Sample records for current emissions levels

  1. DEVELOPMENT OF COUNTY-LEVEL WIND EROSION AND UNPAVED ROAD ALKALINE EMISSION ESTIMATES FOR THE 1985 NAPAP EMISSIONS INVENTORY

    EPA Science Inventory

    The report details the methods used and the result of the conversion of the National Acid Precipitation Assessment Program's (NAPAP's) alkaline material emissions information for wind erosion, unpaved roads, and dust devils from the' current spatial resolution to county-level res...

  2. Measuring Greenhouse Gas Emissions and Sinks Across California Land Cover

    NASA Astrophysics Data System (ADS)

    Fischer, M. L.

    2017-12-01

    Significant reductions in greenhouse gas (GHG) emissions are needed to limit rising planetary temperatures that will otherwise limit Earth's capacity to support life, introducing geopolitical instability. To help mitigate this threat, California has legislated landmark reductions in state-level greenhouse gas (GHG) emissions that set an example for broader action. Beginning with relatively assured reduction of current emissions to 1990 levels by 2020, future goals are much more challenging with 40% and 80% reductions below 1990 emissions by 2030 and 2050, respectively. While the majority of the reductions must focus on fossil fuels, inventory estimates of non-CO2 GHG emissions (i.e., CH4, N2O, and industrial compounds) constitute 15% of the total, suggesting reductions are required across multiple land use sectors. However, recent atmospheric inversion studies show methane and nitrous oxide (CH4 & N2O) emissions exceed current inventory estimates by factors of 1.2-1.8 and 1.6-2.6 (at 95% confidence), respectively, perhaps constituting up to 30% of State total emissions. The discrepancy is likely because current bottom-up models used for inventories do not accurately capture important management or biophysical factors. In the near term, process level experiments and sector-specific inversions are being planned to quantify the factors controlling non-CO2 GHG emissions for several of the dominant emission sectors. For biosphere carbon, California forests lands, which also depend on the combination of management, climate, and weather, lost above ground carbon from 2001-2010, and may be expected to lose soil and root carbon as a longer-term result. Here, it is important to identify and apply the best principles in forestry and agriculture to increase carbon stocks in depleted forest and agricultural areas, focusing on approaches that provide resilience to future climate and weather variations. Taken together, improved atmospheric, plant, and soil observations, together with empirical and/or process-level models should be developed to quantify current trajectories of both biological CO2 exchange and non-CO2 GHG emissions, identify knowledge gaps, and guide mitigation policies.

  3. Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

    NASA Astrophysics Data System (ADS)

    Dalsøren, Stig B.; Myhre, Gunnar; Hodnebrog, Øivind; Myhre, Cathrine Lund; Stohl, Andreas; Pisso, Ignacio; Schwietzke, Stefan; Höglund-Isaksson, Lena; Helmig, Detlev; Reimann, Stefan; Sauvage, Stéphane; Schmidbauer, Norbert; Read, Katie A.; Carpenter, Lucy J.; Lewis, Alastair C.; Punjabi, Shalini; Wallasch, Markus

    2018-03-01

    Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5-13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.

  4. Experimental clean combustor program, phase 2

    NASA Technical Reports Server (NTRS)

    Gleason, C. C.; Rogers, D. W.; Bahr, D. W.

    1976-01-01

    The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.

  5. Current and future levels of mercury atmospheric pollution on a global scale

    NASA Astrophysics Data System (ADS)

    Pacyna, Jozef M.; Travnikov, Oleg; De Simone, Francesco; Hedgecock, Ian M.; Sundseth, Kyrre; Pacyna, Elisabeth G.; Steenhuisen, Frits; Pirrone, Nicola; Munthe, John; Kindbom, Karin

    2016-10-01

    An assessment of current and future emissions, air concentrations, and atmospheric deposition of mercury worldwide is presented on the basis of results obtained during the performance of the EU GMOS (Global Mercury Observation System) project. Emission estimates for mercury were prepared with the main goal of applying them in models to assess current (2013) and future (2035) air concentrations and atmospheric deposition of this contaminant. The combustion of fossil fuels (mainly coal) for energy and heat production in power plants and in industrial and residential boilers, as well as artisanal and small-scale gold mining, is one of the major anthropogenic sources of Hg emissions to the atmosphere at present. These sources account for about 37 and 25 % of the total anthropogenic Hg emissions globally, estimated to be about 2000 t. Emissions in Asian countries, particularly in China and India, dominate the total emissions of Hg. The current estimates of mercury emissions from natural processes (primary mercury emissions and re-emissions), including mercury depletion events, were estimated to be 5207 t year-1, which represents nearly 70 % of the global mercury emission budget. Oceans are the most important sources (36 %), followed by biomass burning (9 %). A comparison of the 2035 anthropogenic emissions estimated for three different scenarios with current anthropogenic emissions indicates a reduction of these emissions in 2035 up to 85 % for the best-case scenario. Two global chemical transport models (GLEMOS and ECHMERIT) have been used for the evaluation of future mercury pollution levels considering future emission scenarios. Projections of future changes in mercury deposition on a global scale simulated by these models for three anthropogenic emissions scenarios of 2035 indicate a decrease in up to 50 % deposition in the Northern Hemisphere and up to 35 % in Southern Hemisphere for the best-case scenario. The EU GMOS project has proved to be a very important research instrument for supporting the scientific justification for the Minamata Convention and monitoring of the implementation of targets of this convention, as well as the EU Mercury Strategy. This project provided the state of the art with regard to the development of the latest emission inventories for mercury, future emission scenarios, dispersion modelling of atmospheric mercury on a global and regional scale, and source-receptor techniques for mercury emission apportionment on a global scale.

  6. Wildfire air pollution hazard during the 21st century

    NASA Astrophysics Data System (ADS)

    Knorr, Wolfgang; Dentener, Frank; Lamarque, Jean-François; Jiang, Leiwen; Arneth, Almut

    2017-07-01

    Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  7. Observation of increased space-charge limited thermionic electron emission current by neutral gas ionization in a weakly-ionized deuterium plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollmann, E. M.; Yu, J. H.; Doerner, R. P.

    2015-09-14

    The thermionic electron emission current emitted from a laser-produced hot spot on a tungsten target in weakly-ionized deuterium plasma is measured. It is found to be one to two orders of magnitude larger than expected for bipolar space charge limited thermionic emission current assuming an unperturbed background plasma. This difference is attributed to the plasma being modified by ionization of background neutrals by the emitted electrons. This result indicates that the allowable level of emitted thermionic electron current can be significantly enhanced in weakly-ionized plasmas due to the presence of large neutral densities.

  8. Marine nitrous oxide emissions: An unknown liability for the international water sector

    EPA Science Inventory

    Reliable estimates of anthropogenic greenhouse gas (GHG) emissions are essential for setting effective climate policy at both the sector and national level. Current IPCC Guidelines for calculating nitrous oxide (N2O) emissions from sewage management are both highly uncertain and ...

  9. Experimental clean combustor program, phase 1

    NASA Technical Reports Server (NTRS)

    Bahr, D. W.; Gleason, C. C.

    1975-01-01

    Full annular versions of advanced combustor designs, sized to fit within the CF6-50 engine, were defined, manufactured, and tested at high pressure conditions. Configurations were screened, and significant reductions in CO, HC, and NOx emissions levels were achieved with two of these advanced combustor design concepts. Emissions and performance data at a typical AST cruise condition were also obtained along with combustor noise data as a part of an addendum to the basic program. The two promising combustor design approaches evolved in these efforts were the Double Annular Combustor and the Radial/Axial Combustor. With versions of these two basic combustor designs, CO and HC emissions levels at or near the target levels were obtained. Although the low target NOx emissions level was not obtained with these two advanced combustor designs, significant reductions were relative to the NOx levels of current technology combustors. Smoke emission levels below the target value were obtained.

  10. Magneto acoustic emission apparatus for testing materials for embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Min, Namkung (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1990-01-01

    A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an ac current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a dc current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.

  11. Impact of Biogenic Emission Uncertainties on the Simulated Response of Ozone and Fine Particulate Matter to Anthropogenic Emission Reductions

    PubMed Central

    Hogrefe, Christian; Isukapalli, Sastry S.; Tang, Xiaogang; Georgopoulos, Panos G.; He, Shan; Zalewsky, Eric E.; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1–0.25 μg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1–2% of the value of the annual PM2.5 NAAQS of 15 μg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions. PMID:21305893

  12. Acoustic-Emission Weld-Penetration Monitor

    NASA Technical Reports Server (NTRS)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  13. Integration of biogenic emissions in environmental fate, transport, and exposure systems

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos I.

    Biogenic emissions make a significant contribution to the levels of aeroallergens and secondary air pollutants such as ozone. Understanding major factors contributing to allergic airway diseases requires accurate characterization of emissions and transport/transformation of biogenic emissions. However, biogenic emission estimates are laden with large uncertainties. Furthermore, the current biogenic emission estimation models use low-resolution data for estimating land use, vegetation biomass and VOC emissions. Furthermore, there are currently no established methods for estimating bioaerosol emissions over continental or regional scale, which can impact the ambient levels of pollent that have synergestic effects with other gaseous pollutants. In the first part of the thesis, an detailed review of different approaches and available databases for estimating biogenic emissions was conducted, and multiple geodatabases and satellite imagery were used in a consistent manner to improve the estimates of biogenic emissions over the continental United States. These emissions represent more realistic, higher resolution estimates of biogenic emissions (including those of highly reactive species such as isoprene). The impact of these emissions on tropospheric ozone levels was studied at a regional scale through the application of the USEPA's Community Multiscale Air Quality (CMAQ) model. Minor, but significant differences in the levels of ambient ozone were observed. In the second part of the thesis, an algorithm for estimating emissions of pollen particles from major allergenic tree and plant families in the United States was developed, extending the approach for modeling biogenic gas emissions in the Biogenic Emission Inventory System (BEIS). A spatio-temporal vegetation map was constructed from different remote sensing sources and local surveys, and was coupled with a meteorological model to develop pollen emissions rates. This model overcomes limitations posed by the lack of temporally resolved dynamic vegetation mapping in traditional pollen emission estimation methods. The pollen emissions model was applied to study the pollen emissions for North East US at 12 km resolution for comparison with ground level tree pollen data. A pollen transport model that simulates complex dispersion and deposition was developed through modifications to the USEPA's Community Multiscale Air Quality (CMAQ) model. The peak pollen emission predictions were within a day of peak pollen counts measured, thus corroborating independent model verification. Furthermore, the peak predicted pollen concentration estimates were within two days of the peak measured pollen counts, thus providing independent corroboration. The models for emissions and dispersion allow data-independent estimation of pollen levels, and provide an important component in assessing exposures of populations to pollen, especially under different climate change scenarios.

  14. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990

    NASA Astrophysics Data System (ADS)

    Miettinen, Jukka; Hooijer, Aljosja; Vernimmen, Ronald; Liew, Soo Chin; Page, Susan E.

    2017-02-01

    Tropical peatlands of the western part of insular Southeast Asia have experienced extensive land cover changes since 1990. Typically involving drainage, these land cover changes have resulted in increased peat oxidation in the upper peat profile. In this paper we provide current (2015) and cumulative carbon emissions estimates since 1990 from peat oxidation in Peninsular Malaysia, Sumatra and Borneo, utilizing newly published peatland land cover information and the recently agreed Intergovernmental Panel on Climate Change (IPCC) peat oxidation emission values for tropical peatland areas. Our results highlight the change of one of the Earth’s most efficient long-term carbon sinks to a short-term emission source, with cumulative carbon emissions since 1990 estimated to have been in the order of 2.5 Gt C. Current (2015) levels of emissions are estimated at around 146 Mt C yr-1, with a range of 132-159 Mt C yr-1 depending on the selection of emissions factors for different land cover types. 44% (or 64 Mt C yr-1) of the emissions come from industrial plantations (mainly oil palm and Acacia pulpwood), followed by 34% (49 Mt C yr-1) of emissions from small-holder areas. Thus, altogether 78% of current peat oxidation emissions come from managed land cover types. Although based on the latest information, these estimates may still include considerable, yet currently unquantifiable, uncertainties (e.g. due to uncertainties in the extent of peatlands and drainage networks) which need to be focused on in future research. In comparison, fire induced carbon dioxide emissions over the past ten years for the entire equatorial Southeast Asia region have been estimated to average 122 Mt C yr-1 (www.globalfiredata.org/_index.html). The results emphasise that whilst reducing emissions from peat fires is important, urgent efforts are also needed to mitigate the constantly high level of emissions arising from peat drainage, regardless of fire occurrence.

  15. Origin of temperature dependent conduction of current from n-4H-SiC into silicon dioxide films at high electric fields

    NASA Astrophysics Data System (ADS)

    Xiang, An; Xu, Xingliang; Zhang, Lin; Li, Zhiqiang; Li, Juntao; Dai, Gang

    2018-02-01

    The conduction of current from n-4H-SiC into pyrogenic and dry oxidized films is studied. Anomalous current conduction was observed at a high electric field above 8 MV/cm for dry oxidized metal-oxide-semiconductor (MOS) capacitors, which cannot be interpreted in the framework of pure Fowler-Nordheim tunneling. The temperature-dependent current measurement and density of interface trap estimated from the hi-lo method for the SiO2/4H-SiC interface revealed that the combined current conduction of Fowler-Nordheim and Poole-Frenkel emission is responsible for the current conduction in both pyrogenic and dry oxidized MOS capacitors. Furthermore, the origin of temperature dependent current conduction is the Poole-Frenkel emission via the carbon pair defect trap level at 1.3 eV below the conduction band edge of SiO2. In addition, with the dry oxidized capacitors, the enhanced temperature dependent current above 8 MV/cm is attributed to the PF emission via a trap level at 1.47 eV below the conduction band edge of SiO2, which corresponds to another configuration of a carbon pair defect in SiO2 films.

  16. Characterization, Processing, and Consolidation of Nanoscale Tungsten Powder

    DTIC Science & Technology

    2009-12-01

    gas fusion, and all other elements were measured by direct current plasma emission spectroscopy. The analysis showed a relatively high amount of...measured by direct current plasma emission spectroscopy, and oxygen was detected by inert gas fusion. The results show that carbon and cobalt levels...of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB

  17. Carbon choices determine US cities committed to futures below sea level

    PubMed Central

    Strauss, Benjamin H.; Kulp, Scott; Levermann, Anders

    2015-01-01

    Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3–9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185–1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon. PMID:26460051

  18. Carbon choices determine US cities committed to futures below sea level.

    PubMed

    Strauss, Benjamin H; Kulp, Scott; Levermann, Anders

    2015-11-03

    Anthropogenic carbon emissions lock in long-term sea-level rise that greatly exceeds projections for this century, posing profound challenges for coastal development and cultural legacies. Analysis based on previously published relationships linking emissions to warming and warming to rise indicates that unabated carbon emissions up to the year 2100 would commit an eventual global sea-level rise of 4.3-9.9 m. Based on detailed topographic and population data, local high tide lines, and regional long-term sea-level commitment for different carbon emissions and ice sheet stability scenarios, we compute the current population living on endangered land at municipal, state, and national levels within the United States. For unabated climate change, we find that land that is home to more than 20 million people is implicated and is widely distributed among different states and coasts. The total area includes 1,185-1,825 municipalities where land that is home to more than half of the current population would be affected, among them at least 21 cities exceeding 100,000 residents. Under aggressive carbon cuts, more than half of these municipalities would avoid this commitment if the West Antarctic Ice Sheet remains stable. Similarly, more than half of the US population-weighted area under threat could be spared. We provide lists of implicated cities and state populations for different emissions scenarios and with and without a certain collapse of the West Antarctic Ice Sheet. Although past anthropogenic emissions already have caused sea-level commitment that will force coastal cities to adapt, future emissions will determine which areas we can continue to occupy or may have to abandon.

  19. On-road emission factors of PM pollutants for light-duty vehicles (LDVs) based on urban street driving conditions

    NASA Astrophysics Data System (ADS)

    Kam, Winnie; Liacos, James W.; Schauer, James J.; Delfino, Ralph J.; Sioutas, Constantinos

    2012-12-01

    An on-road sampling campaign was conducted on two major surface streets (Wilshire and Sunset Boulevards) in Los Angeles, CA, to characterize PM components including metals, trace elements, and organic species for three PM size fractions (PM10-2.5, PM2.5-0.25, and PM0.25). Fuel-based emission factors (mass of pollutant per kg of fuel) were calculated to assess the emissions profile of a light-duty vehicle (LDV) traffic fleet characterized by stop-and-go driving conditions that are reflective of urban street driving. Emission factors for metals and trace elements were highest in PM10-2.5 while emission factors for PAHs and hopanes and steranes were highest in PM0.25. PM2.5 emission factors were also compared to previous freeway, roadway tunnel, and dynamometer studies based on an LDV fleet to determine how various environments and driving conditions may influence concentrations of PM components. The on-road sampling methodology deployed in the current study captured substantially higher levels of metals and trace elements associated with vehicular abrasion (Fe, Ca, Cu, and Ba) and crustal origins (Mg and Al) than previous LDV studies. The semi-volatile nature of PAHs resulted in higher levels of PAHs in the particulate phase for LDV tunnel studies (Phuleria et al., 2006) and lower levels of PAHs in the particulate phase for freeway studies (Ning et al., 2008). With the exception of a few high molecular weight PAHs, the current study's emission factors were in between the LDV tunnel and LDV freeway studies. In contrast, hopane and sterane emission factors were generally comparable between the current study, the LDV tunnel, and LDV freeway, as expected given the greater atmospheric stability of these organic compounds. Overall, the emission factors from the dynamometer studies for metals, trace elements, and organic species are lower than the current study. Lastly, n-alkanes (C19-C40) were quantified and alkane carbon preference indices (CPIs) were determined to be in the range of 1-2, indicating substantial anthropogenic source contribution for surface streets in Los Angeles.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korolev, Yu. D.; Landl, N. V., E-mail: landl@lnp.hcei.tsc.ru; Geyman, V. G.

    Results from studies of a low-current glow discharge with a hollow cathode are presented. A specific feature of the discharge conditions was that a highly emissive tablet containing cesium carbonate was placed in the cathode cavity. In the absence of a tablet, the discharge ignition voltage was typically ≥3.5 kV, while the burning voltage was in the range of 500–600 V. The use of the tablet made it possible to decrease the ignition voltage to 280 V and maintain the discharge burning voltage at a level of about 130 V. A model of the current sustainment in a hollow-cathode dischargemore » is proposed. Instead of the conventional secondary emission yield, the model uses a generalized emission yield that takes into account not only ion bombardment of the cathode, but also the emission current from an external source. The model is used to interpret the observed current−voltage characteristics. The results of calculations agree well with the experimental data. It is shown that, in some discharge modes, the external emission current from the cathode can reach 25% of the total discharge current.« less

  1. Quantification of Methane Source Locations and Emissions in AN Urban Setting

    NASA Astrophysics Data System (ADS)

    Crosson, E.; Richardson, S.; Tan, S. M.; Whetstone, J.; Bova, T.; Prasad, K. R.; Davis, K. J.; Phillips, N. G.; Turnbull, J. C.; Shepson, P. B.; Cambaliza, M. L.

    2011-12-01

    The regulation of methane emissions from urban sources such as landfills and waste-water treatment facilities is currently a highly debated topic in the US and in Europe. This interest is fueled, in part, by recent measurements indicating that urban emissions are a significant source of Methane (CH4) and in fact may be substantially higher than current inventory estimates(1). As a result, developing methods for locating and quantifying emissions from urban methane sources is of great interest to industries such as landfill and wastewater treatment facility owners, watchdog groups, and the governmental agencies seeking to evaluate or enforce regulations. In an attempt to identify major methane source locations and emissions in Boston, Indianapolis, and the Bay Area, systematic measurements of CH4 concentrations and meteorology data were made at street level using a vehicle mounted cavity ringdown analyzer. A number of discrete sources were detected at concentration levels in excess of 15 times background levels. Using Gaussian plume models as well as tomographic techniques, methane source locations and emission rates will be presented. In addition, flux chamber measurements of discrete sources such as those found in natural gas leaks will also be presented. (1) Wunch, D., P.O. Wennberg, G.C. Toon, G. Keppel-Aleks, and Y.G. Yavin, Emissions of Greenhouse Gases from a North American Megacity, Geophysical Research Letters, Vol. 36, L15810, doi:10.1029/2009GL)39825, 2009.

  2. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    NASA Astrophysics Data System (ADS)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global action to reduce air pollutant emissions is needed to make sure that ozone damage in Europe decreases towards the middle of this century.

  3. Field emission study of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Xin

    Recently, carbon nanosheets (CNS), a novel nanostructure, were developed in our laboratory as a field emission source for high emission current. To characterize, understand and improve the field emission properties of CNS, a ultra-high vacuum surface analysis system was customized to conduct relevant experimental research in four distinct areas. The system includes Auger electron spectroscopy (AES), field emission energy spectroscopy (FEES), field emission I-V testing, and thermal desorption spectroscopy (TDS). Firstly, commercial Mo single tips were studied to calibrate the customized system. AES and FEES experiments indicate that a pyramidal nanotip of Ca and O elements formed on the Mo tip surface by field induced surface diffusion. Secondly, field emission I-V testing on CNS indicates that the field emission properties of pristine nanosheets are impacted by adsorbates. For instance, in pristine samples, field emission sources can be built up instantaneously and be characterized by prominent noise levels and significant current variations. However, when CNS are processed via conditioning (run at high current), their emission properties are greatly improved and stabilized. Furthermore, only H2 desorbed from the conditioned CNS, which indicates that only H adsorbates affect emission. Thirdly, the TDS study on nanosheets revealed that the predominant locations of H residing in CNS are sp2 hybridized C on surface and bulk. Fourthly, a fabricating process was developed to coat low work function ZrC on nanosheets for field emission enhancement. The carbide triple-peak in the AES spectra indicated that Zr carbide formed, but oxygen was not completely removed. The Zr(CxOy) coating was dispersed as nanobeads on the CNS surface. Although the work function was reduced, the coated CNS emission properties were not improved due to an increased beta factor. Further analysis suggest that for low emission current (<1 uA), the H adsorbates affect emission by altering the work function. In high emission current (>10 uA), thermal, ionic or electronic transition effects may occur, which differently affect the field emission process.

  4. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  5. The effect of plasma density and emitter geometry on space charge limits for field emitter array electron charge emission into a space plasma

    NASA Astrophysics Data System (ADS)

    Morris, Dave; Gilchrist, Brian; Gallimore, Alec

    2001-02-01

    Field Emitter Array Cathodes (FEACs) are a new technology being developed for several potential spacecraft electron emission and charge control applications. Instead of a single hot (i.e., high powered) emitter, or a gas dependant plasma contactor, FEAC systems consist of many (hundreds or thousands) of small (micron level) cathode/gate pairs printed on a semiconductor wafer that effect cold field emission at relatively low voltages. Each individual cathode emits only micro-amp level currents, but a functional array is capable of amp/cm2 current densities. It is hoped that thus FEAC offers the possibility of a relatively low-power, simple to integrate, and inexpensive technique for the high level of current emissions that are required for an electrodynamic tether (EDT) propulsion mission. Space charge limits are a significant concern for the EDT application. Vacuum chamber tests and PIC simulations are being performed at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory and Space Physics Research Laboratory to determine the effect of plasma density and emitter geometry on space charge limitations. The results of this work and conclusions to date of how to best mitigate space charge limits will be presented. .

  6. Approaching the Limit in Atomic Spectrochemical Analysis.

    ERIC Educational Resources Information Center

    Hieftje, Gary M.

    1982-01-01

    To assess the ability of current analytical methods to approach the single-atom detection level, theoretical and experimentally determined detection levels are presented for several chemical elements. A comparison of these methods shows that the most sensitive atomic spectrochemical technique currently available is based on emission from…

  7. Developing an urban forest carbon market

    Treesearch

    M. Armstrong; J. Siry; Michael Bowker

    2009-01-01

    Countries, states, localities, businesses, and individuals are taking action to mitigate greenhouse gas levels and production as a response to concerns over climate change. Europe currently has mandatory greenhouse gas emission legislation and a large developed emission trading market, as opposed to the U.S. where voluntary markets to reduce green house gas emissions...

  8. Current and future background ozone simulations for Mexico using a multi-scale regional climate modeling system

    NASA Astrophysics Data System (ADS)

    Lamb, B. K.; Gonzalez Abraham, R.; Avise, J. C.; Chung, S. H.; Salathe, E. P.; Zhang, Y.; Guenther, A. B.; Wiedinmyer, C.; Duhl, T.; Streets, D. G.

    2013-05-01

    Global change will clearly have a significant impact on the environment. Among the concerns for future air quality in North America, intercontinental transport of pollution has become increasingly important. In this study, we examined the effect of projected changes in Asian emissions and emissions from lightning and wildfires to produce ozone background concentrations within Mexico and the continental US. This provides a basis for developing an understanding of North American background levels and how they may change in the future. Meteorological fields were downscaled from the results of the ECHAM5 global climate model using the Weather Research Forecast (WRF) model. Two nested domains were employed, one covering most of the Northern Hemisphere from eastern Asia to North America using 220 km grid cells (semi-hemispheric domain) and one covering the continental US and northern Mexico using 36 km grid cells. Meteorological results from WRF were used to drive the MEGAN biogenic emissions model, the SMOKE emissions processing tool, and the CMAQ chemical transport model to predict ozone concentrations for current (1995-2004) and future (2045-2054) summertime conditions. The MEGAN model was used to calculate biogenic emissions for all simulations. For the semi-hemispheric domain, year 2000 global emissions of gases (ozone precursors) from anthropogenic (outside of North America), natural, and biomass burning sources from the POET and EDGAR emission inventories were used. The global tabulation for black and organic carbon (BC and OC respectively) was obtained from Bond et al. (2004) For the future decade, the current emissions were projected to the year 2050 following the Intergovernmental Panel for Climate Change (IPCC) A1B emission scenario. Anthropogenic emissions from the US, Canada, and Mexico were omitted so that only global background concentrations, and local biogenic, wildfire, and lightning emissions were treated. In this paper, we focus on background ozone levels in Mexico due to changes in future climate, local biogenic emissions and global emissions.

  9. Modification of polymer velvet cathode via metallic Mo coating for enhancement of high-current electron emission performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Ying; Wang, Bing; Yi, Yong

    2013-09-15

    The effect of surface Mo coating on the high-current electron emission performances for polymer velvet cathode has been investigated in a diode with A-K gap of 11.5 cm by the combination of time-resolved electrical diagnostic and temporal pressure variation. Compared with uncoated polymer velvet cathode under the single-pulsed emission mode, the Mo-coated one shows lower outgassing levels (∼0.40 Pa L), slower cathode plasma expansion velocity (∼2.30 cm/μs), and higher emission stability as evidences by the change in cathode current, temporal pressure variation, and diode perveance. Moreover, after Mo coating, the emission consistency of the polymer velvet cathode between two adjacentmore » pulses is significantly improved in double-pulsed emission mode with ∼500 ns interval between two pulses, which further confirms the effectiveness of Mo coating for enhancement of electron emission performance of polymer velvet cathodes. These results should be of interest to the high-repetitive high-power microwave systems with cold cathodes.« less

  10. Ultrafast strong-field photoelectron emission from biased metal surfaces: exact solution to time-dependent Schrödinger Equation

    PubMed Central

    Zhang, Peng; Lau, Y. Y.

    2016-01-01

    Laser-driven ultrafast electron emission offers the possibility of manipulation and control of coherent electron motion in ultrashort spatiotemporal scales. Here, an analytical solution is constructed for the highly nonlinear electron emission from a dc biased metal surface illuminated by a single frequency laser, by solving the time-dependent Schrödinger equation exactly. The solution is valid for arbitrary combinations of dc electric field, laser electric field, laser frequency, metal work function and Fermi level. Various emission mechanisms, such as multiphoton absorption or emission, optical or dc field emission, are all included in this single formulation. The transition between different emission processes is analyzed in detail. The time-dependent emission current reveals that intense current modulation may be possible even with a low intensity laser, by merely increasing the applied dc bias. The results provide insights into the electron pulse generation and manipulation for many novel applications based on ultrafast laser-induced electron emission. PMID:26818710

  11. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  12. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  13. Status review of NASA programs for reducing aircraft gas turbine engine emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1976-01-01

    Programs initiated by NASA to develop and demonstrate low emission advanced technology combustors for reducing aircraft gas turbine engine pollution are reviewed. Program goals are consistent with urban emission level requirements as specified by the U. S. Environmental Protection Agency and with upper atmosphere cruise emission levels as recommended by the U. S. Climatic Impact Assessment Program and National Research Council. Preliminary tests of advanced technology combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft gas turbine engines without adverse effects on fuel consumption. Preliminary test results from fundamental studies indicate that extremely low emission combustion systems may be possible for future generation jet aircraft. The emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

  14. An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor

    NASA Astrophysics Data System (ADS)

    Buchholtz, Brett W.; Wilbur, Paul J.

    1993-07-01

    An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.

  15. An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett W.; Wilbur, Paul J.

    1993-01-01

    An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.

  16. Method and apparatus for using magneto-acoustic remanence to determine embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Namkung, Min (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1992-01-01

    A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component are presented. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets and then by turning the magnets off and observing the residual magnetic induction.

  17. Arrays of Bundles of Carbon Nanotubes as Field Emitters

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bronkowski, Michael

    2007-01-01

    Experiments have shown that with suitable choices of critical dimensions, planar arrays of bundles of carbon nanotubes (see figure) can serve as high-current-density field emitter (cold-cathode) electron sources. Whereas some hot-cathode electron sources must be operated at supply potentials of thousands of volts, these cold-cathode sources generate comparable current densities when operated at tens of volts. Consequently, arrays of bundles of carbon nanotubes might prove useful as cold-cathode sources in miniature, lightweight electron-beam devices (e.g., nanoklystrons) soon to be developed. Prior to the experiments, all reported efforts to develop carbon-nanotube-based field-emission sources had yielded low current densities from a few hundred microamperes to a few hundred milliamperes per square centimeter. An electrostatic screening effect, in which taller nanotubes screen the shorter ones from participating in field emission, was conjectured to be what restricts the emission of electrons to such low levels. It was further conjectured that the screening effect could be reduced and thus emission levels increased by increasing the spacing between nanotubes to at least by a factor of one to two times the height of the nanotubes. While this change might increase the emission from individual nanotubes, it would decrease the number of nanotubes per unit area and thereby reduce the total possible emission current. Therefore, to maximize the area-averaged current density, it would be necessary to find an optimum combination of nanotube spacing and nanotube height. The present concept of using an array of bundles of nanotubes arises partly from the concept of optimizing the spacing and height of field emitters. It also arises partly from the idea that single nanotubes may have short lifetimes as field emitters, whereas bundles of nanotubes could afford redundancy so that the loss of a single nanotube would not significantly reduce the overall field emission.

  18. Characterization of Emissions from Open Burning of Meals ...

    EPA Pesticide Factsheets

    Emissions from burning current and candidate Meals Ready-to-Eat (MRE) packaging and shipping containers were characterized in an effort to assuage concerns that combustive disposal of waste at forward operating bases could pose an environmental or inhalation threat. Four types of container materials, both box and liners, including the currently used fiberboard, new corrugated fiberboard with Spektrakote polymer, new fiberboard without Spektrakote polymer, and the current fiberboard without wet strength were burned in an open burn test facility that simulated the burn pit disposal methods in Iraq and Afghanistan. MREs, including both current and proposed packaging materials, were added to a single container type to examine their effect on emissions. One quarter of the food was left in the packaging to represent unused meal components. The proposed packaging, consisting of a nano-composite polymer, was added in 25 % increments compared to traditional MRE packaging to create a range of usage levels. Emission factors, mass of pollutant per mass of burned material, were increased over the emission factors of the package containers themselves by the addition of the multi-component MREs, with the exception of Volatile Organic Compounds (VOCs). In general, little distinction was observed when comparing emission factors from the four container materials and when comparing the four MRE compositions. The majority of Particulate Matter (PM) emissions were of particles that

  19. Hybrid Gama Emission Tomography (HGET): FY16 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Smith, Leon E.; Wittman, Richard S.

    2017-02-01

    Current International Atomic Energy Agency (IAEA) methodologies for the verification of fresh low-enriched uranium (LEU) and mixed oxide (MOX) fuel assemblies are volume-averaging methods that lack sensitivity to individual pins. Further, as fresh fuel assemblies become more and more complex (e.g., heavy gadolinium loading, high degrees of axial and radial variation in fissile concentration), the accuracy of current IAEA instruments degrades and measurement time increases. Particularly in light of the fact that no special tooling is required to remove individual pins from modern fuel assemblies, the IAEA needs new capabilities for the verification of unirradiated (i.e., fresh LEU and MOX)more » assemblies to ensure that fissile material has not been diverted. Passive gamma emission tomography has demonstrated potential to provide pin-level verification of spent fuel, but gamma-ray emission rates from unirradiated fuel emissions are significantly lower, precluding purely passive tomography methods. The work presented here introduces the concept of Hybrid Gamma Emission Tomography (HGET) for verification of unirradiated fuels, in which a neutron source is used to actively interrogate the fuel assembly and the resulting gamma-ray emissions are imaged using tomographic methods to provide pin-level verification of fissile material concentration.« less

  20. Anthropogenic SO{sub 2}/NO{sub x} committee--current status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benkovitz, C.M.

    1993-04-01

    Current activities of the Anthropogenic SO{sub 2}/NO{sub x} Committee center around the compilation of Version 1 of the GEIA inventories. These inventories will be based on the GEIA-specified 1{degrees} by 1{degrees} grid (lower left corner at 180{degrees}W/90{degrees}S, west to east and south to north), reflect 1985 emissions and consist of two data sets: Version 1A inventories with annual emissions at one level and Version 1B inventories with seasonal emissions, two vertical levels (defined at 100 m) and sectoral split information. The basic information used for both versions of the GEIA inventories will be identical; i.e., emissions totals across both inventoriesmore » will be the same. Work is being carried out in two complementary working groups; Carmen Benkovitz, Brookhaven National Laboratory, Upton, NY, USA heads the work on the annual inventory, Eva Voldner, Atmospheric Environment Services, Canada and Trevor Scholtz, ORTECH International, Canada, head the work on the seasonal inventory.« less

  1. Terahertz light-emitting graphene-channel transistor toward single-mode lasing

    NASA Astrophysics Data System (ADS)

    Yadav, Deepika; Tamamushi, Gen; Watanabe, Takayuki; Mitsushio, Junki; Tobah, Youssef; Sugawara, Kenta; Dubinov, Alexander A.; Satou, Akira; Ryzhii, Maxim; Ryzhii, Victor; Otsuji, Taiichi

    2018-03-01

    A distributed feedback dual-gate graphene-channel field-effect transistor (DFB-DG-GFET) was fabricated as a current-injection terahertz (THz) light-emitting laser transistor. We observed a broadband emission in a 1-7.6-THz range with a maximum radiation power of 10 μW as well as a single-mode emission at 5.2 THz with a radiation power of 0.1 μW both at 100 K when the carrier injection stays between the lower cutoff and upper cutoff threshold levels. The device also exhibited peculiar nonlinear threshold-like behavior with respect to the current-injection level. The LED-like broadband emission is interpreted as an amplified spontaneous THz emission being transcended to a single-mode lasing. Design constraints on waveguide structures for better THz photon field confinement with higher gain overlapping as well as DFB cavity structures with higher Q factors are also addressed towards intense, single-mode continuous wave THz lasing at room temperature.

  2. Understanding workers' exposure: Systematic review and data-analysis of emission potential for NOAA.

    PubMed

    Kuijpers, E; Bekker, C; Brouwer, D; le Feber, M; Fransman, W

    2017-05-01

    Exposure assessment for nano-objects, and their aggregates and agglomerates (NOAA), has evolved from explorative research toward more comprehensive exposure assessment, providing data to further develop currently used conservative control banding (CB) tools for risk assessment. This study aims to provide an overview of current knowledge on emission potential of NOAA across the occupational life cycle stages by a systematic review and subsequently use the results in a data analysis. Relevant parameters that influence emission were collected from peer-reviewed literature with a focus on the four source domains (SD) in the source-receptor conceptual framework for NOAA. To make the reviewed exposure data comparable, we applied an approach to normalize for workplace circumstances and measurement location, resulting in comparable "surrogate" emission levels. Finally, descriptive statistics were performed. During the synthesis of nanoparticles (SD1), mechanical reduction and gas phase synthesis resulted in the highest emission compared to wet chemistry and chemical vapor condensation. For the handling and transfer of bulk manufactured nanomaterial powders (SD2) the emission could be differentiated for five activity classes: (1) harvesting; (2) dumping; (3); mixing; (4) cleaning of a reactor; and (5) transferring. Additionally, SD2 was subdivided by the handled amount with cleaning further subdivided by energy level. Harvesting and dumping resulted in the highest emissions. Regarding processes with liquids (SD3b), it was possible to distinguish emissions for spraying (propellant gas, (high) pressure and pump), sonication and brushing/rolling. The highest emissions observed in SD3b were for propellant gas spraying and pressure spraying. The highest emissions for the handling of nano-articles (SD4) were found to nano-sized particles (including NOAA) for grinding. This study provides a valuable overview of emission assessments performed in the workplace during the occupational handling of NOAA. Analyses were made per source domain to derive emission levels which can be used for models to quantitatively predict the exposure.

  3. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Lei, W.; Molina, M. J.; Molina, L. T.

    2009-01-01

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx) suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio. This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM) and the standard Brute Force Method (BFM) in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with NOx emission reductions and decrease linearly with VOC emission reductions only up to 30% from the base case. We further performed emissions perturbations from the gasoline fleet, diesel fleet, all mobile (gasoline plus diesel) and all emission sources (anthropogenic plus biogenic). The results suggest that although large ozone reductions obtained in the past were from changes in emissions from gasoline vehicles, currently significant benefits could be achieved with additional emission control policies directed to regulation of VOC emissions from diesel and area sources that are high emitters of alkenes, aromatics and aldehydes.

  4. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Lei, W. F.; Molina, M. J.; Molina, L. T.

    2008-08-01

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx) suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio. This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM) and the standard Brute Force Method (BFM) in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with NOx emission reductions and decrease linearly with VOC emission reductions only up to 30% from the base case. We further performed emissions perturbations from the gasoline fleet, diesel fleet, all mobile (gasoline plus diesel) and all emission sources (anthropogenic plus biogenic). The results suggest that although large ozone reductions obtained in the past were from changes in emissions from gasoline vehicles, currently significant benefits could be achieved with additional emission control policies directed to regulation of VOC emissions from diesel and area sources that are high emitters of alkenes, aromatics and aldehydes.

  5. Experimental clean combustor program, phase 1. [aircraft exhaust/gas analysis - gas turbine engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Peduzzi, A.; Vitti, G. E.

    1975-01-01

    A program of screening three low emission combustors for conventional takeoff and landing, by testing and analyzing thirty-two configurations is presented. Configurations were tested that met the emission goals at idle operating conditions for carbon monoxide and for unburned hydrocarbons (emission index values of 20 and 4, respectively). Configurations were also tested that met a smoke number goal of 15 at sea-level take-off conditions. None of the configurations met the goal for oxides of nitrogen emissions at sea-level take-off conditions. The best configurations demonstrated oxide of nitrogen emission levels that were approximately 61 percent lower than those produced by the JT9D-7 engine, but these levels were still approximately 24 percent above the goal of an emission index level of 10. Additional combustor performance characteristics, including lean blowout, exit temperature pattern factor and radial profile, pressure loss, altitude stability, and altitude relight characteristics were documented. The results indicate the need for significant improvement in the altitude stability and relight characteristics. In addition to the basic program for current aircraft engine combustors, seventeen combustor configurations were evaluated for advanced supersonic technology applications. The configurations were tested at cruise conditions, and a conceptual design was evolved.

  6. New methodology for estimating biofuel consumption for cooking: Atmospheric emissions of black carbon and sulfur dioxide from India

    NASA Astrophysics Data System (ADS)

    Habib, Gazala; Venkataraman, Chandra; Shrivastava, Manish; Banerjee, Rangan; Stehr, J. W.; Dickerson, Russell R.

    2004-09-01

    The dominance of biofuel combustion emissions in the Indian region, and the inherently large uncertainty in biofuel use estimates based on cooking energy surveys, prompted the current work, which develops a new methodology for estimating biofuel consumption for cooking. This is based on food consumption statistics, and the specific energy for food cooking. Estimated biofuel consumption in India was 379 (247-584) Tg yr-1. New information on the user population of different biofuels was compiled at a state level, to derive the biofuel mix, which varied regionally and was 74:16:10%, respectively, of fuelwood, dung cake and crop waste, at a national level. Importantly, the uncertainty in biofuel use from quantitative error assessment using the new methodology is around 50%, giving a narrower bound than in previous works. From this new activity data and currently used black carbon emission factors, the black carbon (BC) emissions from biofuel combustion were estimated as 220 (65-760) Gg yr-1. The largest BC emissions were from fuelwood (75%), with lower contributions from dung cake (16%) and crop waste (9%). The uncertainty of 245% in the BC emissions estimate is now governed by the large spread in BC emission factors from biofuel combustion (122%), implying the need for reducing this uncertainty through measurements. Emission factors of SO2 from combustion of biofuels widely used in India were measured, and ranged 0.03-0.08 g kg-1 from combustion of two wood species, 0.05-0.20 g kg-1 from 10 crop waste types, and 0.88 g kg-1 from dung cake, significantly lower than currently used emission factors for wood and crop waste. Estimated SO2 emissions from biofuels of 75 (36-160) Gg yr-1 were about a factor of 3 lower than that in recent studies, with a large contribution from dung cake (73%), followed by fuelwood (21%) and crop waste (6%).

  7. The effect of lactation length on greenhouse gas emissions from the national dairy herd.

    PubMed

    Wall, E; Coffey, M P; Pollott, G E

    2012-11-01

    Many governments have signed up to greenhouse gas emission (GHGE) reduction programmes under their national climate change obligations. Recently, it has been suggested that the use of extended lactations in dairy herds could result in reduced GHGE. Dairy GHGE were modelled on a national basis and the model was used to compare emissions from lactations of three different lengths (305, 370 and 440 days), and a current 'base' scenario on the basis of maintaining current milk production levels. In addition to comparing GHGE from the average 'National Herd' under these scenarios, results were used to investigate how accounting for lactations of different lengths might alter the estimation of emissions calculated from the National Inventory methodology currently recommended by Intergovernmental Panel on Climate Change. Data for the three lactation length scenarios were derived from nationally recorded dairy performance information and used in the GHGE model. Long lactations required fewer milking cows and replacements to maintain current milk yield levels than short ones, but GHGEs were found to rise from 1214 t of CO2 equivalent (CE)/farm per year for lactations of 305 days to 1371 t CE/farm per year for 440-day lactations. This apparent anomaly can be explained by the less efficient milk production (kg milk produced per kg cow weight) found in later lactation, a more pronounced effect in longer lactations. The sensitivity of the model to changes in replacement rate, persistency and level of milk yield was investigated. Changes in the replacement rate from 25% to 20% and in persistency by −10% to +20% resulted in very small changes in GHGE. Differences in GHGE due to the level of milk yield were much more dramatic with animals in the top 10% for yield, producing about 25% less GHGE/year than the average animal. National Inventory results were investigated using a more realistic spread of lactation lengths than recommended for such calculations using emissions calculated in the first part of the study. Current UK emission calculations based on the National Inventory were 329 Gg of methane per year from the dairy herd. Using the national distribution of lactation lengths, this was found to be an underestimate by about 10%. This work showed that the current rise in lactation length or a move towards calving every 18 months would increase GHGE by 7% to 14% compared with the current scenario, assuming the same milk yield in all models. Increased milk yield would have a much greater effect on reducing GHGE than changes to lactation length, replacement rate or persistency. National Inventory methodology appears to underestimate GHGE when the distribution of lactation lengths is considered and may need revising to provide more realistic figures.

  8. 40 CFR 63.9590 - What emission limitations must I meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) For each dry electrostatic precipitator applied to meet any particulate matter emission limit in Table... voltage and daily average secondary current for each field at or above the minimum levels established during the initial performance test. (4) For each wet electrostatic precipitator applied to meet any...

  9. 40 CFR 63.9590 - What emission limitations must I meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) For each dry electrostatic precipitator applied to meet any particulate matter emission limit in Table... voltage and daily average secondary current for each field at or above the minimum levels established during the initial performance test. (4) For each wet electrostatic precipitator applied to meet any...

  10. Making High Accuracy Null Depth Measurements for the LBTI Exozodi Survey

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Defrere, Denis; Nowak, Matthias; Hinz, Philip; Millan-Gabet, Rafael; Absil, Oliver; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William C.; Kennedy, Grant M.; hide

    2016-01-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of 12 zodis per star, for a representative ensemble of 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  11. Making High Accuracy Null Depth Measurements for the LBTI ExoZodi Survey

    NASA Technical Reports Server (NTRS)

    Mennesson, Bertrand; Defrere, Denis; Nowak, Matthew; Hinz, Philip; Millan-Gabet, Rafael; Absil, Olivier; Bailey, Vanessa; Bryden, Geoffrey; Danchi, William; Kennedy, Grant M.; hide

    2016-01-01

    The characterization of exozodiacal light emission is both important for the understanding of planetary systems evolution and for the preparation of future space missions aiming to characterize low mass planets in the habitable zone of nearby main sequence stars. The Large Binocular Telescope Interferometer (LBTI) exozodi survey aims at providing a ten-fold improvement over current state of the art, measuring dust emission levels down to a typical accuracy of approximately 12 zodis per star, for a representative ensemble of approximately 30+ high priority targets. Such measurements promise to yield a final accuracy of about 2 zodis on the median exozodi level of the targets sample. Reaching a 1 sigma measurement uncertainty of 12 zodis per star corresponds to measuring interferometric cancellation (null) levels, i.e visibilities at the few 100 ppm uncertainty level. We discuss here the challenges posed by making such high accuracy mid-infrared visibility measurements from the ground and present the methodology we developed for achieving current best levels of 500 ppm or so. We also discuss current limitations and plans for enhanced exozodi observations over the next few years at LBTI.

  12. Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System

    NASA Astrophysics Data System (ADS)

    Louksha, O. I.; Trofimov, P. A.

    2018-04-01

    New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.

  13. Naphthalene emissions from moth repellents or toilet deodorant blocks determined using head-space and small-chamber tests.

    PubMed

    Jo, Wan-Kuen; Lee, Jong-Hyo; Lim, Ho-Jin; Jeong, Woo-Sik

    2008-01-01

    The present study investigated the emissions of naphthalene and other compounds from several different moth repellents (MRs) and one toilet deodorant block (TDB) currently sold in Korea, using a headspace analysis. The emission factors and emission rates of naphthalene were studied using a small-scale environmental chamber. Paper-type products emitted a higher concentration of the total volatile organic compounds (VOCs) (normalized to the weight of test piece) than ball-type products, which in turn emitted higher concentration than a gel-type product. In contrast, naphthalene was either the most or the second highest abundant compound for the four ball products, whereas for paper and gel products it was not detected or was detected at much lower levels. The abundance of naphthalene ranged between 18.4% and 37.3% for ball products. The results showed that the lower the air changes per hour (ACH) level was, the higher the naphthalene concentrations became. In general, a low ACH level suggests a low ventilation rate. The emission factor for naphthalene was nearly 100 times higher for a ball MR than for a gel or a paper MR. For the ball MR, the lower ACH level resulted in higher emission rate.

  14. The effects of deterioration and technological levels on pollutant emission factors for gasoline light-duty trucks.

    PubMed

    Zhang, Qingyu; Fan, Juwang; Yang, Weidong; Chen, Bixin; Zhang, Lijuan; Liu, Jiaoyu; Wang, Jingling; Zhou, Chunyao; Chen, Xuan

    2017-07-01

    Vehicle deterioration and technological change influence emission factors (EFs). In this study, the impacts of vehicle deterioration and emission standards on EFs of regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], and nitrogen oxides [NO x ]) for gasoline light-duty trucks (LDTs) were investigated according to the inspection and maintenance (I/M) data using a chassis dynamometer method. Pollutant EFs for LDTs markedly varied with accumulated mileages and emission standards, and the trends of EFs are associated with accumulated mileages. In addition, the study also found that in most cases, the median EFs of CO, HC, and NO x are higher than those of basic EFs in the International Vehicle Emissions (IVE) model; therefore, the present study provides correction factors for the IVE model relative to the corresponding emission standards and mileages. Currently, vehicle emissions are great contributors to air pollution in cities, especially in developing countries. Emission factors play a key role in creating emission inventory and estimating emissions. Deterioration represented by vehicle age and accumulated mileage and changes of emission standards markedly influence emission factors. In addition, the results provide collection factors for implication in the IVE model in the region levels.

  15. The 800 Pound Gorilla: The Threat and Taming of Global Climate Change

    ERIC Educational Resources Information Center

    Hansen, Jim

    2008-01-01

    This article provides two case studies that examine the current and future consequences of continued global warming at the current business-as-usual pace and at a decreased (new alternative forms of energy) level. Cause and effect relationships, such as the varying levels of CO[subscript 2] (carbon dioxide) emissions and the effect it has on…

  16. Evaluating the Environmental Impacts of a Nano-Enhanced Field Emission Display Using Life Cycle Assessment: A Screening-Level Study

    EPA Science Inventory

    Carbon nanotube (CNT) field emission displays (FEDs) are currently in the product development stage and are expected to be commercialized in the near future because they offer image quality and viewing angles comparable to a cathode ray tube (CRT) while using a thinner structure,...

  17. Comparison of AERMOD and WindTrax dispersion models in determining PM10 emission rates from beef cattle feedlots

    USDA-ARS?s Scientific Manuscript database

    Reverse dispersion modeling has been used to determine air emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research compared AERMOD, a Gaussian-based and currently the U.S. Environmental Protection Agency (EPA) preferred regulatory dispersion model, and ...

  18. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  19. Transport impacts on atmosphere and climate: Shipping

    NASA Astrophysics Data System (ADS)

    Eyring, Veronika; Isaksen, Ivar S. A.; Berntsen, Terje; Collins, William J.; Corbett, James J.; Endresen, Oyvind; Grainger, Roy G.; Moldanova, Jana; Schlager, Hans; Stevenson, David S.

    2010-12-01

    Emissions of exhaust gases and particles from oceangoing ships are a significant and growing contributor to the total emissions from the transportation sector. We present an assessment of the contribution of gaseous and particulate emissions from oceangoing shipping to anthropogenic emissions and air quality. We also assess the degradation in human health and climate change created by these emissions. Regulating ship emissions requires comprehensive knowledge of current fuel consumption and emissions, understanding of their impact on atmospheric composition and climate, and projections of potential future evolutions and mitigation options. Nearly 70% of ship emissions occur within 400 km of coastlines, causing air quality problems through the formation of ground-level ozone, sulphur emissions and particulate matter in coastal areas and harbours with heavy traffic. Furthermore, ozone and aerosol precursor emissions as well as their derivative species from ships may be transported in the atmosphere over several hundreds of kilometres, and thus contribute to air quality problems further inland, even though they are emitted at sea. In addition, ship emissions impact climate. Recent studies indicate that the cooling due to altered clouds far outweighs the warming effects from greenhouse gases such as carbon dioxide (CO 2) or ozone from shipping, overall causing a negative present-day radiative forcing (RF). Current efforts to reduce sulphur and other pollutants from shipping may modify this. However, given the short residence time of sulphate compared to CO 2, the climate response from sulphate is of the order decades while that of CO 2 is centuries. The climatic trade-off between positive and negative radiative forcing is still a topic of scientific research, but from what is currently known, a simple cancellation of global mean forcing components is potentially inappropriate and a more comprehensive assessment metric is required. The CO 2 equivalent emissions using the global temperature change potential (GTP) metric indicate that after 50 years the net global mean effect of current emissions is close to zero through cancellation of warming by CO 2 and cooling by sulphate and nitrogen oxides.

  20. Measurement of Apparent Temperature in Post-Detonation Fireballs Using Atomic Emission Spectroscopy

    DTIC Science & Technology

    2011-02-01

    thermometric species into burners.3,12 Interestingly, Wilkin- son et al.6 have recently observed Al atomic emission lines in the spectrum of aluminum...candidate thermometric species must produce several strong emission lines in the spectrum that originate from different upper energy levels in order to...allow the populations of the associated states to be determined. Barium nitrate was chosen as a thermometric impurity for the current work since Ba

  1. Alternative industrial carbon emissions benchmark based on input-output analysis

    NASA Astrophysics Data System (ADS)

    Han, Mengyao; Ji, Xi

    2016-12-01

    Some problems exist in the current carbon emissions benchmark setting systems. The primary consideration for industrial carbon emissions standards highly relate to direct carbon emissions (power-related emissions) and only a portion of indirect emissions are considered in the current carbon emissions accounting processes. This practice is insufficient and may cause double counting to some extent due to mixed emission sources. To better integrate and quantify direct and indirect carbon emissions, an embodied industrial carbon emissions benchmark setting method is proposed to guide the establishment of carbon emissions benchmarks based on input-output analysis. This method attempts to link direct carbon emissions with inter-industrial economic exchanges and systematically quantifies carbon emissions embodied in total product delivery chains. The purpose of this study is to design a practical new set of embodied intensity-based benchmarks for both direct and indirect carbon emissions. Beijing, at the first level of carbon emissions trading pilot schemes in China, plays a significant role in the establishment of these schemes and is chosen as an example in this study. The newly proposed method tends to relate emissions directly to each responsibility in a practical way through the measurement of complex production and supply chains and reduce carbon emissions from their original sources. This method is expected to be developed under uncertain internal and external contexts and is further expected to be generalized to guide the establishment of industrial benchmarks for carbon emissions trading schemes in China and other countries.

  2. Enhancement of electrically evoked oto-acoustic emissions associated with low-frequency stimulus bias of the basilar membrane towards scala vestibuli.

    PubMed

    Kirk, D L; Yates, G K

    1998-09-01

    Electrically evoked oto-acoustic emissions (EEOAEs) are sounds present in the ear canal when ac current is passed into the cochlea. EEOAEs are attributed to the activation of fast electromotile responses in outer hair cells (OHCs). An interesting property of EEOAEs is the phenomenon of "acoustic enhancement," where the emission amplitude is increased by moderate-level sound [D. C. Mountain and A. E. Hubbard, Hear. Res. 42, 195-202 (1989)]. In this report a form of enhancement is described which occurs with displacements of the basilar membrane toward scala vestibuli, during amplitude modulation of the EEOAE waveform by low-frequency tones. This "SV-bias enhancement" possibly consists of two components: (i) a low-level component induced by sound at levels which produce nonlinear growth of the cochlear microphonic and which may be equivalent to the "acoustic enhancement" described previously, and (ii) a high-level component which occurs at sound levels well above those which cause saturation of the cochlear microphonic. The low-level component could be explained by either an increased access of the extrinsically applied current to a membrane-based source of OHC motility, perhaps coupled with a reduction in negative feedback, or an increase in electromotile output during scala vestibuli displacements, but the origin of the high-level component is obscure.

  3. Interaction between isoprene and ozone fluxes at ecosystem level in a poplar plantation and its impact at European level

    NASA Astrophysics Data System (ADS)

    Zenone, T.; Hendriks, C.; Brilli, F.; Gioli, B.; Portillo Estrada, M.; Schaap, M.; Ceulemans, R.

    2015-12-01

    The emissions of Biogenic volatile organic compounds (BVOCs) from vegetation, mainly in form of isoprenoids, play an important role in the tropospheric ozone (O3) formation. The potential large expansion of isoprene emitter species (e.g. poplar) as biofuels feedstock might impact the ground level O3 formation. Here we report the simultaneous observations, using the eddy covariance (EC) technique, of isoprene, O3 and CO2 fluxes in a short rotation coppice (SRC) of poplar. The impact of current poplar plantations and associated isoprene emissions on ground level ozone concentrations for Europe was evaluated using a chemistry transport model (CTM) LOTOS-EUROS. The isoprene fluxes showed a well-defined seasonal and daily cycle that mirrored with the stomata O3 uptake. The isoprene emission and the stomata O3 uptake showed significant statistical relationship especially at elevated temperature. Isoprene was characterized by a remarkable peak of emissions (e.g. 38 nmol m-2s-1) occurring for few days as a consequence of the rapid variation of the air and surface temperature. During these days the photosynthetic apparatus (i.e. the CO2 fluxes) and transpiration rates did not show significant variation while we did observe a variation of the energy exchange and a reduction of the bowen ratio. The response of isoprene emissions to ambient O3 concentration follows the common form of the hormetic dose-response curve with a considerable reduction of the isoprene emissions at [O3] > 80 ppbv indicating a potential damping effect of the O3 levels on isoprene. Under the current condition the impact of SRC plantations on ozone concentrations / formation is very limited in Europe. Our findings indicate that, even with future scenarios with more SRC, or conventional poplar plantations, the impact on Ozone formation is negligible.

  4. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  5. Analytical screening of low emissions, high performance duct burners for supersonic cruise aircraft engines

    NASA Technical Reports Server (NTRS)

    Lohmann, R. A.; Riecke, G. T.

    1977-01-01

    An analytical screening study was conducted to identify duct burner concepts capable of providing low emissions and high performance in advanced supersonic engines. Duct burner configurations ranging from current augmenter technology to advanced concepts such as premix-prevaporized burners were defined. Aerothermal and mechanical design studies provided the basis for screening these configurations using the criteria of emissions, performance, engine compatibility, cost, weight and relative risk. Technology levels derived from recently defined experimental low emissions main burners are required to achieve both low emissions and high performance goals. A configuration based on the Vorbix (Vortex burning and mixing) combustor concept was analytically determined to meet the performance goals and is consistent with the fan duct envelope of a variable cycle engine. The duct burner configuration has a moderate risk level compatible with the schedule of anticipated experimental programs.

  6. Bird specimens track 135 years of atmospheric black carbon and environmental policy

    NASA Astrophysics Data System (ADS)

    DuBay, Shane G.; Fuldner, Carl C.

    2017-10-01

    Atmospheric black carbon has long been recognized as a public health and environmental concern. More recently, black carbon has been identified as a major, ongoing contributor to anthropogenic climate change, thus making historical emission inventories of black carbon an essential tool for assessing past climate sensitivity and modeling future climate scenarios. Current estimates of black carbon emissions for the early industrial era have high uncertainty, however, because direct environmental sampling is sparse before the mid-1950s. Using photometric reflectance data of >1,300 bird specimens drawn from natural history collections, we track relative ambient concentrations of atmospheric black carbon between 1880 and 2015 within the US Manufacturing Belt, a region historically reliant on coal and dense with industry. Our data show that black carbon levels within the region peaked during the first decade of the 20th century. Following this peak, black carbon levels were positively correlated with coal consumption through midcentury, after which they decoupled, with black carbon concentrations declining as consumption continued to rise. The precipitous drop in atmospheric black carbon at midcentury reflects policies promoting burning efficiency and fuel transitions rather than regulating emissions alone. Our findings suggest that current emission inventories based on predictive modeling underestimate levels of atmospheric black carbon for the early industrial era, suggesting that the contribution of black carbon to past climate forcing may also be underestimated. These findings build toward a spatially dynamic emission inventory of black carbon based on direct environmental sampling.

  7. Evaluation of a Novel Approach for Reducing Emissions of Pharmaceuticals to the Environment

    NASA Astrophysics Data System (ADS)

    Bean, Thomas G.; Bergstrom, Ed; Thomas-Oates, Jane; Wolff, Amy; Bartl, Peter; Eaton, Bob; Boxall, Alistair B. A.

    2016-10-01

    Increased interest over the levels of pharmaceuticals detected in the environment has led to the need for new approaches to manage their emissions. Inappropriate disposal of unused and waste medicines and release from manufacturing plants are believed to be important pathways for pharmaceuticals entering the environment. In situ treatment technologies, which can be used on-site in pharmacies, hospitals, clinics, and at manufacturing plants, might provide a solution. In this study we explored the use of Pyropure, a microscale combined pyrolysis and gasification in situ treatment system for destroying pharmaceutical wastes. This involved selecting 17 pharmaceuticals, including 14 of the most thermally stable compounds currently in use and three of high environmental concern to determine the technology's success in waste destruction. Treatment simulation studies were done on three different waste types and liquid, solid, and gaseous emissions from the process were analyzed for parent pharmaceutical and known active transformation products. Gaseous emissions were also analyzed for NOx, particulates, dioxins, furans, and metals. Results suggest that Pyropure is an effective treatment process for pharmaceutical wastes: over 99 % of each study pharmaceutical was destroyed by the system without known active transformation products being formed during the treatment process. Emissions of the other gaseous air pollutants were within acceptable levels. Future uptake of the system, or similar in situ treatment approaches, by clinics, pharmacists, and manufacturers could help to reduce the levels of pharmaceuticals in the environment and reduce the economic and environmental costs of current waste management practices.

  8. Bird specimens track 135 years of atmospheric black carbon and environmental policy

    PubMed Central

    DuBay, Shane G.; Fuldner, Carl C.

    2017-01-01

    Atmospheric black carbon has long been recognized as a public health and environmental concern. More recently, black carbon has been identified as a major, ongoing contributor to anthropogenic climate change, thus making historical emission inventories of black carbon an essential tool for assessing past climate sensitivity and modeling future climate scenarios. Current estimates of black carbon emissions for the early industrial era have high uncertainty, however, because direct environmental sampling is sparse before the mid-1950s. Using photometric reflectance data of >1,300 bird specimens drawn from natural history collections, we track relative ambient concentrations of atmospheric black carbon between 1880 and 2015 within the US Manufacturing Belt, a region historically reliant on coal and dense with industry. Our data show that black carbon levels within the region peaked during the first decade of the 20th century. Following this peak, black carbon levels were positively correlated with coal consumption through midcentury, after which they decoupled, with black carbon concentrations declining as consumption continued to rise. The precipitous drop in atmospheric black carbon at midcentury reflects policies promoting burning efficiency and fuel transitions rather than regulating emissions alone. Our findings suggest that current emission inventories based on predictive modeling underestimate levels of atmospheric black carbon for the early industrial era, suggesting that the contribution of black carbon to past climate forcing may also be underestimated. These findings build toward a spatially dynamic emission inventory of black carbon based on direct environmental sampling. PMID:29073051

  9. An Overview of Low-Emission Combustion Research

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the Nitrogen Oxides (NOx) emission reduction in aircraft propulsion will be presented. The technology advancements and their impact on aircraft emissions will be discussed in the context of NASAs Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented will show how the past and current efforts have laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  10. An Overview of Low-Emission Combustion Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Reddy, Dhanireddy R.; Lee, Chi-Ming

    2016-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  11. Overview of Low Emission Combustion Research At NASA Glenn

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    2016-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  12. Electric emissions from electrical appliances.

    PubMed

    Leitgeb, N; Cech, R; Schröttner, J

    2008-01-01

    Electric emissions from electric appliances are frequently considered negligible, and standards consider electric appliances to comply without testing. By investigating 122 household devices of 63 different categories, it could be shown that emitted electric field levels do not justify general disregard. Electric reference values can be exceeded up to 11-fold. By numerical dosimetry with homogeneous human models, induced intracorporal electric current densities were determined and factors calculated to elevate reference levels to accounting for reduced induction efficiency of inhomogeneous fields. These factors were found not high enough to allow generally concluding on compliance with basic restrictions without testing. Electric appliances usually simultaneously emit both electric and magnetic fields exposing almost the same body region. Since the sum of induced current densities is limited, one field component reduces the available margin for the other. Therefore, superposition of electric current densities induced by either field would merit consideration.

  13. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2012-08-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. Here we have analyzed how emissions from several biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary fire emissions and the TM5 chemical transport model, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g. fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture matching current levels despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; we show that the majority of savannas have not burned in the past 10 yr, even in Africa which is considered "the burning continent". Our new modelling results, together with existing literature, indicate that no definitive conclusions can be drawn about unprecedentedly high or low biomass burning rates from current data analyses.

  14. Vacuum Microelectronic Field Emission Array Devices for Microwave Amplification.

    NASA Astrophysics Data System (ADS)

    Mancusi, Joseph Edward

    This dissertation presents the design, analysis, and measurement of vacuum microelectronic devices which use field emission to extract an electron current from arrays of silicon cones. The arrays of regularly-spaced silicon cones, the field emission cathodes or emitters, are fabricated with an integrated gate electrode which controls the electric field at the tip of the cone, and thus the electron current. An anode or collector electrode is placed above the array to collect the emission current. These arrays, which are fabricated in a standard silicon processing facility, are developed for use as high power microwave amplifiers. Field emission has been studied extensively since it was first characterized in 1928, however due to the large electric fields required practical field emission devices are difficult to make. With the development of the semiconductor industry came the development of fabrication equipment and techniques which allow for the manufacture of the precision micron-scale structures necessary for practical field emission devices. The active region of a field emission device is a vacuum, therefore the electron travel is ballistic. This analysis of field emission devices includes electric field and electron emission modeling, development of a device equivalent circuit, analysis of the parameters in the equivalent circuit, and device testing. Variations in device structure are taken into account using a statistical model based upon device measurements. Measurements of silicon field emitter arrays at DC and RF are presented and analyzed. In this dissertation, the equivalent circuit is developed from the analysis of the device structure. The circuit parameters are calculated from geometrical considerations and material properties, or are determined from device measurements. It is necessary to include the emitter resistance in the equivalent circuit model since relatively high resistivity silicon wafers are used. As is demonstrated, the circuit model accurately predicts the magnitude of the emission current at a number of typical bias current levels when the device is operating at frequencies within the range of 10 MHz to 1 GHz. At low frequencies and at high frequencies within this range, certain parameters are negligible, and simplifications may be made in the equivalent circuit model.

  15. Environmental implication of electric vehicles in China.

    PubMed

    Huo, Hong; Zhang, Qiang; Wang, Michael Q; Streets, David G; He, Kebin

    2010-07-01

    Today, electric vehicles (EVs) are being proposed in China as one of the potential options to address the dramatically increasing energy demand from on-road transport. However, the mass use of EVs could involve multiple environmental issues, because EVs use electricity that is generated primarily from coal in China. We examined the fuel-cycle CO(2), SO(2), and NO(x) emissions of EVs in China in both current (2008) and future (2030) periods and compared them with those of conventional gasoline vehicles and gasoline hybrids. EVs do not promise much benefit in reducing CO(2) emissions currently, but greater CO(2) reduction could be expected in future if coal combustion technologies improve and the share of nonfossil electricity increases significantly. EVs could increase SO(2) emissions by 3-10 times and also double NO(x) emissions compared to gasoline vehicles if charged using the current electricity grid. In the future, EVs would be able to reach the NO(x) emission level of gasoline vehicles with advanced emission control devices equipped in thermal power plants but still increase SO(2). EVs do represent an effective solution to issues in China such as oil shortage, but critical policy support is urgently needed to address the environmental issues caused by the use of EVs to make EVs competitive with other vehicle alternatives.

  16. Probing Emissions of Military Cargo Aircraft: Description of a Joint Field Measurement Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Mengdawn; Corporan, E.; DeWitt, M.

    2008-01-01

    Direct emissions of NOx, volatile organic compounds, and particulate matter (PM) by aircraft contribute to the pollutant levels found in the atmosphere. Aircraft emissions can be injected at the ground level or directly at the high altitude in flight. Conversion of the precursor gases into secondary PM is one of the pathways for the increased atmospheric PM. Atmospheric PM interacts with solar radiation altering atmospheric radiation balance and potentially contributing to global and regional climate changes. Also, direct emissions of air toxics, ozone precursors and PM from aircraft in and around civilian airports and military air bases can worsen localmore » air quality in non-attainment and/or maintenance areas. These emissions need to be quantified. However, the current EPA methods for particle emission measurements from such sources, modified Method 5 and Conditional Test Method 039, are gravimetric-based, and it is anticipated that these methods will not be suitable for current and future generations of aircraft turbine engines, whose particle mass emissions are low. To evaluate measurement approaches for military aircraft emissions, two complementary projects were initiated in 2005. A joint field campaign between these two programs was executed during the first week of October 2005 at the Kentucky Air National Guard (KYANG) base in Louisville, KY. This campaign represented the first in a series of field studies for each program funded by the DoD Strategic Environmental Research and Development Program (SERDP) and provided the basis for cross-comparison of the sampling approaches and measurement techniques employed by the respective program teams. This paper describes the overall programmatic of the multi-year SERDP aircraft emissions research and presents a summary of the results from the joint field campaign.« less

  17. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet

    PubMed Central

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-01-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources. PMID:26601273

  18. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  19. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    PubMed

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  20. Status of NASA aircraft engine emission reduction and upper atmosphere measurement programs

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Lezberg, E. A.

    1976-01-01

    Advanced emission reduction techniques for five existing aircraft gas turbine engines are evaluated. Progress made toward meeting the 1979 EPA standards in rig tests of combustors for the five engines is reported. Results of fundamental combustion studies suggest the possibility of a new generation of jet engine combustor technology that would reduce oxides-of-nitrogen (NOx) emissions far below levels currently demonstrated in the engine-related programs. The Global Air Sampling Program (GAS) is now in full operation and is providing data on constituent measurements of ozone and other minor upper-atmosphere species related to aircraft emissions.

  1. A system for monitoring the radiation effects of a proton linear accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorkin, V. M., E-mail: skorkin@inr.ru; Belyanski, K. L.; Skorkin, A. V.

    2016-12-15

    The system for real-time monitoring of radioactivity of a high-current proton linear accelerator detects secondary neutron emission from proton beam losses in transport channels and measures the activity of radionuclides in gas and aerosol emissions and the radiation background in the environment affected by a linear accelerator. The data provided by gamma, beta, and neutron detectors are transferred over a computer network to the central server. The system allows one to monitor proton beam losses, the activity of gas and aerosol emissions, and the radiation emission level of a linear accelerator in operation.

  2. Modeling Ozone in the Eastern U.S. using a Fuel-Based Mobile Source Emissions Inventory.

    PubMed

    McDonald, Brian C; McKeen, Stuart A; Cui, Yu Yan; Ahmadov, Ravan; Kim, Si-Wan; Frost, Gregory J; Pollack, Ilana B; Peischl, Jeff; Ryerson, Thomas B; Holloway, John S; Graus, Martin; Warneke, Carsten; Gilman, Jessica B; de Gouw, Joost A; Kaiser, Jennifer; Keutsch, Frank N; Hanisco, Thomas F; Wolfe, Glenn M; Trainer, Michael

    2018-06-22

    Recent studies suggest overestimates in current U.S. emission inventories of nitrogen oxides (NO x = NO + NO 2 ). Here, we expand a previously developed fuel-based inventory of motor-vehicle emissions (FIVE) to the continental U.S. for the year 2013, and evaluate our estimates of mobile source emissions with the U.S. Environmental Protection Agency's National Emissions Inventory (NEI) interpolated to 2013. We find that mobile source emissions of NO x and carbon monoxide (CO) in the NEI are higher than FIVE by 28% and 90%, respectively. Using a chemical transport model, we model mobile source emissions from FIVE, and find consistent levels of urban NO x and CO as measured during the Southeast Nexus (SENEX) Study in 2013. Lastly, we assess the sensitivity of ozone (O 3 ) over the Eastern U.S. to uncertainties in mobile source NO x emissions and biogenic volatile organic compound (VOC) emissions. The ground-level O 3 is sensitive to reductions in mobile source NO x emissions, most notably in the Southeastern U.S. and during O 3 exceedance events, under the revised standard proposed in 2015 (>70 ppb, 8 h maximum). This suggests that decreasing mobile source NO x emissions could help in meeting more stringent O 3 standards in the future.

  3. Forced-air warming design: evaluation of intake filtration, internal microbial buildup, and airborne-contamination emissions.

    PubMed

    Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C

    2013-08-01

    Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.

  4. Polluted rainwater runoff from waste recovery and recycling companies: Determination of emission levels associated with the best available techniques.

    PubMed

    Huybrechts, D; Verachtert, E; Vander Aa, S; Polders, C; Van den Abeele, L

    2016-08-01

    Rainwater falling on outdoor storage areas of waste recovery and recycling companies becomes polluted via contact with the stored materials. It contains various pollutants, including heavy metals, polycyclic aromatic hydrocarbons and polychlorinated biphenyls, and is characterized by a highly fluctuating composition and flow rate. This polluted rainwater runoff is legally considered as industrial wastewater, and the polluting substances contained in the rainwater runoff at the point of discharge, are considered as emissions into water. The permitting authorities can set emission limit values (discharge limits) at the point of discharge. Best available techniques are an important reference point for setting emission limit values. In this paper, the emission levels associated with the best available techniques for dealing with polluted rainwater runoff from waste recovery and recycling companies were determined. The determination is based on an analysis of emission data measured at different companies in Flanders. The data show that a significant fraction of the pollution in rainwater runoff is associated with particles. A comparison with literature data provides strong indications that not only leaching, but also atmospheric deposition play an important role in the contamination of rainwater at waste recovery and recycling companies. The prevention of pollution and removal of suspended solids from rainwater runoff to levels below 60mg/l are considered as best available techniques. The associated emission levels were determined by considering only emission data from plants applying wastewater treatment, and excluding all samples with suspended solid levels >60mg/l. The resulting BAT-AEL can be used as a reference point for setting emission limit values for polluted rainwater runoff from waste recovery and recycling companies. Since the BAT-AEL (e.g. 150μg/l for Cu) are significantly lower than current emission levels (e.g. 300μg/l as the 90% percentile and 4910μg/l as the maximum level for Cu), this will result in a significant reduction in emissions into water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The role of artificial atmospheric CO2 removal in stabilizing Earth's climate

    NASA Astrophysics Data System (ADS)

    Zickfeld, K.; Tokarska, K.

    2014-12-01

    The current CO2 emission trend entails a risk that the 2°C target will be missed, potentially causing "dangerous" changes in Earth's climate system. This research explores the role of artificial atmospheric CO2 removal (also referred to as "negative emissions") in stabilizing Earth's climate after overshoot. We designed a range of plausible CO2 emission scenarios, which follow a gradual transition from a fossil fuel driven economy to a zero-emission energy system, followed by a period of negative emissions. The scenarios differ in peak emissions rate and, accordingly, the amount of negative emissions, to reach the same cumulative emissions compatible with the 2°C temperature stabilization target. The climate system components' responses are computed using the University of Victoria Earth System Climate Model of intermediate complexity. Results suggest that negative emissions are effective in reversing the global mean temperature and stabilizing it at a desired level (2°C above pre-industrial) after overshoot. Also, changes in the meridional overturning circulation and sea ice are reversible with the artificial removal of CO2 from the atmosphere. However, sea level continues to rise and is not reversible for several centuries, even under assumption of large amounts of negative emissions. For sea level to decline, atmospheric CO2 needs to be reduced to pre-industrial levels in our simulations. During the negative emission phase, outgassing of CO2 from terrestrial and marine carbon sinks offsets the artificial removal of atmospheric CO2, thereby reducing its effectiveness. On land, the largest CO2 outgassing occurs in the Tropics and is partially compensated by CO2 uptake at northern high latitudes. In the ocean, outgassing occurs mostly in the Southern Ocean, North Atlantic and tropical Pacific. The strongest outgassing occurs for pathways entailing greatest amounts of negative emissions, such that the efficiency of CO2 removal - here defined as the change in atmospheric CO2 per unit negative emission - decreases with increasing amounts of negative emissions.

  6. A framework for emissions source apportionment in industrial areas: MM5/CALPUFF in a near-field application.

    PubMed

    Ghannam, K; El-Fadel, M

    2013-02-01

    This paper examines the relative source contribution to ground-level concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), and PM10 (particulate matter with an aerodynamic diameter < 10 microm) in a coastal urban area due to emissions from an industrial complex with multiple stacks, quarrying activities, and a nearby highway. For this purpose, an inventory of CO, oxide of nitrogen (NO(x)), and PM10 emissions was coupled with the non-steady-state Mesoscale Model 5/California Puff Dispersion Modeling system to simulate individual source contributions under several spatial and temporal scales. As the contribution of a particular source to ground-level concentrations can be evaluated by simulating this single-source emissions or otherwise total emissions except that source, a set of emission sensitivity simulations was designed to examine if CALPUFF maintains a linear relationship between emission rates and predicted concentrations in cases where emitted plumes overlap and chemical transformations are simulated. Source apportionment revealed that ground-level releases (i.e., highway and quarries) extended over large areas dominated the contribution to exposure levels over elevated point sources, despite the fact that cumulative emissions from point sources are higher. Sensitivity analysis indicated that chemical transformations of NO(x) are insignificant, possibly due to short-range plume transport, with CALPUFF exhibiting a linear response to changes in emission rate. The current paper points to the significance of ground-level emissions in contributing to urban air pollution exposure and questions the viability of the prevailing paradigm of point-source emission reduction, especially that the incremental improvement in air quality associated with this common abatement strategy may not accomplish the desirable benefit in terms of lower exposure with costly emissions capping. The application of atmospheric dispersion models for source apportionment helps in identifying major contributors to regional air pollution. In industrial urban areas where multiple sources with different geometry contribute to emissions, ground-level releases extended over large areas such as roads and quarries often dominate the contribution to ground-level air pollution. Industrial emissions released at elevated stack heights may experience significant dilution, resulting in minor contribution to exposure at ground level. In such contexts, emission reduction, which is invariably the abatement strategy targeting industries at a significant investment in control equipment or process change, may result in minimal return on investment in terms of improvement in air quality at sensitive receptors.

  7. The experimental clean combustor program: Description and status to November 1975

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1975-01-01

    The generation of technology was studied for the development of advanced commercial CTOL aircraft engines with lower exhaust emissions than current aircraft. The program is in three phases. Phase 1, already completed, consisted of screening tests of low pollution combustor concepts. Phase 2, currently in progress, consists of test rig refinement of the most promising combustor concepts. Phase 2 test results are reported. Phase 3, also currently in progress, consists of incorporating and evaluating the best combustors as part of a complete engine. Engine test plans and pollution sampling techniques are described in this report. Program pollution goals, specified at engine idle and take-off conditions, are idle emission index value of 20 and 4 for carbon monoxide (CO) and total unburned hydrocarbons (THC), respectively, and at take-off are an oxides of nitrogen (NOx) emission index level of 10 and a smoke number of 15. Pollution data were obtained at all engine operating conditions. Results are presented in terms of emission index and also in terms of the Environmental Protection Agency's 1979 Standards Parameter.

  8. The impact of shipping emissions on air pollution in the greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2016-01-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone, this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within Interreg IVb project Clean North Sea Shipping (CNSS), a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load-dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a database containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 at high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and those of sulfur oxides 123 Gg within the North Sea - including the adjacent western part of the Baltic Sea until 5° W. This was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers away from the sea, the contribution was about 6 % in summer and 4 % in winter. The relative contribution of the secondary pollutant NO3- was found to reach 20 % in summer and 6 % in winter even far from the shore.

  9. Shipping emission forecasts and cost-benefit analysis of China ports and key regions' control.

    PubMed

    Liu, Huan; Meng, Zhi-Hang; Shang, Yi; Lv, Zhao-Feng; Jin, Xin-Xin; Fu, Ming-Liang; He, Ke-Bin

    2018-05-01

    China established Domestic Emission Control Area (DECA) for sulphur since 2015 to constrain the increasing shipping emissions. However, future DECA policy-makings are not supported due to a lack of quantitive evaluations. To investigate the effects of current and possible Chinese DECAs policies, a model is presented for the forecast of shipping emissions and evaluation of potential costs and benefits of an DECA policy package set in 2020. It includes a port-level and regional-level projection accounting for shipping trade volume growth, share of ship types, and fuel consumption. The results show that without control measures, both SO 2 and particulate matter (PM) emissions are expected to increase by 15.3-61.2% in Jing-Jin-Ji, the Yangtze River Delta, and the Pearl River Delta from 2013 to 2020. However, most emissions can be reduced annually by the establishment of a DECA that depends on the size of the control area and the fuel sulphur content limit. Costs range from 0.667 to 1.561 billion dollars (control regional shipping emissions) based on current fuel price. A social cost method shows the regional control scenarios benefit-cost ratios vary from 4.3 to 5.1 with large uncertainty. Chemical transportation model combined with health model method is used to get the monetary health benefits and then compared with the results from social cost method. This study suggests that Chinese DECAs will reduce the projected emissions at a favorable benefit-cost ratio, and furthermore proposes policy combinations that provide high cost-effective benefits as a reference for future policy-making. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  10. Early action to reduce greenhouse gas emissions before the commitment period of the Kyoto protocol: advantages and disadvantages.

    PubMed

    Michaelowa, A; Rolfe, C

    2001-09-01

    Current "business as usual" projections suggest greenhouse gas emissions from industrialized nations will grow substantially over the next decade. However, if it comes into force, the Kyoto Protocol will require industrialized nations to reduce emissions to an average of 5% below 1990 levels in the 2008-2012 period. Taking early action to close this gap has a number of advantages. It reduces the risks of passing thresholds that trigger climate change "surprises." Early action also increases future generations' ability to choose greater levels of climate protection, and it leads to faster reductions of other pollutants. From an economic sense, early action is important because it allows shifts to less carbon-intensive technologies during the course of normal capital stock turnover. Moreover, many options for emission reduction have negative costs, and thus are economically worthwhile, because of paybacks in energy costs, healthcare costs, and other benefits. Finally, early emission reductions enhance the probability of successful ratification and lower the risk of noncompliance with the protocol. We discuss policy approaches for the period prior to 2008. Disadvantages of the current proposals for Credit for Early Action are the possibility of adverse selection due to problematic baseline calculation methods as well as the distributionary impacts of allocating a part of the emissions budget already before 2008. One simple policy without drawbacks is the so-called baseline protection, which removes the disincentive to early action due to the expectation that businesses may, in the future, receive emission rights in proportion to past emissions. It is particularly important to adopt policies that shift investment in long-lived capital stock towards less carbon-intensive technologies and to encourage innovation and technology development that will reduce future compliance costs.

  11. Methane Emissions from United States Natural Gas Gathering and Processing.

    PubMed

    Marchese, Anthony J; Vaughn, Timothy L; Zimmerle, Daniel J; Martinez, David M; Williams, Laurie L; Robinson, Allen L; Mitchell, Austin L; Subramanian, R; Tkacik, Daniel S; Roscioli, Joseph R; Herndon, Scott C

    2015-09-01

    New facility-level methane (CH4) emissions measurements obtained from 114 natural gas gathering facilities and 16 processing plants in 13 U.S. states were combined with facility counts obtained from state and national databases in a Monte Carlo simulation to estimate CH4 emissions from U.S. natural gas gathering and processing operations. Total annual CH4 emissions of 2421 (+245/-237) Gg were estimated for all U.S. gathering and processing operations, which represents a CH4 loss rate of 0.47% (±0.05%) when normalized by 2012 CH4 production. Over 90% of those emissions were attributed to normal operation of gathering facilities (1697 +189/-185 Gg) and processing plants (506 +55/-52 Gg), with the balance attributed to gathering pipelines and processing plant routine maintenance and upsets. The median CH4 emissions estimate for processing plants is a factor of 1.7 lower than the 2012 EPA Greenhouse Gas Inventory (GHGI) estimate, with the difference due largely to fewer reciprocating compressors, and a factor of 3.0 higher than that reported under the EPA Greenhouse Gas Reporting Program. Since gathering operations are currently embedded within the production segment of the EPA GHGI, direct comparison to our results is complicated. However, the study results suggest that CH4 emissions from gathering are substantially higher than the current EPA GHGI estimate and are equivalent to 30% of the total net CH4 emissions in the natural gas systems GHGI. Because CH4 emissions from most gathering facilities are not reported under the current rule and not all source categories are reported for processing plants, the total CH4 emissions from gathering and processing reported under the EPA GHGRP (180 Gg) represents only 14% of that tabulated in the EPA GHGI and 7% of that predicted from this study.

  12. Integration of Quantitative Positron Emission Tomography Absolute Myocardial Blood Flow Measurements in the Clinical Management of Coronary Artery Disease.

    PubMed

    Gewirtz, Henry; Dilsizian, Vasken

    2016-05-31

    In the >40 years since planar myocardial imaging with(43)K-potassium was introduced into clinical research and management of patients with coronary artery disease (CAD), diagnosis and treatment have undergone profound scientific and technological changes. One such innovation is the current state-of-the-art hardware and software for positron emission tomography myocardial perfusion imaging, which has advanced it from a strictly research-oriented modality to a clinically valuable tool. This review traces the evolving role of quantitative positron emission tomography measurements of myocardial blood flow in the evaluation and management of patients with CAD. It presents methodology, currently or soon to be available, that offers a paradigm shift in CAD management. Heretofore, radionuclide myocardial perfusion imaging has been primarily qualitative or at best semiquantitative in nature, assessing regional perfusion in relative terms. Thus, unlike so many facets of modern cardiovascular practice and CAD management, which depend, for example, on absolute values of key parameters such as arterial and left ventricular pressures, serum lipoprotein, and other biomarker levels, the absolute levels of rest and maximal myocardial blood flow have yet to be incorporated into routine clinical practice even in most positron emission tomography centers where the potential to do so exists. Accordingly, this review focuses on potential value added for improving clinical CAD practice by measuring the absolute level of rest and maximal myocardial blood flow. Physiological principles and imaging fundamentals necessary to understand how positron emission tomography makes robust, quantitative measurements of myocardial blood flow possible are highlighted. © 2016 American Heart Association, Inc.

  13. Enhanced Thermionic Emission and Low 1/f Noise in Exfoliated Graphene/GaN Schottky Barrier Diode.

    PubMed

    Kumar, Ashutosh; Kashid, Ranjit; Ghosh, Arindam; Kumar, Vikram; Singh, Rajendra

    2016-03-01

    Temperature-dependent electrical transport characteristics of exfoliated graphene/GaN Schottky diodes are investigated and compared with conventional Ni/GaN Schottky diodes. The ideality factor of graphene/GaN and Ni/GaN diodes are measured to be 1.33 and 1.51, respectively, which is suggestive of comparatively higher thermionic emission current in graphene/GaN diode. The barrier height values for graphene/GaN diode obtained using thermionic emission model and Richardson plots are found to be 0.60 and 0.72 eV, respectively, which are higher than predicted barrier height ∼0.40 eV as per the Schottky-Mott model. The higher barrier height is attributed to hole doping of graphene due to graphene-Au interaction which shifts the Fermi level in graphene by ∼0.3 eV. The magnitude of flicker noise of graphene/GaN Schottky diode increases up to 175 K followed by its decrease at higher temperatures. This indicates that diffusion currents and barrier inhomogeneities dominate the electronic transport at lower and higher temperatures, respectively. The exfoliated graphene/GaN diode is found to have lower level of barrier inhomogeneities than conventional Ni/GaN diode, as well as earlier reported graphene/GaN diode fabricated using chemical vapor deposited graphene. The lesser barrier inhomogeneities in graphene/GaN diode results in lower flicker noise by 2 orders of magnitude as compared to Ni/GaN diode. Enhanced thermionic emission current, lower level of inhomogeneities, and reduced flicker noise suggests that graphene-GaN Schottky diodes may have the underlying trend for replacing metal-GaN Schottky diodes.

  14. Bias present in US federal agency power plant CO2 emissions data and implications for the US clean power plan

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Huang, J.; Coltin, K.

    2016-06-01

    Power plants constitute roughly 40% of carbon dioxide (CO2) emissions in the United States. Climate change science, air pollution regulation, and potential carbon trading policies rely on accurate, unbiased quantification of these large point sources. Two US federal agencies—the Department of Energy and the Environmental Protection Agency—tabulate the emissions from US power plants using two different methodological approaches. We have analyzed those two data sets and have found that when averaged over all US facilities, the median percentage difference is less than 3%. However, this small difference masks large, non-Gaussian, positive and negative differences at individual facilities. For example, over the 2001-2009 time period, nearly one-half of the facilities have monthly emission differences that exceed roughly ±6% and one-fifth exceed roughly ±13%. It is currently not possible to assess whether one, or both, of the datasets examined here are responsible for the emissions difference. Differences this large at the individual facility level raise concerns regarding the operationalization of policy within the United States such as the recently announced Clean Power Plan. This policy relies on the achievement of state-level CO2 emission rate targets. When examined at the state-level we find that one-third of the states have differences that exceed 10% of their assigned reduction amount. Such levels of uncertainty raise concerns about the ability of individual states to accurately quantify emission rates in order to meet the regulatory targets.

  15. Ethylene-Regulated Floral Volatile Synthesis in Petunia Corollas1[w

    PubMed Central

    Underwood, Beverly A.; Tieman, Denise M.; Shibuya, Kenichi; Dexter, Richard J.; Loucas, Holly M.; Simkin, Andrew J.; Sims, Charles A.; Schmelz, Eric A.; Klee, Harry J.; Clark, David G.

    2005-01-01

    In many flowering plants, such as petunia (Petunia × hybrida), ethylene produced in floral organs after pollination elicits a series of physiological and biochemical events, ultimately leading to senescence of petals and successful fertilization. Here, we demonstrate, using transgenic ethylene insensitive (44568) and Mitchell Diploid petunias, that multiple components of emission of volatile organic compounds (VOCs) are regulated by ethylene. Expression of benzoic acid/salicylic acid carboxyl methyltransferase (PhBSMT1 and 2) mRNA is temporally and spatially down-regulated in floral organs in a manner consistent with current models for postpollination ethylene synthesis in petunia corollas. Emission of methylbenzoate and other VOCs after pollination and exogenous ethylene treatment parallels a reduction in PhBSMT1 and 2 mRNA levels. Under cyclic light conditions (day/night), PhBSMT mRNA levels are rhythmic and precede emission of methylbenzoate by approximately 6 h. When shifted into constant dark or light conditions, PhBSMT mRNA levels and subsequent methylbenzoate emission correspondingly decrease or increase to minimum or maximum levels observed during normal conditions, thus suggesting that light may be a more critical influence on cyclic emission of methylbenzoate than a circadian clock. Transgenic PhBSMT RNAi flowers with reduced PhBSMT mRNA levels show a 75% to 99% decrease in methylbenzoate emission, with minimal changes in other petunia VOCs. These results implicate PhBSMT1 and 2 as genes responsible for synthesis of methylbenzoate in petunia. PMID:15849311

  16. Hydrogen/Air Fuel Nozzle Emissions Experiments

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2001-01-01

    The use of hydrogen combustion for aircraft gas turbine engines provides significant opportunities to reduce harmful exhaust emissions. Hydrogen has many advantages (no CO2 production, high reaction rates, high heating value, and future availability), along with some disadvantages (high current cost of production and storage, high volume per BTU, and an unknown safety profile when in wide use). One of the primary reasons for switching to hydrogen is the elimination of CO2 emissions. Also, with hydrogen, design challenges such as fuel coking in the fuel nozzle and particulate emissions are no longer an issue. However, because it takes place at high temperatures, hydrogen-air combustion can still produce significant levels of NOx emissions. Much of the current research into conventional hydrocarbon-fueled aircraft gas turbine combustors is focused on NOx reduction methods. The Zero CO2 Emission Technology (ZCET) hydrogen combustion project will focus on meeting the Office of Aerospace Technology goal 2 within pillar one for Global Civil Aviation reducing the emissions of future aircraft by a factor of 3 within 10 years and by a factor of 5 within 25 years. Recent advances in hydrocarbon-based gas turbine combustion components have expanded the horizons for fuel nozzle development. Both new fluid designs and manufacturing technologies have led to the development of fuel nozzles that significantly reduce aircraft emissions. The goal of the ZCET program is to mesh the current technology of Lean Direct Injection and rocket injectors to provide quick mixing, low emissions, and high-performance fuel nozzle designs. An experimental program is planned to investigate the fuel nozzle concepts in a flametube test rig. Currently, a hydrogen system is being installed in cell 23 at NASA Glenn Research Center's Research Combustion Laboratory. Testing will be conducted on a variety of fuel nozzle concepts up to combustion pressures of 350 psia and inlet air temperatures of 1200 F. Computational fluid dynamics calculations, with the Glenn developed National Combustor Code, are being performed to optimize the fuel nozzle designs.

  17. Maximum Regional Emission Reduction Potential in Residential Sector Based on Spatial Distribution of Population and Resources

    NASA Astrophysics Data System (ADS)

    Winijkul, E.; Bond, T. C.

    2011-12-01

    In the residential sector, major activities that generate emissions are cooking and heating, and fuels ranging from traditional (wood) to modern (natural gas, or electricity) are used. Direct air pollutant emissions from this sector are low when natural gas or electricity are the dominant energy sources, as is the case in developed countries. However, in developing countries, people may rely on solid fuels and this sector can contribute a large fraction of emissions. The magnitude of the health loss associated with exposure to indoor smoke as well as its concentration among rural population in developing countries have recently put preventive measures high on the agenda of international development and public health organizations. This study focuses on these developing regions: Central America, Africa, and Asia. Current and future emissions from the residential sector depend on both fuel and cooking device (stove) type. Availability of fuels, stoves, and interventions depends strongly on spatial distribution. However, regional emission calculations do not consider this spatial dependence. Fuel consumption data is presented at country level, without information about where different types of fuel are used. Moreover, information about stove types that are currently used and can be used in the future is not available. In this study, we first spatially allocate current emissions within residential sector. We use Geographic Information System maps of temperature, electricity availability, forest area, and population to determine the distribution of fuel types and availability of stoves. Within each country, consumption of different fuel types, such as fuelwood, coal, and LPG is distributed among different area types (urban, peri-urban, and rural area). Then, the cleanest stove technologies which could be used in the area are selected based on the constraints of each area, i.e. availability of resources. Using this map, the maximum emission reduction compared with current emission in residential sector can be estimated, based on the cleanest plausible fuels and stove availability.

  18. Advanced catalytic combustors for low pollutant emissions, phase 1

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.

  19. Modification of "Pressed" Atmospheres in Active Regions of Ultracool Stars

    NASA Astrophysics Data System (ADS)

    Zaitsev, V. V.; Kronshtadtov, P. V.; Stepanov, A. V.

    2017-12-01

    Ultracool stars usually have active regions, which is confirmed by their high-power radiofrequency emission modulated by the star axial rotation. The interpretation of this emission is commonly based on the electron cyclotron maser mechanism realized in the active regions. A plasma mechanism of radiofrequency emission is not considered, because ultracool star atmospheres are tightly "pressed" against the star surface, and the plasma frequency is much lower than the electron gyrofrequency ( f L ≪ f B) at the coronal levels. This paper explores active regions of ultracool stars for the possible existence of a system of coronal magnetic loops carrying electric current generated by photospheric convection. It is shown that current dissipation induces a temperature increase inside the loops to about 107 K, which causes an increase in the scale of height of the inhomogeneous atmosphere and, at the coronal levels, effectuates condition f L ≫ f B, at which the plasma mechanism of radiofrequency emission prevails over the electron cyclotron maser mechanism. The magnetic loop parameters, intensity of electric currents generated by the photospheric convection, and efficiency of plasma heating inside the magnetic loops are evaluated on the example of the brown dwarf TVLM513-46546. The scale of the height of the modified atmosphere, which appears to be comparable to the star radius, is calculated; it is shown that the soft X-ray flow created by the hot modified atmosphere inside a coronal magnetic loop is about equal to that observed for brown dwarf TVLM513-46546.

  20. Leaf level emissions of volatile organic compounds (VOC) from some Amazonian and Mediterranean plants

    NASA Astrophysics Data System (ADS)

    Bracho-Nunez, A.; Knothe, N. M.; Welter, S.; Staudt, M.; Costa, W. R.; Liberato, M. A. R.; Piedade, M. T. F.; Kesselmeier, J.

    2012-11-01

    As volatile organic compounds (VOCs) significantly affect atmospheric chemistry (oxidative capacity) and physics (secondary organic aerosol formation and effects), emission inventories defining regional and global biogenic VOC emission strengths are important. The aim of this work was to achieve a description of VOC emissions from poorly described tropical vegetation to be compared with the quite well investigated and highly heterogeneous emissions from Mediterranean vegetation. For this task, common plant species of both ecosystems were investigated. Sixteen plant species from the Mediterranean area, which is known for its special diversity in VOC emitting plant species, were chosen. In contrast, little information is currently available regarding emissions of VOCs from tropical tree species at the leaf level. Twelve plant species from different environments of the Amazon basin, i.e. Terra firme, Várzea and Igapó, were screened for emission of VOCs at leaf level with a branch enclosure system. Analysis of the volatile organics was performed online by a proton-transfer-reaction mass spectrometer (PTR-MS) and offline by collection on adsorbent tubes and subsequent gas chromatographic analysis. Isoprene was quantitatively the most dominant compound emitted followed by monoterpenes, methanol and acetone. Most of the Mediterranean species emitted a variety of monoterpenes, whereas only five tropical species were monoterpene emitters exhibiting a quite conservative emission pattern (α-pinene > limonene > sabinene > β-pinene). Mediterranean plants showed additional emissions of sesquiterpenes, whereas in the case of plants from the Amazon region no sesquiterpenes were detected probably due to a lack of sensitivity in the measuring systems. On the other hand methanol emissions, an indicator of growth, were common in most of the tropical and Mediterranean species. A few species from both ecosystems showed acetone emissions. The observed heterogeneous emissions including reactive VOC species which are not easily detected by flux measurements, give reason to perform more screening at leaf level and, whenever possible, within the forests under ambient conditions.

  1. Emission characteristics of harmful air pollutants from cremators in Beijing, China

    PubMed Central

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of “odor” in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators. PMID:29718907

  2. Emission characteristics of harmful air pollutants from cremators in Beijing, China.

    PubMed

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of "odor" in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators.

  3. Maximizing sinter plant operating flexibility through emissions trading and air modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schewe, G.J.; Wagner, J.A.; Heron, T.

    1998-12-31

    This paper provides details on the dispersion modeling analysis performed to demonstrate air quality impacts associated with an emission trading scheme for a sintering operation in Youngstown, Ohio. The emission trade was proposed to allow the sinter plant to expand its current allowable sulfur dioxide (SO2) emissions while being offset with SO{sub 2} emissions from boilers at a nearby shutdown steel mill. While the emission trade itself was feasible and the emissions required for the offset were available (the boiler shutdown and their subsequent SO{sub 2} emission credits were never claimed, banked, or used elsewhere), the second criteria for determiningmore » compliance was a demonstration of minimal air quality impact. The air analysis combined the increased ambient SO{sub 2} concentrations of the relaxed sinter plant emissions with the offsetting air quality of the shutdown boilers to yield the net air quality impacts. To test this net air impact, dispersion modeling was performed treating the sinter plant SO{sub 2} emissions as positive and the shutdown boiler SO{sub 2} emissions as negative. The results of the modeling indicated that the ambient air concentrations due to the proposed emissions increase will be offset by the nearby boiler emissions to levels acceptable under EPA`s offset policy Level 2 significant impact concentrations. Therefore, the dispersion modeling demonstrated that the emission trading scheme would not result in significant air quality impacts and maximum operating flexibility was provided to the sintering facility.« less

  4. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    NASA Astrophysics Data System (ADS)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from varied continents and countries in the future.

  5. A spectrally tunable all-graphene-based flexible field-effect light-emitting device

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling

    2015-07-01

    The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (~450 nm) to red (~750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole-Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays.

  6. Noise limitations of multiplier phototubes in the radiation environment of space

    NASA Technical Reports Server (NTRS)

    Viehmann, W.; Eubanks, A. G.

    1976-01-01

    The contributions of Cerenkov emission, luminescence, secondary electron emission, and bremsstrahlung to radiation-induced data current and noise of multiplier phototubes were analyzed quantitatively. Fluorescence and Cerenkov emission in the tube window are the major contributors and can quantitatively account for dark count levels observed in orbit. Radiation-induced noise can be minimized by shielding, tube selection, and mode of operation. Optical decoupling of windows and cathode (side-window tubes) leads to further reduction of radiation-induced dark counts, as does reducing the window thickness and effective cathode area, and selection of window/cathode combinations of low fluorescence efficiency. In trapped radiation-free regions of near-earth orbits and in free space, Cerenkov emission by relativistic particles contributes predominantly to the photoelectron yield per event. Operating multiplier phototubes in the photon (pulse) counting mode will discriminate against these large pulses and substantially reduce the dark count and noise to levels determined by fluorescence.

  7. Long-term changes in CO(2) emissions in Austria and Czechoslovakia-Identifying the drivers of environmental pressures.

    PubMed

    Gingrich, Simone; Kušková, Petra; Steinberger, Julia K

    2011-02-01

    This study presents fossil-fuel related CO(2) emissions in Austria and Czechoslovakia (current Czech Republic and Slovakia) for 1830-2000. The drivers of CO(2) emissions are discussed by investigating the variables of the standard Kaya identity for 1920-2000 and conducting a comparative Index Decomposition Analysis. Proxy data on industrial production and household consumption are analysed to understand the role of the economic structure. CO(2) emissions increased in both countries in the long run. Czechoslovakia was a stronger emitter of CO(2) throughout the time period, but per-capita emissions significantly differed only after World War I, when Czechoslovakia and Austria became independent. The difference in CO(2) emissions increased until the mid-1980s (the period of communism in Czechoslovakia), explained by the energy intensity and the composition effects, and higher industrial production in Czechoslovakia. Counterbalancing factors were the income effect and household consumption. After the Velvet revolution in 1990, Czechoslovak CO(2) emissions decreased, and the energy composition effect (and industrial production) lost importance. Despite their different political and economic development, Austria and Czechoslovakia reached similar levels of per-capita CO(2) emissions in the late 20th century. Neither Austrian "eco-efficiency" nor Czechoslovak restructuring have been effective in reducing CO(2) emissions to a sustainable level.

  8. Mercury emission to the atmosphere from municipal solid waste landfills: A brief review

    NASA Astrophysics Data System (ADS)

    Tao, Zhengkai; Dai, Shijin; Chai, Xiaoli

    2017-12-01

    Municipal solid waste (MSW) landfill is regarded as an important emission source of atmospheric mercury (Hg), which is associated with potential health and environmental risks, as outlined by the Minamata Convention on Hg. This review presents the current state of knowledge with regards to landfill Hg sources, Hg levels in MSW and cover soils, Hg emission to the atmosphere, available Hg biogeochemical transformations, research methods for Hg emission, and important areas for future research. In addition, strategies for controlling landfill Hg emissions are considered, including reducing the Hg load in landfill and in situ controls. These approaches mainly focus on Hg source reduction, Hg recycling programs, public education, and in situ technology such as timely soil cover, vegetation, and end-of-pipe technology for controlling Hg emission from landfill gas.

  9. The NOAA Carbon America Program A Focus on Products for Decision- Support

    NASA Astrophysics Data System (ADS)

    Butler, J. H.; Hofmann, D. J.; Tans, P. P.; Peters, W.; Andrews, A. E.; Sweeny, C.; Montzka, S. A.

    2006-12-01

    If society is to manage or reduce carbon emissions in the future, reliable and accurate information on atmospheric carbon dioxide levels for verification of emission reductions will be needed on local, regional, and global scales. The current global carbon dioxide observing network operated by NOAA/ESRL provides a foundation for monitoring and understanding carbon dioxide. For example, atmospheric measurements in Europe suggest that emissions inventories of methane are substantial underestimates. An expanded U.S. Carbon Cycle Atmospheric Observing System is being implemented. Carbon America will consist of approximately 24 aircraft and 12 tall towers obtaining concentrations of carbon gases and other trace species. This observing system needs to be capable of quantitative attribution of all major contributors to the carbon budget of the continent, both manmade and natural. Successful mitigation strategies need independent and credible assessments of their efficacy. Managing carbon emissions will require the involvement of industry, financial markets, and governments at all levels. Without good information, governments will be slow to act, private investments will likely be less than optimal, and financial markets will not develop as they might need to. The atmospheric data and the methods used to derive sources and sinks will be fully open and available in up-to-date form to scientists, the general public, and policymakers. This presentation will provide an overview of NOAA`s role in the North American Carbon Program, our current accomplishments, our plans for the future network, and the currently expected products, services, and information that derive from these and other associated studies. Today's products, while useful, will be eclipsed by those of tomorrow, which will focus heavily on regional emissions expressed on seasonal or shorter time-scales, and will provide needed information for improved predictions in the future.

  10. Warming caused by cumulative carbon emissions towards the trillionth tonne.

    PubMed

    Allen, Myles R; Frame, David J; Huntingford, Chris; Jones, Chris D; Lowe, Jason A; Meinshausen, Malte; Meinshausen, Nicolai

    2009-04-30

    Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.

  11. EU effect: Exporting emission standards for vehicles through the global market economy.

    PubMed

    Crippa, M; Janssens-Maenhout, G; Guizzardi, D; Galmarini, S

    2016-12-01

    Emission data from EDGAR (Emissions Database for Global Atmospheric Research), rather than economic data, are used to estimate the effect of policies and of the global exports of policy-regulated goods, such as vehicles, on global emissions. The results clearly show that the adoption of emission standards for the road transport sector in the two main global markets (Europe and North America) has led to the global proliferation of emission-regulated vehicles through exports, regardless the domestic regulation in the country of destination. It is in fact more economically convenient for vehicle manufacturers to produce and sell a standard product to the widest possible market and in the greatest possible amounts. The EU effect (European Union effect) is introduced as a global counterpart to the California effect. The former is a direct consequence of the penetration of the EURO standards in the global markets by European and Japanese manufacturers, which effectively export the standard worldwide. We analyze the effect on PM 2.5 emissions by comparing a scenario of non-EURO standards against the current estimates provided by EDGAR. We find that PM 2.5 emissions were reduced by more than 60% since the 1990s worldwide. Similar investigations on other pollutants confirm the hypothesis that the combined effect of technological regulations and their diffusion through global markets can also produce a positive effect on the global environment. While we acknowledge the positive feedback, we also demonstrate that current efforts and standards will be totally insufficient should the passenger car fleets in emerging markets reach Western per capita figures. If emerging countries reach the per capita vehicle number of the USA and Europe under current technological conditions, then the world will suffer pre-1990 emission levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies

    DOE PAGES

    Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.; ...

    2016-09-10

    Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is grow-ing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH 4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH 4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lackmore » systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitiga- tion approaches are absent or ineffective. These findings illustrate that tackling urban CH 4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH 4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. In conclusion, we suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.« less

  13. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies

    NASA Astrophysics Data System (ADS)

    Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.; Duren, Riley M.; Miller, Charles E.; Lai, Chun-Ta; Hsu, Ying-Kuang; Carranza, Valerie; Randerson, James T.

    2016-09-01

    Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is growing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lack systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitigation approaches are absent or ineffective. These findings illustrate that tackling urban CH4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. We suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.

  14. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Francesca M.; Ehleringer, James R.; Bush, Susan E.

    Cities generate 70% of anthropogenic greenhouse gas emissions, a fraction that is grow-ing with global urbanization. While cities play an important role in climate change mitigation, there has been little focus on reducing urban methane (CH4) emissions. Here, we develop a conceptual framework for CH 4 mitigation in cities by describing emission processes, the role of measurements, and a need for new institutional partnerships. Urban CH 4 emissions are likely to grow with expanding use of natural gas and organic waste disposal systems in growing population centers; however, we currently lack the ability to quantify this increase. We also lackmore » systematic knowledge of the relative contribution of these distinct source sectors on emissions. We present new observations from four North American cities to demonstrate that CH4 emissions vary in magnitude and sector from city to city and hence require different mitigation strategies. Detections of fugitive emissions from these systems suggest that current mitiga- tion approaches are absent or ineffective. These findings illustrate that tackling urban CH 4 emissions will require research efforts to identify mitigation targets, develop and implement new mitigation strategies, and monitor atmospheric CH 4 levels to ensure the success of mitigation efforts. This research will require a variety of techniques to achieve these objectives and should be deployed in cities globally. In conclusion, we suggest that metropolitan scale partnerships may effectively coordinate systematic measurements and actions focused on emission reduction goals.« less

  15. Current Sheet Evolution In The Aftermath Of A CME Event

    NASA Technical Reports Server (NTRS)

    Bemporad, A.; Poletto, G.; Seuss, S. T.; Schwardron, N. A.; Elliott, H. A.; Raymond, J. C.

    2006-01-01

    We report on SOHO UVCS observations of the coronal restructuring following a coronal mass ejection (CME) on 2002 November 26, at the time of a SOHO-Ulysses quadrature campaign. Starting about 1.5 hr after a CME in the northwest quadrant, UVCS began taking spectra at 1.7 R, covering emission from both cool and hot plasma. Observations continued, with occasional gaps, for more than 2 days. Emission in the 974.8 A line of [Fe XVIII], indicating temperatures above 6 x 10(exp 6) K, was observed throughout the campaign in a spatially limited location. Comparison with EIT images shows the [Fe XVIII] emission to overlie a growing post-flare loop system formed in the aftermath of the CME. The emission most likely originates in a current sheet overlying the arcade. Analysis of the [Fe XVIII] emission allows us to infer the evolution of physical parameters in the current sheet over the entire span of our observations: in particular, we give the temperature versus time in the current sheet and estimate its density. At the time of the quadrature, Ulysses was directly above the location of the CME and intercepted the ejecta. High ionization state Fe was detected by the Ulysses SWICS throughout the magnetic cloud associated with the CME, although its rapid temporal variation suggests bursty, rather than smooth, reconnection in the coronal current sheet. The SOHO-Ulysses data set provided us with the unique opportunity of analyzing a current sheet structure from its lowest coronal levels out to its in situ properties. Both the remote and in situ observations are compared with predictions of theoretical CME models.

  16. Source influence on emission pathways and ambient PM2.5 pollution over India (2015-2050)

    NASA Astrophysics Data System (ADS)

    Venkataraman, Chandra; Brauer, Michael; Tibrewal, Kushal; Sadavarte, Pankaj; Ma, Qiao; Cohen, Aaron; Chaliyakunnel, Sreelekha; Frostad, Joseph; Klimont, Zbigniew; Martin, Randall V.; Millet, Dylan B.; Philip, Sajeev; Walker, Katherine; Wang, Shuxiao

    2018-06-01

    India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015-2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m-3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from other sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated, for a three-pronged switch away from (i) biomass-fuelled traditional technologies, (ii) industrial coal-burning and (iii) open burning of agricultural residue. Future air pollution is dominated by industrial process emissions, reflecting larger expansion in industrial, rather than residential energy demand. However, even under the most active reductions envisioned, the 2050 mean exposure, excluding any impact from windblown mineral dust, is estimated to be nearly 3 times higher than the WHO Air Quality Guideline.

  17. How best management practices affect emissions in gas turbine power plants-An important factor to consider when strengthening emission standards.

    PubMed

    Zeng, Jinghai; Xing, Min; Hou, Min; England, Glenn C; Yan, Jing

    2018-04-27

    The Beijing Municipal Environmental Protection Bureau (EPB) is considering strengthening the Emission Standard of Air Pollutants for Stationary Gas Turbines, originally published in 2011 (DB11/847-2011), with a focus on reducing nitrogen oxides (NOx) emissions. A feasibility study was conducted to evaluate the current operation of 12 existing combined-cycle gas turbine power plants and the design of two new plants in Beijing and their emission reduction potential, in comparison with a state-of-the-art power plant in California. The study found that best management practices (BMPs) could potentially improve the emission level of the power plants, and should be implemented to minimize emissions under current design characteristics. These BMPs include (1) more frequent tuning of turbine combustors; (2) onsite testing of natural gas characteristics in comparison to turbine manufacturer's specifics and tuning of turbine to natural gas quality; (3) onsite testing of aqueous ammonia to ensure adequate ammonia concentration in the mixed solution, and the purity of the solution; (4) more careful inspection of the heat recovery steam generator (HRSG), and the selective catalytic reduction (SCR) during operation and maintenance; (5) annual testing of the catalyst coupon on the SCR to ensure catalyst effectiveness; and (6) annual ammonia injection grid (AIG) tuning. The study found that without major modification to the plants, improving the management of the Beijing gas turbine power plants may potentially reduce the current hourly average NOx emission level of 5-10 parts per million (ppm; ranges reflects plant variation) by up to 20%. The exact improvement associated with each BMP for each facility requires more detailed analysis, and requires engagement of turbine, HRSG, and SCR manufacturers. This potential improvement is an important factor to consider when strengthening the emission standard. However, note that with the continuous needs of improving air quality within the area, more expensive control measures, such as retrofitting the turbines or the HRSGs, may be considered. This study analyzed the potential emission reductions associated with implementing the best management practices (BMPs) on the combined cycle and cogeneration power plants in Beijing. It determined that implementing the BMPs could potentially achieve up to 580 metric tonnes, or 0.6%, reductions of all NOx emissions in Beijing. Many other cities in China and Asia battling air quality issues may find the information useful in order to evaluate the emission reduction potential of their own gas turbine power plants.

  18. CO{sub 2} Emission Calculations and Trends

    DOE R&D Accomplishments Database

    Boden, T. A.; Marland, G.; Andres, R. J.

    1995-06-01

    Evidence that the atmospheric CO{sub 2}concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  19. Global temperature responses to current emissions from the transport sectors

    PubMed Central

    Berntsen, Terje; Fuglestvedt, Jan

    2008-01-01

    Transport affects climate directly and indirectly through mechanisms that cause both warming and cooling of climate, and the effects operate on very different timescales. We calculate climate responses in terms of global mean temperature and find large differences between the transport sectors with respect to the size and mix of short- and long-lived effects, and even the sign of the temperature response. For year 2000 emissions, road transport has the largest effect on global mean temperature. After 20 and 100 years the response in net temperature is 7 and 6 times higher, respectively, than for aviation. Aviation and shipping have strong but quite uncertain short-lived warming and cooling effects, respectively, that dominate during the first decades after the emissions. For shipping the net cooling during the first 4 decades is due to emissions of SO2 and NOx. On a longer timescale, the current emissions from shipping cause net warming due to the persistence of the CO2 perturbation. If emissions stay constant at 2000 levels, the warming effect from road transport will continue to increase and will be almost 4 times larger than that of aviation by the end of the century. PMID:19047640

  20. Environmental Impact Analysis Process. Draft Environmental Impact Statement, Winnersville Weapons Range, Lanier and Lowndes Counties, Georgia

    DTIC Science & Technology

    1985-07-01

    proposed range . 54 Table 4.4. HUD site acceptability standards ... ........... .. 55 Table 4.5. Predicted pollutant emissions for flight activties...Current flight operations from Moody contribute particulatmatter, carbon monoxide, hydrocarbons, oxides of nitrogen, and oxides of sulfur to the...regional pollution levels, but because of the amounts emitted and the altitudes at which they typically occur, these emissions have only minor impact on

  1. A computational study on the electronic and field emission properties of Mg and Si doped AlN nanocones

    NASA Astrophysics Data System (ADS)

    Saedi, Leila; Soleymanabadi, Hamed; Panahyab, Ataollah

    2018-05-01

    Following an experimental work, we explored the effect of replacing an Al atom of an AlN nanocone by Si or Mg atom on its electronic and field emission properties using density functional theory calculations. We found that both Si-doping and Mg-doping increase the electrical conductivity of AlN nanocone, but their influences on the filed emission properties are significantly different. The Si-doping increases the electron concentration of AlN nanocone and results in a large electron mobility and a low work function, whereas Mg-doping leads to a high hole concentration below the conduction level and increases the work function in agreement with the experimental results. It is predicted that Si-doped AlN nanocones show excellent filed emission performance with higher emitted electron current density compared to the pristine AlN nanocone. But the Mg-doping meaningfully decreases the emitted electron current density from the surface of AlN nanocone. The Mg-doping can increase the work function about 41.9% and the Si-doping can decrease it about 6.3%. The Mg-doping and Si-doping convert the AlN nanocone to a p-type and n-type semiconductors, respectively. Our results explain in a molecular level what observed in the experiment.

  2. An Improved Approach to Estimate Methane Emissions from Coal Mining in China.

    PubMed

    Zhu, Tao; Bian, Wenjing; Zhang, Shuqing; Di, Pingkuan; Nie, Baisheng

    2017-11-07

    China, the largest coal producer in the world, is responsible for over 50% of the total global methane (CH 4 ) emissions from coal mining. However, the current emission inventory of CH4 from coal mining has large uncertainties because of the lack of localized emission factors (EFs). In this study, province-level CH4 EFs from coal mining in China were developed based on the data analysis of coal production and corresponding discharged CH4 emissions from 787 coal mines distributed in 25 provinces with different geological and operation conditions. Results show that the spatial distribution of CH 4 EFs is highly variable with values as high as 36 m3/t and as low as 0.74 m3/t. Based on newly developed CH 4 EFs and activity data, an inventory of the province-level CH4 emissions was built for 2005-2010. Results reveal that the total CH 4 emissions in China increased from 11.5 Tg in 2005 to 16.0 Tg in 2010. By constructing a gray forecasting model for CH 4 EFs and a regression model for activity, the province-level CH 4 emissions from coal mining in China are forecasted for the years of 2011-2020. The estimates are compared with other published inventories. Our results have a reasonable agreement with USEPA's inventory and are lower by a factor of 1-2 than those estimated using the IPCC default EFs. This study could help guide CH 4 mitigation policies and practices in China.

  3. Implications of cumulative GHG Emissions to Climate, Society and Ecosystems in California

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.; Franco, G.; Pierce, D. W.

    2016-12-01

    We investigate simulations conducted for the ongoing Climate Change Assessments in California. In this presentation, we explore implications of global climate change threshold targets on temperature, precipitation, sea level rise, snow pack, and extreme events including heat waves, wildfire and coastal flooding in California. A set of regional models driven by an ensemble of global climate change futures from 4th and 5th IPCC Assessment GCMs indicate how California's climate and thus its hydrological systems, coast and wildlands respond to increasing atmospheric greenhouse gas concentrations at levels that produce global warming of 1.5°C and beyond. Differing global greenhouse gas emissions scenarios would produce strongly diverging results after mid-21st Century, as emphasized by the suite of modeled regional climate measures. The results demonstrate that global emissions can be used, independent of emissions pathway (but not entirely and not for all climate and impact measures), to estimate physical changes at the local and regional levels in the State. These relationships are explored to re-interpret prior studies that were based on the SRES emission scenarios along with the current suite of RCP scenarios. In addition, because historical emissions are above what was envisioned for the RCPs, and since the 2015 Conference of Parties implies a departure from the RCPs, consideration of cumulative CO2 emissions provides a useful tool for contextualizing historical emissions and expected outcomes from COP21. Climate policy implications are described, including climate adaptation guidance that California entities are required or encouraged to follow.

  4. The effects of emission control system malfunctions or maladjustments on exhaust emissions. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-10-01

    The Environmental Protection Agency is currently undertaking programs that measure the exhaust emissions of in-use vehicles. One of these programs, the Emission Factors Program (EFP), has generated data indicating that a high percentage of in-use 1975 automobiles have exhaust emissions exceeding the Federal emission standards for 1975-1976 light-duty vehicles. Typical failing vehicles have very high CO emissions. High CO emissions may be indicative of improper adjustment of either the idle mixture or the choke. Since idle mixture and choke adjustments are easily accessible and adjusted on most cars, it seems probable that the maladjustment of these two items may bemore » responsible for some of the high emission levels measured in the EFP. In order to further investigate these possibilities, a test program was conducted by the EPA to quantify the effects of various engine maladjustments on exhaust emissions. This test program would help identify maladjustments resulting in the types of failures encountered in the EFP.« less

  5. Using air quality modeling to study source-receptor relationships between nitrogen oxides emissions and ozone exposures over the United States.

    PubMed

    Tong, Daniel Q; Muller, Nicholas Z; Kan, Haidong; Mendelsohn, Robert O

    2009-11-01

    Human exposure to ambient ozone (O(3)) has been linked to a variety of adverse health effects. The ozone level at a location is contributed by local production, regional transport, and background ozone. This study combines detailed emission inventory, air quality modeling, and census data to investigate the source-receptor relationships between nitrogen oxides (NO(x)) emissions and population exposure to ambient O(3) in 48 states over the continental United States. By removing NO(x) emissions from each state one at a time, we calculate the change in O(3) exposures by examining the difference between the base and the sensitivity simulations. Based on the 49 simulations, we construct state-level and census region-level source-receptor matrices describing the relationships among these states/regions. We find that, for 43 receptor states, cumulative NO(x) emissions from upwind states contribute more to O(3) exposures than the state's own emissions. In-state emissions are responsible for less than 15% of O(3) exposures in 90% of U.S. states. A state's NO(x) emissions can influence 2 to 40 downwind states by at least a 0.1 ppbv change in population-averaged O(3) exposure. The results suggest that the U.S. generally needs a regional strategy to effectively reduce O(3) exposures. But the current regional emission control program in the U.S. is a cap-and-trade program that assumes the marginal damage of every ton of NO(x) is equal. In this study, the average O(3) exposures caused by one ton of NO(x) emissions ranges from -2.0 to 2.3 ppm-people-hours depending on the state. The actual damage caused by one ton of NO(x) emissions varies considerably over space.

  6. Uncertainty in temperature response of current consumption-based emissions estimates

    NASA Astrophysics Data System (ADS)

    Karstensen, J.; Peters, G. P.; Andrew, R. M.

    2014-09-01

    Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties in the end results. We estimate uncertainties in economic data, multi-pollutant emission statistics and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. The economic data have a relatively small impact on uncertainty at the global and national level, while much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production based emissions, since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±9-±27% using the global temperature potential with a 50 year time horizon, with metric uncertainties dominating. National level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9-±25%, with metric and emissions uncertainties contributing similarly. The Absolute global temperature potential with a 50 year time horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking of countries is uncertain.

  7. The ISM From the Soft X-ray Background Perspective

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.

    2003-01-01

    In the past few years progress in understanding the local and Galactic ISM in terms of the diffuse X-ray background has been as much about what hasn't been seen as it has been about detections. High resolution spectra of the local SXRB have been observed, but are inconsistent with current thermal emission models. An excess over the extrapolation of the high-energy (most clearly visible at E greater than 1.5 keV) extragalactic power law down to 3/4 keV has been observed but only at the level consistent with cosmological models, implying the absence of at least a bright hot Galactic halo. A very recent FUSE result indicates that O VI emission from the Local Hot Bubble is insignificant, if it exists at all, a result which is also inconsistent with current thermal emission models. A short review of the current status of our (well, at least my) understanding of the Galactic SXRB and ISM is presented here.

  8. Comparison of facility-level methane emission rates from natural gas production well pads in the Marcellus, Denver-Julesburg, and Uintah Basins

    NASA Astrophysics Data System (ADS)

    Omara, M.; Li, X.; Sullivan, M.; Subramanian, R.; Robinson, A. L.; Presto, A. A.

    2015-12-01

    The boom in shale natural gas (NG) production, brought about by advances in horizontal drilling and hydraulic fracturing, has yielded both economic benefits and concerns about environmental and climate impacts. In particular, leakages of methane from the NG supply chain could substantially increase the carbon footprint of NG, diminishing its potential role as a transition fuel between carbon intensive fossil fuels and renewable energy systems. Recent research has demonstrated significant variability in measured methane emission rates from NG production facilities within a given shale gas basin. This variability often reflect facility-specific differences in NG production capacity, facility age, utilization of emissions capture and control, and/or the level of facility inspection and maintenance. Across NG production basins, these differences in facility-level methane emission rates are likely amplified, especially if significant variability in NG composition and state emissions regulations are present. In this study, we measured methane emission rates from the NG production sector in the Marcellus Shale Basin (Pennsylvania and West Virginia), currently the largest NG production basin in the U.S., and contrast these results with those of the Denver-Julesburg (Colorado) and Uintah (Utah) shale basins. Facility-level methane emission rates were measured at 106 NG production facilities using the dual tracer flux (nitrous oxide and acetylene), Gaussian dispersion simulations, and the OTM 33A techniques. The distribution of facility-level average methane emission rate for each NG basin will be discussed, with emphasis on how variability in NG composition (i.e., ethane-to-methane ratios) and state emissions regulations impact measured methane leak rates. While the focus of this presentation will be on the comparison of methane leak rates among NG basins, the use of three complimentary top-down methane measurement techniques provides a unique opportunity to explore the effectiveness of each approach, which will also be discussed.

  9. GHG emissions quantification at high spatial and temporal resolution at urban scale: the case of the town of Sassari (NW Sardinia - Italy)

    NASA Astrophysics Data System (ADS)

    Sanna, Laura; Ferrara, Roberto; Zara, Pierpaolo; Duce, Pierpaolo

    2014-05-01

    The European Union has set as priorities the fight against climate change related to greenhouse gas releases. The largest source of these emissions comes from human activities in urban areas that account for more than 70% of the world's emissions and several local governments intend to support the European strategic policies in understanding which crucial sectors drive GHG emissions in their city. Planning for mitigation actions at the community scale starts with the compilation of a GHG inventories that, among a wide range of measurement tools, provide information on the current status of GHG emissions across a specific jurisdiction. In the framework of a regional project for quantitative estimate of the net exchange of CO2 (emissions and sinks) at the municipal level in Sardinia, the town of Sassari represents a pilot site where a spatial and temporal high resolution GHG emissions inventory is built in line with European and international standard protocols to establish a baseline for tracking emission trends. The specific purpose of this accurate accounting is to obtain an appropriate allocation of CO2 and other GHG emissions at the fine building and hourly scale. The aim is to test the direct measurements needed to enable the construction of future scenarios of these emissions and for assessing possible strategies to reduce their impact. The key element of the methodologies used to construct this GHG emissions inventory is the Global Protocol for Community-Scale Greenhouse Gas Emissions (GPC) (March 2012) that identifies four main types of emission sources: (i) Stationary Units, (ii) Mobile Units, (iii) Waste, and (iv) Industrial Process and Product Use Emissions. The development of the GHG emissions account in Sassari consists in the collection of a range of alternative data sources (primary data, IPCC emission factors, national and local statistic, etc.) selected on the base on relevance and completeness criteria performed for 2010, as baseline year, using top-down, bottom-up or mixed approaches. GPC protocol also defines three standard scopes for downscaling emissions from the national to the community level, that allow to handle the attribution of releases that occur outside the community boundary as a result of activity or consumption within it. The procedures for data processing have simple and concise structure, applicable in different communities that led to the possibility to compare the results with other national contexts. An appropriate GHG emissions allocation over detailed spatial and temporal scales has been achieved on the basis of specific indicators (population, industrial employees, amount of product, etc.) and of geo-location and size of all buildings, using appropriate models, that enable to properly georeference them respect to their uses. The main advantage of neighborhood-level quantification consists in the identification of the main productive sources and emissive activities within the urban boundaries that mostly contribute to the current GHG emissions and then focus the efforts on possible mitigation.

  10. Review of Singapore's air quality and greenhouse gas emissions: current situation and opportunities.

    PubMed

    Velasco, Erik; Roth, Matthias

    2012-06-01

    Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.

  11. Field Electron Emission Characteristics of Single-Walled Carbon Nanotube on Tungsten Blunt Tip

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Daradkeh, Samer

    2018-02-01

    Recent investigations that are presented here illustrate the initial results that were obtained from a modified technique for holding the CNT on a W clean blunt tip. Field Electron Emission (FEE) has been investigated for single walled carbon nanotube (SWCNT) mounted on tungsten tip under (~10-8 mbar) vacuum conditions. The measurements recorded presented results showed that the CNT mounted on the W tip could emit electron current of at (0.7 V/μm) and reach up to (24 μA) of emission current at normal emission conditions. Such electron field emission tip was fabricated by electrolytically etching the high purity tungsten wire of (0.1 mm) in diameter in NaOH of (0.1) Molar solution, then mounting the single-walled carbon nanotube on the tip to be nearest to the tin oxide-coated and phosphorus glass anode. Such process was possible to be carried out under the microscope. A field electron microscope with a tip-screen separation at (~10mm) was used to characterize the electron emitter. The system was evacuated to an ultra-high vacuum level obtained after initial backing the system at up to (~180 °C) overnight. The emission characteristic has been investigated employing the I-V characteristics with Fowler-Nordheim plots and recording the emission images

  12. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-06-01

    Chamber studies were conducted on four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles ({<=} 2.5-{mu}m diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in homes in which the heaters are used may be increased in excess of 20 {mu}g/m{sup 3} over background levels. Sulfate and acidic aerosol levels in such homes could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels of all air contaminantsmore » measured.« less

  13. Total particle, sulfate, and acidic aerosol emissions from kerosene space heaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leaderer, B.P.; Boone, P.M.; Hammond, S.K.

    1990-01-01

    The article discusses chamber studies of four unvented kerosene space heaters to assess emissions of total particle, sulfate, and acidic aerosol. The heaters tested represented four burner designs currently in use by the public. Kerosene space heaters are a potential source of fine particles (= or < 2.5 micrometer diameter), sulfate, and acidic aerosol indoors. Fine particle concentrations in houses in which the heaters are used may be increased in excess of 20 micrograms/m3 over background levels. Sulfate and acidic aerosol levels in such houses could exceed average and peak outdoor concentrations. Maltuned heaters could produce exceptionally high levels ofmore » all air contaminants measured.« less

  14. Comparison and evaluation of anthropogenic emissions of SO2 and NOx over China

    NASA Astrophysics Data System (ADS)

    Li, Meng; Klimont, Zbigniew; Zhang, Qiang; Martin, Randall V.; Zheng, Bo; Heyes, Chris; Cofala, Janusz; Zhang, Yuxuan; He, Kebin

    2018-03-01

    Bottom-up emission inventories provide primary understanding of sources of air pollution and essential input of chemical transport models. Focusing on SO2 and NOx, we conducted a comprehensive evaluation of two widely used anthropogenic emission inventories over China, ECLIPSE and MIX, to explore the potential sources of uncertainties and find clues to improve emission inventories. We first compared the activity rates and emission factors used in two inventories and investigated the reasons of differences and the impacts on emission estimates. We found that SO2 emission estimates are consistent between two inventories (with 1 % differences), while NOx emissions in ECLIPSE's estimates are 16 % lower than those of MIX. The FGD (flue-gas desulfurization) device penetration rate and removal efficiency, LNB (low-NOx burner) application rate and abatement efficiency in power plants, emission factors of industrial boilers and various vehicle types, and vehicle fleet need further verification. Diesel consumptions are quite uncertain in current inventories. Discrepancies at the sectorial and provincial levels are much higher than those of the national total. We then examined the impacts of different inventories on model performance by using the nested GEOS-Chem model. We finally derived top-down emissions by using the retrieved columns from the Ozone Monitoring Instrument (OMI) compared with the bottom-up estimates. High correlations were observed for SO2 between model results and OMI columns. For NOx, negative biases in bottom-up gridded emission inventories (-21 % for MIX, -39 % for ECLIPSE) were found compared to the satellite-based emissions. The emission trends from 2005 to 2010 estimated by two inventories were both consistent with satellite observations. The inventories appear to be fit for evaluation of the policies at an aggregated or national level; more work is needed in specific areas in order to improve the accuracy and robustness of outcomes at finer spatial and also technological levels. To our knowledge, this is the first work in which source comparisons detailed to technology-level parameters are made along with the remote sensing retrievals and chemical transport modeling. Through the comparison between bottom-up emission inventories and evaluation with top-down information, we identified potential directions for further improvement in inventory development.

  15. Analysis of Possibility of Yeast Production Increase at Maintained Carbon Dioxide Emission Level

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.

    2016-12-01

    Main parameters polluting of technological wastewater (dregs from decantation and thicken of the wort) from yeast industry are: nitrogen, potassium and COD. Such wastewater are utilized mostly on agricultural fields. Unfortunately, these fields can only accept a limited amount of wastes. The basic parameter limiting there the amount of wastewater is nitrogen. When capacity of the production is large sewages are often pretreated at an evaporator station. However, due to the fairly high running costs of the evaporator station currently such a solution is applied only to a small amount of wastes (just to meet legal requirements). Replacement of the earth gas with a biomass being supplied to the evaporator station from the agricultural fields will both allow to maintain the carbon dioxide emission level and enable the production growth. Moreover, the biomass growing on the agricultural fields being fertilized with the wastewater coming from the yeast production allows consequently to utilize the greater volume of wastewater. Theoretically, the possible increase in the yeasts production, with maintaining the carbon dioxide emission level, can reach even 70%. Therefore, the solution presented in this paper combines both intensification of the yeasts production and maintaining the carbon dioxide emission level.

  16. Graphene electron cannon: High-current edge emission from aligned graphene sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jianlong; Li, Nannan; Guo, Jing

    2014-01-13

    High-current field emitters are made by graphene paper consist of aligned graphene sheets. Field emission luminance pattern shows that their electron beams can be controlled by rolling the graphene paper from sheet to cylinder. These specific electron beams would be useful to vacuum devices and electron beam lithograph. To get high-current emission, the graphene paper is rolled to array and form graphene cannon. Due to aligned emission array, graphene cannon have high emission current. Besides high emission current, the graphene cannon is also tolerable with excellent emission stability. With good field emission properties, these aligned graphene emitters bring application insight.

  17. Ultraviolet luminosity density of the universe during the epoch of reionization

    PubMed Central

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-01-01

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys. PMID:26348033

  18. Ultraviolet luminosity density of the universe during the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-09-01

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be . This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.

  19. NASA Glenn's Acoustical Testing Laboratory Awarded Accreditation by the National Voluntary Laboratory Accreditation Program

    NASA Technical Reports Server (NTRS)

    Akers, James C.; Cooper, Beth A.

    2004-01-01

    NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive onsite assessment that includes proficiency testing and documentation review. The ATL NVLAP accreditation currently applies specifically to its ISO 3744 soundpower- level determination procedure (see the photograph) and supporting ISO 17025 quality system, although all ATL operations are conducted in accordance with its quality system. The ATL staff is currently developing additional procedures to adapt this quality system to the testing of space flight hardware in accordance with International Space Station acoustic emission requirements.<

  20. Characterization of Particulate Fume and Oxides Emission from Stainless Steel Plasma Cutting.

    PubMed

    Wang, Jun; Hoang, Tien; Floyd, Evan L; Regens, James L

    2017-04-01

    Plasma cutting is a metal fabrication process that employs an electrically conductive plasma arc to cut metals. The metal fume emitted from stainless steel plasma cutting may consist of hexavalent chromium (Cr6+), which is a carcinogen, and other toxicants. Overexposure to plasma cutting fume may cause pulmonary toxicity and other health effects. This study was to evaluate the effects of operation parameters (arc current and arc time) on the fume formation rates, Cr6+ and other oxides concentrations, particle size distributions (PSD), and particle morphology. A fume chamber and high-volume pump were used to collect fume produced from cutting ER308L stainless steel plates with arc currents varying between 20 and 50 A. The amount of fume collected on glass fiber filters was gravimetrically determined and normalized to arc time. Cr6+ and other oxides in the fume were analyzed using ion chromatography. PSD of the fume was examined using a scanning mobility particle sizer and an aerodynamic particle sizer for fine and coarse fractions, respectively. The particle morphology was imaged through a transmission electron microscope (TEM). Total fume generation rate increased with arc current and ranged from 16.5 mg min-1 at 20 A to 119.0 mg min-1 at 50 A. Cr6+ emissions (219.8-480.0 µg min-1) from the plasma cutting were higher than welding fume in a previous study. Nitrogen oxides level can be an indicator of oxidation level and Cr6+ formation (R = 0.93). Both PSD measurement and TEM images confirmed a multimodal size distribution. A high concentration of a fine fraction of particles with geometric mean sizes from 96 to 235 nm was observed. Higher arc current yielded more particles, while lower arc current was not able to penetrate the metal plates. Hence, the worker should optimize the arc current to balance cut performance and fume emission. The findings indicated that arc current was the dominant factor in fume emission from plasma cutting. Appropriate ventilation and respiratory protection should be used to reduce workers' exposure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  1. NASA Project Develops Next-Generation Low-Emissions Combustor Technologies

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chang, Clarence T.; Herbon, John T.; Kramer, Stephen K.

    2013-01-01

    NASA's Environmentally Responsible Aviation (ERA) Project is working with industry to develop the fuel flexible combustor technologies for a new generation of low-emissions engine targeted for the 2020 timeframe. These new combustors will reduce nitrogen oxide (NOx) emissions to half of current state-of-the-art (SOA) combustors, while simultaneously reducing noise and fuel burn. The purpose of the low NOx fuel-flexible combustor research is to advance the Technology Readiness Level (TRL) and Integration Readiness Level (IRL) of a low NOx, fuel flexible combustor to the point where it can be integrated in the next generation of aircraft. To reduce project risk and optimize research benefit NASA chose to found two Phase 1 contracts. The first Phase 1 contracts went to engine manufactures and were awarded to: General Electric Company, and Pratt & Whitney Company. The second Phase 1 contracts went to fuel injector manufactures Goodrich Corporation, Parker Hannifin Corporation, and Woodward Fuel System Technology. In 2012, two sector combustors were tested at NASA's ASCR. The results indicated 75% NOx emission reduction below the 2004 CAEP/6 regulation level.

  2. Staggering reductions in atmospheric nitrogen dioxide across Canada in response to legislated transportation emissions reductions

    NASA Astrophysics Data System (ADS)

    Reid, Holly; Aherne, Julian

    2016-12-01

    It is well established that atmospheric nitrogen dioxide (NO2), associated mainly with emissions from transportation and industry, can have adverse effects on both human and ecosystem health. Specifically, atmospheric NO2 plays a role in the formation of ozone, and in acidic and nutrient deposition. As such, international agreements and national legislation, such as the On-Road Vehicle and Engine Emission Regulations (SOR/2003-2), and the Federal Agenda on Cleaner Vehicles, Engines and Fuel have been put into place to regulate and limit oxidized nitrogen emissions. The objective of this study was to assess the response of ambient air concentrations of NO2 across Canada to emissions regulations. Current NO2 levels across Canada were examined at 137 monitoring sites, and long-term annual and quarterly trends were evaluated for 63 continuous monitoring stations that had at least 10 years of data during the period 1988-2013. A non-parametric Mann-Kendall test (Z values) and Sen's slope estimate were used to determine monotonic trends; further changepoint analysis was used to determine periods with significant changes in NO2 air concentration and emissions time-series data. Current annual average NO2 levels in Canada range between 1.16 and 14.96 ppb, with the national average being 8.43 ppb. Provincially, average NO2 ranges between 3.77 and 9.25 ppb, with Ontario and British Columbia having the highest ambient levels of NO2. Long-term tend analysis indicated that the annual average NO2 air concentration decreased significantly at 87% of the stations (55 of 63), and decreased non-significantly at 10% (5 of 63) during the period 1998-2013. Concentrations increased (non-significantly) at only 3% (2 of 63) of the sites. Quarterly long-term trends showed similar results; significant decreases occurred at 84% (January-March), 88% (April-June), 83% (July-September), and 81% (October-December) of the sites. Declines in transportation emissions had the most influence on NO2 air concentrations, and changepoint analysis identified three significant changepoints for the air concentration of NO2 and transportation emissions data. The air concentration changepoints occurred immediately following changepoints in transportation emissions. The introduction of emissions limiting legislation, primarily from transportation sources, has lead to dramatic decreases of 32% in NO× emissions (42% from transportation sources [road, rail, air, marine]) and 47% in ambient NO2 concentrations across Canada. With respect to human health, legislated changes in transportation emissions have the greatest impact on ambient concentration in urban areas.

  3. Uncertainty In Greenhouse Gas Emissions On Carbon Sequestration In Coastal and Freshwater Wetlands of the Mississippi River Delta: A Subsiding Coastline as a Proxy for Future Global Sea Level

    NASA Astrophysics Data System (ADS)

    White, J. R.; DeLaune, R. D.; Roy, E. D.; Corstanje, R.

    2014-12-01

    The highly visible phenomenon of wetland loss in coastal Louisiana (LA) is examined through the prism of carbon accumulation, wetland loss and greenhouse gas (GHG) emissions. The Mississippi River Deltaic region experiences higher relative sea level rise due to coupled subsidence and eustatic sea level rise allowing this region to serve as a proxy for future projected golbal sea level rise. Carbon storage or sequestration in rapidly subsiding LA coastal marsh soils is based on vertical marsh accretion and areal change data. While coastal marshes sequester significant amount of carbon through vertical accretion, large amounts of carbon, previously sequested in the soil profile is lost through annual deterioration of these coastal marshes as well as through GHG emissions. Efforts are underway in Louisiana to access the carbon credit market in order to provide significant funding for coastal restoration projects. However, there is very large uncertainty on GHG emission rates related to both marsh type and temporal (daily and seasonal) effects. Very little data currently exists which addresses this uncertainty which can significantly affect the carbon credit value of a particular wetland system. We provide an analysis of GHG emission rates for coastal freshwater, brackish and and salt marshes compared to the net soil carbon sequestration rate. Results demonstrate that there is very high uncertainty on GHG emissions which can substantially alter the carbon credit value of a particular wetland system.

  4. Technical opportunities to reduce global anthropogenic emissions of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Winiwarter, Wilfried; Höglund-Isaksson, Lena; Klimont, Zbigniew; Schöpp, Wolfgang; Amann, Markus

    2018-01-01

    We describe a consistent framework developed to quantify current and future anthropogenic emissions of nitrous oxide and the available technical abatement options by source sector for 172 regions globally. About 65% of the current emissions derive from agricultural soils, 8% from waste, and 4% from the chemical industry. Low-cost abatement options are available in industry, wastewater, and agriculture, where they are limited to large industrial farms. We estimate that by 2030, emissions can be reduced by about 6% ±2% applying abatement options at a cost lower than 10 €/t CO2-eq. The largest abatement potential at higher marginal costs is available from agricultural soils, employing precision fertilizer application technology as well as chemical treatment of fertilizers to suppress conversion processes in soil (nitrification inhibitors). At marginal costs of up to 100 €/t CO2-eq, about 18% ±6% of baseline emissions can be removed and when considering all available options, the global abatement potential increases to about 26% ±9%. Due to expected future increase in activities driving nitrous oxide emissions, the limited technical abatement potential available means that even at full implementation of reduction measures by 2030, global emissions can be at most stabilized at the pre-2010 level. In order to achieve deeper reductions in emissions, considerable technological development will be required as well as non-technical options like adjusting human diets towards moderate animal protein consumption.

  5. Heritability of methane emissions from dairy cows over a lactation measured on commercial farms.

    PubMed

    Pszczola, M; Rzewuska, K; Mucha, S; Strabel, T

    2017-11-01

    Methane emission is currently an important trait in studies on ruminants due to its environmental and economic impact. Recent studies were based on short-time measurements on individual cows. As methane emission is a longitudinal trait, it is important to investigate its changes over a full lactation. In this study, we aimed to estimate the heritability of the estimated methane emissions from dairy cows using Fourier-transform infrared spectroscopy during milking in an automated milking system by implementing the random regression method. The methane measurements were taken on 485 Polish Holstein-Friesian cows at 2 commercial farms located in western Poland. The overall daily estimated methane emission was 279 g/d. Genetic variance fluctuated over the course of lactation around the average level of 1,509 (g/d), with the highest level, 1,866 (g/d), at the end of the lactation. The permanent environment variance values started at 2,865 (g/d) and then dropped to around 846 (g/d) at 100 d in milk (DIM) to reach the level of 2,444 (g/d) at the end of lactation. The residual variance was estimated at 2,620 (g/d). The average repeatability was 0.25. The heritability level fluctuated over the course of lactation, starting at 0.23 (SE 0.12) and then increasing to its maximum value of 0.3 (SE 0.08) at 212 DIM and ending at the level of 0.27 (SE 0.12). Average heritability was 0.27 (average SE 0.09). We have shown that estimated methane emission is a heritable trait and that the heritability level changes over the course of lactation. The observed changes and low genetic correlations between distant DIM suggest that it may be important to consider the period in which methane phenotypes are collected.

  6. Thermally Stimulated Currents in Nanocrystalline Titania

    PubMed Central

    Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Cavallaro, Alessandro; Scaringella, Monica

    2018-01-01

    A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO2. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5–630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 1014–1018 cm−3, associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies. PMID:29303976

  7. Thermally Stimulated Currents in Nanocrystalline Titania.

    PubMed

    Bruzzi, Mara; Mori, Riccardo; Baldi, Andrea; Carnevale, Ennio Antonio; Cavallaro, Alessandro; Scaringella, Monica

    2018-01-05

    A thorough study on the distribution of defect-related active energy levels has been performed on nanocrystalline TiO₂. Films have been deposited on thick-alumina printed circuit boards equipped with electrical contacts, heater and temperature sensors, to carry out a detailed thermally stimulated currents analysis on a wide temperature range (5-630 K), in view to evidence contributions from shallow to deep energy levels within the gap. Data have been processed by numerically modelling electrical transport. The model considers both free and hopping contribution to conduction, a density of states characterized by an exponential tail of localized states below the conduction band and the convolution of standard Thermally Stimulated Currents (TSC) emissions with gaussian distributions to take into account the variability in energy due to local perturbations in the highly disordered network. Results show that in the low temperature range, up to 200 K, hopping within the exponential band tail represents the main contribution to electrical conduction. Above room temperature, electrical conduction is dominated by free carriers contribution and by emissions from deep energy levels, with a defect density ranging within 10 14 -10 18 cm -3 , associated with physio- and chemi-sorbed water vapour, OH groups and to oxygen vacancies.

  8. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines.

    PubMed

    Ulvestad, Marte; Overland, Indra

    2012-06-01

    THIS ARTICLE DEVELOPS A FORMAL MODEL FOR COMPARING THE COST STRUCTURE OF THE TWO MAIN TRANSPORT OPTIONS FOR NATURAL GAS: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO 2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG.

  9. Natural gas and CO2 price variation: impact on the relative cost-efficiency of LNG and pipelines

    PubMed Central

    Ulvestad, Marte; Overland, Indra

    2012-01-01

    This article develops a formal model for comparing the cost structure of the two main transport options for natural gas: liquefied natural gas (LNG) and pipelines. In particular, it evaluates how variations in the prices of natural gas and greenhouse gas emissions affect the relative cost-efficiency of these two options. Natural gas is often promoted as the most environmentally friendly of all fossil fuels, and LNG as a modern and efficient way of transporting it. Some research has been carried out into the local environmental impact of LNG facilities, but almost none into aspects related to climate change. This paper concludes that at current price levels for natural gas and CO2 emissions the distance from field to consumer and the volume of natural gas transported are the main determinants of transport costs. The pricing of natural gas and greenhouse emissions influence the relative cost-efficiency of LNG and pipeline transport, but only to a limited degree at current price levels. Because more energy is required for the LNG process (especially for fuelling the liquefaction process) than for pipelines at distances below 9100 km, LNG is more exposed to variability in the price of natural gas and greenhouse gas emissions up to this distance. If the prices of natural gas and/or greenhouse gas emission rise dramatically in the future, this will affect the choice between pipelines and LNG. Such a price increase will be favourable for pipelines relative to LNG. PMID:24683269

  10. Committed emissions from existing and planned power plants and asset stranding required to meet the Paris Agreement

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Alexander; Hepburn, Cameron; Vogt-Schilb, Adrien; Caldecott, Ben

    2018-05-01

    Over the coming decade, the power sector is expected to invest ~7.2 trillion USD in power plants and grids globally, much of it into CO2-emitting coal and gas plants. These assets typically have long lifetimes and commit large amounts of (future) CO2 emissions. Here, we analyze the historic development of emission commitments from power plants and compare the emissions committed by current and planned plants with remaining carbon budgets. Based on this comparison we derive the likely amount of stranded assets that would be required to meet the 1.5 °C–2 °C global warming goal. We find that even though the growth of emission commitments has slowed down in recent years, currently operating generators still commit us to emissions (~300 GtCO2) above the levels compatible with the average 1.5 °C–2 °C scenario (~240 GtCO2). Furthermore, the current pipeline of power plants would add almost the same amount of additional commitments (~270 GtCO2). Even if the entire pipeline was cancelled, therefore, ~20% of global capacity would need to be stranded to meet the climate goals set out in the Paris Agreement. Our results can help companies and investors re-assess their investments in fossil-fuel power plants, and policymakers strengthen their policies to avoid further carbon lock-in.

  11. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300-350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less

  12. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025–2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ~450 gCO2e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H2 FCEVs, andmore » BEVs range from 300–350 gCO2e/mi. Future vehicle efficiency gains are expected to reduce emissions to ~350 gCO2/mi for ICEVs and ~250 gCO2e/mi for HEVs, PHEVs, FCEVs and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25–$1.00/mi depending on timeframe and vehicle-fuel technology. In all cases, vehicle cost represents the major (60–90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.« less

  13. Current and Future United States Light-Duty Vehicle Pathways: Cradle-to-Grave Lifecycle Greenhouse Gas Emissions and Economic Assessment.

    PubMed

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob; Joseck, Fred; Gohlke, David; Lindauer, Alicia; Ramsden, Todd; Biddy, Mary; Alexander, Mark; Barnhart, Steven; Sutherland, Ian; Verduzco, Laura; Wallington, Timothy J

    2018-02-20

    This article presents a cradle-to-grave (C2G) assessment of greenhouse gas (GHG) emissions and costs for current (2015) and future (2025-2030) light-duty vehicles. The analysis addressed both fuel cycle and vehicle manufacturing cycle for the following vehicle types: gasoline and diesel internal combustion engine vehicles (ICEVs), flex fuel vehicles, compressed natural gas (CNG) vehicles, hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (FCEVs), battery electric vehicles (BEVs), and plug-in hybrid electric vehicles (PHEVs). Gasoline ICEVs using current technology have C2G emissions of ∼450 gCO 2 e/mi (grams of carbon dioxide equivalents per mile), while C2G emissions from HEVs, PHEVs, H 2 FCEVs, and BEVs range from 300-350 gCO 2 e/mi. Future vehicle efficiency gains are expected to reduce emissions to ∼350 gCO 2 /mi for ICEVs and ∼250 gCO 2e /mi for HEVs, PHEVs, FCEVs, and BEVs. Utilizing low-carbon fuel pathways yields GHG reductions more than double those achieved by vehicle efficiency gains alone. Levelized costs of driving (LCDs) are in the range $0.25-$1.00/mi depending on time frame and vehicle-fuel technology. In all cases, vehicle cost represents the major (60-90%) contribution to LCDs. Currently, HEV and PHEV petroleum-fueled vehicles provide the most attractive cost in terms of avoided carbon emissions, although they offer lower potential GHG reductions. The ranges of LCD and cost of avoided carbon are narrower for the future technology pathways, reflecting the expected economic competitiveness of these alternative vehicles and fuels.

  14. Nutrient Recovery and Emissions of Ammonia, Nitrous Oxide, and Methane from Animal Manure in Europe: Effects of Manure Treatment Technologies.

    PubMed

    Hou, Yong; Velthof, Gerard L; Lesschen, Jan Peter; Staritsky, Igor G; Oenema, Oene

    2017-01-03

    Animal manure contributes considerably to ammonia (NH 3 ) and greenhouse gas (GHG) emissions in Europe. Various treatment technologies have been implemented to reduce emissions and to facilitate its use as fertilizer, but a systematic analysis of these technologies has not yet been carried out. This study presents an integrated assessment of manure treatment effects on NH 3 , nitrous oxide (N 2 O) and methane (CH 4 ) emissions from manure management chains in all countries of EU-27 in 2010 using the MITERRA-Europe model. Effects of implementing 12 treatment technologies on emissions and nutrient recovery were further explored through scenario analyses; the level of implementation corresponded to levels currently achieved by forerunner countries. Manure treatment decreased GHG emissions from manures in EU countries by 0-17% in 2010, with the largest contribution from anaerobic digestion; the effects on NH 3 emissions were small. Scenario analyses indicate that increased use of slurry acidification, thermal drying, incineration and pyrolysis may decrease NH 3 (9-11%) and GHG (11-18%) emissions; nitrification-denitrification treatment decreased NH 3 emissions, but increased GHG emissions. The nitrogen recovery (% of nitrogen excreted in housings that is applied to land) would increase from a mean of 57% (in 2010) to 61% by acidification, but would decrease to 48% by incineration. Promoting optimized manure treatment technologies can greatly contribute to achieving NH 3 and GHG emission targets set in EU environmental policies.

  15. Non-Ideal Properties of Gallium Nitride Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Shan, Qifeng

    The spectacular development of gallium nitride (GaN) based light-emitting diodes (LEDs) in recent years foreshadows a new era for lighting. There are still several non-ideal properties of GaN based LEDs that hinder their widespread applications. This dissertation studies these non-ideal properties including the large reverse leakage current, large subthreshold forward leakage current, an undesired parasitic cyan luminescence and high-concentration deep levels in GaInN blue LEDs. This dissertation also studies the thermal properties of GaInN LEDs. Chapter 1 gives a brief introduction of non-ideal properties of GaN based LEDs. The leakage current of GaN based LEDs, defects in epitaxially grown GaN devices, and doping problems of p-type GaN materials are discussed. The transient junction temperature measurement technique for GaN based LEDs is introduced. The leakage current of an LED includes the subthreshold forward leakage current and the reverse leakage current. The leakage current of GaN based LEDs affects the reliability, electrostatic discharge resilience, and sub-threshold power consumption. In Chapter 2, the reverse leakage current of a GaInN LED is analyzed by temperaturedependent current-voltage measurements. At low temperature, the reverse leakage current is attributed to the variable-range-hopping conduction. At high temperature, the reverse leakage current is attributed to a thermally-assisted multi-step tunneling. The thermal activation energies (95 meV ~ 162 meV), extracted from the Arrhenius plot for the reverse current in the high-temperature range, indicate a thermally activated tunneling process. Additional room-temperature capacitance-voltage (C-V) measurements are performed to obtain information on the depletion width and doping concentration of the LED. The average internal electric field is estimated by the C-V measurements. The strong internal electric field enhances the thermal emission of electrons in the thermally-assisted multi-step tunneling process. Another problem of GaInN blue LEDs is the undesired parasitic cyan emission band. The undesired parasitic emission band strongly influence the electrical and optical properties of GaInN blue LEDs including the subthreshold forward leakage current and the color purity of the emission. In Chapter 3 , GaInN blue LEDs emitting at 445 nm with a parasitic cyan (blue-green) emission band (480 nm), which dominates the emission spectrum at low injection current, are analyzed. Photoluminescence using resonant optical excitation shows that the cyan emission originates from the active region of the LED. The current- and excitation-density-dependent blue-to-cyan intensity ratio reveals that the cyan emission is due to a transition from the conduction band to a Mg acceptor having diffused into the last-grown quantum well of the active region. The Mg in the active region provides an additional carrier-transport path, and therefore can explain the high subthreshold forward leakage current that is measured in these LEDs. Deep levels in GaN-based materials strongly affect the electrical and optical properties of GaN-based LEDs. Chapter 4 describes the basic principle and the setup of a deep-level transient spectroscopy (DLTS) measurement system. This DLTS system is used to determine the concentration and thermal activation energy of deep levels in the depletion region of the GaInN LED. Two types of hole traps in the n-type side of the depletion region are observed in the DLTS measurement. The thermal activation energies of these two types of hole traps are compared with the results reported in literature. The hole trap associated with the major DLTS peak with a thermal activation energy of 0.80 eV is presumably related to the “yellow luminescence band”. Self-heating of LEDs is an important issue that affects the efficiency and reliability. In Chapter 5, the thermal properties, including thermal time constants, of GaN LEDs are analyzed. The transient-junction-temperature behavior of unpackaged LED chips is described by a single time constant, which is the product of a thermal resistance Rth and a thermal capacitance Cth. Furthermore, a multistage RthCth thermal model for packaged LEDs is developed. The transient response of the junction temperature of LEDs after the power is switched on or switched off can be described by a multi-exponential function. Each time constant of this function is approximately the product of a thermal resistance, Rth, and a thermal capacitance, Cth. The transient junction temperature after the power is switched off is measured for a high-power flip-chip LED by the forward-voltage method. A two-stage RthCth model is used to analyze the thermal properties of the packaged LED. Two time constants, 2.72 ms and 18.7 ms are extracted from the junction temperature decay measurement and attributed to the thermal time constant of the LED GaN / sapphire chip and LED Si submount, respectively.

  16. Long-term changes in CO2 emissions in Austria and Czechoslovakia—Identifying the drivers of environmental pressures

    PubMed Central

    Gingrich, Simone; Kušková, Petra; Steinberger, Julia K.

    2011-01-01

    This study presents fossil-fuel related CO2 emissions in Austria and Czechoslovakia (current Czech Republic and Slovakia) for 1830–2000. The drivers of CO2 emissions are discussed by investigating the variables of the standard Kaya identity for 1920–2000 and conducting a comparative Index Decomposition Analysis. Proxy data on industrial production and household consumption are analysed to understand the role of the economic structure. CO2 emissions increased in both countries in the long run. Czechoslovakia was a stronger emitter of CO2 throughout the time period, but per-capita emissions significantly differed only after World War I, when Czechoslovakia and Austria became independent. The difference in CO2 emissions increased until the mid-1980s (the period of communism in Czechoslovakia), explained by the energy intensity and the composition effects, and higher industrial production in Czechoslovakia. Counterbalancing factors were the income effect and household consumption. After the Velvet revolution in 1990, Czechoslovak CO2 emissions decreased, and the energy composition effect (and industrial production) lost importance. Despite their different political and economic development, Austria and Czechoslovakia reached similar levels of per-capita CO2 emissions in the late 20th century. Neither Austrian “eco-efficiency” nor Czechoslovak restructuring have been effective in reducing CO2 emissions to a sustainable level. PMID:21461052

  17. The impact of H2S emissions on future geothermal power generation - The Geysers region, California

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.

    1977-01-01

    The future potential for geothermal power generation in the Geysers region of California is as much as 10 times the current 502 MW(e) capacity. However, environmental factors such as H2S emissions and institutional considerations may play the primary role in determining the rate and ultimate level of development. In this paper a scenario of future geothermal generation capacity and H2S emissions in the Geysers region is presented. Problem areas associated with H2S emissions, H2S abatement processes, plant operations, and government agency resources are described. The impact of H2S emissions on future development and the views of effected organizations are discussed. Potential actions needed to remove these constraints are summarized.

  18. Policy design and performance of emissions trading markets: an adaptive agent-based analysis.

    PubMed

    Bing, Zhang; Qinqin, Yu; Jun, Bi

    2010-08-01

    Emissions trading is considered to be a cost-effective environmental economic instrument for pollution control. However, the pilot emissions trading programs in China have failed to bring remarkable success in the campaign for pollution control. The policy design of an emissions trading program is found to have a decisive impact on its performance. In this study, an artificial market for sulfur dioxide (SO2) emissions trading applying the agent-based model was constructed. The performance of the Jiangsu SO2 emissions trading market under different policy design scenario was also examined. Results show that the market efficiency of emissions trading is significantly affected by policy design and existing policies. China's coal-electricity price system is the principal factor influencing the performance of the SO2 emissions trading market. Transaction costs would also reduce market efficiency. In addition, current-level emissions discharge fee/tax and banking mechanisms do not distinctly affect policy performance. Thus, applying emissions trading in emission control in China should consider policy design and interaction with other existing policies.

  19. Cavitation induced Becquerel effect.

    PubMed

    Prevenslik, T V

    2003-06-01

    The observation of an electrical current upon the ultraviolet (UV) illumination of one of a pair of identical electrodes in liquid water, called the Becquerel effect, was made over 150 years ago. More recently, an electrical current was found if the water surrounding one electrode was made to cavitate by focused acoustic radiation, the phenomenon called the cavitation induced Becquerel effect. Since cavitation is known to produce UV light, the electrode may simply absorb the UV light and produce the current by the photo-emission theory of photoelectrochemistry. But the current was found to be semi-logarithmic with the standard electrode potential which is characteristic of the oxidation of the electrode surface in the photo-decomposition theory, and not the photo-emission theory. High bubble collapse temperatures may oxidize the electrode, but this is unlikely because melting was not observed on the electrode surfaces. At ambient temperature, oxidation may proceed by chemical reaction provided a source of vacuum ultraviolet (VUV) radiation is available to produce the excited OH* states of water to react with the electrode. The source of VUV radiation is shown to be the spontaneous emission of coherent infrared (IR) radiation from water molecules in particles that form in bubbles because of surface tension, the spontaneous IR emission induced by cavity quantum electrodynamics. The excited OH* states are produced as the IR radiation accumulates to VUV levels in the bubble wall molecules.

  20. Influence of emission threshold of explosive emission cathodes on current waveform in foilless diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, P.; Liu, G. Z.; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    The emission threshold of explosive emission cathodes (EECs) is an important factor for beam quality. It can affect the explosive emission delay time, the plasma expansion process on the cathode surface, and even the current amplitude when the current is not fully space-charge-limited. This paper researches the influence of the emission threshold of an annular EEC on the current waveform in a foilless diode when the current is measured by a Rogowski coil. The particle-in-cell simulation which is performed under some tolerable and necessary simplifications shows that the long explosive emission delay time of high-threshold cathodes may leave an apparentmore » peak of displacement current on the rise edge of the current waveform, and this will occur only when the electron emission starts after this peak. The experimental researches, which are performed under a diode voltage of 1 MV and a repetitive frequency of 20 Hz, demonstrate that the graphite cathode has a lower emission threshold and a longer lifetime than the stainless steel cathode according to the variation of the peak of displacement current on the rise edge of the current waveform.« less

  1. Evaluation of carbon dioxide emission factor from urea during rice cropping season: A case study in Korean paddy soil

    NASA Astrophysics Data System (ADS)

    Kim, Gil Won; Jeong, Seung Tak; Kim, Gun Yeob; Kim, Pil Joo; Kim, Sang Yoon

    2016-08-01

    Fertilization with urea can lead to a loss of carbon dioxide (CO2) that was fixed during the industrial production process. The extent of atmospheric CO2 removal from urea manufacturing was estimated by the Industrial Processes and Product Use sector (IPPU sector). On its basis, the Intergovernmental Panel on Climate Change (IPCC) has proposed a value of 0.2 Mg C per Mg urea (available in 2006 revised IPCC guidelines for greenhouse gas inventories), which is the mass fractions of C in urea, as the CO2 emission coefficient from urea for the agricultural sector. Notably, due to the possibility of bicarbonate leaching to waters, all C in urea might not get released as CO2 to the atmosphere. Hence, in order to provide an accurate value of the CO2 emission coefficient from applied urea in the rice ecosystem, the CO2 emission factors were characterized under different levels of 13C-urea applied paddy field in the current study. The total CO2 fluxes and rice grain yields increased significantly with increasing urea application (110-130 kg N ha-1) and thereafter, decreased. However, with increasing 13C-urea application, a significant and proportional increase of the 13CO2sbnd C emissions from 13C-urea was also observed. From the relationships between urea application levels and 13CO2sbnd C fluxes from 13C-urea, the CO2sbnd C emission factor from urea was estimated to range between 0.0143 and 0.0156 Mg C per Mg urea. Thus, the CO2sbnd C emission factor of this study is less than that of the value proposed by IPCC. Therefore, for the first time, we propose to revise the current IPCC guideline value of CO2sbnd C emission factor from urea as 0.0143-0.0156 Mg C per Mg urea for Korean paddy soils.

  2. A comparison of a mini-PEMS and a 1065 compliant PEMS for on-road gaseous and particulate emissions from a light duty diesel truck.

    PubMed

    Yang, Jiacheng; Durbin, Thomas D; Jiang, Yu; Tange, Takeshi; Karavalakis, Georgios; Cocker, David R; Johnson, Kent C

    2018-05-31

    The primary goal of this study was to compare emissions measurements between a 1065 compliant PEMS, and the NTK Compact Emissions Meter (NCEM) capable of measuring NOx, PM, and solid PN. Both units were equipped on a light-duty diesel truck and tested over local, highway, and downtown driving routes. The results indicate that the NOx measurements for the NCEM were within approximately ±10% of those the 1065 compliant PEMS, which suggests that the NCEM could be used as a screening tool for NOx emissions. The NCEM showed larger differences for PM emissions on an absolute level, but this was at PM levels well below the 1 mg/mi level. The NCEM differences ranged from -2% to +26% if the comparisons are based on a percentage of the 1.0 mg/mi standard. Larger differences were also seen for PN emissions, with the NCEM measuring higher PN emissions, which can primarily be attributed to a zero current offset that we observed for the NCEM, which has been subsequently improved in the latest generation of the NCEM system. The comparisons between the 1065 compliant PEMS and the NCEM suggest that there could be applications for the NCEM or other mini-PEMS for applications such as identification of potential issues by regulatory agencies, manufacturer evaluation and validation of emissions under in-use conditions, and potential use in inspection and maintenance (I/M) programs, especially for heavy-duty vehicles. Copyright © 2017. Published by Elsevier B.V.

  3. Uncertainty in temperature response of current consumption-based emissions estimates

    NASA Astrophysics Data System (ADS)

    Karstensen, J.; Peters, G. P.; Andrew, R. M.

    2015-05-01

    Several studies have connected emissions of greenhouse gases to economic and trade data to quantify the causal chain from consumption to emissions and climate change. These studies usually combine data and models originating from different sources, making it difficult to estimate uncertainties along the entire causal chain. We estimate uncertainties in economic data, multi-pollutant emission statistics, and metric parameters, and use Monte Carlo analysis to quantify contributions to uncertainty and to determine how uncertainty propagates to estimates of global temperature change from regional and sectoral territorial- and consumption-based emissions for the year 2007. We find that the uncertainties are sensitive to the emission allocations, mix of pollutants included, the metric and its time horizon, and the level of aggregation of the results. Uncertainties in the final results are largely dominated by the climate sensitivity and the parameters associated with the warming effects of CO2. Based on our assumptions, which exclude correlations in the economic data, the uncertainty in the economic data appears to have a relatively small impact on uncertainty at the national level in comparison to emissions and metric uncertainty. Much higher uncertainties are found at the sectoral level. Our results suggest that consumption-based national emissions are not significantly more uncertain than the corresponding production-based emissions since the largest uncertainties are due to metric and emissions which affect both perspectives equally. The two perspectives exhibit different sectoral uncertainties, due to changes of pollutant compositions. We find global sectoral consumption uncertainties in the range of ±10 to ±27 % using the Global Temperature Potential with a 50-year time horizon, with metric uncertainties dominating. National-level uncertainties are similar in both perspectives due to the dominance of CO2 over other pollutants. The consumption emissions of the top 10 emitting regions have a broad uncertainty range of ±9 to ±25 %, with metric and emission uncertainties contributing similarly. The absolute global temperature potential (AGTP) with a 50-year time horizon has much higher uncertainties, with considerable uncertainty overlap for regions and sectors, indicating that the ranking of countries is uncertain.

  4. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    PubMed Central

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  5. Assessing the Gap Between Top-down and Bottom-up Measured Methane Emissions in Indianapolis, IN.

    NASA Astrophysics Data System (ADS)

    Prasad, K.; Lamb, B. K.; Cambaliza, M. O. L.; Shepson, P. B.; Stirm, B. H.; Salmon, O. E.; Lavoie, T. N.; Lauvaux, T.; Ferrara, T.; Howard, T.; Edburg, S. L.; Whetstone, J. R.

    2014-12-01

    Releases of methane (CH4) from the natural gas supply chain in the United States account for approximately 30% of the total US CH4 emissions. However, there continues to be large questions regarding the accuracy of current emission inventories for methane emissions from natural gas usage. In this paper, we describe results from top-down and bottom-up measurements of methane emissions from the large isolated city of Indianapolis. The top-down results are based on aircraft mass balance and tower based inverse modeling methods, while the bottom-up results are based on direct component sampling at metering and regulating stations, surface enclosure measurements of surveyed pipeline leaks, and tracer/modeling methods for other urban sources. Mobile mapping of methane urban concentrations was also used to identify significant sources and to show an urban-wide low level enhancement of methane levels. The residual difference between top-down and bottom-up measured emissions is large and cannot be fully explained in terms of the uncertainties in top-down and bottom-up emission measurements and estimates. Thus, the residual appears to be, at least partly, attributed to a significant wide-spread diffusive source. Analyses are included to estimate the size and nature of this diffusive source.

  6. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  7. Direct Determination of Field Emission across the Heterojunctions in a ZnO/Graphene Thin-Film Barristor.

    PubMed

    Mills, Edmund M; Min, Bok Ki; Kim, Seong K; Kim, Seong Jun; Kang, Min-A; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok; Jung, Jongwan; Kim, Sangtae

    2015-08-26

    Graphene barristors are a novel type of electronic switching device with excellent performance, which surpass the low on-off ratios that limit the operation of conventional graphene transistors. In barristors, a gate bias is used to vary graphene's Fermi level, which in turn controls the height and resistance of a Schottky barrier at a graphene/semiconductor heterojunction. Here we demonstrate that the switching characteristic of a thin-film ZnO/graphene device with simple geometry results from tunneling current across the Schottky barriers formed at the ZnO/graphene heterojunctions. Direct characterization of the current-voltage-temperature relationship of the heterojunctions by ac-impedance spectroscopy reveals that this relationship is controlled predominantly by field emission, unlike most graphene barristors in which thermionic emission is observed. This governing mechanism makes the device unique among graphene barristors, while also having the advantages of simple fabrication and outstanding performance.

  8. Driving-induced population trapping and linewidth narrowing via the quantum Zeno effect

    NASA Astrophysics Data System (ADS)

    Christensen, Charles N.; Iles-Smith, Jake; Petersen, Torkil S.; Mørk, Jesper; McCutcheon, Dara P. S.

    2018-06-01

    We investigate the suppression of spontaneous emission from a driven three-level system embedded in an optical cavity via a manifestation of the quantum Zeno effect. Strong resonant coupling of the lower two levels to an external optical field results in a decrease of the decay rate of the third upper level. We show that this effect has observable consequences in the form of emission spectra with subnatural linewidths, which should be measurable using, for example, quantum dot-cavity systems in currently obtainable parameter regimes, and may find use in applications requiring the control of single-photon arrival times and wave-packet extent. These results suggest an underappreciated link between the Zeno effect, dressed states, and Purcell enhancement.

  9. Global Scenarios of Air Pollution until 2030: Combining Air Quality, Climate Change and Energy Access Policies

    NASA Astrophysics Data System (ADS)

    Rao, S.; Dentener, F. J.; Klimont, Z.; Riahi, K.

    2011-12-01

    Outdoor air pollution is increasingly recognized as a significant contributor to global health outcomes. This has led to the implementation of a number of air quality policies worldwide, with total air pollution control costs in 2005 estimated at US$195 billion. More than 80% of the world's population is still found to be exposed to PM2.5 concentrations exceeding WHO air quality guidelines and health impacts resulting from these exposures estimated at around 2-5% of the global disease burden. Key questions to answer are 1) How will pollutant emissions evolve in the future given developments in the energy system and how will energy and environmental policies influence such emission trends. 2) What implications will this have for resulting exposures and related health outcomes. In order to answer these questions, varying levels of stringency of air quality legislation are analyzed in combination with policies on universal access to clean cooking fuels and limiting global temperature change to 2°C in 2100. Bottom-up methodologies using energy emissions modeling are used to derive sector-based pollutant emission trajectories until 2030. Emissions are spatially downscaled and used in combination with a global transport chemistry model to derive ambient concentrations of PM2.5. Health impacts of these exposures are further estimated consistent with WHO data and methodology. The results indicate that currently planned air quality legislation combined with rising energy demand will be insufficient in controlling future emissions growth in developing countries. In order to achieve significant reductions in pollutant emissions of the order of more than 50% from 2005 levels and reduce exposures to levels consistent with WHO standards, it will be necessary to increase the stringency of such legislations and combine them with policies on energy access and climate change. Combined policies also result in reductions in air pollution control costs as compared to those associated with current legislations. Health related co-benefits of combined policies are also found to be large, especially in developing countries- a reduction of more than 50% in terms of pollution related mortality impacts as compared to today.

  10. A spectrally tunable all-graphene-based flexible field-effect light-emitting device

    PubMed Central

    Wang, Xiaomu; Tian, He; Mohammad, Mohammad Ali; Li, Cheng; Wu, Can; Yang, Yi; Ren, Tian-Ling

    2015-01-01

    The continuous tuning of the emission spectrum of a single light-emitting diode (LED) by an external electrical bias is of great technological significance as a crucial property in high-quality displays, yet this capability has not been demonstrated in existing LEDs. Graphene, a tunable optical platform, is a promising medium to achieve this goal. Here we demonstrate a bright spectrally tunable electroluminescence from blue (∼450 nm) to red (∼750 nm) at the graphene oxide/reduced-graphene oxide interface. We explain the electroluminescence results from the recombination of Poole–Frenkel emission ionized electrons at the localized energy levels arising from semi-reduced graphene oxide, and holes from the top of the π band. Tuning of the emission wavelength is achieved by gate modulation of the participating localized energy levels. Our demonstration of current-driven tunable LEDs not only represents a method for emission wavelength tuning but also may find applications in high-quality displays. PMID:26178323

  11. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.

    PubMed

    Geiregat, Pieter; Houtepen, Arjan J; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; Van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  12. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots

    NASA Astrophysics Data System (ADS)

    Geiregat, Pieter; Houtepen, Arjan J.; Sagar, Laxmi Kishore; Infante, Ivan; Zapata, Felipe; Grigel, Valeriia; Allan, Guy; Delerue, Christophe; van Thourhout, Dries; Hens, Zeger

    2018-01-01

    Colloidal quantum dots (QDs) raise more and more interest as solution-processable and tunable optical gain materials. However, especially for infrared active QDs, optical gain remains inefficient. Since stimulated emission involves multifold degenerate band-edge states, population inversion can be attained only at high pump power and must compete with efficient multi-exciton recombination. Here, we show that mercury telluride (HgTe) QDs exhibit size-tunable stimulated emission throughout the near-infrared telecom window at thresholds unmatched by any QD studied before. We attribute this unique behaviour to surface-localized states in the bandgap that turn HgTe QDs into 4-level systems. The resulting long-lived population inversion induces amplified spontaneous emission under continuous-wave optical pumping at power levels compatible with solar irradiation and direct current electrical pumping. These results introduce an alternative approach for low-threshold QD-based gain media based on intentional trap states that paves the way for solution-processed infrared QD lasers and amplifiers.

  13. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  14. Costing climate change.

    PubMed

    Reay, David S

    2002-12-15

    Debate over how, when, and even whether man-made greenhouse-gas emissions should be controlled has grown in intensity even faster than the levels of greenhouse gas in our atmosphere. Many argue that the costs involved in reducing emissions outweigh the potential economic damage of human-induced climate change. Here, existing cost-benefit analyses of greenhouse-gas reduction policies are examined, with a view to establishing whether any such global reductions are currently worthwhile. Potential for, and cost of, cutting our own individual greenhouse-gas emissions is then assessed. I find that many abatement strategies are able to deliver significant emission reductions at little or no net cost. Additionally, I find that there is huge potential for individuals to simultaneously cut their own greenhouse-gas emissions and save money. I conclude that cuts in global greenhouse-gas emissions, such as those of the Kyoto Protocol, cannot be justifiably dismissed as posing too large an economic burden.

  15. Contribution of LPG-Derived Emissions to Air Pollution in the Metropolitan Area of Guadalajara City.

    PubMed

    Schifter, Isaac; Magdaleno, Moises; Díaz, Luis; Melgarejo, Luis A; Barrera, Adrian; Krüger, Burkhard; Arriaga, José L; Lopez-Salinas, Esteban

    2000-10-01

    Measurements of hydrocarbon (HC) emissions generated by the use of liquefied petroleum gas (LPG) in the metropolitan area of Guadalajara City (MAG) are presented in this work. Based on measurements in the course of distribution, handling, and consumption, an estimated 4407 tons/yr are released into the atmosphere. The three most important contributors to LPG emissions were refilling of LPG-fueled vehicles and commercial and domestic consumption. The MAG shows a different contribution pattern of LPG emission sources compared with that of the metropolitan area of Mexico City (MAMC). These results show that each megacity has different sources of emissions, which provides more accurate strategies in the handling procedures for LPG to decrease the impact in O 3 levels. This work represents the first evaluation performed in Guadalajara City, based on current measurements, of the LPG contribution to polluting emissions.

  16. Contribution of LPG-derived emissions to air pollution in the metropolitan area of Guadalajara City.

    PubMed

    Schifter, I; Magdaleno, M; Díaz, L; Melgarejo, L A; Barrera, A; Krüger, B; Arriaga, J L; López-Salinas, E

    2000-10-01

    Measurements of hydrocarbon (HC) emissions generated by the use of liquefied petroleum gas (LPG) in the metropolitan area of Guadalajara City (MAG) are presented in this work. Based on measurements in the course of distribution, handling, and consumption, an estimated 4407 tons/yr are released into the atmosphere. The three most important contributors to LPG emissions were refilling of LPG-fueled vehicles and commercial and domestic consumption. The MAG shows a different contribution pattern of LPG emission sources compared with that of the metropolitan area of Mexico City (MAMC). These results show that each megacity has different sources of emissions, which provides more accurate strategies in the handling procedures for LPG to decrease the impact in O3 levels. This work represents the first evaluation performed in Guadalajara City, based on current measurements, of the LPG contribution to polluting emissions.

  17. Effect of current emission abatement strategies on air quality improvement in China: A case study of Baotou, a typical industrial city in Inner Mongolia.

    PubMed

    Qiu, Xionghui; Duan, Lei; Cai, Siyi; Yu, Qian; Wang, Shuxiao; Chai, Fahe; Gao, Jian; Li, Yanping; Xu, Zhaoming

    2017-07-01

    The national Air Pollution Prevention and Control Action Plan required significant decreases in PM 2.5 levels over China. To explore more effective emission abatement strategies in industrial cities, a case study was conducted in Baotou to evaluate the current national control measures. The total emissions of SO 2, NO X , PM 2.5 and NMVOC (non-methane volatile organic compounds) in Baotou were 211.2Gg, 156.1Gg, 28.8Gg, and 48.5Gg, respectively in 2013, and they would experience a reduction of 30.4%, 26.6%, 15.1%, and 8.7%, respectively in 2017 and 39.0%, 32.0%, 24.4%, and 12.9%, respectively in 2020. The SO 2 , NO X and PM 2.5 emissions from the industrial sector would experience a greater decrease, with reductions of 37%, 32.7 and 24.3%, respectively. From 2013 to 2020, the concentrations of SO 2 , NO 2 , and PM 2.5 are expected to decline by approximately 30%, 10% and 14.5%, respectively. The reduction rate of SNA (sulfate, nitrate and ammonium) concentrations was significantly higher than that of PM 2.5 in 2017, implying that the current key strategy toward controlling air pollutants from the industrial sector is more powerful for SNA. Although air pollution control measures implemented in the industrial sector could greatly reduce total emissions, constraining the emissions from lower sources such as residential coal combustion would be more effective in decreasing the concentration of PM 2.5 from 2017 to 2020. These results suggest that even for a typical industrial city, the reduction of PM 2.5 concentrations not only requires decreases in emissions from the industrial sector, but also from the low emission sources. The seasonal variation in sulfate concentration also showed that emission from coal-burning is the key factor to control during the heating season. Copyright © 2016. Published by Elsevier B.V.

  18. Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochkareva, N. I.; Ivanov, A. M.; Klochkov, A. V.

    2015-06-15

    It is shown that the emission efficiency and the 1/f noise level in light-emitting diodes with InGaN/GaN quantum wells correlate with how the differential resistance of a diode varies with increasing current. Analysis of the results shows that hopping transport via defect states across the n-type part of the space-charge region results in limitation of the current by the tunneling resistance at intermediate currents and shunting of the n-type barrier at high currents. The increase in the average number of tunneling electrons suppresses the 1/f current noise at intermediate currents. The strong growth in the density of current noise atmore » high currents, S{sub J} ∝ J{sup 3}, is attributed to a decrease in the average number of tunneling electrons as the n-type barrier decreases in height and width with increasing forward bias. The tunneling-recombination leakage current along extended defects grows faster than the tunneling injection current, which leads to emission efficiency droop.« less

  19. Poole Frenkel current and Schottky emission in SiN gate dielectric in AlGaN/GaN metal insulator semiconductor heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Hanna, Mina J.; Zhao, Han; Lee, Jack C.

    2012-10-01

    We analyze the anomalous I-V behavior in SiN prepared by plasma enhanced chemical vapor deposition for use as a gate insulator in AlGaN/GaN metal insulator semiconductor heterostructure filed effect transistors (HFETs). We observe leakage current across the dielectric with opposite polarity with respect to the applied electric field once the voltage sweep reaches a level below a determined threshold. This is observed as the absolute minimum of the leakage current does not occur at minimum voltage level (0 V) but occurs earlier in the sweep interval. Curve-fitting analysis suggests that the charge-transport mechanism in this region is Poole-Frenkel current, followed by Schottky emission due to band bending. Despite the current anomaly, the sample devices have shown a notable reduction of leakage current of over 2 to 6 order of magnitudes compared to the standard Schottky HFET. We show that higher pressures and higher silane concentrations produce better films manifesting less trapping. This conforms to our results that we reported in earlier publications. We found that higher chamber pressure achieves higher sheet carrier concentration that was found to be strongly dependent on the trapped space charge at the SiN/GaN interface. This would suggest that a lower chamber pressure induces more trap states into the SiN/GaN interface.

  20. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain

    NASA Astrophysics Data System (ADS)

    Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; Salvador, P.; García Dos Santos, S.; Fernández-Patier, R.; Moreno-Grau, S.; Negral, L.; Minguillón, M. C.; Monfort, E.; Gil, J. I.; Inza, A.; Ortega, L. A.; Santamaría, J. M.; Zabalza, J.

    Despite their significant role in source apportionment analysis, studies dedicated to the identification of tracer elements of emission sources of atmospheric particulate matter based on air quality data are relatively scarce. The studies describing tracer elements of specific sources currently available in the literature mostly focus on emissions from traffic or large-scale combustion processes (e.g. power plants), but not on specific industrial processes. Furthermore, marker elements are not usually determined at receptor sites, but during emission. In our study, trace element concentrations in PM 10 and PM 2.5 were determined at 33 monitoring stations in Spain throughout the period 1995-2006. Industrial emissions from different forms of metallurgy (steel, stainless steel, copper, zinc), ceramic and petrochemical industries were evaluated. Results obtained at sites with no significant industrial development allowed us to define usual concentration ranges for a number of trace elements in rural and urban background environments. At industrial and traffic hotspots, average trace metal concentrations were highest, exceeding rural background levels by even one order of magnitude in the cases of Cr, Mn, Cu, Zn, As, Sn, W, V, Ni, Cs and Pb. Steel production emissions were linked to high levels of Cr, Mn, Ni, Zn, Mo, Cd, Se and Sn (and probably Pb). Copper metallurgy areas showed high levels of As, Bi, Ga and Cu. Zinc metallurgy was characterised by high levels of Zn and Cd. Glazed ceramic production areas were linked to high levels of Zn, As, Se, Zr, Cs, Tl, Li, Co and Pb. High levels of Ni and V (in association) were tracers of petrochemical plants and/or fuel-oil combustion. At one site under the influence of heavy vessel traffic these elements could be considered tracers (although not exclusively) of shipping emissions. Levels of Zn-Ba and Cu-Sb were relatively high in urban areas when compared with industrialised regions due to tyre and brake abrasion, respectively.

  1. Emission current control system for multiple hollow cathode devices

    NASA Technical Reports Server (NTRS)

    Beattie, John R. (Inventor); Hancock, Donald J. (Inventor)

    1988-01-01

    An emission current control system for balancing the individual emission currents from an array of hollow cathodes has current sensors for determining the current drawn by each cathode from a power supply. Each current sensor has an output signal which has a magnitude proportional to the current. The current sensor output signals are averaged, the average value so obtained being applied to a respective controller for controlling the flow of an ion source material through each cathode. Also applied to each controller are the respective sensor output signals for each cathode and a common reference signal. The flow of source material through each hollow cathode is thereby made proportional to the current drawn by that cathode, the average current drawn by all of the cathodes, and the reference signal. Thus, the emission current of each cathode is controlled such that each is made substantially equal to the emission current of each of the other cathodes. When utilized as a component of a multiple hollow cathode ion propulsion motor, the emission current control system of the invention provides for balancing the thrust of the motor about the thrust axis and also for preventing premature failure of a hollow cathode source due to operation above a maximum rated emission current.

  2. Preindustrial nitrous oxide emissions from the land biosphere estimated by using a global biogeochemistry model

    NASA Astrophysics Data System (ADS)

    Xu, Rongting; Tian, Hanqin; Lu, Chaoqun; Pan, Shufen; Chen, Jian; Yang, Jia; Zhang, Bowen

    2017-07-01

    To accurately assess how increased global nitrous oxide (N2O) emission has affected the climate system requires a robust estimation of the preindustrial N2O emissions since only the difference between current and preindustrial emissions represents net drivers of anthropogenic climate change. However, large uncertainty exists in previous estimates of preindustrial N2O emissions from the land biosphere, while preindustrial N2O emissions on the finer scales, such as regional, biome, or sector scales, have not been well quantified yet. In this study, we applied a process-based Dynamic Land Ecosystem Model (DLEM) to estimate the magnitude and spatial patterns of preindustrial N2O fluxes at the biome, continental, and global level as driven by multiple environmental factors. Uncertainties associated with key parameters were also evaluated. Our study indicates that the mean of the preindustrial N2O emission was approximately 6.20 Tg N yr-1, with an uncertainty range of 4.76 to 8.13 Tg N yr-1. The estimated N2O emission varied significantly at spatial and biome levels. South America, Africa, and Southern Asia accounted for 34.12, 23.85, and 18.93 %, respectively, together contributing 76.90 % of global total emission. The tropics were identified as the major source of N2O released into the atmosphere, accounting for 64.66 % of the total emission. Our multi-scale estimates provide a robust reference for assessing the climate forcing of anthropogenic N2O emission from the land biosphere

  3. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  4. Towards Quality-Aware Big Data Integration for Crowdsourced Road Sensing System

    DOT National Transportation Integrated Search

    2017-11-27

    With nearly a billion automobiles on the road today, the current transportation systems have begun to show signs of serious strain, such as congestion, traffic accident, excessive energy consumption and increased emission level. To mitigate these pro...

  5. Spindt cold cathode electron gun development program

    NASA Technical Reports Server (NTRS)

    Spindt, C. A.

    1983-01-01

    A thin film field emission cathode array and an electron gun based on this emitter array are summarized. Fabricating state of the art cathodes for testing at NASA and NRL, advancing the fabrication technology, developing wedge shaped emitters, and performing emission tests are covered. An anistropic dry etching process (reactive ion beam etching) developed that leads to increasing the packing density of the emitter tips to about 5 x 10 to the 6th power/square cm. Tests with small arrays of emitter tips having about 10 tips has demonstrated current densities of over 100 A/sq cm. Several times using cathodes having a packing density of 1.25 x 10 to the 6th power tips/sq cm. Indications are that the higher packing density achievable with the dry etch process may extend this capability to the 500 A/sq cm range and beyond. The wedge emitter geometry was developed and shown to produce emission. This geometry can (in principle) extend the current density capability of the cathodes beyond the 500 A/sq cm level. An emission microscope was built and tested for use with the cathodes.

  6. Jets, arcs, and shocks: NGC 5195 at radio wavelengths

    NASA Astrophysics Data System (ADS)

    Rampadarath, H.; Soria, R.; Urquhart, R.; Argo, M. K.; Brightman, M.; Lacey, C. K.; Schlegel, E. M.; Beswick, R. J.; Baldi, R. D.; Muxlow, T. W. B.; McHardy, I. M.; Williams, D. R. A.; Dumas, G.

    2018-05-01

    We studied the nearby, interacting galaxy NGC 5195 (M 51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock-ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (˜1-pc scale), from our new e-MERLIN observations (˜10-pc scale), and from the Very Large Array (˜100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Hα and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ˜3-6 × 1041 erg s-1 over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.

  7. Electron impact vibrational excitation of carbon monoxide in the upper atmospheres of Mars and Venus

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Allan, M.; Brunger, M. J.

    2011-09-01

    Infrared emission from CO in the upper atmospheres of Mars, Venus and several other planets is a subject of current theoretical and experimental interest. Electron impact excitation makes a contribution that has not been included in previous studies. Given this, and recent new measurements of absolute cross sections for low-energy electron impact excitation of the vibrational levels of the ground state of CO, results from calculations are presented showing the contribution of electron impact relative to emissions by other mechanisms. It is demonstrated that emissions due to the impact of thermal, photo- and auroral electrons are generally small compared to sunlight-driven (fluorescence and photolysis) emissions, but with some exceptions. It is also shown that thermal-electron emissions may dominate over other processes at nighttime at Mars and that auroral emissions certainly do so. While measurements and other calculations do not appear to be available for Venus, the volume emission rates presented should be valuable in planning such measurements.

  8. Spin-current emission governed by nonlinear spin dynamics.

    PubMed

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-10-16

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators.

  9. Spin-current emission governed by nonlinear spin dynamics

    PubMed Central

    Tashiro, Takaharu; Matsuura, Saki; Nomura, Akiyo; Watanabe, Shun; Kang, Keehoon; Sirringhaus, Henning; Ando, Kazuya

    2015-01-01

    Coupling between conduction electrons and localized magnetization is responsible for a variety of phenomena in spintronic devices. This coupling enables to generate spin currents from dynamical magnetization. Due to the nonlinearity of magnetization dynamics, the spin-current emission through the dynamical spin-exchange coupling offers a route for nonlinear generation of spin currents. Here, we demonstrate spin-current emission governed by nonlinear magnetization dynamics in a metal/magnetic insulator bilayer. The spin-current emission from the magnetic insulator is probed by the inverse spin Hall effect, which demonstrates nontrivial temperature and excitation power dependences of the voltage generation. The experimental results reveal that nonlinear magnetization dynamics and enhanced spin-current emission due to magnon scatterings are triggered by decreasing temperature. This result illustrates the crucial role of the nonlinear magnon interactions in the spin-current emission driven by dynamical magnetization, or nonequilibrium magnons, from magnetic insulators. PMID:26472712

  10. Emissions of Water and Carbon Dioxide from Fossil-Fuel Combustion Contribute Directly to Ocean Mass and Volume Increases

    NASA Astrophysics Data System (ADS)

    Skuce, A. G.

    2014-12-01

    The direct, non-climate, contribution of carbon dioxide and water emissions from fossil-fuel (FF) combustion to the volume and mass of the oceans has been omitted from estimates of sea-level rise (SLR) in IPCC reports. Following the method of Gornitz et al. (1997), H2O emissions are estimated using carbon emissions from the Carbon Dioxide Information Analysis Center, along with typical carbon and hydrogen contents of FF. Historic H2O emissions from 1750 to 2010 amount to 430 ±50 PgH2O, equivalent to 1.2 ±0.2 mmSLR. Sometime in this decade the volume of H2O from historic FF combustion will exceed the volume of Lake Erie (480 km3). CO2 dissolved in the ocean increases the seawater volume by 31-33 mL mol-1 CO2. From 1750 to 2010, 370 ±70 PgCO2 from FF combustion has dissolved in the oceans, causing 0.7 ±0.2 mmSLR. Combined H2O+CO2emissions from FF have therefore added 1.9 ±0.4 mm to sea levels in the Industrial Era. Combustion of FF in 2010 resulted in emissions of 32 PgCO2 and 12 ±1 PgH2O. SLR contributions for that year from FF emissions were 0.033 ±0.005 mm from H2O and 0.011±0.003 mm from dissolved CO2, a total rate of 0.044 ±0.008 mm yr-1. Emissions incorporated in socio-economic models underlying the RCP 8.5 and 2.6 scenarios are used along with concentration-driven CMIP5 Earth System Models results to estimate future sea-level rise from FF combustion. From 2010 to 2100, RCP8.5 and 2.6 models respectively produce 9 ±2 mmSLR and 5 ±1 mmSLR from FF H2O+CO2. For perspective, these amounts are larger than the modelled contributions from loss of glaciers in the Andes. The direct contribution of FF emissions to SLR is small (1-2%) relative to current rates and projected estimates under RCP scenarios up to 2100. The magnitude is similar to SLR estimates from other minor sources such as the melting of floating ice, land-use emissions and produced water from oil operations, none of which are currently included in SLR assessments. As uncertainties in observations and contributions are reduced, small contribution factors, hitherto neglected, will become relatively more important in balancing the books. ReferenceGornitz, V., C. Rosenzweig, and D. Hillel, 1997: Effects of anthropogenic intervention in the land hydrological cycle on global sea level rise. Global and Planetary Change, 14, 147-161. DOI: 10.1016/S0921-8181(96)00008-2

  11. An advanced negative hydrogen ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Alexey A., E-mail: gonchar@iop.kiev.ua; Dobrovolsky, Andrey N.; Goretskii, Victor P.

    2016-02-15

    The results of investigation of emission productivity of negative particles source with cesiated combined discharge are presented. A cylindrical beam of negative hydrogen ions with density about 2 A/cm{sup 2} in low noise mode on source emission aperture is obtained. The total beam current values are up to 200 mA for negative hydrogen ions and up to 1.5 A for all negative particles with high divergence after source. The source has simple design and can produce stable discharge with low level of oscillation.

  12. Cost analysis of impacts of climate change on regional air quality.

    PubMed

    Liao, Kuo-Jen; Tagaris, Efthimios; Russell, Armistead G; Amar, Praveen; He, Shan; Manomaiphiboon, Kasemsan; Woo, Jung-Hun

    2010-02-01

    Climate change has been predicted to adversely impact regional air quality with resulting health effects. Here a regional air quality model and a technology analysis tool are used to assess the additional emission reductions required and associated costs to offset impacts of climate change on air quality. Analysis is done for six regions and five major cities in the continental United States. Future climate is taken from a global climate model simulation for 2049-2051 using the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario, and emission inventories are the same as current ones to assess impacts of climate change alone on air quality and control expenses. On the basis of the IPCC A1B emission scenario and current control technologies, least-cost sets of emission reductions for simultaneously offsetting impacts of climate change on regionally averaged 4th highest daily maximum 8-hr average ozone and yearly averaged PM2.5 (particulate matter [PM] with an aerodynamic diameter less than 2.5 microm) for the six regions examined are predicted to range from $36 million (1999$) yr(-1) in the Southeast to $5.5 billion yr(-1) in the Northeast. However, control costs to offset climate-related pollutant increases in urban areas can be greater than the regional costs because of the locally exacerbated ozone levels. An annual cost of $4.1 billion is required for offsetting climate-induced air quality impairment in 2049-2051 in the five cities alone. Overall, an annual cost of $9.3 billion is estimated for offsetting climate change impacts on air quality for the six regions and five cities examined. Much of the additional expense is to reduce increased levels of ozone. Additional control costs for offsetting the impacts everywhere in the United States could be larger than the estimates in this study. This study shows that additional emission controls and associated costs for offsetting climate impacts could significantly increase currently estimated control requirements and should be considered in developing control strategies for achieving air quality targets in the future.

  13. Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution - Scenario analysis for the city of Antwerp, Belgium

    NASA Astrophysics Data System (ADS)

    Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn

    2016-02-01

    The annual NO2 concentrations in many European cities exceed the established air quality standard. This situation is mainly caused by Diesel cars whose NOx emissions are higher on the road than during type approval in the laboratory. Moreover, the fraction of NO2 in the NOx emissions of modern diesel cars appears to have increased as compared to previous models. In this paper, we assess 1) to which level the distance-specific NOx emissions of Diesel cars should be reduced to meet established air quality standards and 2) if it would be useful to introduce a complementary NO2 emissions limit. We develop a NO2 pollution model that accounts in an analysis of 9 emission scenarios for changes in both, the urban background NO2 concentrations and the local NO2 emissions at street level. We apply this model to the city of Antwerp, Belgium. The results suggest that a reduction in NOx emissions decreases the regional and urban NO2 background concentration; high NO2 fractions increase the ambient NO2 concentrations only in close spatial proximity to the emission source. In a busy access road to the city centre, the average NO2 concentration can be reduced by 23% if Diesel cars emitted 0.35 g NOx/km instead of the current 0.62 g NOx/km. Reductions of 45% are possible if the NOX emissions of Diesel cars decreased to the level of gasoline cars (0.03 g NOx/km). Our findings suggest that the Real-Driving Emissions (RDE) test procedure can solve the problem of NO2 exceedances in cities if it reduced the on-road NOx emissions of diesel cars to the permissible limit of 0.08 g/km. The implementation of a complementary NO2 emissions limit may then become superfluous. If Diesel cars continue to exceed by several factors their NOx emissions limit on the road, a shift of the vehicle fleet to gasoline cars may be necessary to solve persisting air quality problems.

  14. RSM based optimization of chemical and enzymatic transesterification of palm oil: biodiesel production and assessment of exhaust emission levels.

    PubMed

    Mumtaz, Muhammad Waseem; Mukhtar, Hamid; Anwar, Farooq; Saari, Nazamid

    2014-01-01

    Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from -2.1 to -68.7% and -6.2 to -58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel.

  15. [Environmental efficiency evaluation under carbon emission constraint in Western China].

    PubMed

    Rong, Jian-bo; Yan, Li-jiao; Huang, Shao-rong; Zhang, Ge

    2015-06-01

    This research used the SBM model based on undesirable outputs to measure the static environmental efficiency of Western China under carbon emission constraint from 2000 to 2012. The researchers also utilized the Malmquist index to further analyze the change tendency of environmental efficiency. Additionally, Tobit regression analysis was used to study the factors relevant to environmental efficiency. Practical solutions to improve environmental quality in Western China were put forward. The study showed that in Western China, environmental efficiency with carbon emission constraint was significantly lower than that without carbon emission constraint, and the difference could be described as an inverse U-shaped curve which increased at first and then decreased. Guang-xi and Inner Mongolia, the two provinces met the effective environmental efficiency levels all the time under carbon emission constraint. However, the five provinces of Guizhou, Gansu, Qinghai, Ningxia and Xinjiang did not. Furthermore, Ningxia had the lowest level of environmental efficiency, with a score between 0.281-0.386. Although the environmental efficiency of most provinces was currently at an ineffective level, the environmental efficiency quality was gradually improving at an average speed of 6.6%. Excessive CO2 emission and a large amount of energy consumption were the primary factors causing environmental inefficiency in Western China, and energy intensity had the most negative impact on the environmental efficiency. The increase of import and export trade reduced the environmental efficiency significantly in Western China, while the increase of foreign direct investment had a positive effect on its environmental efficiency.

  16. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950-2010 studied using a global atmosphere-ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Lammel, G.; Stemmler, I.

    2012-08-01

    PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3-7 chlorine atoms. The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces) are on the long term increasingly gaining importance over primary emissions. Secondary emissions are most important for the congeners with 5-6 chlorine atoms. Correspondingly, the levels of these congeners are predicted to decrease slowest. Changes in congener mixture composition (fractionation) are characterized both geographically and temporally. In high latitudes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in response to decreasing emissions are found. The delivery of the contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances. The trends of decline of organic contaminant levels in the abiotic environmental media do not only vary with latitude (slow in high latitudes), but do also show longitudinal gradients.

  17. RSM Based Optimization of Chemical and Enzymatic Transesterification of Palm Oil: Biodiesel Production and Assessment of Exhaust Emission Levels

    PubMed Central

    Mumtaz, Muhammad Waseem; Anwar, Farooq; Saari, Nazamid

    2014-01-01

    Current study presents RSM based optimized production of biodiesel from palm oil using chemical and enzymatic transesterification. The emission behavior of biodiesel and its blends, namely, POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 was examined using diesel engine (equipped with tube well). Optimized palm oil fatty acid methyl esters (POFAMEs) yields were depicted to be 47.6 ± 1.5, 92.7 ± 2.5, and 95.4 ± 2.0% for chemical transesterification catalyzed by NaOH, KOH, and NaOCH3, respectively, whereas for enzymatic transesterification reactions catalyzed by NOVOZYME-435 and A. n. lipase optimized biodiesel yields were 94.2 ± 3.1 and 62.8 ± 2.4%, respectively. Distinct decrease in particulate matter (PM) and carbon monoxide (CO) levels was experienced in exhaust emissions from engine operating on biodiesel blends POB-5, POB-20, POB-40, POB-50, POB-80, and POB-100 comparative to conventional petroleum diesel. Percentage change in CO and PM emissions for different biodiesel blends ranged from −2.1 to −68.7% and −6.2 to −58.4%, respectively, relative to conventional diesel, whereas an irregular trend was observed for NOx emissions. Only POB-5 and POB-20 showed notable reductions, whereas all other blends (POB-40 to POB-100) showed slight increase in NOx emission levels from 2.6 to 5.5% comparative to petroleum diesel. PMID:25162053

  18. Ultraviolet luminosity density of the universe during the epoch of reionization.

    PubMed

    Mitchell-Wynne, Ketron; Cooray, Asantha; Gong, Yan; Ashby, Matthew; Dolch, Timothy; Ferguson, Henry; Finkelstein, Steven; Grogin, Norman; Kocevski, Dale; Koekemoer, Anton; Primack, Joel; Smidt, Joseph

    2015-09-08

    The spatial fluctuations of the extragalactic background light trace the total emission from all stars and galaxies in the Universe. A multiwavelength study can be used to measure the integrated emission from first galaxies during reionization when the Universe was about 500 million years old. Here we report arcmin-scale spatial fluctuations in one of the deepest sky surveys with the Hubble Space Telescope in five wavebands between 0.6 and 1.6 μm. We model-fit the angular power spectra of intensity fluctuation measurements to find the ultraviolet luminosity density of galaxies at redshifts greater than 8 to be log ρ(UV) = 27.4(+0.2)(-1.2) ergs(-1) Hz(-1) Mpc(-3) (1σ). This level of integrated light emission allows for a significant surface density of fainter primeval galaxies that are below the point-source detection level in current surveys.

  19. Airesearch QCGAT program. [quiet clean general aviation turbofan engines

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Norgren, W. M.

    1979-01-01

    A model TFE731-1 engine was used as a baseline for the NASA quiet clean general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels. All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollution characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three FAR Part 36 conditions, are 10 t0 15 ENPdB below FAA requirements; emission values are considerably reduced below that of current technology engines; and the engine performance represents a TSFC improvement of approximately 9 percent over other turbofan engines.

  20. On the Impact of Granularity of Space-Based Urban CO2 Emissions in Urban Atmospheric Inversions: A Case Study for Indianapolis, IN

    NASA Technical Reports Server (NTRS)

    Oda, Tomohiro; Lauvaux, Thomas; Lu, Dengsheng; Rao, Preeti; Miles, Natasha L.; Richardson, Scott J.; Gurney, Kevin R.

    2017-01-01

    Quantifying greenhouse gas (GHG) emissions from cities is a key challenge towards effective emissions management. An inversion analysis from the INdianapolis FLUX experiment (INFLUX) project, as the first of its kind, has achieved a top-down emission estimate for a single city using CO2 data collected by the dense tower network deployed across the city. However, city-level emission data, used as a priori emissions, are also a key component in the atmospheric inversion framework. Currently, fine-grained emission inventories (EIs) able to resolve GHG city emissions at high spatial resolution, are only available for few major cities across the globe. Following the INFLUX inversion case with a global 1x1 km ODIAC fossil fuel CO2 emission dataset, we further improved the ODIAC emission field and examined its utility as a prior for the city scale inversion. We disaggregated the 1x1 km ODIAC non-point source emissions using geospatial datasets such as the global road network data and satellite-data driven surface imperviousness data to a 3030 m resolution. We assessed the impact of the improved emission field on the inversion result, relative to priors in previous studies (Hestia and ODIAC). The posterior total emission estimate (5.1 MtC/yr) remains statistically similar to the previous estimate with ODIAC (5.3 MtC/yr). However, the distribution of the flux corrections was very close to those of Hestia inversion and the model-observation mismatches were significantly reduced both in forward and inverse runs, even without hourly temporal changes in emissions. EIs reported by cities often do not have estimates of spatial extents. Thus, emission disaggregation is a required step when verifying those reported emissions using atmospheric models. Our approach offers gridded emission estimates for global cities that could serves as a prior for inversion, even without locally reported EIs in a systematic way to support city-level Measuring, Reporting and Verification (MRV) practice implementation.

  1. Alternate-Fueled Combustor-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  2. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    PubMed Central

    Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05–0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research. PMID:26728164

  3. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    NASA Astrophysics Data System (ADS)

    Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  4. The role of dung beetles in reducing greenhouse gas emissions from cattle farming.

    PubMed

    Slade, Eleanor M; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L

    2016-01-05

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results, [corrected] and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  5. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions

    PubMed Central

    Johnson, Derek R.; Covington, April N.; Clark, Nigel N.

    2016-01-01

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities. PMID:27341646

  6. Design and Use of a Full Flow Sampling System (FFS) for the Quantification of Methane Emissions.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2016-06-12

    The use of natural gas continues to grow with increased discovery and production of unconventional shale resources. At the same time, the natural gas industry faces continued scrutiny for methane emissions from across the supply chain, due to methane's relatively high global warming potential (25-84x that of carbon dioxide, according to the Energy Information Administration). Currently, a variety of techniques of varied uncertainties exists to measure or estimate methane emissions from components or facilities. Currently, only one commercial system is available for quantification of component level emissions and recent reports have highlighted its weaknesses. In order to improve accuracy and increase measurement flexibility, we have designed, developed, and implemented a novel full flow sampling system (FFS) for quantification of methane emissions and greenhouse gases based on transportation emissions measurement principles. The FFS is a modular system that consists of an explosive-proof blower(s), mass airflow sensor(s) (MAF), thermocouple, sample probe, constant volume sampling pump, laser based greenhouse gas sensor, data acquisition device, and analysis software. Dependent upon the blower and hose configuration employed, the current FFS is able to achieve a flow rate ranging from 40 to 1,500 standard cubic feet per minute (SCFM). Utilization of laser-based sensors mitigates interference from higher hydrocarbons (C2+). Co-measurement of water vapor allows for humidity correction. The system is portable, with multiple configurations for a variety of applications ranging from being carried by a person to being mounted in a hand drawn cart, on-road vehicle bed, or from the bed of utility terrain vehicles (UTVs). The FFS is able to quantify methane emission rates with a relative uncertainty of ± 4.4%. The FFS has proven, real world operation for the quantification of methane emissions occurring in conventional and remote facilities.

  7. Multiple effects and uncertainties of emission control policies in China: Implications for public health, soil acidification, and global temperature.

    PubMed

    Zhao, Yu; McElroy, Michael B; Xing, Jia; Duan, Lei; Nielsen, Chris P; Lei, Yu; Hao, Jiming

    2011-11-15

    Policies to control emissions of criteria pollutants in China may have conflicting impacts on public health, soil acidification, and climate. Two scenarios for 2020, a base case without anticipated control measures and a more realistic case including such controls, are evaluated to quantify the effects of the policies on emissions and resulting environmental outcomes. Large benefits to public health can be expected from the controls, attributed mainly to reduced emissions of primary PM and gaseous PM precursors, and thus lower ambient concentrations of PM2.5. Approximately 4% of all-cause mortality in the country can be avoided (95% confidence interval: 1-7%), particularly in eastern and north-central China, regions with large population densities and high levels of PM2.5. Surface ozone levels, however, are estimated to increase in parts of those regions, despite NOX reductions. This implies VOC-limited conditions. Even with significant reduction of SO2 and NOX emissions, the controls will not significantly mitigate risks of soil acidification, judged by the exceedance levels of critical load (CL). This is due to the decrease in primary PM emissions, with the consequent reduction in deposition of alkaline base cations. Compared to 2005, even larger CL exceedances are found for both scenarios in 2020, implying that PM control may negate any recovery from soil acidification due to SO2 reductions. Noting large uncertainties, current polices to control emissions of criteria pollutants in China will not reduce climate warming, since controlling SO2 emissions also reduces reflective secondary aerosols. Black carbon emission is an important source of uncertainty concerning the effects of Chinese control policies on global temperature change. Given these conflicts, greater consideration should be paid to reconciling varied environmental objectives, and emission control strategies should target not only criteria pollutants but also species such as VOCs and CO2. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.

    2015-10-28

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. Thus we then extract the nonradiative recombination current associated with the quantum-dot active regionmore » from a comparison of measured and calculated gain versus current relations.« less

  9. Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chow, Weng W., E-mail: wwchow@sandia.gov; Liu, Alan Y.; Gossard, Arthur C.

    2015-10-26

    We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from amore » comparison of measured and calculated gain versus current relations.« less

  10. Spatial inter-comparison of Top-down emission inventories in European urban areas

    NASA Astrophysics Data System (ADS)

    Trombetti, Marco; Thunis, Philippe; Bessagnet, Bertrand; Clappier, Alain; Couvidat, Florian; Guevara, Marc; Kuenen, Jeroen; López-Aparicio, Susana

    2018-01-01

    This paper presents an inter-comparison of the main Top-down emission inventories currently used for air quality modelling studies at the European level. The comparison is developed for eleven European cities and compares the distribution of emissions of NOx, SO2, VOC and PPM2.5 from the road transport, residential combustion and industry sectors. The analysis shows that substantial differences in terms of total emissions, sectorial emission shares and spatial distribution exist between the datasets. The possible reasons in terms of downscaling approaches and choice of spatial proxies are analysed and recommendations are provided for each inventory in order to work towards the harmonisation of spatial downscaling and proxy calibration, in particular for policy purposes. The proposed methodology may be useful for the development of consistent and harmonised European-wide inventories with the aim of reducing the uncertainties in air quality modelling activities.

  11. Effects of Different Vegetation Zones on CH4 and N2O Emissions in Coastal Wetlands: A Model Case Study

    PubMed Central

    Liu, Yuhong; Wang, Lixin; Bao, Shumei; Liu, Huamin; Yu, Junbao; Wang, Yu; Shao, Hongbo; Ouyang, Yan; An, Shuqing

    2014-01-01

    The coastal wetland ecosystems are important in the global carbon and nitrogen cycle and global climate change. For higher fragility of coastal wetlands induced by human activities, the roles of coastal wetland ecosystems in CH4 and N2O emissions are becoming more important. This study used a DNDC model to simulate current and future CH4 and N2O emissions of coastal wetlands in four sites along the latitude in China. The simulation results showed that different vegetation zones, including bare beach, Spartina beach, and Phragmites beach, produced different emissions of CH4 and N2O in the same latitude region. Correlation analysis indicated that vegetation types, water level, temperature, and soil organic carbon content are the main factors affecting emissions of CH4 and N2O in coastal wetlands. PMID:24892044

  12. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, A.D.

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective andmore » immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed.« less

  13. Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model

    DOE PAGES

    Ashworth, Kirsti; Chung, Serena H.; McKinney, Karena A.; ...

    2016-12-15

    Here, the FORCAsT canopy exchange model was used to investigate the underlying mechanisms governing foliage emissions of methanol and acetaldehyde, two short chain oxygenated volatile organic compounds ubiquitous in the troposphere and known to have strong biogenic sources, at a northern mid-latitude forest site. The explicit representation of the vegetation canopy within the model allowed us to test the hypothesis that stomatal conductance regulates emissions of these compounds to an extent that its influence is observable at the ecosystem scale, a process not currently considered in regional- or global-scale atmospheric chemistry models. Here, we found that FORCAsT could only reproducemore » the magnitude and diurnal profiles of methanol and acetaldehyde fluxes measured at the top of the forest canopy at Harvard Forest if light-dependent emissions were introduced to the model. With the inclusion of such emissions, FORCAsT was able to successfully simulate the observed bidirectional exchange of methanol and acetaldehyde. Although we found evidence that stomatal conductance influences methanol fluxes and concentrations at scales beyond the leaf level, particularly at dawn and dusk, we were able to adequately capture ecosystem exchange without the addition of stomatal control to the standard parameterisations of foliage emissions, suggesting that ecosystem fluxes can be well enough represented by the emissions models currently used.« less

  14. The Status and Outlook of Distributed Generation Public Policy in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinaman, Owen; Aznar, Alexandra Y.; Flores-Espino, Francisco

    Mexico is a regional leader in setting goals for reducing greenhouse gas emissions (GHG) and distributed generation (DG) development is a key priority for the country's policymakers. Current DG policies have fostered growth but need to be modernized to serve current needs and accommodate higher penetration levels. In this report, NREL summarizes international DG policy experiences and best practices and identifies the potential opportunities for policy reform.

  15. The Production, Value, and Reduction Responsibility of Carbon Emissions through Electricity Consumption of Manufacturing Industries in South Korea and Thailand

    NASA Astrophysics Data System (ADS)

    Kitikun, Medhawin

    This dissertation provides a new method of measuring efforts by manufacturing industries to reduce their emissions by curtailing electricity consumption. Employing comprehensive firm-level data from the National Manufacture Annual Surveys of South Korea and Thailand, I construct the measure from estimates of revenue functions by industry. The data consists of firms from more than 20 industries in each year from 1982 to 2005 for Korea and from 2001 to 2008 for Thailand. With a total of more than two million observations, I estimate revenue functions for each industry and year. Here, I use three inputs: number of employees(L), fixed asset stock(K), and electricity consumption(E) and two types of functional forms to represent each industry's revenue function. Second, under market competitive condition, I find that profit maximizing firms deviated their level of electricity usage in production from the profit-maximizing level during the time period for both countries, and I develop a theoretical framework to explain this behavior. Then, I tested the theory using my empirical models. Results support the notion of a hidden environmental value expressed by firms in the form of voluntary deviations from profit-maximizing levels of input demand. The measure used is the gap between the marginal revenue product of electricity and its price. This gap should increase with income, consistent with the Environmental Kuznets Curve literature. My current model provides considerable support for this proposition. Estimates indicate, in most industries, a negative relationship between per-capita income and emissions. In the final section of the dissertation, I consider the equitable distribution of emissions reduction burden under an international agreement such as the reduction effort, Kyoto Protocol. Both developed and developing countries have to cut their emissions to a specific reduction percentage target. Domestically, I present two extreme scenarios. In the first scenario, manufacturing industries take full responsibility for emissions reductions by curtailing their use of energy without any subsidies from the government. Revenue function estimates provide measures of the differential costs imposed on different industries by emissions reductions. In the second scenario, emissions reductions are achieved by changing the mix of electricity generation technologies used by the power generation sector within the country. For the international case, I focus on the fairness of emission reduction responsibility among countries. To be fair to countries at different levels of development and with different rate of carbon emissions, I propose a new method to adjust the timing and rates of emission reductions based on a lifetime cumulative emission per capita.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This study provides a comprehensive lifecycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgowainy, Amgad; Han, Jeongwoo; Ward, Jacob

    This study provides a comprehensive life-cycle analysis (LCA), or cradle-to-grave (C2G) analysis, of the cost and greenhouse gas (GHG) emissions of a variety of vehicle-fuel pathways, as well as the levelized cost of driving (LCD) and cost of avoided GHG emissions. This study also estimates the technology readiness levels (TRLs) of key fuel and vehicle technologies along the pathways. The C2G analysis spans a full portfolio of midsize light-duty vehicles (LDVs), including conventional internal combustion engine vehicles (ICEVs), flexible fuel vehicles (FFVs), hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), battery electric vehicles (BEVs), and fuel cell electric vehiclesmore » (FCEVs). In evaluating the vehicle-fuel combinations, this study considers both low-volume and high-volume “CURRENT TECHNOLOGY” cases (nominally 2015) and a high-volume “FUTURE TECHNOLOGY” lower-carbon case (nominally 2025–2030). For the CURRENT TECHNOLOGY case, low-volume vehicle and fuel production pathways are examined to determine costs in the near term.« less

  18. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    NASA Astrophysics Data System (ADS)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; satellite data indicates that the majority of savannas have not burned in the past 10 yr, even in Africa, which is considered "the burning continent". Although we have not considered increased charcoal burning or changes in OH concentrations as potential causes for the elevated CO concentrations found at SPO, it is unlikely they can explain the large increase found in the CO concentrations in ice core data. Confirmation of the CO ice core data would therefore call for radical new thinking about causes of variable global fire rates over recent centuries.

  19. Critical levels and loads and the regulation of industrial emissions in northwest British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Williston, P.; Aherne, J.; Watmough, S.; Marmorek, D.; Hall, A.; de la Cueva Bueno, P.; Murray, C.; Henolson, A.; Laurence, J. A.

    2016-12-01

    Northwest British Columbia, Canada, a sparsely populated and largely pristine region, is targeted for rapid industrial growth owing to the modernization of an aluminum smelter and multiple proposed liquefied natural gas (LNG) facilities. Consequently, air quality in this region is expected to undergo considerable changes within the next decade. In concert, the increase in LNG capacity driven by gas production from shale resources across North America has prompted environmental concerns and highlighted the need for science-based management decisions regarding the permitting of air emissions. In this study, an effects-based approach widely-used to support transboundary emissions policy negotiations was used to assess industrial air emissions in the Kitimat and Prince Rupert airsheds under permitted and future potential industrial emissions. Critical levels for vegetation of SO2 and NO2 and critical loads of acidity and nutrient nitrogen for terrestrial and aquatic ecosystems were estimated for both regions and compared with modelled concentration and deposition estimates to identify the potential extent and magnitude of ecosystem impacts. The critical level for SO2 was predicted to be exceeded in an area ranging from 81 to 251 km2 in the Kitimat airshed owing to emissions from an existing smelter, compared with <1 km2 in Prince Rupert under the lowest to highest emissions scenarios. In contrast, the NO2 critical level was not exceeded in Kitimat, and ranged from 4.5 to 6 km2 in Prince Rupert owing to proposed LNG related emissions. Predicted areal exceedance of the critical load of acidity for soil ranged from 1 to 28 km2 in Kitimat and 4-10 km2 in Prince Rupert, while the areal exceedance of empirical critical load for nutrient N was predicted to be greater in the Prince Rupert airshed (20-94 km2) than in the Kitimat airshed (1-31 km2). The number of lakes that exceeded the critical load of acidity did not vary greatly across emissions scenarios in the Kitimat (21-23 out of 80 sampled lakes) and Prince Rupert (0 out of 35 sampled lakes) airsheds. While critical loads have been widely used to underpin international emissions reductions of transboundary pollutants, it is clear that they can also play an important role in managing regional air emissions. In the current study, exceedance of critical levels and loads suggests that industrial emissions from the nascent LNG export sector may require careful regulation to avoid environmental impacts. Emissions management from LNG export facilities in other regions should consider critical levels and loads analyses to ensure industrial development is synergistic with ecosystem protection. While recognizing uncertainties in dispersion modelling, critical load estimates, and subsequent effects, the critical levels and loads approach is being used to inform regulatory decisions in British Columbia to prevent impacts that have been well documented in other regions.

  20. Challenges for the geosciences after the Paris agreement

    NASA Astrophysics Data System (ADS)

    Knutti, R.; Sedlacek, J.; Rogelj, J.; Fischer, E. M.

    2016-12-01

    The world's governments agreed to limit global mean temperature change to below 2 °C or 1.5°C compared with pre-industrial levels in Paris. These warming targets are often perceived by the public as a universally accepted goal, identified by scientists as a safe limit that avoids dangerous climate change. This perception is incorrect: no scientific assessment has clearly justified or defended 2°C as a safe level of warming, and indeed, this is not a problem that science alone can address. We argue that global temperature is the best climate target quantity, but it is unclear what level can be considered safe. However, irrespective of the target, the concept of cumulative carbon implies that substantial and sustained emission reductions are required to limit climate change to temperature levels that are currently being considered safe. The Paris agreement poses many open questions to the geoscience community: the impacts of a temperature overshoot, the limits of negative emissions, and the role of radiative forcings other than carbon dioxide need to be better understood. Treating uncertainties, incorporating risk, and linking local impacts and development objectives to global climate goals also remain major open issues that need to be tackled in a continued dialogue with science communities. The negotiations up to Paris and the 2 °C target have been useful for anchoring discussions, but ineffective in triggering the required emission reductions; the debates on considering different targets are strongly at odds with the current real-world level of action. These debates are moot, however, as the decisions that need to be taken now to limit warming to 1.5 or 2 °C are very similar. We need to agree how to start, not where to end mitigation.

  1. 40 CFR 74.25 - Current promulgated SO2 emissions limit.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Current promulgated SO2 emissions... promulgated SO2 emissions limit. The designated representative shall submit the following data: (a) Current promulgated SO2 emissions limit of the combustion source, expressed in lbs/mmBtu, which shall be the most...

  2. 40 CFR 74.24 - Current allowable SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Current allowable SO2 emissions rate... allowable SO2 emissions rate. The designated representative shall submit the following data: (a) Current allowable SO2 emissions rate of the combustion source, expressed in lbs/mmBtu, which shall be the most...

  3. Mitigation gambles: uncertainty, urgency and the last gamble possible

    NASA Astrophysics Data System (ADS)

    Shue, Henry

    2018-05-01

    A rejection by current generations of more ambitious mitigation of carbon emissions inflicts on future generations inherently objectionable risks about which they have no choice. Any gains through savings from less ambitious mitigation, which are relatively minor, would accrue to current generations, and all losses, which are relatively major, would fall on future generations. This mitigation gamble is especially unjustifiable because it imposes a risk of unlimited losses until carbon emissions cease. Ultimate physical collapses remain possible. Much more ominous is prior social collapse from political struggles over conflicting responses to threatened physical collapse. The two most plausible objections to the thesis that less ambitious mitigation is unjustifiable rely, respectively, on the claim that negative emissions will allow a later recovery from a temporary overshoot in emissions and on the claim that ambitious mitigation is incompatible with poverty alleviation that depends on inexpensive fossil fuels. Neither objection stands up. Reliance on negative emissions later instead of ambitious mitigation now permits the passing of tipping points for irreversible change meanwhile, and non-carbon energy is rapidly becoming price competitive in developing countries like India that are committed to poverty alleviation. This article is part of the themed issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  4. Exercise based transportation reduces oil consumption and carbon emissions

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.

    2004-12-01

    Current abuse and misrepresentation of science hinders society's ability to address climate change. Scientific abuse results, in part, from a widespread perception that curbing emissions will require substantial economic, political, or personal sacrifice. Here I provide one example to illustrate that this perception is false. Simply walking or biking the amount recommended for a healthy lifestyle could reduce carbon emissions up to 11 percent if the distances traveled were substituted for car travel. This level of exercise is also sufficient to eliminate obese and overweight conditions in a few years without draconian diet plans. A reduction in carbon dioxide emissions of roughly 35 percent is possible if the revenue saved through decreased health care spending on obesity is redirected toward carbon abatement. This emissions reduction far exceeds that required by the Kyoto Protocol at no net cost. Finally, widespread substitution of driving with distances traveled during recommended daily exercise would considerably ease societal dependence on oil, which leads not only to climate change but also to air pollution, political and economic instability and habitat degradation. Thus, exercise based transportation constitutes a potentially favorable alternative to the energy and diet plans that are currently under consideration and a substantial step toward dealing with the threat of climate change.

  5. Homogenous and heterogeneous combustion in the secondary chamber of a straw-fired batch boiler

    NASA Astrophysics Data System (ADS)

    Szubel, Mateusz; Adamczyk, Wojciech; Basista, Grzegorz; Filipowicz, Mariusz

    Currently, the attention of the producers of biomass batch boilers is mostly focused on the problem of the total efficiency of energy conversion, CO emissions as well as particulate matter emissions. Due to the regulations of the European Union, the emissions referred to above have to be kept at certain levels because of health considerations, but also because of the necessity to increase the efficiency of the devices. The paper presents the process of analysis of a straw-fired small-scale boiler. In this study, the early stage CFD model presented in a previous paper [1] has been improved and evaluated. Based on [2], an additional set of specimens participating in homogeneous gas reactions was assumed to describe the combustion process sufficiently. Associated Arrhenius parameters have been applied for the description of these reactions. ANSYS Fluent 16 has been used to perform the analysis and the analysis was focused on the CO emissions level as well as on the impact of the modelling approach on the result of the computing. Moreover, losses related to incomplete combustion have been calculated for each of the considered cases.

  6. Optimizing Aerosol Dispensers for Mating Disruption of Codling Moth, Cydia pomonella L.

    PubMed

    McGhee, Peter S; Miller, James R; Thomson, Donald R; Gut, Larry J

    2016-07-01

    Experiments were conducted in commercial apple orchards to determine if improved efficiencies in pheromone delivery may be realized by using aerosol pheromone dispensers for codling moth (CM), Cydia pomonella L., mating disruption. Specifically, we tested how reducing: pheromone concentration, period of dispenser operation, and frequency of pheromone emission from aerosol dispensers affected orientational disruption of male CM to pheromone-baited monitoring traps. Isomate® CM MIST formulated with 50 % less codlemone (3.5 mg/ emission) provided orientation disruption equal to the standard commercial formulation (7 mg / emission). Decreased periods of dispenser operation (3 and 6 h) and frequency of pheromone emission (30 and 60 min) provided a level of orientational disruption similar to the current standard protocol of releasing pheromone over a 12 h period on a 15 min cycle, respectively. These three modifications provide a means of substantially reducing the amount of pheromone necessary for CM disruption. The savings accompanying pheromone conservation could lead to increased adoption of CM mating disruption and, moreover, provide an opportunity for achieving higher levels of disruption by increasing dispenser densities.

  7. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsden, T.; Ruth, M.; Diakov, V.

    2013-03-01

    This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

  8. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    NASA Astrophysics Data System (ADS)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  9. COMPARISON OF CLEAN DIESEL BUSES TO CNG BUSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowell, D.; Parsley, W.; Bush,C

    2003-08-24

    Using previously published data on regulated and unregulated emissions, this paper will compare the environmental performance of current generation transit buses operated on compressed natural gas (CNG) to current generation transit buses operated on ultra low sulfur diesel fuel (ULSD) and incorporating diesel particulate filters (DPF). Unregulated emissions evaluated include toxic compounds associated with adverse health effects (carbonyl, PAH, NPAH, benzene) as well as PM particle count and size distribution. For all regulated and unregulated emissions, both technologies are shown to be comparable. DPF equipped diesel buses and CNG buses have virtually identical levels of PM mass emissions and particlemore » number emissions. DPF-equipped diesel buses have lower HC and CO emissions and lower emissions of toxic substances such as benzene, carbonyls and PAHs than CNG buses. CNG buses have lower NOx emissions than DPF-equipped buses, though CNG bus NOx emissions are shown to be much more variable. In addition, this paper will compare the capital and operating costs of CNG and DPF-equipped buses. The cost comparison is primarily based on the experience of MTA New York City Transit in operating CNG buses since 1995 and DPF-equipped buses fueled with ULSD since 2001. Published data on the experience of other large transit agencies in operating CNG buses is used to validate the NYCT experience. The incremental cost (compared to ''baseline'' diesel) of operating a typical 200-bus depot is shown to be six times higher for CNG buses than for ''clean diesel'' buses. The contributors to this increased cost for CNG buses are almost equally split between increased capital costs for purchase of buses and installation of fueling infrastructure, and increased operating costs for purchase of fuel, bus maintenance, and fuel station maintenance.« less

  10. A computational study on tuning the field emission and electronic properties of BN nanocones by impurity atom doping

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.

    2018-06-01

    We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.

  11. Charge trapping and current-conduction mechanisms of metal-oxide-semiconductor capacitors with La xTa y dual-doped HfON dielectrics

    NASA Astrophysics Data System (ADS)

    Cheng, Chin-Lung; Horng, Jeng-Haur; Chang-Liao, Kuei-Shu; Jeng, Jin-Tsong; Tsai, Hung-Yang

    2010-10-01

    Charge trapping and related current-conduction mechanisms in metal-oxide-semiconductor (MOS) capacitors with La xTa y dual-doped HfON dielectrics have been investigated under various post-deposition annealing (PDA). The results indicate that by La xTa y incorporation into HfON dielectric enhances electrical and reliability characteristics, including equivalent-oxide-thickness (EOT), stress-induced leakage current (SILC), and trap energy level. The mechanisms related to larger positive charge generation in the gate dielectric bulk can be attributed to La xTa y dual-doped HfON dielectric. The results of C- V measurement indicate that more negative charges are induced with increasing PDA temperature for the La xTa y dual-doped HfON dielectric. The charge current transport mechanisms through various dielectrics have been analyzed with current-voltage ( I- V) measurements under various temperatures. The current-conduction mechanisms of HfLaTaON dielectric at the low-, medium-, and high-electrical fields were dominated by Schottky emission (SE), Frenkel-Poole emission (F-P), and Fowler-Nordheim (F-N), respectively. A low trap energy level ( Φ trap) involved in Frenkel-Pool conduction in an HfLaTaON dielectric was estimated to be around 0.142 eV. Although a larger amount of positive charges generated in the HfLaTaON dielectric was obtained, the Φ trap of these positive charges in the HfLaTaON dielectric are shallow compared with HfON dielectric.

  12. Development of database of real-world diesel vehicle emission factors for China.

    PubMed

    Shen, Xianbao; Yao, Zhiliang; Zhang, Qiang; Wagner, David Vance; Huo, Hong; Zhang, Yingzhi; Zheng, Bo; He, Kebin

    2015-05-01

    A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT (Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5 (Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent, which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models. Copyright © 2015. Published by Elsevier B.V.

  13. On-road emissions of light-duty vehicles in europe.

    PubMed

    Weiss, Martin; Bonnel, Pierre; Hummel, Rudolf; Provenza, Alessio; Manfredi, Urbano

    2011-10-01

    For obtaining type approval in the European Union, light-duty vehicles have to comply with emission limits during standardized laboratory emissions testing. Although emission limits have become more stringent in past decades, light-duty vehicles remain an important source of nitrogen oxides and carbon monoxide emissions in Europe. Furthermore, persisting air quality problems in many urban areas suggest that laboratory emissions testing may not accurately capture the on-road emissions of light-duty vehicles. To address this issue, we conduct the first comprehensive on-road emissions test of light-duty vehicles with state-of-the-art Portable Emission Measurement Systems. We find that nitrogen oxides emissions of gasoline vehicles as well as carbon monoxide and total hydrocarbon emissions of both diesel and gasoline vehicles generally remain below the respective emission limits. By contrast, nitrogen oxides emissions of diesel vehicles (0.93 ± 0.39 grams per kilometer [g/km]), including modern Euro 5 diesel vehicles (0.62 ± 0.19 g/km), exceed emission limits by 320 ± 90%. On-road carbon dioxide emissions surpass laboratory emission levels by 21 ± 9%, suggesting that the current laboratory emissions testing fails to accurately capture the on-road emissions of light-duty vehicles. Our findings provide the empirical foundation for the European Commission to establish a complementary emissions test procedure for light-duty vehicles. This procedure could be implemented together with more stringent Euro 6 emission limits in 2014. The envisaged measures should improve urban air quality and provide incentive for innovation in the automotive industry.

  14. Rethinking wedges

    NASA Astrophysics Data System (ADS)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and stabilization wedges have become a ubiquitous unit in assessing different strategies to mitigate climate change (e.g. [2-5]). But the real and lasting potency of the wedge concept was in dividing the daunting problem of climate change into substantial but tractable portions of mitigation: Pacala and Socolow gave us a way to believe that the energy-carbon-climate problem was manageable. An unfortunate consequence of their paper, however, was to make the solution seem easy (see, e.g. [6, 7]). And in the meantime, the problem has grown. Since 2004, annual emissions have increased and their growth rate has accelerated, so that more than seven wedges would now be necessary to stabilize emissions and—more importantly—stabilizing emissions at current levels for 50 years does not appear compatible with Pacala and Socolow's target of an atmospheric CO2 concentration below 500 ppm nor the international community's goal of limiting the increase in global mean temperature to 2 °C more than the pre-industrial era. Here, we aim to revitalize the wedge concept by redefining what it means to 'solve the carbon and climate problem for the next 50 years'. This redefinition makes clear both the scale and urgency of innovating and deploying carbon-emissions-free energy technologies. 2. Solving the climate problem Stabilizing global climate requires decreasing CO2 emissions to near zero [8-11]. If emissions were to stop completely, global temperatures would quickly stabilize and decrease gradually over time [8, 12, 13]. But socioeconomic demands and dependence on fossil-fuel energy effectively commit us to many billions of tons of CO2 emissions [14], and at the timescale of centuries, each CO2 emission to the atmosphere contributes another increment to global warming: peak warming is proportional to cumulative CO2 emissions [15, 16]. Cumulative emissions, in turn, integrate all past emissions as well as those occurring during three distinct phases of mitigation: (1) slowing growth of emissions, (2) stopping growth of emissions, and (3) reducing emissions. Although they noted that stabilizing the climate would require emissions to 'eventually drop to zero', Pacala and Socolow nonetheless defined 'solv[ing] the carbon and climate problem over the next half-century' as merely stopping the growth of emissions (phases 1 and 2). Further reductions (phase 3), they said, could wait 50 years if the level of emissions were held constant in the meantime. But growth of emissions has not stopped (phase 2) or even slowed (phase 1), it has accelerated [17, 18]. In 2010, annual CO2 emissions crested 9 GtC. At this level, holding emissions constant for 50 years (phase 2) is unlikely to be sufficient to avoid the benchmark targets of 500 ppm or 2 °C. To support this assertion, we performed ensemble simulations using the UK Met Office coupled climate/carbon cycle model, HadCM3L (see supplementary material available at stacks.iop.org/ERL/8/011001/mmedia), to project changes in atmospheric CO2 and global mean temperature in response to emissions scenarios in which seven wedges (W7) and nine wedges (W9) were immediately subtracted from the A2 marker scenario of the Intergovernmental Panel on Climate Change (IPCC)'s Special Report on Emissions Scenarios (SRES) [19] beginning in 2010 (figure 1). In the first half of this century, the A2 scenario is near the center of the plume of variation of the SRES emissions scenarios [20]. Indeed, actual annual emissions have exceeded A2 projections for more than a decade [21, 22]. During this period, strong growth of global emissions has been driven by the rapid, carbon-intensive growth of emerging economies [23, 24], which has continued despite the global financial crisis of 2008-9 [18]. For these reasons we believe that, among the SRES scenarios, A2 represents a reasonable 'business-as-usual' scenario. However, if emissions were to suddenly decline and follow a lower emissions business-as-usual trajectory such as B2, fewer wedges would be necessary to stabilize emissions, and deployment of seven wedges would reduce annual emissions to 4.5 GtC in 2060. Thus, mitigation effort (wedges) required to stabilize emissions is dependent on the choice of baseline scenario, but a half-century of emissions at the current level will have the same effect on atmospheric CO2 and the climate regardless of what scenario is chosen. Figure 1 Figure 1. Modeled effects of deploying wedges. (A) Future CO2 emissions under SRES A2 marker scenario and the A2 scenario reduced by deployment of 7 wedges (W7). The response of (B) atmospheric CO2 and (C) global mean surface temperature under W7. (D) Future CO2 emissions under SRES A2 marker scenario and stabilized at 2010 levels (reduced by approximately 9 wedges relative to the A2 scenario) (W9). The response of (E) atmospheric CO2 and (F) global mean surface temperature under W9. Error bars in ((C) and (F)) are 2-sigma. Dashed lines in (A), (B), (D) and (E) show emissions and concentrations of representative concentration pathways RCP4.5, RCP6, and RCP8.5 [38]. Mean temperatures reflect warming relative to the pre-industrial era. We also note that the climate model we used, HadCM3L, has a strong positive climate/carbon cycle feedback mainly associated with the dieback of the Amazon rainforest [25]. As a result, HadCM3L projected the highest level of atmospheric CO2 concentrations among eleven Earth system models that were driven by a certain CO2 emission scenario [26]. However, this strong positive climate/carbon cycle feedback operates in simulations of both the A2 and wedge (W7 and W9) scenarios. Therefore, the relative effect of wedges, as opposed to the absolute values of projected atmospheric CO2 and temperature, is expected to be less dependent on the strength of climate/carbon cycle feedback. Atmospheric CO2 concentration and mean surface temperatures continue to rise under the modeled W7 scenario (figures 1(A)-(C)). Deploying 7 wedges does not alter projected mean surface temperatures by a statistically significant increment until 2046 (α = 0.05 level), at which time the predicted difference between mean temperatures in the A2 and W7 scenarios is 0.14 ± 0.08 °C. In 2060, the difference in projected mean temperatures under the two scenarios is 0.47 ± 0.07 °C. Further, under the W7 scenario, our results indicate atmospheric CO2 levels will exceed 500 ppm in 2042 (reaching 567 ± 1 ppm in 2060) (figure 1(B)), and 2 °C of warming in 2052 (figure 1(C)). Immediately stabilizing global emissions at 2010 levels (~10.0 GtCy-1), which would require approximately nine wedges (thus W9) under the A2 scenario, has a similarly modest effect on global mean surface temperatures and atmospheric CO2, with warming of 1.92 ± 0.4 °C in 2060 and atmospheric CO2 exceeding 500 ppm by 2049 (figures 1(D)-(F)). Our projections therefore indicate that holding emissions constant at current levels for the next half-century would cause substantial warming, approaching or surpassing current benchmarks [27-29] even before any reduction of emissions (phase 3) begins. Insofar as current climate targets accurately reflect the social acceptance of climate change impacts, then, solving the carbon and climate problem means not just stabilizing but sharply reducing CO2 emissions over the next 50 years. We are not alone in drawing this conclusion (see, e.g. [30-32]). For example, at least some integrated assessment models have now found that the emissions reductions required to prevent atmospheric CO2 concentration from exceeding 450 ppm are no longer either physically or economically feasible [11, 33, 34], and that preventing CO2 concentration from exceeding 550 ppm will also be difficult if participation of key countries such as China and Russia is delayed [11]. Most model scenarios that allow CO2 concentrations to stabilize at 450 ppm entail negative carbon emissions, for example by capturing and storing emissions from bioenergy [11]. A different body of literature has concluded that cumulative emissions of 1 trillion tons of carbon (i.e. 1000 GtC) are likely to result in warming of 2 °C [15, 35]. Whereas Pacala and Socolow's original proposal implied roughly 944 GtC of cumulative emissions (305 GtC prior to 2004, 389 GtC between 2004 and 2054, and another 250 GtC between 2054 and 2104 if emissions decrease at 2% y-1 as they suggested), stabilizing emissions at 2010 levels for 50 y and decreasing at 2% y-1 afterward increases the cumulative total to 1180 GtC of emissions (356 GtC prior to 2010, 491 GtC between 2010 and 2060, and 336 GtC between 2060 and 2110 at which time annual emissions remain at nearly 3.2 GtC y-1). Lastly, we note that even though emissions in the lowest of the new representative concentration pathways (RCP2.6) peak in 2020 at just 10.3 GtC y-1 and decline sharply to only 2.0 GtC y-1 in 2060 (figure 2), the concentration of atmospheric CO2 nonetheless reaches 443 ppm in 2050 [36-38]. In contrast, emissions of the intermediate pathway RCP4.5 rise modestly to 11.5 GtC y-1 in 2040 before declining to 9.6 GtC y-1 in 2060, which leads to atmospheric CO2 concentrations of 509 ppm in 2060 on the way to 540 ppm in 2100. These pathways, along with the integrated assessment models and cumulative emissions simulations all support our finding that 50 y of current emissions is not a solution to climate change. Figure 2 Figure 2. Idealization of future CO2 emissions under the business-as-usual SRES A2 marker scenario. Future emissions are divided into hidden (sometimes called 'virtual') wedges (brown) of emissions avoided by expected decreases in the carbon intensity of GDP by ~1% per year, stabilization wedges (green) of emissions avoided through mitigation efforts that hold emissions constant at 9.8 GtC y-1 beginning in 2010, phase-out wedges (purple) of emissions avoided through complete transition of technologies and practices that emit CO2 to the atmosphere to ones that do not, and allowed emissions (blue). Wedges expand linearly from 0 to 1 GtC y-1 from 2010 to 2060. The total avoided emissions per wedge is 25 GtC, such that altogether the hidden, stabilization and phase-out wedges represent 775 GtC of cumulative emissions. Unless current climate targets are sacrificed, solving the climate problem requires significantly reducing emissions over the next 50 years. Just how significant those reductions need to be will depend on a global trade-off between the damages imposed by climatic changes and the costs of avoiding them. But given substantial uncertainties associated with climate model projections (e.g., climate sensitivity), the arbitrary nature of targets like 500 ppm and 2 °C, and the permanence implied by the term 'solution', the ultimate solution to the climate problem is a complete phase-out of carbon emissions. 3. Counting wedges But significantly reducing current emissions while also sustaining historical growth rates of the global economy is likely to require many more than seven wedges. Gross world product (GWP) projections embedded in the A2 scenario imply as many as 31 wedges would be required to completely phase-out emissions, grouped into three distinct groups: (1) 12 'hidden' wedges that represent the continued decarbonization of our energy system at historical rates (i.e. decreases in the carbon intensity of the global economy that are assumed to regardless of any additional efforts to mitigate emissions) [9, 39]. (2) 9 'stabilization' wedges that represent additional efforts to mitigate emissions above and beyond the technological progress already assumed by the scenario [1]. And (3), 10 'phase-out' wedges that represent the complete transition from energy infrastructure and land-use practices that emit CO2 (on net) to the atmosphere to infrastructure and practices which do not (figure 2) [9, 14, 40]. There is good reason to be concerned that at least some number of the hidden wedges will not come to be—that the rates of decarbonization assumed by almost all scenarios of future emissions may underestimate the extent to which rising energy demand will be met by increased use of coal and unconventional fossil fuels [24, 41]. Moreover, there is no way to know whether a wedge created by deploying carbon-free energy technology represents additional mitigation effort (i.e. a stabilization wedge) or something that would have happened in the course of normal technological progress (i.e. a hidden wedge). Thus, in assessing the efficacy of efforts to reduce emissions, it may be more useful to tabulate wedges based only on the current carbon intensity of global energy and food production and projected demand for energy and food, without reference to any particular technology scenario. Doing so would clarify the full level of decarbonization necessary and remove the question of whether emissions reductions that do occur should count as mitigation or not. But even assuming that historical rates of decarbonization will persist and therefore that many hidden wedges will materialize, phasing-out emissions altogether will entail nearly three times the number of additional wedges that Pacala and Socolow originally proposed—a total of 19 wedges under the A2 scenario (figure 2). 4. The urgent need for innovation Confronting the need for as many as 31 wedges (12 hidden, 9 stabilization and 10 phase-out), the question is whether there are enough affordable mitigation options available, and—because the main source of CO2 emissions is the burning of fossil fuels—the answer depends upon an assessment of carbon-free energy technologies. There is a longstanding disagreement in the literature between those who argue that existing technologies, improved incrementally, are all that is needed to solve the climate problem (e.g. [1]) and others who argue that more transformational change is necessary (e.g. 42]). Although the disagreement has turned on the definitions of incremental and transformative and the trade-offs of a near-term versus a longer-term focus, the root difference lies in the perceived urgency of the climate problem [6]. The emission reductions required by current targets, let alone a complete phase-out of emissions, demand fundamental, disruptive changes in the global energy system over the next 50 years. Depending on what sort of fossil-fuel infrastructure is replaced and neglecting any emissions produced to build and maintain the new infrastructure (see, e.g. [43]), a single wedge represents 0.7-1.4 terawatts (TW) of carbon-free energy (or an equivalent decrease in demand for fossil energy). Whether the changes to the energy system are called incremental or revolutionary, few would dispute that extensive innovation of technologies will be necessary to afford many terawatts of carbon-free energy and reductions in energy demand [42, 44, 45]. Currently, only a few classes of technologies might conceivably provide carbon-free power at the scale of multiple terawatts, among them fossil fuels with carbon capture and storage (CCS), nuclear, and renewables (principally solar and wind, and perhaps biomass) [42, 46, 47]. However, CCS has not yet been commercially deployed at any centralized power plant; the existing nuclear industry, based on reactor designs more than a half-century old and facing renewed public concerns of safety, is in a period of retrenchment, not expansion; and existing solar, wind, biomass, and energy storage systems are not yet mature enough to provide affordable baseload power at terawatt scale. Each of these technologies must be further developed if they are to be deployed at scale and at costs competitive with fossil energy. Yet because investments in the energy sector tend to be capital intensive and long term, research successes are often not fully appropriable [48], and technologies compete almost entirely on the price of delivered electricity, private firms tend to underinvest in R&D, which has made energy one of the least innovative industry sectors in modern economies [44]. Supporting deployment of newer energy technologies at large scales will undoubtedly lead to further development and reduced costs [49, 50], but additional public support for early stage R&D will also be necessary to induce needed innovation [6, 44, 45, 51-53]. Moreover, it is imperative that policies and programs also address the intermediate stages of development, demonstration, and commercialization, when ideas born of public-funded research must be transferred to and diffused among private industries [44, 54, 55]. 5. Conclusions In 2004, Pacala and Socolow concluded that 'the choice today is between action and delay'. After eight years of mostly delay, the action now required is significantly greater. Current climate targets of 500 ppm and 2 °C of warming will require emissions to peak and decline in the next few decades. Solving the climate problem ultimately requires near-zero emissions. Given the current emissions trajectory, eliminating emissions over 50 years would require 19 wedges: 9 to stabilize emissions and an additional 10 to completely phase-out emissions. And if historical, background rates of decarbonization falter, 12 'hidden' wedges will also be necessary, bringing the total to a staggering 31 wedges. Filling this many wedges while sustaining global economic growth would mean deploying tens of terawatts of carbon-free energy in the next few decades. Doing so would entail a fundamental and disruptive overhaul of the global energy system, as the global energy infrastructure is replaced with new infrastructure that provides equivalent amounts of energy but does not emit CO2. Current technologies and systems cannot provide the amounts of carbon-free energy needed soon enough or affordably enough to achieve this transformation. An integrated and aggressive set of policies and programs is urgently needed to support energy technology innovation across all stages of research, development, demonstration, and commercialization. No matter the number required, wedges can still simplify and quantify the challenge. But the problem was never easy. Acknowledgments We thank six anonymous reviewers for their comments on various versions of the manuscript. We also especially thank R Socolow for several thoughtful and stimulating discussions of this work.

  15. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes

    NASA Astrophysics Data System (ADS)

    Xu, Yangyang; Ramanathan, Veerabhadran

    2017-09-01

    The historic Paris Agreement calls for limiting global temperature rise to “well below 2 °C.” Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (˜50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO2, the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend.

  16. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes.

    PubMed

    Xu, Yangyang; Ramanathan, Veerabhadran

    2017-09-26

    The historic Paris Agreement calls for limiting global temperature rise to "well below 2 °C." Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (∼50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO 2 , the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO 2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO 2 before 2100 to both limit the preindustrial to 2100 cumulative net CO 2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend. Copyright © 2017 the Author(s). Published by PNAS.

  17. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes

    PubMed Central

    Xu, Yangyang; Ramanathan, Veerabhadran

    2017-01-01

    The historic Paris Agreement calls for limiting global temperature rise to “well below 2 °C.” Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (∼50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO2, the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend. PMID:28912354

  18. Biogenic Emission Inventories: Scaling Local Biogenic Measurements to Regions

    NASA Astrophysics Data System (ADS)

    Lamb, B.; Pressley, S.; Westberg, H.; Guenther, A.

    2002-12-01

    Biogenic Hydrocarbons, such as isoprene, are important trace gas species that are naturally emitted by vegetation and that affect the oxidative capacity of the atmosphere. Biogenic emissions are regulated by many environmental variables; the most important variables are thought to be temperature and light. Long-term isoprene flux measurements are useful for verifying existing canopy models and exploring other correlations between isoprene fluxes and environmental parameters. Biogenic Emission Models, such as BEIS (Biogenic Emission Inventory System) rely on above canopy environmental parameters and below canopy scaling factors to estimate canopy scale biogenic hydrocarbon fluxes. Other models, which are more complex, are coupled micrometeorological and physiological modules that provide feedback mechanisms present in a canopy environment. These types of models can predict biogenic emissions well, however, the required input is extensive, and for regional applications, they can be cumbersome. This paper presents analyses based on long-term isoprene flux measurements that have been collected since 1999 at the AmeriFlux site located at the University of Michigan Biological Station (UMBS) as part of the Program for Research on Oxidants: PHotochemistry, Emissions, and Transport (PROPHET). The goals of this research were to explore a potential relationship between the surface energy budget (primarily sensible heat flux) and isoprene emissions. Our hypothesis is that the surface energy flux is a better model parameter for isoprene emissions at the canopy scale than temperature and light levels, and the link to the surface energy budget will provide a significant improvement in isoprene emission models. Preliminary results indicate a significant correlation between daily isoprene emissions and sensible heat fluxes for a predominantly aspen/oak stand located in northern Michigan. Since surface energy budgets are an integral part of mesoscale meteorological models, this could potentially be a useful tool for including biogenic emissions into regional atmospheric models. Comparison of measured isoprene fluxes with current BEIS estimates will also be shown as an example of where emission inventories currently stand.

  19. A high-resolution open biomass burning emission inventory based on statistical data and MODIS observations in mainland China

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Fan, M.; Huang, Z.; Zheng, J.; Chen, L.

    2017-12-01

    Open biomass burning which has adverse effects on air quality and human health is an important source of gas and particulate matter (PM) in China. Current emission estimations of open biomass burning are generally based on single source (alternative to statistical data and satellite-derived data) and thus contain large uncertainty due to the limitation of data. In this study, to quantify the 2015-based amount of open biomass burning, we established a new estimation method for open biomass burning activity levels by combining the bottom-up statistical data and top-down MODIS observations. And three sub-category sources which used different activity data were considered. For open crop residue burning, the "best estimate" of activity data was obtained by averaging the statistical data from China statistical yearbooks and satellite observations from MODIS burned area product MCD64A1 weighted by their uncertainties. For the forest and grassland fires, their activity levels were represented by the combination of statistical data and MODIS active fire product MCD14ML. Using the fire radiative power (FRP) which is considered as a better indicator of active fire level as the spatial allocation surrogate, coarse gridded emissions were reallocated into 3km ×3km grids to get a high-resolution emission inventory. Our results showed that emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, PM10, BC and OC in mainland China were 6607, 427, 84, 79, 1262, 1198, 1222, 159 and 686 Gg/yr, respectively. Among all provinces of China, Henan, Shandong and Heilongjiang were the top three contributors to the total emissions. In this study, the developed open biomass burning emission inventory with a high-resolution could support air quality modeling and policy-making for pollution control.

  20. Management opportunities for enhancing terrestrial CO2 sinks

    USDA-ARS?s Scientific Manuscript database

    To address climate change and the implications of a global mean temperature increase of more than two degrees Celsius over current levels will require terrestrial carbon (C) management along with reductions in fossil fuel emissions. To achieve all or part of the global terrestrial C sequestration p...

  1. In situ experimental study of carbon monoxide generation by gasoline-powered electric generator in an enclosed space.

    PubMed

    Wang, Liangzhu; Emmerich, Steven J; Persily, Andrew K

    2010-12-01

    On the basis of currently available data, approximately 97% of generator-related carbon monoxide (CO) fatalities are caused by operating currently marketed, carbureted spark-ignited gasoline-powered generators (not equipped with emission controls) in enclosed spaces. To better understand and to reduce the occurrence of these fatalities, research is needed to quantify CO generation rates, develop and test CO emission control devices, and evaluate CO transport and exposure when operating a generator in an enclosed space. As a first step in these efforts, this paper presents measured CO generation rates from a generator without any emission control devices operating in an enclosed space under real weather conditions. This study expands on previously published information from the U.S. Consumer Product Safety Commission. Thirteen separate tests were conducted under different weather conditions at half and full generator load settings. It was found that the CO level in the shed reached a maximum value of 29,300 +/- 580 mg/m3, whereas the oxygen (O2) was depleted to a minimum level of 16.2 +/- 0.02% by volume. For the test conditions of real weather and generator operation, the CO generation and the O2 consumption could be expressed as time-averaged generation/consumption rates. It was also found that the CO generation and O2 consumption rates can be correlated to the O2 levels in the space and the actual load output from the generator. These correlations are shown to agree well with the measurements.

  2. Eddy Covariance Measurements Assessing NOx Emission in London, UK

    NASA Astrophysics Data System (ADS)

    Drysdale, W. S.; Lee, J. D.; Purvis, R.; Squires, F. A.; Vaughan, A. R.; Metzger, S.

    2017-12-01

    NOx (the sum of NO + NO2) is emitted during most combustion processes. NO2is a well known air pollutant detrimental to human health, and is regulated in many cities. London often finds itself in breach of these emission regulations. Emission inventories are used in air quality forecast models to predict current and future air pollution levels and to guide abatement strategy. It is therefore crucial that inventories accurately predict emissions; validation can be carried out using direct measurements. Measurements of NO and NO2 at 5 Hz have been made at the BT Tower, 190 m above street level in central London. Eddy covariance calculations have been performed using both classical and "continuous wavelet transformation" method, producing half hour and 1 minute resolved NOx fluxes respectively. We present a first look at these flux data measured in early 2017. A strong diurnal profile for NOx flux is observed, with an increase from 5am to 7am, and remaining constant around 1400 ng m2 m-1 throughout the day, before decreasing to background levels towards midnight. Data is also compared to previous NOx flux measurements over two periods, June-July 2012 and March-April 2013 to examine how emissions have changed over this period. A significant decrease in NOx emissions ( 64%, a mean flux of 2400 ng m2 s-1 in 2012 to a mean 870 ng m2 s-1 in 2017) is observed. When the fluxes are separated by wind flow from the east and west, there is negligible difference in 2017, where 2012 saw lower fluxes from the east, especially in the afternoon. By coupling the measurements with a footprint model we compare the data to emission estimates from the UK's National Atmospheric Emission Inventory (NAEI). In 2012-13 emissions were measured to be twice as high than the NAEI predicted and the latest data shows a much better agreement.

  3. Possible overexposure of pregnant women to emissions from a walk through metal detector.

    PubMed

    Wu, Dagang; Qiang, Rui; Chen, Ji; Seidman, Seth; Witters, Donald; Kainz, Wolfgang

    2007-10-07

    This paper presents a systematic procedure to evaluate the induced current densities and electric fields due to walk-through metal detector (WTMD) exposure. This procedure is then used to assess the exposure of nine pregnant women models exposed to one WTMD model. First, we measured the magnetic field generated by the WTMD, then we extracted the equivalent current source to represent the WTMD emissions and finally we calculated the induced current densities and electric fields using the impedance method. The WTMD emissions and the induced fields in the pregnant women and fetus models are then compared to the ICNIRP Guidelines and the IEEE C95.6 exposure safety standard. The results prove the consistency between maximum permissible exposure (MPE) levels and basic restrictions for the ICNIRP Guidelines and IEEE C95.6. We also found that this particular WTMD complies with the ICNIRP basic restrictions for month 1-5 models, but leads to both fetus and pregnant women overexposure for month 6-9 models. The IEEE C95.6 restrictions (MPEs and basic restrictions) are not exceeded. The fetus overexposure of this particular WTMD calls for carefully conducted safety evaluations of security systems before they are deployed.

  4. Possible overexposure of pregnant women to emissions from a walk through metal detector

    NASA Astrophysics Data System (ADS)

    Wu, Dagang; Qiang, Rui; Chen, Ji; Seidman, Seth; Witters, Donald; Kainz, Wolfgang

    2007-09-01

    This paper presents a systematic procedure to evaluate the induced current densities and electric fields due to walk-through metal detector (WTMD) exposure. This procedure is then used to assess the exposure of nine pregnant women models exposed to one WTMD model. First, we measured the magnetic field generated by the WTMD, then we extracted the equivalent current source to represent the WTMD emissions and finally we calculated the induced current densities and electric fields using the impedance method. The WTMD emissions and the induced fields in the pregnant women and fetus models are then compared to the ICNIRP Guidelines and the IEEE C95.6 exposure safety standard. The results prove the consistency between maximum permissible exposure (MPE) levels and basic restrictions for the ICNIRP Guidelines and IEEE C95.6. We also found that this particular WTMD complies with the ICNIRP basic restrictions for month 1-5 models, but leads to both fetus and pregnant women overexposure for month 6-9 models. The IEEE C95.6 restrictions (MPEs and basic restrictions) are not exceeded. The fetus overexposure of this particular WTMD calls for carefully conducted safety evaluations of security systems before they are deployed.

  5. Forty years of improvements in European air quality: the role of EU policy-industry interplay

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Janssens-Maenhout, G.; Dentener, F.; Guizzardi, D.; Sindelarova, K.; Muntean, M.; Van Dingenen, R.; Granier, C.

    2015-07-01

    The EDGAR (Emissions Database for Global Atmospheric Research) v4.3 global anthropogenic emissions inventory of several gaseous (SO2, NOx, CO, non-methane volatile organic compounds (NMVOCs) and NH3) and particulate (PM10, PM2.5, black and organic carbon (BC and OC)) air pollutants for the period 1970-2010 is used to develop retrospective air pollution emission scenarios to quantify the roles and contributions of changes in fuels consumption, technology, end-of-pipe emission reduction measures and their resulting impact on health and crop yields. This database presents changes in activity data, fuels and air pollution abatement technology for the past 4 decades, using international statistics and following guidelines for bottom-up emission inventory at the Tier 1 and Tier 2 levels with region-specific default values. With two further retrospective scenarios we assess (1) the impact of the technology and end-of-pipe (EOP) reduction measures in the European Union (EU) by considering a stagnation of technology with constant emission factors from 1970 and with no further abatement measures and improvement in European emissions standards, but fuel consumption occurring at historical pace, and (2) the impact of increased fuel consumption by considering unchanged energy use with constant fuel consumption since 1970, but technological development and end-of-pipe reductions. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, the manufacturing industry and road transport), which are subject of multi-pollutant EU Air Quality regulations. If technology and European EOP reduction measures had stagnated at 1970 levels, EU air quality in 2010 would have suffered from 129 % higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions, demonstrating the large role of technology in reducing emissions in 2010. However, if fuel consumption had remained constant starting in 1970, the EU would have benefited from current technology and emission control standards, with reductions in NOx by even 13 % more. Such further savings are not observed for SO2 and PM2.5. If the EU consumed the same amount of fuels as in 1970 but with the current technology and emission control standards, then the emissions of SO2 and PM2.5 would be 42 % respectively 10 % higher. This scenario shows the importance for air quality of abandoning heavy residual fuel oil and shifting fuel types (from, e.g., coal to gas) in the EU. A reduced-form TM5-FASST (Fast Screening Scenario Tool based on the global chemical Transport Model 5) is applied to calculate regional and global levels of aerosol and ozone concentrations and to assess the impact of air quality improvements on human health and crop yield loss, showing substantial impacts of export of EU technologies and standards to other world regions.

  6. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: a review.

    PubMed

    Gerber, P J; Hristov, A N; Henderson, B; Makkar, H; Oh, J; Lee, C; Meinen, R; Montes, F; Ott, T; Firkins, J; Rotz, A; Dell, C; Adesogan, A T; Yang, W Z; Tricarico, J M; Kebreab, E; Waghorn, G; Dijkstra, J; Oosting, S

    2013-06-01

    Although livestock production accounts for a sizeable share of global greenhouse gas emissions, numerous technical options have been identified to mitigate these emissions. In this review, a subset of these options, which have proven to be effective, are discussed. These include measures to reduce CH4 emissions from enteric fermentation by ruminants, the largest single emission source from the global livestock sector, and for reducing CH4 and N2O emissions from manure. A unique feature of this review is the high level of attention given to interactions between mitigation options and productivity. Among the feed supplement options for lowering enteric emissions, dietary lipids, nitrates and ionophores are identified as the most effective. Forage quality, feed processing and precision feeding have the best prospects among the various available feed and feed management measures. With regard to manure, dietary measures that reduce the amount of N excreted (e.g. better matching of dietary protein to animal needs), shift N excretion from urine to faeces (e.g. tannin inclusion at low levels) and reduce the amount of fermentable organic matter excreted are recommended. Among the many 'end-of-pipe' measures available for manure management, approaches that capture and/or process CH4 emissions during storage (e.g. anaerobic digestion, biofiltration, composting), as well as subsurface injection of manure, are among the most encouraging options flagged in this section of the review. The importance of a multiple gas perspective is critical when assessing mitigation potentials, because most of the options reviewed show strong interactions among sources of greenhouse gas (GHG) emissions. The paper reviews current knowledge on potential pollution swapping, whereby the reduction of one GHG or emission source leads to unintended increases in another.

  7. [Positron emission tomography: diagnostic imaging on a molecular level].

    PubMed

    Allemann, K; Wyss, M; Wergin, M; Bley, C Rohrer; Ametamay, S; Bruehlmeier, M; Kaser-Hotz, B

    2004-08-01

    In human medicine positron emission tomography (PET) is a modern diagnostic imaging method. In the present paper we outline the physical principles of PET and give an overview over the main clinic fields where PET is being used, such as neurology, cardiology and oncology. Moreover, we present a current project in veterinary medicine (in collaboration with the Paul Scherrer Institute and the University Hospital Zurich), where a hypoxia tracer is applied to dogs and cats suffering from spontaneous tumors. Finally new developments in the field of PET were discussed.

  8. Improved defect analysis of Gallium Arsenide solar cells using image enhancement

    NASA Technical Reports Server (NTRS)

    Kilmer, Louis C.; Honsberg, Christiana; Barnett, Allen M.; Phillips, James E.

    1989-01-01

    A new technique has been developed to capture, digitize, and enhance the image of light emission from a forward biased direct bandgap solar cell. Since the forward biased light emission from a direct bandgap solar cell has been shown to display both qualitative and quantitative information about the solar cell's performance and its defects, signal processing techniques can be applied to the light emission images to identify and analyze shunt diodes. Shunt diodes are of particular importance because they have been found to be the type of defect which is likely to cause failure in a GaAs solar cell. The presence of a shunt diode can be detected from the light emission by using a photodetector to measure the quantity of light emitted at various current densities. However, to analyze how the shunt diodes affect the quality of the solar cell the pattern of the light emission must be studied. With the use of image enhancement routines, the light emission can be studied at low light emission levels where shunt diode effects are dominant.

  9. Health impacts of anthropogenic biomass burning in the developed world.

    PubMed

    Sigsgaard, Torben; Forsberg, Bertil; Annesi-Maesano, Isabella; Blomberg, Anders; Bølling, Anette; Boman, Christoffer; Bønløkke, Jakob; Brauer, Michael; Bruce, Nigel; Héroux, Marie-Eve; Hirvonen, Maija-Riitta; Kelly, Frank; Künzli, Nino; Lundbäck, Bo; Moshammer, Hanns; Noonan, Curtis; Pagels, Joachim; Sallsten, Gerd; Sculier, Jean-Paul; Brunekreef, Bert

    2015-12-01

    Climate change policies have stimulated a shift towards renewable energy sources such as biomass. The economic crisis of 2008 has also increased the practice of household biomass burning as it is often cheaper than using oil, gas or electricity for heating. As a result, household biomass combustion is becoming an important source of air pollutants in the European Union.This position paper discusses the contribution of biomass combustion to pollution levels in Europe, and the emerging evidence on the adverse health effects of biomass combustion products.Epidemiological studies in the developed world have documented associations between indoor and outdoor exposure to biomass combustion products and a range of adverse health effects. A conservative estimate of the current contribution of biomass smoke to premature mortality in Europe amounts to at least 40 000 deaths per year.We conclude that emissions from current biomass combustion products negatively affect respiratory and, possibly, cardiovascular health in Europe. Biomass combustion emissions, in contrast to emissions from most other sources of air pollution, are increasing. More needs to be done to further document the health effects of biomass combustion in Europe, and to reduce emissions of harmful biomass combustion products to protect public health. Copyright ©ERS 2015.

  10. Study of a contracted glow in low-frequency plasma-jet discharges operating with argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minotti, F.; Giuliani, L.; Xaubet, M.

    2015-11-15

    In this work, we present an experimental and theoretical study of a low frequency, atmospheric plasma-jet discharge in argon. The discharge has the characteristics of a contracted glow with a current channel of submillimeter diameter and a relatively high voltage cathode layer. In order to interpret the measurements, we consider the separate modeling of each region of the discharge: main channel and cathode layer, which must then be properly matched together. The main current channel was modeled, extending a previous work, as similar to an arc in which joule heating is balanced by lateral heat conduction, without thermal equilibrium betweenmore » electrons and heavy species. The cathode layer model, on the other hand, includes the emission of secondary electrons by ion impact and by additional mechanisms, of which we considered emission due to collision of atoms excited at metastable levels, and field-enhanced thermionic emission (Schottky effect). The comparison of model and experiment indicates that the discharge can be effectively sustained in its contracted form by the secondary electrons emitted by collision of excited argon atoms, whereas thermionic emission is by far insufficient to provide the necessary electrons.« less

  11. Electrical current flow at conductive nanowires formed in GaN thin films by a dislocation template technique

    NASA Astrophysics Data System (ADS)

    Amma, Shin-ichi; Tokumoto, Yuki; Edagawa, Keiichi; Shibata, Naoya; Mizoguchi, Teruyasu; Yamamoto, Takahisa; Ikuhara, Yuichi

    2010-05-01

    Conductive nanowires were fabricated in GaN thin film by selectively doping of Al along threading dislocations. Electrical current flow localized at the nanowires was directly measured by a contact mode atomic force microscope. The current flow at the nanowires was considered to be Frenkel-Poole emission mode, suggesting the existence of the deep acceptor level along the nanowires as a possible cause of the current flow. The results obtained in this study show the possibility for fabricating nanowires using pipe-diffusion at dislocations in solid thin films.

  12. In Situ observation of dark current emission in a high gradient rf photocathode gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.

    Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less

  13. In Situ observation of dark current emission in a high gradient rf photocathode gun

    DOE PAGES

    Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; ...

    2016-08-15

    Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (~100 μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ~100 MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. Finally, the postexaminations with scanning electron microscopy and white light interferometry reveal the origins ofmore » ~75% strong emission areas overlap with the spots where rf breakdown has occurred.« less

  14. Whole Farm Net Greenhouse Gas Abatement from Establishing Kikuyu-Based Perennial Pastures in South-Western Australia

    PubMed Central

    Thomas, Dean T.; Sanderman, Jonathan; Eady, Sandra J.; Masters, David G.; Sanford, Paul

    2012-01-01

    Simple Summary Greenhouse gas (GHG) emissions from ruminant livestock production (sheep, cattle and goats) have contributed to a common perception that a shift in the human diet from animal to plant-based products is environmentally responsible. In this study we found that the level of net emissions from livestock production systems is strongly influenced by the type of farming system that is used, and in fact GHG emission levels from some livestock production systems may be comparable with cropping systems. By introducing into farming systems ‘perennial’ pasture plants that are able to capture more atmospheric carbon, which is then stored in the soil, emission levels from livestock production can be substantially reduced. Abstract On-farm activities that reduce GHG emissions or sequester carbon from the atmosphere to compensate for anthropogenic emissions are currently being evaluated by the Australian Government as carbon offset opportunities. The aim of this study was to examine the implications of establishing and grazing Kikuyu pastures, integrated as part of a mixed Merino sheep and cropping system, as a carbon offset mechanism. For the assessment of changes in net greenhouse gas emissions, results from a combination of whole farm economic and livestock models were used (MIDAS and GrassGro). Net GHG emissions were determined by deducting increased emissions from introducing this practice change (increased methane and nitrous oxide emissions due to higher stocking rates) from the soil carbon sequestered from growing the Kikuyu pasture. Our results indicate that livestock systems using perennial pastures may have substantially lower net GHG emissions, and reduced GHG intensity of production, compared with annual plant-based production systems. Soil carbon accumulation by converting 45% of arable land within a farm enterprise to Kikuyu-based pasture was determined to be 0.80 t CO2-e farm ha−1 yr−1 and increased GHG emissions (leakage) was 0.19 t CO2-e farm ha−1 yr−1. The net benefit of this practice change was 0.61 t CO2-e farm ha−1 yr−1 while the rate of soil carbon accumulation remains constant. The use of perennial pastures improved the efficiency of animal production almost eight fold when expressed as carbon dioxide equivalent emissions per unit of animal product. The strategy of using perennial pasture to improve production levels and store additional carbon in the soil demonstrates how livestock should be considered in farming systems as both sources and sinks for GHG abatement. PMID:26487024

  15. POLICY AND SCIENCE: ASSESSING THE IMPACT OF REGULATIONS ON AIR QUALITY AND HUMAN HEALTH

    EPA Science Inventory

    This presentation will discuss the NOx SIP call and the results of several studies investigating the impact of the regulation on NOx emissions and ozone levels across the northeastern United States. Current research plans to investigate linkages with human health will also be di...

  16. FOREST HARVESTS AND WOOD PRODUCTS: SOURCES AND SINKS OF ATMOSPHERIC CARBON DIOXIDE

    EPA Science Inventory

    Changes in the net carbon(c)sink-source balance related to a country's forest harvesting and use of wood products is an important component in making country-level inventories of greenhouse gas emissions,a current activity within many signatory nations to the UN Framework Convent...

  17. TRACE-LEVEL MEASUREMENT OF COMPLEX COMBUSTION EFFLUENTS AND RESIDUES USING MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS SPECTROMETRY (MDGC-MS). (R828190)

    EPA Science Inventory

    The identification and quantitation of non-method-specific target analytes have greater importance with respect to EPA's current combustion strategy. The risk associated with combustion process emissions must now be characterized. EPA has recently released draft guidance on pr...

  18. A University-Level Curriculum in Climate Change for SE Asia and the Asian Pacific

    NASA Astrophysics Data System (ADS)

    Furniss, M. J.; Saah, D. S.; Hines, S. J.; Radel, C. A.; McGroddy, M. E.; Ganz, D. J.

    2014-12-01

    A university-level curriculum has been developed for the SE Asia and Asia Pacific region and is currently being implemented by 12+ universities; in Vietnam, Cambodia, Laos, Thailand, Malaysia, and Papua New Guinea. The curriculum is supported by USAID (U.S. Agency for International Development) through the LEAF program (Lowering Emissions in Asian Forests), under the technical leadership of the U.S. Forest Service. Four modules have been developed: Basic Climate Change, Low-Emissions Land Use Planning, Social and Environmental Soundness, and Carbon Measurement and Monitoring. This presentation will focus on the Basic Climate Change module. This is a survey course that covers a wide range of climate change topics, including causes, effects, and responses. The level of detail in each of the covered topics is calibrated to current issues in the region. The module is elaborated in English and will be translated into the national language of the participating countries. The module is designed to be flexible and can be tailored to both degree and non-degree programs; as well as for trainings for natural resources professionals and policy-makers. Important training topics can be selected as short course trainings for practitioners and leaders working on climate change.

  19. Real-time gaseous, PM and ultrafine particle emissions from a modern marine engine operating on biodiesel.

    PubMed

    Jayaram, Varalakshmi; Agrawal, Harshit; Welch, William A; Miller, J Wayne; Cocker, David R

    2011-03-15

    Emissions from harbor-craft significantly affect air quality in populated regions near ports and inland waterways. This research measured regulated and unregulated emissions from an in-use EPA Tier 2 marine propulsion engine on a ferry operating in a bay following standard methods. A special effort was made to monitor continuously both the total Particulate Mass (PM) mass emissions and the real-time Particle Size Distribution (PSD). The engine was operated following the loads in ISO 8178-4 E3 cycle for comparison with the certification standards and across biodiesel blends. Real-time measurements were also made during a typical cruise in the bay. Results showed the in-use nitrogen oxide (NOx) and PM(2.5) emission factors were within the not to exceed standard for Tier 2 marine engines. Comparing across fuels we observed the following: a) no statistically significant change in NO(x) emissions with biodiesel blends (B20, B50); b) ∼ 16% and ∼ 25% reduction of PM(2.5) mass emissions with B20 and B50 respectively; c) a larger organic carbon (OC) to elemental carbon (EC) ratio and organic mass (OM) to OC ratio with B50 compared to B20 and B0; d) a significant number of ultrafine nuclei and a smaller mass mean diameter with increasing blend-levels of biodiesel. The real-time monitoring of gaseous and particulate emissions during a typical cruise in the San Francisco Bay (in-use cycle) revealed important effects of ocean/bay currents on emissions: NO(x) and CO(2) increased 3-fold; PM(2.5) mass increased 6-fold; and ultrafine particles disappeared due to the effect of bay currents. This finding has implications on the use of certification values instead of actual in-use emission values when developing inventories. Emission factors for some volatile organic compounds (VOCs), carbonyls, and poly aromatic hydrocarbons (PAHs) are reported as supplemental data.

  20. Field emission and explosive electron emission process in focused ion beam fabricated platinum and tungsten three-dimensional overhanging nanostructure

    NASA Astrophysics Data System (ADS)

    Singh, Abhishek Kumar

    2018-06-01

    Three-dimensional platinum and tungsten overhanging nanogap (∼70 nm) electrodes are fabricated on a glass substrate using focused ion beam milling and chemical vapour deposition processes. Current-voltage (I-V) characteristics of the devices measured at a pressure of ∼10-6 mbar shows space-charge emission followed by the Fowler-Nordheim (F-N) field emission. After the F-N emission, the system enters into an explosive emission process, at a higher voltage generating a huge current. We observe a sharp and abrupt rise in the emission current which marks the transition from the F-N emission to the explosive emission state. The explosive emission process is destructive in nature and yields micro-/nano-size spherical metal particles. The chemical compositions and the size-distribution of such particles are performed.

  1. Investigation of a staged plasma-focus apparatus. [pinch construction and current sheet dynamics investigation

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Mcfarland, D. R.; Harries, W. L.

    1978-01-01

    A new staged plasma-focus geometry combining two Mather-type plasma-focus guns was constructed, and the current-sheet dynamics were investigated. The production of simultaneous pairs of plasma foci was achieved. The intensities of X-ray and fusion-neutron emission were measured and found to agree with the scaling law for a plasma focus. Advantages of this new geometry include the possibility of using plasma-focus type pinches in multiple arrays at power levels beyond the validity regime of the current scaling law for a single gun.

  2. Deep-levels in gallium arsenide for device applications

    NASA Astrophysics Data System (ADS)

    McManis, Joseph Edward

    Defects in semiconductors have been studied for over 40 years as a diagnostic of the quality of crystal growth. In this thesis, we investigate GaAs deep-levels specifically intended for devices. This thesis summarizes our efforts to characterize the near-infrared photoluminescence from deep-levels, study optical transitions via absorption, and fabricate and characterize deep-level light-emitting diodes (LEDs). This thesis also describes the first tunnel diodes which explicitly make use of GaAs deep-levels. Photoluminescence measurements of GaAs deep-levels showed a broad peak around a wavelength extending from 1.0--1.7 mum, which includes important wavelengths for fiber-optic communications (1.3--1.55 mum). Transmission measurements show the new result that very little of the radiative emission is self-absorbed. We measured the deep-level photoluminescence at several temperatures. We are also the first to report the internal quantum efficiency associated with the deep-level transitions. We have fabricated LEDs that, utilize the optical transitions of GaAs deep-levels. The electroluminescence spectra showed a broad peak from 1.0--1.7 mum at low currents, but the spectrum exhibited a blue-shift as the current was increased. To improve device performance, we designed an AlGaAs layer into the structure of the LEDs. The AlGaAs barrier layer acts as a resistive barrier so that the holes in the p-GaAs layer are swept away from underneath the gold p-contact. The AlGaAs layer also reduces the blue-shift by acting as a potential barrier so that only higher-energy holes are injected. We found that the LEDs with AlGaAs were brighter at long wavelengths, which was a significant improvement. Photoluminescence measurements show that the spectral blue-shift is not due to sample heating. We have developed a new physical model to explain the blue-shift: it is caused by Coloumb charging of the deep-centers. We have achieved the first tunnel diodes with which specifically utilize deep-levels in low-temperature-grown (LTG) GaAs. Our devices show the largest ever peak current density in a GaAs tunnel diode at room temperature. Our devices also show significant room-temperature peak-to-valley current ratios. The shape of the current-voltage characteristic and the properties of the optical emission enable us to determine the peak and valley transport mechanisms.

  3. Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tatur, M.; Tyrer, H.; Tomazic, D.

    2005-01-01

    Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure,more » common-rail fuel systems, low-sulfur diesel fuel, NO{sub x} adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S. Department of Energy (DOE) has engaged in several test projects under the Advanced Petroleum Based Fuels - Diesel Emission Controls (APBF-DEC) activity. The primary technology being addressed by these projects are the sulfur tolerance and durability of the NAC/DPF system. The project investigated the performance of the emission control system and system desulphurization effects on regulated and unregulated emissions. Emissions measurements were conducted over the Federal Test Procedure (FTP), Supplemental Federal Test Procedure (SFTP), and the Highway Fuel Economy Test (HFET). Testing was conducted after the accumulation of 150 hours of engine operation calculated to be the equivalent of approximately 8,200 miles. For these evaluations three out of six of the FTP test cycles were within the 50,000-mile Tier 2 bin 5 emission standards (0.05 g/mi NO{sub x} and 0.01 g/mi PM). Emissions over the SC03 portion of the SFTP were within the 4,000-mile SFTP standards. The emission of NO{sub x}+NMHC exceeded the 4,000-mile standard over the US06 portion of the SFTP. Testing was also conducted after the accumulation of 1,000 hours of engine operation calculated to be the equivalent of approximately 50,000 miles. Recalibrated driveability maps resulted in more repeatable NOs{sub x} emissions from cycle to cycle. The NO{sub x} level was below the Tier 2 emission limits for 50,000 and 120,000 miles. NMHC emissions were found at a level outside the limit for 120,000 miles.« less

  4. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    PubMed

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  5. A driving cycle for vehicle emissions estimation in the metropolitan area of Mexico City.

    PubMed

    Schifter, I; Díaz, L; Rodríguez, R; López-Salinas, E

    2005-02-01

    A driving cycle derived from driving behavior and real traffic conditions in Mexico City (MC) is proposed. Data acquisition was carried out over diverse MC routes, representing travel under congested and uncongested conditions, using the chase-car approach. Thirteen different on-road patterns, including the four main access roads to MC, trips in both directions and different timetables, a total of 108 trips spanning 1044 km were evaluated in this study. The MC cycle lasts 1360 seconds with a distance of 8.8 km and average speed of 23.4 km h(-1). Both maximum speed (73.6 km h(-1)) and maximum acceleration (2.22 km h(-1)s(-1)) are lower than those of the new vehicles certification employed in Mexico ,FTP-75 cycle., that is, the MC cycle exhibits less cruising time and more transient events than the FTP cycle. A total of 30 light duty gasoline vehicles were classified into different technological groups and tested in an FTP-75 and MC driving cycles in order to compare their emission factors A potential concern is that in Mexico manufacturers design vehicles to meet the emission standards in the FTP, but emission levels increase significantly in a more representative cycle of present driving patterns in the Metropolitan Area of Mexico City (MAMC). The use of a more representative cycle during certification testing, would provide an incentive for vehicle manufacturers to design emissions control systems to remain effective during operation modes that are not currently represented in the official test procedures used in the certification process. Based on the results of the study, the use of MC cycle, which better represents current day driving patterns during testing of vehicle fleets in emissions laboratories, would improve the accuracy of emissions factors used in the MAMC emissions inventories.

  6. Discrepancies and Uncertainties in Bottom-up Gridded Inventories of Livestock Methane Emissions for the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Hristov, A. N.; Harper, M.; Meinen, R.; Day, R.; Lopes, J.; Ott, T.; Venkatesh, A.

    2017-12-01

    In this analysis we used a spatially-explicit, bottom-up approach, based on animal inventories, feed intake, and feed intake-based emission factors to estimate county-level enteric (cattle) and manure (cattle, swine, and poultry) livestock methane emissions for the contiguous United States. Combined enteric and manure emissions were highest for counties in California's Central Valley. Overall, this analysis yielded total livestock methane emissions (8,916 Gg/yr; lower and upper bounds of 6,423 and 11,840 Gg/yr, respectively) for 2012 that are comparable to the current USEPA estimates for 2012 (9,295 Gg/yr) and to estimates from the global gridded Emission Database for Global Atmospheric Research (EDGAR) inventory (8,728 Gg/yr), used previously in a number of top-down studies. However, the spatial distribution of emissions developed in this analysis differed significantly from that of EDGAR. As an example, methane emissions from livestock in Texas and California (highest contributors to the national total) in this study were 36% lesser and 100% greater, respectively, than estimates by EDGAR. Thespatial distribution of emissions in gridded inventories (e.g., EDGAR) likely strongly impacts the conclusions of top-down approaches that use them, especially in the source attribution of resulting (posterior) emissions, and hence conclusions from such studies should be interpreted with caution.

  7. Molecular modeling of field-driven ion emission from ionic liquids

    NASA Astrophysics Data System (ADS)

    Zhang, Fei; He, Yadong; Qiao, Rui

    2017-11-01

    Traditionally, operating electrosprays in the purely ionic mode is challenging, but recent experiments confirmed that such operation can be achieved using room-temperature ionic liquids as working electrolytes. Such electrosprays have shown promise in applications including chemical analysis, nanomanufacturing, and space propulsion. The mechanistic and quantitative understanding of such electrosprays at the molecular level, however, remain limited at present. In this work, we simulated ion emission from EMIM-PF6 ionic liquid films using the molecular dynamics method. We show that, when the surface electric field is smaller than 1.5V/nm, the ion emission current predicted using coarse-grained ionic liquid model observes the classical scaling law by J. V. Iribarne and B. A. Thomson, i.e., ln(Je/ σ) En1/2. These simulations, however, cannot capture the co-emission of cations and anions from ionic liquid surface observed in some experiments. Such co-emission was successfully captured when united-atom models were adopted for the ionic liquids. By examining the co-emission events with picosecond, sub-angstrom resolution, we clarified the origins of the co-emission phenomenon and delineate the molecular events leading to ion emission.

  8. Assessment of the emissions and air quality impacts of biomass and biogas use in California.

    PubMed

    Carreras-Sospedra, Marc; Williams, Robert; Dabdub, Donald

    2016-02-01

    It is estimated that there is sufficient in-state "technically" recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality. This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining increased biomass use. Further work involving economic assessment, seasonal or annual emissions and air quality modeling, and potential exposure analysis would help inform policy makers and industry with respect to further development and direction of biomass policy and bioenergy technology alternatives needed to meet energy and environmental goals in California.

  9. Biochar reduces efficiency of nitrification inhibitor 3,4-dymethylpyrazole phospate (DMPP) mitigating N2O emissions.

    NASA Astrophysics Data System (ADS)

    Fuertes-Mendizábal, Teresa; Huérfano, Ximena; Menéndez, Sergio; González-Murua, Carmen; Begoña González-Moro, Mª; Ippolito, James; Kamann, Claudia; Wrage-Mönnig, Nicole; Borchard, Nils; Cayuela, Maria Luz; Spokas, Kurt; Sigua, Gilbert; Novak, Jeff; Estavillo, José Mª

    2017-04-01

    Nitrous oxide (N2O) is the strongest greenhouse gas associated with agricultural soils. Current agricultural practices, based on the use of N fertilizers, can lead to environmental N losses, with some losses occurring as N2O emissions. Among the strategies suggested by the Intergovernmental Panel on Climate Change to decrease N losses through agriculture is the utilization of nitrification inhibitors, such as DMPP (3,4-dimethylpyrazole phosphate). This compound inhibits nitrification, thus reducing N2O emissions. However, the efficiency of DMPP might be affected by soil amendments. One soil amendment is biochar, which typically increases soil C, can reduce N2O emissions, affect the retention of water, and alter the C and N cycle. Nevertheless, these effects are not uniformly observed across varying soil types, N fertilization schemes and biochar properties. Assuming that both DMPP and biochars with C/N > 30 ratios are presumably able to reduce soil N2O emissions, the aim of this study was to evaluate the synergic effect of a woody biochar applied in combination with DMPP on N2O emissions. For this purpose, a laboratory incubation study was conducted with a silt loam grassland soil and a biochar obtained from Pinus taeda at 500°C. The experimental design consisted of an arrangement including two biochar levels (0 and 2% (w/w)), three fertilization levels (unfertilized, fertilized and fertilized+DMPP) and two soil water content levels (40% and 80% of water filled pore space, WFPS), giving rise to 12 different individual treatments with four replications of each treatment. Soil N2O emissions were monitored over the incubation period (163 days). Results showed that DMPP reduced N2O emissions to levels comparable to the unfertilized controls. Biochar showed ability to mitigate N2O emissions only at the low soil water content (40% WFPS). However, when DMPP was applied to the biochar amended soil, a counteracting effect was observed, since the reduction in N2O emissions induced by DMPP was less than without biochar. This study demonstrates that the biochar amendment diminishes the efficiency of the nitrification inhibitor DMPP both at low and high soil water contents. Aknowledgements: FACCE-CSA n° 276610/MIT04-DESIGN-UPVASC; AGL2015-64582-C3-2-R MINECO/FEDER; IT-932-16.

  10. Bias-polarity-dependent UV/visible transferable electroluminescence from ZnO nanorod array LED with graphene oxide electrode supporting layer

    NASA Astrophysics Data System (ADS)

    Liu, Weizhen; Wang, Wei; Xu, Haiyang; Li, Xinghua; Yang, Liu; Ma, Jiangang; Liu, Yichun

    2015-09-01

    A simple top electrode preparation process, employing continuous graphene oxide films as electrode supporting layers, was adopted to fabricate a ZnO nanorod array/p-GaN heterojunction LED. The achieved LED demonstrated different electroluminescence behaviors under forward and reverse biases: a yellow-red emission band was observed under forward bias, whereas a blue-UV emission peak was obtained under reverse bias. Electroluminescence spectra under different currents and temperatures, as well as heterojunction energy-band alignments, reveal that the yellow-red emission under forward bias originates from recombinations related to heterointerface defects, whereas the blue-UV electroluminescence under reverse bias is ascribed to transitions from near-band-edge and Mg-acceptor levels in p-GaN.

  11. Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier.

    PubMed

    Ji, Yun; Zhang, Zi-Hui; Tan, Swee Tiam; Ju, Zhen Gang; Kyaw, Zabu; Hasanov, Namig; Liu, Wei; Sun, Xiao Wei; Demir, Hilmi Volkan

    2013-01-15

    We study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure.

  12. Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction.

    PubMed

    Du, Chia-Fong; Lee, Chen-Hui; Cheng, Chao-Tsung; Lin, Kai-Hsiang; Sheu, Jin-Kong; Hsu, Hsu-Cheng

    2014-01-01

    We report electroluminescence (EL) from single horizontal ZnO microrod (MR) and p-GaN heterojunction light-emitting diodes under forward and reverse bias. EL spectra were composed of two blue emissions centered at 431 and 490 nm under forward biases, but were dominated by a ultraviolet (UV) emission located at 380 nm from n-ZnO MR under high reverse biases. Light-output-current characteristic of the UV emission reveals that the rate of radiative recombination is faster than that of the nonradiative recombination. Highly efficient ZnO excitonic recombination at reverse bias is caused by electrons tunneling from deep-level states near the n-ZnO/p-GaN interface to the conduction band in n-ZnO.

  13. Impacts of fleet types and charging modes for electric vehicles on emissions under different penetrations of wind power

    NASA Astrophysics Data System (ADS)

    Chen, Xinyu; Zhang, Hongcai; Xu, Zhiwei; Nielsen, Chris P.; McElroy, Michael B.; Lv, Jiajun

    2018-05-01

    Current Chinese policy promotes the development of both electricity-propelled vehicles and carbon-free sources of power. Concern has been expressed that electric vehicles on average may emit more CO2 and conventional pollutants in China. Here, we explore the environmental implications of investments in different types of electric vehicle (public buses, taxis and private light-duty vehicles) and different modes (fast or slow) for charging under a range of different wind penetration levels. To do this, we take Beijing in 2020 as a case study and employ hourly simulation of vehicle charging behaviour and power system operation. Assuming the slow-charging option, we find that investments in electric private light-duty vehicles can result in an effective reduction in the emission of CO2 at several levels of wind penetration. The fast-charging option, however, is counter-productive. Electrifying buses and taxis offers the most effective option to reduce emissions of NOx, a major precursor for air pollution.

  14. A new approach for the construction of gridded emission inventories from satellite data

    NASA Astrophysics Data System (ADS)

    Kourtidis, Konstantinos; Georgoulias, Aristeidis; Mijling, Bas; van der A, Ronald; Zhang, Qiang; Ding, Jieying

    2017-04-01

    We present a new method for the derivation of anthropogenic emission estimates for SO2. The method, which we term Enhancement Ratio Method (ERM), uses observed relationships between measured OMI satellite tropospheric columnar levels of SO2 and NOx in each 0.25 deg X 0.25 deg grid box at low wind speeds, and the Daily Emission estimates Constrained by Satellite Observations (DECSO) versions v1 and v3a NOx emission estimates to scale the SO2 emissions. The method is applied over China, and emission estimates for SO2 are derived for different seasons and years (2007-2011), thus allowing an insight into the interannual evolution of the emissions. The inventory shows a large decrease of emissions during 2007-2009 and a modest increase between 2010-2011. The evolution in emission strength over time calculated here is in general agreement with bottom-up inventories, although differences exist, not only between the current inventory and other inventories but also among the bottom up inventories themselves. The gridded emission estimates derived appear to be consistent, both in their spatial distribution and their magnitude, with the Multi-resolution Emission Inventory for China (MEIC). The total emissions correlate very well with most existing inventories. This research has been financed under the FP7 Programme MarcoPolo (Grand Number 606953, Theme SPA.2013.3.2-01).

  15. Mitigation gambles: uncertainty, urgency and the last gamble possible.

    PubMed

    Shue, Henry

    2018-05-13

    A rejection by current generations of more ambitious mitigation of carbon emissions inflicts on future generations inherently objectionable risks about which they have no choice. Any gains through savings from less ambitious mitigation, which are relatively minor, would accrue to current generations, and all losses, which are relatively major, would fall on future generations. This mitigation gamble is especially unjustifiable because it imposes a risk of unlimited losses until carbon emissions cease. Ultimate physical collapses remain possible. Much more ominous is prior social collapse from political struggles over conflicting responses to threatened physical collapse. The two most plausible objections to the thesis that less ambitious mitigation is unjustifiable rely, respectively, on the claim that negative emissions will allow a later recovery from a temporary overshoot in emissions and on the claim that ambitious mitigation is incompatible with poverty alleviation that depends on inexpensive fossil fuels. Neither objection stands up. Reliance on negative emissions later instead of ambitious mitigation now permits the passing of tipping points for irreversible change meanwhile, and non-carbon energy is rapidly becoming price competitive in developing countries like India that are committed to poverty alleviation.This article is part of the themed issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).

  16. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yujia; Lu, Yiqing; Yang, Xusan; Zheng, Xianlin; Wen, Shihui; Wang, Fan; Vidal, Xavier; Zhao, Jiangbo; Liu, Deming; Zhou, Zhiguang; Ma, Chenshuo; Zhou, Jiajia; Piper, James A.; Xi, Peng; Jin, Dayong

    2017-02-01

    Lanthanide-doped glasses and crystals are attractive for laser applications because the metastable energy levels of the trivalent lanthanide ions facilitate the establishment of population inversion and amplified stimulated emission at relatively low pump power. At the nanometre scale, lanthanide-doped upconversion nanoparticles (UCNPs) can now be made with precisely controlled phase, dimension and doping level. When excited in the near-infrared, these UCNPs emit stable, bright visible luminescence at a variety of selectable wavelengths, with single-nanoparticle sensitivity, which makes them suitable for advanced luminescence microscopy applications. Here we show that UCNPs doped with high concentrations of thulium ions (Tm3+), excited at a wavelength of 980 nanometres, can readily establish a population inversion on their intermediate metastable 3H4 level: the reduced inter-emitter distance at high Tm3+ doping concentration leads to intense cross-relaxation, inducing a photon-avalanche-like effect that rapidly populates the metastable 3H4 level, resulting in population inversion relative to the 3H6 ground level within a single nanoparticle. As a result, illumination by a laser at 808 nanometres, matching the upconversion band of the 3H4 → 3H6 transition, can trigger amplified stimulated emission to discharge the 3H4 intermediate level, so that the upconversion pathway to generate blue luminescence can be optically inhibited. We harness these properties to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve nanometre-scale optical resolution (nanoscopy), imaging single UCNPs; the resolution is 28 nanometres, that is, 1/36th of the wavelength. These engineered nanocrystals offer saturation intensity two orders of magnitude lower than those of fluorescent probes currently employed in stimulated emission depletion microscopy, suggesting a new way of alleviating the square-root law that typically limits the resolution that can be practically achieved by such techniques.

  17. A Healthy Reduction in Oil Dependence and Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Higgins, P. A.; Higgins, M.

    2003-12-01

    Societal dependence on oil as an energy source for personal transportation leads to increasingly negative social consequences including climate change, air pollution, political and economic instability and habitat degradation. Our heavy reliance on the automobile for transportation, determined in part by urban sprawl, also contributes to the population's increasingly sedentary lifestyle and to a concomitant degradation in health. We have shown that widespread substitution of exercise, commensurate with previously recommended levels, through biking or walking instead of driving can substantially reduce oil consumption and carbon emissions. For example, if all individuals between the ages of 10 and 64 substituted one hour of cycling for driving the reduction in gasoline demand would be equivalent to the gas produced from 34.9 percent of current oil consumption. Relative to 1990 net US emissions, this constitutes a 10.9 percent reduction in carbon emissions. Therefore, substitution of exercise for driving could improve health, reduce carbon emissions and save more oil than even upper estimates of that contained in the Arctic National Wildlife Refuge.

  18. Hard X-ray Flux from Low-Mass Stars in the Cygnus OB2 Association

    NASA Astrophysics Data System (ADS)

    Caramazza, M.; Drake, J. J.; Micela, G.; Flaccomio, E.

    2009-05-01

    We investigate the X-ray emission in the 20-40 keV band expected from the flaring low-mass stellar population in Cygnus OB2 assuming that the observed soft X-ray emission is due to a superposition of flares and that the ratio of hard X-ray to soft X-ray emission is described by a scaling found for solar flares by Isola and co-workers. We estimate a low-mass stellar hard X-ray flux in the 20-40 keV band in the range ~7×1031-7×1033 erg/s and speculate the limit of this values. Hard X-ray emission could lie at a level not much below the current observed flux upper limits for Cygnus OB2. Simbol-X, with its broad energy band (10-100 keV) and its sensitivity should be able to detect this emission and would provide insights into the hard X-ray production of flares on pre-main sequence stars.

  19. Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest

    NASA Astrophysics Data System (ADS)

    Fuentes, J. D.; Wang, D.; Den Hartog, G.; Neumann, H. H.; Dann, T. F.; Puckett, K. J.

    The Biogenic Emission Inventory System (BEIS) used by the United States Environmental Protection Agency (Lamb et al., 1993, Atmospheric Environment21, 1695-1705; Pierce and Waldruff, 1991, J. Air Waste Man. Ass.41, 937-941) was tested for its ability to provide realistic microclimate descriptions within a deciduous forest in Canada. The microclimate description within plant canopies is required because isoprene emission rates from plants are strongly influenced by foliage temperature and photosynthetically active radiation impinging on leaves while monoterpene emissions depend primarily on leaf temperature. Model microclimate results combined with plant emission rates and local biomass distribution were used to derive isoprene and α-pinene emissions from the deciduous forest canopy. In addition, modelled isoprene emission estimates were compared to measured emission rates at the leaf level. The current model formulation provides realistic microclimatic conditions for the forest crown where modelled and measured air and foliage temperature are within 3°C. However, the model provides inadequate microclimate characterizations in the lower canopy where estimated and measured foliage temperatures differ by as much as 10°C. This poor agreement may be partly due to improper model characterization of relative humidity and ambient temperature within the canopy. These uncertainties in estimated foliage temperature can lead to underestimates of hydrocarbon emission estimates of two-fold. Moreover, the model overestimates hydrocarbon emissions during the early part of the growing season and underestimates emissions during the middle and latter part of the growing season. These emission uncertainties arise because of the assumed constant biomass distribution of the forest and constant hydrocarbon emission rates throughout the season. The BEIS model, which is presently used in Canada to estimate inventories of hydrocarbon emissions from vegetation, underestimates emission rates by at least two-fold compared to emissions derived from field measurements. The isoprene emission algorithm proposed by Guenther et al. (1993), applied at the leaf level, provides relatively good agreement compared to measurements. Field measurements indicate that isoprene emissions change with leaf ontogeny and differ amongst tree species. Emission rates defined as function of foliage development stage and plant species need to be introduced in the hydrocarbon emission algorithms. Extensive model evaluation and more hydrocarbon emission measurement;: from different plant species are required to fully assess the appropriateness of this emission calculation approach for Canadian forests.

  20. Broad visible emission from GaN nanowires grown on n-Si (1 1 1) substrate by PVD for solar cell application

    NASA Astrophysics Data System (ADS)

    Saron, K. M. A.; Hashim, M. R.

    2013-04-01

    Nanostructured gallium nitrides (GaNs) were grown on a catalyst-free Si (1 1 1) substrates using physical vapor deposition via thermal evaporation of GaN powder at 1150 °C in the absence of NH3 gas for different deposition time. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometer (EDX) results indicated that the growth of GaN nanostructure varies with deposition time. Both X-ray diffraction (XRD) patterns and Raman spectra reveals a hexagonal GaN with wurtzite structure. Photoluminescence (PL) showed that the UV emission was suppressed, and the visible band emission was enhanced with increasing deposition time. Enhancement of visible band emission from the GaN NWs is due to the increasement of deep level states, which was resulted from growth process. Current-voltage (IV) characteristics of GaN/Si heterostructure were measured and good rectifying behavior was observed for this photodiode (PD). The forward current under illumination was almost three times than that in the dark current at +5 V. Responsivity of the photodetector was 10.5 A/W at range from 350 nm to 500 nm, which rapidly increased to 13.6 A/W at 700 nm. We found that the fabricated photodiode PD has an infra-red (IR) photoresponse behavior. The analysis of optical and electrical properties indications that the grown GaN in the absent of NH3 is a promising optical material and has potential applications in photo voltage solar cell.

  1. Studies of self-pollution in diesel school buses: methodological issues.

    PubMed

    Borak, Jonathan; Sirianni, Greg

    2007-09-01

    Considerable interest has focused on levels of exhaust emissions in the cabins of diesel-powered school buses and their possible adverse health effects. Significantly different policy and engineering issues would be raised if compelling evidence found that inc-cabin contamination was due to self-pollution from bus emissions, rather than ambient pollution, neighboring vehicles, and/or re-entrained road dust. We identified 19 reports from 11 studies that measured diesel exhaust particulate in the cabins of 58 school bus of various type. Studies were evaluated in light of their experimental design, their data quality, and their capacity to quantify self-pollution. Only one study had a true experimental design, comparing the same buses with and without emission controls, while four others used intentional tracers to quantify tail pipe and/or crankcase emissions. Although definitive data are still lacking, these studies suggest that currently available control technologies can nearly eliminate particulate self-pollution inside diesel school buses.

  2. Effect of diluted and preheated oxidizer on the emission of methane flameless combustion

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyed Ehsan; Salehirad, Saber; Wahid, M. A.; Sies, Mohsin Mohd; Saat, Aminuddin

    2012-06-01

    In combustion process, reduction of emissions often accompanies with output efficiency reduction. It means, by using current combustion technique it is difficult to obtainlow pollution and high level of efficiency in the same time. In new combustion system, low NOxengines and burners are studied particularly. Recently flameless or Moderate and Intensive Low oxygen Dilution (MILD) combustion has received special attention in terms of low harmful emissions and low energy consumption. Behavior of combustion with highly preheated air was analyzed to study the change of combustion regime and the reason for the compatibility of high performance and low NOx production. Sustainability of combustion under low oxygen concentration was examined when; the combustion air temperature was above the self-ignition temperature of the fuel. This paper purposes to analyze the NOx emission quantity in conventional combustion and flameless combustion by Chemical Equilibrium with Applications (CEA) software.

  3. The Sensitivity of U.S. Surface Ozone Formation to NOx, and VOCs as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Duncan, Bryan N.; Yoshida, Yasuko; Sillman, Sanford; Retscher, Christian; Pickering, Kenneth E.; Martin, Randall V.; Celarier, Edward A.

    2009-01-01

    We investigated variations in the sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO(x)) as inferred from the ratio of tropospheric columns of formaldehyde and nitrogen dioxide from the Aura Ozone Monitoring Instrument (OMI). The data indicate that ozone formation became: 1. more sensitive to NO(x) over most of the U.S, from 2005 to 2007 because of substantial decreases in NO(x) emissions primarily from stationary sources, and 2. more sensitive to NO(x) with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. Based on our interpretation of the data, current strategies implemented to reduce unhealthy levels of surface ozone should focus more on reducing NO(x) emissions, except in some downtown areas which have historically benefited from reductions in VOC emissions.

  4. Healthy diets with reduced environmental impact? - The greenhouse gas emissions of various diets adhering to the Dutch food based dietary guidelines.

    PubMed

    van de Kamp, Mirjam E; van Dooren, Corné; Hollander, Anne; Geurts, Marjolein; Brink, Elizabeth J; van Rossum, Caroline; Biesbroek, Sander; de Valk, Elias; Toxopeus, Ido B; Temme, Elisabeth H M

    2018-02-01

    To determine the differences in environmental impact and nutrient content of the current Dutch diet and four healthy diets aimed at lowering greenhouse gas (GHG) emissions. GHG emissions (as proxy for environmental impact) and nutrient content of the current Dutch diet and four diets adhering to the Dutch food based dietary guidelines (Wheel of Five), were compared in a scenario study. Scenarios included a healthy diet with or without meat, and the same diets in which only foods with relatively low GHG emissions are chosen. For the current diet, data from the Dutch National Food Consumption Survey 2007-2010 were used. GHG emissions (in kg CO 2 -equivalents) were based on life cycle assessments. Results are reported for men and women aged 19-30years and 31-50years. The effect on GHG emissions of changing the current Dutch diet to a diet according to the Wheel of Five (corresponding with the current diet as close as possible), ranged from -13% for men aged 31-50years to +5% for women aged 19-30years. Replacing meat in this diet and/or consuming only foods with relatively low GHG emissions resulted in average GHG emission reductions varying from 28-46%. In the scenarios in which only foods with relatively low GHG emissions are consumed, fewer dietary reference intakes (DRIs) were met than in the other healthy diet scenarios. However, in all healthy diet scenarios the number of DRIs being met was equal to or higher than that in the current diet. Diets adhering to food based dietary guidelines did not substantially reduce GHG emissions compared to the current Dutch diet, when these diets stayed as close to the current diet as possible. Omitting meat from these healthy diets or consuming only foods with relatively low associated GHG emissions both resulted in GHG emission reductions of around a third. These findings may be used to expand food based dietary guidelines with information on how to reduce the environmental impact of healthy diets. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Dual emissions from MnS clusters confined in the sodalite nanocage of a chalcogenide-based semiconductor zeolite.

    PubMed

    Hu, Dandan; Zhang, Yingying; Lin, Jian; Hou, Yike; Li, Dongsheng; Wu, Tao

    2017-03-21

    A new host-guest hybrid system with MnS clusters confined in a chalcogenide-based semiconductor zeolite was for the first time constructed and its photoluminescence (PL) properties were also investigated. The existence of MnS clusters in the nanopores of the semiconductor zeolite was revealed by UV-Vis absorption spectroscopy, steady-state fluorescence analysis, Raman as well as Fourier transform infrared (FTIR) spectroscopy. The aggregation state of the entrapped MnS clusters at different measurement temperatures was probed by electron paramagnetic resonance (EPR) spectroscopy. Of significant importance is the fact that the entrapped MnS clusters displayed dual emissions at 518 nm (2.39 eV) and 746 nm (1.66 eV), respectively, and the long-wavelength emission has never been observed in other MnS-confined host-guest systems. These two emission peaks displayed tunable PL intensity affected by the loading level and measurement temperature. This can be explained by the different morphologies of MnS clusters with different aggregation states at the corresponding loading level or measurement temperature. The current study opens a new avenue to construct inorganic chalcogenide cluster involved host-guest systems with a semiconductor zeolite as the host matrix.

  6. Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China.

    PubMed

    Wang, Liqiang; Li, Pengfei; Yu, Shaocai; Mehmood, Khalid; Li, Zhen; Chang, Shucheng; Liu, Weiping; Rosenfeld, Daniel; Flagan, Richard C; Seinfeld, John H

    2018-01-17

    Widespread economic growth in China has led to increasing episodes of severe air pollution, especially in major urban areas. Thermal power plants represent a particularly important class of emissions. Here we present an evaluation of the predicted effectiveness of a series of recently proposed thermal power plant emission controls in the Beijing-Tianjin-Hebei (BTH) region on air quality over Beijing using the Community Multiscale Air Quality(CMAQ) atmospheric chemical transport model to predict CO, SO 2 , NO 2 , PM 2.5 , and PM 10 levels. A baseline simulation of the hypothetical removal of all thermal power plants in the BTH region is predicted to lead to 38%, 23%, 23%, 24%, and 24% reductions in current annual mean levels of CO, SO 2 , NO 2 , PM 2.5 , and PM 10 in Beijing, respectively. Similar percentage reductions are predicted in the major cities in the BTH region. Simulations of the air quality impact of six proposed thermal power plant emission reduction strategies over the BTH region provide an estimate of the potential improvement in air quality in the Beijing metropolitan area, as a function of the time of year.

  7. The need for carbon dioxide disposal: A threat and an opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    Ready energy is a cornerstone of modern society. The policies outlined at the recent Kyoto conference have put in question the largest, most readily available and most cost-effective energy resource available. Even if a doubling of atmospheric CO{sub 2} is deemed acceptable, emission reductions worldwide would have to be drastic. For 10 billion people to share equally into the 1990 emission level would allow a per capita emission of 10% of the current US level. Substantial reductions in CO{sub 2} emissions to the atmosphere are unavoidable. Uncertain is the time available to accomplish this reduction. There are also reasons tomore » be optimistic about the future of coal and other fossil fuels. Barring a surprise technological breakthrough in alternative energies, fossil energy consumption is bound to grow. Political and economic drivers even stronger than the threat of climate change favor economic growth and therefore increased energy consumption. To resolve this apparent contradiction requires new technologies that prevent CO{sub 2} generated by combustion from entering the atmosphere. The authors will outline available technologies and show how the coal industry can adapt to them.« less

  8. Moderate Resolution Imaging Spectroradiometer (MODIS) MOD21 Land Surface Temperature and Emissivity Algorithm Theoretical Basis Document

    NASA Technical Reports Server (NTRS)

    Hulley, G.; Malakar, N.; Hughes, T.; Islam, T.; Hook, S.

    2016-01-01

    This document outlines the theory and methodology for generating the Moderate Resolution Imaging Spectroradiometer (MODIS) Level-2 daily daytime and nighttime 1-km land surface temperature (LST) and emissivity product using the Temperature Emissivity Separation (TES) algorithm. The MODIS-TES (MOD21_L2) product, will include the LST and emissivity for three MODIS thermal infrared (TIR) bands 29, 31, and 32, and will be generated for data from the NASA-EOS AM and PM platforms. This is version 1.0 of the ATBD and the goal is maintain a 'living' version of this document with changes made when necessary. The current standard baseline MODIS LST products (MOD11*) are derived from the generalized split-window (SW) algorithm (Wan and Dozier 1996), which produces a 1-km LST product and two classification-based emissivities for bands 31 and 32; and a physics-based day/night algorithm (Wan and Li 1997), which produces a 5-km (C4) and 6-km (C5) LST product and emissivity for seven MODIS bands: 20, 22, 23, 29, 31-33.

  9. Conceptual Design of a Supersonic Business Jet Propulsion System

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2002-01-01

    NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent compared to the current technology.

  10. Air impacts from three alternatives for producing JP-8 jet fuel.

    PubMed

    Kositkanawuth, Ketwalee; Gangupomu, Roja Haritha; Sattler, Melanie L; Dennis, Brian H; MacDonnell, Frederick M; Billo, Richard; Priest, John W

    2012-10-01

    To increase U.S. petroleum energy independence, the University of Texas at Arlington (UT Arlington) has developed a direct coal liquefaction process which uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This sweet crude can be refined to form JP-8 military jet fuel, as well as other end products like gasoline and diesel. This paper presents an analysis of air pollutants resulting from using UT Arlington's liquefaction process to produce crude and then JP-8, compared with 2 alternative processes: conventional crude extraction and refining (CCER), and the Fischer-Tropsch process. For each of the 3 processes, air pollutant emissions through production of JP-8 fuel were considered, including emissions from upstream extraction/ production, transportation, and conversion/refining. Air pollutants from the direct liquefaction process were measured using a LandTEC GEM2000 Plus, Draeger color detector tubes, OhioLumex RA-915 Light Hg Analyzer, and SRI 8610 gas chromatograph with thermal conductivity detector. According to the screening analysis presented here, producing jet fuel from UT Arlington crude results in lower levels of pollutants compared to international conventional crude extraction/refining. Compared to US domestic CCER, the UTA process emits lower levels of CO2-e, NO(x), and Hg, and higher levels of CO and SO2. Emissions from the UT Arlington process for producing JP-8 are estimated to be lower than for the Fischer-Tropsch process for all pollutants, with the exception of CO2-e, which were high for the UT Arlington process due to nitrous oxide emissions from crude refining. When comparing emissions from conventional lignite combustion to produce electricity, versus UT Arlington coal liquefaction to make JP-8 and subsequent JP-8 transport, emissions from the UT Arlington process are estimated to be lower for all air pollutants, per MJ of power delivered to the end user. The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. At current use rates, U.S. coal reserves (262 billion short tons, including 23 billion short tons lignite) would last 236 years. Accordingly, the University of Texas at Arlington (UT Arlington) has developed a process that converts lignite to crude oil, at about half the cost of regular crude. According to the screening analysis presented here, producing jet fuel from UT Arlington crude generates lower levels of pollutants compared to international conventional crude extraction/refining (CCER).

  11. Impact of some field factors on inhalation exposure levels to bitumen emissions during road paving operations.

    PubMed

    Deygout, François; Auburtin, Guy

    2015-03-01

    Variability in occupational exposure levels to bitumen emissions has been observed during road paving operations. This is due to recurrent field factors impacting the level of exposure experienced by workers during paving. The present study was undertaken in order to quantify the impact of such factors. Pre-identified variables currently encountered in the field were monitored and recorded during paving surveys, and were conducted randomly covering current applications performed by road crews. Multivariate variance analysis and regressions were then used on computerized field data. The statistical investigations were limited due to the relatively small size of the study (36 data). Nevertheless, the particular use of the step-wise regression tool enabled the quantification of the impact of several predictors despite the existing collinearity between variables. The two bitumen organic fractions (particulates and volatiles) are associated with different field factors. The process conditions (machinery used and delivery temperature) have a significant impact on the production of airborne particulates and explain up to 44% of variability. This confirms the outcomes described by previous studies. The influence of the production factors is limited though, and should be complemented by studying factors involving the worker such as work style and the mix of tasks. The residual volatile compounds, being part of the bituminous binder and released during paving operations, control the volatile emissions; 73% of the encountered field variability is explained by the composition of the bitumen batch. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. New advances in 2-μm high-power dual-frequency single-mode Q-switched Ho:YLF laser for dial and IPDA application

    NASA Astrophysics Data System (ADS)

    Gibert, F.; Edouart, D.; Cénac, C.; Le Mounier, F.; Dumas, A.

    2017-11-01

    In the absence of climate change policies, the fossil fuel emissions are projected to increase in the next decades. Depending on how the current carbon sinks change in the future, the atmospheric CO2 concentration is predicted to be between 700-1000 ppmv by 2100, and global mean surface temperature between 1.1-6.4°C, with related changes in sea-level, extreme events and ecosystem drifts. Keeping the atmospheric CO2 concentration at a level that prevents dangerous interference with the climate system poses an unprecedent but necessary challenge to humanity. Beyond this point, global climate change would be very difficult and costly to deal with. There are two main approaches that are currently analysed: (1) to reduce emissions; (2) to capture CO2 and store it, i.e. sequestration. For these two ways, some monitoring at different scales ultimately from space would be needed. Lidar remote sensing is a powerful technique that enables measurements at various space and time resolution.

  13. Estimation of southern resident killer whale exposure to exhaust emissions from whale-watching vessels and potential adverse health effects and toxicity thresholds.

    PubMed

    Lachmuth, Cara L; Barrett-Lennard, Lance G; Steyn, D Q; Milsom, William K

    2011-04-01

    Southern resident killer whales in British Columbia and Washington are exposed to heavy vessel traffic. This study investigates their exposure to exhaust gases from whale-watching vessels by using a simple dispersion model incorporating data on whale and vessel behavior, atmospheric conditions, and output of airborne pollutants from the whale-watching fleet based on emissions data from regulatory agencies. Our findings suggest that current whale-watching guidelines are usually effective in limiting pollutant exposure to levels at or just below those at which measurable adverse health effects would be expected in killer whales. However, safe pollutant levels are exceeded under worst-case conditions and certain average-case conditions. To reduce killer whale exposure to exhaust we recommend: vessels position on the downwind side of whales, a maximum of 20 whale-watching vessels should be within 800 m at any given time, viewing periods should be limited, and current whale-watch guidelines and laws should be enforced. Copyright © 2011. Published by Elsevier Ltd.

  14. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Cleanmore » Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy conservation. In this program, the salt metal interactions were studies and the emissions at laboratory scale at OSU were monitored. The goal of the project was to obtain a fundamental understanding, based on first principles, of the pollutant formation that occurs when the salts are used in furnaces. This information will be used to control process parameters so that emissions are consistently below the required levels. The information obtained in these experiments will be used in industrial furnaces at aluminum plants and which will help in optimizing the process.« less

  15. Estimation of wetland methane emissions in a biogeochemical model integrated in CESM: sensitivity analysis and comparison against surface and atmospheric measurements

    NASA Astrophysics Data System (ADS)

    Meng, L.; Mahowald, N. M.; Hess, P. G.; Yavitt, J. B.; Riley, W. J.; Subin, Z. M.; Lawrence, D. M.; Swenson, S. C.; Jauhiainen, J.; Fuka, D. R.

    2012-12-01

    Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources is still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al. 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and temporal variations in methane emissions. We test new functions for soil pH and redox potential that impact microbial methane production in soils. We also constrain aerenchyma in plants in always-inundated areas in order to better represent wetland vegetation. Satellite inundated fraction is explicitly prescribed in the model because there are large differences between simulated fractional inundation and satellite observations and thus we do not use CLM4 simulated inundated area. The model is evaluated at the site level with vegetation cover and water table prescribed from measurements. Explicit site level evaluations of simulated methane emissions are quite different than evaluating the grid cell averaged emissions against available measurements. Using a baseline set of parameter values, our model-estimated average global wetland emissions for the period 1993-2004 were 256 Tg CH4 y-1 (including the soil sink). Tropical wetlands contributed 201 Tg CH4 y-1, or 78% of the global wetland flux. Northern latitude (>50N) systems contributed 12 Tg CH4 y-1. Our sensitivity studies show a large range (150-346 Tg CH4 y-1) in predicted global methane emissions. In order to evaluate our methane emissions on the regional and global scales against atmospheric measurements, we conducted simulations with the Community Atmospheric Model with chemistry (CAM-chem) forced with our baseline simulation of wetland and rice paddy emissions along with other methane sources (e.g. anthropogenic, fire, and termite emissions) and compared model simulations against measured atmospheric concentrations obtained from the World Data Centre for Greenhouse Gases (WDCGG) at http://ds.data.jma.go.jp/gmd/wdcgg/. Overall, using our estimated wetland and rice paddy emissions, CAM-chem model can produce seasonal and interannual variations of observed atmospheric concentration performs well. Thus, within the current level of uncertainty, our emissions appear to be reasonable.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, Stephen V.; Marhauser, Frank; Douglas, David R.

    A method for the suppression of upstream-directed field emission in RF accelerators. The method is not restricted to a certain number of cavity cells, but requires similar operating field levels in all cavities to efficiently annihilate the once accumulated energy. Such a field balance is desirable to minimize dynamic RF losses, but not necessarily achievable in reality depending on individual cavity performance, such as early Q.sub.0-drop or quench field. The method enables a significant energy reduction for upstream-directed electrons within a relatively short distance. As a result of the suppression of upstream-directed field emission, electrons will impact surfaces at rathermore » low energies leading to reduction of dark current and less issues with heating and damage of accelerator components as well as radiation levels including neutron generation and thus radio-activation.« less

  17. Global environmental costs of China's thirst for milk.

    PubMed

    Bai, Zhaohai; Lee, Michael R F; Ma, Lin; Ledgard, Stewart; Oenema, Oene; Velthof, Gerard L; Ma, Wenqi; Guo, Mengchu; Zhao, Zhanqing; Wei, Sha; Li, Shengli; Liu, Xia; Havlík, Petr; Luo, Jiafa; Hu, Chunsheng; Zhang, Fusuo

    2018-05-01

    China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdependencies of increasing milk consumption in China by 2050 and its global impacts, under different scenarios of domestic milk production and importation. Meeting China's milk demand in a business as usual scenario will increase global dairy-related (China and the leading milk exporting regions) greenhouse gas (GHG) emissions by 35% (from 565 to 764 Tg CO 2eq ) and land use for dairy feed production by 32% (from 84 to 111 million ha) compared to 2010, while reactive nitrogen losses from the dairy sector will increase by 48% (from 3.6 to 5.4 Tg nitrogen). Producing all additional milk in China with current technology will greatly increase animal feed import; from 1.9 to 8.5 Tg for concentrates and from 1.0 to 6.2 Tg for forage (alfalfa). In addition, it will increase domestic dairy related GHG emissions by 2.2 times compared to 2010 levels. Importing the extra milk will transfer the environmental burden from China to milk exporting countries; current dairy exporting countries may be unable to produce all additional milk due to physical limitations or environmental preferences/legislation. For example, the farmland area for cattle-feed production in New Zealand would have to increase by more than 57% (1.3 million ha) and that in Europe by more than 39% (15 million ha), while GHG emissions and nitrogen losses would increase roughly proportionally with the increase of farmland in both regions. We propose that a more sustainable dairy future will rely on high milk demanding regions (such as China) improving their domestic milk and feed production efficiencies up to the level of leading milk producing countries. This will decrease the global dairy related GHG emissions and land use by 12% (90 Tg CO 2eq reduction) and 30% (34 million ha land reduction) compared to the business as usual scenario, respectively. However, this still represents an increase in total GHG emissions of 19% whereas land use will decrease by 8% when compared with 2010 levels, respectively. © 2018 John Wiley & Sons Ltd.

  18. Quenching from highly-excited SiO rotational levels due to H2 collision

    NASA Astrophysics Data System (ADS)

    Stancil, Phillip C.; Belayneh, Michael; Wan, Yier; Yang, Benhui H.

    2018-06-01

    Using a full quantum-mechanical close-coupling approach on a 4D rigid-rotor potential energy surface (PES), we performed scattering calculations for highly-excited rotational levels (j=6-10) of SiO for interactions with H2 for the first time. Emission lines from highly excited SiO rotational levels are observed in a variety of environments including outflows from AGB stars. However, explicit collisional data are lacking for H2 colliders, except for recent work from our group for j=1-5. Here we extend that work using a hybrid OpenMP/MPI scattering code and a PES computed at the CCSD(T)-F12b level of theory. The H2 and SiO bond lengths are fixed at their equilibrium values. The current results will allow for non-local thermodynamic models of SiO rotational emission from AGB stars. This work was funded by NASA grant NNX16AF09G.

  19. Modeling, Fabrication, and Electrical Testing of Metal-Insulator-Metal Diode

    DTIC Science & Technology

    2011-12-01

    1 2. MIM Model 1 2.1 Potential Energy and Image Potential . . . . . . . . . . . . . . . . . . . . . . 1 2.2 Thermionic Emission -limited Current ...4 4 Thermionic emission -limited current through the symmetric MIM diode in figure 1...7 7 Absolute value of tunnel-limited, thermal emission -limited, and total currents vs. applied bias for the

  20. Extended performance technology study 30-cm thruster

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.

    1983-01-01

    The extended performance technology study was an investigation of advanced discharge chambers and thruster components that were designed to operate under conditions which result in an increase in the thrust and thrust to power ratio of the state of the art J-series thruster. The high level of performance was achieved by a discharge chamber that employs a ring cusp magnetic confinement arrangement and a three grid ion extraction assembly. It is shown that the ring cusp magnetic field geometry confines the plasma to the volume immediately adjacent to the ion extraction assembly. A high emission current hollow cathode that demonstrated operation at an emission current as high as J sub E = 40 A, and measurements which show the breakdown voltage of individual sections of the J-series propellant flow electrical isolator is about 340 V per section are investigated.

  1. The isotropic radio background revisited

    NASA Astrophysics Data System (ADS)

    Fornengo, Nicolao; Lineros, Roberto A.; Regis, Marco; Taoso, Marco

    2014-04-01

    We present an extensive analysis on the determination of the isotropic radio background. We consider six different radio maps, ranging from 22 MHz to 2.3 GHz and covering a large fraction of the sky. The large scale emission is modeled as a linear combination of an isotropic component plus the Galactic synchrotron radiation and thermal bremsstrahlung. Point-like and extended sources are either masked or accounted for by means of a template. We find a robust estimate of the isotropic radio background, with limited scatter among different Galactic models. The level of the isotropic background lies significantly above the contribution obtained by integrating the number counts of observed extragalactic sources. Since the isotropic component dominates at high latitudes, thus making the profile of the total emission flat, a Galactic origin for such excess appears unlikely. We conclude that, unless a systematic offset is present in the maps, and provided that our current understanding of the Galactic synchrotron emission is reasonable, extragalactic sources well below the current experimental threshold seem to account for the majority of the brightness of the extragalactic radio sky.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fertig, Fabian, E-mail: fabian.fertig@ise.fraunhofer.de; Greulich, Johannes; Rein, Stefan

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can bemore » omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current.« less

  3. A fuel-based approach to estimating motor vehicle exhaust emissions

    NASA Astrophysics Data System (ADS)

    Singer, Brett Craig

    Motor vehicles contribute significantly to air pollution problems; accurate motor vehicle emission inventories are therefore essential to air quality planning. Current travel-based inventory models use emission factors measured from potentially biased vehicle samples and predict fleet-average emissions which are often inconsistent with on-road measurements. This thesis presents a fuel-based inventory approach which uses emission factors derived from remote sensing or tunnel-based measurements of on-road vehicles. Vehicle activity is quantified by statewide monthly fuel sales data resolved to the air basin level. Development of the fuel-based approach includes (1) a method for estimating cold start emission factors, (2) an analysis showing that fuel-normalized emission factors are consistent over a range of positive vehicle loads and that most fuel use occurs during loaded-mode driving, (3) scaling factors relating infrared hydrocarbon measurements to total exhaust volatile organic compound (VOC) concentrations, and (4) an analysis showing that economic factors should be considered when selecting on-road sampling sites. The fuel-based approach was applied to estimate carbon monoxide (CO) emissions from warmed-up vehicles in the Los Angeles area in 1991, and CO and VOC exhaust emissions for Los Angeles in 1997. The fuel-based CO estimate for 1991 was higher by a factor of 2.3 +/- 0.5 than emissions predicted by California's MVEI 7F model. Fuel-based inventory estimates for 1997 were higher than those of California's updated MVEI 7G model by factors of 2.4 +/- 0.2 for CO and 3.5 +/- 0.6 for VOC. Fuel-based estimates indicate a 20% decrease in the mass of CO emitted, despite an 8% increase in fuel use between 1991 and 1997; official inventory models predict a 50% decrease in CO mass emissions during the same period. Cold start CO and VOC emission factors derived from parking garage measurements were lower than those predicted by the MVEI 7G model. Current inventories in California appear to understate total exhaust CO and VOC emissions, while overstating the importance of cold start emissions. The fuel-based approach yields robust, independent, and accurate estimates of on-road vehicle emissions. Fuel-based estimates should be used to validate or adjust official vehicle emission inventories before society embarks on new, more costly air pollution control programs.

  4. Black carbon emissions in Russia: A critical review

    NASA Astrophysics Data System (ADS)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; Denysenko, Artur; Smith, Steven J.; Staniszewski, Aaron; Hao, Wei Min; Liu, Liang; Bond, Tami C.

    2017-08-01

    This study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.

  5. Cigarette Design Features: Effects on Emission Levels, User Perception, and Behavior.

    PubMed

    Talhout, Reinskje; Richter, Patricia A; Stepanov, Irina; Watson, Christina V; Watson, Clifford H

    2018-01-01

    This paper describes the effects of non-tobacco, physical cigarette design features on smoke emissions, product appeal, and smoking behaviors - 3 factors that determine smoker's exposure and related health risks. We reviewed available evidence for the impact of filter ventilation, new filter types, and cigarettes dimensions on toxic emissions, smoker's perceptions, and behavior. For evidence sources we used scientific literature and websites providing product characteristics and marketing information. Whereas filter ventilation results in lower machine-generated emissions, it also leads to perceptions of lighter taste and relative safety in smokers who can unwittingly employ more intense smoking behavior to obtain the desired amount of nicotine and sensory appeal. Filter additives that modify smoke emissions can also modify sensory cues, resulting in changes in smoking behavior. Flavor capsules increase the cigarette's appeal and novelty, and lead to misperceptions of reduced harm. Slim cigarettes have lower yields of some smoke emissions, but smoking behavior can be more intense than with standard cigarettes. Physical design features significantly impact machine-measured emission yields in cigarette smoke, product appeal, smoking behaviors, and exposures in smokers. The influence of current and emerging design features is important in understanding the effectiveness of regulatory actions to reduce smoking-related harm.

  6. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level

    NASA Astrophysics Data System (ADS)

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-09-01

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health.

  7. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level.

    PubMed

    Zenone, Terenzio; Hendriks, Carlijn; Brilli, Federico; Fransen, Erik; Gioli, Beniamio; Portillo-Estrada, Miguel; Schaap, Martijn; Ceulemans, Reinhart

    2016-09-12

    The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cutmore » primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.« less

  9. [Impact of air fresheners and deodorizers on the indoor total volatile organic compounds].

    PubMed

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Obama, Tomoko; Miyagawa, Makoto; Yoshikawa, Jun; Komatsu, Kazuhiro; Tokunaga, Hiroshi

    2007-01-01

    Indoor air quality is a growing health concern because of the increased incidence of the building-related illness, such as sick-building syndrome and multiple chemical sensitivity/idiopathic environmental intolerance. In order to effectively reduce the unnecessary chemical exposure in the indoor environment, it would be important to quantitatively compare the emissions from many types of sources. Besides the chemical emissions from the building materials, daily use of household products may contribute at significant levels to the indoor volatile organic compounds (VOCs). In this study, we investigated the emission rate of VOCs and carbonyl compounds for 30 air fresheners and deodorizers by the standard small chamber test method (JIS A 1901). The total VOC (TVOC) emission rates of these household products ranged from the undetectable level (< 20 microg/unit/h) to 6,900 microg/unit/h. The mean TVOC emission rate of the air fresheners for indoor use (16 products) was 1,400 microg/unit/ h and that of the deodorizers for indoor use (6 products) was 58 microg/unit/h, indicating that the fragrances in the products account for the major part of the TVOC emissions. Based on the emission rates, the impacts on the indoor TVOC were estimated by the simple model with a volume of 17.4 m3 and a ventilation frequency of 0.5 times/h. The mean of the TVOC increment for the indoor air fresheners was 170 microg/m3, accounting for 40% of the current provisional target value, 400 microg/m3. These results suggest that daily use of household products can significantly influence the indoor air quality.

  10. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our understanding of the stratospheric impact of rocket emissions is significantly improved. (4) Such an improved understanding requires a concerted effort of research including new in situ measurements in a variety of rocket plumes and a multi-scale modeling program similar in scope to the effort required to address the climate and ozone impacts of aircraft emissions.

  11. Urban greening impacts on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Grote, R.; Churkina, G.; Butler, T. M.; Morfopoulos, C.

    2013-12-01

    Cities are characterized by elevated air temperatures as well as high anthropogenic emissions of air pollutants. Cities' greening in form of urban parks, street trees, and vegetation on roofs and walls of buildings is supposed to generally mitigate negative impacts on human health and well-being. However, high emissions of biogenic volatile organic compounds (BVOC) from certain popular urban plants in combination with the elevated concentrations of NOx have the potential to increase ground-level ozone concentrations - with negative impacts on health, agriculture, and climate. Policies targeting reduction of ground-level ozone in urban and suburban areas therefore must consider limiting BVOC emissions along with measures for decreasing NOx and VOC from anthropogenic sources. For this, integrated climate/ chemistry models are needed that take into account the species-specific physiological responses of urban plants which in turn drive their emission behavior. Current models of urban climate and air quality 1) do not account for the feedback between ozone concentrations, productivity, and BVOC emission and 2) do not distinguish different physiological properties of urban tree species. Instead environmental factors such as light, temperature, carbon dioxide, and water supply are applied disregarding interactions between such influences. Thus we may not yet be able to represent the impacts of air pollution under multiple changed conditions such as climate change, altered anthropogenic emission patterns, and new urban structures. We present here the implementation of the new BVOC emission model (Morfopolous et al., in press) that derives BVOC emissions directly from the electron production potential and consumption from photosynthesis calculation that is already supplied by the CLM land surface model. The new approach has the advantage that many environmental drivers of BVOC emissions are implicitly considered in the description of plant photosynthesis and phenology. We investigate the tradeoff between vegetation driven ozone -reduction and -formation processes in dependence on temperature, radiation, CO2 and O3 concentrations. We have parameterized suitable plant functional types for different urban greening structures, currently focusing on central European vegetation. The modified CLM model is applied in a global (CESM) and a regional climate/ air quality model (WRF-Chem) to calculate realistic ozone concentrations in the influence zones of urban conglomerations. BVOC emissions and their impacts are also calculated with the standard MEGAN2.1 approach for comparison. The simulation results are analyzed and discussed in view of the models suitability for air quality scenario estimates under simultaneously changing climate, anthropogenic emissions and plant species composition. References Morfopoulos, C., Prentice, I.C., Keenan T.F., Friedlingstein, P., Medlyn, B., Penuelas, J., Possel, M. (in press): A unifying conceptual model for the environmental responses of isoprene emission by plants. Annals of Botany

  12. Quantification of mitigation potentials of agricultural practices for Europe

    NASA Astrophysics Data System (ADS)

    Lesschen, J. P.; Kuikman, P. J.; Smith, P.; Schils, R. L.; Oudendag, D.

    2009-04-01

    Agriculture has a significant impact on climate, with a commonly estimated contribution of 9% of total greenhouse gases (GHG) emissions. Besides, agriculture is the main source of nitrous oxide and methane emissions to the atmosphere. On the other hand, there is a large potential for climate change mitigation in agriculture through carbon sequestration into soils. Within the framework of the PICCMAT project (Policy Incentives for Climate Change Mitigation Agricultural Techniques) we quantified the mitigation potential of 11 agricultural practices at regional level for the EU. The focus was on smaller-scale measures towards optimised land management that can be widely applied at individual farm level and which can have a positive climate change mitigating effect and be beneficial to soil conditions, e.g. cover crops and reduced tillage. The mitigation potentials were assessed with the MITERRA-Europe model, a deterministic and static N cycling model which calculates N emissions on an annual basis, using N emission factors and N leaching fractions. For the PICCMAT project the model was extended with a soil carbon module, to assess changes in soil organic carbon according to the IPCC Tier1 approach. The amount of soil organic carbon (SOC) is calculated by multiplying the soil reference carbon content, which depends on soil type and climate, by coefficients for land use, land management and input of organic matter. By adapting these coefficients changes in SOC as result of the measures were simulated. We considered both the extent of agricultural area across Europe on which a measure could realistically be applied (potential level of implementation), and the current level of implementation that has already been achieved . The results showed that zero tillage has the highest mitigation potential, followed by adding legumes, reduced tillage, residue management, rotation species, and catch crops. Optimising fertiliser application and fertiliser type are the measures with the largest positive effect on N2O emissions. Overall the results showed that the additional mitigation potential of each individual measure is limited, but taken together they have a significant mitigation potential of about 10 percent of the current GHG emissions from agriculture. Besides, most of the measures with high mitigation potentials are associated with no or low implementation costs. Although CH4 and N2O are the most important GHG emitted from agricultural activities, it is more difficult to mitigate these emissions than increasing soil organic carbon (SOC) stocks and thus compensate them through carbon sequestration. However, the effect on carbon is only temporary and sequestered SOC stocks can easily be lost again, while for N2O the emission reduction is permanent and non-saturating. Another important implication that follows from our results is the large regional difference with regard to mitigation potential and feasibility of implementation. Policy measures to support agricultural mitigation should therefore be adjusted to regional conditions.

  13. Economic and Time-Sensitive Issues Surrounding CCS: A Policy Analysis.

    PubMed

    Maddali, Vijay; Tularam, Gurudeo Anand; Glynn, Patrick

    2015-08-04

    Are the existing global policies on combating global warming via the carbon capture and storage (CCS) method significant enough to curtail the temperature rise on time? We argue that it is already too late to have any reliance on CCS. The current status of CCS is that it is plagued by technical uncertainties, infrastructure, financial, and regulatory issues. The technology is far from maturity and, hence, commercialization. Simulations conducted in this work suggest that the relevance of CCS is completely defied if the annual emission growth rate is in excess of 2% between the years of 2015 and 2040. At such a growth rate, the annual emissions reduction between 2040 and 2100 will need to be in the vicinity of 5.5% by the year 2100. Considering an average annual emissions growth rate of 2.5% over the past decade, it seems unlikely that the emissions could be contained to a 2% growth level. CCS in its current shape and form is at odds with the economics of its implementation and the time in hand with which to play a significant role in a carbon mitigation strategy. There is an urgent need to rethink policies and strategies to combat global warming to at least some degree.

  14. Emission factors for hydraulically fractured gas wells derived using well- and battery-level reported data for Alberta, Canada.

    PubMed

    Tyner, David R; Johnson, Matthew R

    2014-12-16

    A comprehensive technical analysis of available industry-reported well activity and production data for Alberta in 2011 has been used to derive flaring, venting, and diesel combustion greenhouse gas and criteria air contaminant emission factors specifically linked to drilling, completion, and operation of hydraulically fractured natural gas wells. Analysis revealed that in-line ("green") completions were used at approximately 53% of wells completed in 2011, and in other cases the majority (99.5%) of flowback gases were flared rather than vented. Comparisons with limited analogous data available in the literature revealed that reported total flared and vented natural gas volumes attributable to tight gas well-completions were ∼ 6 times larger than Canadian Association of Petroleum Producers (CAPP) estimates for natural gas well-completion based on wells ca. 2000, but 62% less than an equivalent emission factor that can be derived from U.S. EPA data. Newly derived emission factors for diesel combustion during well drilling and completion are thought to be among the first such data available in the open literature, where drilling-related emissions for tight gas wells drilled in Alberta in 2011 were found to have increased by a factor of 2.8 relative to a typical well drilled in Canada in 2000 due to increased drilling lengths. From well-by-well analysis of production phase flared, vented, and fuel usage natural gas volumes reported at 3846 operating tight gas wells in 2011, operational emission factors were developed. Overall results highlight the importance of operational phase GHG emissions at upstream well sites (including on-site natural gas fuel use), and the critical levels of uncertainty in current estimates of liquid unloading emissions.

  15. The Hestia Project: High Spatial Resolution Fossil Fuel Carbon Dioxide Emissions Quantification at Hourly Scale in Indianapolis, USA

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gurney, K. R.

    2009-12-01

    In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to city environmental managers and regional industry as they plan emission mitigation options and project future emission trends. The results obtained here will also be a useful comparison to atmospheric CO2 monitoring efforts from the top-down. Figure 1. Location of the study area, the building level and mobile CO2 emissions, and an enlarged example neighborhood

  16. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    NASA Astrophysics Data System (ADS)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed treatments. This study indicates that effective climate mitigation and emission control strategies are needed to prevent future health impact and ecosystem stress. Further, studies that are used to develop these strategies should use fully coupled models with sophisticated chemical and aerosol-interaction treatments that can provide a more realistic representation of the atmosphere.

  17. Collaborative Project: Building improved optimized parameter estimation algorithms to improve methane and nitrogen fluxes in a climate model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahowald, Natalie

    Soils in natural and managed ecosystems and wetlands are well known sources of methane, nitrous oxides, and reactive nitrogen gases, but the magnitudes of gas flux to the atmosphere are still poorly constrained. Thus, the reasons for the large increases in atmospheric concentrations of methane and nitrous oxide since the preindustrial time period are not well understood. The low atmospheric concentrations of methane and nitrous oxide, despite being more potent greenhouse gases than carbon dioxide, complicate empirical studies to provide explanations. In addition to climate concerns, the emissions of reactive nitrogen gases from soils are important to the changing nitrogenmore » balance in the earth system, subject to human management, and may change substantially in the future. Thus improved modeling of the emission fluxes of these species from the land surface is important. Currently, there are emission modules for methane and some nitrogen species in the Community Earth System Model’s Community Land Model (CLM-ME/N); however, there are large uncertainties and problems in the simulations, resulting in coarse estimates. In this proposal, we seek to improve these emission modules by combining state-of-the-art process modules for emissions, available data, and new optimization methods. In earth science problems, we often have substantial data and knowledge of processes in disparate systems, and thus we need to combine data and a general process level understanding into a model for projections of future climate that are as accurate as possible. The best methodologies for optimization of parameters in earth system models are still being developed. In this proposal we will develop and apply surrogate algorithms that a) were especially developed for computationally expensive simulations like CLM-ME/N models; b) were (in the earlier surrogate optimization Stochastic RBF) demonstrated to perform very well on computationally expensive complex partial differential equations in earth science with limited numbers of simulations; and, c) will be (as part of the proposed research) significantly improved both by adding asynchronous parallelism, early truncation of unsuccessful simulations, and the improvement of both serial and parallel performance by the use of derivative and sensitivity information from global and local surrogate approximations S(x). The algorithm development and testing will be focused on the CLM-ME/N model application, but the methods are general and are expected to also perform well on optimization for parameter estimation of other climate models and other classes of continuous multimodal optimization problems arising from complex simulation models. In addition, this proposal will compile available datasets of emissions of methane, nitrous oxides and reactive nitrogen species and develop protocols for site level comparisons with the CLM-ME/N. Once the model parameters are optimized against site level data, the model will be simulated at the global level and compared to atmospheric concentration measurements for the current climate, and future emissions will be estimated using climate change as simulated by the CESM. This proposal combines experts in earth system modeling, optimization, computer science, and process level understanding of soil gas emissions in an interdisciplinary team in order to improve the modeling of methane and nitrogen gas emissions. This proposal thus meets the requirements of the SciDAC RFP, by integrating state-of-the-art computer science and earth system to build an improved earth system model.« less

  18. A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission

    NASA Astrophysics Data System (ADS)

    Madiwale, S.; Karthikeyan, A.; Bhojwani, V.

    2017-05-01

    Objectives:- To presents the literature review on effect of biodiesel additives on properties, performance and on emission. Method:-In the current paper reviews are taken from previous years paper which necessitates the need of addition of additives in the blends of biodiesel and studied the its effect on properties, performance and emissions. Emissions from the diesel powered vehicles mostly damaged the earth’s environment and also increased the overall earth’s temperature. This attracts the need of alternative fuels in the field of transportation sector. Past inventions and research showed that Biodiesel can be used as an alternative fuel for the diesel engine. Biodiesel have good combustion characteristics because of their long chain hydrocarbon structure. However biodiesel possesses few disadvantages such as lower heating value, higher flow ability, much high density and not able to flow at low temperature. Higher rate of fuel consumption is identified and higher level of NOx emissions when biodiesel used in an engine as an alternative fuels. Findings:-Different additives such as antioxidants, improvers for cetane number, cold flow properties improver, etc were investigated by the many researcher and scientists and added in the different feedstock of biodiesel or blends of biodiesel with diesel in different proportions. Directly or indirectly fuel additives can improve the reduction in the emissions, improve the fuel economy, and reduce the dependency of the one’s nation on other. Performances of biodiesel vehicles were drastically improved because of additioninthe blends of biodiesel with diesel fuel in specific percentages to meet the international emission standards. Addition of additives in the biodiesel or in the blends of biodiesel basically changes the high temperature and low temperature flow properties of blends of biodiesel. Current paper finds and compares properties of different additives and its effect on blends of biodiesel properties, performance and on emissions from diesel engines. Improvement:-This paper presents the literature review on effect of biodiesel additives on properties, performance and on emission.

  19. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources.

    PubMed

    Anderson, Natalie; Strader, Ross; Davidson, Cliff

    2003-06-01

    Ammonia is a basic gas and one of the most abundant nitrogen-containing compounds in the atmosphere. When emitted, ammonia reacts with oxides of nitrogen and sulfur to form particles, typically in the fine particle size range. Roughly half of the PM(2.5) mass in eastern United States is ammonium sulfate, according to the US EPA. Results from recent studies of PM(2.5) show that these fine particles are typically deposited deep in the lungs and may lead to increased morbidity and/or mortality. Also, these particles are in the size range that will degrade visibility. Ammonia emission inventories are usually constructed by multiplying an activity level by an experimentally determined emission factor for each source category. Typical sources of ammonia include livestock, fertilizer, soils, forest fires and slash burning, industry, vehicles, the oceans, humans, pets, wild animals, and waste disposal and recycling activities. Livestock is the largest source category in the United States, with waste from livestock responsible for about 3x10(9) kg of ammonia in 1995. Volatilization of ammonia from livestock waste is dependent on many parameters, and thus emission factors are difficult to predict. Despite a seasonal variation in these values, the emission factors for general livestock categories are usually annually averaged in current inventories. Activity levels for livestock are from the USDA Census of Agriculture, which does not give information about animal raising practices such as housing types and grazing times, waste handling systems, and approximate animal slurry spreading times or methods. Ammonia emissions in the United States in 1995 from sources other than livestock are much lower; for example, annual emissions are roughly 8x10(8) kg from fertilizer, 7x10(7) kg from industry, 5x10(7) kg from vehicles and 1x10(8) kg from humans. There is considerable uncertainty in the emissions from soil and vegetation, although this category may also be significant. Recommendations for future directions in ammonia research include designing experiments to improve emission factors and their resolution in all significant source categories, developing mass balance models, and refining of the livestock activity level data by eliciting judgment from experts in this field.

  20. 78 FR 37164 - Revisions to the Air Emissions Reporting Requirements: Revisions to Lead (Pb) Reporting Threshold...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ...Today's action proposes changes to the existing EPA emission inventory reporting requirements on state, local, and tribal agencies in the current Air Emissions Reporting Requirements rule published on December 17, 2008. The proposed amendments would lower the current threshold for reporting Pb sources as point sources; eliminate the requirement for reporting emissions from wildfires and prescribed fires; and replace a requirement for reporting mobile source emissions with a requirement for reporting the input parameters that can be used to run the EPA models that generate the emissions estimates. In addition, the proposed amendments would reduce the reporting burden on state, local, and tribal agencies by removing the requirements to report daily and seasonal emissions associated with carbon monoxide (CO), ozone (O3), and particulate matter up to 10 micrometers in size (PM10) nonattainment areas and nitrogen oxides (NOX) State Implementation Plan (SIP) call areas, although reporting requirements for those emissions would remain in other regulations. Lastly, the proposed amendments would clarify, remove, or simplify some current emissions reporting requirements which we believe are not necessary or are not clearly aligned with current inventory terminology and practices.

  1. Ultraviolet/blue light-emitting diodes based on single horizontal ZnO microrod/GaN heterojunction

    PubMed Central

    2014-01-01

    We report electroluminescence (EL) from single horizontal ZnO microrod (MR) and p-GaN heterojunction light-emitting diodes under forward and reverse bias. EL spectra were composed of two blue emissions centered at 431 and 490 nm under forward biases, but were dominated by a ultraviolet (UV) emission located at 380 nm from n-ZnO MR under high reverse biases. Light-output-current characteristic of the UV emission reveals that the rate of radiative recombination is faster than that of the nonradiative recombination. Highly efficient ZnO excitonic recombination at reverse bias is caused by electrons tunneling from deep-level states near the n-ZnO/p-GaN interface to the conduction band in n-ZnO. PMID:25232299

  2. Stratospheric HBr mixing ratio obtained from far infrared emission spectra

    NASA Technical Reports Server (NTRS)

    Park, J. H.; Carli, B.; Barbis, A.

    1989-01-01

    Emission features of HBr isotopes have been identified in high-resolution FIR emission spectra obtained with a balloon-borne Fourier-transform spectrometer in the spring of 1979 at 32 deg N latitude. When six single-scan spectra at a zenith angle of 93.2 deg were averaged, two features of HBr isotopes at 50.054 and 50.069/cm were obtained with a signal-to-noise ratio of 2.5. The volume mixing ratio retrieved from the average spectrum is 2.0 x 10 to the -11th, which is assumed to be constant above 28 km, with an uncertainty of 35 percent. This stratospheric amount of HBr is about the same as the current level of tropospheric organic bromine compounds, 25 pptv. Thus HBr could be the major stratospheric bromine species.

  3. Calibration and Initialization of the NPS Modified Infrared Search and Target Designation (IRSTD) System.

    DTIC Science & Technology

    1987-12-01

    level of performance comparable to the original ADM configuration. ’p, OTIC CPY Acesion For NTiS CRA&I UTNY’ TAB [ arinc ,:,cced 0 C yfi.’ hb .vC.Je i...levels below standard. This modified system was found to be operating at a level of performance comparable to the original ADM configuration. 4’ TABLE OF...requirements for systems that function under conditions of emissions control (EMCON). The AN/SAR-8, currently in the Engineering Development Phase , is an

  4. Black carbon emissions in Russia: A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa

    Russia has a particularly important role regarding black carbon (BC) emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. This study presents a comprehensive review of BC estimates from a range of studies. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data on Russian associated petroleummore » gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 689 Gg in 2014, with an uncertainty range between (407-1,416), while OC emissions are 9,228 Gg (with uncertainty between 5,595 and 14,728). Wildfires dominated and contributed about 83% of the total BC emissions, however the effect on radiative forcing is mitigated by OC emissions. We also present an adjusted estimate of Arctic forcing from Russian OC and BC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

  5. Fractionation and current time trends of PCB congeners: evolvement of distributions 1950-2010 studied using a global atmosphere-ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Lammel, G.; Stemmler, I.

    2012-05-01

    PCBs are ubiquitous environmental pollutants expected to decline in abiotic environmental media in response to decreasing primary emissions since the 1970s. A coupled atmosphere-ocean general circulation model with embedded dynamic sub-models for atmospheric aerosols and the marine biogeochemistry and air-surface exchange processes with soils, vegetation and the cryosphere is used to study the transport and fate of four PCB congeners covering a range of 3-7 chlorine atoms. The change of the geographic distribution of the PCB mixture reflects the sources and sinks' evolvement over time. Globally, secondary emissions (re-volatilisation from surfaces) are on the long term increasingly gaining importance over primary emissions. They are most important for congeners of medium hydrophobicity (5-6 chlorine atoms). Their levels are predicted to decrease slowest. Congeners' fractionation is characterized both geographically and temporally. It causes enrichment of the lighter, less persistent congeners and more delayed decreasing levels in high latitudes in response to decreasing emissions. Delivery of contaminants to high latitudes is predicted to be more efficient than previously suggested. The results suggest furthermore that the effectiveness of emission control measures may significantly vary among substances: trends of decline in abiotic environmental media do not only vary with latitude (slow in high latitudes), but do also show longitudinal gradients

  6. 1.5 °C ? - Solutions for avoiding catastrophic climate change in this century

    NASA Astrophysics Data System (ADS)

    Xu, Y.

    2017-12-01

    The historic Paris Agreement calls for limiting global temperature rise to "well below 2 °C." Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high impact (LPHI) warming in addition to the central (˜50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO2, the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend. In addition to present the analysis above, I will also share (1) perspective on developed and developing world actions and interactions on climate solutions; (2) Prof V. Ramanathan's interactions with the Pontifical Academy of Sciences and other religious groups which are highly valuable to the interdisciplinary audience.

  7. Plant volatiles in extreme terrestrial and marine environments.

    PubMed

    Rinnan, Riikka; Steinke, Michael; McGenity, Terry; Loreto, Francesco

    2014-08-01

    This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation. © 2014 John Wiley & Sons Ltd.

  8. Global civil aviation black carbon emissions.

    PubMed

    Stettler, Marc E J; Boies, Adam M; Petzold, Andreas; Barrett, Steven R H

    2013-09-17

    Aircraft black carbon (BC) emissions contribute to climate forcing, but few estimates of BC emitted by aircraft at cruise exist. For the majority of aircraft engines the only BC-related measurement available is smoke number (SN)-a filter based optical method designed to measure near-ground plume visibility, not mass. While the first order approximation (FOA3) technique has been developed to estimate BC mass emissions normalized by fuel burn [EI(BC)] from SN, it is shown that it underestimates EI(BC) by >90% in 35% of directly measured cases (R(2) = -0.10). As there are no plans to measure BC emissions from all existing certified engines-which will be in service for several decades-it is necessary to estimate EI(BC) for existing aircraft on the ground and at cruise. An alternative method, called FOX, that is independent of the SN is developed to estimate BC emissions. Estimates of EI(BC) at ground level are significantly improved (R(2) = 0.68), whereas estimates at cruise are within 30% of measurements. Implementing this approach for global civil aviation estimated aircraft BC emissions are revised upward by a factor of ~3. Direct radiative forcing (RF) due to aviation BC emissions is estimated to be ~9.5 mW/m(2), equivalent to ~1/3 of the current RF due to aviation CO2 emissions.

  9. [Spatiotemporal variations of natural wetland CH4 emissions over China under future climate change].

    PubMed

    Liu, Jian-gong; Zhu, Qiu-an; Shen, Yan; Yang, Yan-zheng; Luo, Yun-peng; Peng, Chang-hui

    2015-11-01

    Based on a new process-based model, TRIPLEX-GHG, this paper analyzed the spatio-temporal variations of natural wetland CH4 emissions over China under different future climate change scenarios. When natural wetland distributions were fixed, the amount of CH4 emissions from natural wetland ecosystem over China would increase by 32.0%, 55.3% and 90.8% by the end of 21st century under three representative concentration pathways (RCPs) scenarios, RCP2. 6, RCP4.5 and RCP8.5, respectively, compared with the current level. Southern China would have higher CH4 emissions compared to that from central and northern China. Besides, there would be relatively low emission fluxes in western China while relatively high emission fluxes in eastern China. Spatially, the areas with relatively high CH4 emission fluxes would be concentrated in the middle-lower reaches of the Yangtze River, the Northeast and the coasts of the Pearl River. In the future, most natural wetlands would emit more CH4 for RCP4.5 and RCP8.5 than that of 2005. However, under RCP2.6 scenario, the increasing trend would be curbed and CH4 emissions (especially from the Qinghai-Tibet Plateau) begin to decrease in the late 21st century.

  10. Vehicle Real Driving Emissions of Nitrogen Oxides in an Urban Area from a large Vehicle Fleet

    NASA Astrophysics Data System (ADS)

    Pöhler, Denis; Horbanski, Martin; Oesterle, Tobias; Adler, Tim; Reh, Miriam; Tirpitz, Lukas; Kanatschnig, Florian; Lampel, Joahnnes; Platt, Ulrich

    2016-04-01

    Nitrogen Oxide (NOx=NO +NO2) emissions by road vehicles are the major contributor for poor air quality in urban areas. High NOx concentrations, and especially NO2, are typically the most problematic pollution in cities. However, emissions vary significantly depending on the type of vehicle, its engine, the age, condition of the vehicle, driving properties, modifications and many more. Even if official NOx emission data of the manufacturer exist, they are only valid for new vehicles and the current vehicle emission scandal shows clearly that these data are often wrong. Thus, real driving emissions (RDE) of the current vehicle fleet is required. With such data the contribution of individual vehicles to the NO2 and NOx levels in urban areas can be estimated. Significant reduction of NOx concentrations can be achieved by identifying the strong emitting vehicles and excluding, replace or modify them. We developed a precise and fast ICAD (Iterative CAvity DOAS) NO2 instrument which can measure the concentration within the emission plume of vehicles under real driving conditions. The sampling was performed with an inlet at the front of a car which was following the investigated vehicles. The instrument measure NO2 and additionally CO2 with a time resolution of 2 seconds. With the observed NO2 values already strong emitters can easily be identified. With the use of known CO2 emissions, more reliable emissions for NO2 can be calculated for each vehicle. Currently the system is expanded with a NOx channel to derive the total nitrogen oxide emissions. The system was successfully applied in several studies over the last two years to investigate NO2 RDE. More than thousand vehicles were investigated. We observed that several vehicles from various brands show much higher emissions than allowed (more than a factor of 5). Highest emissions correlate for trucks and busses typically to older vehicles, what is not the case for cars. A large variability between different cars was found which could often make up a factor of 10 or more. Often new Diesel cars are one of the strongest emitters, which agree well with other findings. However, older busses and trucks feature regularly the highest emissions, but also here strong variability between different vehicle types with different exhaust treatment and modification is observed. This is especially a problem with busses from the public transport which significantly contribute to urban air pollution. Identifying first the strongest emitting busses, which should be replaced first, can help to faster improve urban air quality. New busses and trucks, beside from few exceptions, show surprisingly relatively low emissions. The exceptions indicate potentially broken NOx exhaust treatment. All these findings show that regular RDE are necessary for the whole vehicle fleet to identify strongest NOx emitters and develop strategies to reduce their emissions. They also allow to provide more accurate model calculations on total emissions in urban areas.

  11. Automated Vehicle Regulation: An Energy and Emissions Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Aaron

    This presentation provides a summary of the current automated vehicles polices in the United States and how they related to reducing greenhouse gas (GHG) emissions. The presentation then looks at future automated vehicle trends that will increase and reduce GHG emissions and what current policies utilized in other areas of law could be adapted for automated vehicle GHG emissions.

  12. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  13. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  14. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  15. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  16. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  17. 40 CFR 86.098-28 - Compliance with emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... useful life relative to the evaporative emission level at 4,000 miles as follows: (1) Factor = Evaporative emission level at the useful life mileage for that standard minus the evaporative emission level... applicable usefule life relative to the refueling emission level at 4,000 miles as follows: (1) Factor...

  18. 40 CFR 86.098-28 - Compliance with emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... useful life relative to the evaporative emission level at 4,000 miles as follows: (1) Factor = Evaporative emission level at the useful life mileage for that standard minus the evaporative emission level... applicable usefule life relative to the refueling emission level at 4,000 miles as follows: (1) Factor...

  19. Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannone, Greg; Thomas, John F; Reale, Michael

    The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the on-cycle energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. Oncycle energy conversion of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily availablemore » from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain. Similarly, by combining thermodynamic, mechanical efficiency, and kinetic energy recovery fundamentals with logical proxies, achievable levels of energy conversion efficiency can be established to allow for the evaluation of future powertrain requirements. Combining the plausible levels of tractive energy and on-cycle efficiency provides a means to compute sustainable vehicle and propulsion system scenarios that can achieve future regulations. Using these principles, the regulations established in the United States (U.S.) for fuel consumption and CO2 emissions are evaluated. Fleet-level scenarios are generated and compared to the technology deployment assumptions made during rule-making. When compared to the rule-making assumptions, the results indicate that a greater level of advanced vehicle and propulsion system technology deployment will be required to achieve the model year 2025 U.S. standards for fuel economy and CO2 emissions.« less

  20. A vacuum sealed high emission current and transmission efficiency carbon nanotube triode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di, Yunsong; Jiangsu Key Laboratory of Optoelectronic Technology, Nanjing Normal University, Nanjing 210023; Wang, Qilong

    A vacuum sealed carbon nanotubes (CNTs) triode with a concave and spoke-shaped Mo grid is presented. Due to the high aperture ratio of the grid, the emission current could be modulated at a relatively high electric field. Totally 75 mA emission current has been obtained from the CNTs cathode with the average applied field by the grid shifting from 8 to 13 V/μm. Whilst with the electron transmission efficiency of the grid over 56%, a remarkable high modulated current electron beam over 42 mA has been collected by the anode. Also contributed by the high aperture ration of the grid,more » desorbed gas molecules could flow away from the emission area rapidly when the triode has been operated at a relative high emission current, and finally collected by a vacion pump. The working pressure has been maintained at ∼1 × 10{sup −7} Torr, seldom spark phenomena occurred. Nearly perfect I-V curve and corresponding Fowler-Nordheim (FN) plot confirmed the accuracy of the measured data, and the emission current was long term stable and reproducible. Thusly, this kind of triode would be used as a high-power electron source.« less

  1. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    NASA Astrophysics Data System (ADS)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the most efficient cooling from a switch to fuel with a lower BC emission factor (Kazakhstan, Estonia, and Latvia). The results presented here thus provide valuable information for climate impact assessments across a wide range of cookstove initiatives.

  2. Tracking Emissions of Methane Leaks from Abandoned Oil and Gas Wells in California

    NASA Astrophysics Data System (ADS)

    Lebel, E.; Lu, H.; Vielstädte, L.; Kang, M.; Jackson, R. B.

    2017-12-01

    Abandoned oil and gas wells can provide a substantial pathway for subterranean methane and other gases to be emitted to the atmosphere. However, abandoned wells are unaccounted for in greenhouse gas emissions inventories, primarily because monitoring these wells is not mandatory and quantitative data on leakage rates are rare. Here, we focus on California, which has a long history of oil and gas production, beginning from the 1860s, and currently ranks third in oil production by state. As a result, there are more than 100,000 abandoned wells across the state with yet unknown well integrity status. We tested and improved our static flux chamber design to minimize potential errors and designed new chambers with which we measured methane emissions from individual abandoned wells across California (both exposed and buried) and their surrounding soils. We characterized the respective gas source by measuring stable carbon isotopes of methane and the concentration of heavier hydrocarbons. So far, 6 out of 66 measured wells had a statistically significant methane flux >1mg/hr, with higher release rates linked to exposed and unplugged wells, rather than plugged and buried wells. Our results improve the current understanding of abandoned oil and gas wells as a methane emissions source and along with measurements in other parts of the United States can be used to scale up methane emission estimates to the national level, accounting for the millions of abandoned wells in the country.

  3. Relevance of future snowfall level height in the Peruvian Andes for glacier loss in the 21st century under different emission scenarios

    NASA Astrophysics Data System (ADS)

    Schauwecker, Simone; Kronenberg, Marlene; Rohrer, Mario; Huggel, Christian; Endries, Jason; Montoya, Nilton; Neukom, Raphael; Perry, Baker; Salzmann, Nadine; Schwarb, Manfred; Suarez, Wilson

    2017-04-01

    In many regions of Peru, the competition for limited hydrological resources already represents a large risk for conflicts. In this context, and within the circumstances of climate change, there is a great interest in estimating the future loss of Peruvian glaciers. Solid precipitation on glaciers, which affects the shortwave radiation budget via its effects on albedo, in general reduces ablation. For that reason, the height of the upper level of the transition zone between liquid and solid precipitation (snowfall level height) is considered to play a critical role. This snowfall level height is linked to air temperature. The observed and projected warming of the atmosphere is therefore affecting the glaciers amongst others by changing the snowfall level height. Despite the potential significance of these changes for Peruvian glaciers, the relations between snowfall level heights, glacier extents and climate scenarios have been poorly investigated so far. In our study, we first analyse the snowfall level heights over the Peruvian Cordilleras. Second, we investigate the relationship between the present snowfall level heights and current glacier extents. As a third step, we derive projected changes of snowfall level heights from GCMs for the RCP2.6 and 8.5 emission scenarios and use them to roughly estimate the end of XXI century glaciation for the Peruvian Cordilleras. Our results indicate a large difference in future glacier extent between the high-emission (pessimistic) RCP8.5 and the low-emission (optimistic) RCP2.6. If global emissions can be substantially reduced, a significant part of the glaciated area of Peru can be maintained. On the contrary, if mitigation is unsuccessful, most of the glacier mass in Peru will be lost during the 21st century. In both cases, but even more so for the high-emission scenario, adaptation will play a critical role and should focus on improvements in water resource management which is essential on a local to regional scale. Air temperature plays a critical role for glacier mass budgets by determining the precipitation phase rather than by determining ablation. The approach suggested here relies on this stable connection and is therefore appropriate for detecting differences between both analysed emission scenarios. However, the model is simple and neglects or simplifies other relevant energy fluxes and important processes as well as further possible changes. In addition, the method does not consider future changes of further climate variables such as precipitation. Uncertainties of the approach are thus related to the simplification of numerous processes and fluxes. Nevertheless, the approach presented here may be a relatively robust alternative to other simple estimations of future glacier extents.

  4. Quantification of fossil fuel CO2 at the building/street level for large US cities

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Razlivanov, I. N.; Song, Y.

    2012-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a global, integrated, carbon monitoring system (CMS). A space/time explicit emissions data product can act as both a verification and planning system. It can verify atmospheric CO2 measurements (in situ and remote) and offer detailed mitigation information to management authorities in order to optimize the mix of mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain as a pilot effort to a CMS. A complete data product has been built for the city of Indianapolis and preliminary quantification has been completed for Los Angeles and Phoenix (see figure). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In preparation for a formal urban-scale inversion, these forward comparisons offer insights into both improving our emissions data product and measurement strategies. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban environment. Quantification of fossil fuel emissions, however, is one piece in a larger conception of cities as complex dynamic socio-technological systems and the Hestia effort is at the very beginning stages of connecting to the large community of research approaching cities from other perspectives and utilizing other tools. Through analysis of the three cities for which we have quantified fossil fuel CO2 emissions and recognition of the current threads emerging in urban research, we are attempting to offer insight into understanding cities via the mechanistic quantification of energy and CO2 emissions.

  5. Estimating changes in urban ozone concentrations due to life cycle emissions from hydrogen transportation systems

    NASA Astrophysics Data System (ADS)

    Wang, Guihua; Ogden, Joan M.; Chang, Daniel P. Y.

    Hydrogen has been proposed as a low polluting alternative transportation fuel that could help improve urban air quality. This paper examines the potential impact of introducing a hydrogen-based transportation system on urban ambient ozone concentrations. This paper considers two scenarios, where significant numbers of new hydrogen vehicles are added to a constant number of gasoline vehicles. In our scenarios hydrogen fuel cell vehicles (HFCVs) are introduced in Sacramento, California at market penetrations of 9% and 20%. From a life cycle analysis (LCA) perspective, considering all the emissions involved in producing, transporting, and using hydrogen, this research compares three hypothetical natural gas to hydrogen pathways: (1) on-site hydrogen production; (2) central hydrogen production with pipeline delivery; and (3) central hydrogen production with liquid hydrogen truck delivery. Using a regression model, this research shows that the daily maximum temperature correlates well with atmospheric ozone formation. However, increases in initial VOC and NO x concentrations do not necessarily increase the peak ozone concentration, and may even cause it to decrease. It is found that ozone formation is generally limited by NO x in the summer and is mostly limited by VOC in the fall in Sacramento. Of the three hydrogen pathways, the truck delivery pathway contributes the most to ozone precursor emissions. Ozone precursor emissions from the truck pathway at 9% market penetration can cause additional 3-h average VOC (or NO x) concentrations up to approximately 0.05% (or 1%) of current pollution levels, and at 20% market penetration up to approximately 0.1% (or 2%) of current pollution levels. However, all of the hydrogen pathways would result in very small (either negative or positive) changes in ozone air quality. In some cases they will result in worse ozone air quality (mostly in July, August, and September), and in some cases they will result in better ozone air quality (mostly in October). The truck pathway tends to cause a much wider fluctuation in degradation or improvement of ozone air quality: percentage changes in peak ozone concentrations are approximately -0.01% to 0.04% for the assumed 9% market penetration, and approximately -0.03% to 0.1% for the 20% market penetration. Moreover, the 20% on-site pathway occasionally results in a decrease of about -0.1% of baseline ozone pollution. Compared to the current ambient pollution level, all three hydrogen pathways are unlikely to cause a serious ozone problem for market penetration levels of HFCVs in the 9-20% range.

  6. Potential of forest management to reduce French carbon emissions - regional modelling of the French forest carbon balance from the forest to the wood.

    NASA Astrophysics Data System (ADS)

    Valade, A.; Luyssaert, S.; Bellassen, V.; Vallet, P.

    2015-12-01

    In France the low levels of forest harvest (40 Mm3 per year over a volume increment of 89Mm3) is frequently cited to push for a more intensive management of the forest that would help reducing CO2 emissions. This reasoning overlooks the medium-to-long-term effects on the carbon uptake at the national scale that result from changes in the forest's structure and delayed emissions from products decay and bioenergy burning, both determinant for the overall C fluxes between the biosphere and the atmosphere. To address the impacts of an increase in harvest removal on biosphere-atmosphere carbon fluxes at national scale, we build a consistent regional modeling framework to integrate the forest-carbon system from photosynthesis to wood uses. We aim at bridging the gap between regional ecosystem modeling and land managers' considerations, to assess the synergistic and antagonistic effects of management strategies over C-based forest services: C-sequestration, energy and material provision, fossil fuel substitution. For this, we built on inventory data to develop a spatial forest growth simulator and design a novel method for diagnosing the current level of management based on stand characteristics (density, quadratic mean diameter or exploitability). The growth and harvest simulated are then processed with a life cycle analysis to account for wood transformation and uses. Three scenarii describe increases in biomass removals either driven by energy production target (set based on national prospective with a lock on minimum harvest diameters) or by changes in management practices (shorter or longer rotations, management of currently unmanaged forests) to be compared with business as usual simulations. Our management levels' diagnostics quantifies undermanagement at national scale and evidences the large weight of ownership-based undermanagement with an average of 26% of the national forest (between 10% and 40% per species) and thus represents a huge potential wood resource. We examine the effects of a mobilization of this resource versus an intensification of the current harvest on the age structure, the productivity and the stocking volume of the French forest and derive the related impacts on C emissions and C-related services provided by forests.

  7. A study to estimate and compare the total particulate matter emission indices (EIN) between traditional jet fuel and two blends of Jet A/Camelina biofuel used in a high by-pass turbofan engine: A case study of Honeywell TFE-109 engine

    NASA Astrophysics Data System (ADS)

    Shila, Jacob Joshua Howard

    The aviation industry is expected to grow at an annual rate of 5% until the year 2031 according to Boeing Outlook Report of 2012. Although the aerospace manufacturers have introduced new aircraft and engines technologies to reduce the emissions generated by aircraft engines, about 15% of all aircraft in 2032 will be using the older technologies. Therefore, agencies such as the National Aeronautics and Astronautics Administration (NASA), Federal Aviation Administration (FAA), the Environmental Protection Agency (EPA) among others together with some academic institutions have been working to characterize both physical and chemical characteristics of the aircraft particulate matter emissions to further understand their effects to the environment. The International Civil Aviation Organization (ICAO) is also working to establish an inventory with Particulate Matter emissions for all the aircraft turbine engines for certification purposes. This steps comes as a result of smoke measurements not being sufficient to provide detailed information on the effects of Particulate Matter (PM) emissions as far as the health and environmental concerns. The use of alternative fuels is essential to reduce the impacts of emissions released by Jet engines since alternative aviation fuels have been studied to lower particulate matter emissions in some types of engines families. The purpose of this study was to determine whether the emission indices of the biofuel blended fuels were lower than the emission indices of the traditional jet fuel at selected engine thrust settings. The biofuel blends observed were 75% Jet A-25% Camelina blend biofuel, and 50% Jet A-50% Jet A blend biofuel. The traditional jet fuel in this study was the Jet A fuel. The results of this study may be useful in establishing a baseline for aircraft engines' PM inventory. Currently the International Civil Aviation Organization (ICAO) engines emissions database contains only gaseous emissions data for only the TFE 731 and JT15D engines' families as representatives of other engines with rated thrust of 6000 pounds or below. The results of this study may be used to add to the knowledge of PM emission data that has been collected in other research studies. This study was quantitative in nature. Three factors were designated which were the types of fuels studied. The TFE-109 turbofan engine was the experimental subject. The independent variable was the engine thrust setting while the response variable was the emission index. Four engine runs were conducted for each fuel. In each engine run, four engine thrust settings were observed. The four engine thrust levels were 10%, 30%, 85%, and 100% rated thrusts levels. Therefore, for each engine thrust settings, there four replicates. The experiments were conducted using a TFE-109 engine test cell located in the Niswonger Aviation Technology building at the Purdue University Airport. The testing facility has the capability to conduct the aircraft PM emissions tests. Due to the equipment limitations, the study was limited to observe total PM emissions instead of specifically measuring the non-volatile PM emissions. The results indicate that the emissions indices of the blended biofuels were not statistically significantly lower compared to the emissions of the traditional jet fuel at rated thrust levels of 100% and 85% of TFE-109 turbofan engine. However, the emission indices for the 50%Jet A - 50%Camelina biofuel blend were statistically significantly lower compared to the emission indices of the 100% Jet A fuel at 10% and 30% engine rated thrusts levels of TFE-109 engine. The emission indices of the 50%-50% biofuel blend were lower by reductions of 15% and 17% at engine rated thrusts of 10% and 30% respectively compared to the emissions indices of the traditional jet fuel at the same engine thrust levels. Experimental modifications in future studies may provide estimates of the emissions indices range for this particular engine these estimates may be used to estimate the levels of PM emissions for other similar engines. Additional measurements steps such as heating of the sampling line, sampling dilution application, sampling line loss estimates, and calculations of the sampling line PM residence times will also be useful future results.

  8. Investigation of CO2 emission reduction strategy from in-use gasoline vehicle

    NASA Astrophysics Data System (ADS)

    Choudhary, Arti; Gokhale, Sharad

    2016-04-01

    On road transport emissions is kicking off in Indian cities due to high levels of urbanization and economic growth during the last decade in Indian subcontinent. In 1951, about 17% of India's population were living in urban areas that increased to 32% in 2011. Currently, India is fourth largest Green House Gas (GHG) emitter in the world, with its transport sector being the second largest contributor of CO2 emissions. For achieving prospective carbon reduction targets, substantial opportunity among in-use vehicle is necessary to quantify. Since, urban traffic flow and operating condition has significant impact on exhaust emission (Choudhary and Gokhale, 2016). This study examined the influence of vehicular operating kinetics on CO2 emission from predominant private transportation vehicles of Indian metropolitan city, Guwahati. On-board instantaneous data were used to quantify the impact of CO2 emission on different mileage passenger cars and auto-rickshaws at different times of the day. Further study investigates CO2 emission reduction strategies by using International Vehicle Emission (IVE) model to improve co-benefit in private transportation by integrated effort such as gradual phase-out of inefficient vehicle and low carbon fuel. The analysis suggests that fuel type, vehicles maintenance and traffic flow management have potential for reduction of urban sector GHG emissions. Keywords: private transportation, CO2, instantaneous emission, IVE model Reference Choudhary, A., Gokhale, S. (2016). Urban real-world driving traffic emissions during interruption and congestion. Transportation Research Part D: Transport and Environment 43: 59-70.

  9. Rethinking impact evaluation and carbon reduction analysis on electric bus vehicles in China

    NASA Astrophysics Data System (ADS)

    Li, Zhenyu; Li, Chao; Liao, Kai; Yin, Zhifang

    2018-02-01

    New energy bus vehicles (NEBVs) are expanding in China, but they have some problems such as technology, high cost and safety etc., thus NEBVs should be comprehensively evaluated from costs, technologies, environment, and based on the evaluation results, some changes should be improved. This paper firstly analyses the current status of both vehicle development and existing policies, identifies the main characteristics and the main problems in term of the economic, standard, policy, etc., by scenario analysis, forecasts the future growth from now to 2030 and calculates the emission reduction in low level scenario and high level scenario. In 2020 and 2030, 6 million and 24 million ton of CO2 emission will be reduced respectively. Finally, the paper makes a conclusion of Chinese experiences and gives some measures for the future development.

  10. Trends of Measured Climate Forcing Agents

    NASA Technical Reports Server (NTRS)

    Hansen, James E.; Sato, Makiko; Einaudi, Franco (Technical Monitor)

    2002-01-01

    The growth rate of climate forcing by measured greenhouse gases peaked near 1980 at almost 5 W/sq m per century. This growth rate has since declined to approximately equal to 3 W/sq m per century, largely because of cooperative international actions. We argue that trends can be reduced to the level needed for the moderate "alternative" climate scenario (approximately equal to 2 W/M2 per century for the next 50 years) by means of concerted actions that have other benefits, but the forcing reductions are not automatic "co-benefits" of actions that slow CO2 emissions. Current trends of climate forcings by aerosols remain very uncertain. Nevertheless, practical constraints on changes in emission levels suggest that global warming at a rate + 0.15 +/- 0.05 C per decade will occur over the next several decades.

  11. Decadal Changes in Ozone and Emissions in Central California and Current Issues

    NASA Astrophysics Data System (ADS)

    Tanrikulu, S.; Beaver, S.; Soong, S.; Tran, C.; Cordova, J.; Palazoglu, A.

    2011-12-01

    The relationships among ozone, emissions, and meteorology are very complex in central California, and must be well studied and understood in order to facilitate better air quality planning. Factors significantly impacting changes in emissions such as economic and population growth, and adopted emission controls make the matter even more complex. Here we review the history of ozone pollution in central California since the 1970s to plan for the future. Since the 1970s, changes in emissions have been accompanied by likewise dramatic changes in region-to-region differences in air quality. We focus on the coastal San Francisco Bay Area (SFBA) and the inland San Joaquin Valley (SJV). In the 1970s, the SFBA population was approaching 5 million people while the considerably larger and more rural SJV population remained below 2 million. The SFBA population was mostly confined to coastal locations. Peak ozone levels occurred mostly around the population centers and especially over the Bay itself. Hourly average ozone levels routinely approached 160 ppb. These high ozone levels promoted regulations under which SFBA emissions were continuously reduced through the present. By the 1990s, SFBA emissions had been reduced considerably despite the region's population growing to around 6 million. Relative to the 1970s, in 1990s the SFBA had lower peak ozone levels that were shifted to inland locations where much of the population growth was occurring. The SFBA still exceeded the federal 1-hour standard. A rapidly changing economic landscape in the 1970s promoted vast changes in the central California population distribution. In the SJV, the OPEC oil crisis promoted significant development of petroleum resources. Meanwhile, family farms were quickly being replaced with commercial-scale farming operations. The SJV population rapidly expanded to around 3 million people by the early 1990s. During this time, SJV emissions increased considerably, largely from increases in mobile source activities. The previously sparsely populated SJV had quickly developed an even more severe ozone problem than previous years. From 1990 to 2010, the SFBA population expanded to inland locations and then even further into the sheltered SJV. SFBA emissions for ROG and NOx were decreased around 40% and 15%, respectively during this period. High ozone levels became rather infrequent for coastal SFBA locations. During the same period, the SJV population continued to expand rapidly while emissions decreased, especially for ROG. Peak ozone levels remained around 100 ppb and shifted to locations downwind of Fresno and Bakersfield. Central California has experienced perhaps the most dramatic population growth and shifts in the United States during the contemporary economic era. These changes in population have led to some of the most difficult air quality management problems faced by regulators in the United States. Lessons learned from central California highlight the potential benefits of acting early and also the necessity for a long-term, flexible approach using sustained regulations to accompany population changes.

  12. Complex structure within Saturn's infrared aurora

    USGS Publications Warehouse

    Stallard, T.; Miller, S.; Lystrup, M.; Achilleos, N.; Bunce, E.J.; Arridge, C.S.; Dougherty, M.K.; Cowley, S.W.H.; Badman, S.V.; Talboys, D.L.; Brown, R.H.; Baines, K.H.; Buratti, B.J.; Clark, R.N.; Sotin, Christophe; Nicholson, P.D.; Drossart, P.

    2008-01-01

    The majority of planetary aurorae are produced by electrical currents flowing between the ionosphere and the magnetosphere which accelerate energetic charged particles that hit the upper atmosphere. At Saturn, these processes collisionally excite hydrogen, causing ultraviolet emission, and ionize the hydrogen, leading to H3+ infrared emission. Although the morphology of these aurorae is affected by changes in the solar wind, the source of the currents which produce them is a matter of debate. Recent models predict only weak emission away from the main auroral oval. Here we report images that show emission both poleward and equatorward of the main oval (separated by a region of low emission). The extensive polar emission is highly variable with time, and disappears when the main oval has a spiral morphology; this suggests that although the polar emission may be associated with minor increases in the dynamic pressure from the solar wind, it is not directly linked to strong magnetospheric compressions. This aurora appears to be unique to Saturn and cannot be explained using our current understanding of Saturn's magnetosphere. The equatorward arc of emission exists only on the nightside of the planet, and arises from internal magnetospheric processes that are currently unknown. ??2008 Macmillan Publishers Limited. All rights reserved.

  13. Field-emission from parabolic tips: Current distributions, the net current, and effective emission area

    NASA Astrophysics Data System (ADS)

    Biswas, Debabrata

    2018-04-01

    Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.

  14. Gathering pipeline methane emissions in Fayetteville shale pipelines and scoping guidelines for future pipeline measurement campaigns

    DOE PAGES

    Zimmerle, Daniel J.; Pickering, Cody K.; Bell, Clay S.; ...

    2017-11-24

    Gathering pipelines, which transport gas from well pads to downstream processing, are a sector of the natural gas supply chain for which little measured methane emissions data are available. This study performed leak detection and measurement on 96 km of gathering pipeline and the associated 56 pigging facilities and 39 block valves. The study found one underground leak accounting for 83% (4.0 kg CH 4/hr) of total measured emissions. Methane emissions for the 4684 km of gathering pipeline in the study area were estimated at 402 kg CH 4/hr [95 to 1065 kg CH 4/hr, 95% CI], or 1% [0.2%more » to 2.6%] of all methane emissions measured during a prior aircraft study of the same area. Emissions estimated by this study fall within the uncertainty range of emissions estimated using emission factors from EPA's 2015 Greenhouse Inventory and study activity estimates. While EPA's current inventory is based upon emission factors from distribution mains measured in the 1990s, this study indicates that using emission factors from more recent distribution studies could significantly underestimate emissions from gathering pipelines. To guide broader studies of pipeline emissions, we also estimate the fraction of the pipeline length within a basin that must be measured to constrain uncertainty of pipeline emissions estimates to within 1% of total basin emissions. The study provides both substantial insight into the mix of emission sources and guidance for future gathering pipeline studies, but since measurements were made in a single basin, the results are not sufficiently representative to provide methane emission factors at the regional or national level.« less

  15. Gathering pipeline methane emissions in Fayetteville shale pipelines and scoping guidelines for future pipeline measurement campaigns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmerle, Daniel J.; Pickering, Cody K.; Bell, Clay S.

    Gathering pipelines, which transport gas from well pads to downstream processing, are a sector of the natural gas supply chain for which little measured methane emissions data are available. This study performed leak detection and measurement on 96 km of gathering pipeline and the associated 56 pigging facilities and 39 block valves. The study found one underground leak accounting for 83% (4.0 kg CH 4/hr) of total measured emissions. Methane emissions for the 4684 km of gathering pipeline in the study area were estimated at 402 kg CH 4/hr [95 to 1065 kg CH 4/hr, 95% CI], or 1% [0.2%more » to 2.6%] of all methane emissions measured during a prior aircraft study of the same area. Emissions estimated by this study fall within the uncertainty range of emissions estimated using emission factors from EPA's 2015 Greenhouse Inventory and study activity estimates. While EPA's current inventory is based upon emission factors from distribution mains measured in the 1990s, this study indicates that using emission factors from more recent distribution studies could significantly underestimate emissions from gathering pipelines. To guide broader studies of pipeline emissions, we also estimate the fraction of the pipeline length within a basin that must be measured to constrain uncertainty of pipeline emissions estimates to within 1% of total basin emissions. The study provides both substantial insight into the mix of emission sources and guidance for future gathering pipeline studies, but since measurements were made in a single basin, the results are not sufficiently representative to provide methane emission factors at the regional or national level.« less

  16. Infrared coronal emission lines and the possibility of their laser emission in Seyfert nuclei

    NASA Technical Reports Server (NTRS)

    Greenhouse, Matthew A.; Feldman, Uri; Smith, Howard A.; Klapisch, Marcel; Bhatia, Anand K.; Bar-Shalom, Avi

    1993-01-01

    Results are presented from detailed balance calculations, and a compilation of atomic data and other model calculations designed to support upcoming ISO and current observing programs involving IR coronal emission lines, together with a table with a complete line list of infrared transitions within the ground configurations 2s2 2p(k), 3s2 3p(k), and the first excited configurations 2s 2p and 3s 3p of highly ionized astrophysically abundant elements. The temperature and density parameter space for dominant cooling via IR coronal lines is presented, and the relationship of IR and optical coronal lines is discussed. It is found that, under physical conditions found in Seyfert nuclei, 14 of 70 transitions examined have significant population inversions in levels that give rise to IR coronal lines. Several IR coronal line transitions were found to have laser gain lengths that correspond to column densities of 10 exp 24-25/sq cm which are modeled to exist in Seyfert nuclei. Observations that can reveal inverted level populations and laser gain in IR coronal lines are suggested.

  17. Radiative recombination in GaN/InGaN heterojunction bipolar transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Tsung-Ting; Lee, Yi-Che; Kim, Hee-Jin

    2015-12-14

    We report an electroluminescence (EL) study on npn GaN/InGaN heterojunction bipolar transistors (HBTs). Three radiative recombination paths are resolved in the HBTs, corresponding to the band-to-band transition (3.3 eV), conduction-band-to-acceptor-level transition (3.15 eV), and yellow luminescence (YL) with the emission peak at 2.2 eV. We further study possible light emission paths by operating the HBTs under different biasing conditions. The band-to-band and the conduction-band-to-acceptor-level transitions mostly arise from the intrinsic base region, while a defect-related YL band could likely originate from the quasi-neutral base region of a GaN/InGaN HBT. The I{sub B}-dependent EL intensities for these three recombination paths are discussed. The resultsmore » also show the radiative emission under the forward-active transistor mode operation is more effective than that using a diode-based emitter due to the enhanced excess electron concentration in the base region as increasing the collector current increases.« less

  18. Black carbon emissions in Russia: A critical review

    DOE PAGES

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa; ...

    2017-05-18

    Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data onmore » Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

  19. Development and application of a mobile laboratory for measuring emissions from diesel engines. 1. Regulated gaseous emissions.

    PubMed

    Cocker, David R; Shah, Sandip D; Johnson, Kent; Miller, J Wayne; Norbeck, Joseph M

    2004-04-01

    Information about in-use emissions from diesel engines remains a critical issue for inventory development and policy design. Toward that end, we have developed and verified the first mobile laboratory that measures on-road or real-world emissions from engines at the quality level specified in the U.S. Congress Code of Federal Regulations. This unique mobile laboratory provides information on integrated and modal regulated gaseous emission rates and integrated emission rates for speciated volatile and semivolatile organic compounds and particulate matter during real-world operation. Total emissions are captured and collected from the HDD vehicle that is pulling the mobile laboratory. While primarily intended to accumulate data from HDD vehicles, it may also be used to measure emission rates from stationary diesel sources such as back-up generators. This paper describes the development of the mobile laboratory, its measurement capabilities, and the verification process and provides the first data on total capture gaseous on-road emission measurements following the California Air Resources Board (ARB) 4-mode driving cycle, the hot urban dynamometer driving schedule (UDDS), the modified 5-mode cycle, and a 53.2-mi highway chase experiment. NOx mass emission rates (g mi(-1)) for the ARB 4-mode driving cycle, the hot UDDS driving cycle, and the chase experimentwerefoundto exceed current emission factor estimates for the engine type tested by approximately 50%. It was determined that congested traffic flow as well as "off-Federal Test Procedure cycle" emissions can lead to significant increases in per mile NOx emission rates for HDD vehicles.

  20. Black carbon emissions in Russia: A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Meredydd; Kholod, Nazar; Kuklinski, Teresa

    Here, this study presents a comprehensive review of estimated black carbon (BC) emissions in Russia from a range of studies. Russia has an important role regarding BC emissions given the extent of its territory above the Arctic Circle, where BC emissions have a particularly pronounced effect on the climate. We assess underlying methodologies and data sources for each major emissions source based on their level of detail, accuracy and extent to which they represent current conditions. We then present reference values for each major emissions source. In the case of flaring, the study presents new estimates drawing on data onmore » Russia's associated petroleum gas and the most recent satellite data on flaring. We also present estimates of organic carbon (OC) for each source, either based on the reference studies or from our own calculations. In addition, the study provides uncertainty estimates for each source. Total BC emissions are estimated at 688 Gg in 2014, with an uncertainty range 401 Gg-1453 Gg, while OC emissions are 9224 Gg with uncertainty ranging between 5596 Gg and 14,736 Gg. Wildfires dominated and contributed about 83% of the total BC emissions: however, the effect on radiative forcing is mitigated in part by OC emissions. We also present an adjusted estimate of Arctic forcing from Russia's BC and OC emissions. In recent years, Russia has pursued policies to reduce flaring and limit particulate emissions from on-road transport, both of which appear to significantly contribute to the lower emissions and forcing values found in this study.« less

  1. Improving hydropower choices via an online and open access tool

    PubMed Central

    Vilela, Thais; Reid, John

    2017-01-01

    This paper describes and validates the HydroCalculator Tool developed by Conservation Strategy Fund. The HydroCalculator Tool allows researchers, policy-makers and citizens to easily assess hydropower feasibility, by calculating traditional financial indicators, such as the levelized cost of energy, as well as greenhouse gas emissions and the economic net present value including emissions costs. Currently, people other than project developers have limited or no access to such information, which stifles informed public debate on electric energy options. Within this context, the use of the HydroCalculator Tool may contribute to the debate, by facilitating access to information. To validate the tool’s greenhouse gas calculations, we replicate two peer-reviewed articles that estimate greenhouse gas emissions from different hydropower plants in the Amazon basin. The estimates calculated by the HydroCalculator Tool are similar to the ones found in both peer-reviewed articles. The results show that hydropower plants can lead to greenhouse gas emissions and that, in some cases, these emissions can be larger than those of alternative energy sources producing the same amount of electricity. PMID:28650968

  2. Improving hydropower choices via an online and open access tool.

    PubMed

    Vilela, Thais; Reid, John

    2017-01-01

    This paper describes and validates the HydroCalculator Tool developed by Conservation Strategy Fund. The HydroCalculator Tool allows researchers, policy-makers and citizens to easily assess hydropower feasibility, by calculating traditional financial indicators, such as the levelized cost of energy, as well as greenhouse gas emissions and the economic net present value including emissions costs. Currently, people other than project developers have limited or no access to such information, which stifles informed public debate on electric energy options. Within this context, the use of the HydroCalculator Tool may contribute to the debate, by facilitating access to information. To validate the tool's greenhouse gas calculations, we replicate two peer-reviewed articles that estimate greenhouse gas emissions from different hydropower plants in the Amazon basin. The estimates calculated by the HydroCalculator Tool are similar to the ones found in both peer-reviewed articles. The results show that hydropower plants can lead to greenhouse gas emissions and that, in some cases, these emissions can be larger than those of alternative energy sources producing the same amount of electricity.

  3. Mechanism of oxide thickness and temperature dependent current conduction in n+-polySi/SiO2/p-Si structures — a new analysis

    NASA Astrophysics Data System (ADS)

    Samanta, Piyas

    2017-10-01

    The conduction mechanism of gate leakage current through thermally grown silicon dioxide (SiO2) films on (100) p-type silicon has been investigated in detail under negative bias on the degenerately doped n-type polysilicon (n+-polySi) gate. The analysis utilizes the measured gate current density J G at high oxide fields E ox in 5.4 to 12 nm thick SiO2 films between 25 and 300 °C. The leakage current measured up to 300 °C was due to Fowler-Nordheim (FN) tunneling of electrons from the accumulated n +-polySi gate in conjunction with Poole Frenkel (PF) emission of trapped-electrons from the electron traps located at energy levels ranging from 0.6 to 1.12 eV (depending on the oxide thickness) below the SiO2 conduction band (CB). It was observed that PF emission current I PF dominates FN electron tunneling current I FN at oxide electric fields E ox between 6 and 10 MV/cm and throughout the temperature range studied here. Understanding of the mechanism of leakage current conduction through SiO2 films plays a crucial role in simulation of time-dependent dielectric breakdown (TDDB) of metaloxide-semiconductor (MOS) devices and to precisely predict the normal operating field or applied gate voltage for lifetime projection of the MOS integrated circuits.

  4. Modeling thermionic emission from laser-heated nanoparticles

    DOE PAGES

    Mitrani, J. M.; Shneider, M. N.; Stratton, B. C.; ...

    2016-02-01

    An adjusted form of thermionic emission is applied to calculate emitted current from laser-heated nanoparticles and to interpret time-resolved laser-induced incandescence (TR-LII) signals. This adjusted form of thermionic emission predicts significantly lower values of emitted current compared to the commonly used Richardson-Dushman equation, since the buildup of positive charge in a laser-heated nanoparticle increases the energy barrier for further emission of electrons. Thermionic emission influences the particle's energy balance equation, which can influence TR-LII signals. Additionally, reports suggest that thermionic emission can induce disintegration of nanoparticle aggregates when the electrostatic Coulomb repulsion energy between two positively charged primary particles ismore » greater than the van der Waals bond energy. Furthermore, since the presence and size of aggregates strongly influences the particle's energy balance equation, using an appropriate form of thermionic emission to calculate emitted current may improve interpretation of TR-LII signals.« less

  5. Virtual cathode emission of an annular cold cathode

    NASA Astrophysics Data System (ADS)

    Park, S.-d.; Kim, J.-h.; Han, J.; Yoon, M.; Park, S. Y.; Choi, D. W.; Shin, J. W.; So, J. H.

    2009-11-01

    Recent measurement of voltage V and current I of the electron gun of a relativistic klystron amplifier revealed that the resulting current-voltage relationship appeared to differ from the usual Child-Langmuir law (I∝V3/2) especially during the initial period of voltage increase. This paper attempts to explain this deviation by examining the emission mechanism using particle-in-cell simulation. The emission area in the cathode increased stepwise as the applied voltage increased and within each step the current and voltage followed the Child-Langmuir law. The electron emission began when the voltage reached a threshold, and the perveance increased with the emission area. Furthermore, an apparent virtual cathode was formed which was larger than the cathode tip. This occurs because, above a certain voltage, the emission from the edge and the side of the cathode surface dominates the emission from the front-end surface.

  6. Enhanced electron emission from coated metal targets: Effect of surface thickness on performance

    NASA Astrophysics Data System (ADS)

    Madas, Saibabu; Mishra, S. K.; Upadhyay Kahaly, Mousumi

    2018-03-01

    In this work, we establish an analytical formalism to address the temperature dependent electron emission from a metallic target with thin coating, operating at a finite temperature. Taking into account three dimensional parabolic energy dispersion for the target (base) material and suitable thickness dependent energy dispersion for the coating layer, Fermi Dirac statistics of electron energy distribution and Fowler's mechanism of the electron emission, we discuss the dependence of the emission flux on the physical properties such as the Fermi level, work function, thickness of the coating material, and operating temperature. Our systematic estimation of how the thickness of coating affects the emission current demonstrates superior emission characteristics for thin coating layer at high temperature (above 1000 K), whereas in low temperature regime, a better response is expected from thicker coating layer. This underlying fundamental behavior appears to be essentially identical for all configurations when work function of the coating layer is lower than that of the bulk target work function. The analysis and predictions could be useful in designing new coated materials with suitable thickness for applications in the field of thin film devices and field emitters.

  7. Environmental impacts and sustainability of egg production systems.

    PubMed

    Xin, H; Gates, R S; Green, A R; Mitloehner, F M; Moore, P A; Wathes, C M

    2011-01-01

    As part of a systemic assessment toward social sustainability of egg production, we have reviewed current knowledge about the environmental impacts of egg production systems and identified topics requiring further research. Currently, we know that 1) high-rise cage houses generally have poorer air quality and emit more ammonia than manure belt (MB) cage houses; 2) manure removal frequency in MB houses greatly affects ammonia emissions; 3) emissions from manure storage are largely affected by storage conditions, including ventilation rate, manure moisture content, air temperature, and stacking profile; 4) more baseline data on air emissions from high-rise and MB houses are being collected in the United States to complement earlier measurements; 5) noncage houses generally have poorer air quality (ammonia and dust levels) than cage houses; 6) noncage houses tend to be colder during cold weather due to a lower stocking density than caged houses, leading to greater feed and fuel energy use; 7) hens in noncage houses are less efficient in resource (feed, energy, and land) utilization, leading to a greater carbon footprint; 8) excessive application of hen manure to cropland can lead to nutrient runoff to water bodies; 9) hen manure on open (free) range may be subject to runoff during rainfall, although quantitative data are lacking; 10) mitigation technologies exist to reduce generation and emission of noxious gases and dust; however, work is needed to evaluate their economic feasibility and optimize design; and 11) dietary modification shows promise for mitigating emissions. Further research is needed on 1) indoor air quality, barn emissions, thermal conditions, and energy use in alternative hen housing systems (1-story floor, aviary, and enriched cage systems), along with conventional housing systems under different production conditions; 2) environmental footprint for different US egg production systems through life cycle assessment; 3) practical means to mitigate air emissions from different production systems; 4) process-based models for predicting air emissions and their fate; and 5) the interactions between air quality, housing system, worker health, and animal health and welfare.

  8. A study on the impact of nuclear power plant construction relative to decommissioning Fossil Fuel Power Plant in order to reduce carbon dioxide emissions using a modified Nordhaus Vensim DICE model

    NASA Astrophysics Data System (ADS)

    Colpetzer, Jason Lee

    The current levels of CO2 emissions and high levels accumulating in the atmosphere have climate scientists concerned. The Dynamic Integrated Climate Economy Model or "DICE" for short is a highly developed model that has been used to simulate climate change and evaluate factors addressing global warming. The model was developed by Yale's Nordhaus along with collaborators and the compilation of numerous scientific publications. The purpose of this study is to recreate DICE using Vensim and modify it to evaluate the use of nuclear power plants (NPPs) as a means to counter global temperature increases in the atmosphere and oceans and the associated cost of damages. The amount of greenhouse gas emissions from a NPP are about 6% per Megawatt as that from a Fossil Fuel Power Plant (FFPP). Based on this, a model was developed to simulate construction of NPPs with subsequent decommissioning of FFPPs with an equivalent power output. The results produced through multiple simulation runs utilizing variable NPP construction rates show that some minor benefit is achievable if all of the more than 10,000 FFPPs currently in operation in the U.S. are replaced with NPPs. The results show that a reduction in CO 2 emissions of 2.48% will occur if all of the FFPPs are decommissioned. At a minimum rate of 50 NPPs constructed per year, the largest reduction in CO2 in the atmosphere, 1.94% or 44.5 billion tons of carbon, is possible. This results in a reduction in global warming of 0.068°C or 1.31%. The results also show that this reduction in global warming will be equivalent to a reduction of 8.2% or $148 B in anticipated annual spending as a result of climate change damages. Further results indicate that using NPPs to address climate change will provide a small benefit; ultimately, it will not be enough to reduce CO2 emissions or atmospheric CO 2 to control global warming. The amount of CO2 in the atmosphere is predicted to be 1055 parts per million (ppm) even in the best case scenario, which is well above the current limit of 350 ppm proposed by Hansen et. al.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality ismore » projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O 3 level and of 0.3 mg m 3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO 2, H 2O 2, and the nitrate radical and increasing the atmosphere’s near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O 3, and increases in CH 4 and VOCs. Increasing NO x and O 3 levels enhances the nitrogen and O 3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth’s surface with a global average reduction in shortwave radiation of 1.2 W m 2 . This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR’s CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed treatments. This study indicates that effective climate mitigation and emission control strategies are needed to prevent future health impact and ecosystem stress. Further, studies that are used to develop these strategies should use fully coupled models with sophisticated chemical and aerosol-interaction treatments that can provide a more realistic representation of the atmosphere.« less

  10. Search for Gamma-Ray Emission from the Coma Cluster with Six Years of Fermi-LAT Data

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2016-01-01

    We present results from gamma-ray observations of the Coma cluster incorporating six years of Fermi-LAT data and the newly released 'Pass 8' event-level analysis. Our analysis of the region reveals low-significance residual structures within the virial radius of the cluster that are too faint for a detailed investigation with the current data. Using a likelihood approach that is free of assumptions on the spectral shape we derive upper limits on the gamma-ray flux that is expected from energetic particle interactions in the cluster. We also consider a benchmark spatial and spectral template motivated by models in which the observed radio halo is mostly emission by secondary electrons. In this case, the median expected and observed upper limits for the flux above 100 MeV are 1.7 x 10(exp -9) ph cm(exp -2) s(exp -1) and 5.2 x 10(exp -9) ph cm(exp -2) s(exp -1) respectively (the latter corresponds to residual emission at the level of 1.8sigma). These bounds are comparable to or higher than predicted levels of hadronic gamma-ray emission in cosmic-ray (CR) models with or without reacceleration of secondary electrons, although direct comparisons are sensitive to assumptions regarding the origin and propagation mode of CRs and magnetic field properties. The minimal expected gamma-ray flux from radio and star-forming galaxies within the Coma cluster is roughly an order of magnitude below the median sensitivity of our analysis.

  11. Search for gamma-ray emission from the Coma Cluster with six years of Fermi-LAT data

    DOE PAGES

    Ackermann, M.

    2016-03-08

    We present results from γ-ray observations of the Coma cluster incorporating 6 years of Fermi-LAT data and the newly released “Pass 8” event-level analysis. Our analysis of the region reveals low-significance residual structures within the virial radius of the cluster that are too faint for a detailed investigation with the current data. Using a likelihood approach that is free of assumptions on the spectral shape we derive upper limits on the γ-ray flux that is expected from energetic particle interactions in the cluster. We also consider a benchmark spatial and spectral template motivated by models in which the observed radiomore » halo is mostly emission by secondary electrons. In this case, the median expected and observed upper limits for the flux above 100MeV are 1.7 x 10 -9 ph cm -2 s -1 and 5.2 x 10 -9 ph cm -2 s -1 respectively (the latter corresponds to residual emission at the level of 1:8σ). These bounds are comparable to or higher than predicted levels of hadronic gamma-ray emission in cosmic-ray models with or without reacceleration of secondary electrons, although direct comparisons are sensitive to assumptions regarding the origin and propagation mode of cosmic rays and magnetic field properties. The minimal expected γ-ray flux from radio and star-forming galaxies within the Coma cluster is roughly an order of magnitude below the median sensitivity of our analysis.« less

  12. Effect of the cesium and potassium doping of multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics

    NASA Astrophysics Data System (ADS)

    Izrael'yants, K. R.; Orlov, A. P.; Ormont, A. B.; Chirkova, E. G.

    2017-04-01

    The effect of cesium and potassium atoms deposited onto multiwalled carbon nanotubes grown in an electrical arc on their emission characteristics was studied. The current-voltage characteristics of the field electron emission of specimens with cesium or potassium doped multiwalled carbon nanotubes of this type were revealed to retain their linear character in the Fowler-Nordheim coordinates within several orders of magnitude of change in the emission current. The deposition of cesium and potassium atoms was shown to lead to a considerable increase in the emission current and a decrease in the work function φ of studied emitters with multiwalled nanotubes. The work function was established to decrease to φ 3.1 eV at an optimal thickness of coating with cesium atoms and to φ 2.9 eV in the case of doping with potassium atoms. Cesium and potassium deposition conditions optimal for the attainment of a maximum emission current were found.

  13. Estimation of methane emission from California natural gas industry.

    PubMed

    Kuo, Jeff; Hicks, Travis C; Drake, Brian; Chan, Tat Fu

    2015-07-01

    Energy generation and consumption are the main contributors to greenhouse gases emissions in California. Natural gas is one of the primary sources of energy in California. A study was recently conducted to develop current, reliable, and California-specific source emission factors (EFs) that could be used to establish a more accurate methane emission inventory for the California natural gas industry. Twenty-five natural gas facilities were surveyed; the surveyed equipment included wellheads (172), separators (131), dehydrators (17), piping segments (145), compressors (66), pneumatic devices (374), metering and regulating (M&R) stations (19), hatches (34), pumps (2), and customer meters (12). In total, 92,157 components were screened, including flanges (10,101), manual valves (10,765), open-ended lines (384), pressure relief valves (358), regulators (930), seals (146), threaded connections (57,061), and welded connections (12,274). Screening values (SVs) were measured using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. For a given SV range, the measured leak rates might span several orders of magnitude. The correlation equations between the leak rates and SVs were derived. All the component leakage rate histograms appeared to have the same trend, with the majority of leakage rates<0.02 cubic feet per minute (cfm). Using the cumulative distribution function, the geometric mean was found to be a better indicator than the arithmetic mean, as the mean for each group of leakage rates found. For most component types, the pegged EFs for SVs of ≥10,000 ppmV and of ≥50,000 ppmV are relatively similar. The component-level average EFs derived in this study are often smaller than the corresponding ones in the 1996 U.S. Environmental Protection Agency/Gas Research Institute (EPA/GRI) study. Twenty-five natural gas facilities in California were surveyed to develop current, reliable, and California-specific source emission factors (EFs) for the natural gas industry. Screening values were measured by using portable monitoring instruments, and Hi-Flow samplers were then used to quantify fugitive emission rates. The component-level average EFs derived in this study are often smaller than the corresponding ones in the 1996 EPA/GRI study. The smaller EF values from this study might be partially attributable to the employment of the leak detection and repair program by most, if not all, of the facilities surveyed.

  14. Quantification and mapping of the supply of and demand for carbon storage and sequestration service in woody biomass and soil to mitigate climate change in the socio-ecological environment.

    PubMed

    Sahle, Mesfin; Saito, Osamu; Fürst, Christine; Yeshitela, Kumelachew

    2018-05-15

    In this study, the supply of and demand for carbon storage and sequestration of woody biomass in the socio-ecological environment of the Wabe River catchment in Gurage Mountains, Ethiopia, were estimated. This information was subsequently integrated into a map that showed the balance between supply capacities and demand in a spatially explicit manner to inform planners and decision makers on methods used to manage local climate change. Field data for wood biomass and soil were collected, satellite images for land use and land cover (LULC) were classified, and secondary data from statistics and studies for estimation were obtained. Carbon storage, the rate of carbon sequestration and the rate of greenhouse gas (GHG) emissions from diverse sources at different LULCs, was estimated accordingly by several methods. Even though a large amount of carbon was stored in the catchment, the current yearly sequestration was less than the CO 2 -eq. GHG emissions. Forest and Enset-based agroforestry emissions exhibited the highest amount of woody biomass, and cereal crop and wetland exhibited the highest decrease in soil carbon sequestration. CO 2 -eq. GHG emissions are mainly caused by livestock, nitrogenous fertilizer consumption, and urban activities. The net negative emissions were estimated for the LULC classes of cereal crop, grazing land, and urban areas. In conclusion, without any high-emission industries, GHG emissions can be greater than the regulatory capacity of ecosystems in the socio-ecological environment. This quantification approach can provide information to policy and decision makers to enable them to tackle climate change at the root level. Thus, measures to decrease emission levels and enhance the sequestration capacity are crucial to mitigate the globally delivered service in a specific area. Further studies on the effects of land use alternatives on net emissions are recommended to obtain in-depth knowledge on sustainable land use planning. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Portable Wireless Device Threat Assessment for Aircraft Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyen, Truong X.; Koppen, Sandra V.; Ely, Jay J.; Williams, Reuben A.; Smith, Laura J.; Salud, Maria Theresa P.

    2004-01-01

    This paper addresses the concern for Wireless Local Area Network devices and two-way radios to cause electromagnetic interference to aircraft navigation radio systems. Spurious radiated emissions from various IEEE 802.11a, 802.11b, and Bluetooth devices are characterized using reverberation chambers. The results are compared with baseline emissions from standard laptop computer and personal digital assistants (PDAs) that are currently allowed for use on aircraft. The results indicate that the WLAN devices tested are not more of a threat to aircraft navigation radios than standard laptop computers and PDAs in most aircraft bands. In addition, spurious radiated emission data from seven pairs of two-way radios are provided. These two-way radios emit at much higher levels in the bands considered. A description of the measurement process, device modes of operation and the measurement results are reported.

  16. Time-frequency analysis of acoustic emission signals generated by the Glass Fibre Reinforced Polymer Composites during the tensile test

    NASA Astrophysics Data System (ADS)

    Świt, G.; Adamczak, A.; Krampikowska, A.

    2017-10-01

    Fibre reinforced polymer composites are currently dominating in the composite materials market. The lack of detailed knowledge about their properties and behaviour in various conditions of exposure under load significantly limits the broad possibilities of application of these materials. Occurring and accumulation of defects in material during the exploitation of the construction lead to the changes of its technical condition. The necessity to control the condition of the composite is therefore justified. For this purpose, non-destructive method of acoustic emission can be applied. This article presents an example of application of acoustic emission method based on time analysis and time-frequency analysis for the evaluation of the progress of the destructive processes and the level of degradation of glass fibre reinforced composite tapes that were subject to tensile testing.

  17. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    DOEpatents

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  18. US power plant sites at risk of future sea-level rise

    NASA Astrophysics Data System (ADS)

    Bierkandt, R.; Auffhammer, M.; Levermann, A.

    2015-12-01

    Unmitigated greenhouse gas emissions may increase global mean sea-level by about 1 meter during this century. Such elevation of the mean sea-level enhances the risk of flooding of coastal areas. We compute the power capacity that is currently out-of-reach of a 100-year coastal flooding but will be exposed to such a flood by the end of the century for different US states, if no adaptation measures are taken. The additional exposed capacity varies strongly among states. For Delaware it is 80% of the mean generated power load. For New York this number is 63% and for Florida 43%. The capacity that needs additional protection compared to today increases by more than 250% for Texas, 90% for Florida and 70% for New York. Current development in power plant building points towards a reduced future exposure to sea-level rise: proposed and planned power plants are less exposed than those which are currently operating. However, power plants that have been retired or canceled were less exposed than those operating at present. If sea-level rise is properly accounted for in future planning, an adaptation to sea-level rise may be costly but possible.

  19. Irreversible climate change due to carbon dioxide emissions.

    PubMed

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-02-10

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450-600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the "dust bowl" era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4-1.0 m if 21st century CO(2) concentrations exceed 600 ppmv and 0.6-1.9 m for peak CO(2) concentrations exceeding approximately 1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer.

  20. Irreversible climate change due to carbon dioxide emissions

    PubMed Central

    Solomon, Susan; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2009-01-01

    The severity of damaging human-induced climate change depends not only on the magnitude of the change but also on the potential for irreversibility. This paper shows that the climate change that takes place due to increases in carbon dioxide concentration is largely irreversible for 1,000 years after emissions stop. Following cessation of emissions, removal of atmospheric carbon dioxide decreases radiative forcing, but is largely compensated by slower loss of heat to the ocean, so that atmospheric temperatures do not drop significantly for at least 1,000 years. Among illustrative irreversible impacts that should be expected if atmospheric carbon dioxide concentrations increase from current levels near 385 parts per million by volume (ppmv) to a peak of 450–600 ppmv over the coming century are irreversible dry-season rainfall reductions in several regions comparable to those of the “dust bowl” era and inexorable sea level rise. Thermal expansion of the warming ocean provides a conservative lower limit to irreversible global average sea level rise of at least 0.4–1.0 m if 21st century CO2 concentrations exceed 600 ppmv and 0.6–1.9 m for peak CO2 concentrations exceeding ≈1,000 ppmv. Additional contributions from glaciers and ice sheet contributions to future sea level rise are uncertain but may equal or exceed several meters over the next millennium or longer. PMID:19179281

  1. Design of a perfluorocarbon tracer based monitoring network to support monitoring verification and accounting of sequestered CO2

    NASA Astrophysics Data System (ADS)

    Watson, T.; Sullivan, T.

    2013-05-01

    The levels of CO2 in the atmosphere have been growing since the beginning of the industrial revolution. The current level is 391 ppm. If there are no efforts to mitigate CO2 emissions, the levels will rise to 750 ppm by 2100. Geologic carbon sequestration is one strategy that may be used to begin to reduce emissions. Sequestration will not be effective unless reservoir leak rates are significantly less than 1%. There must be rigorous monitoring protocols in place to ensure sequestration projects meet regulatory and environmental goals. Monitoring for CO2 leakage directly is difficult because of the large background levels and variability of CO2 in the atmosphere. Using tracers to tag the sequestered CO2 can mitigate some of the difficulties of direct measurement but a tracer monitoring network and the levels of tagging need to be carefully designed. Simple diffusion and dispersion models are used to predict the surface and atmospheric concentrations that would be seen by a network monitoring a sequestration site. Levels of tracer necessary to detect leaks from 0.01 to 1% are presented and suggestions for effective monitoring and protection of global tracer utility are presented.

  2. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Han; Telesco, Charles M.; Pantin, Eric

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μ m commonly ascribed to the C–H and C–C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μ m in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. Thismore » poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.« less

  3. The effect of impurities and incident angle on the secondary electron emission of Ni(110)

    NASA Astrophysics Data System (ADS)

    Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce E.; Gentile, Charles; Feibush, Eliot

    2015-11-01

    The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incident angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incident angles. Thank you to the Princeton Plasma Physics Laboratory and the Department of Energy for the opportunity to work on this project through the Science Undergraduate Laboratory Internships.

  4. Detection of Polarized Infrared Emission by Polycyclic Aromatic Hydrocarbons in the MWC 1080 Nebula

    NASA Astrophysics Data System (ADS)

    Zhang, Han; Telesco, Charles M.; Hoang, Thiem; Li, Aigen; Pantin, Eric; Wright, Christopher M.; Li, Dan; Barnes, Peter

    2017-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in astrophysical environments, as revealed by their pronounced emission features at 3.3, 6.2, 7.7, 8.6, 11.3, and 12.7 μm commonly ascribed to the C-H and C-C vibrational modes. Although these features have long been predicted to be polarized, previous searches for PAH polarization led to null or, at best, tentative detections. Here we report the definite detection of polarized PAH emission at 11.3 μm in the nebula associated with the Herbig Be star MWC 1080. We measure a polarization degree of 1.9% ± 0.2%, which is unexpectedly high compared to models. This poses a challenge in the current understanding of the alignment of PAHs, which is required to polarize the PAH emission but thought to be substantially suppressed. PAH alignment with a magnetic field via a resonance paramagnetic relaxation process may account for such a high level of polarization.

  5. The effects of impurities and incidence angle on the secondary electron emission of Ni(110)

    NASA Astrophysics Data System (ADS)

    Lazar, Hadar; Patino, Marlene; Raitses, Yevgeny; Koel, Bruce; Gentile, Charles; Feibush, Eliot

    The investigation of secondary electron emission (SEE) of conducting materials used for magnetic fusion devices and plasma thrusters is important for determining device lifetime and performance. Methods to quantify the secondary electron emission from conducting materials and to characterize the effects that impurities and incidence angles have on secondary electron emission were developed using 4-grid low energy electron diffraction (LEED) optics. The total secondary electron yield from a Ni(110) surface was continuously measured from the sample current as surface contamination increased from reactions with background gases in the ultrahigh vacuum chamber. Auger electron spectroscopy (AES) and temperature programmed desorption (TPD) were used to examine the composition and impurity levels on the Ni(110) surface. The total secondary electron yield was also measured at different incidence angles. Thank you to the Princeton Plasma Physics Laboratory (PPPL) and the Department of Energy (DOE) for the opportunity to work on this project through the Science Undergraduate Laboratory Internships (SULI).

  6. Acid emissions monitoring needs in ceramic tile industry: challenges derived from new policy trends

    NASA Astrophysics Data System (ADS)

    Celades, Irina; Gomar, Salvador; Romero, Fernando; Chauhan, Amisha; Delpech, Bertrand; Jouhara, Hussam

    2017-11-01

    The emission of acid compounds during the manufacture of ceramic tiles is strongly related to the presence of precursors in the raw materials and/or fuels used, with some exceptions such as the production of thermal NOX. The stages with the potential to produce significant emissions of these compounds have been identified as the suspension spray drying and tile firing stages. The monitoring of emission levels of acid pollutants in these stages has turned in a great importance issue from a regulatory and industrial aspect. The DREAM project (https://www.spire2030.eu/dream) will tackle the regulation of acidic emissions focusing in the firing stage. The initial stages of the project have made it possible to identify the design requirements for the monitoring system. This will allow the control of acid pollutants emissions and other key parameters such as pressure, flow, temperature and humidity. One of the tasks developed has been the review and compilation of current emissions monitoring systems detailing technical specifications such as: position (in situ or extractive), measurement principle and frequency. The future policy trends in air pollution are encouraging the continuous monitoring across the European industry. The present document assesses the advantages regarding environmental impact control, highlighting the main challenges for the ceramic tile industry.

  7. Purely wavelength- and amplitude-modulated quartz-enhanced photoacoustic spectroscopy.

    PubMed

    Patimisco, Pietro; Sampaolo, Angelo; Bidaux, Yves; Bismuto, Alfredo; Scott, Marshall; Jiang, James; Muller, Antoine; Faist, Jerome; Tittel, Frank K; Spagnolo, Vincenzo

    2016-11-14

    We report here on a quartz-enhanced photoacoustic (QEPAS) sensor employing a quantum cascade laser (QCL) structure capable of operating in a pure amplitude or wavelength modulation configuration. The QCL structure is composed of three electrically independent sections: Gain, Phase (PS) and Master Oscillator (MO). Selective current pumping of these three sections allows obtaining laser wavelength tuning without changes in the optical power, and power modulation without emission wavelength shifts. A pure QEPAS amplitude modulation condition is obtained by modulating the PS current, while pure wavelength modulation is achieved by modulating simultaneously the MO and PS QCL sections and slowly scanning the DC current level injected in the PS section.

  8. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    NASA Astrophysics Data System (ADS)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  9. Leveraging field and remotely sensed data to reduce uncertainty in national inventories of coastal wetland carbon fluxes: Year 2 findings from the NASA "Blue" Carbon Monitoring System

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Holmquist, J. R.; Woo, I.; Bergamaschi, B. A.; Byrd, K. B.; Crooks, S.; Drexler, J. Z.; Feagin, R. A.; Ferner, M. C.; Gonneea, M. E.; Kroeger, K. D.; Megonigal, P.; Morris, J. T.; Schile, L. M.; Simard, M.; Sutton-Grier, A.; Takekawa, J.; Troxler, T.; Weller, D.; Callaway, J.; Herold, N.

    2016-12-01

    In Year 2, the NASA Blue Carbon Monitoring Systems group leveraged USDA, USFWS and NOAA datasets, extensive field datasets, and targeted remote-sensing products to address basic questions regarding the size of carbon (C) stocks, and the directions and magnitudes of C fluxes in the US coastal zone since 1996. We review the uncertainty associated with 5 major terms in our Land Use-Land Cover Change (LULCC)-based accounting, both nationally and within sentinel sites (Cape Cod, Chesapeake Bay, Everglades, Louisiana, San Francisco Bay, Puget Sound). 1) To make distinctions between tidal and non-tidal wetlands we have relied on a combination of wetland and LiDAR-derived elevation maps. Existing products appear sufficient for saline wetlands, however many freshwater wetlands (1M ha) may be tidal despite current hydrologic mapcodes. 2) We are currently estimating methane emissions using salinity regime as a proxy. Methane emissions are variable across intermediate salinities, though not captured by the current binary classification of wetlands as either fresh or saline. 3) We are currently using a combination of USDA's SSURGO and independent core data to map soil C stocks. Soil C density varies little and is consistent across depth, salinity regime, and dominant plant cover type. 4) To model soil C fluxes, with C accumulating as sea level rises and C released with erosion or oxidation, we have applied IPCC default emission factors for the 2% of tidal wetland acreage lost to water (the dominant conversion), but have modeled C gain in wetlands-remaining-wetlands (98% of CONUS tidal wetlands) based on correlations between sea-level rise and sediment accretion, with the equation - Δ soil organic C stock = Δ elevation x soil C density. 5) To quantify biomass change through time, we developed a robust (R2 > 0.6) hybrid mapping approach including object-based image analysis, multispectral data, and RADAR. Overall, soil and biomass C stocks appear readily estimated and improved from Tier 1 default values. To further reduce uncertainty in the US GHG inventory for coastal wetlands, we propose efforts to confirm the extent of tidal inundation, develop default values for methane emissions associated with intermediate salinities, and model soil C accretion, the dominant "blue carbon" sink, across continental and local gradients.

  10. Emission current formation in plasma electron emitters

    NASA Astrophysics Data System (ADS)

    Gruzdev, V. A.; Zalesski, V. G.

    2010-12-01

    A model of the plasma electron emitter is considered, in which the current redistribution over electrodes of the emitter gas-discharge structure and weak electric field formation in plasma are taken into account as functions of the emission current. The calculated and experimental dependences of the switching parameters, extraction efficiency, and strength of the electric field in plasma on the accelerating voltage and geometrical sizes of the emission channel are presented.

  11. Emission current from a single micropoint of explosive emission cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024; Sun, Jun

    Explosive emission cathodes (EECs) are widely used due to their large current. There has been much research on the explosive electron emission mechanism demonstrating that a current density of 10{sup 8}–10{sup 9 }A/cm{sup 2} is necessary for a micropoint to explode in several nanoseconds and the micropoint size is in micron-scale according to the observation of the cathode surface. This paper, however, makes an effort to research the current density and the micropoint size in another way which considers the space charge screening effect. Our model demonstrates that the relativistic effect is insignificant for the micropoint emission due to the smallmore » size of the micropoint and uncovers that the micron-scale size is an intrinsic demand for the micropoint to reach a space charge limited current density of 10{sup 8}–10{sup 9 }A/cm{sup 2}. Meanwhile, our analysis shows that as the voltage increases, the micropoint emission will turn from a field limited state to a space charge limited state, which makes the steady-state micropoint current density independent of the cathode work function and much less dependent on the electric field and the field enhancement factor than that predicted by the Fowler-Nordheim formula.« less

  12. 40 CFR 1045.315 - How do I know when my engine family fails the production-line testing requirements?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and CO emissions: Ci = Max [0 or Ci−1 + Xi − (STD + 0.25 × σ)] Where: Ci = The current CumSum...). Xi = The current emission test result for an individual engine. STD = Emission standard (or family...

  13. 40 CFR 1048.315 - How do I know when my engine family fails the production-line testing requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and CO emissions: Ci = Max [0 or Ci-1 + Xi − (STD + 0.25 × σ)] Where: Ci = The current CumSum...). Xi = The current emission test result for an individual engine. STD = Emission standard. (c) Use...

  14. 40 CFR 1054.315 - How do I know when my engine family fails the production-line testing requirements?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and CO emissions: Ci = Max [0 or Ci-1 + Xi−(STD + 0.25 × σ)] Where: Ci = The current CumSum statistic...). Xi = The current emission test result for an individual engine. STD = Emission standard (or family...

  15. 40 CFR 1045.315 - How do I know when my engine family fails the production-line testing requirements?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and CO emissions: Ci = Max [0 or Ci−1 + Xi − (STD + 0.25 × σ)] Where: Ci = The current CumSum...). Xi = The current emission test result for an individual engine. STD = Emission standard (or family...

  16. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  17. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions

    NASA Astrophysics Data System (ADS)

    Saari, Sampo; Karjalainen, Panu; Ntziachristos, Leonidas; Pirjola, Liisa; Matilainen, Pekka; Keskinen, Jorma; Rönkkö, Topi

    2016-02-01

    Particle and NOx emissions of an SCR equipped HDD truck were studied in real-world driving conditions using the "Sniffer" mobile laboratory. Real-time CO2 measurement enables emission factor calculation for NOx and particles. In this study, we compared three different emission factor calculation methods and characterised their suitability for real-world chasing experiments. The particle number emission was bimodal and dominated by the nucleation mode particles (diameter below 23 nm) having emission factor up to 1 × 1015 #/kgfuel whereas emission factor for soot (diameter above 23 nm that is consistent with the PMP standard) was typically 1 × 1014 #/kgfuel. The effect of thermodenuder on the exhaust particles indicated that the nucleation particles consisted mainly of volatile compounds, but sometimes there also existed a non-volatile core. The nucleation mode particles are not controlled by current regulations in Europe. However, these particles consistently form under atmospheric dilution in the plume of the truck and constitute a health risk for the human population that is exposed to those. Average NOx emission was 3.55 g/kWh during the test, whereas the Euro IV emission limit over transient testing is 3.5 g NOx/kWh. The on-road emission performance of the vehicle was very close to the expected levels, confirming the successful operation of the SCR system of the tested vehicle. Heavy driving conditions such as uphill driving increased both the NOx and particle number emission factors whereas the emission factor for soot particle number remains rather constant.

  18. Emissions of Methane and Other Hydrocarbons Due to Wellbore Leaks

    NASA Astrophysics Data System (ADS)

    Lyman, S. N.; Mansfield, M. L.

    2013-12-01

    The explosive growth of oil and gas production in the United States has focused public and regulatory attention on environmental impacts of hydrocarbon extraction, including air quality and climate impacts. However, EPA and others have acknowledged that current air emissions factors and inventories for many oil and gas-related source categories are inadequate or lacking entirely. One potentially important emissions source is leakage of natural gas from wellbores. This phenomenon has long been recognized to occur, but no attempt has been made to quantify emission rates of gas leaked from wellbores to the atmosphere. Soil gas measurements carried out by USGS over the last several years in Utah's oil and gas fields have shown that, while concentrations of methane in soils near many wells are low, soil gas near some wells can contain more than 10% methane, indicating that underground leakage is occurring. In summer 2013 we carried out a campaign to measure the emission rate of methane and other hydrocarbons from soils near wells in two oil and gas fields in Utah. We measured emissions from several locations on some well pads to determine the change in emission rate with distance from well heads, and we measured at non-well sites in the same fields to determine background emission rates. Methane emission rates at some wells exceeded 3 g m-2 h-1, while emission rates at other wells were similar to background levels, and a correlation was observed between soil gas methane concentrations and methane emission rates from the soil. We used these data to estimate total methane and hydrocarbon emission rates from these two fields.

  19. High-Power Ion Thruster Technology

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Matossian, J. N.

    1996-01-01

    Performance data are presented for the NASA/Hughes 30-cm-diam 'common' thruster operated over the power range from 600 W to 4.6 kW. At the 4.6-kW power level, the thruster produces 172 mN of thrust at a specific impulse of just under 4000 s. Xenon pressure and temperature measurements are presented for a 6.4-mm-diam hollow cathode operated at emission currents ranging from 5 to 30 A and flow rates of 4 sccm and 8 sccm. Highly reproducible results show that the cathode temperature is a linear function of emission current, ranging from approx. 1000 C to 1150 C over this same current range. Laser-induced fluorescence (LIF) measurements obtained from a 30-cm-diam thruster are presented, suggesting that LIF could be a valuable diagnostic for real-time assessment of accelerator-arid erosion. Calibration results of laminar-thin-film (LTF) erosion badges with bulk molybdenum are presented for 300-eV xenon, krypton, and argon sputtering ions. Facility-pressure effects on the charge-exchange ion current collected by 8-cm-diam and 30-cm-diam thrusters operated on xenon propellant are presented to show that accel current is nearly independent of facility pressure at low pressures, but increases rapidly under high-background-pressure conditions.

  20. Methane emissions in the Marcellus, top down constraints on emission growth with increasing production

    NASA Astrophysics Data System (ADS)

    DeCarlo, P. F.; Goetz, J. D.

    2017-12-01

    Emission inventories in the state of Pennsylvania are largely self-reported numbers by industry and significantly underestimate methane emissions at the facility level compared to measured emissions. Nevertheless, these emission inventories are used in making policy decisions at the state level with regard to reduction and mitigation of methane emissions from oil and gas development. A series of measurements made in northeastern Pennsylvania in 2012 and 2015 provide data for comparison to reported emission inventories at the facility level and changes in total emissions at the state and regional level. Tracer release studies performed in 2012 indicate up to an order of magnitude underestimate for facility level emissions. A novel methane background analysis on the 2012 and 2015 datasets indicates approximately a 300% increase in methane emissions over that three-year period scaling with increasing natural gas in the northeast region of Pennsylvania. State emission inventories indicate an 11% decrease over the same time period clearly at odds with the measurements. This presentation will also discuss potential areas of discrepancy with the emission inventories.

  1. Simulation of air quality impacts from prescribed fires on an urban area.

    PubMed

    Hu, Yongtao; Odman, M Talat; Chang, Michael E; Jackson, William; Lee, Sangil; Edgerton, Eric S; Baumann, Karsten; Russell, Armistead G

    2008-05-15

    On February 28, 2007, a severe smoke event caused by prescribed forest fires occurred in Atlanta, GA. Later smoke events in the southeastern metropolitan areas of the United States caused by the Georgia-Florida wild forest fires further magnified the significance of forest fire emissions and the benefits of being able to accurately predict such occurrences. By using preburning information, we utilize an operational forecasting system to simulate the potential air quality impacts from two large February 28th fires. Our "forecast" predicts that the scheduled prescribed fires would have resulted in over 1 million Atlanta residents being potentially exposed to fine particle matter (PM2.5) levels of 35 microg m(-3) or higher from 4 p.m. to midnight. The simulated peak 1 h PM2.5 concentration is about 121 microg m(-3). Our study suggests that the current air quality forecasting technology can be a useful tool for helping the management of fire activities to protect public health. With postburning information, our "hindcast" predictions improved significantly on timing and location and slightly on peak values. "Hindcast" simulations also indicated that additional isoprenoid emissions from pine species temporarily triggered by the fire could induce rapid ozone and secondary organic aerosol formation during late winter. Results from this study suggest that fire induced biogenic volatile organic compounds emissions missing from current fire emissions estimate should be included in the future.

  2. Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices.

    PubMed

    Bo, Zheng; Yu, Kehan; Lu, Ganhua; Mao, Shun; Chen, Junhong; Fan, Fa-Gung

    2010-08-15

    Ground-level ozone emitted from indoor corona devices poses serious health risks to the human respiratory system and the lung function. Federal regulations call for effective techniques to minimize the indoor ozone production. In this work, stable atmospheric corona discharges from nanomaterials are demonstrated using horizontally suspended carbon nanotubes (CNTs) as the discharge electrode. Compared with the conventional discharges employing micro- or macroscale electrodes, the corona discharge from CNTs could initiate and operate at a much lower voltage due to the small electrode diameter, and is thus energy-efficient. Most importantly, the reported discharge is environmentally friendly since no ozone (below the detection limit of 0.5 ppb) was detected for area current densities up to 0.744 A/m(2) due to the significantly reduced number of electrons and plasma volume generated by CNT discharges. The resulting discharge current density depends on the CNT loading. Contrary to the conventional wisdom, negative CNT discharges should be used to enhance the current density owing to the efficient field emission of electrons from the CNT surface.

  3. Low-noise cold-field emission current obtained between two opposed carbon cone nanotips during in situ transmission electron microscope biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoop, L. de; Gatel, C.; Houdellier, F.

    2015-06-29

    A dedicated transmission electron microscope sample holder has been used to study in situ the cold-field emission process of carbon cone nanotips (CCnTs). We show that when using a CCnT instead of a Au plate-anode, the standard deviation of the emission current noise can be decreased from the 10 nA range to the 1 nA range under vacuum conditions of 10{sup −5 }Pa. This shows the strong influence of the anode on the cold-field emission current noise.

  4. The ALI-ARMS Code for Modeling Atmospheric non-LTE Molecular Band Emissions: Current Status and Applications

    NASA Technical Reports Server (NTRS)

    Kutepov, A. A.; Feofilov, A. G.; Manuilova, R. O.; Yankovsky, V. A.; Rezac, L.; Pesnell, W. D.; Goldberg, R. A.

    2008-01-01

    The Accelerated Lambda Iteration (ALI) technique was developed in stellar astrophysics at the beginning of 1990s for solving the non-LTE radiative transfer problem in atomic lines and multiplets in stellar atmospheres. It was later successfully applied to modeling the non-LTE emissions and radiative cooling/heating in the vibrational-rotational bands of molecules in planetary atmospheres. Similar to the standard lambda iterations ALI operates with the matrices of minimal dimension. However, it provides higher convergence rate and stability due to removing from the iterating process the photons trapped in the optically thick line cores. In the current ALI-ARMS (ALI for Atmospheric Radiation and Molecular Spectra) code version additional acceleration of calculations is provided by utilizing the opacity distribution function (ODF) approach and "decoupling". The former allows replacing the band branches by single lines of special shape, whereas the latter treats non-linearity caused by strong near-resonant vibration-vibrational level coupling without additional linearizing the statistical equilibrium equations. Latest code application for the non-LTE diagnostics of the molecular band emissions of Earth's and Martian atmospheres as well as for the non-LTE IR cooling/heating calculations are discussed.

  5. Methane emissions from the global oil and gas supply chain: recent advances and next steps

    NASA Astrophysics Data System (ADS)

    Zavala Araiza, D.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Knighton, W. B.; Johnson, M.; Tyner, D. R.; Hamburg, S.

    2017-12-01

    A wide body of research has characterized methane emissions from the oil and gas system in the US. In contrast, empirical data is limited for other significant oil and gas producing regions across the world. As a consequence, measuring and characterizing methane emissions across global oil and gas operations will be crucial to the design of effective mitigation strategies. Several countries have announced pledges to reduce methane emissions from this system (e.g., North America, Climate and Clean Air Coalition [CCAC] ministers). In the case of Canada, the federal government recently announced regulations supporting a 40-45% reduction of methane emissions from the oil and gas production systems. For these regulations to be effective, it is critical to understand the current methane emission patterns. We present results from a coordinated multiscale (i.e., airborne-based, ground-based) measurement campaign in Alberta, Canada. We use empirically derived emission estimates to characterize site-level emissions and derive an emissions distribution. Our work shows that many major sources of emissions are unmeasured or underreported. Consistent with previous studies in the US, a small fraction of sites disproportionately account for the majority of emissions: roughly 20% of sites accounted for 75% of emissions. An independent airborne-based regional estimate was 40% lower than the ground-based regional estimate, but not statistically different. Finally, we summarize next steps as part of the CCAC Oil and Gas Methane Study: ongoing work that is targeting oil and gas sectors/production regions with limited empirical data on methane emissions. This work builds on the approach deployed in quantifying methane emissions from the oil and gas supply chain in the US, underscoring the commitment to transparency of the collected data, external review, deployment of multiple methodologies, and publication of results in peer-reviewed journals.

  6. Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis

    NASA Astrophysics Data System (ADS)

    Geng, Guannan; Zhang, Qiang; Martin, Randall V.; Lin, Jintai; Huo, Hong; Zheng, Bo; Wang, Siwen; He, Kebin

    2017-03-01

    Spatial proxies used in bottom-up emission inventories to derive the spatial distributions of emissions are usually empirical and involve additional levels of uncertainty. Although uncertainties in current emission inventories have been discussed extensively, uncertainties resulting from improper spatial proxies have rarely been evaluated. In this work, we investigate the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled tropospheric NO2 vertical columns simulated from different gridded emission inventories are compared with satellite-based columns. The results show that differences between modeled and satellite-based NO2 vertical columns are sensitive to the spatial proxies used in the gridded emission inventories. The total population density is less suitable for allocating NOx emissions than nighttime light data because population density tends to allocate more emissions to rural areas. Determining the exact locations of large emission sources could significantly strengthen the correlation between modeled and observed NO2 vertical columns. Using vehicle population and an updated road network for the on-road transport sector could substantially enhance urban emissions and improve the model performance. When further applying industrial gross domestic product (IGDP) values for the industrial sector, modeled NO2 vertical columns could better capture pollution hotspots in urban areas and exhibit the best performance of the six cases compared to satellite-based NO2 vertical columns (slope = 1.01 and R2 = 0. 85). This analysis provides a framework for information from satellite observations to inform bottom-up inventory development. In the future, more effort should be devoted to the representation of spatial proxies to improve spatial patterns in bottom-up emission inventories.

  7. Tracing changes in soil N transformations to explain the doubling of N2O emissions under elevated CO2 in the Giessen FACE

    NASA Astrophysics Data System (ADS)

    Moser, Gerald; Brenzinger, Kristof; Gorenflo, Andre; Clough, Tim; Braker, Gesche; Müller, Christoph

    2017-04-01

    To reduce the emissions of greenhouse gases (CO2, CH4 & N2O) it is important to quantify main sources and identify the respective ecosystem processes. While the main sources of N2O emissions in agro-ecosystems under current conditions are well known, the influence of a projected higher level of CO2 on the main ecosystem processes responsible for N2O emissions has not been investigated in detail. A major result of the Giessen FACE in a managed temperate grassland was that a +20% CO2 level caused a positive feedback due to increased emissions of N2O to 221% related to control condition. To be able to trace the sources of additional N2O emissions a 15N tracing study was conducted. We measured the N2O emission and its 15N signature, together with the 15N signature of soil and plant samples. The results were analyzed using a 15N tracing model which quantified the main changes in N transformation rates under elevated CO2. Directly after 15N fertilizer application a much higher dynamic of N transformations was observed than in the long run. Absolute mineralisation and DNRA rates were lower under elevated CO2 in the short term but higher in the long term. During the one year study period beginning with the 15N labelling a 1.8-fold increase of N2O emissions occurred under elevated CO2. The source of increased N2O was associated with NO3- in the first weeks after 15N application. Elevated CO2 affected denitrification rates, which resulted in increased N2O emissions due to a change of gene transcription rates (nosZ/(nirK+nirS)) and resulting enzyme activity (see: Brenzinger et al.). Here we show that the reported enhanced N2O emissions for the first 8 FACE years do prevail even in the long-term (> 15 years). The effect of elevated CO2 on N2O production/emission can be explained by altered activity ratios within a stable microbial community.

  8. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation.

    PubMed

    Vetter, Sylvia H; Sapkota, Tek B; Hillier, Jon; Stirling, Clare M; Macdiarmid, Jennie I; Aleksandrowicz, Lukasz; Green, Rosemary; Joy, Edward J M; Dangour, Alan D; Smith, Pete

    2017-01-16

    Agriculture is a major source of greenhouse gas (GHG) emissions globally. The growing global population is putting pressure on agricultural production systems that aim to secure food production while minimising GHG emissions. In this study, the GHG emissions associated with the production of major food commodities in India are calculated using the Cool Farm Tool. GHG emissions, based on farm management for major crops (including cereals like wheat and rice, pulses, potatoes, fruits and vegetables) and livestock-based products (milk, eggs, chicken and mutton meat), are quantified and compared. Livestock and rice production were found to be the main sources of GHG emissions in Indian agriculture with a country average of 5.65 kg CO 2 eq kg -1 rice, 45.54 kg CO 2 eq kg -1 mutton meat and 2.4 kg CO 2 eq kg -1 milk. Production of cereals (except rice), fruits and vegetables in India emits comparatively less GHGs with <1 kg CO 2 eq kg -1 product. These findings suggest that a shift towards dietary patterns with greater consumption of animal source foods could greatly increase GHG emissions from Indian agriculture. A range of mitigation options are available that could reduce emissions from current levels and may be compatible with increased future food production and consumption demands in India.

  9. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...This action proposes amendments to the national emission standards for hazardous air pollutants (NESHAP) for mercury emissions from mercury cell chlor-alkali plants (Mercury Cell NESHAP). On June 11, 2008, EPA proposed amendments to this NESHAP in response to a petition for reconsideration filed by the Natural Resources Defense Council (NRDC). This action is a supplement to the June 11, 2008, proposal. Specifically, this action proposes two options for amending the NESHAP for mercury emissions from mercury cell chlor-alkali plants. The first option would require the elimination of mercury emissions and thus encourage the conversion to non-mercury technology. The second option would require the measures proposed in 2008. These measures, which included significant improvements in the work practices to reduce fugitive emissions from the cell room, would result in near-zero levels of mercury emissions while still allowing the mercury cell facilities to continue to operate. We are specifically requesting comment on which of these options is more appropriate, and may finalize either option or a combination of elements from them. In addition, this action proposes several amendments that would apply regardless of which option we select. These proposed amendments are provisions of the existing NESHAP that would apply to periods of startup, shutdown, and malfunction (SSM), and corrections to compliance errors in the currently effective rule.

  10. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts

    NASA Astrophysics Data System (ADS)

    Crippa, Monica; Janssens-Maenhout, Greet; Dentener, Frank; Guizzardi, Diego; Sindelarova, Katerina; Muntean, Marilena; Van Dingenen, Rita; Granier, Claire

    2016-03-01

    The EDGARv4.3.1 (Emissions Database for Global Atmospheric Research) global anthropogenic emissions inventory of gaseous (SO2, NOx, CO, non-methane volatile organic compounds and NH3) and particulate (PM10, PM2.5, black and organic carbon) air pollutants for the period 1970-2010 is used to develop retrospective air pollution emissions scenarios to quantify the roles and contributions of changes in energy consumption and efficiency, technology progress and end-of-pipe emission reduction measures and their resulting impact on health and crop yields at European and global scale. The reference EDGARv4.3.1 emissions include observed and reported changes in activity data, fuel consumption and air pollution abatement technologies over the past 4 decades, combined with Tier 1 and region-specific Tier 2 emission factors. Two further retrospective scenarios assess the interplay of policy and industry. The highest emission STAG_TECH scenario assesses the impact of the technology and end-of-pipe reduction measures in the European Union, by considering historical fuel consumption, along with a stagnation of technology with constant emission factors since 1970, and assuming no further abatement measures and improvement imposed by European emission standards. The lowest emission STAG_ENERGY scenario evaluates the impact of increased fuel consumption by considering unchanged energy consumption since the year 1970, but assuming the technological development, end-of-pipe reductions, fuel mix and energy efficiency of 2010. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, manufacturing industry and road transport), which are subject to multi-pollutant European Union Air Quality regulations. Stagnation of technology and air pollution reduction measures at 1970 levels would have led to 129 % (or factor 2.3) higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions in Europe (EU27), demonstrating the large role that technology has played in reducing emissions in 2010. However, stagnation of energy consumption at 1970 levels, but with 2010 fuel mix and energy efficiency, and assuming current (year 2010) technology and emission control standards, would have lowered today's NOx emissions by ca. 38 %, SO2 by 50 % and PM2.5 by 12 % in Europe. A reduced-form chemical transport model is applied to calculate regional and global levels of aerosol and ozone concentrations and to assess the associated impact of air quality improvements on human health and crop yield loss, showing substantial impacts of EU technologies and standards inside as well as outside Europe. We assess that the interplay of policy and technological advance in Europe had substantial benefits in Europe, but also led to an important improvement of particulate matter air quality in other parts of the world.

  11. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yater, J. E., E-mail: joan.yater@nrl.navy.mil; Shaw, J. L.; Pate, B. B.

    2016-02-07

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distributionmore » as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ∼0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron sources, particle detectors, and other electronic devices.« less

  12. Biomass "Green" Power Vs. Coal "Traditional" Power: Who is the Largest Emitter in Humboldt County and How Should Regulations be Addressed?

    NASA Astrophysics Data System (ADS)

    Zurawski, A. M.

    2016-12-01

    The objective of this research is to study how emissions from a fossil fuel power plant compare to emissions from a biomass power plant, and how these results can be used to improve current air-quality regulations. Outdoor air quality transcends national and political boundaries. Air pollution monitoring is essential to maintaining quality of life for humans and ecosystems. Due to anthropogenic disturbances (primarily related to burning of fossil fuels), air- quality management has become a priority on a long list of environmental issues. Quantifying and monitoring the largest emitters of greenhouse gases and toxic pollutants is crucial to the creation and enforcement of appropriate environmental protection regulations. Emissions data were collected from January 2010 to January 2016 from sensors installed close to a biomass power plant, and sensors installed close to a fossil fuel and natural gas power plant, in Humboldt County, California. In Humboldt County, where air quality serves as a baseline of air pollution in the United States, data showed that the "green" biomass power plant emitted higher levels of particulate matter compared to the fossil fuel power plant. Additionally, the biomass power plant showed levels of CO2, NOx, and SO2 emissions that suggest its place as a "green" power source should be reconsidered. Our research suggests that regulations need to be reconsidered given the potential for high pollutant emissions from biomass plants.

  13. Measurement of BTEX (benzene, toluene, ethybenzene, and xylene) levels at urban and semirural areas of Algiers City using passive air samplers.

    PubMed

    Kerchich, Yacine; Kerbachi, Rabah

    2012-12-01

    The study presents the levels of air pollution by aromatic organic compounds BTEX (benzene, toluene, ethylbenzene, o-, m-, and p-xylenes) in the city of Algiers. The sampling was carried out using Radiello passive sampler. Three sampling campaigns were carried out in roadside, tunnel, urban background, and semirural sites in Algiers. In order to determine the diurnal mean levels of air pollution by BTEX to which people are exposed, a modified passive sampler was used for the first time. In addition, monitoring of pollution inside vehicles was also made. In the spring of 2009, more than 27 samplings were carried out. In the background and road traffic sites the Radiello sampler was exposed for 7 days, whereas the time exposure was reduced to 1 day in the case of the vehicle as well as the tunnel. The results indicate that average benzene concentrations in the roadside and inside vehicle exceed largely the limit value of 5 microg m(-3) established by the European Community (EC). On the other hand, it has been noticed that the concentration levels of other BTEX are relatively high. Also, in order to identify the origin of emission sources, ratios and correlations between the BTEX species have been highlighted. This study shows that road traffic remains the main source of many local emission in Algiers. The vehicle fleet in Algeria is growing rapidly since the 1990s following economic growth and is responsible for the increasing air pollution in large cities. Because there are no data collection of BTEX carried out by national air quality network, all environmental and transportation policies are based on European emissions standards, but national emission standards are currently not in place. This work will contribute to the analysis of real emissions of BTEX in Algiers, for the development of management and for assessment of population exposure variation depending on the location in the city of Algiers.

  14. Large drought-induced variations in oak leaf volatile organic compound emissions during PINOT NOIR 2012.

    PubMed

    Geron, Chris; Daly, Ryan; Harley, Peter; Rasmussen, Rei; Seco, Roger; Guenther, Alex; Karl, Thomas; Gu, Lianhong

    2016-03-01

    Leaf-level isoprene and monoterpene emissions were collected and analyzed from five of the most abundant oak (Quercus) species in Central Missouri's Ozarks Region in 2012 during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower - NOx, Oxidants, Isoprene Research). June measurements, prior to the onset of severe drought, showed isoprene emission rates and leaf temperature responses similar to those previously reported in the literature and used in Biogenic Volatile Organic Compound (BVOC) emission models. During the peak of the drought in August, isoprene emission rates were substantially reduced, and response to temperature was dramatically altered, especially for the species in the red oak subgenus (Erythrobalanus). Quercus stellata (in the white oak subgenus Leucobalanus), on the other hand, increased its isoprene emission rate during August, and showed no decline at high temperatures during June or August, consistent with its high tolerance to drought and adaptation to xeric sites at the prairie-deciduous forest interface. Mid-late October measurements were conducted after soil moisture recharge, but were affected by senescence and cooler temperatures. Isoprene emission rates were considerably lower from all species compared to June and August data. The large differences between the oaks in response to drought emphasizes the need to consider BVOC emissions at the species level instead of just the whole canopy. Monoterpene emissions from Quercus rubra in limited data were highest among the oaks studied, while monoterpene emissions from the other oak species were 80-95% lower and less than assumed in current BVOC emission models. Major monoterpenes from Q. rubra (and in ambient air) were p-cymene, α-pinene, β-pinene, d-limonene, γ-terpinene, β-ocimene (predominantly1,3,7-trans-β-ocimene, but also 1,3,6-trans-β-ocimene), tricyclene, α-terpinene, sabinene, terpinolene, and myrcene. Results are discussed in the context of canopy flux studies conducted at the site during PINOT NOIR, which are described elsewhere. The leaf isoprene emissions before and during the drought were consistent with above canopy fluxes, while leaf and branch monoterpene emissions were an order of magnitude lower than the observed above canopy fluxes, implying that other sources may be contributing substantially to monoterpene fluxes at this site. This strongly demonstrates the need for further simultaneous canopy and enclosure BVOC emission studies. Published by Elsevier Ltd.

  15. Losses of Ammonia and Nitrate from Agriculture and Their Effect on Nitrogen Recovery in the European Union and the United States between 1900 and 2050.

    PubMed

    van Grinsven, Hans J M; Bouwman, Lex; Cassman, Kenneth G; van Es, Harold M; McCrackin, Michelle L; Beusen, Arthur H W

    2015-03-01

    Historical trends and levels of nitrogen (N) budgets and emissions to air and water in the European Union and the United States are markedly different. Agro-environmental policy approaches also differ, with emphasis on voluntary or incentive-based schemes in the United States versus a more regulatory approach in the European Union. This paper explores the implications of these differences for attaining long-term policy targets for air and water quality. Nutrient surplus problems were more severe in the European Union than in the United States during the 1970s and 1980s. The EU Nitrates and National Emission Ceilings directives contributed to decreases in fertilizer use, N surplus, and ammonia (NH) emissions, whereas in the United States they stabilized, although NH emissions are still increasing. These differences were analyzed using statistical data for 1900-2005 and the global IMAGE model. IMAGE could reproduce NH emissions and soil N surpluses at different scales (European Union and United States, country and state) and N loads in the Rhine and Mississippi. The regulation-driven changes during the past 25 yr in the European Union have reduced public concerns and have brought agricultural N loads to the aquatic environment closer to US levels. Despite differences in agro-environmental policies and agricultural structure (more N-fixing soybean and more spatially separated feed and livestock production in the United States than in the European Union), current N use efficiency in US and EU crop production is similar. IMAGE projections for the IAASTD-baseline scenario indicate that N loading to the environment in 2050 will be similar to current levels. In the United States, environmental N loads will remain substantially smaller than in the European Union, whereas agricultural production in 2050 in the United States will increase by 30% relative to 2005, as compared with an increase of 8% in the European Union. However, in the United States, even rigorous mitigation with maximum recycling of manure N and a 25% reduction in fertilizer use will not achieve the policy target to halve the N export to the Gulf of Mexico. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. APBF-DEC NOx Adsorber/DPF Project: SUV / Pick-up Truck Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, C; Weber, P; Thornton,M

    2003-08-24

    The objective of this project is to determine the influence of diesel fuel composition on the ability of NOX adsorber catalyst (NAC) technology, in conjunction with diesel particle filters (DPFs), to achieve stringent emissions levels with a minimal fuel economy impact. The test bed for this project was intended to be a light-duty sport utility vehicle (SUV) with a goal of achieving light-duty Tier 2-Bin 5 tail pipe emission levels (0.07 g/mi. NOX and 0.01 g/mi. PM). However, with the current US market share of light-duty diesel applications being so low, no US 2002 model year (MY) light-duty truck (LDT)more » or SUV platforms equipped with a diesel engine and having a gross vehicle weight rating (GVWR) less than 8500 lb exist. While the current level of diesel engine use is relatively small in the light-duty class, there exists considerable potential for the diesel engine to gain a much larger market share in the future as manufacturers of heavy light-duty trucks (HLDTs) attempt to offset the negative impact on cooperate average fuel economy (CAFE) that the recent rise in market share of the SUVs and LDTs has caused. The US EPA Tier 2 emission standards also contain regulation to prevent the migration of heavy light-duty trucks and SUV's to the medium duty class. This preventive measure requires that all medium duty trucks, SUV's and vans in the 8,500 to 10,000 lb GVWR range being used as passenger vehicles, meet light-duty Tier 2 standards. In meeting the Tier 2 emission standards, the HLDTs and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. Because the MDPV is the closest weight class and application relative to the potential upcoming HLDTs and SUV's, a weight class compromise was made in this program to allow the examination of using a diesel engine with a NAC-DPF system on a 2002 production vehicle. The test bed for this project is a 2500 series Chevrolet Silverado equipped with a 6.6L Duramax diesel engine certified to 2002 MY Federal heavy-duty and 2002 MY California medium-duty emission standards. The stock vehicle included cooled air charge (CAC), turbocharger (TC), direct fuel injection (DFI), oxidation catalyst (OC), and exhaust gas recirculation (EGR)« less

  17. Study of thermal-field emission properties and investigation of temperature dependent noise in the field emission current from vertical carbon nanotube emitters

    NASA Astrophysics Data System (ADS)

    Kolekar, Sadhu; Patole, S. P.; Patil, Sumati; Yoo, J. B.; Dharmadhikari, C. V.

    2017-10-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well-defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD) in order to understand the effect of temperature on distribution of electron emission spots and ring like structures in Field Emission Microscope (FEM) image. The FEM images could be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 from FEM image is typically, 4.5 × 107 and the actual number emitters per cm2 present as per Atomic Force Microscopy (AFM) data is 1.2 × 1012. The measured Current-Voltage (I-V) characteristics exhibit non linear Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current were recorded at different temperatures and Fast Fourier transformed into temperature dependent power spectral density. The latter was found to obey power law relation S(f) = A(Iδ/fξ), where δ and ξ are temperature dependent current and frequency exponents respectively.

  18. Need for a marginal methodology in assessing natural gas system methane emissions in response to incremental consumption.

    PubMed

    Mac Kinnon, Michael; Heydarzadeh, Zahra; Doan, Quy; Ngo, Cuong; Reed, Jeff; Brouwer, Jacob

    2018-05-17

    Accurate quantification of methane emissions from the natural gas system is important for establishing greenhouse gas inventories and understanding cause and effect for reducing emissions. Current carbon intensity methods generally assume methane emissions are proportional to gas throughput so that increases in gas consumption yield linear increases in emitted methane. However, emissions sources are diverse and many are not proportional to throughput. Insights into the causal drivers of system methane emissions, and how system-wide changes affect such drivers are required. The development of a novel cause-based methodology to assess marginal methane emissions per unit of fuel consumed is introduced. The carbon intensities of technologies consuming natural gas are critical metrics currently used in policy decisions for reaching environmental goals. For example, the low-carbon fuel standard in California uses carbon intensity to determine incentives provided. Current methods generally assume methane emissions from the natural gas system are completely proportional to throughput. The proposed cause-based marginal emissions method will provide a better understanding of the actual drivers of emissions to support development of more effective mitigation measures. Additionally, increasing the accuracy of carbon intensity calculations supports the development of policies that can maximize the environmental benefits of alternative fuels, including reducing greenhouse gas emissions.

  19. Methane emission from ruminants and solid waste: A critical analysis of baseline and mitigation projections for climate and policy studies

    NASA Astrophysics Data System (ADS)

    Matthews, E.

    2012-12-01

    Current and projected estimates of methane (CH4) emission from anthropogenic sources are numerous but largely unexamined or compared. Presented here is a critical appraisal of CH4 projections used in climate-chemistry and policy studies. We compare emissions for major CH4 sources from several groups, including our own new data and RCP projections developed for climate-chemistry models for the next IPCC Assessment Report (AR5). We focus on current and projected baseline and mitigation emissions from ruminant animals and solid waste that are both predicted to rise dramatically in coming decades, driven primarily by developing countries. For waste, drivers include increasing urban populations, higher per capita waste generation due to economic growth and increasing landfilling rates. Analysis of a new global data base detailing waste composition, collection and disposal indicates that IPCC-based methodologies and default data overestimate CH4 emission for the current period which cascades into substantial overestimates in future projections. CH4 emission from solid waste is estimated to be ~10-15 Tg CH4/yr currently rather than the ~35 Tg/yr often reported in the literature. Moreover, emissions from developing countries are unlikely to rise rapidly in coming decades because new management approaches, such as sanitary landfills, that would increase emissions are maladapted to infrastructures in these countries and therefore unlikely to be implemented. The low current emission associated with solid waste (~10 Tg), together with future modest growth, implies that mitigation of waste-related CH4 emission is a poor candidate for slowing global warming. In the case of ruminant animals (~90 Tg CH4/yr currently), the dominant assumption driving future trajectories of CH4 emission is a substantial increase in meat and dairy consumption in developing countries to be satisfied by growing animal populations. Unlike solid waste, current ruminant emissions among studies exhibit a narrow range that does not necessarily signal low uncertainty but rather a reliance on similar animal statistics and emission factors. The UN Food and Agriculture Organization (FAO) projects 2000-2030 growth rates of livestock for most developing countries at 2% to >3% annually. However, the assumption of rapidly rising meat consumption is not supported by current trends nor by resource availability. For example, increased meat consumption in China and other developing countries is poultry and pork that do not affect CH4 emissions, suggesting that the rapid growth projected for all animals, boosting growth in CH4 emission, will not occur. From a resource standpoint, large increases in cattle, sheep and goat populations, especially for African countries (~60% by 2030), are not supportable on arid grazing lands that require very low stocking rates and semi-nomadic management. Increases projected for African animal populations would require either that about 2/3 more animals are grazed on increasingly drier lands or that all non-forested areas become grazing lands. Similar to solid waste, future methane emission from ruminant animals is likely to grow modestly although animals are not a likely candidate for CH4 mitigation due to their dispersed distribution throughout widely varying agricultural systems under very local management.

  20. Detecting and Understanding Changing Arctic Carbon Emissions

    NASA Astrophysics Data System (ADS)

    Bruhwiler, L.

    2017-12-01

    Warming in the Arctic has proceeded faster than anyplace on Earth. Our current understanding of biogeochemistry suggests that we can expect feedbacks between climate and carbon in the Arctic. Changes in terrestrial fluxes of carbon can be expected as the Arctic warms, and the vast stores of organic carbon frozen in Arctic soils could be mobilized to the atmosphere, with possible significant impacts on global climate. Quantifying trends in Arctic carbon exchanges is important for policymaking because greater reductions in anthropogenic emissions may be required to meet climate goals. Observations of greenhouse gases in the Arctic and globally have been collected for several decades. Analysis of this data does not currently support significantly changed Arctic emissions of CH4, however it is difficult to detect changes in Arctic emissions because of transport from lower latitudes and large inter-annual variability. Unfortunately, current space-based remote sensing systems have limitations at Arctic latitudes. Modeling systems can help untangle the Arctic budget of greenhouse gases, but they are dependent on underlying prior fluxes, wetland distributions and global anthropogenic emissions. Also, atmospheric transport models may have significant biases and errors. For example, unrealistic near-surface stability can lead to underestimation of emissions in atmospheric inversions. We discuss our current understanding of the Arctic carbon budget from both top-down and bottom-up approaches. We show that current atmospheric inversions agree well on the CH4 budget. On the other hand, bottom-up models vary widely in their predictions of natural emissions, with some models predicting emissions too large to be accommodated by the budget implied by global observations. Large emissions from the shallow Arctic ocean are also inconsistent with atmospheric observations. We also discuss the sensitivity of the current atmospheric network to what is likely small, gradual increases in emissions over time by examining modeled and observed spatial and seasonal variability. An issue we will consider is whether well-mixed background atmospheric records are more likely to detect changing Arctic emissions compared to stronger, but more variable signal from local sources.

  1. Inferring Temperature Inversions in Hot Jupiters Via Spitzer Emission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Garhart, Emily; Deming, Drake; Mandell, Avi

    2016-10-01

    We present a systematic study of 35 hot Jupiter secondary eclipses, including 16 hot Jupiters never before characterized via emission, observed at the 3.6 μm and 4.5 μm bandpasses of Warm Spitzer in order to classify their atmospheric structure, namely, the existence of temperature inversions. This is a robust study in that these planets orbit stars with a wide range of compositions, temperatures, and activity levels. This diverse sample allows us to investigate the source of planetary temperature inversions, specifically, its correlation with stellar irradiance and magnetic activity. We correct for systematic and intra-pixel sensitivity effects with a pixel level decorrelation (PLD) method described in Deming et al. (2015). The relationship between eclipse depths and a best-fit blackbody function versus stellar activity, a method described in Knutson et al. (2010), will ultimately enable us to appraise the current hypotheses of temperature inversions.

  2. Carbon and Earth’s future climate on This Week @NASA – November 13, 2015

    NASA Image and Video Library

    2015-11-13

    New observations from NASA’s Orbiting Carbon Observatory-2 (OCO-2) mission is providing insight into how Earth is responding to rising levels of heat-trapping gases in the atmosphere, and what this means for our future climate. Earth’s land and ocean currently absorb about half of all carbon dioxide emissions from the burning of fossil fuels, but it’s uncertain whether the planet can keep this up in the future. Later this month, a United Nations climate meeting in Paris will focus on setting limits on future levels of human-produced carbon emissions. OCO-2 is NASA’s first satellite dedicated to measuring carbon dioxide. Also, New Horizons science update, NASA at Bay Area Science Festival, Anniversary of first spacecraft landing on a comet, Cygnus being prepared for launch, and Girls Rising in Math and Science!

  3. TES Level 1 Algorithms: Interferogram Processing, Geolocation, Radiometric, and Spectral Calibration

    NASA Technical Reports Server (NTRS)

    Worden, Helen; Beer, Reinhard; Bowman, Kevin W.; Fisher, Brendan; Luo, Mingzhao; Rider, David; Sarkissian, Edwin; Tremblay, Denis; Zong, Jia

    2006-01-01

    The Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite measures the infrared radiance emitted by the Earth's surface and atmosphere using Fourier transform spectrometry. The measured interferograms are converted into geolocated, calibrated radiance spectra by the L1 (Level 1) processing, and are the inputs to L2 (Level 2) retrievals of atmospheric parameters, such as vertical profiles of trace gas abundance. We describe the algorithmic components of TES Level 1 processing, giving examples of the intermediate results and diagnostics that are necessary for creating TES L1 products. An assessment of noise-equivalent spectral radiance levels and current systematic errors is provided. As an initial validation of our spectral radiances, TES data are compared to the Atmospheric Infrared Sounder (AIRS) (on EOS Aqua), after accounting for spectral resolution differences by applying the AIRS spectral response function to the TES spectra. For the TES L1 nadir data products currently available, the agreement with AIRS is 1 K or better.

  4. Methane Feedbacks to the Global Climate System in a Warmer World

    NASA Astrophysics Data System (ADS)

    Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas; Aerts, Rien; Blauw, Luke G.; Egger, Matthias; Jetten, Mike S. M.; de Jong, Anniek E. E.; Meisel, Ove H.; Rasigraf, Olivia; Slomp, Caroline P.; in't Zandt, Michiel H.; Dolman, A. J.

    2018-03-01

    Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation, landscape disturbance, and sea level rise. Increased CH4 emissions from these systems would in turn induce further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines. We discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate, and present the current state of knowledge of CH4 climate feedbacks in the immediate and distant future. The important linkages between microbial activity and climate warming are discussed with the aim to better constrain the sensitivity of the CH4 cycle to future climate predictions. We determine that wetlands will form the majority of the CH4 climate feedback up to 2100. Beyond this timescale, CH4 emissions from marine and freshwater systems and permafrost environments could become more important. Significant CH4 emissions to the atmosphere from the dissociation of methane hydrates are not expected in the near future. Our key findings highlight the importance of quantifying whether CH4 consumption can counterbalance CH4 production under future climate scenarios.

  5. Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF)

    NASA Astrophysics Data System (ADS)

    Wang, Yejun; Kulatilaka, Waruna D.

    2018-01-01

    Ultrashort-pulse, femtosecond (fs)-duration, two-photon laser-induced fluorescence (fs-TPLIF) measurements of carbon monoxide (CO) are reported in rich, sooting hydrocarbon flames. CO-TPLIF detection using conventional nanosecond or picosecond lasers are often plagued by photochemical interferences, specifically under fuel-rich flames conditions. In the current study, we investigate the commonly used CO two-photon excitation scheme of the B1Σ+ ← X1Σ+ electronic transition, using approximately 100-fs-duration excitation pulses. Fluorescence emission was observed in the Ångström band originating from directly populated B1Σ+ upper state, as well as, in the third positive band from collisionally populated b3Σ+ upper state. The current work was focused on the Ångström band emission. Interference from nascent C2 emissions originating from hot soot particles in the flame could be reduced to a negligible level using a narrower detection gate width. In contrast, avoiding interferences from laser-generated C2 Swan-band emissions required specific narrowband spectral filtering in sooting flame conditions. The observed less than quadratic laser pulse energy dependence of the TPLIF signal suggests the presence of strong three-photon ionization and stimulated emission processes. In a range of CH4/air and C2H4/air premixed flames investigated, the measured CO fluorescence signals agree well with the calculated equilibrium CO number densities. Reduced-interference CO-TPLIF imaging in premixed C2H4/O2/N2 jet flames is also reported.

  6. Health effects caused by primary fine particulate matter (PM2.5) emitted from buses in the Helsinki metropolitan area, Finland.

    PubMed

    Tainio, Marko; Tuomisto, Jouni T; Hänninen, Otto; Aarnio, Päivi; Koistinen, Kimmo J; Jantunen, Matti J; Pekkanen, Juha

    2005-02-01

    Fine particle (PM(2.5)) emissions from traffic have been associated with premature mortality. The current work compares PM(2.5)-induced mortality in alternative public bus transportation strategies as being considered by the Helsinki Metropolitan Area Council, Finland. The current bus fleet and transportation volume is compared to four alternative hypothetical bus fleet strategies for the year 2020: (1) the current bus fleet for 2020 traffic volume, (2) modern diesel buses without particle traps, (3) diesel buses with particle traps, and (4) buses using natural gas engines. The average population PM(2.5) exposure level attributable to the bus emissions was determined for the 1996-1997 situation using PM(2.5) exposure measurements including elemental composition from the EXPOLIS-Helsinki study and similar element-based source apportionment of ambient PM(2.5) concentrations observed in the ULTRA study. Average population exposure to particles originating from the bus traffic in the year 2020 is assumed to be proportional to the bus emissions in each strategy. Associated mortality was calculated using dose-response relationships from two large cohort studies on PM(2.5) mortality from the United States. Estimated number of deaths per year (90% confidence intervals in parenthesis) associated with primary PM(2.5) emissions from buses in Helsinki Metropolitan Area in 2020 were 18 (0-55), 9 (0-27), 4 (0-14), and 3 (0-8) for the strategies 1-4, respectively. The relative differences in the associated mortalities for the alternative strategies are substantial, but the number of deaths in the lowest alternative, the gas buses, is only marginally lower than what would be achieved by diesel engines equipped with particle trap technology. The dose-response relationship and the emission factors were identified as the main sources of uncertainty in the model.

  7. Role of motor vehicle lifetime extension in climate change policy.

    PubMed

    Kagawa, Shigemi; Nansai, Keisuke; Kondo, Yasushi; Hubacek, Klaus; Suh, Sangwon; Minx, Jan; Kudoh, Yuki; Tasaki, Tomohiro; Nakamura, Shinichiro

    2011-02-15

    Vehicle replacement schemes such as the "cash for clunkers" program in the U.S. and the "scrappage scheme" in the UK have featured prominently in the economic stimulation packages initiated by many governments to cope with the global economic crisis. While these schemes were designed as economic instruments to support the vehicle production industry, governments have also claimed that these programs have environmental benefits such as reducing CO2 emissions by bringing more fuel-efficient vehicles onto the roads. However, little evidence is available to support this claim as current energy and environmental accounting models are inadequate for comprehensively capturing the economic and environmental trade-offs associated with changes in product life and product use. We therefore developed a new dynamic model to quantify the carbon emissions due to changes in product life and consumer behavior related to product use. Based on a case study of Japanese vehicle use during the 1990-2000 period, we found that extending, not shortening, the lifetime of a vehicle helps to reduce life-cycle CO2 emissions throughout the supply chain. Empirical results also revealed that even if the fuel economy of less fuel-efficient ordinary passenger vehicles were improved to levels comparable with those of the best available technology, i.e. hybrid passenger cars currently being produced in Japan, total CO2 emissions would decrease by only 0.2%. On the other hand, we also find that extending the lifetime of a vehicle contributed to a moderate increase in emissions of health-relevant air pollutants (NOx, HC, and CO) during the use phase. From the results, this study concludes that the effects of global warming and air pollution can be somewhat moderated and that these problems can be addressed through specific policy instruments directed at increasing the market for hybrid cars as well as extending lifetime of automobiles, which is contrary to the current wisdom.

  8. Stability of field emission current from porous n-GaAs(110)

    NASA Astrophysics Data System (ADS)

    Tondare, V. N.; Naddaf, M.; Bhise, A. B.; Bhoraskar, S. V.; Joag, D. S.; Mandale, A. B.; Sainkar, S. R.

    2002-02-01

    Field electron emission from porous GaAs has been investigated. The emitter was prepared by anodic etching of n-GaAs (110) in 0.1 M HCl solution. The as-etched porous GaAs shows nonlinear Fowler-Nordheim (FN) characteristics, with a low onset voltage. The emitter, after operating for 6 h at the residual gas pressure of 1×10-8 mbar, shows a linear FN characteristics with a relatively high onset voltage and poor field emission current stability as compared to the as-etched emitter. The change in the behavior was attributed to the residual gas ion bombardment during field electron emission. X-ray photoelectron spectroscopic investigations were carried out on as-etched sample and the one which was studied for field emission. The studies indicate that the as-etched surface contains As2O3 and the surface after field electron emission for about 6 h becomes gallium rich. The presence of As2O3 seems to be a desirable feature for the stable field emission current.

  9. Electron Emission Observations from As-Grown and Vacuum-Coated Chemical Vapor Deposited Diamond

    NASA Technical Reports Server (NTRS)

    Lamouri, A.; Wang, Yaxin; Mearini, G. T.; Krainsky, I. L.; Dayton, J. A., Jr.; Mueller,W.

    1996-01-01

    Field emission has been observed from chemical vapor deposited diamond grown on Mo and Si substrates. Emission was observed at fields as low as 20 kV/cm. The samples were tested in the as-grown form, and after coating with thin films of Au, CsI, and Ni. The emission current was typically maximum at the onset of the applied field, but was unstable, and decreased rapidly with time from the as-grown films. Thin Au layers, approximately 15 nm thick, vacuum deposited onto the diamond samples significantly improved the stability of the emission current at values approximately equal to those from uncoated samples at the onset of the applied field. Thin layers of CsI, approximately 5 nm thick, were also observed to improve the stability of the emission current but at values less than those from the uncoated samples at the onset of the applied field. While Au and CsI improved the stability of the emission, Ni was observed to have no effect.

  10. The Status of the NASA MEaSUREs Combined ASTER and MODIS Emissivity Over Land (CAMEL) Products

    NASA Astrophysics Data System (ADS)

    Borbas, E. E.; Feltz, M.; Hulley, G. C.; Knuteson, R. O.; Hook, S. J.

    2017-12-01

    As part of a NASA MEaSUREs Land Surface Temperature and Emissivity project, the University of Wisconsin, Space Science and Engineering Center and the NASA's Jet Propulsion Laboratory have developed a global monthly mean emissivity Earth System Data Record (ESDR). The CAMEL ESDR was produced by merging two current state-of-the-art emissivity datasets: the UW-Madison MODIS Infrared emissivity dataset (UWIREMIS), and the JPL ASTER Global Emissivity Dataset v4 (GEDv4). The dataset includes monthly global data records of emissivity, uncertainty at 13 hinge points between 3.6-14.3 µm, and Principal Components Analysis (PCA) coefficients at 5 kilometer resolution for years 2003 to 2015. A high spectral resolution algorithm is also provided for HSR applications. The dataset is currently being tested in sounder retrieval algorithm (e.g. CrIS, IASI) and has already been implemented in RTTOV-12 for immediate use in numerical weather modeling and data assimilation. This poster will present the current status of the dataset.

  11. Fabrication of high responsivity deep UV photo-detector based on Na doped ZnO nanocolumns

    NASA Astrophysics Data System (ADS)

    Agrawal, Jitesh; Dixit, Tejendra; Palani, I. A.; Ramachandra Rao, M. S.; Singh, Vipul

    2018-05-01

    We report a variety of the hydrothermally synthesized ZnO nanostructures with a significant suppression in defect-related emission and huge enhancement in the photo-current to the dark current ratio (approximately six orders of magnitude) upon UV light illumination. Interestingly, the photo-detector shows lower dark current of 1.6 nA with high responsivity of 507 A W‑1 at 254 nm. Here, a systematic analysis of the growth process as well as the physical, chemical and electrical properties of as-grown ZnO nanostructures has been performed. We have utilized the duo effect of both the inorganic (KMnO4) and organic (Na3C6H5O7) additives, which has facilitated the precise tuning of the morphology and intrinsic defects in nanostructures that have made an impact on the photo-responsivity, photoluminescence (PL) and adhesivity of the film on to the underlying substrate. PL analysis of as-grown ZnO nanostructures has suggested 11 times improvement in the near band emission (NBE) to defect level emission (DLE) ratio. Interestingly, thermal annealing of the samples has shown a dramatic change in the morphology with significant improvement in the crystallinity. Notably, the band gap was observed to be modulated from 3.3 eV to 3.1 eV after annealing. In addition to UV photo-detector based applications, the work presented here has provided a subtle solution towards the rectification of various problems pertaining to hydrothermal processes like poor adhesivity, feeble UV emission and problem in precise tuning of the morphology along with the bandgap in one go. Therefore, these investigations assume critical significance towards the development of next-generation optoelectronic devices.

  12. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.

    PubMed

    Huo, Hong; Zhang, Qiang; Liu, Fei; He, Kebin

    2013-02-05

    Electric vehicles (EVs) and compressed natural gas vehicles (CNGVs), which are mainly coal-based and natural gas-based, are the two most widely proposed replacements of gasoline internal combustion engine vehicles (ICEVs) in P.R. China. We examine fuel-cycle emissions of greenhouse gases (GHGs), PM(2.5), PM(10), NO(x), and SO(2) of CNGVs and EVs relative to gasoline ICEVs and hybrids, by Chinese province. CNGVs can currently reduce emissions of GHGs, PM(10), PM(2,5), NO(x), and SO(2) by approximately 6%, 7%, 20%, 18% and 22%, respectively. EVs can reduce GHG emissions by 20%, but increase PM(10), PM(2.5), NO(x), and SO(2) emissions by approximately 360%, 250%, 120%, and 370%, respectively. Nevertheless, results vary significantly by province. Regarding their contribution to national emissions, PM increases from EVs are unimportant, because light-duty passenger vehicles contribute very little to overall PM emissions nationwide (≤0.05%); however, their NO(x) and SO(2) increases are important. Since China is striving to reduce power plant emissions, EVs are expected to have equivalent or even lower SO(2) and NO(x) emissions relative to ICEVs in the future (2030). Before then, however, EVs should be developed according to the cleanness of regional power mixes. This would lower their SO(2) and NO(x) emissions and earn more GHG reduction credits.

  13. GHG emissions and mitigation potential in Indian agriculture

    NASA Astrophysics Data System (ADS)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  14. Canopy Level Emissions of 2-methyl-3-buten-2-ol ...

    EPA Pesticide Factsheets

    Emissions of biogenic volatile organic compounds (BVOC) observed during 2007 from a Pinus taeda experimental plantation in Central North Carolina are compared with model estimates from MEGAN 2.1. Relaxed Eddy Accumulation (REA) estimates of 2-methyl-3-buten-2-ol (MBO) fluxes are a factor of 3-4 higher than model estimates. MEGAN2.1 monoterpene emission estimates were approximately a factor of two higher than REA flux measurements. MEGAN2.1 β-caryophyllene emission estimates were within 60% of growing season REA flux estimates, but were several times higher than REA fluxes during cooler, dormant season periods. The sum of other sesquiterpene emissions estimated by MEGAN2.1 was several times higher than REA estimates throughout the year. Model components are examined to understand these discrepancies. Summertime LAI (and therefore foliar biomass) is a factor of two higher than assumed in MEGAN for the Pinus taeda default. Increasing the canopy mean MBO emission factor from 0.35 to 1.0 mg m-2 hr-1 also reduces MEGAN2.1 vs flux differences. This increase is within current emission factor uncertainties. The algorithm within MEGAN which adjusts isoprene emission estimates as a function of the previous 24 hour’s temperatures and light seems to also improve seasonal MEGAN MBO correlation with REA fluxes. Including the effects of the previous 240 hours, however, seems to degrade temporal model correlation with fluxes. This paper describes an emission inventory and mod

  15. Emission of greenhouse gases from controlled incineration of cattle manure.

    PubMed

    Oshita, Kazuyuki; Sun, Xiucui; Taniguchi, Miki; Takaoka, Masaki; Matsukawa, Kazutsugu; Fujiwara, Taku

    2012-01-01

    Greenhouse gas emission is a potential limiting factor in livestock farming development. While incineration is one approach to minimize livestock manure, there are concerns about significant levels of nitrogen and organic compounds in manure as potential sources of greenhouse gas emissions (N2O and CH4). In this study, the effects of various incineration conditions, such as the furnace temperature and air ratio on N2O and CH4 formation behaviour, of cattle manure (as a representative livestock manure) were investigated in a pilot rotary kiln furnace. The results revealed that N2O emissions decreased with increasing temperature and decreasing air ratio. In addition, CH4 emissions tended to be high above 800 degrees C at a low air ratio. The emission factors for N2O and CH4 under the general conditions (combustion temperature of 800-850 degrees C and air ratio of 1.4) were determined to be 1.9-6.0% g-N2O-N/g-N and 0.0046-0.26% g-CH4/g-burning object, respectively. The emission factor for CH4 differed slightly from the published values between 0.16 and 0.38% g-CH4/g-burning object. However, the emission factor for N2O was much higher than the currently accepted value of 0.7% g-N2O-N/g-N and, therefore, it is necessary to revise the N2O emission factor for the incineration of livestock manure.

  16. AC Glow Discharge Plasma in N2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousif, F. B.; Martinez, H.; Robledo-Martinez, A.

    2006-12-04

    This paper considers the optical and electrical characterization of AC glow discharge plasma in the abnormal glow mode used for optical emission spectroscopy. The total discharge current and applied voltage are measured using conventional techniques. The electrical characteristics of the planer-cathode glow discharge confirmed that the plasma is operating at abnormal discharge mode characterized by the increases in the operating voltage as the current was raised under given pressure. Optical emission spectroscopy was used to determine the main emission lines of the glow discharge plasma of N2O at pressures between 0.5 and 4.0 Torr. It shows that the discharge emissionmore » range is mainly within 300-400 nm. The emission lines correspond to NO, O2, and O{sub 2}{sup +} are the dominant lines in the glow discharge plasma in the present study. Intensity of the emission lines show linear increase with the discharge current up to 0.4 A followed by saturation at higher currents. No emission lines were observed in this work corresponding to atomic oxygen or nitrogen.« less

  17. Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles.

    PubMed

    Hosseini, Seyedehsan; Shrivastava, Manish; Qi, Li; Weise, David R; Cocker, David R; Miller, John W; Jung, Heejung S

    2014-06-01

    Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activities--activities associated with development and care of forests--dry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (Arctostaphylos sp.) wood containing 0, 0.25, and 2.5% LDPE by mass were burned. Gaseous and particulate emissions were sampled in real time during the entire flaming, mixed combustion phase--when the flaming and smoldering phases are present at the same time--and during a portion of the smoldering phase. Analysis of variance was used to test significance of modified combustion efficiency (MCE)--the ratio of concentrations of fire-integrated excess CO2 to CO2 plus CO--and LDPE content on measured individual compounds. MCE ranged between 0.983 and 0.993, indicating that combustion was primarily flaming; MCE was seldom significant as a covariate. Of the 195 compounds identified in the smoke emissions, only the emission factor (EF) of 3M-octane showed an increase with increasing LDPE content. Inclusion of LDPE had an effect on EFs of pyrene and fluoranthene, but no statistical evidence of a linear trend was found. Particulate emission factors showed a marginally significant linear relationship with MCE (0.05 < P-value < 0.10). Based on the results of the current and previous studies and literature reviews, the inclusion of small mass proportions of LDPE in piled silvicultural debris does not appear to change the emissions produced when low-moisture-content wood is burned. In general, combustion of wet piles results in lower MCEs and consequently higher levels of emissions. Current air quality regulations permit the use of burning to dispose of silvicultural piles; however, inclusion of low-density polyethyelene (LDPE) plastic in silvicultural piles can result in a designation of the pile as waste. Waste burning is not permitted in many areas, and there is also concern that inclusion of LDPE leads to toxic air emissions.

  18. Impacts of household coal and biomass combustion on indoor and ambient air quality in China: Current status and implication.

    PubMed

    Li, Qing; Jiang, Jingkun; Wang, Shuxiao; Rumchev, Krassi; Mead-Hunter, Ryan; Morawska, Lidia; Hao, Jiming

    2017-01-15

    This review briefly introduces current status of indoor and ambient air pollution originating from household coal and biomass combustion in mainland China. Owing to low combustion efficiency, emissions of CO, PM 2.5 , black carbon (BC), and polycyclic aromatic hydrocarbons have significant adverse consequences for indoor and ambient air qualities, resulting in relative contributions of more than one-third in all anthropogenic emissions. Their contributions are higher in less economically developed regions, such as Guizhou (61% PM 2.5 , 80% BC), than that in more developed regions, such as Shanghai (4% PM 2.5 , 17% BC). Chimneys can reduce ~80% indoor PM 2.5 level when burning dirty solid fuels, such as plant materials. Due to spending more time near stoves, housewives suffer much more (~2 times) PM 2.5 than the adult men, especially in winter in northern China (~4 times). Improvement of stove combustion/thermal efficiencies and solid fuel quality are the two essential methods to reduce pollutant emissions. PM 2.5 and BC emission factors (EFs) have been identified to increase with volatile matter content in traditional stove combustion. EFs of dirty fuels are two orders higher than that of clean ones. Switching to clean ones, such as semi-coke briquette, was identified to be a feasible path for reducing >90% PM 2.5 and BC emissions. Otherwise, improvement of thermal and combustion efficiencies by using under-fire technology can reduce ~50% CO 2 , 87% NH 3 , and 80% PM 2.5 and BC emissions regardless of volatile matter content in solid fuel. However, there are still some knowledge gaps, such as, inventory for the temporal impact of household combustion on air quality, statistic data for deployed clean solid fuels and advanced stoves, and the effect of socioeconomic development. Additionally, further technology research for reducing air pollution emissions is urgently needed, especially low cost and clean stove when burning any type of solid fuel. Furthermore, emission-abatement oriented policy should base on sound scientific evidence to significantly reduce pollutant emissions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Agriculture, Land Use, Energy and Carbon Emission Impacts of Global Biofuel Mandates to Mid-Century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Marshall A.; Dooley, James J.; Luckow, Patrick

    2014-02-01

    Three potential future scenarios of expanded global biofuel production are presented here utilizing the GCAM integrated assessment model. These scenarios span a range that encompasses on the low end a continuation of existing biofuel production policies to two scenarios that would require an expansion of current targets as well as an extension of biofuels targets to other regions of the world. Conventional oil use is reduced by 4-8% in the expanded biofuel scenarios, which results in a decrease of in CO2 emissions on the order of 1-2 GtCO2/year by mid-century from the global transportation sector. The regional distribution of cropmore » production is relatively unaffected, but the biofuels targets do result in a marked increase in the production of conventional crops used for energy. Producer prices of sugar and corn reach levels about 12% and 7% above year 2005 levels, while the increased competition for land causes the price of food crops such as wheat, although not used for bioenergy in this study, to increase by 1 to 2%. The amount of land devoted to growing all food crops and dedicated bioenergy crops is increased by about 10% by 2050 in the High biofuel case, with concurrent decreases in other uses of land such as forest and pasture. In both of the expanded biofuels cases studied, there is an increase in net cumulative carbon emissions for the first couple of decades due to these induced land use changes. However, the difference in net cumulative emissions from the biofuels expansion decline by about 2035 as the reductions in energy system emissions exceed further increases in emissions from land use change. Even in the absence of a policy that would limit emissions from land use change, the differences in net cumulative emissions from the biofuels scenarios reach zero by 2050, and are decreasing further over time in both cases.« less

  20. Influence of future cropland expansion on regional and global tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Squire, Oliver; Archibald, Alex; Telford, Paul; Pyle, John

    2013-04-01

    With the global population set to rise over the next 100 years, the fraction of land used for crop cultivation is likely to increase, the trend being most pronounced in developing regions such as Brazil and South East Asia. In these regions currently there stands natural rainforest, a high emitter of isoprene. As many staple crops, such as soy bean, are low emitters of isoprene, increasing the crop fraction in these regions will decrease isoprene emissions. Ozone over ~35 ppb has been shown to be damaging to plants, and as ground level ozone is sensitive to isoprene concentrations, altering isoprene emissions could increase ground level ozone, potentially resulting in crop damage. This mechanism was investigated by comparing two configurations of an atmospheric chemistry-climate model (UM-UKCA) under a 2100 climate following an IPCC scenario of moderate climate change. The first run had a present day crop distribution but isoprene emissions concurrent with 2100 temperatures and climatic conditions. The second run had isoprene emissions representative of both a 2100 climate and a 2100 crop distribution in accordance with the IMAGE model. By comparing these runs it was established that ozone increased by up to 8 ppb (~30%) due to crop land expansion. Over the Amazon (the most affected region) it was found that crops were exposed to a daily maximum 8-hour (DM8H) ozone above the 35 ppb threshold for up to 65 days more per year than in the base case. These conclusions suggest that increasing the crop fraction in current areas of natural rainforest could increase regional ground level ozone, having a significant effect on crop yield and air quality. The sensitivity of such conclusions to isoprene chemistry was examined by varying the isoprene chemistry scheme within the model. The CheT isoprene scheme used here (50 reactions) was compared with the AQUM (23 reactions) and CESM Superfast (2 reactions) isoprene schemes, all of which are currently used in Earth-system models. It was found that the effect of transplanting these isoprene schemes into the base CheT chemistry scheme lead, in both cases, to higher ozone over isoprene rich regions by up to ~40 ppb. Furthermore, upon repeating the land use change experiment with these other isoprene schemes, it was found that the AQUM scheme produced more ozone (up to ~20 ppb more) in isoprene rich regions due to crop expansion than CheT. However the CESM Superfast scheme showed the opposite effect, producing less ozone than the CheT scheme in isoprene-rich regions. These varied responses highlight the sensitivity of future trends in surface ozone to isoprene chemistry within the range of some currently used chemical schemes, and suggest that further research is needed in order to most effectively parameterise this complex chemistry.

  1. Recent progress of carbon nanotube field emitters and their application.

    PubMed

    Seelaboyina, Raghunandan; Choi, Wonbong

    2007-01-01

    The potential of utilizing carbon nanotube field emission properties is an attractive feature for future vacuum electronic devices including: high power microwave, miniature x-ray, backlight for liquid crystal displays and flat panel displays. Their high emission current, nano scale geometry, chemical inertness and low threshold voltage for emission are attractive features for the field emission applications. In this paper we review the recent developments of carbon nanotube field emitters and their device applications. We also discuss the latest results on field emission current amplification achieved with an electron multiplier microchannel plate, and emission performance of multistage field emitter based on oxide nanowire operated in poor vacuum.

  2. Impact of Future Emissions and Climate Change on Surface Ozone over China

    NASA Astrophysics Data System (ADS)

    Ma, C. T.; Westervelt, D. M.; Fiore, A. M.; Rieder, H. E.; Kinney, P.; Wang, S.; Correa, G. J. P.

    2017-12-01

    China's immense ambient air pollution problem and world-leading greenhouse gas emissions place it at the forefront of global efforts to address these related environmental concerns. Here, we analyze the impact of ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) future emissions scenarios representative of current legislation (CLE) and maximum technically feasible emissions reductions (MFR) on surface ozone (O3) concentrations over China in the 2030s and 2050s, in the context of a changing climate. We use a suite of simulations performed with the NOAA Geophysical Fluid Dynamics Laboratory's AM3 global chemistry-climate model. To estimate the impact of climate change in isolation on Chinese air quality, we hold emissions of air pollutants including O3 precursors fixed at 2015 levels but allow climate (global sea surface temperatures and sea ice cover) to change according to decadal averages for the years 2026-2035 and 2046-2055 from a three-member ensemble of GFDL-CM3 simulations under the RCP8.5 high warming scenario. Evaluation of the present-day simulation (2015 CLE) with observations from 1497 chiefly urban air quality monitoring stations shows that simulated surface O3 is positively biased by 26 ppb on average over the domain of China. Previous studies, however, have shown that the modeled ozone response to changes in NOx emissions over the Eastern United States mirrors the magnitude and structure of observed changes in maximum daily average 8-hour (MDA8) O3 distributions. Therefore, we use the model's simulated changes for the 2030s and 2050s to project changes in policy-relevant MDA8 O3 concentrations. We find an overall increase in MDA8 O3 for CLE scenarios in which emissions of NOx precursors are projected to increase, and under MFR scenarios, an overall decrease, with the highest changes occurring in summertime for both 2030 and 2050 MFR. Under climate change alone, the model simulates a mean summertime decrease of 1.3 ppb and wintertime increase of 3.3 ppb by 2050. Adjustment of the observed site-level MDA8 O3 distribution to reflect regionally interpolated projected changes from AM3 allows us to examine changes in the number of days in exceedance of MDA8 O3 Level I (50 ppb) and Level II (80 ppb) Chinese national ambient air quality standards.

  3. Energy in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Davis, S. J.; Caldeira, K.; Cao, L.; Hoffert, M.

    2012-12-01

    Human interference in Earth's natural systems is fueled by ever-increasing consumption of fossil energy. The energy we consume has enabled exponential growth of human population and economic wealth by expanding access to basic goods and services such as food, medicine, light, sanitation and refrigeration, as well as more advanced technologies such as transport and communication. In turn, population growth and economic development drive demand for even more energy. By 2050, it is expected that global energy demand will double to more than 30 TW. Unfortunately, the modern energy system is largely dependent on fossil fuels, and the CO2 released by burning of these fuels is the primary cause of anthropogenic climate change. As human civilization has expanded, primary energy sources have become progressively less carbon intensive, transitioning from the use of unsustainably harvested biomass to coal, oil and then natural gas. However, tremendous growth in the quantity of energy energy consumption in the industrial era has caused rapid growth of CO2 emissions. Limiting these emissions to avoid the more severe impacts of climate change while also meeting future demand for energy will require continuing the process of decarbonization by making a planetary-scale transition to largely carbon-emission-free energy technologies. In 2004, Pacala and Socolow proposed that such a transition could be achieved by stabilizing emissions at then-current levels for 50 years and then decreasing emissions by 2% per year afterward. They divided the task of stabilization into "wedges" that would grow linearly from zero to 1 gigatonne of carbon emissions avoided per year (GtC/y; 1 Gt = 10^12 kg) over 50 years, and asserted that deploying 7 wedges offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. However, in light of the growth of emissions since 2004, new carbon-climate model simulations suggest that stabilizing current emissions for 50 years is no longer consistent with either an atmospheric CO2 concentration of 500 ppm nor global temperature increases below 2°C. Thus, if "solving the carbon-climate problem for the next 50 years" means meeting these climate targets, then solving the climate problem means not just stabilizing but substantially reducing CO2 emissions over the next 50 years, ultimately to near zero. And such large reductions in annual emissions will entail many more than 7 wedges. Depending on whether or not historical rates of decarbonization continue, a phase-out of emissions over 50 years would require between 19 and 31 wedges, beyond the wedges that may already be included in the baseline scenario. This level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at scale without emitting CO2 to the atmosphere. Lacking such efforts, the climate of the Anthropocene will come to resemble that of the Cretaceous.

  4. Laboratory Experiments Enabling Electron Beam use in Tenuous Space Plasmas

    NASA Astrophysics Data System (ADS)

    Miars, G.; Leon, O.; Gilchrist, B. E.; Delzanno, G. L.; Castello, F. L.; Borovsky, J.

    2017-12-01

    A mission concept is under development which involves firing a spacecraft-mounted electron beam from Earth's magnetosphere to connect distant magnetic field lines in real time. To prevent excessive spacecraft charging and consequent beam return, the spacecraft must be neutralized in the tenuous plasma environment of the magnetosphere. Particle-In-Cell (PIC) simulations suggest neutralization can be accomplished by emitting a neutral plasma with the electron beam. Interpretation of these simulations also led to an ion emission model in which ion current is emitted from a quasi-neutral plasma as defined by the space charge limit [1,2]. Experiments were performed at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL) to help validate the ion emission model. A hollow cathode plasma contactor was used as a representative spacecraft and charged with respect to the chamber walls to examine the effect of spacecraft charging on ion emission. Retarding Potential Analyzer (RPA) measurements were performed to understand ion flow velocity as this parameter relates directly to the expected space charge limit. Planar probe measurements were also made to identify where ion emission primarily occurred and to determine emission current density levels. Evidence of collisions within the plasma (particularly charge exchange collisions) and a simple model predicting emitted ion velocities are presented. While a detailed validation of the ion emission model and of the simulation tools used in [1,2] is ongoing, these measurements add to the physical understanding of ion emission as it may occur in the magnetosphere. 1. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, and E.A. MacDonald, J. Geophys. Res. Space Physics 120, 3647, 2015. 2. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, and J.D. Moulton, J. Geophys. Res. Space Physics 120, 3588, 2015. ________________________________ * This work is supported by Los Alamos National Laboratory.

  5. The fuel market effects of biofuel policies and implications for regulations based on lifecycle emissions

    NASA Astrophysics Data System (ADS)

    Rajagopal, Deepak

    2013-06-01

    The absence of a globally-consistent and binding commitment to reducing greenhouse emissions provides a rationale for partial policies, such as renewable energy mandates, product emission standards, etc to target lifecycle emissions of the regulated products or services. While appealing in principle, regulation of lifecycle emissions presents several practical challenges. Using biofuels as an illustrative example, we highlight some outstanding issues in the design and implementation of life cycle-based policies and discuss potential remedies. We review the literature on emissions due to price effects in fuel markets, which are akin to emissions due to indirect land use change, but are, unlike the latter, ignored under all current life cycle emissions-based regulations. We distinguish the current approaches to regulating indirect emissions into hard and soft approaches and discuss their implications.

  6. Early evolution of an X-ray emitting solar active region

    NASA Technical Reports Server (NTRS)

    Wolfson, C. J.; Acton, L. W.; Leibacher, J. W.; Roethig, D. T.

    1977-01-01

    The birth and early evolution of a solar active region has been investigated using X-ray observations from the mapping X-ray heliometer on board the OSO-8 spacecraft. X-ray emission is observed within three hours of the first detection of H-alpha plage. At that time, a plasma temperature of four million K in a region having a density on the order of 10 to the 10th power per cu cm is inferred. During the fifty hours following birth almost continuous flares or flare-like X-ray bursts are superimposed on a monotonically increasing base level of X-ray emission produced by the plasma. If the X-rays are assumed to result from heating due to dissipation of current systems or magnetic field reconnection, it may be concluded that flare-like X-ray emission soon after active region birth implies that the magnetic field probably emerges in a stressed or complex configuration.

  7. What can be Learned from X-Ray Spectroscopy Concerning Hot Gas in the Local Bubble and Charge Exchange Processes

    NASA Technical Reports Server (NTRS)

    Snowden, Steven L.

    2007-01-01

    Solar wind charge exchange produces diffuse X-ray emission with a variable surface brightness comparable to that of the cosmic background. While the temporal variation of the charge exchange emission allows some separation of the components, there remains a great deal of uncertainty as to the zero level of both. Because the production mechanisms of the two components are considerably different, their spectra would provide critical diagnostics to the understanding of both. However, current X-ray observatories are very limited in both spectral resolution and sensitivity in the critical soft X-ray (less than 1.0 keV) energy range. Non-dispersive high-resolution spectrometers, such as the calorimeter proposed for the Spectrum Roentgen Gamma mission, will be extremely useful in distinguishing the cascade emission of charge exchange from the spectra of thermal bremsstrahlung cosmic plasmas.

  8. Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe

    NASA Astrophysics Data System (ADS)

    Fountoukis, C.; Butler, T.; Lawrence, M. G.; Denier van der Gon, H. A. C.; Visschedijk, A. J. H.; Charalampidis, P.; Pilinis, C.; Pandis, S. N.

    2014-04-01

    We use a 3-D regional chemical transport model, with the latest advancements in the organic aerosol (OA) treatment, and an updated emission inventory for wood combustion to study the organic aerosol change in response to the replacement of current residential wood combustion technologies with pellet stoves. Simulations show a large decrease of fine organic aerosol (more than 60%) in urban and suburban areas during winter and decreases of 30-50% in elemental carbon levels in large parts of Europe. There is also a considerable decrease (around 40%) of oxidized OA, mostly in rural and remote regions. Total PM2.5 mass is predicted to decrease by 15-40% on average during the winter in continental Europe. Accurate representation of the intermediate volatility precursors of organic aerosol in the emission inventory is crucial in assessing the efficiency of such abatement strategies.

  9. Aircraft gas turbine low-power emissions reduction technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Gleason, C. C.; Bahr, D. W.

    1978-01-01

    Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.

  10. Detection and period measurements of GX1+4 at hard x ray energies with the SIGMA telescope

    NASA Technical Reports Server (NTRS)

    Laurent, PH.; Salotti, L.; Lebrun, F.; Paul, J.; Denis, M.; Barret, D.; Jourdain, E.; Roques, J. P.; Churazov, E.; Gilfanov, M.

    1992-01-01

    The galactic Low Mass X ray Binary GX1+4 was detected by the coded aperture hard X ray gamma ray SIGMA telescope during the Feb. to April 1991 observations of the galactic center regions. The source, whose emission varied during the survey of a factor greater than 40 pct., reached a maximum luminosity in the 40 to 140 energy range of 1.03 x 10(exp 37) erg/s (D = 8.5 kpc), thus approaching the emission level of the 1970 to 1980 high state. Two minute flux pulsations were detected on Mar. 22 and on Mar. 31 and Apr. 1. Comparison with the last period measurements shows that the current spin-down phase of GX1+4 is ending. Concerning the proposed association of this source with the galactic center 511 keV annihilation emission, upper limits were derived.

  11. US coal use: the environmental challenge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Princiotta, F.T.

    1988-08-01

    Although this paper focuses on past (since 1920) and current coal use and pollutant emissions in the U.S., it also discusses where the U.S. may be going in terms of pollutant emissions over the next several decades. Conclusions of the look at coal use include the fact that increasing coal use is vital to the economic wellbeing of the US. With proper application of controls, coal use can be increased as projected without unacceptable levels of sulfur and nitrogen oxides, particulate, and nitrous oxide. However, the forecast is bleaker for carbon dioxide and its projected impact on global warming. Barringmore » a technology breakthrough of major proportions (e.g., successful commercialization of nuclear fusion or solar electric generation), the best that can be envisioned is to moderate carbon dioxide emissions from the combustion of coal and other fuels through conservation.« less

  12. Clean coal technology: an environmental perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Princiotta, F.T.

    1988-08-01

    Although this paper focuses on past (since 1920) and current coal use and pollutant emissions in the U.S., it also discusses where the U.S. may be going in terms of pollutant emissions over the next several decades. Conclusions of this look at coal use include the fact that increasing coal use is vital to the economic wellbeing of the U.S. With proper application of controls, coal use can be increased as projected without unacceptable levels of sulfur and nitrogen oxides, particulate, and nitrous oxide. However, the forecast is bleaker for carbon dioxide and its projected impact on global warming. Barringmore » a technology breakthrough of major proportions (e.g., successful commercialization of nuclear fusion or solar electric generation), the best that can be envisioned is to moderate carbon dioxide emissions from the combustion of coal and other fuels through conservation.« less

  13. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  14. Life cycle greenhouse gas emissions, consumptive water use and levelized costs of unconventional oil in North America

    NASA Astrophysics Data System (ADS)

    Mangmeechai, Aweewan

    Conventional petroleum production in many countries that supply U.S. crude oil as well as domestic production has declined in recent years. Along with instability in the world oil market, this has stimulated the discussion of developing unconventional oil production, e.g., oil sands and oil shale. Expanding the U.S. energy mix to include oil sands and oil shale may be an important component in diversifying and securing the U.S. energy supply. At the same time, life cycle GHG emissions of these energy sources and consumptive water use are a concern. In this study, consumptive water use includes not only fresh water use but entire consumptive use including brackish water and seawater. The goal of this study is to determine the life cycle greenhouse gas (GHG) emissions and consumptive water use of synthetic crude oil (SCO) derived from Canadian oil sands and U.S. oil shale to be compared with U.S. domestic crude oil, U.S. imported crude oil, and coal-to-liquid (CTL). Levelized costs of SCO derived from Canadian oil sands and U.S. oil shale were also estimated. The results of this study suggest that CTL with no carbon capture and sequestration (CCS) and current electricity grid mix is the worst while crude oil imported from United Kingdom is the best in GHG emissions. The life cycle GHG emissions of oil shale surface mining, oil shale in-situ process, oil sands surface mining, and oil sands in-situ process are 43% to 62%, 13% to 32%, 5% to 22%, and 11% to 13% higher than those of U.S. domestic crude oil. Oil shale in-situ process has the largest consumptive water use among alternative fuels, evaluated due to consumptive water use in electricity generation. Life cycle consumptive water use of oil sands in-situ process is the lowest. Specifically, fresh water consumption in the production processes is the most concern given its scarcity. However, disaggregated data on fresh water consumption in the total water consumption of each fuel production process is not available. Given current information, it is inconclusive whether unconventional oil would require more or less consumptive fresh water use than U.S. domestic crude oil production. It depends on the water conservative strategy applied in each process. Increasing import of SCO derived from Canadian oil sands and U.S. oil shale would slightly increase life cycle GHG emissions of the U.S. petroleum status quo. The expected additional 2 million bpd of Canadian SCO from oil sands and U.S. oil shale would increase life cycle GHG emissions of the U.S. petroleum status quo on average only 10 and 40 kg CO2 equiv/bbl, or about 7.5 and 29 million tons CO2 equiv/year. However this increase represents less than 1 and 5% of U.S. transportation emissions in 2007. Because U.S. oil shale resources are located in areas experiencing water scarcity, methods to manage the issue were explored. The result also shows that trading water rights between Upper and Lower Colorado River basin and transporting synthetic crude shale oil to refinery elsewhere is the best scenario for life cycle GHG emissions and consumptive water use of U.S. oil shale production. GHG emissions and costs of water supply system contribute only 1-2% of life cycle GHG emissions and 1-6% of total levelized costs. The levelized costs of using SCO from oil shale as feedstock are greater than SCO from oil sands, and CTL. The levelized costs of producing liquid fuel (gasoline and diesel) using SCO derived from Canadian oil sands as feedstock are approximately 0.80-1.00/gal of liquid fuel. The levelized costs of SCO derived from oil shale are 1.6-4.5/gal of liquid fuel (oil shale surface mining process) and 1.6-5.2/gal of liquid fuel (oil shale in-situ process). From an energy security perspective, increasing the use of Canadian oil sands, U.S. oil shale, and CTL may be preferable to increasing Middle East imports. However, oil shale and CTL has the advantage security wise over Canadian oil sands because oil shale and coal are abundant U.S. resources. From a GHG emissions and consumptive water use perspective, CTL requires less consumptive water use than oil shale in-situ process but produces more GHG emissions than oil shale in-situ and surface mining process, unless CTL plant performs CCS and renewable electricity.

  15. How much CO2 can we still emit while limiting global warming to well below 2 °C?

    NASA Astrophysics Data System (ADS)

    Rahmstorf, S.

    2017-12-01

    In December 2015, the Paris Agreement signed by 195 nations agreed to limit global warming "to well below 2 °C above preindustrial levels and to pursue efforts to limit the temperature increase to 1.5 °C." Since the amount of global warming is approximately proportional to cumulative CO2 emissions, such a warming limit corresponds to a remaining "CO2 budget" - a total amount of CO2 that can still be emitted world-wide. I will discuss current estimates of the size of this CO2 budget and what this means for the emissions trajectories compatible with the Paris Agreement.

  16. Spatially- explicit Fossil Fuel Carbon Dioxide Inventories for Transportation in the U.S.

    NASA Astrophysics Data System (ADS)

    Hutchins, M.; Gurney, K. R.

    2016-12-01

    The transportation sector is the second largest source of Fossil Fuel CO2 (FFCO2) emissions, and is unique in that federal, state, and municipal levels of government are all able to enact transportation policy. However, since data related to transportation activities are reported by multiple different government agencies, the data are not always consistent. As a result, the methods and data used to inventory and account for transportation related FFCO2 emissions have important implications for both science and policy. Aggregate estimates of transportation related FFCO2 emissions can be spatially distributed using traffic data, such as the Highway Performance Monitoring System (HPMS) Average Annual Daily Traffic (AADT). There are currently two datasets that estimate the spatial distribution of transportation related FFCO2 in the United States- Vulcan 3.0 and the Database of Road Transportation Emissions (DARTE). Both datasets are at 1 km resolution, for the year 2011, and utilize HPMS AADT traffic data. However, Vulcan 3.0 and DARTE spatially distribute emissions using different methods and inputs, resulting in a number of differences. Vulcan 3.0 and DARTE estimate national transportation related FFCO2 emissions within 2.5% of each other, with more significant differences at the county and state level. The differences are most notable in urban versus rural regions, and for specific road classes. The origin of these differences are explored in depth to understand the implication of using specific data sources, such as the National Emissions Inventory and other aggregate transportation statistics from the Federal Highway Administration (FHWA). In addition to comparing Vulcan 3.0 and DARTE to each other, the results from both data sets are compared to independent traffic volume measurements acquired from the FHWA Continuous Count Station (CCS) network. The CCS records hourly traffic counts at fixed locations in space throughout the U.S. We calculate transportation related FFCO2 emissions at a CCS stations using fuel specific emissions factors combined with the raw traffic counts. The CCS network provides a unique opportunity to compare spatially explicit, "bottom-up" models of transportation related FFCO2 emissions to measured traffic volume at over 300 specific locations.

  17. Attributing land-use change carbon emissions to exported biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saikku, Laura, E-mail: laura.saikku@helsinki.fi; Soimakallio, Sampo, E-mail: sampo.soimakallio@vtt.fi; Pingoud, Kim, E-mail: kim.pingoud@vtt.fi

    2012-11-15

    In this study, a simple, transparent and robust method is developed in which land-use change (LUC) emissions are retrospectively attributed to exported biomass products based on the agricultural area occupied for the production. LUC emissions account for approximately one-fifth of current greenhouse gas emissions. Increasing agricultural exports are becoming an important driver of deforestation. Brazil and Indonesia are used as case studies due to their significant deforestation in recent years. According to our study, in 2007, approximately 32% and 15% of the total agricultural land harvested and LUC emissions in Brazil and Indonesia respectively were due to exports. The mostmore » important exported single items with regard to deforestation were palm oil for Indonesia and bovine meat for Brazil. To reduce greenhouse gas (GHG) emissions effectively worldwide, leakage of emissions should be avoided. This can be done, for example, by attributing embodied LUC emissions to exported biomass products. With the approach developed in this study, controversial attribution between direct and indirect LUC and amortization of emissions over the product life cycle can be overcome, as the method operates on an average basis and annual level. The approach could be considered in the context of the UNFCCC climate policy instead of, or alongside with, other instruments aimed at reducing deforestation. However, the quality of the data should be improved and some methodological issues, such as the allocation procedure in multiproduct systems and the possible dilution effect through third parties not committed to emission reduction targets, should be considered. - Highlights: Black-Right-Pointing-Pointer CO{sub 2} emissions from land use changes are highly important. Black-Right-Pointing-Pointer Attribution of land use changes for products is difficult. Black-Right-Pointing-Pointer Simple and robust method is developed to attribute land use change emissions.« less

  18. Characterization of methane emissions from five cold heavy oil production with sands (CHOPS) facilities.

    PubMed

    Roscioli, Joseph R; Herndon, Scott C; Yacovitch, Tara I; Knighton, W Berk; Zavala-Araiza, Daniel; Johnson, Matthew R; Tyner, David R

    2018-03-07

    Cold heavy oil production with sands (CHOPS) is a common oil extraction method in the Canadian provinces of Alberta and Saskatchewan that can result in significant methane emissions due to annular venting. Little is known about the magnitude of these emissions, nor their contributions to the regional methane budget. Here the authors present the results of field measurements of methane emissions from CHOPS wells and compare them with self-reported venting rates. The tracer ratio method was used not only to analyze total site emissions but at one site it was also used to locate primary emission sources and quantify their contributions to the facility-wide emission rate, revealing the annular vent to be a dominant source. Emissions measured from five different CHOPS sites in Alberta showed large discrepancies between the measured and reported rates, with emissions being mainly underreported. These methane emission rates are placed in the context of current reporting procedures and the role that gas-oil ratio (GOR) measurements play in vented volume estimates. In addition to methane, emissions of higher hydrocarbons were also measured; a chemical "fingerprint" associated with CHOPS wells in this region reveals very low emission ratios of ethane, propane, and aromatics versus methane. The results of this study may inform future studies of CHOPS sites and aid in developing policy to mitigate regional methane emissions. Methane measurements from cold heavy oil production with sand (CHOPS) sites identify annular venting to be a potentially major source of emissions at these facilities. The measured emission rates are generally larger than reported by operators, with uncertainty in the gas-oil ratio (GOR) possibly playing a large role in this discrepancy. These results have potential policy implications for reducing methane emissions in Alberta in order to achieve the Canadian government's goal of reducing methane emissions by 40-45% below 2012 levels within 8 yr.

  19. The effects of economic and political integration on power plants’ carbon emissions in the post-soviet transition nations

    NASA Astrophysics Data System (ADS)

    Jorgenson, Andrew K.; Longhofer, Wesley; Grant, Don; Sie, Amanda; Giedraitis, Vincentas

    2017-04-01

    The combustion of fossil fuels for electricity generation, which accounts for a significant share of the world’s CO2 emissions, varies by macro-regional context. Here we use multilevel regression modeling techniques to analyze CO2 emissions levels in the year 2009 for 1360 fossil-fuel power plants in the 25 post-Soviet transition nations in Central and Eastern Europe and Eurasia. We find that various facility-level factors are positively associated with plant-level emissions, including plant size, age, heat rate, capacity utilization rate, and coal as the primary fuel source. Results further indicate that plant-level emissions are lower, on average, in the transition nations that joined the European Union (EU), whose market reforms and environmental directives are relevant for emissions reductions. These negative associations between plant-level emissions and EU accession are larger for the nations that joined the EU in 2004 relative to those that joined in 2007. The findings also suggest that export-oriented development is positively associated with plant-level CO2 emissions in the transition nations. Our results highlight the importance in macro-regional assessments of the conjoint effects of political and economic integration for facility-level emissions.

  20. Spatiotemporal association between birth outcomes and coke production and steel making facilities in Alabama, USA: a cross-sectional study.

    PubMed

    Porter, Travis R; Kent, Shia T; Su, Wei; Beck, Heidi M; Gohlke, Julia M

    2014-10-23

    Previous research has shown exposure to air pollution increases the risk of adverse birth outcomes, although the effects of residential proximity to significant industrial point sources are less defined. The objective of the current study was to determine whether yearly reported releases from major industrial point sources are associated with adverse birth outcomes. Maternal residence from geocoded Alabama birth records between 1991 and 2010 were used to calculate distances from coke and steel production industries reporting emissions to the U.S. Environmental Protection Agency. Logistic regression models were built to determine associations between distance or yearly fugitive emissions (volatile organic compounds, polycyclic aromatic compounds, and metals) from reporting facilities and preterm birth or low birth weight, adjusting for covariates including maternal age, race, payment method, education level, year and parity. A small but significant association between preterm birth and residential proximity (≤5.0 km) to coke and steel production facilities remained after adjustment for covariates (OR 1.05 95% CI: 1.01,1.09). Above average emissions from these facilities of volatile organic compounds during the year of birth were associated with low birth weight (OR 1.17 95% CI: 1.06, 1.29), whereas metals emissions were associated with preterm birth (OR 1.07 95% CI: 1.01, 1.14). The present investigation suggests fugitive emissions from industrial point sources may increase the risk of adverse birth outcomes in surrounding neighborhoods. Further research teasing apart the relationship between exposure to emissions and area-level deprivation in neighborhoods surrounding industrial facilities and their combined effects on birth outcomes is needed.

  1. Volatile organic compound emissions from green waste composting: Characterization and ozone formation

    NASA Astrophysics Data System (ADS)

    Kumar, Anuj; Alaimo, Christopher P.; Horowitz, Robert; Mitloehner, Frank M.; Kleeman, Michael J.; Green, Peter G.

    2011-04-01

    Composting of green waste separated from the disposed solid waste stream reduces biodegradable inputs into landfills, and contributes valuable soil amendments to agriculture. Agencies in regions with severe air quality challenges, such as California's San Joaquin Valley (SJV), have raised concerns about gases emitted during the composting process, which are suspected to contribute to persistent high levels of ground-level ozone formation. The goal of the current study is to thoroughly characterize volatile organic compound (VOC) emissions from green waste compost piles of different ages (fresh tipped piles, 3-6 day old windrows, and 2-3 week old windrows). Multiple sampling and analytical approaches were applied to ensure the detection of most gaseous organic components emitted. More than 100 VOCs were detected and quantified in this study, including aliphatic alkanes, alkenes, aromatic hydrocarbons, biogenic organics, aldehydes, ketones, alcohols, furans, acids, esters, ether, halogenated hydrocarbons and dimethyl disulfide (DMDS). Alcohols were found to be the dominating VOC in the emissions from a compost pile regardless of age, with fluxes ranging from 2.6 to 13.0 mg m -2 min -1 with the highest emissions coming from the younger composting windrows (3-6 days). Average VOC emissions other than alcohols were determined to be 2.3 mg m -2 min -1 from younger windows, which was roughly two times higher than either the fresh tipping pile (1.2 mg m -2 min -1) or the older windrows (1.4 mg m -2 min -1). It was also observed that the older windrows emit a slightly larger proportion of more reactive compounds. Approximately 90% of the total VOCs were found to have maximum incremental reactivity of less than 2. Net ozone formation potential of the emissions was also assessed.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Heeter, Jenny; Keyser, David

    Cities are increasingly taking actions such as building code enforcement, urban planning, and public transit expansion to reduce emissions of carbon dioxide in their communities and municipal operations. However, many cities lack the quantitative information needed to estimate policy impacts and prioritize city actions in terms of carbon abatement potential and cost effectiveness. This report fills this research gap by providing methodologies to assess the carbon abatement potential of a variety of city actions. The methodologies are applied to an energy use data set of 23,458 cities compiled for the U.S. Department of Energy’s City Energy Profile tool. The analysismore » estimates the national carbon abatement potential of the most commonly implemented actions in six specific policy areas. The results of this analysis suggest that, in aggregate, cities could reduce nationwide carbon emissions by about 210 million metric tons of carbon dioxide (MMT CO 2) per year in a "moderate abatement scenario" by 2035 and 480 MMT CO 2/year in a "high abatement scenario" by 2035 through these common actions typically within a city’s control in the six policy areas. The aggregate carbon abatement potential of these specific areas equates to a reduction of 3%-7% relative to 2013 U.S. emissions. At the city level, the results suggest the average city could reduce carbon emissions by 7% (moderate) to 19% (high) relative to current city-level emissions. City carbon abatement potential is sensitive to national and state policies that affect the carbon intensity of electricity and transportation. Specifically, the U.S. Clean Power Plan and further renewable energy cost reductions could reduce city carbon emissions overall, helping cities achieve their carbon reduction goals.« less

  3. Analyzing the greenhouse gas impact potential of smallholder development actions across a global food security program

    NASA Astrophysics Data System (ADS)

    Grewer, Uwe; Nash, Julie; Gurwick, Noel; Bockel, Louis; Galford, Gillian; Richards, Meryl; Costa Junior, Ciniro; White, Julianna; Pirolli, Gillian; Wollenberg, Eva

    2018-04-01

    This article analyses the greenhouse gas (GHG) impact potential of improved management practices and technologies for smallholder agriculture promoted under a global food security development program. Under ‘business-as-usual’ development, global studies on the future of agriculture to 2050 project considerable increases in total food production and cultivated area. Conventional cropland intensification and conversion of natural vegetation typically result in increased GHG emissions and loss of carbon stocks. There is a strong need to understand the potential greenhouse gas impacts of agricultural development programs intended to achieve large-scale change, and to identify pathways of smallholder agricultural development that can achieve food security and agricultural production growth without drastic increases in GHG emissions. In an analysis of 134 crop and livestock production systems in 15 countries with reported impacts on 4.8 million ha, improved management practices and technologies by smallholder farmers significantly reduce GHG emission intensity of agricultural production, increase yields and reduce post-harvest losses, while either decreasing or only moderately increasing net GHG emissions per area. Investments in both production and post-harvest stages meaningfully reduced GHG emission intensity, contributing to low emission development. We present average impacts on net GHG emissions per hectare and GHG emission intensity, while not providing detailed statistics of GHG impacts at scale that are associated to additional uncertainties. While reported improvements in smallholder systems effectively reduce future GHG emissions compared to business-as-usual development, these contributions are insufficient to significantly reduce net GHG emission in agriculture beyond current levels, particularly if future agricultural production grows at projected rates.

  4. Impact of warmer weather on electricity sector emissions due to building energy use

    NASA Astrophysics Data System (ADS)

    Meier, Paul; Holloway, Tracey; Patz, Jonathan; Harkey, Monica; Ahl, Doug; Abel, David; Schuetter, Scott; Hackel, Scott

    2017-06-01

    Most US energy consumption occurs in buildings, with cooling demands anticipated to increase net building electricity use under warmer conditions. The electricity generation units that respond to this demand are major contributors to sulfur dioxide (SO2) and nitrogen oxides (NOx), both of which have direct impacts on public health, and contribute to the formation of secondary pollutants including ozone and fine particulate matter. This study quantifies temperature-driven changes in power plant emissions due to increased use of building air conditioning. We compare an ambient temperature baseline for the Eastern US to a model-calculated mid-century scenario with summer-average temperature increases ranging from 1 C to 5 C across the domain. We find a 7% increase in summer electricity demand and a 32% increase in non-coincident peak demand. Power sector modeling, assuming only limited changes to current generation resources, calculated a 16% increase in emissions of NOx and an 18% increase in emissions of SO2. There is a high level of regional variance in the response of building energy use to climate, and the response of emissions to associated demand. The East North Central census region exhibited the greatest sensitivity of energy demand and associated emissions to climate.

  5. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems.

    PubMed

    Laroo, Christopher A; Schenk, Charles R; Sanchez, L James; McDonald, Joseph

    2011-08-01

    Exhaust emissions of 17 2,3,7,8-substituted chlorinated dibenzo-p-dioxin/furan (CDD/F) congeners, tetra-octa CDD/F homologues, 12 2005 WHO chlorinated biphenyls (CB) congeners, mono-nona CB homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from a model year 2008 Cummins ISB engine were investigated. Testing included configurations composed of different combinations of aftertreatment including a diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), copper zeolite urea selective catalytic reduction (SCR), iron zeolite SCR, and ammonia slip catalyst. Results were compared to a baseline engine out configuration. Testing included the use of fuel that contained the maximum expected chlorine (Cl) concentration of U.S. highway diesel fuel and a Cl level 1.5 orders of magnitude above. Results indicate there is no risk for an increase in polychlorinated dibenzo-p-dioxin/furan and polychlorinated biphenyl emissions from modern diesel engines with catalyzed aftertreatment when compared to engine out emissions for configurations tested in this program. These results, along with PAH results, compare well with similar results from modern diesel engines in the literature. The results further indicate that polychlorinated dibenzo-p-dioxin/furan emissions from modern diesel engines both with and without aftertreatment are below historical values reported in the literature as well as the current inventory value.

  6. Enhanced performances for top-emitting white organic light-emitting diodes by utilizing green phosphor as energy transfer medium

    NASA Astrophysics Data System (ADS)

    Deng, Lingling; Bao, Yiyang; Zhang, Yanan; Peng, Ling; Zhu, Wenjing; Zhao, Yue; Xu, Yewen; Chen, Shufen

    2016-06-01

    In top-emitting white organic light-emitting diodes (TWOLEDs), the device performances attribute to the several important factors, such as exciton profile, energy transfer, and microcavity effect. In this paper, a TWOLED containing a heterojunction blue emission layer (EML) and a red EML is reported. A host material with high triplet energy level is employed for the adjacent blue and red EML, while the inefficient red emission reduces the emission efficiency of the TWOLED. In order to enhance the red emission efficiency, mixed-host and co-doping technologies are used in the red EML. By mixing the hole transporting and electron transporting host materials, the exciton recombination zone extends to the red EML to increase the red emission intensity and reduce the efficiency roll-off. And by co-doping a green phosphor into the red EML as the energy transfer medium, the energy transfer rate is enhanced, and then the current efficiency increases. Besides, both the mixed-host and co-doping change the carrier transport and the exciton recombination zone, which further affects the microcavity resonance in the devices. Due to the enhancement on the red emission intensity and the shift of resonant wavelength, the chromaticity of the TWOLED is improved.

  7. The effects of the catalytic converter and fuel sulfur level on motor vehicle particulate matter emissions: gasoline vehicles.

    PubMed

    Maricq, M Matti; Chase, Richard E; Xu, Ning; Podsiadlik, Diane H

    2002-01-15

    Scanning mobility and electrical low-pressure impactor particle size measurements conducted during chassis dynamometer testing reveal that neither the catalytic converter nor the fuel sulfur content has a significant effect on gasoline vehicle tailpipe particulate matter (PM) emissions. For current technology, port fuel injection, gasoline engines, particle number emissions are < or = 2 times higher from vehicles equipped with blank monoliths as compared to active catalysts, insignificant in contrast to the 90+% removal of hydrocarbons. PM mass emission rates derived from the size distributions are equal within the experimental uncertainty of 50-100%. Gravimetric measurements exhibit a 3-10-fold PM mass increase when the active catalyst is omitted, which is attributed to gaseous hydrocarbons adsorbing onto the filter medium. Both particle number and gravimetric measurements show that gasoline vehicle tailpipe PM emissions are independent (within 2 mg/mi) of fuel sulfur content over the 30-990 ppm concentration range. Nuclei mode sulfate aerosol is not observed in either test cell measurements or during wind tunnel testing. For three-way catalyst equipped vehicles, the principal sulfur emission is SO2; however a sulfur balance is not obtained over the drive cycle. Instead, sulfur is stored on the catalyst during moderate driving and then partially removed during high speed/load operation.

  8. Utilizing TEMPO surface estimates to determine changes in emissions, community exposure and environmental impacts from cement kilns across North America using alternative fuels

    NASA Astrophysics Data System (ADS)

    Pegg, M. J.; Gibson, M. D.; Asamany, E.

    2015-12-01

    A major problem faced by all North American (NA) Governments is managing solid waste from residential and non-residential sources. One way to mitigate the need to expand landfill sites across NA is waste diversion for use as alternative fuel in industries such as cement manufacture. Currently, waste plastic, tires, waste shingles and other high carbon content waste destined for landfill are being explored, or currently used, as an alternative supplemental fuels for use in cement kilns across NA. While this is an attractive, environmentally sustainable solution, significant knowledge gaps remain in our fundamental understanding of whether these alternative fuels may lead to increased air pollution emissions from cement kilns across NA. The long-term objective of using TEMPO is to advance fundamental understanding of uncharacterized air pollution emissions and to assess the actual or potential environmental and health impacts of these emissions from cement kilns across NA. TEMPO measurements will be made in concert with in-situ observations augmented by air dispersion, land-use regression and receptor modelling. This application of TEMPO follows on from current research on a series of bench scale and pilot studies for Lafarge Canada Inc., that investigated the change in combustion emissions from various mixtures of coal (C), petroleum coke (PC) and non-recyclable alternative fuels. From our work we demonstrated that using an alternative fuel mixture in a cement kiln has potential to reduce emissions of CO2 by 34%; reduce NOx by 80%, and reduce fuel SO2 emissions by 98%. We also provided evidence that there would be a significant reduction in the formation of secondary ground-level ozone (O3) and secondary PM2.5 in downwind stack plumes if alternative waste derived fuels are used. The application of air dispersion, source apportionment, land use regression; together with remote sensing offers a powerful set of tools with the potential to improve air pollution community exposure research in NA. The application of the new NASA TEMPO satellite to track the dispersion of SO2, PM2.5 and NO2 in plumes and secondary O3 and aerosol formation downwind of cement kilns opens up an exciting new avenue of air pollution research in NA.

  9. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    NASA Astrophysics Data System (ADS)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  10. Measuring NMHC and NMOG emissions from motor vehicles via FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Gierczak, Christine A.; Kralik, Lora L.; Mauti, Adolfo; Harwell, Amy L.; Maricq, M. Matti

    2017-02-01

    The determination of non-methane organic gases (NMOG) emissions according to United States Environmental Protection Agency (EPA) regulations is currently a multi-step process requiring separate measurement of various emissions components by a number of independent on-line and off-line techniques. The Fourier transform infrared spectroscopy (FTIR) method described in this paper records all required components using a single instrument. It gives data consistent with the regulatory method, greatly simplifies the process, and provides second by second time resolution. Non-methane hydrocarbons (NMHCs) are measured by identifying a group of hydrocarbons, including oxygenated species, that serve as a surrogate for this class, the members of which are dynamically included if they are present in the exhaust above predetermined threshold levels. This yields an FTIR equivalent measure of NMHC that correlates within 5% to the regulatory flame ionization detection (FID) method. NMOG is then determined per regulatory calculation solely from FTIR recorded emissions of NMHC, ethanol, acetaldehyde, and formaldehyde, yielding emission rates that also correlate within 5% with the reference method. Examples are presented to show how the resulting time resolved data benefit aftertreatment development for light duty vehicles.

  11. New Non-LTE Model of OH and CO2 Emission in the Mesosphere-Lower Thermosphere and its Application to Retrieving Nighttime Parameters

    NASA Astrophysics Data System (ADS)

    Panka, Peter A.

    The hydroxyl, OH, and carbon dioxide, CO2, molecules and oxygen atoms, O(3P), are important parameters that characterize the chemistry, energetics, and dynamics of the nighttime mesosphere and lower thermosphere (MLT) region. Hence, there is much interest in obtaining high quality observations of these parameters in order to study the short-term variability as well as the long-term trends in characteristics of the MLT region. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite has been taking global, simultaneous measurements of limb infrared radiance in 10 spectral channels, including the OH 2.0 and 1.6-micron and CO2 4.3-micron emissions channels, continuously since late January 2002. These measurements can be interpreted using sophisticated non-Local Thermodynamic Equilibrium (non-LTE) models of OH and CO2 infrared emissions which can then be applied to obtain densities of these parameters (2.0 and 1.6-micron channel for O(3P)/OH and 4.3-micron channel for CO2). The latest non-LTE models of these molecules, however, do not fully represent all the dominant energy transfer mechanisms which influence their vibrational level distributions and infrared emissions. In particular, non-LTE models of CO2 4.3-micron emissions currently under-predict SABER measurements by up to 80%, and its application for the retrieval of CO2 will result in unrealistic densities. Additionally, current O(3P) retrievals from SABER OH emissions have been reported to be at least 30% higher compared to studies using other instruments. Methods to obtain OH total densities from SABER measurements have yet to be developed. Recent studies, however, have discovered a new energy transfer mechanism which influences both OH and CO2 infrared emissions, OH(v) → O(1D) → N2( v) → CO2(v3). This study focuses on the impact of this new mechanism on OH and CO2 infrared emissions as well as model applications for the retrieval of nighttime O( 3P), OH, and CO2 densities. We first study in detail the impact of the new mechanism on OH( v) vibrational level populations and emissions. We compared our calculations with the SABER/TIMED OH 1.6 and 2.0-micron limb radiances of the MLT and with ground and space observations of OH(v) densities in the nighttime mesosphere. We find that the new mechanism produces OH(v) density distributions which are in good agreement with both SABER limb OH emission observations and ground and space measurements. We then couple our OH non-LTE model with CO2 to study the impact of the new mechanism on CO2(v3) vibrational level populations and emissions. We compare our calculations with the SABER/TIMED 4.3-micron CO2 limb radiances and find that the new mechanism provides a strong enhancement of the 4.3-micron CO2 emissions, agreeing to within a 10-30% range. Further, a two-channel retrieval algorithm is developed to self-consistently invert the SABER measured radiances in the OH 2.0 and 1.6-micron channel to obtain vertical profiles of OH and O(3P) Volume Mixing Ratio (VMR). Studies of the inversion algorithm made with synthetic radiances indicate that a stable solution of the inverse problem can be obtained that is nearly independent of the starting conditions. The results presented from the two-channel algorithm to the SABER v2.0 data include comparisons of retrieved O(3P) with current SABER O(3P), in addition to O(3P) retrievals measured by the SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) instrument, as well as those calculated by the WACCM (Whole Atmosphere Community Climate Model) model for four different days. The O( 3P) density retrieved between 90-95 km are, on average, lower than current SABER O(3P) by 10-50%. OH retrievals are performed over the same days and are compared with OH WACCM calculations as well as other studies. Finally, a similar self-consistent algorithm used for the retrieval of daytime CO2 densities is adopted for nighttime. The situation, however, is more complex for nighttime CO2, where lack of solar irradiation excitation greatly reduce 4.3-micron emission sensitivity to CO 2 density and, therefore, produces unrealistic retrievals. Alternative retrieval methods will be required to overcome these obstacles. For daytime, retrieval of temperature and CO2 are performed simultaneously due to strong coupling between these two parameters. Consideration of this effect will be crucial to obtain accurate nighttime CO2 densities.

  12. Evolution of on-road vehicle exhaust emissions in Delhi

    NASA Astrophysics Data System (ADS)

    Goel, Rahul; Guttikunda, Sarath K.

    2015-03-01

    For a 40-year horizon (1990-2030), on-road vehicle exhaust emissions were evaluated, retrospectively and prospectively, for the largest urban agglomeration in India - the Greater Delhi region with a combined population of 22 million in 2011 (Delhi along with Ghaziabad, Noida, Greater Noida, Faridabad and Gurgaon). Emissions of particulate matter, sulfur dioxide, carbon monoxide and volatile organic compounds (VOCs) reached their peak during late 1990s through early 2000s after which they reduced significantly through year 2012. On the other hand, nitrogen oxides (NOx) and carbon dioxide show an increasing trend. The most reduction in emissions between 1998 and 2012 occurred as a result of implementation of four sets of vehicular emission standards, removal of lead, reduction of sulfur content, mandatory retirement of older commercial vehicles, and conversion of diesel and petrol run public transport vehicles to compressed natural gas. In addition, changes in the vehicular technology have also contributed to controlling emissions especially in case of auto-rickshaws and motorized two-wheelers, which changed from two-stroke to four-stroke. The rising trend of NOx along with the presence of VOCs indicates increasing tendency to form ground-level ozone and as a result, smog in the region. We predict that the current regime of vehicle technology, fuel standards, and high growth rate of private vehicles, is likely to nullify all the past emission reductions by the end of 2020s.

  13. Radio-Frequency-Controlled Urea Dosing for NH₃-SCR Catalysts: NH₃ Storage Influence to Catalyst Performance under Transient Conditions.

    PubMed

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-11-28

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.

  14. Multi-band Emission Light Curves of Jupiter: Insights on Brown Dwarfs and Directly Imaged Exoplanets

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Ge, Huazhi; Orton, Glenn S.; Fletcher, Leigh N.; Sinclair, James; Fernandes, Joshua; Momary, Thomas W.; Kasaba, Yasumasa; Sato, Takao M.; Fujiyoshi, Takuya

    2016-10-01

    Many brown dwarfs exhibit significant infrared flux variability (e.g., Artigau et al. 2009, ApJ, 701, 1534; Radigan et al. 2012, ApJ, 750, 105), ranging from several to twenty percent of the brightness. Current hypotheses include temperature variations, cloud holes and patchiness, and cloud height and thickness variations (e.g., Apai et al. 2013, ApJ, 768, 121; Robinson and Marley 2014, ApJ, 785, 158; Zhang and Showman 2014, ApJ, 788, L6). Some brown dwarfs show phase shifts in the light curves among different wavelengths (e.g., Buenzli et al. 2012, ApJ, 760, L31; Yang et al. 2016, arXiv:1605.02708), indicating vertical variations of the cloud distribution. The current observational technique can barely detect the brightness changes on the surfaces of nearby brown dwarfs (Crossfield et al. 2014, Nature, 505, 654) let alone resolve detailed weather patterns that cause the flux variability. The infrared emission maps of Jupiter might shed light on this problem. Using COMICS at Subaru Telescope, VISIR at Very Large Telescope (VLT) and NASA's Infrared Telescope Facility (IRTF), we obtained infrared images of Jupiter over several nights at multiple wavelengths that are sensitive to several pressure levels from the stratosphere to the deep troposphere below the ammonia clouds. The rotational maps and emission light curves are constructed. The individual pixel brightness varies up to a hundred percent level and the variation of the full-disk brightness is around several percent. Both the shape and amplitude of the light curves are significantly distinct at different wavelengths. Variation of light curves at different epochs and phase shift among different wavelengths are observed. We will present principle component analysis to identify dominant emission features such as stable vortices, cloud holes and eddies in the belts and zones and strong emissions in the aurora region. A radiative transfer model is used to simulate those features to get a more quantitative understanding. This work provides rich insights on the relationship between observed light curves and weather on brown dwarfs and perhaps on directly imaged exoplanets in the future.

  15. Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation

    NASA Astrophysics Data System (ADS)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Gsella, A.; Amann, M.

    2013-08-01

    NO2 concentrations at the street level are a major concern for urban air quality in Europe and have been regulated under the EU Thematic Strategy on Air Pollution. Despite the legal requirements, limit values are exceeded at many monitoring stations with little or no improvement during recent years. In order to assess the effects of future emission control regulations on roadside NO2 concentrations, a downscaling module has been implemented in the GAINS integrated assessment model. The module follows a hybrid approach based on atmospheric dispersion calculations and observations from the AirBase European air quality data base that are used to estimate site-specific parameters. Pollutant concentrations at every monitoring site with sufficient data coverage are disaggregated into contributions from regional background, urban increment, and local roadside increment. The future evolution of each contribution is assessed with a model of the appropriate scale - 28 × 28 km grid based on the EMEP Model for the regional background, 7 × 7 km urban increment based on the CHIMERE Chemistry Transport Model, and a chemical box model for the roadside increment. Thus, different emission scenarios and control options for long-range transport, regional and local emissions can be analysed. Observed concentrations and historical trends are well captured, in particular the differing NO2 and total NOx = NO + NO2 trends. Altogether, more than 1950 air quality monitoring stations in the EU are covered by the model, including more than 400 traffic stations and 70% of the critical stations. Together with its well-established bottom-up emission and dispersion calculation scheme, GAINS is thus able to bridge the scales from European-wide policies to impacts in street canyons. As an application of the model, we assess the evolution of attainment of NO2 limit values under current legislation until 2030. Strong improvements are expected with the introduction of the Euro 6 emission standard for light duty vehicles; however, for some major European cities, further measures may be required, in particular if aiming to achieve compliance at an earlier time.

  16. Modelling NO2 concentrations at the street level in the GAINS integrated assessment model: projections under current legislation

    NASA Astrophysics Data System (ADS)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Gsella, A.; Amann, M.

    2014-01-01

    NO2 concentrations at the street level are a major concern for urban air quality in Europe and have been regulated under the EU Thematic Strategy on Air Pollution. Despite the legal requirements, limit values are exceeded at many monitoring stations with little or no improvement in recent years. In order to assess the effects of future emission control regulations on roadside NO2 concentrations, a downscaling module has been implemented in the GAINS integrated assessment model. The module follows a hybrid approach based on atmospheric dispersion calculations and observations from the AirBase European air quality database that are used to estimate site-specific parameters. Pollutant concentrations at every monitoring site with sufficient data coverage are disaggregated into contributions from regional background, urban increment, and local roadside increment. The future evolution of each contribution is assessed with a model of the appropriate scale: 28 × 28 km grid based on the EMEP Model for the regional background, 7 × 7 km urban increment based on the CHIMERE Chemistry Transport Model, and a chemical box model for the roadside increment. Thus, different emission scenarios and control options for long-range transport as well as regional and local emissions can be analysed. Observed concentrations and historical trends are well captured, in particular the differing NO2 and total NOx = NO + NO2 trends. Altogether, more than 1950 air quality monitoring stations in the EU are covered by the model, including more than 400 traffic stations and 70% of the critical stations. Together with its well-established bottom-up emission and dispersion calculation scheme, GAINS is thus able to bridge the scales from European-wide policies to impacts in street canyons. As an application of the model, we assess the evolution of attainment of NO2 limit values under current legislation until 2030. Strong improvements are expected with the introduction of the Euro 6 emission standard for light duty vehicles; however, for some major European cities, further measures may be required, in particular if aiming to achieve compliance at an earlier time.

  17. Portable nitrous oxide sensor for understanding agricultural and soil emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanton, Alan; Zondlo, Mark; Gomez, Anthony

    Nitrous oxide (N2O) is the third most important greenhouse gas (GHG,) with an atmospheric lifetime of ~114 years and a global warming impact ~300 times greater than that of carbon dioxide. The main cause of nitrous oxide’s atmospheric increase is anthropogenic emissions, and over 80% of the current global anthropogenic flux is related to agriculture, including associated land-use change. An accurate assessment of N2O emissions from agriculture is vital not only for understanding the global N2O balance and its impact on climate but also for designing crop systems with lower GHG emissions. Such assessments are currently hampered by the lackmore » of instrumentation and methodologies to measure ecosystem-level fluxes at appropriate spatial and temporal scales. Southwest Sciences and Princeton University are developing and testing new open-path eddy covariance instrumentation for continuous and fast (10 Hz) measurement of nitrous oxide emissions. An important advance, now being implemented, is the use of new mid-infrared laser sources that enable the development of exceptionally low power (<10 W) compact instrumentation that can be used even in remote sites lacking in power. The instrumentation will transform the ability to measure and understand ecosystem-level nitrous oxide fluxes. The Phase II results included successful extended field testing of prototype flux instruments, based on quantum cascade lasers, in collaboration with Michigan State University. Results of these tests demonstrated a flux detection limit of 5 µg m-2 s-1 and showed excellent agreement and correlation with measurements using chamber techniques. Initial tests of an instrument using an interband cascade laser (ICL) were performed, verifying that an order of magnitude reduction in instrument power requirements can be realized. These results point toward future improvements and testing leading to introduction of a commercial open path instrument for N2O flux measurements that is truly portable and cost-effective. The technology developed on this project is especially groundbreaking as it could be widely applied across FLUXNET and AmeriFlux sites (>1200 worldwide) for direct measurements of N2O exchange. The technology can be more broadly applied to gas monitoring requirements in industry, environmental monitoring, health and safety, etc.« less

  18. Stirling engines for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Ernst, William D.

    Laboratory and vehicle chassis dynamometer test data based on natural gas fuel are presented for kinematic Stirling engine emissions levels over a range of air/fuel ratios and exhaust gas recirculation levels. It is concluded that the natural-gas-fired Stirling engine is capable of producing exhaust pipe emissions levels significantly below those of other engines. The projected emissions levels are found to be compliant with the 1995 California Air Resources Board Mobile Source Emission Standards for ultra-low-emissions vehicles.

  19. Mobile measurement of methane emissions from natural gas developments in northeastern British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Atherton, Emmaline; Risk, David; Fougère, Chelsea; Lavoie, Martin; Marshall, Alex; Werring, John; Williams, James P.; Minions, Christina

    2017-10-01

    North American leaders recently committed to reducing methane emissions from the oil and gas sector, but information on current emissions from upstream oil and gas developments in Canada are lacking. This study examined the occurrence of methane plumes in an area of unconventional natural gas development in northwestern Canada. In August to September 2015 we completed almost 8000 km of vehicle-based survey campaigns on public roads dissecting oil and gas infrastructure, such as well pads and processing facilities. We surveyed six routes 3-6 times each, which brought us past over 1600 unique well pads and facilities managed by more than 50 different operators. To attribute on-road plumes to oil- and gas-related sources we used gas signatures of residual excess concentrations (anomalies above background) less than 500 m downwind from potential oil and gas emission sources. All results represent emissions greater than our minimum detection limit of 0.59 g s-1 at our average detection distance (319 m). Unlike many other oil and gas developments in the US for which methane measurements have been reported recently, the methane concentrations we measured were close to normal atmospheric levels, except inside natural gas plumes. Roughly 47 % of active wells emitted methane-rich plumes above our minimum detection limit. Multiple sites that pre-date the recent unconventional natural gas development were found to be emitting, and we observed that the majority of these older wells were associated with emissions on all survey repeats. We also observed emissions from gas processing facilities that were highly repeatable. Emission patterns in this area were best explained by infrastructure age and type. Extrapolating our results across all oil and gas infrastructure in the Montney area, we estimate that the emission sources we located (emitting at a rate > 0.59 g s-1) contribute more than 111 800 t of methane annually to the atmosphere. This value exceeds reported bottom-up estimates of 78 000 t of methane for all oil and gas sector sources in British Columbia. Current bottom-up methods for estimating methane emissions do not normally calculate the fraction of emitting oil and gas infrastructure with thorough on-ground measurements. However, this study demonstrates that mobile surveys could provide a more accurate representation of the number of emission sources in an oil and gas development. This study presents the first mobile collection of methane emissions from oil and gas infrastructure in British Columbia, and these results can be used to inform policy development in an era of methane emission reduction efforts.

  20. The effects of global change upon United States air quality

    NASA Astrophysics Data System (ADS)

    Gonzalez-Abraham, R.; Avise, J.; Chung, S. H.; Lamb, B.; Salathé, E. P., Jr.; Nolte, C. G.; Loughlin, D.; Guenther, A.; Wiedinmyer, C.; Duhl, T.; Zhang, Y.; Streets, D. G.

    2014-12-01

    To understand more fully the effects of global changes on ambient concentrations of ozone and particulate matter with aerodynamic diameter smaller than 2.5 μm (PM2.5) in the US, we conducted a comprehensive modeling effort to evaluate explicitly the effects of changes in climate, biogenic emissions, land use, and global/regional anthropogenic emissions on ozone and PM2.5 concentrations and composition. Results from the ECHAM5 global climate model driven with the A1B emission scenario from the Intergovernmental Panel on Climate Change (IPCC) were downscaled using the Weather Research and Forecasting (WRF) model to provide regional meteorological fields. We developed air quality simulations using the Community Multiscale Air Quality Model (CMAQ) chemical transport model for two nested domains with 220 and 36 km horizontal grid cell resolution for a semi-hemispheric domain and a continental United States (US) domain, respectively. The semi-hemispheric domain was used to evaluate the impact of projected Asian emissions changes on US air quality. WRF meteorological fields were used to calculate current (2000s) and future (2050s) biogenic emissions using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). For the semi-hemispheric domain CMAQ simulations, present-day global emissions inventories were used and projected to the 2050s based on the IPCC A1B scenario. Regional anthropogenic emissions were obtained from the US Environmental Protection Agency National Emission Inventory 2002 (EPA NEI2002) and projected to the future using the MARKet ALlocation (MARKAL) energy system model assuming a business as usual scenario that extends current decade emission regulations through 2050. Our results suggest that daily maximum 8 h average ozone (DM8O) concentrations will increase in a range between 2 to 12 ppb across most of the continental US, with the highest increase in the South, Central, and Midwest regions of the US, due to increases in temperature, enhanced biogenic emissions, and changes in land use. The effects of these factors are only partially offset by reductions in DM8O associated with decreasing US anthropogenic emissions. Increases in PM2.5 levels between 2 and 4 μg m-3 in the Northeast, Southeast, and South regions are mostly a result of enhanced biogenic emissions and land use changes. Little change in PM2.5 in the Central, Northwest, and Southwest regions was found, even when PM precursors are reduced with regulatory curtailment. Changes in temperature, relative humidity, and boundary conditions shift the composition but do not alter overall PM2.5 mass concentrations.

  1. 76 FR 47593 - Guidance for Small Business Entities on Current Good Manufacturing Practice for Positron Emission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ...] Guidance for Small Business Entities on Current Good Manufacturing Practice for Positron Emission... entitled ``PET Drugs--Current Good Manufacturing Practice (CGMP); Small Entity Compliance Guide.'' FDA has... consistent with FDA's good guidance practices regulation (21 CFR 10.115). The guidance represents the Agency...

  2. Low-energy plasma-cathode electron gun with a perforated emission electrode

    NASA Astrophysics Data System (ADS)

    Burdovitsin, Victor; Kazakov, Andrey; Medovnik, Alexander; Oks, Efim; Tyunkov, Andrey

    2017-11-01

    We describe research of influence of the geometric parameters of perforated electrode on emission parameters of a plasma cathode electron gun generating continuous electron beams at gas pressure 5-6 Pa. It is shown, that the emission current increases with increasing the hole diameters and decreasing the thickness of the perforated emission electrode. Plasma-cathode gun with perforated electron can provide electron extraction with an efficiency of up to 72 %. It is shown, that the current-voltage characteristic of the electron gun with a perforated emission electrode differs from that of similar guns with fine mesh grid electrode. The plasma-cathode electron gun with perforated emission electrode is used for electron beam welding and sintering.

  3. Parametrically Optimized Carbon Nanotube-Coated Cold Cathode Spindt Arrays

    PubMed Central

    Yuan, Xuesong; Cole, Matthew T.; Zhang, Yu; Wu, Jianqiang; Milne, William I.; Yan, Yang

    2017-01-01

    Here, we investigate, through parametrically optimized macroscale simulations, the field electron emission from arrays of carbon nanotube (CNT)-coated Spindts towards the development of an emerging class of novel vacuum electron devices. The present study builds on empirical data gleaned from our recent experimental findings on the room temperature electron emission from large area CNT electron sources. We determine the field emission current of the present microstructures directly using particle in cell (PIC) software and present a new CNT cold cathode array variant which has been geometrically optimized to provide maximal emission current density, with current densities of up to 11.5 A/cm2 at low operational electric fields of 5.0 V/μm. PMID:28336845

  4. Active space debris charging for contactless electrostatic disposal maneuvers

    NASA Astrophysics Data System (ADS)

    Schaub, Hanspeter; Sternovsky, Zoltán

    2014-01-01

    The remote charging of a passive object using an electron beam enables touchless re-orbiting of large space debris from geosynchronous orbit (GEO) using electrostatic forces. The advantage of this method is that it can operate with a separation distance of multiple craft radii, thus reducing the risk of collision. The charging of the tug-debris system to high potentials is achieved by active charge transfer using a directed electron beam. Optimal potential distributions using isolated- and coupled-sphere models are discussed. A simple charging model takes into account the primary electron beam current, ultra-violet radiation induced photoelectron emission, collection of plasma particles, secondary electron emission and the recapture of emitted particles. The results show that through active charging in a GEO space environment high potentials can be both achieved and maintained with about a 75% transfer efficiency. Further, the maximum electrostatic tractor force is shown to be insensitive to beam current levels. This latter later result is important when considering debris with unknown properties.

  5. Fabrication of n-ZnO:Al/p-Si(100) heterojunction diode and its characterization

    NASA Astrophysics Data System (ADS)

    Parvathy Venu, M.; Dharmaprakash, S. M.; Byrappa, K.

    2018-04-01

    Aluminum doped ZnO (n-ZnO:Al) nanostructured thin films were grown on ZnO seed layer coated p-Si(100) substrate employing hydrothermal technique. X-ray diffraction pattern revealed that the ZnO:Al film possess hexagonal wurtzite structure with preferential orientation along (002) direction. Photoluminescence of the sample displayed near band edge emission peak in the ultra-violet region and defect level emission peak in the visible region. The as grown thin film was used in the fabrication of n-ZnO:Al/p-Si heterojunction diode and the room temperature current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied. The heterojunction exhibited fairly good rectification with an ideality of 2.49 and reverse saturation current of 2 nA. The barrier height was found to be 0.668 eV from the I-V measurements. The C-V measurements showed a decrease in the capacitance of the heterojunction with an increase in the reverse bias voltage.

  6. NOx emissions and photochemistry associated with oil and gas production

    NASA Astrophysics Data System (ADS)

    Edwards, P.; Brown, S. S.; Dube, W. P.; Holloway, J. S.; Petron, G.; Kofler, J.; Warneke, C.; Williams, E. J.; Young, C. J.; Geiger, F.

    2012-12-01

    Winter ozone concentrations exceeding the current national ambient air quality standards (NAAQS) were observed in the Uintah basin, Utah, during the winters of 2009-2010 and 2010-2011. The chemistry driving these ground level ozone episodes, usually considered an urban summertime phenomenon, is currently poorly understood. Emissions of ozone precursor species in the Uintah basin are complex, and thought to be driven largely by extensive oil and gas development and production within the basin. The Uintah Basin Winter Ozone Study (UBWOS) was a major collaborative field study in February-March 2012, with the aim of increasing our understanding of this important air quality issue. Through the use of a comprehensive suite of instrumentation and multiple measurement platforms we have been able to better characterize the sources of important ozone precursors, in particular NOx and VOCs, within the basin. These observations enable an investigation of the unique aspects of local sources and chemistry that lead to winter ozone formation within the Uintah basin.

  7. GaSb superluminescent diodes with broadband emission at 2.55 μm

    NASA Astrophysics Data System (ADS)

    Zia, Nouman; Viheriälä, Jukka; Koivusalo, Eero; Virtanen, Heikki; Aho, Antti; Suomalainen, Soile; Guina, Mircea

    2018-01-01

    We report the development of superluminescent diodes (SLDs) emitting mW-level output power in a broad spectrum centered at a wavelength of 2.55 μm. The emitting structure consists of two compressively strained GaInAsSb/GaSb-quantum wells placed within a lattice-matched AlGaAsSb waveguide. An average output power of more than 3 mW and a peak power of 38 mW are demonstrated at room temperature under pulsed operation. A cavity suppression element is used to prevent lasing at high current injection allowing emission in a broad spectrum with a full width at half maximum (FWHM) of 124 nm. The measured far-field of the SLD confirms a good beam quality at different currents. These devices open further development possibilities in the field of spectroscopy, enabling, for example, detection of complex molecules and mixtures of gases that manifest a complex absorption spectrum over a broad spectral range.

  8. Ion Traps at the Sun: Implications for Elemental Fractionation

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Musset, Sophie; Bommier, Véronique; Glesener, Lindsay

    2018-04-01

    Why the tenuous solar outer atmosphere, or corona, is much hotter than the underlying layers remains one of the greatest challenges for solar modeling. Detailed diagnostics of the coronal thermal structure come from extreme ultraviolet (EUV) emission. The EUV emission is produced by heavy ions in various ionization states and depends on the amount of these ions and on plasma temperature and density. Any nonuniformity of the elemental distribution in space or variability in time affects thermal diagnostics of the corona. Here we theoretically predict ionized chemical element concentrations in some areas of the solar atmosphere, where the electric current is directed upward. We then detect these areas observationally, by comparing the electric current density with the EUV brightness in an active region. We found a significant excess in EUV brightness in the areas with positive current density rather than negative. Therefore, we report the observational discovery of substantial concentrations of heavy ions in current-carrying magnetic flux tubes, which might have important implications for the elemental fractionation in the solar corona known as the first ionization potential effect. We call such areas of heavy ion concentration the “ion traps.” These traps hold enhanced ion levels until they are disrupted by a flare, whether large or small.

  9. Theory of step on leading edge of negative corona current pulse

    NASA Astrophysics Data System (ADS)

    Gupta, Deepak K.; Mahajan, Sangeeta; John, P. I.

    2000-03-01

    Theoretical models taking into account different feedback source terms (e.g., ion-impact electron emission, photo-electron emission, field emission, etc) have been proposed for the existence and explanation of the shape of negative corona current pulse, including the step on the leading edge. In the present work, a negative corona current pulse with the step on the leading edge is obtained in the presence of ion-impact electron emission feedback source only. The step on the leading edge is explained in terms of the plasma formation process and enhancement of the feedback source. Ionization wave-like movement toward the cathode is observed after the step. The conditions for the existence of current pulse, with and without the step on the leading edge, are also described. A qualitative comparison with earlier theoretical and experimental work is also included.

  10. Preliminary Results of Field Emission Cathode Tests

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  11. Time trend of polycyclic aromatic hydrocarbon emission factors from motor vehicles

    NASA Astrophysics Data System (ADS)

    Tao, Shu; Shen, Huizhong; Wang, Rong; Sun, Kang

    2010-05-01

    Motor vehicle is an important emission source of polycyclic aromatic hydrocarbons (PAHs) and this is particularly true in urban areas. Motor vehicle emission factors (EFs) for individual PAH compound reported in the literature varied for 4 to 5 orders of magnitude, leading to high uncertainty in emission estimation. In this study, the major factors affecting EFs were investigated and characterized by regression models. Based on the model developed, a motor vehicle PAH emission inventory at country level was developed. It was found that country and model year are the most important factors affecting EFs for PAHs. The influence of the two factors can be quantified by a single parameter of per capita gross domestic production (purchasing power parity), which was used as the independent variables of the regression models. The models developed using randomly selected 80% of measurements and tested with the remained data accounted for 28 to 48% of the variations in EFs for PAHs measured in 16 countries over 50 years. The regression coefficients of the EF prediction models were molecular weight dependent. Motor vehicle emission of PAHs from individual countries in the world in 1985, 1995, 2005, 2015, and 2025 were calculated and the global emission of total PAHs were 470, 390, and 430 Gg in 1985, 1995, and 2005 and will be 290 and 130 Gg in 2015 and 2025, respectively. The emission is currently passing its peak and will decrease due to significant decrease in China and other developing countries.

  12. Carbon Dioxide Emissions From Fossil-Fuel Consumption in Indonesia

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Robert, A. J.

    2005-05-01

    Applying monthly sales and consumption data of coal, petroleum and natural gas, a monthly time series of carbon dioxide emissions from fossil-fuel consumption is created for Indonesia. These are then modeled with an autoregressive function to produce a quantitative description of the seasonal distribution and long-term pattern of CO2 emissions. Currently, Indonesia holds the 21st ranked position in total anthropogenic CO2 emissions among countries of the world. The demand for energy in Indonesia has been growing rapidly in recent years as Indonesia attempts to modernize and upgrade the standard of living for its citizens. With such a large population (a quarter of a billion people), the recent increase observed in the per capita energy use equates to a large escalation in total CO2 emissions. However, the economy and political climate is rather turbulent and thus emissions tend to fluctuate wildly. For example, Indonesia's energy consumption dropped substantially during the Asian economic crisis in the late 1990s. It is likely that the recent tsunami will also significantly impact energy consumption as the hard-hit Aceh region is the largest fuel-producing region of Indonesia. Therefore, Indonesia is a country whose emissions are more unpredictable than most countries that emit comparable levels of CO2. Complicating matters further, data collection practices in Indonesia are less diligent than in other countries with more stable economies. Thus, though CO2 emissions from Indonesia are a particular challenge to model, they are an important component to understanding the total global carbon cycle.

  13. Temperature Dependent Electron Transport Properties of Gold Nanoparticles and Composites: Scanning Tunneling Spectroscopy Investigations.

    PubMed

    Patil, Sumati; Datar, Suwarna; Dharmadhikari, C V

    2018-03-01

    Scanning tunneling spectroscopy (STS) is used for investigating variations in electronic properties of gold nanoparticles (AuNPs) and its composite with urethane-methacrylate comb polymer (UMCP) as function of temperature. Films are prepared by drop casting AuNPs and UMCP in desired manner on silicon substrates. Samples are further analyzed for morphology under scanning electron microscopy (SEM) and atomic force microscopy (AFM). STS measurements performed in temperature range of 33 °C to 142 °C show systematic variation in current versus voltage (I-V) curves, exhibiting semiconducting to metallic transition/Schottky behavior for different samples, depending upon preparation method and as function of temperature. During current versus time (I-t) measurement for AuNPs, random telegraphic noise is observed at room temperature. Random switching of tunneling current between two discrete levels is observed for this sample. Power spectra derived from I-t show 1/f2 dependence. Statistical analysis of fluctuations shows exponential behavior with time width τ ≈ 7 ms. Local density of states (LDOS) plots derived from I-V curves of each sample show systematic shift in valance/conduction band edge towards/away from Fermi level, with respect to increase in temperature. Schottky emission is best fitted electron emission mechanism for all samples over certain range of bias voltage. Schottky plots are used to calculate barrier heights and temperature dependent measurements helped in measuring activation energies for electron transport in all samples.

  14. Global ozone and air quality: a multi-model assessment of risks to human health and crops

    NASA Astrophysics Data System (ADS)

    Ellingsen, K.; Gauss, M.; van Dingenen, R.; Dentener, F. J.; Emberson, L.; Fiore, A. M.; Schultz, M. G.; Stevenson, D. S.; Ashmore, M. R.; Atherton, C. S.; Bergmann, D. J.; Bey, I.; Butler, T.; Drevet, J.; Eskes, H.; Hauglustaine, D. A.; Isaksen, I. S. A.; Horowitz, L. W.; Krol, M.; Lamarque, J. F.; Lawrence, M. G.; van Noije, T.; Pyle, J.; Rast, S.; Rodriguez, J.; Savage, N.; Strahan, S.; Sudo, K.; Szopa, S.; Wild, O.

    2008-02-01

    Within ACCENT, a European Network of Excellence, eighteen atmospheric models from the U.S., Europe, and Japan calculated present (2000) and future (2030) concentrations of ozone at the Earth's surface with hourly temporal resolution. Comparison of model results with surface ozone measurements in 14 world regions indicates that levels and seasonality of surface ozone in North America and Europe are characterized well by global models, with annual average biases typically within 5-10 nmol/mol. However, comparison with rather sparse observations over some regions suggest that most models overestimate annual ozone by 15-20 nmol/mol in some locations. Two scenarios from the International Institute for Applied Systems Analysis (IIASA) and one from the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) have been implemented in the models. This study focuses on changes in near-surface ozone and their effects on human health and vegetation. Different indices and air quality standards are used to characterise air quality. We show that often the calculated changes in the different indices are closely inter-related. Indices using lower thresholds are more consistent between the models, and are recommended for global model analysis. Our analysis indicates that currently about two-thirds of the regions considered do not meet health air quality standards, whereas only 2-4 regions remain below the threshold. Calculated air quality exceedances show moderate deterioration by 2030 if current emissions legislation is followed and slight improvements if current emissions reduction technology is used optimally. For the "business as usual" scenario severe air quality problems are predicted. We show that model simulations of air quality indices are particularly sensitive to how well ozone is represented, and improved accuracy is needed for future projections. Additional measurements are needed to allow a more quantitative assessment of the risks to human health and vegetation from changing levels of surface ozone.

  15. Remote Sensing and the Kyoto Protocol: A Workshop Summary

    NASA Technical Reports Server (NTRS)

    Rosenqvist, Ake; Imhoff, Marc; Milne, Anthony; Dobson, Craig

    2000-01-01

    The Kyoto Protocol to the United Nations Framework Convention on Climate Change contains quantified, legally binding commitments to limit or reduce greenhouse gas emissions to 1990 levels and allows carbon emissions to be balanced by carbon sinks represented by vegetation. The issue of using vegetation cover as an emission offset raises a debate about the adequacy of current remote sensing systems and data archives to both assess carbon stocks/sinks at 1990 levels, and monitor the current and future global status of those stocks. These concerns and the potential ratification of the Protocol among participating countries is stimulating policy debates and underscoring a need for the exchange of information between the international legal community and the remote sensing community. On October 20-22 1999, two working groups of the International Society for Photogrammetry and Remote Sensing (ISPRS) joined with the University of Michigan (Michigan, USA) to convene discussions on how remote sensing technology could contribute to the information requirements raised by implementation of, and compliance with, the Kyoto Protocol. The meeting originated as a joint effort between the Global Monitoring Working Group and the Radar Applications Working Group in Commission VII of the ISPRS, co-sponsored by the University of Michigan. Tile meeting was attended by representatives from national government agencies and international organizations and academic institutions. Some of the key themes addressed were: (1) legal aspects of transnational remote sensing in the context of the Kyoto Protocol; (2) a review of the current and future and remote sensing technologies that could be applied to the Kyoto Protocol; (3) identification of areas where additional research is needed in order to advance and align remote sensing technology with the requirements and expectations of the Protocol; and 94) the bureaucratic and research management approaches needed to align the remote sensing community with both the science and policy communities.

  16. Penetration length-dependent hot electrons in the field emission from ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-01-01

    In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.

  17. A tale of two cities: Comparison of impacts on CO2 emissions, the indoor environment and health of home energy efficiency strategies in London and Milton Keynes

    NASA Astrophysics Data System (ADS)

    Shrubsole, C.; Das, P.; Milner, J.; Hamilton, I. G.; Spadaro, J. V.; Oikonomou, E.; Davies, M.; Wilkinson, P.

    2015-11-01

    Dwellings are a substantial source of global CO2 emissions. The energy used in homes for heating, cooking and running electrical appliances is responsible for a quarter of current total UK emissions and is a key target of government policies for greenhouse gas abatement. Policymakers need to understand the potential impact that such decarbonization policies have on the indoor environment and health for a full assessment of costs and benefits. We investigated these impacts in two contrasting settings of the UK: London, a predominantly older city and Milton Keynes, a growing new town. We employed SCRIBE, a building physics-based health impact model of the UK housing stock linked to the English Housing Survey, to examine changes, 2010-2050, in end-use energy demand, CO2 emissions, winter indoor temperatures, airborne pollutant concentrations and associated health impacts. For each location we modelled the existing (2010) housing stock and three future scenarios with different levels of energy efficiency interventions combined with either a business-as-usual, or accelerated decarbonization of the electricity grid approach. The potential for CO2 savings was appreciably greater in London than Milton Keynes except when substantial decarbonization of the electricity grid was assumed, largely because of the lower level of current energy efficiency in London and differences in the type and form of the housing stock. The average net impact on health per thousand population was greater in magnitude under all scenarios in London compared to Milton Keynes and more beneficial when it was assumed that purpose-provided ventilation (PPV) would be part of energy efficiency interventions, but more detrimental when interventions were assumed not to include PPV. These findings illustrate the importance of considering ventilation measures for health protection and the potential variation in the impact of home energy efficiency strategies, suggesting the need for tailored policy approaches in different locations, rather than adopting a universally rolled out strategy.

  18. Characteristics of the Remote Sensing Data Used in the Proposed Unfccc REDD+ Forest Reference Emission Levels (frels)

    NASA Astrophysics Data System (ADS)

    Johnson, B. A.; Scheyvens, H.; Samejima, H.; Onoda, M.

    2016-06-01

    Developing countries must submit forest reference emission levels (FRELs) to the UNFCCC to receive incentives for REDD+ activities (e.g. reducing emissions from deforestation/forest degradation, sustainable management of forests, forest carbon stock conservation/enhancement). These FRELs are generated based on historical CO2 emissions in the land use, land use change, and forestry sector, and are derived using remote sensing (RS) data and in-situ forest carbon measurements. Since the quality of the historical emissions estimates is affected by the quality and quantity of the RS data used, in this study we calculated five metrics (i-v below) to assess the quality and quantity of the data that has been used thus far. Countries could focus on improving on one or more of these metrics for the submission of future FRELs. Some of our main findings were: (i) the median percentage of each country mapped was 100%, (ii) the median historical timeframe for which RS data was used was 11.5 years, (iii) the median interval of forest map updates was 4.5 years, (iv) the median spatial resolution of the RS data was 30m, and (v) the median number of REDD+ activities that RS data was used for operational monitoring of was 1 (typically deforestation). Many new sources of RS data have become available in recent years, so complementary or alternative RS data sets for generating future FRELs can potentially be identified based on our findings; e.g. alternative RS data sets could be considered if they have similar or higher quality/quantity than the currently-used data sets.

  19. Life cycle Greenhouse gas emissions of current Oil Sands Technologies: surface mining and in situ applications.

    PubMed

    Bergerson, Joule A; Kofoworola, Oyeshola; Charpentier, Alex D; Sleep, Sylvia; Maclean, Heather L

    2012-07-17

    Life cycle greenhouse gas (GHG) emissions associated with two major recovery and extraction processes currently utilized in Alberta's oil sands, surface mining and in situ, are quantified. Process modules are developed and integrated into a life cycle model-GHOST (GreenHouse gas emissions of current Oil Sands Technologies) developed in prior work. Recovery and extraction of bitumen through surface mining and in situ processes result in 3-9 and 9-16 g CO(2)eq/MJ bitumen, respectively; upgrading emissions are an additional 6-17 g CO(2)eq/MJ synthetic crude oil (SCO) (all results are on a HHV basis). Although a high degree of variability exists in well-to-wheel emissions due to differences in technologies employed, operating conditions, and product characteristics, the surface mining dilbit and the in situ SCO pathways have the lowest and highest emissions, 88 and 120 g CO(2)eq/MJ reformulated gasoline. Through the use of improved data obtained from operating oil sands projects, we present ranges of emissions that overlap with emissions in literature for conventional crude oil. An increased focus is recommended in policy discussions on understanding interproject variability of emissions of both oil sands and conventional crudes, as this has not been adequately represented in previous studies.

  20. Effects of Thickness, Pulse Duration, and Size of Strip Electrode on Ferroelectric Electron Emission of Lead Zirconate Titanate Films

    NASA Astrophysics Data System (ADS)

    Yaseen, Muhammad; Ren, Wei; Chen, Xiaofeng; Feng, Yujun; Shi, Peng; Wu, Xiaoqing

    2018-02-01

    Sol-gel-derived lead zirconate titanate (PZT) thin-film emitters with thickness up to 9.8 μm have been prepared on Pt/TiO2/SiO2/Si wafer via chemical solution deposition with/without polyvinylpyrrolidone (PVP) modification, and the relationship between the film thickness and electron emission investigated. Notable electron emission was observed on application of a trigger voltage of 120 V for PZT film with thickness of 1.1 μm. Increasing the film thickness decreased the threshold field to initiate electron emission for non-PVP-modified films. In contrast, the electron emission behavior of PVP-modified films did not show significant dependence on film thickness, probably due to their porous structure. The emission current increased with decreasing strip width and space between strips. Furthermore, it was observed that increasing the duration of the applied pulse increased the magnitude of the emission current. The stray field on the PZT film thickness was also calculated and found to increase with increasing ferroelectric sample thickness. The PZT emitters were found to be fatigue free up to 105 emission cycles. Saturated emission current of around 25 mA to 30 mA was achieved for the electrode pattern used in this work.

Top