the appeals regulation to extend the appeals process to all types of actions taken by CMS for a supplier's breach of contract, rather than limit an appeal for the termination of a competitive bidding contract. The rule also finalizes changes to the methodologies for adjusting fee schedule amounts for DMEPOS using information from CBPs and for submitting bids and establishing single payment amounts under the CBPs for certain groupings of similar items with different features to address price inversions. Final changes also are made to the method for establishing bid limits for items under the DMEPOS CBPs. In addition, this rule summarizes comments on the impacts of coordinating Medicare and Medicaid Durable Medical Equipment for dually eligible beneficiaries. Finally, this rule also summarizes comments received in response to a request for information related to the Comprehensive ESRD Care Model and future payment models affecting renal care.
Will permanent LVADs be better than heart transplantation?
Massad, M G; McCarthy, P M
1997-04-01
Current interest in permanent mechanical support systems has been renewed as a result of the present shortage of human heart donors, and in view of the satisfactory results obtained with their use as a bridge-to-transplant. As the number of donors is unlikely to increase dramatically in the near future, there is an urgent need to develop mechanical alternatives to transplantation. Preliminary data on the use of the implantable electric LVAD as a bridge-to-transplant indicate that the adverse clinical and mechanical events in outpatients are few and do not preclude use of the device on a permanent basis. Except for infections, transplant issues relating to need for endomyocardial biopsies, rejection, malignancies, and graft arteriosclerosis do not apply to LVAD recipients who face important issues relating to device durability, cost, and potential need for concomitant right heart support. This lack of data on long-term durability contrasts with a yearly mortality rate of about 5% after the first year of transplant. With the initiation of clinical trials on the permanent use of the electric LVAD, several design modifications and upgrading of the currently available devices are expected. Completely sealed systems with steadily improving durability will hopefully appear. Inductive coupling techniques under investigation and development appear to be able to transmit energy without damage across the skin. It is anticipated that with more reliable electronic microprocessors, the future generation of implantable LVADs will be smaller, more reliable and longer lasting.
Multi-fuel combustor for gas turbine engines: Phase 1, Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melconian, J.O.; Marden, W.W., III
An innovative can combustor configuration has been developed for gas turbine engines which has the potential of burning fuels ranging from gasoline to coal/water slurries at high efficiencies. The design is based on a Variable Residence Time (VRT) concept which allows large and agglomerated fuel particles adequate time to completely burn. High durability of the combustor is achieved by dual function use of the incoming air. For applications which require the burning of coal/water slurries, the design has the capability of removing the ash particles directly from the primary zone of the combustor. It is anticipated that because of themore » small size requirement of this combustor design, existing gas turbine engines could be retrofitted within the confines of the current engine envelope. In Phase 1, the feasibility of the concept was successfully demonstrated by three-dimensional mathematical modeling and water analogue tests. The Plexiglas model used in the water analogue tests was designed to fit the current production engine of a major manufacturer. 19 figs., 2 tabs.« less
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2010 CFR
2010-07-01
... incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney... principal's subsequent incompetence. As with a durable special power of attorney, a springing durable... than those specified in paragraph (b) of this section may be negotiated under a springing durable...
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2014 CFR
2014-07-01
... incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney... principal's subsequent incompetence. As with a durable special power of attorney, a springing durable... than those specified in paragraph (b) of this section may be negotiated under a springing durable...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 23 Highways 1 2013-04-01 2013-04-01 false Policy. 626.3 Section 626.3 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PAVEMENT POLICY § 626.3 Policy. Pavement shall be designed to accommodate current and predicted traffic needs in a safe, durable, and cost...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 23 Highways 1 2012-04-01 2012-04-01 false Policy. 626.3 Section 626.3 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PAVEMENT POLICY § 626.3 Policy. Pavement shall be designed to accommodate current and predicted traffic needs in a safe, durable, and cost...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 23 Highways 1 2014-04-01 2014-04-01 false Policy. 626.3 Section 626.3 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PAVEMENT POLICY § 626.3 Policy. Pavement shall be designed to accommodate current and predicted traffic needs in a safe, durable, and cost...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 23 Highways 1 2010-04-01 2010-04-01 false Policy. 626.3 Section 626.3 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PAVEMENT POLICY § 626.3 Policy. Pavement shall be designed to accommodate current and predicted traffic needs in a safe, durable, and cost...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 23 Highways 1 2011-04-01 2011-04-01 false Policy. 626.3 Section 626.3 Highways FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS PAVEMENT POLICY § 626.3 Policy. Pavement shall be designed to accommodate current and predicted traffic needs in a safe, durable, and cost...
DOT National Transportation Integrated Search
2003-01-01
The Virginia Department of Transportation recently initiated a search for metallic reinforcing bars that are not only more durable and corrosion resistant than the epoxy-coated bars currently used, but also economical. In the last few years, several ...
NASA Technical Reports Server (NTRS)
Smith, Craig; Harder, Bryan; Zhu, Dongming; Bhatt, Ramakrishna; Kalluri, Sreeramesh
2017-01-01
Ceramic matrix composites (CMCs) such as SiCSiC are currently being designed and implemented in high temperature sections of aerospace turbine engines. Such components will be subject to through-thickness thermal gradients, which may affect the durability. In this study, SiCSiC CMCs with a hybrid chemical vapor infiltrated (CVI) and polymer infiltration and pyrolysis (PIP) matrix were loaded in tension while one surface was heated with a laser and the opposite surface was cooled. The samples were each coated with an environmental barrier coating (EBC), which was produced by electron beam physical deposition (EBPVD). Results for CMCs tested with and without the EBC be discussed.
Summary of NASA research on thermal-barrier coatings
NASA Technical Reports Server (NTRS)
Stepka, F. S.; Liebert, C. H.; Stecura, S.
1977-01-01
A durable, two-layer, plasma-sprayed coating consisting of a ceramic layer over a metallic layer was developed that has the potential of insulating hot engine parts and thereby reducing metal temperatures and coolant flow requirements and/or permitting use of less costly and complex cooling configurations and materials. The investigations evaluated the reflective and insulative capability, microstructure, and durability of several coating materials on flat metal specimens, a combustor liner, and turbine vanes and blades. In addition, the effect on the aerodynamic performance of a coated turbine vane was measured. The tests were conducted in furnaces, cascades, hot-gas rigs, an engine combustor, and a research turbojet engine. Summaries of current research related to the coating and potential applications for the coating are included.
First-Order SPICE Modeling of Extreme-Temperature 4H-SiC JFET Integrated Circuits
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, David J.; Chen, Liang-Yu
2016-01-01
A separate submission to this conference reports that 4H-SiC Junction Field Effect Transistor (JFET) digital and analog Integrated Circuits (ICs) with two levels of metal interconnect have reproducibly demonstrated electrical operation at 500 C in excess of 1000 hours. While this progress expands the complexity and durability envelope of high temperature ICs, one important area for further technology maturation is the development of reasonably accurate and accessible computer-aided modeling and simulation tools for circuit design of these ICs. Towards this end, we report on development and verification of 25 C to 500 C SPICE simulation models of first order accuracy for this extreme-temperature durable 4H-SiC JFET IC technology. For maximum availability, the JFET IC modeling is implemented using the baseline-version SPICE NMOS LEVEL 1 model that is common to other variations of SPICE software and importantly includes the body-bias effect. The first-order accuracy of these device models is verified by direct comparison with measured experimental device characteristics.
Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.
Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji
2012-02-13
A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.
CMC Research at NASA Glenn in 2017: Recent Progress and Plans
NASA Technical Reports Server (NTRS)
Grady, Joseph E.
2017-01-01
As part of NASA's Aeronautics research mission, Glenn Research Center has developed advanced constituents for 2700F CMC turbine engine applications. In this presentation, fiber and matrix development and characterization for SiCSiC composites will be reviewed and resulting improvements in CMC durability and mechanical properties will be summarized. Progress toward the development and validation of models predicting the effects of the engine environment on durability of CMC and Environmental Barrier Coatings will be summarized and plans for research and collaborations in 2017 will be summarized.
Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol
Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen
2006-01-01
A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...
Carol A. Clausen; Stan T. Lebow
2011-01-01
Although preservative-treated wood is a durable construction material, it is eventually removed from service. The typical fate of treated wood removed from service varies depending on the original application and the type of preservative used. Currently, most treated wood removed from service in the United States is placed in landfills (Clausen 2003). Treated wood is...
Development of a robust field technique to quantify the air-void distribution in fresh concrete.
DOT National Transportation Integrated Search
2013-07-01
In order to make concrete frost durable it is common to provide a small and well distributed air void system. Current measuring techniques require weeks to complete on hardened and polished samples of concrete. This report presents the results of a n...
An expert system for the evaluation of reinforced concrete structure durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berra, M.; Bertolini, L.; Briglia, M.C.
1999-11-01
A user-friendly expert system has been developed to evaluate primarily the durability of reinforced concrete structures, either in the design phase or during service life related to reinforcement corrosion. Besides the durability module, the ES has been provided with three other expert modules in order to support the user during the following activities: inspections, corrosion diagnosis and repair strategy (of concrete and reinforcement). Corrosion induced by carbonation and chlorides penetration and caused by concrete degradation such as sulfate attack, freeze/thaw cycles, alkali silica reaction are considered. The knowledge used for the expert system is based both on open literature andmore » international standards as well as on specific experiences and proprietary databases. The paper describes main features of the system, including the modeling of the knowledge, input data, the algorithms, the rules and the outputs for each module.« less
Arabidopsis non-host resistance to powdery mildews.
Lipka, Ulrike; Fuchs, Rene; Lipka, Volker
2008-08-01
Immunity of an entire plant species against all genetic variants of a particular parasite is referred to as non-host resistance. Although non-host resistance represents the most common and durable form of plant resistance in nature, it has thus far been poorly understood at the molecular level. Recently, novel model systems have established the first mechanistic insights. The genetic dissection of Arabidopsis non-host resistance to non-adapted biotrophic powdery mildew fungi provided evidence for functionally redundant but operationally distinct pre- and post-invasion immune responses. Conceptually, these complex and successive defence mechanisms explain the durable and robust nature of non-host resistance. Pathogen lifestyle and infection biology, ecological parameters and the evolutionary relationship of the interaction partners determine differences and commonalities in other model systems.
Durability of bends in high-temperature steam lines under the conditions of long-term operation
NASA Astrophysics Data System (ADS)
Katanakha, N. A.; Semenov, A. S.; Getsov, L. B.
2015-04-01
The article presents the results of stress-strain state computations and durability of bent and steeply curved branches of high-temperature steam lines carried out on the basis of the finite element method using the modified Soderberg formula for describing unsteady creep processes with taking the accumulation of damage into account. The computations were carried out for bends made of steel grades that are most widely used for manufacturing steam lines (12Kh1MF, 15Kh1M1F, and 10Kh9MFB) and operating at different levels of inner pressure and temperature. The solutions obtained using the developed creep model are compared with those obtained using the models widely used in practice.
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab; ...
2018-03-03
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
Lee, Gihyun; Kim, Sohee; Cho, Sungbo
2015-10-01
Life-time and functionality of planar microelectrode-based devices are determined by not only the corrosion-resistance of the electrode, but also the durability of the insulation layer coated on the transmission lines. Degradation of the insulating layer exposed to a humid environment or solution may cause leakage current or signal loss, and a decrease in measurement sensitivity. In this study, degradation of SU-8, an epoxy-based negative photoresist and insulating material, patterned on Au interdigitated microelectrode (IDE) for long-term (>30 days) immersion in an electrolyte at 37 °C was investigated by electrical impedance spectroscopy and theoretical equivalent circuit modeling. From the experiment and simulation results, it was found that the degradation level of the insulating layer of the IDE electrode can be characterized by monitoring the resistance of the insulating layer among the circuit parameters of the designed equivalent circuit modeling.
Lightweight Solar Paddle with High Specific Power of 150 W/Kg
NASA Astrophysics Data System (ADS)
Shimazaki, Kazunori; Takahashi, Masato; Imaizumi, Mitsuru; Takamoto, Tatsuya; Ito, Takehiko; Nozaki, Yukishige; Kusawake, Hiroaki
2014-08-01
A lightweight solar paddle using space solar sheet (SSS) is currently being developed, which uses glass-type SSS (G-SSS) comprising InGaP/GaAs/InGaAs triple- junction high-efficiency thin-film solar cells. To avoid damage to the G-SSS due to vibration during launch, we adopted a new architecture on a panel. This panel employed a curved frame-type structure, on which the G-SSS is mounted and test models were manufactured to evaluate the vibration tolerance. The dimensions of the 1.0-cm-thick unit panel were about 1.0 × 1.0 m. Acoustic and sine vibration tests were performed on the model and the results demonstrated the high durability of the curved panel in an acoustic and vibration environments. The specific power of the solar paddle using the curved panel is estimated at approximately 150 W/kg at an array power of about 10 kW.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1989-01-01
Presentations were made by industry, university, and government researchers organized into four sessions: aerothermodynamic loads; instrumentation; fatigue, fracture, and constitutive modeling; and structural dynamics.
Self-centeredness and selflessness: happiness correlates and mediating psychological processes
2017-01-01
The main objective of this research was to test central assumptions from the Self-centeredness/Selflessness Happiness Model. According to this model, while self-centered psychological functioning induces fluctuating happiness, authentic–durable happiness results from selflessness. Distinct mediating processes are supposed to account for these relationships: afflictive affects (e.g., anger, fear, jealousy, frustration) in the case of the former, and both emotional stability and feelings of harmony in the case of the latter. We tested these hypotheses in two studies based on heterogeneous samples of citizens (n = 547). Factor analyses revealed that self-centeredness (assessed through egocentrism and materialism) and selflessness (assessed through self-transcendence and connectedness to other) were two distinct psychological constructs. Second, while self-centeredness was positively and significantly related to fluctuating happiness, selflessness was positively and significantly related to authentic–durable happiness. Finally, distinct psychological processes mediated these relationships (study 2). On one hand, the relationship between self-centeredness and fluctuating happiness was fully mediated by afflictive affects. On the other hand, emotional stability and the feeling of being in harmony partially mediated the relation between selflessness and authentic–durable happiness. PMID:28507820
Improving operational anodising process performance using simulation approach
NASA Astrophysics Data System (ADS)
Liong, Choong-Yeun; Ghazali, Syarah Syahidah
2015-10-01
The use of aluminium is very widespread, especially in transportation, electrical and electronics, architectural, automotive and engineering applications sectors. Therefore, the anodizing process is an important process for aluminium in order to make the aluminium durable, attractive and weather resistant. This research is focused on the anodizing process operations in manufacturing and supplying of aluminium extrusion. The data required for the development of the model is collected from the observations and interviews conducted in the study. To study the current system, the processes involved in the anodizing process are modeled by using Arena 14.5 simulation software. Those processes consist of five main processes, namely the degreasing process, the etching process, the desmut process, the anodizing process, the sealing process and 16 other processes. The results obtained were analyzed to identify the problems or bottlenecks that occurred and to propose improvement methods that can be implemented on the original model. Based on the comparisons that have been done between the improvement methods, the productivity could be increased by reallocating the workers and reducing loading time.
Novel Biomaterials Used in Medical 3D Printing Techniques
Tappa, Karthik; Jammalamadaka, Udayabhanu
2018-01-01
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail. PMID:29414913
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru; Lope Tabil; Anthony Opoku
2011-04-01
The rapid expansion of ethanol processing plants in Canada has resulted in a significant increase in the production of wheat-based distiller's dried grains with solubles (DDGS). Transportation and flowability problems associated with DDGS necessitate investigations on pelleting. In the present study, the effect of process variables like die temperature (T) and feed moisture content (Mw) on the pellet properties like pellet moisture content, durability and pellet density was explored using a single pelleting machine; further studies on pelleting DDGS using a pilot-scale pellet mill were also conducted to understand the effect of die diameter and steam conditioning on durability andmore » bulk density of pellets. Proximate analysis of DDGS indicated that crude protein and dry matter were in the range of 37.37–40.33% and 91.27–92.60%, respectively. Linear regression models developed for pellet quality attributes like pellet moisture content, pellet density and durability adequately described the single pelleting process with R2 value of 0.97, 0.99 and 0.7, respectively. ANOVA results have indicated that linear terms T and Mw and the interaction term T × Mw were statistically significant at P < 0.01 and P < 0.1 for pellet moisture content and pellet density. Based on the trends of the surface plots, a medium T of about 50–80 °C and a low Mw of about 5.1% resulted in maximum pellet density and durability and minimum pellet moisture content. Results from pilot-scale studies indicated that bulk density, durability and throughput values were 436.8–528.9 kg m-3, 60.3–92.7% and 45.52–68.77 kg h-1, respectively. It was observed that both die diameter and steam addition had a significant effect on the bulk density and the durability values. The highest bulk density and durability were achieved with 6.4 mm die diameter with steam addition compared to 7.9 mm die with or without steam addition.« less
Perspective on thermal barrier coatings for industrial gas turbine applications
NASA Technical Reports Server (NTRS)
Mutasim, Z. Z.; Hsu, L. L.; Brentnall, W. D.
1995-01-01
Thermal Barrier Coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in allowing higher turbine inlet temperatures. TBC life requirements for aircraft engines are typically less than those required in industrial gas turbines. The use of TBC's for industrial gas turbines can increase if durability and longer service life can be successfully demonstrated. This paper will describe current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's will also be reviewed. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and high effective coating systems will be produced that will ultimately improve engine efficiency and performance.
Modified bamboo rayon-copper nanoparticle composites as antibacterial textiles.
Teli, M D; Sheikh, Javed
2013-10-01
In the current study the bamboo rayon fabric grafted with acrylamide was utilized as a backbone to immobilize copper nanoprticles. The grafted bamboo rayon was first treated with CuSO4 followed by chemical reduction. The modified product was characterized using FTIR, TGA and SEM. The characteristic color developed after reduction was measured spectrophotometrically. The grafted bamboo rayon with Cu nanoparticles was then evaluated for antibacterial activity against both gram positive and gram negative bacteria and the durability of their antibacterial activity after washing. The product showed antibacterial activity against both types of bacterias which was found to be durable till 50 washes. The material can be claimed as suitable candidate for medical textile applications to prevent cross-infections. Copyright © 2013 Elsevier B.V. All rights reserved.
A 2000-Hour Durability Test of a 5-Centimeter Diameter Mercury Bombardment Ion Thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.; Finke, R. G.
1972-01-01
A 2000-hour durability test of a modified Hughes SIT-5 (Structurally Integrated Thruster, 5 cm) was conducted at the Lewis Research Center. The thruster operated with a translating screen thrust vector grid locked in position for 10 deg beam deflection. The test was essentially continuous except for seven stoppages of beam current. The neutralizer keeper voltage and thruster floating potential increased slightly with time. Performance profiles and maps of thruster characteristics were obtained at 453 and 2023 hours into the test. Overall efficiency was nearly constant at 31 - 32 percent, and operating characteristics were similar at both points in the test. A post-shutdown inspection showed negligible erosion damage to the accelerator and cathode baffle. Some erosion was found in the aperture of the neutralizer cathode.
Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.
2004-01-01
Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.
Environmental Durability and Stress Rupture of EBC/CMCs
NASA Technical Reports Server (NTRS)
Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming
2012-01-01
This research focuses on the strength and creep performance of SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems under complex simulated engine environments. Tensile-strength and stress-rupture testing was conducted to illustrate the material properties under isothermal and thermal gradient conditions. To determine material durability, further testing was conducted under exposure to thermal cycling, thermal gradients and simulated combustion environments. Emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation, including modal acoustic emission and electrical resistivity monitoring, to characterize strength degradation and damage mechanisms. Currently, little is known about the behavior of EBC-CMCs under these conditions; consequently, this work will prove invaluable in the development of structural components for use in high temperature applications.
Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
Lee, Sangmin; Ahn, Jae Hyun; Seo, Jong-Mo; Chung, Hum; Cho, Dong-Il Dan
2015-06-17
In order to provide high-quality visual information to patients who have implanted retinal prosthetic devices, the number of microelectrodes should be large. As the number of microelectrodes is increased, the dimensions of each microelectrode must be decreased, which in turn results in an increased microelectrode interface impedance and decreased injection current dynamic range. In order to improve the trade-off envelope between the number of microelectrodes and the current injection characteristics, a 3D microelectrode structure can be used as an alternative. In this paper, the electrical characteristics of 2D and 3D Au microelectrodes were investigated. In order to examine the effects of the structural difference, 2D and 3D Au microelectrodes with different base areas but similar effective surface areas were fabricated and evaluated. Interface impedances were measured and similar dynamic ranges were obtained for both 2D and 3D Au microelectrodes. These results indicate that more electrodes can be implemented in the same area if 3D designs are used. Furthermore, the 3D Au microelectrodes showed substantially enhanced electrical durability characteristics against over-injected stimulation currents, withstanding electrical currents that are much larger than the limit measured for 2D microelectrodes of similar area. This enhanced electrical durability property of 3D Au microelectrodes is a new finding in microelectrode research, and makes 3D microelectrodes very desirable devices.
Durability of Polymer Electrolyte Membrane Fuel Cells Operated at Subfreezing Temperatures
Macauley, Natalia; Lujan, Roger W.; Spernjak, Dusan; ...
2016-09-15
The structure, composition, and interfaces of membrane electrode assemblies (MEA) and gas-diffusion layers (GDLs) have a significant effect on the performance of single-proton-exchange-membrane (PEM) fuel cells operated isothermally at subfreezing temperatures. During isothermal constant-current operation at subfreezing temperatures, water forming at the cathode initially hydrates the membrane, then forms ice in the catalyst layer and/or GDL. This ice formation results in a gradual decay in voltage. High-frequency resistance initially decreases due to an increase in membrane water content and then increases over time as the contact resistance increases. The water/ice holding capacity of a fuel cell decreases with decreasing subfreezingmore » temperature (-10°C vs. -20°C vs. -30°C) and increasing current density (0.02 A cm -2 vs. 0.04 A cm -2). Ice formation monitored using in-situ high-resolution neutron radiography indicated that the ice was concentrated near the cathode catalyst layer at low operating temperatures (≈-20°C) and high current densities (0.04 A cm -2). Significant ice formation was also observed in the GDLs at higher subfreezing temperatures (≈-10°C) and lower current densities (0.02 A cm -2). These results are in good agreement with the long-term durability observations that show more severe degradation at lower temperatures (-20°C and -30°C).« less
Frassetto, Andrea; Breschi, Lorenzo; Turco, Gianluca; Marchesi, Giulio; Di Lenarda, Roberto; Tay, Franklin R; Pashley, David H; Cadenaro, Milena
2016-02-01
Success in adhesive dentistry means long lasting restorations. However, there is substantial evidence that this ideal objective is not always achieved. Current research in this field aims at increasing the durability of resin-dentin bonds. The objective of this paper is to examine the fundamental processes responsible for the aging mechanisms involved in the degradation of resin-bonded interfaces and the potential approaches to prevent and counteract this degradation. PubMed searches on the hybrid layer degradation were carried out. Keywords were chosen to assess hybrid layer degradation for providing up-dated information on the basis of scientific coherence with the research objective. Approaches to prevent and counteract this degradation were also reviewed. 148 peer-review articles in the English language between 1982 and 2015 were reviewed. Literature shows that resin-dentin bond degradation is a complex process, involving the hydrolysis of both the resin and the collagen fibril phases contained within the hybrid layer. Collagen fibers become vulnerable to mechanical and hydraulic fatigue, as well as degradation by host-derived proteases with collagenolytic activity (matrix metalloproteinases and cysteine cathepsins). Inhibition of the collagenolytic activity and the use of cross-linking agents are the two main strategies to increase the resistance of the hybrid layer to enzymatic degradation. This review analyzes the issues regarding the durability of the adhesive interface, and the techniques to create stable resin-dentin bonds able to resist the collagenolytic hydrolysis that are currently studied. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Convective Radiofrequency Water Vapor Thermal Therapy with Rezūm System.
Helo, Sevann; Holland, Bradley; McVary, Kevin T
2017-10-01
Lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) are amongst the most commonly treated conditions by urologists. Minimally invasive therapies for the treatment of BPH/LUTS have garnered increased interest as new technology has emerged, improving durability, efficacy, and safety. This paper reviews the most recent literature regarding water vapor therapy, a convective thermal therapy that ablates prostatic tissue. The current literature includes a pilot study of 65 men and a randomized controlled trial (RCT) of 197 men investigating the efficacy and safety profile of water vapor therapy up to 2 years. Subjects treated with water vapor therapy demonstrated a 51% reduction in IPSS from baseline, sustained at 24 months (p < 0.0001). Durable improvements in max flow rate (Qmax) and quality of life (QoL) were also achieved, while no changes in sexual function were observed. Reporting of adverse events (AEs) reveals predominantly Clavien grade I complications that were self-limited. The clinical efficacy and safety of water vapor therapy are durable to 24 months making it an attractive alternative for patients seeking a minimally invasive treatment for LUTS due to BPH.
Management of tricuspid regurgitation
Taramasso, Maurizio; Lapenna, Elisabetta; Alfieri, Ottavio
2014-01-01
Secondary tricuspid regurgitation is the most frequent type of tricuspid insufficiency in western countries. Its surgical treatment is still an object of debate both in terms of timing and surgical techniques. Until recently, the avoidance of surgery for tricuspid repair was commonly accepted in patients with less than severe secondary tricuspid regurgitation undergoing left-sided valve surgery. More recently, compelling evidence in favour of a more aggressive surgical approach in this setting has emerged. The surgical technique should be tailored to the stage of disease. Ring annuloplasty is more durable than suture annuloplasty and represents the method of choice in the presence of isolated annular dilatation. In patients in whom the dilatation of the tricuspid annulus is combined with significant leaflet tethering, annuloplasty alone is unlikely to be durable and additional procedures have been proposed in order to achieve a more durable repair. In this review, pathophysiology, surgical indications, techniques of repair and outcomes of secondary tricuspid regurgitation will be discussed. We will also focus on the challenging issue of significant tricuspid regurgitation occurring late after left-sided valve surgery. Finally, the current and future role of percutaneous tricuspid valve technologies will be briefly described. PMID:25184048
Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL
Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the seven-year FCEV Learning Demonstration and focus on fuel cell stack durability and efficiency, vehicle
2015-06-12
Waterproofed - Not durable past a few days Jacket Reversible ski parka (R) - Hood - More protection from wind and rain Arctic field jacket (I...No hood - Less protection from wind and rain Sweater Recommended - Necessity in extreme cold based on Alaska experience Not issued - Not
Durability of hardboard siding
Anton TenWolde; Charles Carll
2004-01-01
In response to concerns about hardboard siding failures, a study was performed to assess if performance in a current hardboard industry quality assurance test procedure correlated with in-service performance and how well this performance might be predicted by use of alternative or additional test procedures. A variety of laboratory tests were performed on a large...
USDA-ARS?s Scientific Manuscript database
Cottonseed meal-based products show promise in serving as environment-friendly wood adhesives. However, their practical utilization is currently limited due to low durability and water resistant properties. In this research, we tested the improvement of adhesion strength and water resistance of cott...
Ground Vehicle Power and Mobility Overview - Germany Visit
2011-11-10
the current and future force Survivability Robotics – Intelligent Systems Vehicle Electronics & Architecture Fuel, Water, Bridging ...Test Cell • Engine Generator Test Lab • Full Vehicle Environmental Test Cell • Hybrid Electric Reconfigurable Moveable Integration Testbed (HERMIT...Converter Conducted competitive runoff evaluations on Bridging Boat engine candidates Completed independent durability assessment of OEM
USDA-ARS?s Scientific Manuscript database
Curly top disease, caused by viruses in the genus, Curtovirus, has affected sugarbeet production throughout much of the West for over a century; however, over that period the viruses responsible for causing the disease have changed. The two curly top virus species currently affecting production, Bee...
Elite Education and the State in France: Durable Ties and New Challenges
ERIC Educational Resources Information Center
van Zanten, Agnès; Maxwell, Claire
2015-01-01
Employing a Weberian understanding of the centrality of a strong bureaucracy in the modern nation-state, this article examines the relationship between the state and elite education in France. Through a historical analysis and an examination of two current issues facing education--widening participation and pressures to internationalise--we…
Impact of future fuel properties on aircraft engines and fuel systems
NASA Technical Reports Server (NTRS)
Rudey, R. A.; Grobman, J. S.
1978-01-01
From current projections of the availability of high-quality petroleum crude oils, it is becoming increasingly apparent that the specifications for hydrocarbon jet fuels may have to be modified. The problems that are most likely to be encountered as a result of these modifications relate to engine performance, component durability and maintenance, and aircraft fuel-system performance. The effect on engine performance will be associated with changes in specific fuel consumption, ignition at relight limits, at exhaust emissions. Durability and maintenance will be affected by increases in combustor liner temperatures, carbon deposition, gum formation in fuel nozzles, and erosion and corrosion of turbine blades and vanes. Aircraft fuel-system performance will be affected by increased deposits in fuel-system heat exchangers and changes in the pumpability and flowability of the fuel. The severity of the potential problems is described in terms of the fuel characteristics most likely to change in the future. Recent data that evaluate the ability of current-technology aircraft to accept fuel specification changes are presented, and selected technological advances that can reduce the severity of the problems are described and discussed.
Anion exchange membrane fuel cells: Current status and remaining challenges
NASA Astrophysics Data System (ADS)
Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; Bae, Chulsung; Yan, Yushan; Zelenay, Piotr; Kim, Yu Seung
2018-01-01
The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. In this perspective article, we describe the current status of AEMFCs as having reached beginning of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. These perspectives may provide useful insights for the development of next-generation of AEMFCs.
Anion exchange membrane fuel cells: Current status and remaining challenges
Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; ...
2017-09-01
The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. Here in this perspective article, we describe the current status of AEMFCs as having reached beginningmore » of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. Finally, these perspectives may provide useful insights for the development of next-generation of AEMFCs.« less
Aggregate Freezing-Thawing Performance Using the Iowa Pore Index : final report.
DOT National Transportation Integrated Search
2016-10-01
In cold climates, the use of non-durable aggregate leads to premature pavement deterioration due to damage caused by freezing-thawing cycles. Differentiating durable and non-durable aggregates is a crucial yet challenging task. The frost durability o...
State-of-the-Art Report About Durability of Post-Tensioned Bridge Substructures
DOT National Transportation Integrated Search
1999-10-01
Durability design requires an understanding of the factors influencing durability and the measures necessary to improve durability of concrete structures. The objectives of this report are to: 1. Survey the condition of bridge substructures in Texas;...
Sensitivity study on durability variables of marine concrete structures
NASA Astrophysics Data System (ADS)
Zhou, Xin'gang; Li, Kefei
2013-06-01
In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.
Structural Integrity and Durability of Reusable Space Propulsion Systems
NASA Technical Reports Server (NTRS)
1991-01-01
A two-day conference on the structural integrity and durability of reusable space propulsion systems was held on 14 to 15 May 1991 at the NASA Lewis Research Center. Presentations were made by industry, university, and government researchers organized into four sessions: (1) aerothermodynamic loads; (2) instrumentation; (3) fatigue, fracture, and constitutive modeling; and (4) structural dynamics. The principle objectives were to disseminate research results and future plans in each of four areas. This publication contains extended abstracts and the visual material presented during the conference. Particular emphasis is placed on the Space Shuttle Main Engine (SSME) and the SSME turbopump.
NASA Astrophysics Data System (ADS)
Zhuravleva, G. N.; Nagornova, I. V.; Kondratov, A. P.; Bablyuk, E. B.; Varepo, L. G.
2017-08-01
A research and modelling of weatherability and environmental durability of multilayer polymer insulation of both cable and pipelines with printed barcodes or color identification information were performed. It was proved that interlayer printing of identification codes in distribution pipelines insulation coatings provides high marking stability to light and atmospheric condensation. This allows to carry out their distant damage control. However, microbiological fouling of upper polymer layer hampers the distant damage pipelines identification. The color difference values and density changes of PE and PVC printed insolation due to weather and biological factors were defined.
Applicability and methodology of determining sustainable yield in groundwater systems
NASA Astrophysics Data System (ADS)
Kalf, Frans R. P.; Woolley, Donald R.
2005-03-01
There is currently a need for a review of the definition and methodology of determining sustainable yield. The reasons are: (1) current definitions and concepts are ambiguous and non-physically based so cannot be used for quantitative application, (2) there is a need to eliminate varying interpretations and misinterpretations and provide a sound basis for application, (3) the notion that all groundwater systems either are or can be made to be sustainable is invalid, (4) often there are an excessive number of factors bound up in the definition that are not easily quantifiable, (5) there is often confusion between production facility optimal yield and basin sustainable yield, (6) in many semi-arid and arid environments groundwater systems cannot be sensibly developed using a sustained yield policy particularly where ecological constraints are applied. Derivation of sustainable yield using conservation of mass principles leads to expressions for basin sustainable, partial (non-sustainable) mining and total (non-sustainable) mining yields that can be readily determined using numerical modelling methods and selected on the basis of applied constraints. For some cases there has to be recognition that the groundwater resource is not renewable and its use cannot therefore be sustainable. In these cases, its destiny should be the best equitable use.
Long-Term Durability Analysis of a 100,000+ Hr Stirling Power Convertor Heater Head
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.; Bowman, Randy R.; Krause, David L.; Halford, Gary R.
2000-01-01
DOE and NASA have identified Stirling Radioisotope Power Systems (SRPS) as the power supply for deep space exploration missions the Europa Orbiter and Solar Probe. As a part of this effort, NASA has initiated a long-term durability project for critical hot section components of the Stirling power convertor to qualify flight hardware. This project will develop a life prediction methodology that utilizes short-term (t < 20,000 hr) test data to verify long-term (t > 100,000 hr) design life. The project consists of generating a materials database for the specific heat of alloy, evaluation of critical hermetic sealed joints, life model characterization, and model verification. This paper will describe the qualification methodology being developed and provide a status for this effort.
Long-term tolerance to kidney allografts in a preclinical canine model.
Kuhr, Christian S; Yunusov, Murad; Sale, George; Loretz, Carol; Storb, Rainer
2007-08-27
Durable immune tolerance supporting vascularized allotransplantation offers the possibility of extending graft survival and avoiding harmful complications of chronic immunosuppression. Immune tolerance to renal allografts was induced in a preclinical canine model through engraftment of donor hematopoietic cells using a combination of low-dose total body irradiation and a short course of immunosuppression. Subsequently, donor renal allografts were transplanted accompanied by bilateral native nephrectomies. With 5-year follow up, we found normal renal function in all recipients and no histological evidence of acute or chronic rejection. This tolerance does not extend universally to donor skin grafts, however, with two of four animals rejecting delayed donor skin grafts. Hematopoietic chimerism produces durable and robust immune tolerance to kidney allografts, although incomplete tolerance to donor skin grafting.
Bertrais, Sandrine; Boursier, Jérôme; Ducancelle, Alexandra; Oberti, Frédéric; Fouchard-Hubert, Isabelle; Moal, Valérie; Calès, Paul
2017-06-01
There is currently no recommended time interval between noninvasive fibrosis measurements for monitoring chronic liver diseases. We determined how long a single liver fibrosis evaluation may accurately predict mortality, and assessed whether combining tests improves prognostic performance. We included 1559 patients with chronic liver disease and available baseline liver stiffness measurement (LSM) by Fibroscan, aspartate aminotransferase to platelet ratio index (APRI), FIB-4, Hepascore, and FibroMeter V2G . Median follow-up was 2.8 years during which 262 (16.8%) patients died, with 115 liver-related deaths. All fibrosis tests were able to predict mortality, although APRI (and FIB-4 for liver-related mortality) showed lower overall discriminative ability than the other tests (differences in Harrell's C-index: P < 0.050). According to time-dependent AUROCs, the time period with optimal predictive performance was 2-3 years in patients with no/mild fibrosis, 1 year in patients with significant fibrosis, and <6 months in cirrhotic patients even in those with a model of end-stage liver disease (MELD) score <15. Patients were then randomly split in training/testing sets. In the training set, blood tests and LSM were independent predictors of all-cause mortality. The best-fit multivariate model included age, sex, LSM, and FibroMeter V2G with C-index = 0.834 (95% confidence interval, 0.803-0.862). The prognostic model for liver-related mortality included the same covariates with C-index = 0.868 (0.831-0.902). In the testing set, the multivariate models had higher prognostic accuracy than FibroMeter V2G or LSM alone for all-cause mortality and FibroMeter V2G alone for liver-related mortality. The prognostic durability of a single baseline fibrosis evaluation depends on the liver fibrosis level. Combining LSM with a blood fibrosis test improves mortality risk assessment. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Lerman, Imanuel R; Souzdalnitski, Dmitri; Narouze, Samer
2012-01-01
This technical report describes a durable, low-cost, anatomically accurate, and easy-to-prepare combined ultrasound (US) and fluoroscopic phantom of the cervical spine. This phantom is meant to augment training in US- and fluoroscopic-guided pain medicine procedures. The combined US and fluoroscopic phantom (CUF-P) is prepared from commercially available liquid plastic that is ordinarily used to prepare synthetic fishing lures. The liquid plastic is heated and then poured into a metal canister that houses an anatomical cervical spine model. Drops of dark purple dye are added to make the phantom opaque. After cooling, tubing is attached to the CUF-P to simulate blood vessels. The CUF-P accurately simulates human tissue by imitating both the tactile texture of skin and the haptic resistance of human tissue as the needle is advanced. This phantom contains simulated fluid-filled vertebral arteries that exhibit pulsed flow under color Doppler US. Under fluoroscopic examination, the CUF-P-simulated vertebral arteries also exhibit uptake of contrast dye if mistakenly injected. The creation of a training phantom allows the pain physician to practice needle positioning technique while simultaneously visualizing both targeted and avoidable vascular structures under US and fluoroscopic guidance. This low-cost CUF-P is easy to prepare and is reusable, making it an attractive alternative to current homemade and commercially available phantom simulators.
Ansong, Eric
2015-01-01
This article examined the association between household consumer durable assets and maternal health-seeking behavior. Several studies have suggested a relationship between households' socioeconomic status (SES) and health outcomes. However, SES is a multidimensional concept that encompasses variables, such as wealth, education, and income. By grouping these variables together as one construct, prior studies have not provided enough insight into possible independent associations with health outcomes. This study used data from the 2008 Ghana Demographic and Health Survey of 2,065 women aged between 15 and 49 years to examine the association between household consumer durables (a component of SES) and maternal health-seeking behavior in Ghana. Results from a set of generalized linear models indicated that household consumer durable assets were positively associated with four measures of maternal health-seeking behaviors, namely, seeking prenatal care from skilled health personnel, delivery by skilled birth attendant, place of delivery, and the number of antenatal visits. Also, households with more assets whose residents lived in urban areas were more likely to use skilled health personnel before and during delivery, and at an approved health facility, compared those who lived in rural areas. Implications for health interventions and policies that focus on the most vulnerable households are discussed.
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
Progress in Modeling and Simulation of Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A
2016-01-01
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles. This collection of nine papers presents the modeling and simulation of batteries and the continuing contribution being made to this impressive progress, including topics that cover: * Thermal behavior and characteristics * Battery management system design and analysis * Moderately high-fidelity 3D capabilitiesmore » * Optimization Techniques and Durability As electric vehicles continue to gain interest from manufacturers and consumers alike, improvements in economy and affordability, as well as adoption of alternative fuel sources to meet government mandates are driving battery research and development. Progress in modeling and simulation will continue to contribute to battery improvements that deliver increased power, energy storage, and durability to further enhance the appeal of electric vehicles.« less
Design of Bioprosthetic Aortic Valves using biaxial test data.
Dabiri, Y; Paulson, K; Tyberg, J; Ronsky, J; Ali, I; Di Martino, E; Narine, K
2015-01-01
Bioprosthetic Aortic Valves (BAVs) do not have the serious limitations of mechanical aortic valves in terms of thrombosis. However, the lifetime of BAVs is too short, often requiring repeated surgeries. The lifetime of BAVs might be improved by using computer simulations of the structural behavior of the leaflets. The goal of this study was to develop a numerical model applicable to the optimization of durability of BAVs. The constitutive equations were derived using biaxial tensile tests. Using a Fung model, stress and strain data were computed from biaxial test data. SolidWorks was used to develop the geometry of the leaflets, and ABAQUS finite element software package was used for finite element calculations. Results showed the model is consistent with experimental observations. Reaction forces computed by the model corresponded with experimental measurements when the biaxial test was simulated. As well, the location of maximum stresses corresponded to the locations of frequent tearing of BAV leaflets. Results suggest that BAV design can be optimized with respect to durability.
Fatigue Damage of Collagenous Tissues: Experiment, Modeling and Simulation Studies
Martin, Caitlin; Sun, Wei
2017-01-01
Mechanical fatigue damage is a critical issue for soft tissues and tissue-derived materials, particularly for musculoskeletal and cardiovascular applications; yet, our understanding of the fatigue damage process is incomplete. Soft tissue fatigue experiments are often difficult and time-consuming to perform, which has hindered progress in this area. However, the recent development of soft-tissue fatigue-damage constitutive models has enabled simulation-based fatigue analyses of tissues under various conditions. Computational simulations facilitate highly controlled and quantitative analyses to study the distinct effects of various loading conditions and design features on tissue durability; thus, they are advantageous over complex fatigue experiments. Although significant work to calibrate the constitutive models from fatigue experiments and to validate predictability remains, further development in these areas will add to our knowledge of soft-tissue fatigue damage and will facilitate the design of durable treatments and devices. In this review, the experimental, modeling, and simulation efforts to study collagenous tissue fatigue damage are summarized and critically assessed. PMID:25955007
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applied. After identification of a potential failure mode, durability tests may be conducted to... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability...
Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer.
Janjigian, Yelena Y; Sanchez-Vega, Francisco; Jonsson, Philip; Chatila, Walid K; Hechtman, Jaclyn F; Ku, Geoffrey Y; Riches, Jamie C; Tuvy, Yaelle; Kundra, Ritika; Bouvier, Nancy; Vakiani, Efsevia; Gao, Jianjiong; Heins, Zachary J; Gross, Benjamin E; Kelsen, David P; Zhang, Liying; Strong, Vivian E; Schattner, Mark; Gerdes, Hans; Coit, Daniel G; Bains, Manjit; Stadler, Zsofia K; Rusch, Valerie W; Jones, David R; Molena, Daniela; Shia, Jinru; Robson, Mark E; Capanu, Marinela; Middha, Sumit; Zehir, Ahmet; Hyman, David M; Scaltriti, Maurizio; Ladanyi, Marc; Rosen, Neal; Ilson, David H; Berger, Michael F; Tang, Laura; Taylor, Barry S; Solit, David B; Schultz, Nikolaus
2018-01-01
The incidence of esophagogastric cancer is rapidly rising, but only a minority of patients derive durable benefit from current therapies. Chemotherapy as well as anti-HER2 and PD-1 antibodies are standard treatments. To identify predictive biomarkers of drug sensitivity and mechanisms of resistance, we implemented prospective tumor sequencing of patients with metastatic esophagogastric cancer. There was no association between homologous recombination deficiency defects and response to platinum-based chemotherapy. Patients with microsatellite instability-high tumors were intrinsically resistant to chemotherapy but more likely to achieve durable responses to immunotherapy. The single Epstein-Barr virus-positive patient achieved a durable, complete response to immunotherapy. The level of ERBB2 amplification as determined by sequencing was predictive of trastuzumab benefit. Selection for a tumor subclone lacking ERBB2 amplification, deletion of ERBB2 exon 16, and comutations in the receptor tyrosine kinase, RAS, and PI3K pathways were associated with intrinsic and/or acquired trastuzumab resistance. Prospective genomic profiling can identify patients most likely to derive durable benefit to immunotherapy and trastuzumab and guide strategies to overcome drug resistance. Significance: Clinical application of multiplex sequencing can identify biomarkers of treatment response to contemporary systemic therapies in metastatic esophagogastric cancer. This large prospective analysis sheds light on the biological complexity and the dynamic nature of therapeutic resistance in metastatic esophagogastric cancers. Cancer Discov; 8(1); 49-58. ©2017 AACR. See related commentary by Sundar and Tan, p. 14 See related article by Pectasides et al., p. 37 This article is highlighted in the In This Issue feature, p. 1 . ©2017 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher; Klein, Walter E; Li, Zhen
Photoelectrochemical (PEC) water splitting is an elegant method of converting sunlight and water into H2 fuel. To be commercially advantageous, PEC devices must become cheaper, more efficient, and much more durable. This work examines low-cost polycrystalline chalcopyrite films, which are successful as photovoltaic absorbers, for application as PEC absorbers. In particular, Cu-Ga-Se films with wide band gaps can be employed as top cell photocathodes in tandem devices as a realistic route to high efficiencies. In this report, we demonstrate that decreasing Cu/Ga composition from 0.66 to 0.31 in Cu-Ga-Se films increased the band gap from 1.67 to 1.86 eV andmore » decreased saturated photocurrent density from 18 to 8 mA/cm2 as measured by chopped-light current-voltage (CLIV) measurements in a 0.5 M sulfuric acid electrolyte. Buffer and catalyst surface treatments were not applied to the Cu-Ga-Se films, and they exhibited promising stability, evidenced by unchanged CLIV after 9 months of storage in air. Finally, films with Cu/Ga = 0.36 (approximately stoichiometric CuGa3Se5) and 1.86 eV band gaps had exceptional durability and continuously split water for 17 days (~12 mA/cm2 at -1 V vs RHE). This is equivalent to ~17 200 C/cm2, which is a world record for any polycrystalline PEC absorber. These results indicate that CuGa3Se5 films are prime candidates for cheaply achieving efficient and durable PEC water splitting.« less
Muzzillo, Christopher P; Klein, W Ellis; Li, Zhen; DeAngelis, Alexander Daniel; Horsley, Kimberly; Zhu, Kai; Gaillard, Nicolas
2018-06-13
Photoelectrochemical (PEC) water splitting is an elegant method of converting sunlight and water into H 2 fuel. To be commercially advantageous, PEC devices must become cheaper, more efficient, and much more durable. This work examines low-cost polycrystalline chalcopyrite films, which are successful as photovoltaic absorbers, for application as PEC absorbers. In particular, Cu-Ga-Se films with wide band gaps can be employed as top cell photocathodes in tandem devices as a realistic route to high efficiencies. In this report, we demonstrate that decreasing Cu/Ga composition from 0.66 to 0.31 in Cu-Ga-Se films increased the band gap from 1.67 to 1.86 eV and decreased saturated photocurrent density from 18 to 8 mA/cm 2 as measured by chopped-light current-voltage (CLIV) measurements in a 0.5 M sulfuric acid electrolyte. Buffer and catalyst surface treatments were not applied to the Cu-Ga-Se films, and they exhibited promising stability, evidenced by unchanged CLIV after 9 months of storage in air. Finally, films with Cu/Ga = 0.36 (approximately stoichiometric CuGa 3 Se 5 ) and 1.86 eV band gaps had exceptional durability and continuously split water for 17 days (∼12 mA/cm 2 at -1 V vs RHE). This is equivalent to ∼17 200 C/cm 2 , which is a world record for any polycrystalline PEC absorber. These results indicate that CuGa 3 Se 5 films are prime candidates for cheaply achieving efficient and durable PEC water splitting.
40 CFR 86.094-26 - Mileage and service accumulation; emission requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-duty vehicles. It prescribes mileage and service accumulation requirements for durability data vehicles... Durability Program of § 86.094-13(d), and for emission data vehicles regardless of the durability program employed. Service accumulation requirements for durability data vehicles run under the Alternative Service...
76 FR 43808 - Designation of Biobased Items for Federal Procurement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... thermal shipping containers, including durable and non-durable thermal shipping containers as... able to utilize this Web site as one tool to determine the availability of qualifying biobased products... containers and the subcategories are (1) durable thermal shipping containers, and (2) non-durable thermal...
Review of a solution-processed vertical organic transistor as a solid-state vacuum tube
NASA Astrophysics Data System (ADS)
Lin, Hung-Cheng; Zan, Hsiao-Wen; Chao, Yu-Chiang; Chang, Ming-Yu; Meng, Hsin-Fei
2015-05-01
In this paper, we investigate the key issues in raising the on/off current ratio and increasing the output current. A 1 V operated inverter composed of an enhancement-mode space-charge-limited transistor (SCLT) and a depletion-mode SCLT is demonstrated using the self-assembled monolayer modulation process. With a bulk-conduction mechanism, good bias-stress reliability, and good bending durability are obtained. Finally, key scaling-up processes, including nanoimprinting and blade-coated nanospheres, are demonstrated.
Viscoelastic and fatigue properties of model methacrylate-based dentin adhesives
Singh, Viraj; Misra, Anil; Marangos, Orestes; Park, Jonggu; Ye, Qiang; Kieweg, Sarah L.; Spencer, Paulette
2013-01-01
The objective of the current study is to characterize the viscoelastic and fatigue properties of model methacrylate-based dentin adhesives under dry and wet conditions. Static, creep, and fatigue tests were performed on cylindrical samples in a 3-point bending clamp. Static results showed that the apparent elastic modulus of the model adhesive varied from 2.56 to 3.53 GPa in the dry condition, and from 1.04 to 1.62 GPa in the wet condition, depending upon the rate of loading. Significant differences were also found for the creep behavior of the model adhesive under dry and wet conditions. A linear viscoelastic model was developed by fitting the adhesive creep behavior. The developed model with 5 Kelvin Voigt elements predicted the apparent elastic moduli measured in the static tests. The model was then utilized to interpret the fatigue test results. It was found that the failure under cyclic loading can be due to creep or fatigue, which has implications for the failure criterion that are applied for these types of tests. Finally, it was found that the adhesive samples tested under dry conditions were more durable than those tested under wet conditions. PMID:20848661
Model identification methodology for fluid-based inerters
NASA Astrophysics Data System (ADS)
Liu, Xiaofu; Jiang, Jason Zheng; Titurus, Branislav; Harrison, Andrew
2018-06-01
Inerter is the mechanical dual of the capacitor via the force-current analogy. It has the property that the force across the terminals is proportional to their relative acceleration. Compared with flywheel-based inerters, fluid-based forms have advantages of improved durability, inherent damping and simplicity of design. In order to improve the understanding of the physical behaviour of this fluid-based device, especially caused by the hydraulic resistance and inertial effects in the external tube, this work proposes a comprehensive model identification methodology. Firstly, a modelling procedure is established, which allows the topological arrangement of the mechanical networks to be obtained by mapping the damping, inertance and stiffness effects directly to their respective hydraulic counterparts. Secondly, an experimental sequence is followed, which separates the identification of friction, stiffness and various damping effects. Furthermore, an experimental set-up is introduced, where two pressure gauges are used to accurately measure the pressure drop across the external tube. The theoretical models with improved confidence are obtained using the proposed methodology for a helical-tube fluid inerter prototype. The sources of remaining discrepancies are further analysed.
Towards functional antibody-based vaccines to prevent pre-erythrocytic malaria infection.
Sack, Brandon; Kappe, Stefan H I; Sather, D Noah
2017-05-01
An effective malaria vaccine would be considered a milestone of modern medicine, yet has so far eluded research and development efforts. This can be attributed to the extreme complexity of the malaria parasites, presenting with a multi-stage life cycle, high genome complexity and the parasite's sophisticated immune evasion measures, particularly antigenic variation during pathogenic blood stage infection. However, the pre-erythrocytic (PE) early infection forms of the parasite exhibit relatively invariant proteomes, and are attractive vaccine targets as they offer multiple points of immune system attack. Areas covered: We cover the current state of and roadblocks to the development of an effective, antibody-based PE vaccine, including current vaccine candidates, limited biological knowledge, genetic heterogeneity, parasite complexity, and suboptimal preclinical models as well as the power of early stage clinical models. Expert commentary: PE vaccines will need to elicit broad and durable immunity to prevent infection. This could be achievable if recent innovations in studying the parasites' infection biology, rational vaccine selection and design as well as adjuvant formulation are combined in a synergistic and multipronged approach. Improved preclinical assays as well as the iterative testing of vaccine candidates in controlled human malaria infection trials will further accelerate this effort.
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2013 CFR
2013-07-01
... following a determination that the named payee is incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney is similar to a durable power of attorney except... special power of attorney, a springing durable special power of attorney is created by the principal's use...
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following a determination that the named payee is incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney is similar to a durable power of attorney except... special power of attorney, a springing durable special power of attorney is created by the principal's use...
Nam, Gyutae; Park, Joohyuk; Choi, Min; Oh, Pilgun; Park, Suhyeon; Kim, Min Gyu; Park, Noejung; Cho, Jaephil; Lee, Jang-Soo
2015-06-23
Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal-air batteries and fuel cells. Alloying has been studied to finely tune the catalysts' electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH(-), thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn-air battery.
Technology of combined chemical-mechanical fabrication of durable coatings
NASA Astrophysics Data System (ADS)
Smolentsev, V. P.; Ivanov, V. V.; Portnykh, A. I.
2018-03-01
The article presents the scientific fundamentals of methodology for calculating the modes and structuring the technological processes of combined chemical-mechanical fabrication of durable coatings. It is shown that they are based on classical patterns, describing the processes of simultaneous chemical and mechanical impact. The paper demonstrates the possibility of structuring a technological process, taking into account the systematic approach to impact management and strengthening the reciprocal positive influence of each impact upon the combined process. The combined processes have been planned for fabricating the model types of chemical-mechanical coatings of durable products in machine construction. The planning methodology is underpinned by a scientific hypothesis of a single source of impact management through energy potential of process components themselves, or by means of external energy supply through mechanical impact. The control of it is fairly thoroughly studied in the case of pulsed external strikes of hard pellets, similar to processes of vibroimpact hardening, thoroughly studied and mastered in many scientific schools of Russia.
Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Banks, Bruce; Lenczewski, Mary; Demko, Rikako
2002-01-01
Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the surface roughness, coating defect density, and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can have drastically different durability results. Examples and analysis of the causes of resultant differences in atomic oxygen protection are presented. Implications based on in-space experiences, ground laboratory testing, and computational modeling indicate that thin film vacuum-deposited aluminum protective coatings offer much less atomic oxygen protection than sputter-deposited silicon dioxide coatings.
Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru
2011-04-19
The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society
Multi-factor Effects on the Durability of Recycle Aggregate Concrete
NASA Astrophysics Data System (ADS)
Ma, Huan; Cui, Yu-Li; Zhu, Wen-Yu; Xie, Xian-Jie
2016-05-01
Recycled Aggregate Concrete (RAC) was prepared with different recycled aggregate replacement ratio, 0, 30%, 70% and 100% respectively. The performances of RAC were examined by the freeze-thaw cycle, carbonization and sulfate attack to assess the durability. Results show that test sequence has different effects on the durability of RAC; the durability is poorer when carbonation experiment was carried out firstly, and then other experiment was carried out again; the durability is better when recycled aggregate replacement ratio is 70%.
An Ss Model with Adverse Selection.
ERIC Educational Resources Information Center
House, Christopher L.; Leahy, John V.
2004-01-01
We present a model of the market for a used durable in which agents face fixed costs of adjustment, the magnitude of which depends on the degree of adverse selection in the secondary market. We find that, unlike typical models, the sS bands in our model contract as the variance of the shock increases. We also analyze a dynamic version of the model…
Na, Okpin; Cai, Xiao-Chuan; Xi, Yunping
2017-01-01
The prediction of the chloride-induced corrosion is very important because of the durable life of concrete structure. To simulate more realistic durability performance of concrete structures, complex scientific methods and more accurate material models are needed. In order to predict the robust results of corrosion initiation time and to describe the thin layer from concrete surface to reinforcement, a large number of fine meshes are also used. The purpose of this study is to suggest more realistic physical model regarding coupled hygro-chemo transport and to implement the model with parallel finite element algorithm. Furthermore, microclimate model with environmental humidity and seasonal temperature is adopted. As a result, the prediction model of chloride diffusion under unsaturated condition was developed with parallel algorithms and was applied to the existing bridge to validate the model with multi-boundary condition. As the number of processors increased, the computational time decreased until the number of processors became optimized. Then, the computational time increased because the communication time between the processors increased. The framework of present model can be extended to simulate the multi-species de-icing salts ingress into non-saturated concrete structures in future work. PMID:28772714
Use of Advance Directives: A Social Work Perspective on the Myth versus the Reality.
ERIC Educational Resources Information Center
Hoffman, Molly K.
1994-01-01
Considers Directive to Physician, Durable Power of Attorney for Healthcare Decisions, and Medical Ethics Decision Form. Notes importance of process individuals go through in defining what quality of life means to them. Sees current struggle being individual articulation of one's wishes based on personal definition of quality of life set forth in…
A Field Assessment of Timber Highway Bridge Durability in the United States
J.P. Wacker; B.K. Brashaw; F. Jalinoos
2015-01-01
This paper summarizes a cooperative project to assess the current condition and life expectancy of 132 timber highway bridge superstructures at locations throughout the United States. Several superstructure types were included in this comprehensive effort, of which two-thirds were sawn timber stringer systems. In-depth inspections were conducted by the project team...
USDA-ARS?s Scientific Manuscript database
Solanum bulbocastanum comprising a CC-NBS-LRR gene RB/Rpi-blb1 confers broad-spectrum resistance to Phytophthora infestans and is currently employed in potato breeding for durable late blight (LB) resistance. Genomes of several Solanum species were reported to contain RB homologues with confirmed b...
The Effect of Joint Control Training on the Acquisition and Durability of a Sequencing Task
ERIC Educational Resources Information Center
DeGraaf, Allison; Schlinger, Henry D., Jr.
2012-01-01
Gutierrez (2006) experimentally demonstrated the effects of joint control and particularly the role of response mediation in the sequencing behavior of adults using an unfamiliar language. The purpose of the current study was to replicate and extend the procedures used by Gutierrez by comparing the effects of joint control training with the…
Service life assessment of timber highway bridges in USA climate zones
James P. Wacker; Brian K. Brashaw; Thomas G. Williamson; P. David Jones; Matthew S. Smith; Travis K. Hosteng; David L. Strahl; Lola E. Coombe; V.J. Gopu
2014-01-01
As engineers begin to estimate life-cycle costs and sustainable design approaches for timber bridges, there is a need for more reliable data about their durability and expected service life. This paper summarizes a comprehensive effort to assess the current condition of more than one hundred timber highway bridge superstructures throughout the United States. This...
Shi, Qiurong; Zhu, Chengzhou; Engelhard, Mark H.; ...
2017-01-19
Here, carbon-supported Pt nanostructures currently exhibited great potential in polymer electrolyte membrane fuel cells. Nitrogen-doped hollow carbon spheres (NHCSs) with extra low density and high specific surface area are promising carbon support for loading Pt NPs. The doped heteroatom of nitrogen could not only contribute to the active activity for the oxygen reduction reaction (ORR), but also shows a strong interaction with Pt NPs for entrapping them from dissolution/migration. This synergetic effect/interaction resulted in the uniform dispersion and strong combination of the Pt NPs on the carbon support and thus play a significant role in hindering the degradation of themore » catalytic activities of Pt NPs. As expected, the as-obtained Pt/NHCSs displayed improved catalytic activity and superior durability toward ORR.« less
42 CFR 414.229 - Other durable medical equipment-capped rental items.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.229 Other durable medical... 42 Public Health 3 2011-10-01 2011-10-01 false Other durable medical equipment-capped rental items...
42 CFR 414.229 - Other durable medical equipment-capped rental items.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.229 Other durable medical... 42 Public Health 3 2010-10-01 2010-10-01 false Other durable medical equipment-capped rental items...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
Evaluation of the durability of composite tidal turbine blades.
Davies, Peter; Germain, Grégory; Gaurier, Benoît; Boisseau, Amélie; Perreux, Dominique
2013-02-28
The long-term reliability of tidal turbines is critical if these structures are to be cost effective. Optimized design requires a combination of material durability models and structural analyses. Composites are a natural choice for turbine blades, but there are few data available to predict material behaviour under coupled environmental and cycling loading. The present study addresses this problem, by introducing a multi-level framework for turbine blade qualification. At the material scale, static and cyclic tests have been performed, both in air and in sea water. The influence of ageing in sea water on fatigue performance is then quantified, and much lower fatigue lives are measured after ageing. At a higher level, flume tank tests have been performed on three-blade tidal turbines. Strain gauging of blades has provided data to compare with numerical models.
Guagliumi, Giulio; Shimamura, Kunihiro; Sirbu, Vasile; Garbo, Roberto; Boccuzzi, Giacomo; Vassileva, Angelina; Valsecchi, Orazio; Fiocca, Luigi; Canova, Paolo; Colombo, Francesco; Tensol Rodriguez Pereira, Gabriel; Nakamura, Daisuke; Attizzani, Guilherme F; Cereda, Alberto; Satogami, Keisuke; De Luca, Leonardo; Saia, Francesco; Capodanno, Davide
2018-05-19
Delayed healing and endothelial dysfunction may occur with drug-eluting stents (DES), promoting accelerated infiltration of lipids in the neointima and development of neoatherosclerosis (NA). Pathology data suggest durable polymer (DP) of DES to play a major role in this process. Whether biodegradable polymer (BP) may address these issues is uncertain. We compared in vivo vessel healing and NA of current generation BP- or DP-DES using serial optical coherence tomography (OCT) assessments. Ninety patients with multivessel coronary artery disease were randomized 1:1 to BP everolimus-eluting stents (EES, Synergy) or DP zotarolimus-eluting stents (ZES, Resolute Integrity). Co-primary endpoints were the maximum length of uncovered struts at 3 months (powered for non-inferiority) and the percentage of patients presenting with frames of NA at 18 months (powered for superiority) as measured by OCT. The maximum length of uncovered struts at 3 months was 10 ± 8 mm in the BP-EES group and 11 ± 7 mm in the DP-ZES group (mean difference -1 mm; upper 97.5% confidence interval +2 mm; P = 0.05 for non-inferiority; P = 0.45 for superiority). The percentage of patients presenting with frames of NA at 18 months was low and similar between BP-EES and DP-ZES groups (11.6% vs. 15.9%; P = 0.56). There was no stent thrombosis in both groups at 24 months. BP-EES and DP-ZES showed a similar healing response at 3 months and a low incidence of NA at 18 months. Biocompatible polymers, regardless of whether they are durable or biodegradable, may favourably impact the long-term vascular response to current-generation DES.
Glass-bonded iodosodalite waste form for immobilization of 129 I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, Saehwa; Peterson, Jacob A.; Riley, Brian J.
Immobilization of radioiodine (e.g., 129I, 131I) is an important need for current and future nuclear fuel cycles. For the current work, iodosodalite [Na8(AlSiO4)6I2] was synthesized hydrothermally from metakaolin, NaI, and NaOH. Following hydrothermal treatment, dried unwashed powders were used to make glass-bonded iodosodalite waste forms by heating pressed pellets at 650, 750, or 850 °C with two different types of sodium borosilicate glass binders, i.e., NBS-4 and SA-800. These heat-treated specimens were characterized with X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, thermal analysis, porosity and density measurements, neutron activation analysis, and inductively-coupled plasma mass spectrometry. Themore » pellets mixed with 10 mass% of NBS-4 or SA-800 and heat-treated at 750 °C contained relatively high percentage iodine retention (~44-47 % of the maximum iodine loading) with relatively low porosities, while other pellets with higher percentages iodine retention either contained higher porosity or were not completely sintered. ASTM C1308 chemical durability tests of monolithic specimens showed a large initial release of Na, Al, Si, and I on the first day, possibly from water-soluble salt crystals or non-durable amorphous phases. Release rates of Na and Si were higher than for Al and I, probably due to a poorly durable Na-Si-O phase from the glass bonding matrix. The cumulative normalized release of iodine was 12.5 g m-2 for the first 10 1-d exchanges, suggestive of coherent dissolution. The average release rate from 10-24 days during the 7-d exchange intervals was 0.2336 g m-2 d-1.« less
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; McCorkle, Linda; Ingrahm, Linda
1998-01-01
Extensive effort is currently being expended to demonstrate the feasibility of using high-performance, polymer-matrix composites as engine structural materials over the expected operating lifetime of the aircraft, which can extend from 18,000 to 30,000 hr. The goal is to develop light-weight, high-strength, and high-modulus materials for use in higher temperature sections of advanced 21 st century aircraft propulsion systems. To accomplish this goal, it is necessary to pursue the development of thermal and mechanical durability models for graphite-fiber-reinforced, polymer-matrix composites. Numerous investigations have been reported regarding the thermo-oxidative stability (TOS) of the polyimide PMR-15 (1-5). A significant amount of this work has been directed at edge and geometry effects, reinforcement fiber influences, and empirical modeling of high-temperature weight loss behavior. It is yet to be determined if the information obtained from the PMR-15 composite tests is applicable to other polyimide-matrix composites. The condensation-curing polymer Avimid N is another advanced composite material often considered for structural applications at high temperatures. Avimid N has better thermo-oxidative stability than PMR-15 (6), but the latter is more easily processed. The most comprehensive study of the thermo-oxidative stability of Avimid N neat resin and composites at 371 (infinity)C is found in Salin and Seferis (7). The purposes of the work described herein were to compare the thermal aging behavior of these two matrix polymers and to determine the reasons for and the consequences of the difference in thermal durability. These results might be of some use in improving future polymer development through the incorporation of the desirable characteristics of both polyimides.
Manufacturing issues which affect coating erosion performance in wind turbine blades
NASA Astrophysics Data System (ADS)
Cortés, E.; Sánchez, F.; Domenech, L.; Olivares, A.; Young, T. M.; O'Carroll, A.; Chinesta, F.
2017-10-01
Erosion damage, caused by repeated rain droplet impact on the leading edges of wind turbine blades, is a major cause for cost concern. Resin Infusion (RI) is used in wind energy blades where low weight and high mechanical performance materials are demanded. The surface coating plays a crucial role in the manufacturing and performance response. The Leading Edge coating is usually moulded, painted or sprayed onto the blade surface so adequate adhesion in the layers' characterization through the thickness is required for mechanical performance and durability reasons. In the current work, an investigation has been directed into the resulting rain erosion durability of the coating was undertaken through a combination of mass loss testing measurements with manufacturing processing parameter variations. The adhesion and erosion is affected by the shock wave caused by the collapsing water droplet on impact. The stress waves are transmitted to the substrate, so microestructural discontinuities in coating layers and interfaces play a key role on its degradation. Standard industrial systems are based on a multilayer system, with a high number of interfaces that tend to accelerate erosion by delamination. Analytical and numerical models are commonly used to relate lifetime prediction and to identify suitable coating and composite substrate combinations and their potential stress reduction on the interface. In this research, the input parameters for the appropriate definition of the Cohesive Zone Modelling (CZM) of the coating-substrate interface are outlined by means of Pull off testing and Peeling testing results. It allowed one to optimize manufacturing and coating process for blades into a knowledge-based guidance for leading edge coating material development. It was achieved by investigating the erosion degradation process using both numerical and laboratory techniques (Pull off, Peeling and Rain Erosion Testing in a whirling arm rain erosion test facility).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.
Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less
Jantzen, Carol M.
2017-03-27
Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in borosilicate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt a highly variable waste with some glass forming additives such as SiO 2 and B 2O 3 in the form of a premelted frit and pour the molten mixture into a stainless steel canister. Seal the canister before moisture can enter themore » canister (10’ tall by 2’ in diameter) so the canister does not corrode from the inside out. Glass has also become widely used for HLW is that due to the fact that the short range order (SRO) and medium range order (MRO) found in the structure of glass atomistically bonds the radionuclides and hazardous species in the waste. The SRO and MRO have also been found to govern the melt properties such as viscosity and resistivity of the melt and the crystallization potential and solubility of certain species. Furthermore, the molecular structure of the glass also controls the glass durability, i.e. the contaminant/radionuclide release, by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to HLW waste variability. Nuclear waste glasses melt between 1050-1150°C which minimizes the volatility of radioactive components such as 99Tc, 137Cs, and 129I. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models were developed based on the molecular structure of glass, polymerization theory of glass, and quasicrystalline theory of glass crystallization. These models create a glass which is durable, pourable, and processable with 95% accuracy without knowing from batch to batch what the composition of the waste coming out of the storage tanks will be. These models have operated the Savannah River Site Defense Waste Processing Facility (SRS DWPF), which is the world’s largest HLW Joule heated ceramic melter, since 1996. This unique “feed forward” process control, which qualifies the durability, pourability, and processability of the waste plus glass additive mixture before it enters the melter, has enabled ~8000 tons of HLW glass and 4242 canisters to be produced since 1996 with only one melter replacement.« less
Empirical membrane lifetime model for heavy duty fuel cell systems
NASA Astrophysics Data System (ADS)
Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik
2016-12-01
Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.
Compositional threshold for Nuclear Waste Glass Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.
2013-04-24
Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.
Microbial Community Analysis of Naturally Durable Wood in an Above Ground Field Test
G.T. Kirker; S.V. Diehl; P.K. Lebow
2014-01-01
This paper presents preliminary results of an above ground field test wherein eight naturally durable wood species were exposed concurrently at two sites in North America. Surface samples were taken at regular intervals from non-durable controls and compared to their more durable counterparts. Terminal Restriction Fragment Length Polymorphism was performed to...
Combined hydrophobicity and mechanical durability through surface nanoengineering
Elliott, Paul R.; Stagon, Stephen P.; Huang, Hanchen; ...
2015-04-08
This paper reports combined hydrophobicity and mechanical durability through the nanoscale engineering of surfaces in the form of nanorod-polymer composites. Specifically, the hydrophobicity derives from nanoscale features of mechanically hard ZnO nanorods and the mechanical durability derives from the composite structure of a hard ZnO nanorod core and soft polymer shell. Experimental characterization correlates the morphology of the nanoengineered surfaces with the combined hydrophobicity and mechanical durability, and reveals the responsible mechanisms. Such surfaces may find use in applications, such as boat hulls, that benefit from hydrophobicity and require mechanical durability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru
2014-03-01
A flat die pellet mill was used to understand the effect of high levels of feedstock moisture content in the range of 28–38% (w.b.), with die rotational speeds of 40–60 Hz, and preheating temperatures of 30–110 °C on the pelleting characteristics of 4.8 mm screen size ground corn stover using an 8 mm pellet die. The physical properties of the pelletised biomass studied are: (a) pellet moisture content, (b) unit, bulk and tapped density, and (c) durability. Pelletisation experiments were conducted based on central composite design. Analysis of variance (ANOVA) indicated that feedstock moisture content influenced all of the physicalmore » properties at P < 0.001. Pellet moisture content decreased with increase in preheating temperature to about 110 °C and decreasing the feedstock moisture content to about 28% (w.b.). Response surface models developed for quality attributes with respect to process variables has adequately described the process with coefficient of determination (R2) values of >0.88. The other pellet quality attributes such as unit, bulk, tapped density, were maximised at feedstock moisture content of 30–33% (w.b.), die speeds of >50 Hz and preheating temperature of >90 °C. In case of durability a medium moisture content of 33–34% (w.b.) and preheating temperatures of >70 °C and higher die speeds >50 Hz resulted in high durable pellets. It can be concluded from the present study that feedstock moisture content, followed by preheating, and die rotational speed are the interacting process variables influencing pellet moisture content, unit, bulk and tapped density and durability.« less
SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, K.; Choi, A.; Marra, J.
2011-02-07
Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting themore » melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling approach for the silicate phase. The coordination of aluminum and iron was found to be mainly tetrahedral, with some octahedral iron ions. In all samples, trigonally-coordinated boron was determined to dominate over tetrahedrally-coordinated boron. The results further suggested that BO{sub 4} tetrahedra and BO{sub 3} triangles form complex borate units and may be present as separate constituents. However, no quantification of tetrahedral-to-trigonal boron ratio was made.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Arnaldo
The Network of Excellence 'Knowledge-based Multicomponent Materials for Durable and Safe Performance' (KMM-NoE) consists of 36 institutional partners from 10 countries representing leading European research institutes and university departments (25), small and medium enterprises, SMEs (5) and large industry (7) in the field of knowledge-based multicomponent materials (KMM), more specifically in intermetallics, metal-ceramic composites, functionally graded materials and thin layers. The main goal of the KMM-NoE (currently funded by the European Commission) is to mobilise and concentrate the fragmented scientific potential in the KMM field to create a durable and efficient organism capable of developing leading-edge research while spreading themore » accumulated knowledge outside the Network and enhancing the technological skills of the related industries. The long-term strategic goal of the KMM-NoE is to establish a self-supporting pan-European institution in the field of knowledge-based multicomponent materials--KMM Virtual Institute (KMM-VIN). It will combine industry oriented research with educational and training activities. The KMM Virtual Institute will be founded on three main pillars: KMM European Competence Centre, KMM Integrated Post-Graduate School, KMM Mobility Programme. The KMM-NoE is coordinated by the Institute of Fundamental Technological Research (IPPT) of the Polish Academy of Sciences, Warsaw, Poland.« less
Socioeconomic Disparities in the Use of Home Health Services in a Medicare Managed Care Population
Freedman, Vicki A; Rogowski, Jeannette; Wickstrom, Steven L; Adams, John; Marainen, Jonas; Escarce, José J
2004-01-01
Objective To investigate socioeconomic disparities in access to home health visits and durable medical equipment by persons enrolled in two Medicare managed care health plans. Data Sources A telephone survey of 4,613 Medicare managed care enrollees conducted between April and October of 2000 and linked to administrative claims for a subsequent 12-month period. Study Design We estimated a series of logistic regression models to determine which socioeconomic factors were related to home health visits and the use of durable medical equipment (DME) among Medicare managed care enrollees. Principal Findings Controlling for health and demographic differences, Medicare managed care enrollees in the lowest tertile for nonhousing assets had 50 percent greater odds than those in the highest tertile of having one or more home health visits. All else equal, enrollees with less than a high school education had 30 percent lower odds than those who had graduated from high school of using durable medical equipment. Conclusions Medicare managed care enrollees of low socioeconomic status do not appear to have reduced access to home health visits; however, use of durable medical equipment is considerably lower for enrollees with less than a high school education. Physicians and therapists working with Medicare managed care enrollees may want to actively target DME prescriptions to those with educational disadvantages. PMID:15333109
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, Dan J; Corum, James; Klett, Lynn B
2006-04-01
This report provides recommended durability-based design properties and criteria for a quais-isotropic carbon-fiber thermoplastic composite for possible automotive structural applications. The composite consisted of a PolyPhenylene Sulfide (PPS) thermoplastic matrix (Fortron's PPS - Ticona 0214B1 powder) reinforced with 16 plies of carbon-fiber unidirectional tape, [0?/90?/+45?/-45?]2S. The carbon fiber was Hexcel AS-4C and was present in a fiber volume of 53% (60%, by weight). The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Freedom Car and Vehicle Technologies and is closely coordinated with the Advanced Composites Consortium, is to develop durability-driven design datamore » and criteria to assure the long-term integrity of carbon-fiber-based composite systems for automotive structural applications. This document is in two parts. Part 1 provides design data and correlations, while Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects of short-time, cyclic, and sustained loadings; temperature; fluid environments; and low-energy impacts (e.g., tool drops and kickups of roadway debris) on deformation, strength, and stiffness. Guidance for design analysis, time-independent and time-dependent allowable stresses, rules for cyclic loadings, and damage-tolerance design guidance are provided.« less
Durability of carbon fiber reinforced shape memory polymer composites in space
NASA Astrophysics Data System (ADS)
Jang, Joon Hyeok; Hong, Seok Bin; Ahn, Yong San; Kim, Jin-Gyun; Nam, Yong-Youn; Lee, Geun Ho; Yu, Woong-Ryeol
2016-04-01
Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Recently, shape memory polymer composites (SMPCs) have been considered for space structure instead of shape memory alloys due to their deformability, lightweight and large recovery ratio, requiring characterization of their mechanical properties against harsh space environment and further prediction of the durability of SMPCs in space. As such, the durability of carbon fiber reinforced shape memory polymer composites (CF-SMPCs) was investigated using accelerated testing method based on short-term testing of CF-SMPCs in harsh condition. CF-SMPCs were prepared using woven carbon fabrics and a thermoset SMP via vacuum assisted resin transfer molding process. Bending tests with constant strain rate of CF-SMPCs were conducted using universal tensile machine (UTM) and Storage modulus test were conducted using dynamic mechanical thermal analysis (DMTA). Using the results, a master curve based on time-temperature superposition principle was then constructed, through which the mechanical properties of CF-SMPCs at harsh temperature were predicted. CF-SMPCs would be exposed to simulated space environments under ultra-violet radiations at various temperatures. The mechanical properties including flexural and tensile strength and shape memory properties of SMPCs would be measured using UTM before and after such exposures for comparison. Finally, the durability of SMPCs in space would be assessed by developing a degradation model of SMPC.
Modeling reinforced concrete durability : [summary].
DOT National Transportation Integrated Search
2014-06-01
Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...
NASA Technical Reports Server (NTRS)
Stanic, Vesna; Braun, James; Hoberecht, Mark
2003-01-01
Proton exchange membrane (PEM) fuel cells are energy sources that have the potential to replace alkaline fuel cells for space programs. Broad power ranges, high peak-to-nominal power capabilities, low maintenance costs, and the promise of increased life are the major advantages of PEM technology in comparison to alkaline technology. The probability of PEM fuel cells replacing alkaline fuel cells for space applications will increase if the promise of increased life is verified by achieving a minimum of 10,000 hours of operating life. Durability plays an important role in the process of evaluation and selection of MEAs for Teledyne s Phase I contract with the NASA Glenn Research Center entitled Proton Exchange Membrane Fuel cell (PEMFC) Power Plant Technology Development for 2nd Generation Reusable Launch Vehicles (RLVs). For this contract, MEAs that are typically used for H2/air operation were selected as potential candidates for H2/O2 PEM fuel cells because their catalysts have properties suitable for O2 operation. They were purchased from several well-established MEA manufacturers who are world leaders in the manufacturing of diverse products and have committed extensive resources in an attempt to develop and fully commercialize MEA technology. A total of twelve MEAs used in H2/air operation were initially identified from these manufacturers. Based on the manufacturers specifications, nine of these were selected for evaluation. Since 10,000 hours is almost equivalent to 14 months, it was not possible to perform continuous testing with each MEA selected during Phase I of the contract. Because of the lack of time, a screening test on each MEA was performed for 400 hours under accelerated test conditions. The major criterion for an MEA pass or fail of the screening test was the gas crossover rate. If the gas crossover rate was higher than the membrane intrinsic permeability after 400 hours of testing, it was considered that the MEA had failed the test. Three types of MEAs out of the nine total membranes failed the test. The evaluation results showed that fuel cell operating conditions (current, pressure, stoichiometric flow rates) were the parameters that influenced the durability of MEAs. In addition, the durability test results indicated that the type of membrane was also an important parameter for MEA durability. At accelerated test conditions, the MEAs with casted membranes failed during the 400 hour test. However, the MEAs prepared from the casted membrane with support as well as extruded membranes, both passed the 400h durability test at accelerated operating test conditions. As a result of the MEA accelerated durability tests, four MEAs were selected for further endurance testing. These tests are being carried out with four-cell stacks under nominal fuel cell operating conditions.
Quan, Hong-zhu; Kasami, Hideo
2014-01-01
In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.
AMTEC cell testing, optimization of rhodium/tungsten electrodes, and tests of other components
NASA Technical Reports Server (NTRS)
Williams, Roger M.; Ryan, Margaret A.; Jeffries-Nakamura, Barbara; Underwood, Mark L.; O'Connor, Dennis; Kikkert, Stan
1991-01-01
Electrodes, current collectors, ceramic to metal braze seals, and metallic components exposed to the high 'hot side' temperatures and sodium liquid and vapor environment have been tested and evaluated in laboratory cells running for hundreds of hours at 1100-1200 K. Rhodium/tungsten electrodes have been selected as the optimum electrodes based on performance parameters and durability. Current collectors have been evaluated under simulated and actual operating conditions. The microscopic effects of metal migration between electrode and current collector alloys as well as their thermal and electrical properties determined the suitability of current collector and lead materials. Braze seals suitable for long term application to AMTEC devices are being developed.
Durability Characterization of Advanced Polymeric Composites at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Gates, T. S.
2001-01-01
The next generation of reusable launch vehicles will require technology development in several key areas. Of these key areas, the development of polymeric composite cryogenic fuel tanks promises to present one of the most difficult technical challenges. It is envisioned that a polymer matrix composite (PMC) tank would be a large shell structure capable of containing cryogenic fuels and carrying a range of structural loads. The criteria that will be imposed on such a design include reduced weight, conformal geometry, and impermeability. It is this last criterion, impermeability, that will provide the focus of this paper. The essence of the impermeability criterion is that the tank remains leak free throughout its design lifetime. To address this criterion, one of the first steps is to conduct a complete durability assessment of the PMC materials. At Langley Research Center, a durability assessment of promising new polyimide-based PMCs is underway. This durability program has focused on designing a set of critical laboratory experiments that will determine fundamental material properties under combined thermal-mechanical loading at cryogenic temperatures. The test program provides measurements of lamina and laminate properties, including strength, stiffness, and fracture toughness. The performance of the PMC materials is monitored as a function of exposure conditions and aging time. Residual properties after exposure are measured at cryogenic temperatures and provide quantitative values of residual strength and stiffness. Primary degradation mechanisms and the associated damage modes are measured with both destructive and nondestructive techniques. In addition to mechanical properties, a range of physical properties, such as weight, glass transition, and crack density, are measured and correlated with the test conditions. This paper will report on the progress of this research program and present critical results and illustrative examples of current findings.
Phosphoric Acid Fuel Cell Technology Status
NASA Technical Reports Server (NTRS)
Simons, S. N.; King, R. B.; Prokopius, P. R.
1981-01-01
A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.
Nicole M. Stark; Laurent M. Matuana
2007-01-01
Much of the current growth of wood-plastic composites (WPCs) is due to increased penetration into the decking market; therefore it has become imperative to understand the durability of WPCs in outdoor applications. In this study, wood flour filled high-density polyethylene (HDPE) composites were manufactured through either injection molding or extrusion. A set of...
Evidence-based outcomes of holmium laser enucleation of the prostate.
Large, Tim; Krambeck, Amy E
2018-05-01
Holmium laser enucleation of the prostate (HoLEP) has been a mainstay therapy for the treatment of lower urinary tract symptoms (LUTS) secondary to benign prostate hyperplasia (BPH) for nearly 20 years. We briefly review current and sentinel publications that provide outcomes data after HoLEP. Current literature continues to support HoLEP as a versatile and durable surgical option for men with LUTS secondary to BPH. Despite evidence supporting durable symptom relief beyond 10 years even in large prostate glands, HoLEP is still not widely available to all patients. Concerns surrounding the learning curve of the procedure, high rates of retrograde ejaculation, and transient urinary incontinence seem to persist and limit the adoption of HoLEP by established urologists and residency training programs. Recent publications continue to show excellent short-term and long-term outcomes after HoLEP, in the categories of voiding function and patient satisfaction. Continued attempts to demonstrate equivalent outcomes of alternate-BPH surgical techniques are being met with renewed efforts by those performing HoLEP to demonstrate equivalent outcomes and patient safety during the learning phase of HoLEP for both mentored and self-directed surgical training.
NASA Astrophysics Data System (ADS)
Chen, Xiaobin; Du, Ke; Lai, Yanqing; Shang, Guozhi; Li, Huangxu; Xiao, Zhiwei; Chen, Yuxiang; Li, Junming; Zhang, Zhian
2017-07-01
Na2FeP2O7, which is considered as a promising cathode for sodium ion batteries (SIBs) on account of its economical efficiency and outstanding thermal stability, has been widely studied for the purpose of enhancing its electronic conductivity and interface ion transportation. In this paper, a double-carbon synergistically modified strategy was firstly introduced to facilitate the electrochemical performance of Na2FeP2O7. Na2FeP2O7 particles are enwrapped in situ by a carbon layer and further anchored in reduced graphene oxide (RGO) framework through a facile urea-nitrate combustion method. Consequently, the excellent rate performance and durable cycle stability of this compound are identified, which exhibits a reversible sodium storage capacity of 65 mAh g-1 at a current density of 10 C and no obvious decay in capacity after circling for 300 cycles at 1 C. What's more, no drastic degradation in capacity is observed when the cycling current density is brought back to high rates after cycling for more than 360 cycles at various rates.
Durable silver mirror with ultra-violet thru far infra-red reflection
Wolfe, Jesse D.
2010-11-23
A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.
SPICE Modeling of Body Bias Effect in 4H-SiC Integrated Circuit Resistors
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2017-01-01
The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.
O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.
2017-02-14
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.
Materials research for High Speed Civil Transport and generic hypersonics: Adhesive durability
NASA Technical Reports Server (NTRS)
Allen, Mark R.
1995-01-01
This report covers a portion of an ongoing investigation of the durability of adhesives for the High Speed Civil Transport (HSCT) program. Candidate HSCT adhesives need to possess the high-temperature capability required for supersonic flight. This program was designed to initiate an understanding of the behavior of candidate HSCT materials when subjected to combined mechanical and thermal loads. Two adhesives (K3A and FM57) and two adherends (IM7/K3B polymeric composite and the titanium alloy Ti-6Al-4V) were used to fabricate thick adherend lap shear specimens. Due to processing problems, only the FM57/titanium bonds could be fabricated successfully. These are currently undergoing thermomechanical fatigue (TMF) testing. There is an acute need for an adhesive to secondarily bond polymeric composite adherends or, alternately, polymeric composites that remain stable at the processing temperatures of today's adhesives.
Chen, Lanlan; Ren, Xiang; Teng, Wanqing; Shi, Pengfei
2017-07-21
Electrolytic hydrogen generation needs earth-abundant oxygen evolution reaction electrocatalysts that perform efficiently at mild pH. Here, the development of amorphous nickel-cobalt-borate nanosheet arrays on macroporous nickel foam (NiCo-Bi/NF) as a 3D catalyst electrode for high-performance water oxidation in near-neutral media is reported. To drive a current density of 10 mA cm -2 , the resulting NiCo-Bi/NF demands an overpotential of only 430 mV in 0.1 m potassium borate (K-Bi, pH 9.2). Moreover, it also shows long-term electrochemical durability with maintenance of catalytic activity for 20 h, achieving a high turnover frequency of 0.21 s -1 at an overpotential of 550 mV. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment
NASA Astrophysics Data System (ADS)
Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun
2016-11-01
The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.
Large patternable metal nanoparticle sheets by photo/e-beam lithography
NASA Astrophysics Data System (ADS)
Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru
2017-10-01
Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.
2017-01-01
Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.
NASA Astrophysics Data System (ADS)
Qu, Mengnan; Liu, Shanshan; He, Jinmei; Feng, Juan; Yao, Yali; Ma, Xuerui; Hou, Lingang; Liu, Xiangrong
2017-07-01
In this study, mechanically stable and recyclable superhydrophobic materials were prepared from polyvinylchloride (PVC) and kaolin nanoparticles modified by stearic acid using a simple and low-cost drop-coating. The obtained materials displayed liquid-repellent toward water and several other liquids of daily life (such as orange juice, coffee, milk, coca cola and ink). These superhydrophobic materials showed remarkable robustness against sandpaper abrasion, UV-irradiation and ultrasonication test, while retaining its superhydrophobicity even after 60 abrasion cycles loaded of 500 g with sandpaper, 7 days UV-irradiation or 120 min ultrasonication test. The excellent durability against complex conditions was attributed to the hierarchical structure and strong interfacial adhesion of the materials. More significantly, the materials used in the coating could be recycled and reconstructed without losing its superhydrophobicity. The current superhydrophobic materials tolerate rigorous environment, opening a new avenue to a variety of practical applications.
The Development of Erosion and Impact Resistant Turbine Airfoil Thermal Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.
2007-01-01
Thermal barrier coatings are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments and extend component lifetimes. For thermal barrier coatings designed for turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability. Advanced erosion resistant thermal barrier coatings are being developed, with a current emphasis on the toughness improvements using a combined rare earth- and transition metal-oxide doping approach. The performance of the doped thermal barrier coatings has been evaluated in burner rig and laser heat-flux rig simulated engine erosion and thermal gradient environments. The results have shown that the coating composition optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic durability. The erosion and impact damage mechanisms of the thermal barrier coatings will also be discussed.
Food crises, food regimes and food movements: rumblings of reform or tides of transformation?
Holt Giménez, Eric; Shattuck, Annie
2011-01-01
This article addresses the potential for food movements to bring about substantive changes to the current global food system. After describing the current corporate food regime, we apply Karl Polanyi's 'double-movement' thesis on capitalism to explain the regime's trends of neoliberalism and reform. Using the global food crisis as a point of departure, we introduce a comparative analytical framework for different political and social trends within the corporate food regime and global food movements, characterizing them as 'Neoliberal', 'Reformist', 'Progressive', and 'Radical', respectively, and describe each trend based on its discourse, model, and key actors, approach to the food crisis, and key documents. After a discussion of class, political permeability, and tensions within the food movements, we suggest that the current food crisis offers opportunities for strategic alliances between Progressive and Radical trends within the food movement. We conclude that while the food crisis has brought a retrenchment of neoliberalization and weak calls for reform, the worldwide growth of food movements directly and indirectly challenge the legitimacy and hegemony of the corporate food regime. Regime change will require sustained pressure from a strong global food movement, built on durable alliances between Progressive and Radical trends.
Going Deep...Putting the Undergound Dimension to Use
Laughton, Chris
2017-12-09
Underground construction can offer durable and environmentally-sound solutions to many of societies more pressing needs. The talk will identify some common uses for underground space and discuss current construction techniques used to mine in soils and rock. Examples of successful underground construction projects will demonstrate the advantages that the underground site can offer. In addition, insight will be provided into the nature of the risks run when working with a construction material (the ground) that cannot be made to order, nor precisely defined by the investigative processes currently at our disposal.
ERIC Educational Resources Information Center
Byers, Joseph W.
1991-01-01
The most useful feature of laptop computers is portability, as one elementary school principal notes. IBM and Apple are not leaders in laptop technology. Tandy and Toshiba market relatively inexpensive models offering durability, reliable software, and sufficient memory space. (MLH)
Simplifying Bridge Expansion Joint Design and Maintenance
DOT National Transportation Integrated Search
2011-10-19
This report presents a study focused on identifying the most durable expansion joints for the South : Carolina Department of Transportation. This is performed by proposing a degradation model for the : expansion joints and updating it based on bridge...
Improving operational anodising process performance using simulation approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liong, Choong-Yeun, E-mail: lg@ukm.edu.my; Ghazali, Syarah Syahidah, E-mail: syarah@gapps.kptm.edu.my
The use of aluminium is very widespread, especially in transportation, electrical and electronics, architectural, automotive and engineering applications sectors. Therefore, the anodizing process is an important process for aluminium in order to make the aluminium durable, attractive and weather resistant. This research is focused on the anodizing process operations in manufacturing and supplying of aluminium extrusion. The data required for the development of the model is collected from the observations and interviews conducted in the study. To study the current system, the processes involved in the anodizing process are modeled by using Arena 14.5 simulation software. Those processes consist ofmore » five main processes, namely the degreasing process, the etching process, the desmut process, the anodizing process, the sealing process and 16 other processes. The results obtained were analyzed to identify the problems or bottlenecks that occurred and to propose improvement methods that can be implemented on the original model. Based on the comparisons that have been done between the improvement methods, the productivity could be increased by reallocating the workers and reducing loading time.« less
Characterisation of vibration input to flywheel used on urban bus
NASA Astrophysics Data System (ADS)
Wang, L.; Kanarachos, S.; Christensen, J.
2016-09-01
Vibration induced from road surface has an impact on the durability and reliability of electrical and mechanical components attached on the vehicle. There is little research published relevant to the durability assessment of a flywheel energy recovery system installed on city and district buses. Relevant international standards and legislations were reviewed and large discrepancy was found among them, in addition, there are no standards exclusively developed for kinetic energy recovery systems on vehicles. This paper describes the experimentation of assessment of road surface vibration input to the flywheel on a bus as obtained at the MIRA Proving Ground. Power density spectra have been developed based on the raw data obtained during the experimentation. Validation of this model will be carried out using accelerated life time tests that will be carried out on a shaker rig using an accumulated profile based on the theory of fatigue damage equivalence in time and frequency domain aligned with the model predictions.
NASA Astrophysics Data System (ADS)
Hilyati, S.; Nizam, Z. M.; Zurisman, M. A. A.; Azhar, A. T. S.
2017-06-01
During the last two decades, reinforced concrete (RC) has been extensively used in most of the world as one of the common construction material due to its advantages and durability. However, RC structures exposed to marine environments are subjected to chloride attack. Chlorides from seawater penetrate into RC structures are not only causing severe corrosion problems but also affect the durability and serviceability of such structures. This paper investigates the influence of transverse reinforcement and spacing of reinforcing bars on concrete cover cracking of two-way RC slab specimens using accelerated corrosion tests. The experimental program involved the testing of four RC slab specimens and was generally designed to observe the crack width and the time of crack to propagate. An improved model for predicting the timing of crack propagation based on the experimental data was then developed.
NASA Astrophysics Data System (ADS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-09-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
NASA Technical Reports Server (NTRS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-01-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
Durable Airtightness in Single-Family Dwellings - Field Measurementsand Analysis
Chan, Wanyu R.; Walker, Iain S.; Sherman, Max H.
2015-06-01
Here, durability of the building envelope is important to new homes that are increasingly built with improved levels of airtightness. It is also important to weatherized homes such that energy savings from retrofit measures, such as air sealing, are persistent. This paper presents a comparison of air leakage measurements collected in November 2013 through March 2014, with two sets of prior data collected between 2001-2003 from 17 new homes located near Atlanta, GA, and 17 homes near Boise, ID that were weatherized in 2007- 2008. The purpose of the comparison is to determine if there are changes to the airtightnessmore » of building envelopes over time. The air leakage increased in all but one of the new homes, with a mean increase of about 25%. The weatherized homes also showed an increase in the mean air leakage (12%). A regression analysis was performed to describe the relationship between prior and current measurements in terms of normalized leakage (NL). The best estimate of the ageing factor predicts a 15% increase in NL over ten years. Further analysis using ResDB data (LBNL’s Residential Diagnostic Database) showed the expected changes in air leakage if ageing were modelled. These results imply the need to examine the causes of increased leakage and methods to avoid them. This increase in leakage with time should be accounted for in long-term population-wide energy savings estimates, such as those used in ratings or energy savings programs.« less
Monte Carlo Computational Modeling of Atomic Oxygen Interactions
NASA Technical Reports Server (NTRS)
Banks, Bruce A.; Stueber, Thomas J.; Miller, Sharon K.; De Groh, Kim K.
2017-01-01
Computational modeling of the erosion of polymers caused by atomic oxygen in low Earth orbit (LEO) is useful for determining areas of concern for spacecraft environment durability. Successful modeling requires that the characteristics of the environment such as atomic oxygen energy distribution, flux, and angular distribution be properly represented in the model. Thus whether the atomic oxygen is arriving normal to or inclined to a surface and whether it arrives in a consistent direction or is sweeping across the surface such as in the case of polymeric solar array blankets is important to determine durability. When atomic oxygen impacts a polymer surface it can react removing a certain volume per incident atom (called the erosion yield), recombine, or be ejected as an active oxygen atom to potentially either react with other polymer atoms or exit into space. Scattered atoms can also have a lower energy as a result of partial or total thermal accommodation. Many solutions to polymer durability in LEO involve protective thin films of metal oxides such as SiO2 to prevent atomic oxygen erosion. Such protective films also have their own interaction characteristics. A Monte Carlo computational model has been developed which takes into account the various types of atomic oxygen arrival and how it reacts with a representative polymer (polyimide Kapton H) and how it reacts at defect sites in an oxide protective coating, such as SiO2 on that polymer. Although this model was initially intended to determine atomic oxygen erosion behavior at defect sites for the International Space Station solar arrays, it has been used to predict atomic oxygen erosion or oxidation behavior on many other spacecraft components including erosion of polymeric joints, durability of solar array blanket box covers, and scattering of atomic oxygen into telescopes and microwave cavities where oxidation of critical component surfaces can take place. The computational model is a two dimensional model which has the capability to tune the interactions of how the atomic oxygen reacts, scatters, or recombines on polymer or nonreactive surfaces. In addition to the specification of atomic oxygen arrival details, a total of 15 atomic oxygen interaction parameters have been identified as necessary to properly simulate observed interactions and resulting polymer erosion that have been observed in LEO. The tuning of the Monte Carlo model has been accomplished by adjusting interaction parameters so the erosion patterns produced by the model match those from several actual LEO space experiments. Surface texturing in LEO can also be predicted by the model. Such comparison of space tests with ground laboratory experiments have enabled confidence in ground laboratory lifetime prediction of protected polymers. Results of Monte Carlo tuning, examples of surface texturing and undercutting erosion prediction, and several examples of how the model can be used to predict other LEO and Mars orbital space results are presented.
Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures
2010-02-01
Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry
NASA Astrophysics Data System (ADS)
Li, Leihong
A modular structural design methodology for composite blades is developed. This design method can be used to design composite rotor blades with sophisticate geometric cross-sections. This design method hierarchically decomposed the highly-coupled interdisciplinary rotor analysis into global and local levels. In the global level, aeroelastic response analysis and rotor trim are conduced based on multi-body dynamic models. In the local level, variational asymptotic beam sectional analysis methods are used for the equivalent one-dimensional beam properties. Compared with traditional design methodology, the proposed method is more efficient and accurate. Then, the proposed method is used to study three different design problems that have not been investigated before. The first is to add manufacturing constraints into design optimization. The introduction of manufacturing constraints complicates the optimization process. However, the design with manufacturing constraints benefits the manufacturing process and reduces the risk of violating major performance constraints. Next, a new design procedure for structural design against fatigue failure is proposed. This procedure combines the fatigue analysis with the optimization process. The durability or fatigue analysis employs a strength-based model. The design is subject to stiffness, frequency, and durability constraints. Finally, the manufacturing uncertainty impacts on rotor blade aeroelastic behavior are investigated, and a probabilistic design method is proposed to control the impacts of uncertainty on blade structural performance. The uncertainty factors include dimensions, shapes, material properties, and service loads.
Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.
2008-01-01
Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.
Concrete aggregate durability study.
DOT National Transportation Integrated Search
2009-06-01
There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...
Research notes : inlaid durable pavement markings : year one.
DOT National Transportation Integrated Search
2004-12-01
Durable pavement markings are becoming more prevalent on primary highways statewide, increasing the safety of the traveling public and the ODOT maintenance personnel responsible for maintaining the striping. Several durable products are now being use...
Your Medicare Coverage: Durable Medical Equipment (DME) Coverage
... test, item, or service covered? Go Durable medical equipment (DME) coverage How often is it covered? Medicare ... B (Medical Insurance) covers medically necessary durable medical equipment (DME) that your doctor prescribes for use in ...
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1995-01-01
The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.
Integrated analysis of engine structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1981-01-01
The need for light, durable, fuel efficient, cost effective aircraft requires the development of engine structures which are flexible, made from advaced materials (including composites), resist higher temperatures, maintain tighter clearances and have lower maintenance costs. The formal quantification of any or several of these requires integrated computer programs (multilevel and/or interdisciplinary analysis programs interconnected) for engine structural analysis/design. Several integrated analysis computer prorams are under development at Lewis Reseach Center. These programs include: (1) COBSTRAN-Composite Blade Structural Analysis, (2) CODSTRAN-Composite Durability Structural Analysis, (3) CISTRAN-Composite Impact Structural Analysis, (4) STAEBL-StruTailoring of Engine Blades, and (5) ESMOSS-Engine Structures Modeling Software System. Three other related programs, developed under Lewis sponsorship, are described.
Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi
2018-03-30
The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid pre-etching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.
Experimental Study on Durability Improvement of Fly Ash Concrete with Durability Improving Admixture
Quan, Hong-zhu; Kasami, Hideo
2014-01-01
In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%–20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized. PMID:25013870
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raszewski, F; Tommy Edwards, T; David Peeler, D
Sludge Batch 4 (SB4) is currently being processed in the Defense Waste Processing Facility (DWPF) using Frit 510. The slurry pumps in Tank 40 are experiencing in-leakage of bearing water, which is causing the sludge slurry feed in Tank 40 to become dilute at a rapid rate. Currently, the DWPF is removing this dilution water by performing caustic boiling during the Sludge Receipt and Adjustment Tank (SRAT) cycle. In order to alleviate prolonged SRAT cycle times that may eventually impact canister production rates, decant scenarios of 100, 150, and 200 kilogallons of supernate were proposed for Tank 40 during themore » DWPF March outage. Based on the results of the preliminary assessment issued by the Savannah River National Laboratory (SRNL), the Liquid Waste Organization (LWO) issued a Technical Task Request (TTR) for SRNL to (1) perform a more detailed evaluation using updated SB4 compositional information and (2) assess the viability of Frit 510 and determine any potential impacts on the SB4 system. As defined in the TTR, LWO requested that SRNL validate the sludge--only SB4 flowsheet and the coupled operations flowsheet using the 100K gallon decant volume as well as the addition of 3 wt% sodium on a calcined oxide basis. Approximately 12 historical glasses were identified during a search of the ComProTM database that are located within at least one of the five glass regions defined by the proposed SB4 flowsheet options. While these glasses meet the requirements of a variability study there was some concern that the compositional coverage did not adequately bound all cases. Therefore, SRNL recommended that a supplemental experimental variability study be performed to support the various SB4 flowsheet options that may be implemented for future SB4 operations in DWPF. Eighteen glasses were selected based on nominal sludge projections representing the current as well as the proposed flowsheets over a WL interval of interest to DWPF (32-42%). The intent of the experimental portion of the variability study is to demonstrate that the glasses of the Frit 510-modified SB4 compositional region (Cases No.1-5) are both acceptable relative to the Environmental Assessment (EA) reference glass and predictable by the current DWPF process control models for durability. Frit 510 is a viable option for the processing of SB4 after a Tank 40 decant and the addition of products from the Actinide Removal Process (ARP). The addition of ARP did not have any negative impacts on the acceptability and predictability of the variability study glasses. The results of the variability study indicate that all of the study glasses (both quenched and centerline canister cooled (ccc)) have normalized releases for boron that are well below the reference EA glass (16.695 g/L). The durabilities of all of the study glasses are predictable using the current Product Composition Control System (PCCS) durability models with the exception of SB4VAR24ccc (Case No.2 at 41%). PCCS is not applicable to non-homogeneous glasses (i.e. glasses containing crystals such as acmite and nepheline), thus SB4VAR24ccc should not be predictable as it contains nepheline. The presence of nepheline has been confirmed in both SB4VAR13ccc and SB4VAR24ccc by X-ray diffraction (XRD). These two glasses are the first results which indicate that the current nepheline discriminator value of 0.62 is not conservative. The nepheline discriminator was implemented into PCCS for SB4 based on the fact that all of the historical glasses evaluated with nepheline values of 0.62 or greater did not contain nepheline via XRD analysis. Although these two glasses do cause some concern over the use of the 0.62 nepheline value for future DWPF glass systems, the impact to the current SB4 system is of little concern. More specifically, the formation of nepheline was observed in glasses targeting 41 or 42% WL. Current processing of the Frit 510-SB4 system in DWPF has nominally targeted 34% WL. For the SB4 variability study glasses targeting these lower WLs, nepheline formation was not observed and the minimal difference in PCT response between quenched and ccc versions supported its absence.« less
2008-03-01
it to strike targets with minimal collateral damage from a range of 15 kilometers. This stand -off type attack, made capable by the ATL, enables...levels they release a photon or quantum of light. This process continues until the light waves ’ strength builds and passes through the medium...mission level model. Lastly these models are classified by durability as standing models, or legacy models. Standing models are legacy models which have
NASA Astrophysics Data System (ADS)
Lu, Tao; Zhu, Shenmin; Chen, Zhixin; Wang, Wanlin; Zhang, Wang; Zhang, Di
2016-05-01
Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures.Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01875k
Materials Assessment of Components of the Extravehicular Mobility Unit
NASA Technical Reports Server (NTRS)
Olivas, John D.; Barrera, Enrique V.
1996-01-01
Current research interests for Extravehicular Mobility Unit (EMU) design and development are directed toward enhancements of the Shuttle EMU, implementation of the Mark 3 technology for Shuttle applications, and development of a next generation suit (the X suit) which has applications for prolonged space flight, longer extravehicular activity (EVA), and Moon and Mars missions. In this research project two principal components of the EMU were studied from the vantage point of the materials and their design criteria. An investigation of the flexible materials which make up the lay-up of materials for abrasion and tear protection, thermal insulation, pressure restrain, etc. was initiated. A central focus was on the thermal insulation. A vacuum apparatus for measuring the flexibility of the materials was built to access their durability in vacuum. Plans are to include a Residual Gas Analyzer on the vacuum chamber to measure volatiles during the durability testing. These tests will more accurately simulate space conditions and provide information which has not been available on the materials currently used on the EMU. Durability testing of the aluminized mylar with a nylon scrim showed that the material strength varied in the machine and transverse directions. Study of components of the EMU also included a study of the EMU Bearing Assemblies as to materials selection, engineered materials, use of coatings and flammability issues. A comprehensive analysis of the performance of the current design, which is a stainless steel assembly, was conducted and use of titanium alloys or engineered alloy systems and coatings was investigated. The friction and wear properties are of interest as are the general manufacturing costs. Recognizing that the bearing assembly is subject to an oxygen environment, all currently used materials as well as titanium and engineered alloys were evaluated as to their flammability. An aim of the project is to provide weight reduction since bearing weights constitute 1/3 of the total EMU weight. Our investigations have shown favorable properties using a titanium or nickel base alloy in conjunction with a coating system. Interest lies in developing titanium as a more nonflammable material. Methodology for doing this lies in adding coatings and surface alloying the titanium. This report is brief and does not give all necessary details. The reader should contact the authors as to the detailed study and for viewing of raw data.
Durability of geosynthetics for highway applications
DOT National Transportation Integrated Search
2001-01-01
The research results described in this TechBrief are from four volumes on the subject of durability of geosynthetics for highway applications. Various aspects of geosynthetic durability were addressed in order to develop procedures that could be used...
Evaluation of inlaid durable pavement markings in an Oregon snow zone.
DOT National Transportation Integrated Search
2006-04-01
The Oregon Department of Transportation (ODOT) evaluated the use of inlaid durable pavement markings within a snow zone. Three different durable pavement marking products were installed and evaluated: Dura-Stripe, a methyl methacrylate; Permaline...
Durability of geosynthetics for highway applications : Tech brief.
DOT National Transportation Integrated Search
2000-01-01
The research results described herein are included in four volumes on the : subject of Durability of Geosynthetics for Highway Applications. Various : aspects of geosynthetic durability were addressed in order to develop : procedures that could be us...
Application of Chemistry in Materials Research at NASA GRC
NASA Technical Reports Server (NTRS)
Kavandi, Janet L.
2016-01-01
Overview of NASA GRC Materials Development. New materials enabled by new chemistries offering unique properties and chemical processing techniques. Durability of materials in harsh environments requires understanding and modeling of chemical interaction of materials with the environment.
Durability of Waste Glass Flax Fiber Reinforced Mortar
NASA Astrophysics Data System (ADS)
Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.
2011-01-01
The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.
Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review.
Ellinas, Kosmas; Tserepi, Angeliki; Gogolides, Evangelos
2017-12-01
Wetting control is essential for many applications, such as self-cleaning, anti-icing, anti-fogging, antibacterial action as well as anti-reflection and friction control. While significant effort has been devoted to fabricate superhydrophobic/superamphiphobic surfaces (repellent to water and other low surface tension liquids), very few polymeric superhydrophobic/superamphiphobic surfaces can be considered as durable against various externally imposed stresses (e.g. application of heating, pressure, mechanical forces, chemical, etc.). Therefore, durability tests are extremely important for applications especially when such surfaces are made of "soft" materials. Here, we review the most recent and promising efforts reported towards the realization of durable, superhydrophobic/superamphiphobic, polymeric surfaces emphasizing the durability tests performed, and some important applications. We compare and put in context the scattered durability tests reported in the literature, and present conclusions, perspectives and challenges in the field. Copyright © 2017 Elsevier B.V. All rights reserved.
Modeling Heat and Moisture Transport in Steam-Cured Mortar: Application to Aashto Type Vi Beams.
Hernández-Bautista, E; Sandoval-Torres, S; de J Cano-Barrita, P F; Bentz, D P
2017-10-01
During steam curing of concrete, temperature and moisture gradients are developed, which are difficult to measure experimentally and can adversely affect the durability of concrete. In this research, a model of cement hydration coupled to moisture and heat transport was used to simulate the process of steam curing of mortars with water-to-cement ( w/c ) ratios by mass of 0.30 and 0.45, considering natural convection boundary conditions in mortar and concrete specimens of AASHTO Type VI beams. The primary variables of the model were moisture content, temperature, and degree of hydration. Moisture content profiles of mortar specimens (40 mm in diameter and 50 mm in height) were measured by magnetic resonance imaging. The degree of hydration was obtained by mass-based measurements of loss on ignition to 1000 °C. The results indicate that the model correctly simulates the moisture distribution and degree of hydration in mortar specimens. Application of the model to the steam curing of an AASHTO Type VI beam indicates temperature differences (between the surface and the center) higher than 20 °C during the cooling stage, and internal temperatures higher than 70 °C that may compromise the durability of the concrete.
Inclusion of Body Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2017-01-01
The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 degrees Celsius durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
Inclusion of Body-Bias Effect in SPICE Modeling of 4H-SiC Integrated Circuit Resistors
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.
2017-01-01
The DC electrical behavior of n-type 4H-SiC resistors used for realizing 500 C durable integrated circuits (ICs) is studied as a function of substrate bias and temperature. Improved fidelity electrical simulation is described using SPICE NMOS model to simulate resistor substrate body bias effect that is absent from the SPICE semiconductor resistor model.
Design for inadvertent damage in composite laminates
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Chamis, Christos C.
1992-01-01
Simplified predictive methods and models to computationally simulate durability and damage in polymer matrix composite materials/structures are described. The models include (1) progressive fracture, (2) progressively damaged structural behavior, (3) progressive fracture in aggressive environments, (4) stress concentrations, and (5) impact resistance. Several examples are included to illustrate applications of the models and to identify significant parameters and sensitivities. Comparisons with limited experimental data are made.
NASA Astrophysics Data System (ADS)
Perron, Stacey
Harsh Canadian winters cause many problems in reinforced concrete structures due to damaging freezing-thawing cycles which is exacerbated by the heavy use of de-icing salts on roadways. Evaluation of concrete durability with current ASTM methods may give unreliable results and are destructive to the structure. A relatively new and novel approach to evaluating the durability of concrete uses A. C. Impedance Spectroscopy (ACIS). Hydrated cement paste (hcp), mortar, brick and vycor glass were evaluated using ACIS during drying-rewetting and freezing-thawing cycles. Thermal mechanical analysis (TMA), and differential scanning calorimetry (DSC) tests were also conducted and used as references. Results indicate that ACIS can be used to successfully evaluate the pore structure of hcp. The results from the drying-rewetting cycles are consistent with the pore coarsening theory. ACIS revealed pore structure changes consistent with the mechanical strains and pore solution chemistry. Increased pore continuity with each drying-rewetting cycle was indicated by a reduction in sample resistance. Unique tests were conducted on hydrated cement paste, mortar, brick and vycor glass that measured the ACIS and mechanical strains simultaneously while undergoing temperature changes. The temperature was lowered from 5°C to -80°C and then raised to +20°C. The ACIS results indicate that durability of the material can be assessed using the parameters R, material resistance, and phi, indicative of the frequency dispersion angle. The resistance on freezing values correlates with the amount of pore water freezing. The phi values on freezing are representative of the pore size distribution of the test sample. Resistance and phi data from freezing-thawing tests can be analyzed to assess durability of the sample. A material that is durable to freezing-thawing cycles can be described as having a high resistance at room temperature, a low freezing resistance and small changes in phi. Results were consistent among all the materials tested. Freezing-thawing tests were also conducted on specimens resaturated with salt solutions (5%, 10%, 15%). The results of these tests indicated a lower incipient freezing temperature, increase in pore blockage temperatures, and increased mobility of the pore water during freezing (increase in the change to phi). A series of test were conducted to evaluate the electrode polarization effects associated with the permittivity values at low frequencies. Teflon sheets were used to minimize the electrode polarization effects. It is shown that electrode polarization effects dominate over bulk polarization effects. Effects vary with the porosity of the material.
JPRS Report, Science & Technology Europe
1988-05-10
given environment essentially depends on three parameters ; these are: • the adhesion between the adhesive and the supports; • the cohesion of the...durability/CND J Electric current under high field/Tensile test at 4 degrees K I Synthetic hydroxyapatite /behavior under friction and wear GB NaCl, s...French programs GB Inventory of accelerated test procedures, correlation among parameters FC Influence of experimental parameters 8615 JPRS-EST-88
Turbine Design to Mitigate Forcing (POSTPRINT)
2012-09-01
durability enhancements, sometimes fuel nozzles and turbine nozzle guide vanes are also clocked in an effort to reduce the heat load to downstream...e.g., aero- performance or heat load) or to estimate resonant stresses on the airfoils. So, the development of both time-mean and time-resolved...disturbances. So, great flexibility was built into the current implementation of the convergence-assessment algorithm described above. The user can
1988-09-01
maintenance programs. They use "a dedicated age exploration technique and actuarial analyses (31:847)" to Justify any changes to programs. RAAF. The...A066593). 8. Coffin, M.D. and C.F. Tiffany. "New Air Force Requirements for Structural Safety, Durability and Life Management," AIAA/ ASME /SAE 16th
ERIC Educational Resources Information Center
Whittal, Maureen L.; Robichaud, Melisa; Thordarson, Dana S.; McLean, Peter D.
2008-01-01
Relatively little is known about the long-term durability of group treatments for obsessive-compulsive disorder (OCD) and contemporary cognitive treatments. The current study investigated the 2-year follow-up results for participants who completed randomized trials of group or individual treatment and received either cognitive therapy (CT) or…
Durability and performance optimization of cathode materials for fuel cells
NASA Astrophysics Data System (ADS)
Colon-Mercado, Hector Rafael
The primary objective of this dissertation is to develop an accelerated durability test (ADT) for the evaluation of cathode materials for fuel cells. The work has been divided in two main categories, namely high temperature fuel cells with emphasis on the Molten Carbonate Fuel Cell (MCFC) cathode current collector corrosion problems and low temperature fuel cells in particular Polymer Electrolyte Fuel Cell (PEMFC) cathode catalyst corrosion. The high operating temperature of MCFC has given it benefits over other fuel cells. These include higher efficiencies (>50%), faster electrode kinetics, etc. At 650°C, the theoretical open circuit voltage is established, providing low electrode overpotentials without requiring any noble metal catalysts and permitting high electrochemical efficiency. The waste heat is generated at sufficiently high temperatures to make it useful as a co-product. However, in order to commercialize the MCFC, a lifetime of 40,000 hours of operation must be achieved. The major limiting factor in the MCFC is the corrosion of cathode materials, which include cathode electrode and cathode current collector. In the first part of this dissertation the corrosion characteristics of bare, heat-treated and cobalt coated titanium alloys were studied using an ADT and compared with that of state of the art current collector material, SS 316. PEMFCs are the best choice for a wide range of portable, stationary and automotive applications because of their high power density and relatively low-temperature operation. However, a major impediment in the commercialization of the fuel cell technology is the cost involved due to the large amount of platinum electrocatalyst used in the cathode catalyst. In an effort to increase the power and decrease the cathode cost in polymer electrolyte fuel cell (PEMFC) systems, Pt-alloy catalysts were developed to increase its activity and stability. Extensive research has been conducted in the area of new alloy development and understanding the mechanisms of ORR. However, a relatively small number of publications are related to the durability of Pt alloys in the PEMFC environment. In the second part of this dissertation an ADT is developed for the evaluation of PEMFC cathode catalysts in a time and cost effective way.
Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate
NASA Astrophysics Data System (ADS)
Samaras, C.; Cook, L.
2015-12-01
Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.
Electrochemical model based charge optimization for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Anwar, Sohel
2016-05-01
In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, S.
This report is the second of a series of studies to evaluate research and development (R&D) projects funded by the Automotive Lightweighting Materials (ALM) Program of the Office of Advanced Automotive Technologies (OAAT) of the U.S. Department of Energy (DOE). The objectives of the program evaluation are to assess short-run outputs and long-run outcomes that may be attributable to the ALM R&D projects. The ALM program focuses on the development and validation of advanced technologies that significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. Funded projects range from fundamentalmore » materials science research to applied research in production environments. Collaborators on these projects include national laboratories, universities, and private sector firms, such as leading automobile manufacturers and their suppliers. Three ALM R&D projects were chosen for this evaluation: Design and Product Optimization for Cast Light Metals, Durability of Lightweight Composite Structures, and Rapid Tooling for Functional Prototyping of Metal Mold Processes. These projects were chosen because they have already been completed. The first project resulted in development of a comprehensive cast light metal property database, an automotive application design guide, computerized predictive models, process monitoring sensors, and quality assurance methods. The second project, the durability of lightweight composite structures, produced durability-based design criteria documents, predictive models for creep deformation, and minimum test requirements and suggested test methods for establishing durability properties and characteristics of random glass-fiber composites for automotive structural composites. The durability project supported Focal Project II, a validation activity that demonstrates ALM program goals and reduces the lead time for bringing new technology into the marketplace. Focal projects concentrate on specific classes of materials and nonproprietary components and are done jointly by DOE and the Automotive Composites Consortium of U.S. Council for Automotive Research (USCAR). The third project developed a rapid tooling process that reduces tooling time, originally some 48-52 weeks, to less than 12 weeks by means of rapid generation of die-casting die inserts and development of generic holding blocks, suitable for use with large casting applications. This project was conducted by the United States Automotive Materials Partnership, another USCAR consortium.« less
NASA Astrophysics Data System (ADS)
Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.
2016-09-01
The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a) Maintenance during the durability evaluation can best be considered in three separate categories: (1) Normal... durability evaluation in this program will probably have considerable mileage accumulation and unknown...
Durability Issues for the Protection of Materials from Atomic Oxygen Attack in Low Earth Orbit
NASA Astrophysics Data System (ADS)
Banks, B. A.; Lenczewski, M.; Demko, R.
2002-01-01
Low Earth orbital atomic oxygen is capable of eroding most polymeric materials typically used on spacecraft. Solar array blankets, thermal control polymers, and carbon fiber matrix composites are readily oxidized to become thinner and less capable of supporting the loads imposed upon them. Protective coatings have been developed that are or become durable to atomic oxygen to prevent oxidative erosion of the underlying polymers. However, the details of the chemistry, surface roughness and coating configuration can play a significant role as to whether or not the coating provides long duration atomic oxygen protection. Identical coatings on different surface roughness surfaces can produce drastically have drastically different durability results. Poor choice of protective coatings or self-protecting materials can also result in contamination of surrounding spacecraft surfaces. Such contamination can deposit on optical or thermal control surfaces resulting in changes in solar absorbtance, transmittance and reflectance of surfaces. Examples of successful and unsuccessful techniques used for atomic oxygen durability or protection will be presented based on actual results from low Earth orbital spacecraft. Investigations of the causes of undesired consequences or protective coating failures will be presented including ground laboratory experimental analysis as well as computational modeling. Atomic oxygen protective coating results from various low Earth orbital missions including the Long Duration Exposure Facility, the European Retrievable Carrier, Mir, and International Space Station will be presented to illustrate examples of protection successes as well as failures including analyses of the causes for the differences and proposed solutions.
NASA Astrophysics Data System (ADS)
García-Salaberri, P. A.; Sánchez, D. G.; Boillat, P.; Vera, M.; Friedrich, K. A.
2017-08-01
Proper water management plays an essential role in the performance and durability of Polymer Electrolyte Fuel Cells (PEFCs), but it is challenged by the variety of water transport phenomena that take place in these devices. Previous experimental work has shown the existence of fluctuations between low and high current density levels in PEFCs operated with wet hydrogen and dry air feed. The alternation between both performance states is accompanied by strong changes in the high frequency resistance, suggesting a cyclic hydration and dehydration of the membrane. This peculiar scenario is examined here considering liquid water distributions from neutron imaging and predictions from a 3D two-phase non-isothermal model. The results show that the hydration-dehydration cycles are triggered by the periodic condensation and shedding of liquid water at the anode inlet. The input of liquid water humidifies the anode channel and offsets the membrane dry-out induced by the dry air stream, thus leading to the high-performance state. When liquid water is flushed out of the anode channel, the dehydration process takes over, and the cell comes back to the low-performance state. The predicted amplitude of the current oscillations grows with decreasing hydrogen and increasing air flow rates, in agreement with previous experimental data.
Hamm, Ronda L; DeMark, Joseph J; Chin-Heady, Eva; Tolley, Mike P
2013-04-01
A novel durable termite bait was developed to enable continuous bait availability and lengthen the monitoring interval to 1 year. Laboratory studies were conducted to determine the palatability and insecticidal activity of this bait to Reticulitermes flavipes (Kollar), R. virginicus (Banks), R. hesperus Banks, Coptotermes formosanus Shiraki and Heterotermes aureus (Synder). Consumption of the blank durable bait matrix was significantly higher than consumption of a blank preferred textured cellulose matrix (PTC) by R. virginicus, R. flavipes and C. formosanus. R. flavipes, R. hesperus and H. aureus consumed significantly more durable bait than PTC when both contained the active ingredient noviflumuron. All bait treatments resulted in significant mortality relative to the untreated controls. Survivorship of R. virginicus, C. formosanus and H. aureus was 2% or less and not significantly different between the durable bait and PTC treatments containing noviflumuron. The durable bait matrix lagged behind the PTC matrix in mortality over time for all species tested except H. aureus. The durable bait was highly palatable and effective in inducing mortality to R. flavipes, R. virginicus, R. hesperus, C. formosanus and H. aureus in the laboratory. This unique bait matrix will be available to termites continuously and allows for an annual monitoring interval. The durability of this bait matrix is unprecedented, allowing for bait to remain active for years and thus providing continuous structural protection. © 2012 Society of Chemical Industry.
Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution.
Zhu, Ji-Hua; Guo, Guanping; Wei, Liangliang; Zhu, Miaochang; Chen, Xianchuan
2016-02-06
The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP) were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP) system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities.
Dual Function Behavior of Carbon Fiber-Reinforced Polymer in Simulated Pore Solution
Zhu, Ji-Hua; Guo, Guanping; Wei, Liangliang; Zhu, Miaochang; Chen, Xianchuan
2016-01-01
The mechanical and electrochemical performance of carbon fiber-reinforced polymer (CFRP) were investigated regarding a novel improvement in the load-carrying capacity and durability of reinforced concrete structures by adopting CFRP as both a structural strengthener and an anode of the impressed current cathodic protection (ICCP) system. The mechanical and anode performance of CFRP were investigated in an aqueous pore solution in which the electrolytes were available to the anode in a cured concrete structure. Accelerated polarization tests were designed with different test durations and various levels of applied currents in accordance with the international standard. The CFRP specimens were mechanically characterized after polarization. The measured feeding voltage and potential during the test period indicates CFRP have stable anode performance in a simulated pore solution. Two failure modes were observed through tensile testing. The tensile properties of the post-polarization CFRP specimens declined with an increased charge density. The CFRP demonstrated success as a structural strengthener and ICCP anode. We propose a mathematic model predicting the tensile strengths of CFRP with varied impressed charge densities. PMID:28787900
Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres.
Osmond-McLeod, Megan J; Poland, Craig A; Murphy, Fiona; Waddington, Lynne; Morris, Howard; Hawkins, Stephen C; Clark, Steve; Aitken, Rob; McCall, Maxine J; Donaldson, Ken
2011-05-13
It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution), and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW) and multi-walled (CNTTANG2, CNTSPIN)) showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1)] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an inflammogenic effect in the peritoneal cavity assay used here. These results support the view that carbon nanotubes are generally durable but may be subject to bio-modification in a sample-specific manner. They also suggest that pristine carbon nanotubes, either individually or in rope-like aggregates of sufficient length and aspect ratio, can induce asbestos-like responses in mice, but that the effect may be mitigated for certain types that are less durable in biological systems. Results indicate that durable carbon nanotubes that are either short or form tightly bundled aggregates with no isolated long fibres are less inflammogenic in fibre-specific assays. © 2011 Osmond-McLeod et al; licensee BioMed Central Ltd.
Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres
2011-01-01
Background It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution), and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. Results After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW) and multi-walled (CNTTANG2, CNTSPIN)) showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1)] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an inflammogenic effect in the peritoneal cavity assay used here. Conclusions These results support the view that carbon nanotubes are generally durable but may be subject to bio-modification in a sample-specific manner. They also suggest that pristine carbon nanotubes, either individually or in rope-like aggregates of sufficient length and aspect ratio, can induce asbestos-like responses in mice, but that the effect may be mitigated for certain types that are less durable in biological systems. Results indicate that durable carbon nanotubes that are either short or form tightly bundled aggregates with no isolated long fibres are less inflammogenic in fibre-specific assays. PMID:21569450
Microstructure Modeling of 3rd Generation Disk Alloy
NASA Technical Reports Server (NTRS)
Jou, Herng-Jeng
2008-01-01
The objective of this initiative, funded by NASA's Aviation Safety Program, is to model, validate, and predict, with high fidelity, the microstructural evolution of third-generation high-refractory Ni-based disc superalloys during heat treating and service conditions. This initiative is a natural extension of the DARPA-AIM (Accelerated Insertion of Materials) initiative with GE/Pratt-Whitney and with other process simulation tools. Strong collaboration with the NASA Glenn Research Center (GRC) is a key component of this initiative and the focus of this program is on industrially relevant disk alloys and heat treatment processes identified by GRC. Employing QuesTek s Computational Materials Dynamics technology and PrecipiCalc precipitation simulator, physics-based models are being used to achieve high predictive accuracy and precision. Combining these models with experimental data and probabilistic analysis, "virtual alloy design" can be performed. The predicted microstructures can be optimized to promote desirable features and concurrently eliminate nondesirable phases that can limit the reliability and durability of the alloys. The well-calibrated and well-integrated software tools that are being applied under the proposed program will help gas turbine disk alloy manufacturers, processing facilities, and NASA, to efficiently and effectively improve the performance of current and future disk materials.
Garrido, Gemma; Penadés, Rafael; Barrios, Maite; Aragay, Núria; Ramos, Irene; Vallès, Vicenç; Faixa, Carlota; Vendrell, Josep M
2017-08-01
The durability of computer-assisted cognitive remediation (CACR) therapy over time and the cost-effectiveness of treatment remains unclear. The aim of the current study is to investigate the effectiveness of CACR and to examine the use and cost of acute psychiatric admissions before and after of CACR. Sixty-seven participants were initially recruited. For the follow-up study a total of 33 participants were enrolled, 20 to the CACR condition group and 13 to the active control condition group. All participants were assessed at baseline, post-therapy and 12 months post-therapy on neuropsychology, QoL and self-esteem measurements. The use and cost of acute psychiatric admissions were collected retrospectively at four assessment points: baseline, 12 months post-therapy, 24 months post-therapy, and 36 months post-therapy. The results indicated that treatment effectiveness persisted in the CACR group one year post-therapy on neuropsychological and well-being outcomes. The CACR group showed a clear decrease in the use of acute psychiatric admissions at 12, 24 and 36 months post-therapy, which lowered the global costs the acute psychiatric admissions at 12, 24 and 36 months post-therapy. The CACR is durable over at least a 12-month period, and CACR may be helping to reduce health care costs for schizophrenia patients. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Optimization of pulsed DC PACVD parameters: Toward reducing wear rate of the DLC films
NASA Astrophysics Data System (ADS)
Ebrahimi, Mansoureh; Mahboubi, Farzad; Naimi-Jamal, M. Reza
2016-12-01
The effect of pulsed direct current (DC) plasma-assisted chemical vapor deposition (PACVD) parameters such as temperature, duty cycle, hydrogen flow, and argon/CH4 flow ratio on the wear behavior and wear durability of the diamond-like carbon (DLC) films was studied by using response surface methodology (RSM). DLC films were deposited on nitrocarburized AISI 4140 steel. Wear rate and wear durability of the DLC films were examined with the pin-on-disk method. Field emission scanning electron microscopy, Raman spectroscopy, and nanoindentation techniques were used for studying wear mechanisms, chemical structure, and hardness of the DLC films. RSM results show that duty cycle is one of the important parameters that affect the wear rate of the DLC samples. The wear rate of the samples deposited with a duty cycle of >75% decreases with an increase in the argon/CH4 ratio. In contrast, for a duty cycle of <65%, the wear rate increases with an increase in the argon/CH4 ratio. The wear durability of the DLC samples increases with an increase in the duty cycle, hydrogen flow, and argon/CH4 flow ratio at the deposition temperature between 85 °C and 110 °C. Oxidation, fatigue, abrasive wear, and graphitization are the wear mechanisms observed on the wear scar of the DLC samples deposited with the optimum deposition conditions.
Durability Assessment of Various Gamma TiAl Alloys
NASA Technical Reports Server (NTRS)
Lerch, Brad; Draper, Sue; Pereira, Mike; Zhuang, Wyman
2003-01-01
Seven cast and one wrought gamma-alloys were ballistically impacted and tested under high cycle fatigue. The fatigue strength of each alloy was characterized as a function of initial flaw size and modeled using a threshold-based fracture mechanics approach.
Eaton, Ellen F.; Tamhane, Ashutosh R.; Burkholder, Greer A.; Willig, James H.; Saag, Michael S.; Mugavero, Michael J.
2016-01-01
Background. Durability of antiretroviral (ARV) therapy is associated with improved human immunodeficiency virus (HIV) outcomes. Data on ARV regimen durability in recent years and clinical settings are lacking. Methods. This retrospective follow-up study included treatment-naive HIV-infected patients initiating ARV therapy between January 2007 and December 2012 in a university-affiliated HIV clinic in the Southeastern United States. Outcome of interest was durability (time to discontinuation) of the initial regimen. Durability was evaluated using Kaplan-Meier survival analyses. Cox proportional hazard analyses was used to evaluate the association among durability and sociodemographic, clinical, and regimen-level factors. Results. Overall, 546 patients were analyzed. Median durability of all regimens was 39.5 months (95% confidence interval, 34.1–44.4). Commonly prescribed regimens were emtricitabine and tenofovir with efavirenz (51%; median duration = 40.1 months) and with raltegravir (14%; 47.8 months). Overall, 67% of patients had an undetectable viral load at the time of regimen cessation. Discontinuation was less likely with an integrase strand transfer inhibitor (adjusted hazards ratio [aHR] = 0.35, P = .001) or protease inhibitor-based regimen (aHR = 0.45, P = .006) and more likely with a higher pill burden (aHR = 2.25, P = .003) and a later treatment era (aHR = 1.64, P < .001). Conclusions. Initial ARV regimen longevity declined in recent years contemporaneous with the availability of several new ARV drugs and combinations. Reduced durability mostly results from a preference for newly approved regimens rather than indicating failing therapy, as indicated by viral suppression observed in a majority of patients (67%) prior to regimen cessation. Durability is influenced by extrinsic factors including new drug availability and provider preference. Medication durability must be interpreted carefully in the context of a dynamic treatment landscape. PMID:27419181
Projected Impact of Dengue Vaccination in Yucatán, Mexico
Pearson, Carl A. B.; Chao, Dennis L.; Rojas, Diana Patricia; Recchia, Gabriel L.; Gómez-Dantés, Héctor; Halloran, M. Elizabeth; Pulliam, Juliet R. C.; Longini, Ira M.
2016-01-01
Dengue vaccines will soon provide a new tool for reducing dengue disease, but the effectiveness of widespread vaccination campaigns has not yet been determined. We developed an agent-based dengue model representing movement of and transmission dynamics among people and mosquitoes in Yucatán, Mexico, and simulated various vaccine scenarios to evaluate effectiveness under those conditions. This model includes detailed spatial representation of the Yucatán population, including the location and movement of 1.8 million people between 375,000 households and 100,000 workplaces and schools. Where possible, we designed the model to use data sources with international coverage, to simplify re-parameterization for other regions. The simulation and analysis integrate 35 years of mild and severe case data (including dengue serotype when available), results of a seroprevalence survey, satellite imagery, and climatological, census, and economic data. To fit model parameters that are not directly informed by available data, such as disease reporting rates and dengue transmission parameters, we developed a parameter estimation toolkit called AbcSmc, which we have made publicly available. After fitting the simulation model to dengue case data, we forecasted transmission and assessed the relative effectiveness of several vaccination strategies over a 20 year period. Vaccine efficacy is based on phase III trial results for the Sanofi-Pasteur vaccine, Dengvaxia. We consider routine vaccination of 2, 9, or 16 year-olds, with and without a one-time catch-up campaign to age 30. Because the durability of Dengvaxia is not yet established, we consider hypothetical vaccines that confer either durable or waning immunity, and we evaluate the use of booster doses to counter waning. We find that plausible vaccination scenarios with a durable vaccine reduce annual dengue incidence by as much as 80% within five years. However, if vaccine efficacy wanes after administration, we find that there can be years with larger epidemics than would occur without any vaccination, and that vaccine booster doses are necessary to prevent this outcome. PMID:27227883
Projected Impact of Dengue Vaccination in Yucatán, Mexico.
Hladish, Thomas J; Pearson, Carl A B; Chao, Dennis L; Rojas, Diana Patricia; Recchia, Gabriel L; Gómez-Dantés, Héctor; Halloran, M Elizabeth; Pulliam, Juliet R C; Longini, Ira M
2016-05-01
Dengue vaccines will soon provide a new tool for reducing dengue disease, but the effectiveness of widespread vaccination campaigns has not yet been determined. We developed an agent-based dengue model representing movement of and transmission dynamics among people and mosquitoes in Yucatán, Mexico, and simulated various vaccine scenarios to evaluate effectiveness under those conditions. This model includes detailed spatial representation of the Yucatán population, including the location and movement of 1.8 million people between 375,000 households and 100,000 workplaces and schools. Where possible, we designed the model to use data sources with international coverage, to simplify re-parameterization for other regions. The simulation and analysis integrate 35 years of mild and severe case data (including dengue serotype when available), results of a seroprevalence survey, satellite imagery, and climatological, census, and economic data. To fit model parameters that are not directly informed by available data, such as disease reporting rates and dengue transmission parameters, we developed a parameter estimation toolkit called AbcSmc, which we have made publicly available. After fitting the simulation model to dengue case data, we forecasted transmission and assessed the relative effectiveness of several vaccination strategies over a 20 year period. Vaccine efficacy is based on phase III trial results for the Sanofi-Pasteur vaccine, Dengvaxia. We consider routine vaccination of 2, 9, or 16 year-olds, with and without a one-time catch-up campaign to age 30. Because the durability of Dengvaxia is not yet established, we consider hypothetical vaccines that confer either durable or waning immunity, and we evaluate the use of booster doses to counter waning. We find that plausible vaccination scenarios with a durable vaccine reduce annual dengue incidence by as much as 80% within five years. However, if vaccine efficacy wanes after administration, we find that there can be years with larger epidemics than would occur without any vaccination, and that vaccine booster doses are necessary to prevent this outcome.
Durability assessment of coarse aggregates for HMA in Maine.
DOT National Transportation Integrated Search
2012-12-01
In this study, Micro-Deval and L.A. Abrasion were used to evaluate the durability of 72 individual : coarse aggregates used for HMA in Maine. Aggregates used in hot-mix asphalt (HMA) must be : durable and resistant to abrasion and degradation. Materi...
40 CFR 86.094-13 - Light-duty exhaust durability programs.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements. (5) In-use verification. The Standard Self-Approval Durability Program includes no requirement... selection methods, durability data vehicle compliance requirements, in-use verification requirements... Accumulation Carryover. Light-duty Trucks Tier 1 & Tier 0 Standard Self-Approval Carryover. Alternative Service...
Chemical Durability Improvement and Static Fatigue of Glasses.
1982-08-01
Afl-Alla 837 RENSSELAER POLYIECmfJ!C INST TRtOY NY DEPT OF MATERIAL--ETC F/6 ii/ CHEMICAL DURABILITY IMPROVEMENT AND STATIC FATIGUE OF GLASSESW AUC2...82 M TOMOZAWA NOGGIN 7A-C-0315 UNC LASS IF IED N ENEEEEEE FINAL TECHNICAL REPORT For the period April 1, 1978 "u March 31, 198200 CHEMICAL DURABILITY...REPORT A PERIOD COVERED Chemical Durability Improvement and Static Final Technical Report Fatiue o GlasesApril 1, 1978"’,March 31, 1982 S. PERFORMING ORG
Durability of high performance concrete in magnesium brine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumidajski, P.J.; Chan, G.W.
1996-04-01
The durability of six concretes exposed to magnesium brine was monitored for 24 months. These concretes incorporated ground granulated blast furnace slag, silica fume, and fly ash. The Young`s moduli, chloride penetrations, and median pore diameters were measured. There was a cyclic nature to these properties due to the complicated interaction of hydration with magnesium, chloride and sulfate attack. Mineral admixtures, in combination with a long initial cure, provided the most durable concrete. Concrete with 65% slag had the best overall durability to the brines tested.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-19
... perceptions regarding such products. The survey will gather information on the characteristics and usage... Activities; Proposed Collection; Comment Request; Durable Nursery Products Exposure Survey AGENCY: Consumer... draft survey regarding ownership and use characteristics of durable infant or toddler products. DATES...
A rule-based expert system applied to moisture durability of building envelopes
Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.; ...
2018-01-09
The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less
Durable superhydrophobic paper enabled by surface sizing of starch-based composite films
NASA Astrophysics Data System (ADS)
Chen, Gang; Zhu, Penghui; Kuang, Yudi; Liu, Yu; Lin, Donghan; Peng, Congxing; Wen, Zhicheng; Fang, Zhiqiang
2017-07-01
Superhydrophobic paper with remarkable durability is of considerable interest for its practical applications. In this study, a scalable, inexpensive, and universal surface sizing technique was implemented to prepare superhydrophobic paper with enhanced durability. A thin layer of starch-based composite, acting as a bio-binder, was first coated onto the paper surface by a sophisticated manufacturing technique called surface sizing, immediately followed by a spray coating of hexamethyl disilazane treated silica nanoparticles (HMDS-SiNPs) dispersed in ethanol on the surface of the wet starch-coated sheet, and the dual layers dried at the same time. Consequently, durable superhydrophobic paper with bi-layer structure was obtained after air drying. The as-prepared superhydrophobic paper not only exhibited a self-cleaning behavior, but also presented an enhanced durability against scratching, bending/deformation, as well as moisture. The universal surface sizing of starch-based composites may pave the way for the up-scaled and cost-effective production of durable superhydrophobic paper.
A rule-based expert system applied to moisture durability of building envelopes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boudreaux, Philip R.; Pallin, Simon B.; Accawi, Gina K.
The moisture durability of an envelope component such as a wall or roof is difficult to predict. Moisture durability depends on all the construction materials used, as well as the climate, orientation, air tightness, and indoor conditions. Modern building codes require more insulation and tighter construction but provide little guidance about how to ensure these energy-efficient assemblies remain moisture durable. Furthermore, as new products and materials are introduced, builders are increasingly uncertain about the long-term durability of their building envelope designs. Oak Ridge National Laboratory and the US Department of Energy’s Building America Program are applying a rule-based expert systemmore » methodology in a web tool to help designers determine whether a given wall design is likely to be moisture durable and provide expert guidance on moisture risk management specific to a wall design and climate. Finally, the expert system is populated with knowledge from both expert judgment and probabilistic hygrothermal simulation results.« less
Durability of waste glass flax fiber reinforced mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aly, M.; Hashmi, M. S. J.; Olabi, A. G.
2011-01-17
The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performancemore » of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.« less
The effect of crack width on the service life of reinforced concrete structures
NASA Astrophysics Data System (ADS)
Van Hung, Nguyen; Viet Hung, Vu; Viet, Tran Bao
2018-04-01
Reinforced concrete has become a widely used construction material around the world. Nowadays, the assessment of deterioration and life expectancy of reinforced concrete structure is very important and necessary as concrete is a complex material with brittle failure. Under the effect of load and over time, cracks occur in the structure, significantly reducing its performance and durability. Therefore, a number of models for predicting the penetration of chloride ions into the concrete were proposed to assess the durability of the structure. In the study performed by T B Viet (2016) [1], the author proposed a new theoretical model, especially considering the effects of macro and micro cracking on the diffusion coefficient of chloride ion in the cracked concrete. The following experimental results, in term of electrical indication of concrete’s ability to resist chloride ion penetration, are used to calculate the lifespan of a reinforced concrete structure according to Dura Crete approach [8] with different crack widths to evaluate the accuracy and reliability of the above model in the range of concrete compressive strength of 30-70MPa.
NASA Technical Reports Server (NTRS)
Kaufman, H. R.; Reader, P. D.
1972-01-01
The current status of research and development programs on electrostatic thrusters is reviewed. Current programs that utilize mercury electron-bombardment thrusters range from 5- to 30-cm in diameter. Recent progress on the 5-cm thruster has emphasized durability, with accelerator time exceeding 6300 hours and total time on the rest of the thruster exceeding 8300 hours. Recent progress on the 30-cm thruster has been outstanding in dished-grid accelerator systems. Ion beams up to 5 amperes have been obtained for short periods with 1000 volts net accelerating potential difference. The cesium electron-bombardment and cesium contact programs are also described.
Dynamics of a durable commodity market involving trade at disequilibrium
NASA Astrophysics Data System (ADS)
Panchuk, A.; Puu, T.
2018-05-01
The present work considers a simple model of a durable commodity market involving two agents who trade stocks of two different types. Stock commodities, in contrast to flow commodities, remain on the market from period to period and, consequently, there is neither unique demand function nor unique supply function exists. We also set up exact conditions for trade at disequilibrium, the issue being usually neglected, though a fact of reality. The induced iterative system has infinite number of fixed points and path dependent dynamics. We show that a typical orbit is either attracted to one of the fixed points or eventually sticks at a no-trade point. For the latter the stock distribution always remains the same while the price displays periodic or chaotic oscillations.
NASA Technical Reports Server (NTRS)
Macconochie, Ian O.; Kelly, H. Neale
1989-01-01
A thermal protection tile for earth-to-orbit transports is described. The tiles consist of a rigid external shell filled with a flexible insulation. The tiles tend to be thicker than the current Shuttle rigidized silica tiles for the same entry heat load but are projected to be more durable and lighter. The tiles were thermally tested for several simulated entry trajectories.
Reliability Testing Using the Vehicle Durability Simulator
2017-11-20
remote parameter control (RPC) software. The software is specifically designed for the data collection, analysis, and simulation processes outlined in...4516. 3. TOP 02-2-505 Inspection and Preliminary Operation of Vehicles, 4 February 1987. 4. Multi-Shaker Test and Control : Design , Test, and...currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 20-11-2017 2. REPORT
Conceptontwerp nieuwe slaapmatten (Concept Design of Sleeping Mattresses)
2008-11-01
Datum november 2008 Auteur (s) drs. P.A. Reffeltrath ing. M.G. Brandsma M.G.M. Weghorst Rubricering rapport Ongerubriceerd TK9 TNO-rapport...slaapmatten in combinatie met de gegevens van objectieve metingen. In theorie maakt het conceptontwerp het mogelijk om tegen minder gewicht en pakvolume...making a mattress that is lighter, has less packing volume, is more comfortable and more durable than the currently available mattresses. In theory
Chemically durable polymer electrolytes for solid-state alkaline water electrolysis
NASA Astrophysics Data System (ADS)
Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung
2018-01-01
Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.
Extended Life PZT Stack Test Fixture
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Sherrit, S.; Bao, X.; Aldrich, J.; Bar-Cohen, Y.; Jones, C.
2009-01-01
Piezoelectric stacks are being sought to be used as actuators for precision positioning and deployment of mechanisms in future planetary missions. Beside the requirement for very high operation reliability, these actuators are required for operation at space environments that are considered harsh compared to normal terrestrial conditions.These environmental conditions include low and high temperatures and vacuum or high pressure. Additionally, the stacks are subjected to high stress and in some applications need to operate with a very long lifetime durability.Many of these requirements are beyond the current industry design margins for nominal terrestrial applications. In order to investigate some of the properties that will indicate the durability of such actuators and their limitations we have developed a new type of test fixture that can be easily integrated in various test chambers for simulating environmental conditions, can provide access for multiple measurements while being exposed to adjustable stress levels. We designed and built two test fixtures and these fixtures were made to be adjustable for testing stacks with different dimensions and can be easily used in small or large numbers. The properties that were measured using these fixtures include impedance, capacitance, dielectric loss factor, leakage current, displacement, breakdown voltage, and lifetime performance. The fixtures characteristics and the test capabilities are presented in this paper.
NASA Astrophysics Data System (ADS)
Lin, R.; Xiong, F.; Tang, W. C.; Técher, L.; Zhang, J. M.; Ma, J. X.
2014-08-01
Durability is one of the most important limiting factors for the commercialization of proton exchange membrane fuel cell (PEMFC). Fuel cells are more vulnerable to degradation under operating conditions as dynamic load cycle or start up/shut down. The purpose of this study is to evaluate influences of driving cycles on the durability of fuel cells through analyzing the degradation mechanism of a segmented cell in real time. This study demonstrates that the performance of the fuel cell significantly decreases after 200 cycles. The segmented cell technology is used to measure the local current density distribution, which shows that the current density at the exit region and the inlet region declines much faster than the other parts. Meanwhile, electro-chemical impedance spectroscopy (EIS) reveals that after 200 cycles the ohmic resistance of fuel cell increases, especially at the cathode, and electro-chemical surface area (ESA) decreases from 392 to 307 cm2 mg-1. Furthermore, scanning electron microscopy (SEM) images of the membrane-electrode assembly (MEA) in cross-section demonstrate crackle flaw on the surface of the catalyst layer and the delamination of the electrodes from the membrane. Transmission electron microscope (TEM) results also show that the Pt particle size increases distinctly after driving cycles.
Geopolymers as potential repair material in tiles conservation
NASA Astrophysics Data System (ADS)
Geraldes, Catarina F. M.; Lima, Augusta M.; Delgado-Rodrigues, José; Mimoso, João Manuel; Pereira, Sílvia R. M.
2016-03-01
The restoration materials currently used to fill gaps in historical architectural tiles (e.g. lime or organic resin pastes) usually show serious drawbacks in terms of compatibility, effectiveness or durability. The existing solutions do not fully protect Portuguese faïence tiles ( azulejos) in outdoor conditions and frequently result in further deterioration. Geopolymers can be a potential solution for tile lacunae infill, given the chemical-mineralogical similitude to the ceramic body, and also the durability and versatile range of physical properties that can be obtained through the manipulation of their formulation and curing conditions. This work presents and discusses the viability of the use of geopolymeric pastes to fill lacunae in tiles or to act as "cold" cast ceramic tile surrogates reproducing missing tile fragments. The formulation of geopolymers, namely the type of activators, the alumino-silicate source, the quantity of water required for adequate workability and curing conditions, was studied. The need for post-curing desalination was also considered envisaging their application in the restoration of outdoor historical architectural tiles frequently exposed to adverse environmental conditions. The possible advantages and disadvantages of the use of geopolymers in the conservation of tiles are also discussed. The results obtained reveal that geopolymers pastes are a promising material for the restoration of tiles, when compared to other solutions currently in use.
NASA Technical Reports Server (NTRS)
Zhu, Dongming
2016-01-01
Ceramic environmental barrier coatings (EBC) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiC/SiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si and rare earth Si based EBC bond coat EBC systems for SiC/SiC CMC combustor and turbine airfoil applications are investigated. High temperature properties of the advanced EBC systems, including the strength, fracture toughness, creep and oxidation resistance have been studied and summarized. The advanced NASA EBC systems showed some promise to achieve 1500C temperature capability, helping enable next generation turbine engines with significantly improved engine component temperature capability and durability.
Energy Based Multiscale Modeling with Non-Periodic Boundary Conditions
2013-05-13
below in Figure 8. At each incremental step in the analysis , the user material defined subroutine (UMAT) was utilized to perform the communication...initiation and modeling using XFEM. Appropriate localization schemes will be developed to allow for deformations conducive for crack opening...REFERENCES 1. Talreja R., 2006, “Damage analysis for structural integrity and durability of composite materials ,” Fatigue & Fracture of
40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...), or (e) of this section. (c) Whole vehicle refueling durability demonstration. The following procedures must be used when conducting a whole vehicle durability demonstration: (1) Mileage accumulation... available fuels, including the Tier 2 requirement to include alcohol fuel; (3) Vibration of components; (4...
40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...), or (e) of this section. (c) Whole vehicle refueling durability demonstration. The following procedures must be used when conducting a whole vehicle durability demonstration: (1) Mileage accumulation... available fuels, including the Tier 2 requirement to include alcohol fuel; (3) Vibration of components; (4...
40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (c) Whole vehicle refueling durability demonstration. The following procedures must be used when conducting a whole vehicle durability demonstration: (1) Mileage accumulation must be conducted using the SRC... Tier 2 requirement to include alcohol fuel; (3) Vibration of components; (4) Deterioration of hoses...
40 CFR 86.1820-01 - Durability group determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... into durability groups based on the criteria listed above (such as non-catalyst control system... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Durability group determination. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED...
40 CFR 86.1820-01 - Durability group determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... into durability groups based on the criteria listed above (such as non-catalyst control system... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Durability group determination. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES General...
40 CFR 86.1820-01 - Durability group determination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... into durability groups based on the criteria listed above (such as non-catalyst control system... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Durability group determination. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED...
40 CFR 86.1820-01 - Durability group determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... into durability groups based on the criteria listed above (such as non-catalyst control system... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Durability group determination. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED...
40 CFR 86.1820-01 - Durability group determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... into durability groups based on the criteria listed above (such as non-catalyst control system... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Durability group determination. 86... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED...
40 CFR 94.219 - Durability data engine selection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Durability data engine selection. 94... (CONTINUED) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES Certification Provisions § 94.219 Durability data engine selection. (a) For Category 1 and Category 2 engines, the manufacturer shall select...
Improving the durability of the optical fiber sensor based on strain transfer analysis
NASA Astrophysics Data System (ADS)
Wang, Huaping; Jiang, Lizhong; Xiang, Ping
2018-05-01
To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.
Study of research and development requirements of small gas-turbine combustors
NASA Technical Reports Server (NTRS)
Demetri, E. P.; Topping, R. F.; Wilson, R. P., Jr.
1980-01-01
A survey is presented of the major small-engine manufacturers and governmental users. A consensus was undertaken regarding small-combustor requirements. The results presented are based on an evaluation of the information obtained in the course of the study. The current status of small-combustor technology is reviewed. The principal problems lie in liner cooling, fuel injection, part-power performance, and ignition. Projections of future engine requirements and their effect on the combustor are discussed. The major changes anticipated are significant increases in operating pressure and temperature levels and greater capability of using heavier alternative fuels. All aspects of combustor design are affected, but the principal impact is on liner durability. An R&D plan which addresses the critical combustor needs is described. The plan consists of 15 recommended programs for achieving necessary advances in the areas of liner thermal design, primary-zone performance, fuel injection, dilution, analytical modeling, and alternative-fuel utilization.
BIPV: a real-time building performance study for a roof-integrated facility
NASA Astrophysics Data System (ADS)
Aaditya, Gayathri; Mani, Monto
2018-03-01
Building integrated photovoltaic system (BIPV) is a photovoltaic (PV) integration that generates energy and serves as a building envelope. A building element (e.g. roof and wall) is based on its functional performance, which could include structure, durability, maintenance, weathering, thermal insulation, acoustics, and so on. The present paper discusses the suitability of PV as a building element in terms of thermal performance based on a case study of a 5.25 kWp roof-integrated BIPV system in tropical regions. Performance of PV has been compared with conventional construction materials and various scenarios have been simulated to understand the impact on occupant comfort levels. In the current case study, PV as a roofing material has been shown to cause significant thermal discomfort to the occupants. The study has been based on real-time data monitoring supported by computer-based building simulation model.
Ahmed, Tahmeed; Auble, David; Berkley, James A; Black, Robert; Ahern, Philip P; Hossain, Muttaquina; Hsieh, Andrea; Ireen, Santhia; Arabi, Mandana; Gordon, Jeffrey I
2014-01-01
The Sackler Institute for Nutrition Science and the World Health Organization (WHO) have worked together to formulate a research agenda for nutrition science. Undernutrition of children has profound effects on health, development, and achievement of full human capacity. Undernutrition is not simply caused by a lack of food, but results from a complex interplay of intra- and intergenerational factors. Representative preclinical models and comprehensive well-controlled longitudinal clinical studies are needed to further understand the contributions and the interrelationships among these factors and to develop interventions that are effective and durable. This paper summarizes work on mechanisms underlying the varied manifestations of childhood undernutrition and discusses current gaps in knowledge and challenges to our understanding of undernutrition and infection/immunity throughout the human life cycle, focusing on early childhood growth. It proposes a series of basic and clinical studies to address this global health challenge. PMID:25118072
Cure Chemistry of Phenylethynyl Terminated Oligomers
NASA Technical Reports Server (NTRS)
Wood, Karen H.; Orwoll, Robert A.; Young, Philip R.; Jensen, Brian J.; McNair, Harold M.
1997-01-01
The ability to process high performance polymers into quality, void-free composites has been significantly advanced using oligomers terminated with reactive groups which cure or crosslink at elevated temperature without the evolution of volatile byproducts. Several matrix resin systems of considerable interest to the aerospace community utilize phenylethynyl-terminated imide (PETI) technology to achieve this advantage. The present paper addresses the cure chemistry of PETI oligomers. The thermal cure of a low molecular weight model compound was studied using a variety of analytical techniques including differential scanning calorimetry, Fourier transform infrared spectroscopy, and liquid chromatography-mass spectroscopy. The studies indicate an extremely complex cure process. Many stable products were isolated and this paper reports current work on identification of those products. The intent of this research is to provide fundamental insight into the molecular structure of the cured PETI engineering materials so that performance and durability can be more fully assessed.
42 CFR 402.1 - Basis and scope.
Code of Federal Regulations, 2013 CFR
2013-10-01
...)(A) and 1842(j)(2)—Any durable medical equipment supplier that knowingly and willfully charges for a... nonparticipating durable medical equipment supplier that knowingly and willfully, in violation of section 1834(a....) (9) Section 1834(j)(2)(A)(iii)—Any supplier of durable medical equipment, including a supplier of...
42 CFR 402.1 - Basis and scope.
Code of Federal Regulations, 2014 CFR
2014-10-01
...)(A) and 1842(j)(2)—Any durable medical equipment supplier that knowingly and willfully charges for a... nonparticipating durable medical equipment supplier that knowingly and willfully, in violation of section 1834(a....) (9) Section 1834(j)(2)(A)(iii)—Any supplier of durable medical equipment, including a supplier of...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-18
... Production Act of 1993--Cooperative Research Group on Particle Sensor Performance and Durability Notice is... Research Group on Particle Sensor Performance and Durability (``PSPD'') has filed written notifications... the performance and durability of various particle sensor technologies on a diesel engine platform...
Fifty-Year Durability Evaluation of Posts Treated with Industrial Wood Preservatives
Stan T. Lebow; Patricia Lebow; Bessie Woodward; Grant T. Kirker; Rachel Arango
2015-01-01
Long-term durability data are needed to improve service life estimates for treated wood products used as critical structural supports in industrial applications. This article reports the durability of longleaf pine (Pinus palustris) posts pressure treated with ammoniacal copper arsenate (ACA), chromated copper arsenate (CCA), creosote, or...
Effect of Unprofessional Supervision on Durability of Buildings.
Yahaghi, Javad
2018-02-01
The durability of buildings which depends on the nature of the supervisory system used in their construction is an important feature of the construction industry. This article tries to draw the readers' attention to the effect of untrained and unprofessional building supervisors and their unethical performance on the durability of buildings.
Grant T. Kirker; Amy Blodgett; Patricia Lebow
2015-01-01
Extracts from sawdust of four naturally durable wood species [Alaskan yellow cedar, AYC, Cupressus nootkanansis D. Don 1824; eastern red cedar, ERC, Juniperus virginiana L.; honey mesquite, HM, Prosopis glandulosa Torr.; and black locust, BL, Robinia pseudoacacia L.] were used to treat...
A zwitterionic macro-crosslinker for durable non-fouling coatings.
Wang, Wei; Lu, Yang; Xie, Jinbing; Zhu, Hui; Cao, Zhiqiang
2016-03-28
A novel zwitterionic macro-crosslinker was developed and applied to fabricate durable non-fouling coatings on a polyurethane substrate. The zwitterionic macro-crosslinker coating exhibited superior durability over the traditional brush polymer coating and was able to retain its non-fouling property even after weeks of shearing in flowing liquid.
Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles
NASA Astrophysics Data System (ADS)
Cheng, Yanqiu; Shang, Xiaoyu; Zhang, Youjia
2017-07-01
The freeze-thaw durability of recycled aggregate concrete has significance for the concrete buildings in the cold region. In this paper, the rapid freezing and thawing cycles experience on recycle aggregate concrete was conducted to study on the effects of recycle aggregate amount, water-binder ratio and fly ash on freeze-thaw durability of recycle aggregate concrete. The results indicates that recycle aggregate amount makes the significant influence on the freeze-thaw durability. With the increase of recycled aggregates amount, the freeze-thaw resistance for recycled aggregate concrete decreases. Recycled aggregate concrete with lower water cement ratio demonstrates better performance of freeze-thaw durability. It is advised that the amount of fly ash is less than 30% for admixture of recycled aggregates in the cold region.
Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature
Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi
2017-01-01
To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures. PMID:28772520
Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature.
Miyake, Shojiro; Suzuki, Shota; Miyake, Masatoshi
2017-02-10
To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area in which the DLC film was effective, while cluster-II consisted of a high friction area in which the lubricating effect of the DLC film was lost. The friction durability of the films was evaluated by statistical cluster analysis. Extremely thin FCVA-DLC films exhibited an excellent wear resistance at room temperature, but their friction durability was decreased at high temperatures. In contrast, the durability of the P-CVD-DLC films was increased at high temperatures when compared with that observed at room temperature. This inverse dependence on temperature corresponded to the nano-friction results obtained by atomic force microscopy. The decrease in the friction durability of the FCVA-DLC films at high temperatures, was caused by a complex effect of temperature and friction. The tribochemical reaction produced by the P-CVD-DLC films reduced their friction coefficient, increasing their durability at high temperatures.
Stress Testing of the Philips 60W Replacement Lamp L Prize Entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poplawski, Michael E.; Ledbetter, Marc R.; Smith, Mark
2012-04-24
The Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy, worked with Intertek to develop a procedure for stress testing medium screw-base light sources. This procedure, composed of alternating stress cycles and performance evaluation, was used to qualitatively compare and contrast the durability and reliability of the Philips 60W replacement lamp L Prize entry with market-proven compact fluorescent lamps (CFLs) with comparable light output and functionality. The stress cycles applied simultaneous combinations of electrical, thermal, vibration, and humidity stresses of increasing magnitude. Performance evaluations measured relative illuminance, x chromaticity and y chromaticity shifts after each stressmore » cycle. The Philips L Prize entry lamps appear to be appreciably more durable than the incumbent energy-efficient technology, as represented by the evaluated CFLs, and with respect to the applied stresses. Through the course of testing, all 15 CFL samples permanently ceased to function as a result of the applied stresses, while only 1 Philips L Prize entry lamp exhibited a failure, the nature of which was minor, non-destructive, and a consequence of a known (and resolved) subcontractor issue. Given that current CFL technology appears to be moderately mature and no Philips L Prize entry failures could be produced within the stress envelope causing 100 percent failure of the benchmark CFLs, it seems that, in this particular implementation, light-emitting diode (LED) technology would be much more durable in the field than current CFL technology. However, the Philips L Prize entry lamps used for testing were carefully designed and built for the competition, while the benchmark CFLs were mass produced for retail sale—a distinction that should be taken into consideration. Further reliability testing on final production samples would be necessary to judge the extent to which the results of this analysis apply to production versions of the Philips L Prize entry.« less
Lee, Christopher; Doocy, Shannon; Deli, Anwar; Kirsch, Thomas; Weiss, William; Robinson, Courtland
2014-11-17
There exists little agreement on the choice of indicators to be used to assess the impact of humanitarian assistance. The 2004 Indian Ocean tsunami led to significant mortality and displacement in Aceh Province, Indonesia, as well as a nearly unprecedented humanitarian response. Six years after the disaster we conducted an impact assessment of humanitarian services rendered in Aceh using a comprehensive set of rights-based indicators and sought to determine modifiable predictors of improved outcomes in disaster-affected households. A sample of 597 returned and non-returned households in Banda Aceh and Meulaboh was selected using a multistage stratified cluster survey design. We employed principle components analysis and the Framework on Durable Solutions for Internally Displaced Persons to develop a comprehensive and rights-based approach to humanitarian impact measurement using multivariate regression models. The attainment of durable solutions was equivalent in both returned households 100.1 [CI] 97.63-102.5) and households that integrated elsewhere (99.37 [CI] 95.43-103.3, P = 0.781). Standard of living as well as education and health facility satisfaction increased significantly whereas monthly income decreased after the tsunami, from 2585241 IDR ([CI] 2357202-2813279 IDR) to 2038963 ([CI] 1786627-2291298 IDR, P < 0.001). Shelter (P = 0.007) and legal assistance (P < 0.001) were both significantly associated with positive durable solutions outcomes, whereas prolonged displacement duration was significantly associated with poorer outcomes (P < 0.001). Livelihood assistance received after one year was associated with higher odds of increasing or maintaining pre-tsunami income levels (OR = 3.02, P = 0.008), whereas livelihood assistance received within one year was associated with lower odds of attaining pre-tsunami income (OR = 0.52, P = 0.010). We find that after adjusting for pre-tsunami conditions and tsunami-related damages, the impact of sectoral responses can be assessed. The duration of displacement was the strongest negative predictive factor for the attainment of durable solutions, suggesting that measures to reduce displacement time may be effective in mitigating the long-term effects of disaster on households. The durable solutions framework is a novel and effective impact measurement tool and can be used to identify factors amenable to intervention and inform future disaster recovery efforts.
Application of Granulated Blast Furnace Slag in Cement Composites Exposed to Biogenic Acid Attack
NASA Astrophysics Data System (ADS)
Kovalcikova, M.; Estokova, A.; Luptakova, A.
2015-11-01
The deterioration of cement-based materials used for the civil infrastructure has led to the realization that cement-based materials, such as concrete, must be improved in terms of their properties and durability. Leaching of calcium ions increases the porosity of cement- based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing corrosion of concrete. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to deterioration by aggressive chemicals. The paper is focused on the investigation of the influence of biogenic acid attack on the cement composites affected by bacteria Acidithiobacillus thiooxidans. The concrete specimens with 65 wt. % addition of antimicrobial activated granulated blast furnace slag as durability increasing factor as well as without any addition were studied. The experiments proceeded during 150 days under model laboratory conditions. The pH values and chemical composition of leachates were measured after each 30- day cycle. The calcium and silicon contents in leachates were evaluated using X - ray fluorescence method (XRF). Summarizing the results, the 65% wt. addition of antimicrobial activated granulated blast furnace slag was not confirmed to be more resistant.
Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.
1997-01-01
Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.
DOT National Transportation Integrated Search
2009-01-01
Early-age cracking, typically caused by drying shrinkage (and often coupled with autogenous and thermal : shrinkage), can have several detrimental effects on long-term behavior and durability. Cracking can also provide : ingress of water that can dri...
Spectroscopic comparison of effects of electron radiation on mechanical properties of two polyimides
NASA Technical Reports Server (NTRS)
Long, Edward R., Jr.; Long, Sheila Ann T.
1987-01-01
The differences in the radiation durabilities of two polyimide materials, Du Pont Kapton and General Electric Ultem, are compared. An explanation of the basic mechanisms which occur during exposure to electron radiation from analyses of infrared (IR) and electron paramagnetic resonance (EPR) spectroscopic data for each material is provided. The molecular model for Kapton was, in part, established from earlier modeling for Ultem (pp. 1293-1298 of IEEE Transactions on Nuclear Science, December 1984). Techniques for understanding the durability of one complex polymer based on the understanding of a different and equally complex polymer are demonstrated. The spectroscopic data showed that the primary radiation-generated change in the tensile properties of Ultem (a large reduction in tensile elongation) was due to crosslinking, which followed the capture by phenyl radicals of hydrogen atoms removed from gem-dimethyl groups. In contrast, the tensile properties of Kapton remained unchanged because radical-radical recombination, a self-mending process, took place.
Design, manufacture and testing of an FBG-instrumented composite wing
NASA Astrophysics Data System (ADS)
Abouzeida, E.; Quinones, V.; Gowayed, Y.; Soobramaney, P.; Flowers, G.; Black, R. J.; Costa, J. M.; Faridian, F.; Moslehi, B.
2014-02-01
In this work, our research team investigated the efficacy of using optical static and dynamic strain sensing with embedded Fiber Bragg Gratings (FBGs) in structural health monitoring (SHM) of a model composite airplane wing. A one-fourth scale model of a T38 airplane wing was designed and manufactured using fabric reinforced polymer matrix composites with FBG sensors embedded under the top layer of the composite. The accuracy and durability of the sensors were evaluated at the coupon and structural levels utilizing static and dynamic testing. Strain measurements using embedded FBGs with an optical interrogator were found to be in agreement with values measured using other strain measuring devices and with results obtained using finite element analysis (ANSYS®). Preferred locations for the FBG sensors were identified in accordance with contour maps of internal strain distributions resulting from critical load cases. Manufacturing techniques used to address handling, survivability and durability of the embedded sensors during and post manufacturing of the composites were evaluated and optimized.
Arumugam, Balamurugan; Tamaki, Takanori; Yamaguchi, Takeo
2015-08-05
Design of Pt alloy catalysts with enhanced activity and durability is a key challenge for polymer electrolyte membrane fuel cells. In the present work, we compare the durability of the ordered intermetallic face-centered tetragonal (fct) PtFeCu catalyst for the oxygen reduction reaction (ORR) relative to its counterpart bimetallic catalysts, i.e., the ordered intermetallic fct-PtFe catalyst and the commercial catalyst from Tanaka Kikinzoku Kogyo, TKK-PtC. Although both fct catalysts initially exhibited an ordered structure and mass activity approximately 2.5 times higher than that of TKK-Pt/C, the presence of Cu at the ordered intermetallic fct-PtFeCu catalyst led to a significant enhancement in durability compared to that of the ordered intermetallic fct-PtFe catalyst. The ordered intermetallic fct-PtFeCu catalyst retained more than 70% of its mass activity and electrochemically active surface area (ECSA) over 10 000 durability cycles carried out at 60 °C. In contrast, the ordered intermetallic fct-PtFe catalyst maintained only about 40% of its activity. The temperature of the durability experiment is also shown to be important: the catalyst was more severely degraded at 60 °C than at room temperature. To obtain insight into the observed enhancement in durability of fct-PtFeCu catalyst, a postmortem analysis of the ordered intermetallic fct-PtFeCu catalyst was carried out using scanning transmission electron microscopy-energy dispersive X-ray spectroscopy (STEM-EDX) line scan. The STEM-EDX line scans of the ordered intermetallic fct-PtFeCu catalyst over 10 000 durability cycles showed a smaller degree of Fe and Cu dissolution from the catalyst. Conversely, large dissolution of Fe was identified in the ordered intermetallic fct-PtFe catalyst, indicating a lesser retention of Fe that causes the destruction of ordered structure and gives rise to poor durability. The enhancement in the durability of the ordered intermetallic fct-PtFeCu catalyst is ascribed to the synergistic effects of Cu presence and the ordered structure of catalyst.
(Durability of building materials and components)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, D.J.
1990-11-27
The traveler participated in the fourth meeting of RILEM 100-TSL, Techniques for Service Life Prediction,'' and The Fifth International Conference on Durability of Building Materials and Components.'' In addition, the traveler met with staff members at Taywood Engineering Ltd., Electricite de France, and AEA Technology. The meeting pertained to performance of concrete materials in nuclear power plant structures, time variation of concrete material properties, methods for evaluating concrete structures, and modeling to predict the effects of degradation factors on concrete materials. As many of the concrete structures in general civil engineering applications as well as nuclear power plant applications inmore » Europe are aging, there is increasing emphasis on assessing the durability of these structures. Information was provided of direct application to the Structural Aging Program which would not have been available without these visits. Of equal, or possibly more importance, was the individual contacts established at the organizations visited. Each organization was extremely interested in both the approach and scope of the Structural Aging Program and requested that they be informed of progress. The initial steps were taken to cooperate with several of these researchers and this should help the Structural Aging Program keep abreast of related European activities. In summary, information obtained during this trip will benefit the ongoing Structural Aging Program by informing Oak Ridge National Laboratory (ORNL) of the extensive European research programs addressing the durability of concrete structures, and also by forming and strengthening acquaintances with counterparts in other countries, thus enhancing the basis for possible international cooperation.« less
Roche, Benjamin; Drake, John M.; Brown, Justin; Stallknecht, David E.; Bedford, Trevor; Rohani, Pejman
2014-01-01
Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses—a manifestation of the “storage effect”—highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses. PMID:25116957
Liu, Wen; Hu, Enyuan; Jiang, Hong; ...
2016-02-19
Rational design and controlled synthesis of hybrid structures comprising multiple components with distinctive functionalities are an intriguing and challenging approach to materials development for important energy applications like electrocatalytic hydrogen production, where there is a great need for cost effective, active and durable catalyst materials to replace the precious platinum. Here we report a structure design and sequential synthesis of a highly active and stable hydrogen evolution electrocatalyst material based on pyrite-structured cobalt phosphosulfide nanoparticles grown on carbon nanotubes. The three synthetic steps in turn render electrical conductivity, catalytic activity and stability to the material. The hybrid material exhibits superiormore » activity for hydrogen evolution, achieving current densities of 10 mA cm –2 and 100 mA cm –2 at overpotentials of 48 mV and 109 mV, respectively. Lastly, phosphorus substitution is crucial for the chemical stability and catalytic durability of the material, the molecular origins of which are uncovered by X-ray absorption spectroscopy and computational simulation.« less
Leveraging Cloud Computing to Improve Storage Durability, Availability, and Cost for MER Maestro
NASA Technical Reports Server (NTRS)
Chang, George W.; Powell, Mark W.; Callas, John L.; Torres, Recaredo J.; Shams, Khawaja S.
2012-01-01
The Maestro for MER (Mars Exploration Rover) software is the premiere operation and activity planning software for the Mars rovers, and it is required to deliver all of the processed image products to scientists on demand. These data span multiple storage arrays sized at 2 TB, and a backup scheme ensures data is not lost. In a catastrophe, these data would currently recover at 20 GB/hour, taking several days for a restoration. A seamless solution provides access to highly durable, highly available, scalable, and cost-effective storage capabilities. This approach also employs a novel technique that enables storage of the majority of data on the cloud and some data locally. This feature is used to store the most recent data locally in order to guarantee utmost reliability in case of an outage or disconnect from the Internet. This also obviates any changes to the software that generates the most recent data set as it still has the same interface to the file system as it did before updates
The effect of environmental factors on selected mechanical properties of zirconium dioxide
NASA Astrophysics Data System (ADS)
Wirwicki, W.; Andrzejewska, A.; Andryszczyk, M.; Siemianowski, P.
2018-04-01
In many centers around the world, research studies are carried out on the mechanical strength of dental materials and glued joints. A literature review shows the variety of testing techniques related to analyzing the strength and durability of the material itself and the glued joints. In dental ceramics, zirconium dioxide is most often used as a base material, and chemically it consists of 97% ZrO2 and 3% Y2O3. This study was to determine the mechanical properties of zirconium dioxide under different environmental conditions. The material is used for the production of dental crowns and tooth bridges in the CAD/CAM technology. This medium is currently one of the most advanced-generation materials used for prosthetic and implant restorations. They were then subjected to a three-point bending test on the Instron ElektroPlus E3000 durability machine. Storage conditions and time have a positive influence on reducing variation in zirconium resistance for active forces and destructive stresses.
Tricuspid valve regurgitation after heart transplantation.
Kwon, Murray H; Shemin, Richard J
2017-05-01
Tricuspid valve regurgitation (TVR) in the orthotopic heart transplant (OHT) recipient is quite common and has varied clinical sequelae. In its severest forms, it can lead to right-sided failure symptoms indistinguishable from that seen in native heart TVR disease. While certain implantation techniques are widely recognized to reduce the risk of TVR in the cardiac allograft, concomitant tricuspid annuloplasty, while having advocates, is not currently accepted as a routinely established adjunct. Decisions to surgically correct TVR in the OHT recipient must be made carefully, as certain clinical scenarios have high risk of failure. Like in the native heart, anatomic etiologies typically have the greatest chances for success compared to functional etiologies. While repair options have been utilized, there is emerging data to support replacement as the more durable option. While mechanical prostheses are impractical in the heart transplant recipient, biologic valves offer the advantage of continued access to the right ventricle for biopsies in addition to acceptable durability in the low pressure system of the right side.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles
The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. Here in this perspective article, we describe the current status of AEMFCs as having reached beginningmore » of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. Finally, these perspectives may provide useful insights for the development of next-generation of AEMFCs.« less
Overview of existing cartilage repair technology.
McNickle, Allison G; Provencher, Matthew T; Cole, Brian J
2008-12-01
Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.
NASA Technical Reports Server (NTRS)
Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.
2014-01-01
Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.
High-Heat-Flux Cyclic Durability of Thermal and Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Ghosn, Louis L.; Miller, Robert A.
2007-01-01
Advanced ceramic thermal and environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect the engine components and further raise engine temperatures. For the supersonic vehicles currently envisioned in the NASA fundamental aeronautics program, advanced gas turbine engines will be used to provide high power density thrust during the extended supersonic flight of the aircraft, while meeting stringent low emission requirements. Advanced ceramic coating systems are critical to the performance, life and durability of the hot-section components of the engine systems. In this work, the laser and burner rig based high-heat-flux testing approaches were developed to investigate the coating cyclic response and failure mechanisms under simulated supersonic long-duration cruise mission. The accelerated coating cracking and delamination mechanism under the engine high-heat-flux, and extended supersonic cruise time conditions will be addressed. A coating life prediction framework may be realized by examining the crack initiation and propagation in conjunction with environmental degradation under high-heat-flux test conditions.
Application of densification process in organic waste management.
Zafari, Abedin; Kianmehr, Mohammad Hossein
2013-07-01
Densification of biomass material that usually has a low density is good way of increasing density, reducing the cost of transportation, and simplifying the storage and distribution of this material. The current study was conducted to investigate the influence of raw material parameters (moisture content and particle size), and densification process parameters (piston speed and die length) on the density and durability of pellets from compost manure. A hydraulic press and a single pelleter were used to produce pellets in controlled conditions. Ground biomass samples were compressed with three levels of moisture content [35%, 40% and 45% (wet basis)], piston speed (2, 6 and 10 mm/s), die length (8, 10 and 12 mm) and particle size (0.3., 0.9 and 1.5 mm) to establish density and durability of pellets. A response surface methodology based on the Box Behnken design was used to study the responses pattern and to understand the influence of parameters. The results revealed that all independent variables have significant (P < 0.01) effects on studied responses in this research.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.
2012-01-01
Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability
The role of frit in nuclear waste vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vienna, J.D.; Smith, P.A.; Dorn, D.A.
1994-04-01
Vitrification of nuclear waste requires additives which are often vitrified independently to form a frit. Frit composition is formulated to meet the needs of glass composition and processing. The effects of frit on melter feed and melt processing, glass acceptance, and waste loading is of practical interest in understanding the trade-offs associated with the competing demands placed on frit composition. Melter feed yield stress, viscosity and durability of frits and corresponding waste glasses as well as the kinetics of elementary melting processes have been measured. The results illustrate the competing requirements on frit. Four frits (FY91, FY93, HW39-4, and SR202)more » and simulated neutralized current acid waste (NCAW) were used in this study. The experimental evidence shows that optimization of frit for one processing related property often results in poorer performance for the remaining properties. The difficulties associated with maximum waste loading and durability are elucidated for glasses which could be processed using technology available for the previously proposed Hanford Waste Vitrification Plant.« less
NASA Technical Reports Server (NTRS)
Watson, Kent A.; Connell, John W.; Delozier, Donavon M.; Smith, Joseph G., Jr.
2004-01-01
Space environmentally durable polymeric films with low color and sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have been under investigation as part of a materials development activity. These materials have potential applications on advanced spacecraft, particularly on large, deployable, ultra-light weight Gossamer spacecraft. The approach taken to impart sufficient electrical conductivity into the polymer film while maintaining flexibility is to use single wall carbon nanotubes (SWNTs) as conductive additives. Approaches investigated in our lab involved an in-situ polymerization method, addition of SWNTs to a polymer containing reactive end-groups, and spray coating of polymer surfaces. The work described herein is a summary of the current status of this project. Surface conductivities (measured as surface resistance) in the range sufficient for ESC mitigation were achieved with minimal effects on the physical, thermal, mechanical and optical properties of the films. Additionally, the electrical conductivity was not affected by harsh mechanical manipulation of the films. The chemistry and physical properties of these nanocomposites will be discussed.
High temperature dynamic engine seal technology development
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.
1992-01-01
Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.
Fabrication And Evaluation Of Sic/Sic Tubes With Various Fiber Architectures
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Fox, D. S.
2003-01-01
SiC/SiC composites are excellent material candidates for high temperature applications where the performance requirements are high strength, high creep-rupture resistance, high environmental durability, and high thermal conductivity. In the past, the NASA UEET program has demonstrated fabrication of high-performance SiC/SiC flat panels reinforced by Sylramic-iBN SiC fibers. Currently NASA UEET is scaling up this SiC/SiC system by fabrication of more complex shaped components using the same fiber type. This paper reports the effects of various fiber architectures on the processing, mechanical, and durability behavior of small-diameter 0.5" ID SiC/SiC tubes, which are potential sub-elements for leading edges and cooling channels in turbine vanes and blades. Nine different fiber architectures were utilized for construction of seamless tube preforms, from simple 2D jelly-rolling to complex braiding, pin-weaving, filament-winding and 3D orthogonal weaving with approximately 5% fibers in the thru-thickness direction. Using the BN interphase and Sic matrix processing steps established for the flat panels, SiC/SiC tubes were fabricated with wall thicknesses of approximately 60 mils and total fiber fractions of approximately 35%. The "D" split ring tests for hoop tensile properties, micro-structural examinations for relationship between fiber architecture formation and matrix infiltration, and the low-pressure burner rig tests for the high temperature durability under thru-thickness thermal gradient were conducted. The better matrix infiltration and higher hoop strength were achieved using the tri-axial braided and the three-float pin woven SiC/SiC tubes. In general, it needs not only higher hoop direction fibers but also axial direction fibers for the higher hoop strength and the better infiltration, respectively. These results are analyzed to offer general guidelines for selecting fiber pre-form architectures and SiC/SiC processes that maximize tube hoop strength, thru-thickness thermal conductivity, and burner-rig durability under a high thermal gradient.
High durability antireflection coatings for silicon and multispectral ZnS
NASA Astrophysics Data System (ADS)
Joseph, Shay; Marcovitch, Orna; Yadin, Ygal; Klaiman, Dror; Koren, Nitzan; Zipin, Hedva
2007-04-01
In the current complex battle field, military platforms are required to operate on land, at sea and in the air in all weather conditions both day and night. In order to achieve such capabilities, advanced electro-optical systems are being constantly developed and improved. These systems such as missile seeker heads, reconnaissance and target acquisition pods and tracking, monitoring and alert systems have external optical components (window or dome) which must remain operational even at extreme environmental conditions. Depending on the intended use of the system, there are a few choices of window and dome materials. Amongst the more common materials one can point out sapphire, ZnS, germanium and silicon. Other materials such as spinel, ALON and yittria may also be considered. Most infrared materials have high indices of refraction and therefore they reflect a large part of radiation. To minimize the reflection and increase the transmission, antireflection (AR) coatings are the most common choice. Since these systems operate at different environments and weather conditions, the coatings must be made durable to withstand these extreme conditions. In cases where the window or dome is made of relatively soft materials such as multispectral ZnS, the coating may also serve as protection for the window or dome. In this work, several antireflection coatings have been designed and manufactured for silicon and multispectral ZnS. The coating materials were chosen to be either oxides or fluorides which are known to have high durability. Ellipsometry measurements were used to characterize the optical constants of the thin films. The effects of the deposition conditions on the optical constants of the deposited thin films and durability of the coatings will be discussed. The coatings were tested according to MIL-STD-810E and were also subjected to rain erosion tests at the University of Dayton Research Institute (UDRI) whirling arm apparatus in which one of the coatings showed no rain drop impact damage at all.
NASA Technical Reports Server (NTRS)
Kahraman, Ahmet
2002-01-01
In this study, design requirements for a dynamically viable, four-square type gear test machine are investigated. Variations of four-square type gear test machines have been in use for durability and dynamics testing of both parallel- and cross-axis gear set. The basic layout of these machines is illustrated. The test rig is formed by two gear pairs, of the same reduction ratio, a test gear pair and a reaction gear pair, connected to each other through shafts of certain torsional flexibility to form an efficient, closed-loop system. A desired level of constant torque is input to the circuit through mechanical (a split coupling with a torque arm) or hydraulic (a hydraulic actuator) means. The system is then driven at any desired speed by a small DC motor. The main task in hand is the isolation of the test gear pair from the reaction gear pair under dynamic conditions. Any disturbances originated at the reaction gear mesh might potentially travel to the test gearbox, altering the dynamic loading conditions of the test gear mesh, and hence, influencing the outcome of the durability or dynamics test. Therefore, a proper design of connecting structures becomes a major priority. Also, equally important is the issue of how close the operating speed of the machine is to the resonant frequencies of the gear meshes. This study focuses on a detailed analysis of the current NASA Glenn Research Center gear pitting test machine for evaluation of its resonance and vibration isolation characteristics. A number of these machines as the one illustrated has been used over last 30 years to establish an extensive database regarding the influence of the gear materials, processes surface treatments and lubricants on gear durability. This study is intended to guide an optimum design of next generation test machines for the most desirable dynamic characteristics.
Investigation and Mitigation of Degradation in Hydrogen Fuel Cells
NASA Astrophysics Data System (ADS)
Mandal, Pratiti
The ever increasing demand of petroleum in the transport sector has led to depletion of low cost/low risk reserves, increased level of pollution, and greenhouse gas emissions that take a heavy toll on the environment as well as the national economy. There is an urgent need to utilize alternative energy resources along with an efficient and affordable energy conversion system to arrest environmental degradation. Polymer electrolyte fuel cells (PEFCs) show great promise in this regard, they use hydrogen gas as a fuel that electrochemically reacts with air to produce electrical energy and water as the by product. In a fuel cell electric vehicle (FCEV), these zero tail pipe emission systems offer high efficiency and power density for medium-heavy duty and long range transportation. However, PEFC technology is currently challenged by its limited durability when subjected to harsh and adverse operating conditions and transients that arises during the normal course of vehicle operation. The hydrogen-based fuel cell power train for electric vehicles must achieve high durability while maintaining high power efficiency and fuel economy in order to equal the range and lifetime of an internal-combustion engine vehicle. The technology also needs to meet the cost targets to make FCEVs a commercial success. In this dissertation, one of the degradation phenomena that severely impede the durability of the system has been investigated. In scenarios where the cell becomes locally starved of hydrogen fuel, "cell reversal" occurs, which causes the cell to consume itself through carbon corrosion and eventually fail. Carbon corrosion in the anode disrupts the original structure of the electrode and can cause undesirable outcomes like catalyst particle migration, aggregation, loss of structural and chemical integrity. Through a comprehensive study using advanced electrochemical diagnostics and high resolution 3D imaging, a new understanding to extend PEFC life time and robustness by implementing engineered materials solutions has been achieved. This will eventually help in making fuel cell systems more efficient, durable and economically viable, in order to better harness clean energy resources.
Experimentally Observed Electrical Durability of 4H-SiC JFET ICs Operating from 500 C to 700 C
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Spry, David J.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.
2016-01-01
This ECSCRM 2016 submission presents further electrical testing and microscopic post-failure studies aimed at more comprehensive understanding of the durability limits of this extreme temperature IC technology. The results summarized represent an unprecedented combination of T 500 C semiconductor IC durability and functionality.
Outdoor durability of wood-polymer composites
N. M. Stark; D. J. Gardner
2008-01-01
Wood-plastic composite (WPC) lumber is promoted as a low-maintenance, high-durability product (Clemons, 2002). However, after a decade of exterior use in the construction industry, questions have arisen regarding durability. These questions are based on documented evidence of failures in the field of WPC decking products due to such impacts as polymer degradation (...
Adhesives for Achieving Durable Bonds with Acetylated Wood
Charles Frihart; Rishawn Brandon; James Beecher; Rebecca Ibach
2017-01-01
Acetylation of wood imparts moisture durability, decay resistance, and dimensional stability to wood; however, making durable adhesive bonds with acetylated wood can be more difficult than with unmodified wood. The usual explanation is that the acetylated surface has fewer hydroxyl groups, resulting in a harder-to-wet surface and in fewer hydrogen bonds between wood...
USDA-ARS?s Scientific Manuscript database
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici, continues causing severe damage worldwide. Durable resistance is a key for sustainable control of the disease. High-temperature adult-plant (HTAP) resistance, which expresses when weather becomes warm and plants grow old, has bee...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... Inspector General Publication of OIG Updated Special Fraud Alert on Telemarketing by Durable Medical... Register notice sets forth the recently issued OIG Updated Special Fraud Alert addressing telemarketing by durable medical equipment (DME) suppliers. For the most part, OIG Special Fraud Alerts address national...
40 CFR 86.094-26 - Mileage and service accumulation; emission requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Gas-Fueled, Liquefied Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.094-26 Mileage... the durability data obtained up to that point out to the durability useful life or to replace the... vehicles and durability data vehicles obtained pursuant to the provisions of this section will be used in...