Sample records for current engineering design

  1. Space shuttle hypergolic bipropellant RCS engine design study, Bell model 8701

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A research program was conducted to define the level of the current technology base for reaction control system rocket engines suitable for space shuttle applications. The project consisted of engine analyses, design, fabrication, and tests. The specific objectives are: (1) extrapolating current engine design experience to design of an RCS engine with required safety, reliability, performance, and operational capability, (2) demonstration of multiple reuse capability, and (3) identification of current design and technology deficiencies and critical areas for future effort.

  2. Will future helicopters be diesel powered

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1982-05-01

    An investigator has found that, if current gas turbine engines in helicopters are replaced by compound adiabatic diesel engines, fuel savings of 40% are possible. This would hold true if the diesel engines are retrofitted to the current helicopter fleet or adapted to new helicopter designs. Problems such as engine placement, weight, and lubrication exist but may be surmountable with proper design.

  3. Engineering Design Skills Coverage in K-12 Engineering Program Curriculum Materials in the USA

    ERIC Educational Resources Information Center

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-01-01

    The current "K-12 Science Education framework" and "Next Generation Science Standards" (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed…

  4. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Astrophysics Data System (ADS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-03-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  5. Nuclear Engine System Simulation (NESS). Volume 1: Program user's guide

    NASA Technical Reports Server (NTRS)

    Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.

    1993-01-01

    A Nuclear Thermal Propulsion (NTP) engine system design analysis tool is required to support current and future Space Exploration Initiative (SEI) propulsion and vehicle design studies. Currently available NTP engine design models are those developed during the NERVA program in the 1960's and early 1970's and are highly unique to that design or are modifications of current liquid propulsion system design models. To date, NTP engine-based liquid design models lack integrated design of key NTP engine design features in the areas of reactor, shielding, multi-propellant capability, and multi-redundant pump feed fuel systems. Additionally, since the SEI effort is in the initial development stage, a robust, verified NTP analysis design tool could be of great use to the community. This effort developed an NTP engine system design analysis program (tool), known as the Nuclear Engine System Simulation (NESS) program, to support ongoing and future engine system and stage design study efforts. In this effort, Science Applications International Corporation's (SAIC) NTP version of the Expanded Liquid Engine Simulation (ELES) program was modified extensively to include Westinghouse Electric Corporation's near-term solid-core reactor design model. The ELES program has extensive capability to conduct preliminary system design analysis of liquid rocket systems and vehicles. The program is modular in nature and is versatile in terms of modeling state-of-the-art component and system options as discussed. The Westinghouse reactor design model, which was integrated in the NESS program, is based on the near-term solid-core ENABLER NTP reactor design concept. This program is now capable of accurately modeling (characterizing) a complete near-term solid-core NTP engine system in great detail, for a number of design options, in an efficient manner. The following discussion summarizes the overall analysis methodology, key assumptions, and capabilities associated with the NESS presents an example problem, and compares the results to related NTP engine system designs. Initial installation instructions and program disks are in Volume 2 of the NESS Program User's Guide.

  6. Bringing Engineering Design into High School Science Classrooms: The Heating/Cooling Unit

    ERIC Educational Resources Information Center

    Apedoe, Xornam S.; Reynolds, Birdy; Ellefson, Michelle R.; Schunn, Christian D.

    2008-01-01

    Infusing engineering design projects in K-12 settings can promote interest and attract a wide range of students to engineering careers. However, the current climate of high-stakes testing and accountability to standards leaves little room to incorporate engineering design into K-12 classrooms. We argue that design-based learning, the combination…

  7. Cryogenic gear technology for an orbital transfer vehicle engine and tester design

    NASA Technical Reports Server (NTRS)

    Calandra, M.; Duncan, G.

    1986-01-01

    Technology available for gears used in advanced Orbital Transfer Vehicle rocket engines and the design of a cryogenic adapted tester used for evaluating advanced gears are presented. The only high-speed, unlubricated gears currently in cryogenic service are used in the RL10 rocket engine turbomachinery. Advanced rocket engine gear systems experience operational load conditions and rotational speed that are beyond current experience levels. The work under this task consisted of a technology assessment and requirements definition followed by design of a self-contained portable cryogenic adapted gear test rig system.

  8. Energy Efficient Engine (E3) controls and accessories detail design report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Lavash, J. P.

    1982-01-01

    An Energy Efficient Engine program has been established by NASA to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, a new turbofan engine was designed. This report describes the fuel and control system for this engine. The system design is based on many of the proven concepts and component designs used on the General Electric CF6 family of engines. One significant difference is the incorporation of digital electronic computation in place of the hydromechanical computation currently used.

  9. Energy Efficient Engine: Control system component performance report

    NASA Technical Reports Server (NTRS)

    Beitler, R. S.; Bennett, G. W.

    1984-01-01

    An Energy Efficient Engine (E3) program was established to develop technology for improving the energy efficiency of future commercial transport aircraft engines. As part of this program, General Electric designed and tested a new engine. The design, fabrication, bench and engine testing of the Full Authority Digital Electronic Control (FADEC) system used for controlling the E3 Demonstrator Engine is described. The system design was based on many of the proven concepts and component designs used on the General Electric family of engines. One significant difference is the use of the FADEC in place of hydromechanical computation currently used.

  10. General Aviation Light Aircraft Propulsion: From the 1940's to the Next Century

    NASA Technical Reports Server (NTRS)

    Burkardt, Leo A.

    1998-01-01

    Current general aviation light aircraft are powered by engines that were originally designed in the 1940's. This paper gives a brief history of light aircraft engine development, explaining why the air-cooled, horizontally opposed piston engine became the dominant engine for this class of aircraft. Current engines are fairly efficient, and their designs have been updated through the years, but their basic design and operational characteristics are archaic in comparison to modem engine designs, such as those used in the automotive industry. There have been some innovative engine developments, but in general they have not been commercially successful. This paper gives some insight into the reasons for this lack of success. There is now renewed interest in developing modem propulsion systems for light aircraft, in the fore-front of which is NASA's General Aviation Propulsion (GAP) program. This paper gives an overview of the engines being developed in the GAP program, what they will mean to the general aviation community, and why NASA and its industry partners believe that these new engine developments will bring about a new era in general aviation light aircraft.

  11. Teacher Challenges to Implement Engineering Design in Secondary Technology Education

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive study examined the current status of technology education teacher practices with respect to engineering design. This article is the third article in a three-part series presenting the results of this study. The first article in the series titled "Examination of Engineering Design Curriculum Content" highlighted the research…

  12. Engineering design skills coverage in K-12 engineering program curriculum materials in the USA

    NASA Astrophysics Data System (ADS)

    Chabalengula, Vivien M.; Mumba, Frackson

    2017-11-01

    The current K-12 Science Education framework and Next Generation Science Standards (NGSS) in the United States emphasise the integration of engineering design in science instruction to promote scientific literacy and engineering design skills among students. As such, many engineering education programmes have developed curriculum materials that are being used in K-12 settings. However, little is known about the nature and extent to which engineering design skills outlined in NGSS are addressed in these K-12 engineering education programme curriculum materials. We analysed nine K-12 engineering education programmes for the nature and extent of engineering design skills coverage. Results show that developing possible solutions and actual designing of prototypes were the highly covered engineering design skills; specification of clear goals, criteria, and constraints received medium coverage; defining and identifying an engineering problem; optimising the design solution; and demonstrating how a prototype works, and making iterations to improve designs were lowly covered. These trends were similar across grade levels and across discipline-specific curriculum materials. These results have implications on engineering design-integrated science teaching and learning in K-12 settings.

  13. A Study of Current Trends and Issues Related to Technical/Engineering Design Graphics.

    ERIC Educational Resources Information Center

    Clark, Aaron C.; Scales Alice

    2000-01-01

    Presents results from a survey of engineering design graphics educators who responded to questions related to current trends and issues in the profession of graphics education. Concludes that there is a clear trend in institutions towards the teaching of constraint-based modeling and computer-aided manufacturing. (Author/YDS)

  14. Software Engineering Design Principles Applied to Instructional Design: What Can We Learn from Our Sister Discipline?

    ERIC Educational Resources Information Center

    Adnan, Nor Hafizah; Ritzhaupt, Albert D.

    2018-01-01

    The failure of many instructional design initiatives is often attributed to poor instructional design. Current instructional design models do not provide much insight into design processes for creating e-learning instructional solutions. Given the similarities between the fields of instructional design and software engineering, instructional…

  15. 76 FR 44648 - Notice of Availability of a Record of Decision (ROD) and Order for a Written Reevaluation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... and other associated airport projects are currently undergoing final engineering and design...) has submitted a request to the FAA for approval of the engineering and design refinements that are minor changes to the previously approved project. The ROD and Order approves the engineering and design...

  16. Integrating Engineering Design Challenges into Secondary STEM Education

    ERIC Educational Resources Information Center

    Carr, Ronald L.; Strobel, Johannes

    2011-01-01

    Engineering is being currently taught in the full spectrum of the P-12 system, with an emphasis on design-oriented teaching (Brophy, Klein, Portsmore, & Rogers, 2008). Due to only a small amount of research on the learning of engineering design in elementary and middle school settings, the community of practice lacks the necessary knowledge of the…

  17. Liquid rocket engine turbines

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Criteria for the design and development of turbines for rocket engines to meet specific performance, and installation requirements are summarized. The total design problem, and design elements are identified, and the current technology pertaining to these elements is described. Recommended practices for achieving a successful design are included.

  18. Examining Elementary School Students' Mental Models of Sun-Earth Relationships as a Result of Engaging in Engineering Design

    ERIC Educational Resources Information Center

    Dankenbring, Chelsey; Capobianco, Brenda M.

    2016-01-01

    Current reform efforts in science education in the United States call for students to learn science through the integration of science and engineering practices. Studies have examined the effect of engineering design on students' understanding of engineering, technology, and science concepts. However, the majority of studies emphasize the accuracy…

  19. Integrating Engineering Design into Technology Education: Georgia's Perspective

    ERIC Educational Resources Information Center

    Denson, Cameron D.; Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    This descriptive research study reported on Georgia's secondary level (grades 6-12) technology education programs capability to incorporate engineering concepts and/or engineering design into their curriculum. Participants were middle school and high school teachers in the state of Georgia who currently teach technology education. Participants…

  20. Propulsion technology for an advanced subsonic transport

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.; Antl, R. J.; Povolny, J. H.

    1972-01-01

    Engine design studies for future subsonic commercial transport aircraft were conducted in parallel with airframe studies. These studies surveyed a broad distribution of design variables, including aircraft configuration, payload, range, and speed, with particular emphasis on reducing noise and exhaust emissions without severe economic and performance penalties. The results indicated that an engine for an advanced transport would be similar to the currently emerging turbofan engines. Application of current technology in the areas of noise suppression and combustors imposed severe performance and economic penalties.

  1. Automotive Stirling engine: Mod 2 design report

    NASA Technical Reports Server (NTRS)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  2. Lightweight diesel aircraft engines for general aviation

    NASA Technical Reports Server (NTRS)

    Berenyi, S. G.; Brouwers, A. P.

    1980-01-01

    A methodical design study was conducted to arrive at new diesel engine configurations and applicable advanced technologies. Two engines are discussed and the description of each engine includes concept drawings. A performance analysis, stress and weight prediction, and a cost study were also conducted. This information was then applied to two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consisted of installation drawings, computer generated performance data, aircraft operating costs and drawings of the resulting airplanes. The performance data shows a vast improvement over current gasoline-powered aircraft. At the completion of this basic study, the program was expanded to evaluate a third engine configuration. This third engine incorporates the best features of the original two, and its design is currently in progress. Preliminary information on this engine is presented.

  3. Advanced General Aviation Turbine Engine (GATE) study

    NASA Technical Reports Server (NTRS)

    Smith, R.; Benstein, E. H.

    1979-01-01

    The small engine technology requirements suitable for general aviation service in the 1987 to 1988 time frame were defined. The market analysis showed potential United States engines sales of 31,500 per year providing that the turbine engine sales price approaches current reciprocating engine prices. An optimum engine design was prepared for four categories of fixed wing aircraft and for rotary wing applications. A common core approach was derived from the optimum engines that maximizes engine commonality over the power spectrum with a projected price competitive with reciprocating piston engines. The advanced technology features reduced engine cost, approximately 50 percent compared with current technology.

  4. The Einstein Suite: A Web-Based Tool for Rapid and Collaborative Engineering Design and Analysis

    NASA Technical Reports Server (NTRS)

    Palmer, Richard S.

    1997-01-01

    Taken together the components of the Einstein Suite provide two revolutionary capabilities - they have the potential to change the way engineering and financial engineering are performed by: (1) providing currently unavailable functionality, and (2) providing a 10-100 times improvement over currently available but impractical or costly functionality.

  5. Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES-3)

    NASA Technical Reports Server (NTRS)

    Dulikravich, George S. (Editor)

    1991-01-01

    Papers from the Third International Conference on Inverse Design Concepts and Optimization in Engineering Sciences (ICIDES) are presented. The papers discuss current research in the general field of inverse, semi-inverse, and direct design and optimization in engineering sciences. The rapid growth of this relatively new field is due to the availability of faster and larger computing machines.

  6. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, withmore » full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.« less

  7. Fuel Consumption Reduction for Diesel Power Generator Sets through the Application of an Advanced Turbocharger Operating at Constant Speed.

    DTIC Science & Technology

    1982-10-01

    engine driven, precision, 30KW-400Iz gen set. Similar calculations were made for the current, naturally aspirally , six cylinder diesel driving the same...turbocharged engine re- placing the current six cylinder, naturally aspirated , engine. Data from the engine model calculations was used to design a...VATN control rod so as to hold nearly a constant manifold pressure. Therefore the engine operates essentially like a naturally aspirated engine i.e

  8. Controls, health assessment, and conditional monitoring for large, reusable, liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Cikanek, H. A., III

    1986-01-01

    Past and future progress in the performance of control systems for large, liquid rocket engines typified such as current state-of-the-art, the Shuttle Main Engine (SSME), is discussed. Details of the first decade of efforts, which culminates in the F-1 and J-2 Saturn engines control systems, are traced, noting problem modes and improvements which were implemented to realize the SSME. Future control system designs, to accommodate the requirements of operation of engines for a heavy lift launch vehicle, an orbital transfer vehicle and the aerospace plane, are summarized. Generic design upgrades needed include an expanded range of fault detection, maintenance as-needed instead of as-scheduled, reduced human involvement in engine operations, and increased control of internal engine states. Current NASA technology development programs aimed at meeting the future control system requirements are described.

  9. Microbeads and Engineering Design in Chemistry: No Small Educational Investigation

    ERIC Educational Resources Information Center

    Hoffman, Adam; Turner, Ken

    2015-01-01

    A multipart laboratory activity introducing microbeads was created to meet engineering and engineering design practices consistent with new Next Generation Science Standards (NGSS). Microbeads are a current topic of concern as they have been found to cause adverse impacts in both marine and freshwater systems resulting in multiple states proposing…

  10. Student Interest in Engineering Design-Based Science

    ERIC Educational Resources Information Center

    Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian

    2016-01-01

    Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…

  11. Automotive Stirling Engine Development Program

    NASA Technical Reports Server (NTRS)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Rohdenburg, C.; Antonelli, M. (Editor)

    1983-01-01

    Program status and plans are discussed for component and technology development; reference engine system design, the upgraded Mod 1 engine; industry test and evaluation; and product assurance. Four current Mod 1 engines reached a total of 2523 operational hours, while two upgraded engines accumulated 166 hours.

  12. Aerospace Concurrent Engineering Design Teams: Current State, Next Steps and a Vision for the Future

    NASA Technical Reports Server (NTRS)

    Hihn, Jairus; Chattopadhyay, Debarati; Karpati, Gabriel; McGuire, Melissa; Borden, Chester; Panek, John; Warfield, Keith

    2011-01-01

    Over the past sixteen years, government aerospace agencies and aerospace industry have developed and evolved operational concurrent design teams to create novel spaceflight mission concepts and designs. These capabilities and teams, however, have evolved largely independently. In today's environment of increasingly complex missions with limited budgets it is becoming readily apparent that both implementing organizations and today's concurrent engineering teams will need to interact more often than they have in the past. This will require significant changes in the current state of practice. This paper documents the findings from a concurrent engineering workshop held in August 2010 to identify the key near term improvement areas for concurrent engineering capabilities and challenges to the long-term advancement of concurrent engineering practice. The paper concludes with a discussion of a proposed vision for the evolution of these teams over the next decade.

  13. Low-Noise Potential of Advanced Fan Stage Stator Vane Designs Verified in NASA Lewis Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    1999-01-01

    With the advent of new, more stringent noise regulations in the next century, aircraft engine manufacturers are investigating new technologies to make the current generation of aircraft engines as well as the next generation of advanced engines quieter without sacrificing operating performance. A current NASA initiative called the Advanced Subsonic Technology (AST) Program has set as a goal a 6-EPNdB (effective perceived noise) reduction in aircraft engine noise relative to 1992 technology levels by the year 2000. As part of this noise program, and in cooperation with the Allison Engine Company, an advanced, low-noise, high-bypass-ratio fan stage design and several advanced technology stator vane designs were recently tested in NASA Lewis Research Center's 9- by 15-Foot Low-Speed Wind Tunnel (an anechoic facility). The project was called the NASA/Allison Low Noise Fan.

  14. Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving

    PubMed Central

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein

    2016-01-01

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450

  15. Current and future technology in radial and axial gas turbines

    NASA Technical Reports Server (NTRS)

    Rohlik, H. E.

    1983-01-01

    Design approaches and flow analysis techniques currently employed by aircraft engine manufacturers are assessed. Studies were performed to define the characteristics of aircraft and engines for civil missions of the 1990's and beyond. These studies, coupled with experience in recent years, identified the critical technologies needed to meet long range goals in fuel economy and other operating costs. Study results, recent and current research and development programs, and an estimate of future design and analytic capabilities are discussed.

  16. Fracture mechanics /Dryden Lecture/. [aerospace structural design applications

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1974-01-01

    A historical outline of the engineering discipline of fracture mechanics is presented, and current analytical procedures are summarized. The current status of the discipline is assessed, and engineering applications are discussed, along with recommended directions for future study.

  17. Materials and structural aspects of advanced gas-turbine helicopter engines

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Acurio, J.

    1979-01-01

    The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.

  18. 40 CFR 86.091-7 - Maintenance of records; submittal of information; right of entry.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification testing, to translation of designs from the test stage to the production stage, or to vehicle (or...) In the case where a current production engine is modified for use in a certification vehicle (or as a... from a current production engine, a general description of the buildup of the engine (e.g...

  19. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  20. Engine System Loads Development for the Fastrac 60K Flight Engine

    NASA Technical Reports Server (NTRS)

    Frady, Greg; Christensen, Eric R.; Mims, Katherine; Harris, Don; Parks, Russell; Brunty, Joseph

    2000-01-01

    Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.

  1. Roster of NSAP (Navy Science Assistance Program) Field Team Members, Fiscal Years 1971-1986

    DTIC Science & Technology

    1985-08-05

    CAPTOR Evaluation Program, NSWC. Current Job/Position: Operational Requirements Analyst for a new generation of mines. Current Address: Officer in...to NSAP Field Assignment: General Engineer; combat systems engineering on new ship design concepts, NSWC. Current Job/Position: Electronic Engineer...ADDRESS 12. REPORT DATE Naval Surface Weapons Center (Code D23) 5 August 1985 10901 New Hampshire Avenue 13. NUMBER OF PAGES Silver Spring, MD 20910

  2. Feasibility of magnetic bearings for advanced gas turbine engines

    NASA Technical Reports Server (NTRS)

    Hibner, David; Rosado, Lewis

    1992-01-01

    The application of active magnetic bearings to advanced gas turbine engines will provide a product with major improvements compared to current oil lubricated bearing designs. A rethinking of the engine rotating and static structure design is necessary and will provide the designer with significantly more freedom to meet the demanding goals of improved performance, increased durability, higher reliability, and increased thrust to weight ratio via engine weight reduction. The product specific technology necessary for this high speed, high temperature, dynamically complex application has been defined. The resulting benefits from this approach to aircraft engine rotor support and the complementary engine changes and improvements have been assessed.

  3. Definition study for variable cycle engine testbed engine and associated test program

    NASA Technical Reports Server (NTRS)

    Vdoviak, J. W.

    1978-01-01

    The product/study double bypass variable cycle engine (VCE) was updated to incorporate recent improvements. The effect of these improvements on mission range and noise levels was determined. This engine design was then compared with current existing high-technology core engines in order to define a subscale testbed configuration that simulated many of the critical technology features of the product/study VCE. Detailed preliminary program plans were then developed for the design, fabrication, and static test of the selected testbed engine configuration. These plans included estimated costs and schedules for the detail design, fabrication and test of the testbed engine and the definition of a test program, test plan, schedule, instrumentation, and test stand requirements.

  4. Combined Heat and Power Systems Technology Development and Demonstration 370 kW High Efficiency Microturbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The C370 Program was awarded in October 2010 with the ambitious goal of designing and testing the most electrically efficient recuperated microturbine engine at a rated power of less than 500 kW. The aggressive targets for electrical efficiency, emission regulatory compliance, and the estimated price point make the system state-of-the-art for microturbine engine systems. These goals will be met by designing a two stage microturbine engine identified as the low pressure spool and high pressure spool that are based on derivative hardware of Capstone’s current commercially available engines. The development and testing of the engine occurred in two phases. Phasemore » I focused on developing a higher power and more efficient engine, that would become the low pressure spool which is based on Capstone’s C200 (200kW) engine architecture. Phase II integrated the low pressure spool created in Phase I with the high pressure spool, which is based on Capstone’s C65 (65 kW) commercially available engine. Integration of the engines, based on preliminary research, would allow the dual spool engine to provide electrical power in excess of 370 kW, with electrical efficiency approaching 42%. If both of these targets were met coupled with the overall CHP target of 85% total combined heating and electrical efficiency California Air Resources Board (CARB) level emissions, and a price target of $600 per kW, the system would represent a step change in the currently available commercial generation technology. Phase I of the C370 program required the development of the C370 low pressure spool. The goal was to increase the C200 engine power by a minimum of 25% — 250 kW — and efficiency from 32% to 37%. These increases in the C200 engine output were imperative to meet the power requirements of the engine when both spools were integrated. An additional benefit of designing and testing the C370 low pressure spool was the possibility of developing a stand-alone product for possible commercialization. The low pressure spool design activity focused on an aeropath derivative of the current C200 engine. The aeropath derivative included changes to the compressor section —compressor and inducer — and to the turbine nozzle. The increased power also necessitated a larger, more powerful generator and generator controller to support the increased power requirements. These two major design changes were completed by utilizing both advanced 3D modeling and computational fluid dynamics modelling. After design, modeling, and analysis, the decision was made to acquire and integrate the components for testing. The second task of Phase I was to integrate and test the components of the low pressure spool to validate power and efficiency. Acquisition of the components for the low pressure spool was completed utilizing Capstone’s current supplier base. Utilization of Capstone’s supply base for integration of the test article would allow — if the decision was made —expedited commercialization of the product. After integration of the engine components, the engine was tested and evaluated for performance and emissions. Test data analysis confirmed that the engine met all power and efficiency requirements and did so while maintaining CARB level emissions. The emissions were met without the use of any post processing or catalyst. After testing was completed, the DOE authorized — via a milestone review — proceeding to Phase II: the development of the integrated C370 engine. The C370 high pressure spool design activity required significant changes to the C65 engine architecture. The engine required a high power density generator, completely redesigned compressor stage, turbine section, recuperator, controls architecture, and intercooler stage asThe two most critical design challenges were the turbine section (the nozzle and turbine) and the controls architecture. The design and analysis of all of the components was completed and integrated into a system model. The system model — after numerous iterations — indicated that, once integrated, the engine will meet or exceed all system requirements. Unfortunately, the turbine section’s life requirements remain a technical challenge and will require continued refinement of the bi-metallic turbine wheel design and manufacturing approach to meet the life requirement at theses high temperatures. The current controls architecture requires substantial effort to develop a system capable of handling the high-speed, near real-time controls requirement, but it was determined not to be a technical roadblock for the project. The C370 Program has been a significant effort with state-of-the-art technical targets. The targets have pushed Capstone’s designers to the limits of current technology. The program has been fortunate to see many successes: the successful testing of the low pressure spool (C250), the development of new material processes, and the implementation of new design practices. The technology and practices learned during the program will be utilized in Capstone’s current product lines and future products. The C370 Program has been a resounding success on many fronts for the DOE and for Capstone.« less

  5. Applying the design-build-test paradigm in microbiome engineering.

    PubMed

    Pham, Hoang Long; Ho, Chun Loong; Wong, Adison; Lee, Yung Seng; Chang, Matthew Wook

    2017-12-01

    The recently discovered roles of human microbiome in health and diseases have inspired research efforts across many disciplines to engineer microbiome for health benefits. In this review, we highlight recent progress in human microbiome research and how modifications to the microbiome could result in implications to human health. Furthermore, we discuss the application of a 'design-build-test' framework to expedite microbiome engineering efforts by reviewing current literature on three key aspects: design principles to engineer the human microbiome, methods to engineer microbiome with desired functions, and analytical techniques to examine complex microbiome samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Aircraft Engine Emissions. [conference

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A conference on a aircraft engine emissions was held to present the results of recent and current work. Such diverse areas as components, controls, energy efficient engine designs, and noise and pollution reduction are discussed.

  7. Examination of Assessment Practices for Engineering Design Projects in Secondary Technology Education (Second Article in 3-Part Series)

    ERIC Educational Resources Information Center

    Kelley, Todd R.; Wicklein, Robert C.

    2009-01-01

    Based on the efforts to infuse engineering practices within the technology education curriculum it is appropriate to now investigate how technology education teachers are assessing engineering design activities within their classrooms. This descriptive study drew a full sample of high school technology teachers from the current International…

  8. 30 CFR 817.49 - Impoundments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...

  9. 30 CFR 817.49 - Impoundments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...

  10. 30 CFR 817.49 - Impoundments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...

  11. 30 CFR 817.49 - Impoundments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...

  12. 30 CFR 817.49 - Impoundments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of this part using current, prudent, engineering practices and any design criteria established by the... utilized by adjacent or surrounding landowners for agricultural, industrial, recreational, or domestic uses... event, the water from which shall be safely removed in accordance with current, prudent, engineering...

  13. Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.

    1997-01-01

    Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.

  14. Propulsion Study for Small Transport Aircraft Technology (STAT)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  15. The Use of Online Current Awareness Services by Natural Sciences and Engineering Faculty at Western Michigan University

    ERIC Educational Resources Information Center

    Leatherman, Carrie C.; Eckel, Edward J.

    2012-01-01

    Nearly every commercial database that covers natural sciences and engineering offers some type of current awareness (CA) service that provides regular updates to users on current literature in a selected field of interest. Current awareness services include e-mail alerts, tables of contents, and RSS feeds. This study was designed to find out what…

  16. Stratified charge rotary engine for general aviation

    NASA Technical Reports Server (NTRS)

    Mount, R. E.; Parente, A. M.; Hady, W. F.

    1986-01-01

    A development history, a current development status assessment, and a design feature and performance capabilities account are given for stratified-charge rotary engines applicable to aircraft propulsion. Such engines are capable of operating on Jet-A fuel with substantial cost savings, improved altitude capability, and lower fuel consumption by comparison with gas turbine powerplants. Attention is given to the current development program of a 400-hp engine scheduled for initial operations in early 1990. Stratified charge rotary engines are also applicable to ground power units, airborne APUs, shipboard generators, and vehicular engines.

  17. Geotechnical Engineering Circular No. 3. Design Guidance: Geotechnical Earthquake Engineering for Highways. Volume II - Design Examples

    DOT National Transportation Integrated Search

    1994-02-01

    The report contains an assessment of existing port infrastructure related to United States-Mexico trade, planned infrastructure improvements, an identification of current trade and transportation flows, and an assessment of emerging trade corridors. ...

  18. Lateral support systems and underpinning, volume II : design fundamentals.

    DOT National Transportation Integrated Search

    1976-04-01

    This report provides current information and design guidelines on cut-and-cover : tunneling for practicing engineers. The main emphasis is on the geotechnical : aspects of engineering. Included in this volume is a state-of-the-art summary of : displa...

  19. Lateral Support Systems And Underpinning. Volume II. Design Fundamentals

    DOT National Transportation Integrated Search

    1976-04-01

    This report provides current information and design guidelines on cut-and-cover tunneling for practicing engineers. The main emphasis is on the geotechnical aspects of engineering. Included in this volume is a state-of-the-art summary of displacement...

  20. Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.

    PubMed

    Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali

    2016-04-06

    Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The Design of Future Airbreathing Engine Systems within an Intelligent Synthesis Environment

    NASA Technical Reports Server (NTRS)

    Malone, J. B.; Housner, J. M.; Lytle, J. K.

    1999-01-01

    This paper describes a new Initiative proposed by the National Aeronautics and Space Administration (NASA). The purpose of this initiative is to develop a future design environment for engineering and science mission synthesis for use by NASA scientists and engineers. This new initiative is called the Intelligent Synthesis Environment (ISE). The paper describes the mission of NASA, future aerospace system characteristics, the current engineering design process, the ISE concept, and concludes with a description of possible ISE applications for the decision of air-breathing propulsion systems.

  2. Estimating design discharges for drainage structures in western Kansas.

    DOT National Transportation Integrated Search

    2013-06-01

    KDOT engineers have expressed concern that the hydrologic methods in the current KDOT Design Manual (Volume I, : Part C, 2011) may lead to over-sizing of drainage structures in Western Kansas. Some new structures designed by the current : methods are...

  3. COINGRAD; Control Oriented Interactive Graphical Analysis and Design.

    ERIC Educational Resources Information Center

    Volz, Richard A.; And Others

    The computer is currently a vital tool in engineering analysis and design. With the introduction of moderately priced graphics terminals, it will become even more important in the future as rapid graphic interaction between the engineer and the computer becomes more feasible in computer-aided design (CAD). To provide a vehicle for introducing…

  4. Design approaches to more energy efficient engines

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.; Colladay, R. S.; Macioce, L. E.

    1978-01-01

    The status of NASA's Energy Efficient Engine Project, a comparative government-industry effort aimed at advancing the technology base for the next generation of large turbofan engines for civil aircraft transports is summarized. Results of recently completed studies are reviewed. These studies involved selection of engine cycles and configurations that offer potential for at least 12% lower fuel consumption than current engines and also are economically attractive and environmentally acceptable. Emphasis is on the advancements required in component technologies and systems design concepts to permit future development of these more energy efficient engines.

  5. 78 FR 38672 - Ocean Dumping; Sabine-Neches Waterway (SNWW) Ocean Dredged Material Disposal Site Designation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-27

    ... March 2011 prepared by the U.S. Army Corps of Engineers (also Corps or USACE). Appendix B of Volume III... be considered on the proposed site designations. The U.S. Army Corps of Engineers Final EIS for the... of dredged material from the Sabine-Neches Waterway. Currently, the US Army Corps of Engineers will...

  6. Mars Reconnaissance Orbiter Mission: Systems Engineering Challenges on the Mars Reconnaissance Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Havens, Glen G.

    2007-01-01

    MRO project is a system of systems requiring system engineering team to architect, design, integrate, test, and operate these systems at each level of the project. The challenge of system engineering mission objectives into a single mission architecture that can be integrated tested, launched, and operated. Systems engineering must translate high-level requirements into integrated mission design. Systems engineering challenges were overcome utilizing a combination by creative designs built into MRO's flight and ground systems: a) Design of sophisticated spacecraft targeting and data management capabilities b) Establishment of a strong operations team organization; c) Implementation of robust operational processes; and d) Development of strategic ground tools. The MRO system has met the challenge of its driving requirements: a) MRO began its two-year primary science phase on November 7, 2006, and by July 2007, met it minimum requirement to collect 15 Tbits of data after only eight months of operations. Currently we have collected 22 Tbits. b) Based on current performance, mission data return could return 70 Tbits of data by the end of the primary science phase in 2008.

  7. Multi-fuel combustor for gas turbine engines: Phase 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melconian, J.O.; Marden, W.W., III

    An innovative can combustor configuration has been developed for gas turbine engines which has the potential of burning fuels ranging from gasoline to coal/water slurries at high efficiencies. The design is based on a Variable Residence Time (VRT) concept which allows large and agglomerated fuel particles adequate time to completely burn. High durability of the combustor is achieved by dual function use of the incoming air. For applications which require the burning of coal/water slurries, the design has the capability of removing the ash particles directly from the primary zone of the combustor. It is anticipated that because of themore » small size requirement of this combustor design, existing gas turbine engines could be retrofitted within the confines of the current engine envelope. In Phase 1, the feasibility of the concept was successfully demonstrated by three-dimensional mathematical modeling and water analogue tests. The Plexiglas model used in the water analogue tests was designed to fit the current production engine of a major manufacturer. 19 figs., 2 tabs.« less

  8. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  9. Developments in REDES: The rocket engine design expert system

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) is being developed at the NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP, a nozzle design program named RAO, a regenerative cooling channel performance evaluation code named RTE, and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES is built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  10. Developments in REDES: The Rocket Engine Design Expert System

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth O.

    1990-01-01

    The Rocket Engine Design Expert System (REDES) was developed at NASA-Lewis to collect, automate, and perpetuate the existing expertise of performing a comprehensive rocket engine analysis and design. Currently, REDES uses the rigorous JANNAF methodology to analyze the performance of the thrust chamber and perform computational studies of liquid rocket engine problems. The following computer codes were included in REDES: a gas properties program named GASP; a nozzle design program named RAO; a regenerative cooling channel performance evaluation code named RTE; and the JANNAF standard liquid rocket engine performance prediction code TDK (including performance evaluation modules ODE, ODK, TDE, TDK, and BLM). Computational analyses are being conducted by REDES to provide solutions to liquid rocket engine thrust chamber problems. REDES was built in the Knowledge Engineering Environment (KEE) expert system shell and runs on a Sun 4/110 computer.

  11. Human Factors in the Design of the Crew Exploration Vehicle (CEV)

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Byrne, Vicky; Holden, Kritina

    2007-01-01

    NASA s Space Exploration vision for humans to venture to the moon and beyond provides interesting human factors opportunities and challenges. The Human Engineering group at NASA has been involved in the initial phases of development of the Crew Exploration Vehicle (CEV), Orion. Getting involved at the ground level, Human Factors engineers are beginning to influence design; this involvement is expected to continue throughout the development lifecycle. The information presented here describes what has been done to date, what is currently going on, and what is expected in the future. During Phase 1, prior to the contract award to Lockheed Martin, the Human Engineering group was involved in generating requirements, conducting preliminary task analyses based on interviews with subject matter experts in all vehicle systems areas, and developing preliminary concepts of operations based on the task analysis results. In addition, some early evaluations to look at CEV net habitable volume were also conducted. The program is currently in Phase 2, which is broken down into design cycles, including System Readiness Review, Preliminary Design Review, and Critical Design Review. Currently, there are ongoing Human Engineering Technical Interchange Meetings being held with both NASA and Lockheed Martin in order to establish processes, desired products, and schedules. Multiple design trades and quick-look evaluations (e.g. display device layout and external window size) are also in progress. Future Human Engineering activities include requirement verification assessments and crew/stakeholder evaluations of increasing fidelity. During actual flights of the CEV, the Human Engineering group is expected to be involved in in-situ testing and lessons learned reporting, in order to benefit human space flight beyond the initial CEV program.

  12. Estimating design discharges for drainage structures in western Kansas : [summary].

    DOT National Transportation Integrated Search

    2013-06-01

    KDOT engineers have expressed concern that the hydrologic methods in the current KDOT Design Manual (Volume I, Part C, 2011) may lead to over-sizing of drainage structures in Western Kansas. Some new structures designed by the current methods are muc...

  13. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  14. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  15. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  16. 40 CFR 63.495 - Back-end process provisions-procedures to determine compliance with residual organic HAP...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... current process operating conditions. (iii) Design analysis based on accepted chemical engineering... quantity are production records, measurement of stream characteristics, and engineering calculations. (5...-end process operations using engineering assessment. Engineering assessment includes, but is not...

  17. Multidisciplinary optimization for engineering systems - Achievements and potential

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.

  18. Integrated Curriculum Design Reform of Civil Engineering Management Discipline Based on Inter-disciplinary Professional Training

    NASA Astrophysics Data System (ADS)

    Yidong, Xu; Ping, Wu; Jian, Chen; Jiansheng, Shen

    2018-05-01

    In view of the shortcomings of the current civil engineering management discipline, this paper investigates the necessity of the course design reform. Based on the analysis of basic occupation requirements of civil engineering management discipline, the basic ideas and implementation strategies of the integrated reform of curriculum design system are proposed, which can not only improve the students’ overall understanding of knowledge and skills, but also enhance the system of student learning.

  19. Multidisciplinary optimization for engineering systems: Achievements and potential

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.

  20. Design of a Hybrid Propulsion System for Orbit Raising Applications

    NASA Astrophysics Data System (ADS)

    Boman, N.; Ford, M.

    2004-10-01

    A trade off between conventional liquid apogee engines used for orbit raising applications and hybrid rocket engines (HRE) has been performed using a case study approach. Current requirements for lower cost and enhanced safety places hybrid propulsion systems in the spotlight. For evaluating and design of a hybrid rocket engine a parametric engineering code is developed, based on the combustion chamber characteristics of selected propellants. A single port cylindrical section of fuel grain is considered. Polyethylene (PE) and hydroxyl-terminated polybutadiene (HTPB) represents the fuels investigated. The engine design is optimized to minimize the propulsion system volume and mass, while keeping the system as simple as possible. It is found that the fuel grain L/D ratio boundary condition has a major impact on the overall hybrid rocket engine design.

  1. Multi-fuel rotary engine for general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, an advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25,000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed. Previously announced in STAR as N83-18910

  2. Combustion system CFD modeling at GE Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-01-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  3. Combustion system CFD modeling at GE Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Burrus, D.; Mongia, H.; Tolpadi, Anil K.; Correa, S.; Braaten, M.

    1995-03-01

    This viewgraph presentation discusses key features of current combustion system CFD modeling capabilities at GE Aircraft Engines provided by the CONCERT code; CONCERT development history; modeling applied for designing engine combustion systems; modeling applied to improve fundamental understanding; CONCERT3D results for current production combustors; CONCERT3D model of NASA/GE E3 combustor; HYBRID CONCERT CFD/Monte-Carlo modeling approach; and future modeling directions.

  4. Airesearch QCGAT program. [quiet clean general aviation turbofan engines

    NASA Technical Reports Server (NTRS)

    Heldenbrand, R. W.; Norgren, W. M.

    1979-01-01

    A model TFE731-1 engine was used as a baseline for the NASA quiet clean general aviation turbofan engine and engine/nacelle program designed to demonstrate the applicability of large turbofan engine technology to small general aviation turbofan engines, and to obtain significant reductions in noise and pollutant emissions while reducing or maintaining fuel consumption levels. All new technology design for rotating parts and all items in the engine and nacelle that contributed to the acoustic and pollution characteristics of the engine system were of flight design, weight, and construction. The major noise, emissions, and performance goals were met. Noise levels estimated for the three FAR Part 36 conditions, are 10 t0 15 ENPdB below FAA requirements; emission values are considerably reduced below that of current technology engines; and the engine performance represents a TSFC improvement of approximately 9 percent over other turbofan engines.

  5. Educating Engineers: Designing for the Future of the Field. Book Highlights

    ERIC Educational Resources Information Center

    Sheppard, Sheri D.; Macatangay, Kelly; Colby, Anne; Sullivan, William M.

    2008-01-01

    This multi-year study of undergraduate engineering education in the United States initiated questions about the alignment of engineering programs with the demands of current professional engineering practice. While describing engineering education from within the classroom and the lab, the report on the study offers new possibilities for teaching…

  6. Atlas Centaur Rocket With Reusable Booster Engines

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1993-01-01

    Proposed modification of Atlas Centaur enables reuse of booster engines. Includes replacement of current booster engines with engine of new design in which hydrogen used for both cooling and generation of power. Use of hydrogen in new engine eliminates coking and clogging and improves performance significantly. Primary advantages: reduction of cost; increased reliability; and increased payload.

  7. The Role of Authenticity in Design-Based Learning Environments: The Case of Engineering Education

    ERIC Educational Resources Information Center

    Strobel, J.; Wang, J.; Weber, N. R.; Dyehouse, M.

    2013-01-01

    The term "authenticity" is pervasive in the education literature in general and specifically in the design education and engineering education literature; yet, the construct is often used un-reflected and ill defined. The purpose of this paper is (1) to critically examine current conceptualizations of authenticity as principles to design learning…

  8. Protein Design for Nanostructural Engineering: General Aspects.

    PubMed

    Grove, Tijana Z; Cortajarena, Aitziber L

    2016-01-01

    This chapter aims to introduce the main challenges in the field of protein design for engineering of nanostructures and functional materials. First, we introduce proteins and illustrate the key characteristics that open many possibilities for the use of proteins in nanotechnology. Then, we describe the current state of the art of nanopatterning techniques and the actual needs of the emerging field of nanotechnology to develop new tools in order to achieve precise control and manipulation of elements at the nanoscale. In this sense, the increasing knowledge of protein science and advances in protein design allow to tackle current challenges such as the design of nanodevices, nanopatterned surfaces, and nanomachines. This book highlights the recent progresses of protein nanotechnology over the last decade and emphasizes the power of protein engineering through illustrative examples of protein based-assemblies and their potential applications.

  9. Peregrine Sustainer Motor Development

    NASA Technical Reports Server (NTRS)

    Brodell, Chuck; Franklin, Philip

    2015-01-01

    The Peregrine sounding rocket is an in-house NASA design that provides approximately 15 percent better performance than the motor it replaces. The design utilizes common materials and well-characterized architecture to reduce flight issues encountered with the current motors. It engages NASA design, analysts, test engineers and technicians, ballisticians, and systems engineers. The in-house work and collaboration within the government provides flexibility to efficiently accommodate design and program changes as the design matures and enhances the ability to meet schedule milestones. It provides a valuable tool to compare industry costs, develop contracts, and it develops foundational knowledge for the next generation of NASA engineers.

  10. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less

  11. Engineering Education in the Science Classroom: A Case Study of One Teacher's Disparate Approach with Ability-Tracked Classrooms

    ERIC Educational Resources Information Center

    Schnittka, Christine G.

    2012-01-01

    Currently, unless a K-12 student elects to enroll in technology-focused schools or classes, exposure to engineering design and habits of mind is minimal. However, the "Framework for K-12 Science Education," published by the National Research Council in 2011, includes engineering design as a new and major component of the science content…

  12. A summary of NASA/Air Force Full Scale Engine Research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    This paper summarizes a joint NASA/Air Force Full Scale Engine Research (FSER) program conducted with the F100 engine during the period 1974 through 1979. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items which have been addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology, and distortion sensitivity are identified and the associated test programs conducted at the NASA-Lewis Research Center are described. Results presented show that the FSER approach, which utilizes existing state-of-the-art engine hardware to evaluate advanced technology concepts and problem areas, can contribute a significant data base for future system applications. Aerodynamic phenomenon previously not considered by current design systems have been identified and incorporated into current industry design tools.

  13. Design and Test of Fan/Nacelle Models Quiet High-Speed Fan

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J. (Technical Monitor); Weir, Donald

    2003-01-01

    The Quiet High-Speed Fan program is a cooperative effort between Honeywell Engines & Systems (formerly AlliedSignal Engines & Systems) and the NASA Glenn Research Center. Engines & Systems has designed an advanced high-speed fan that will be tested on the Ultra High Bypass Propulsion Simulator in the NASA Glenn 9 x 15 foot wind tunnel, currently scheduled for the second quarter of 2000. An Engines & Systems modern fan design will be used as a baseline. A nacelle model is provided that is characteristic of a typical, modern regional aircraft nacelle and meets all of the program test objectives.

  14. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGFmore » 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is possible as current investigations continue.« less

  15. Development status of the Vulcain engine

    NASA Astrophysics Data System (ADS)

    Gastal, J.; Eury, S.; Borromee, J.; Micewicz, J. B.

    1993-06-01

    The present account of the current status of the Ariane V launch vehicle's Vulcain first-stage cryofueled bipropellant engine gives attention to the Vulcain's overall configuration, as well as to its component designs, operational flowcharts, turbopump and combustion chamber performance verification trials, and program management responsibilities. Prospective development efforts currently envisioned are noted.

  16. Designing a Pedagogical Model for Web Engineering Education: An Evolutionary Perspective

    ERIC Educational Resources Information Center

    Hadjerrouit, Said

    2005-01-01

    In contrast to software engineering, which relies on relatively well established development approaches, there is a lack of a proven methodology that guides Web engineers in building reliable and effective Web-based systems. Currently, Web engineering lacks process models, architectures, suitable techniques and methods, quality assurance, and a…

  17. Integrated two-cylinder liquid piston Stirling engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harnessmore » useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.« less

  18. Integrated two-cylinder liquid piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  19. Study of small turbofan engines applicable to single-engine light airplanes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merrill, G.L.

    1976-09-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  20. A Web Centric Architecture for Deploying Multi-Disciplinary Engineering Design Processes

    NASA Technical Reports Server (NTRS)

    Woyak, Scott; Kim, Hongman; Mullins, James; Sobieszczanski-Sobieski, Jaroslaw

    2004-01-01

    There are continuous needs for engineering organizations to improve their design process. Current state of the art techniques use computational simulations to predict design performance, and optimize it through advanced design methods. These tools have been used mostly by individual engineers. This paper presents an architecture for achieving results at an organization level beyond individual level. The next set of gains in process improvement will come from improving the effective use of computers and software within a whole organization, not just for an individual. The architecture takes advantage of state of the art capabilities to produce a Web based system to carry engineering design into the future. To illustrate deployment of the architecture, a case study for implementing advanced multidisciplinary design optimization processes such as Bi-Level Integrated System Synthesis is discussed. Another example for rolling-out a design process for Design for Six Sigma is also described. Each example explains how an organization can effectively infuse engineering practice with new design methods and retain the knowledge over time.

  1. Phase change materials handbook

    NASA Technical Reports Server (NTRS)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  2. Sociotechnical Systems Design: An Engineering Program for Social-Science Students.

    ERIC Educational Resources Information Center

    Harrison, Howard L.; And Others

    The University of Wisconsin College of Engineering's Sociotechnical Systems Design (STSD) Program, which was developed to provide social science students with systems concepts and basic technological skills necessary for attacking these problems, is considered. The need for such professionals, current educational responses, the organization of the…

  3. Engineering Margin Factors Used in the Design of the VVER Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Lizorkin, M. P.; Shishkov, L. K.

    2017-12-01

    The article describes methods for determination of the engineering margin factors currently used to estimate the uncertainties of the VVER reactor design parameters calculated via the KASKAD software package developed at the National Research Center Kurchatov Institute. These margin factors ensure the meeting of the operating (design) limits and a number of other restrictions under normal operating conditions.

  4. A 150 and 300 kW lightweight diesel aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Brouwers, A. P.

    1980-01-01

    The diesel engine was reinvestigated as an aircraft powerplant through design study conducted to arrive at engine configurations and applicable advanced technologies. Two engines are discussed, a 300 kW six-cylinder engine for twin engine general aviation aircraft and a 150 kW four-cylinder engine for single engine aircraft. Descriptions of each engine include concept drawings, a performance analysis, stress and weight data, and a cost study. This information was used to develop two airplane concepts, a six-place twin and a four-place single engine aircraft. The aircraft study consists of installation drawings, computer generated performance data, aircraft operating costs, and drawings of the resulting airplanes. The performance data show a vast improvement over current gasoline-powered aircraft.

  5. Advanced stratified charge rotary aircraft engine design study

    NASA Technical Reports Server (NTRS)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.; Norwood, E.; Pratt, W. B.; Ellis, D. R.; Huggins, G.; Mueller, A.; Hembrey, J. H.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise & installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  6. Cyber-Informed Engineering: The Need for a New Risk Informed and Design Methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Joseph Daniel; Anderson, Robert Stephen

    Current engineering and risk management methodologies do not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Current methodologies focus on equipment failures or human error as initiating events for a hazard, while cyber attacks use the functionality of a trusted system to perform operations outside of the intended design and without the operator’s knowledge. These threats can by-pass or manipulate traditionally engineered safety barriers and present false information, invalidating the fundamental basis of a safety analysis. Cyber threats must be fundamentally analyzed from a completely new perspective where neither equipment nor human operationmore » can be fully trusted. A new risk analysis and design methodology needs to be developed to address this rapidly evolving threatscape.« less

  7. The Influence of Microbiology on Spacecraft Design and Controls: A Historical Perspective of the Shuttle and International Space Station Programs

    NASA Technical Reports Server (NTRS)

    Castro, Victoria A.; Bruce, Rebekah J.; Ott, C. Mark; Pierson, D. L.

    2006-01-01

    For over 40 years, NASA has been putting humans safely into space in part by minimizing microbial risks to crew members. Success of the program to minimize such risks has resulted from a combination of engineering and design controls as well as active monitoring of the crew, food, water, hardware, and spacecraft interior. The evolution of engineering and design controls is exemplified by the implementation of HEPA filters for air treatment, antimicrobial surface materials, and the disinfection regimen currently used on board the International Space Station. Data from spaceflight missions confirm the effectiveness of current measures; however, fluctuations in microbial concentrations and trends in contamination events suggest the need for continued diligence in monitoring and evaluation as well as further improvements in engineering systems. The knowledge of microbial controls and monitoring from assessments of past missions will be critical in driving the design of future spacecraft.

  8. Multi-Fuel Rotary Engine for General Aviation Aircraft

    NASA Technical Reports Server (NTRS)

    Jones, C.; Ellis, D. R.; Meng, P. R.

    1983-01-01

    Design studies, conducted for NASA, of Advanced Multi-fuel General Aviation and Commuter Aircraft Rotary Stratified Charge Engines are summarized. Conceptual design studies of an advanced engine sized to provide 186/250 shaft KW/HP under cruise conditions at 7620/25,000 m/ft. altitude were performed. Relevant engine development background covering both prior and recent engine test results of the direct injected unthrottled rotary engine technology, including the capability to interchangeably operate on gasoline, diesel fuel, kerosene, or aviation jet fuel, are presented and related to growth predictions. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 30 to 35% fuel economy improvement for the Rotary-engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed.

  9. Robust Engineering Designs for Infrastructure Adaptation to a Changing Climate

    NASA Astrophysics Data System (ADS)

    Samaras, C.; Cook, L.

    2015-12-01

    Infrastructure systems are expected to be functional, durable and safe over long service lives - 50 to over 100 years. Observations and models of climate science show that greenhouse gas emissions resulting from human activities have changed climate, weather and extreme events. Projections of future changes (albeit with uncertainties caused by inadequacies of current climate/weather models) can be made based on scenarios for future emissions, but actual future emissions are themselves uncertain. Most current engineering standards and practices for infrastructure assume that the probabilities of future extreme climate and weather events will match those of the past. Climate science shows that this assumption is invalid, but is unable, at present, to define these probabilities over the service lives of existing and new infrastructure systems. Engineering designs, plans, and institutions and regulations will need to be adaptable for a range of future conditions (conditions of climate, weather and extreme events, as well as changing societal demands for infrastructure services). For their current and future projects, engineers should: Involve all stakeholders (owners, financers, insurance, regulators, affected public, climate/weather scientists, etc.) in key decisions; Use low regret, adaptive strategies, such as robust decision making and the observational method, comply with relevant standards and regulations, and exceed their requirements where appropriate; Publish design studies and performance/failure investigations to extend the body of knowledge for advancement of practice. The engineering community should conduct observational and modeling research with climate/weather/social scientists and the concerned communities and account rationally for climate change in revised engineering standards and codes. This presentation presents initial research on decisionmaking under uncertainty for climate resilient infrastructure design.

  10. A white paper: Operational efficiency. New approaches to future propulsion systems

    NASA Technical Reports Server (NTRS)

    Rhodes, Russel; Wong, George

    1991-01-01

    Advanced launch systems for the next generation of space transportation systems (1995 to 2010) must deliver large payloads (125,000 to 500,000 lbs) to low earth orbit (LEO) at one tenth of today's cost, or 300 to 400 $/lb of payload. This cost represents an order of magnitude reduction from the Titan unmanned vehicle cost of delivering payload to orbit. To achieve this sizable reduction, the operations cost as well as the engine cost must both be lower than current engine system. The Advanced Launch System (ALS) is studying advanced engine designs, such as the Space Transportation Main Engine (STME), which has achieved notable reduction in cost. The results are presented of a current study wherein another level of cost reduction can be achieved by designing the propulsion module utilizing these advanced engines for enhanced operations efficiency and reduced operations cost.

  11. CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.F. Beesley

    The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative designmore » process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.« less

  12. Protein design in systems metabolic engineering for industrial strain development.

    PubMed

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ceramic automotive Stirling engine study

    NASA Technical Reports Server (NTRS)

    Musikant, S.; Chiu, W.; Darooka, D.; Mullings, D. M.; Johnson, C. A.

    1985-01-01

    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed.

  14. Concept Designed and Developed for Distortion- Tolerant, High-Stability Engine Control

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Engine Control Future aircraft turbine engines, both commercial and military, must be able to successfully accommodate expected increased levels of steady-state and dynamic engine-face distortion. Advanced tactical aircraft are likely to use thrust vectoring to enhance their maneuverability. As a result, the engines will see more extreme aircraft angles-of-attack and sideslip levels than are currently encountered with present-day aircraft. Also, the mixed-compression inlets needed for the High Speed Civil Transport will likely encounter disturbances similar to those seen by tactical aircraft, in addition to planar pulse, inlet buzz, and high distortion levels at low flight speed and off-design operation. The current approach of incorporating a sufficient component design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight demonstrate an advanced, high-stability, integrated engine-control system that uses measurement-based, real-time estimates of distortion to enhance engine stability. The resulting distortion-tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been designed and developed, and the software implementing the concept has successfully accommodated time-varying distortion. The NASA Lewis Research Center is currently overseeing the development and validation of the hardware and software necessary to flight test the HISTEC concept. HISTEC is a contracted effort with Pratt & Whitney of West Palm Beach, Florida. The HISTEC approach includes two major systems: A Distortion Estimation System (DES) and Stability Management Control (SMC). DES is an aircraft-mounted, high-speed processor that estimates the amount and type of distortion present and its effect on the engine. It uses high-response pressure measurements at the engine face to calculate indicators of the type and extent of distortion in real time. From these indicators, DES determines the effects of distortion on the propulsion systems and the corresponding engine match point necessary to accommodate it. DES output consists of fan and compressor pressure ratio trim commands that are passed to the SMC. In addition, DES uses maneuver information, consisting of angle-of-attack and sideslip from the flight control, to anticipate high inlet distortion conditions. The SMC, which is contained in the engine-mounted, Improved Digital Electronic Engine Control (IDEEC), includes advanced control laws to directly control the fan and compressor transient operating line (pressure ratio). These advanced control laws, with a multivariable design, have the potential for higher bandwidth and the resulting more precise control of engine match. The ability to measure and assess the distortion effects in real time coupled with a high-response controller improves engine stability at high levels of distortion. The software algorithms implementing DES have been designed, developed, and demonstrated, and integration testing of the DES and SMC software has been completed. The results show that the HISTEC system will be able to sense inlet distortion, determine the effect on engine stability, and accommodate distortion by maintaining an adequate margin for engine surge. The Pratt &Whitney Comprehensive Engine Diagnostic Unit was chosen as the DES processor. An instrumented inlet case for sensing distortion was designed and fabricated. HISTEC is scheduled for flight test on the ACTIVE F-15 aircraft at the NASA Dryden Flight Research Center in Edwards, California, in late 1996.

  15. Educational Modules in Tissue Engineering Based on the "How People Learn" Framework

    ERIC Educational Resources Information Center

    Birol, Gulnur; Liu, Shu Q.; Smith, H. David; Hirsch, Penny

    2006-01-01

    This paper describes an educational package for use in tertiary level tissue engineering education. Current learning science principles and theory were employed in the design process of these educational tools. Each module started with a challenge statement designed to motivate students and consisted of laboratory exercises centered on the "How…

  16. Making Space for the Act of Making: Creativity in the Engineering Design Classroom

    ERIC Educational Resources Information Center

    Lasky, Dorothea; Yoon, Susan A.

    2011-01-01

    Creativity continues to be an important goal for 21st century learning. However, teachers often have difficulties fostering creativity in their classrooms. Current creativity research suggests that the act of making can enhance the teaching of creativity. Hands-on engineering design lessons are ideal contexts for studying this effect. Through…

  17. Advanced Computing Technologies for Rocket Engine Propulsion Systems: Object-Oriented Design with C++

    NASA Technical Reports Server (NTRS)

    Bekele, Gete

    2002-01-01

    This document explores the use of advanced computer technologies with an emphasis on object-oriented design to be applied in the development of software for a rocket engine to improve vehicle safety and reliability. The primary focus is on phase one of this project, the smart start sequence module. The objectives are: 1) To use current sound software engineering practices, object-orientation; 2) To improve on software development time, maintenance, execution and management; 3) To provide an alternate design choice for control, implementation, and performance.

  18. The Human Side of Information's Converging Technology.

    ERIC Educational Resources Information Center

    Williams, Berney

    1982-01-01

    Discusses current issues in the design of information systems, noting contributions from three professions--computer science, human factors engineering, and information science. The eclectic nature of human factors engineering and the difficulty of drawing together studies with human engineering or software psychological components from diverse…

  19. NASA/USRA University Advanced Design Program Fifth Annual Summer Conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. Close cooperation between the NASA centers and the universities, the careful selection of design topics, and the enthusiasm of the students has resulted in a very successful program than now includes forty universities and eight NASA centers. The study topics cover a broad range of potential space and aeronautics projects.

  20. The development of a post-test diagnostic system for rocket engines

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.

    1991-01-01

    An effort was undertaken by NASA to develop an automated post-test, post-flight diagnostic system for rocket engines. The automated system is designed to be generic and to automate the rocket engine data review process. A modular, distributed architecture with a generic software core was chosen to meet the design requirements. The diagnostic system is initially being applied to the Space Shuttle Main Engine data review process. The system modules currently under development are the session/message manager, and portions of the applications section, the component analysis section, and the intelligent knowledge server. An overview is presented of a rocket engine data review process, the design requirements and guidelines, the architecture and modules, and the projected benefits of the automated diagnostic system.

  1. Toward Engineering Synthetic Microbial Metabolism

    PubMed Central

    McArthur, George H.; Fong, Stephen S.

    2010-01-01

    The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism. PMID:20037734

  2. Stirling engine design manual

    NASA Technical Reports Server (NTRS)

    Martini, W. R.

    1978-01-01

    This manual is intended to serve both as an introduction to Stirling engine analysis methods and as a key to the open literature on Stirling engines. Over 800 references are listed and these are cross referenced by date of publication, author and subject. Engine analysis is treated starting from elementary principles and working through cycles analysis. Analysis methodologies are classified as first, second or third order depending upon degree of complexity and probable application; first order for preliminary engine studies, second order for performance prediction and engine optimization, and third order for detailed hardware evaluation and engine research. A few comparisons between theory and experiment are made. A second order design procedure is documented step by step with calculation sheets and a worked out example to follow. Current high power engines are briefly described and a directory of companies and individuals who are active in Stirling engine development is included. Much remains to be done. Some of the more complicated and potentially very useful design procedures are now only referred to. Future support will enable a more thorough job of comparing all available design procedures against experimental data which should soon be available.

  3. Engineering and Design: Civil Works Cost Engineering

    DTIC Science & Technology

    1994-03-31

    labor cost requirements are broken into tasks of work. Each task is usually performd by a labor crew. Crews may vary in size and mix of skills. The...requested in advance of the expected purchase date. Suppliers are reluctant to guarantee future pricw and ofien will only quote current prices. It may be...unit cost is the overhead cost for the item. g. Sources for Pricing. The Cost Engineer must rely on judgement, historical data, and current labor market

  4. Software Engineering Education: Some Important Dimensions

    ERIC Educational Resources Information Center

    Mishra, Alok; Cagiltay, Nergiz Ercil; Kilic, Ozkan

    2007-01-01

    Software engineering education has been emerging as an independent and mature discipline. Accordingly, various studies are being done to provide guidelines for curriculum design. The main focus of these guidelines is around core and foundation courses. This paper summarizes the current problems of software engineering education programs. It also…

  5. A hydrogen-oxygen rocket engine coolant passage design program (RECOP) for fluid-cooled thrust chambers and nozzles

    NASA Technical Reports Server (NTRS)

    Tomsik, Thomas M.

    1994-01-01

    The design of coolant passages in regeneratively cooled thrust chambers is critical to the operation and safety of a rocket engine system. Designing a coolant passage is a complex thermal and hydraulic problem requiring an accurate understanding of the heat transfer between the combustion gas and the coolant. Every major rocket engine company has invested in the development of thrust chamber computer design and analysis tools; two examples are Rocketdyne's REGEN code and Aerojet's ELES program. In an effort to augment current design capabilities for government and industry, the NASA Lewis Research Center is developing a computer model to design coolant passages for advanced regeneratively cooled thrust chambers. The RECOP code incorporates state-of-the-art correlations, numerical techniques and design methods, certainly minimum requirements for generating optimum designs of future space chemical engines. A preliminary version of the RECOP model was recently completed and code validation work is in progress. This paper introduces major features of RECOP and compares the analysis to design points for the first test case engine; the Pratt & Whitney RL10A-3-3A thrust chamber.

  6. 40 CFR 94.215 - Maintenance of records; submittal of information; right of entry.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... testing, to translation of designs from the test stage to the production stage, or to engine manufacture... certification under this subpart including: (A) In the case where a current production engine is modified for... production engine, a general description of the buildup of the engine (e.g., whether experimental heads were...

  7. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  8. Validating the CDIO Syllabus for Engineering Education Using the Taxonomy of Engineering Competencies

    ERIC Educational Resources Information Center

    Woollacott, L. C.

    2009-01-01

    The CDIO (Conceive-Design-Implement-Operate) syllabus is the most detailed statement on the goals of engineering education currently found in the literature. This paper presents an in-depth validation exercise of the CDIO syllabus using the taxonomy of engineering competencies as a validating instrument. The study explains the attributes that make…

  9. Extending Ion Engine Technology to NEXT and Beyond

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Patterson, Michael J.; Foster, John E.; Rawlin, Vince K.; Soulas, George C.; Sovey, James S.; Kovaleski, Scott D.; Roman, Robert F.; Williams, George J., Jr.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    Extending ion engine technology beyond the current state-of-the art primary interplanetary electric propulsion system, the 2.3-kW NASA Solar Electric Propulsion Technology and Applications Readiness (NSTAR) system, will require thrusters with improved propellant throughput and total impulse capability. Many of the design choices that culminated in the NSTAR thrusters must be revisited, and their application to next generation ion engine technology must be evaluated. The concept of derating, which was successfully employed in NSTAR, has been applied to the 40 cm NASA Evolutionary Xenon Thruster (NEXT) currently under development at NASA Glenn Research Center (GRC). At 5-kW, NEXT operates with the same average beam current density as NSTAR, and at 10-kW, the peak beam current density is only ten percent greater than NSTAR. The result is that similar Ion optics technology is expected to yield comparable lifetime. Thick-accelerator- grid ion optics are also being tested to realize additional lifetime benefits. A 40-A discharge cathode is being developed for NEXT based on scaling the NSTAR design. Nevertheless, the experiences of the NSTAR ground tests and the thruster on the Deep Space One spacecraft indicate that the discharge cathode wear must be studied experimentally and theoretically to ensure that it meets the lifetime requirements. Although NEXT is in its infancy, investigations have already begun to examine possible modifications to engine design for even higher-power and higher-specific impulse engines. Ion optics using alternate materials such as titanium, graphite, or carbon-carbon composite are currently being investigated due to their low sputter yields at high voltage. To avoid the difficulties encountered using electrodes at high-currents, the use of a microwave-based ion thruster is under investigation for potential high-power ion thruster systems requiring long lifetimes. Additionally, alternative propellants are being considered for applications requiring high-specific impulse (>> 5000 s) and extremely long-life (>> 15,000 hr). Testing requirements make condensable propellants attractive for high-power engines. Although the NSTAR ion engine demonstrated the flight maturity of ion thruster technology, many challenges remain for the development of thrusters with improved propellant throughput and power handling capabilities.

  10. Congestion Management Systems: Review of Current Practices.

    DOT National Transportation Integrated Search

    2004-10-31

    National parks roads and parkways integrate highway engineering and landscape architecture in their designs to provide access to recreational areas, and to provide scenic recreational travel opportunities. Typically the engineering challenge is to bu...

  11. Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine digital control system design report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A digital electronic control was combined with conventional hydromechanical components to operate the four controlled variables on the under-the-wing engine: fuel flow, fan blade pitch, fan exhaust area, and core compressor stator angles. The engine and control combination offers improvements in noise, pollution, thrust response, operational monitoring, and pilot workload relative to current engines.

  12. An Analysis of the Management of RED HORSE (Rapid Engineering Deployable, Heavy Operational Repair Squadron, Engineer) Construction Projects

    DTIC Science & Technology

    1987-09-01

    folder . 4. Reviewing design documents and supervises project if designed by other than RED HORSE. 5. Chairing design conferences. 6. Coordinating design...project folder . Air Force Regulation 93-9 requires the project manager to maintain the following records: A. Approved project programming documents. B...these records are maintained in the project folder . Depending on the current status of the project, the project folder will be available from either the

  13. Study of an advanced General Aviation Turbine Engine (GATE)

    NASA Technical Reports Server (NTRS)

    Gill, J. C.; Short, F. R.; Staton, D. V.; Zolezzi, B. A.; Curry, C. E.; Orelup, M. J.; Vaught, J. M.; Humphrey, J. M.

    1979-01-01

    The best technology program for a small, economically viable gas turbine engine applicable to the general aviation helicopter and aircraft market for 1985-1990 was studied. Turboshaft and turboprop engines in the 112 to 746 kW (150 to 1000 hp) range and turbofan engines up to 6672 N (1500 lbf) thrust were considered. A good market for new turbine engines was predicted for 1988 providing aircraft are designed to capitalize on the advantages of the turbine engine. Parametric engine families were defined in terms of design and off-design performance, mass, and cost. These were evaluated in aircraft design missions selected to represent important market segments for fixed and rotary-wing applications. Payoff parameters influenced by engine cycle and configuration changes were aircraft gross mass, acquisition cost, total cost of ownership, and cash flow. Significant advantage over a current technology, small gas turbine engines was found especially in cost of ownership and fuel economy for airframes incorporating an air-cooled high-pressure ratio engine. A power class of 373 kW (500 hp) was recommended as the next frontier for technology advance where large improvements in fuel economy and engine mass appear possible through component research and development.

  14. Energy Efficient Engine: Flight propulsion system final design and analysis

    NASA Technical Reports Server (NTRS)

    Davis, Donald Y.; Stearns, E. Marshall

    1985-01-01

    The Energy Efficient Engine (E3) is a NASA program to create fuel saving technology for future transport engines. The Flight Propulsion System (FPS) is the engine designed to achieve E3 goals. Achieving these goals required aerodynamic, mechanical and system technologies advanced beyond that of current production engines. These technologies were successfully demonstrated in component rigs, a core engine and a turbofan ground test engine. The design and benefits of the FPS are presented. All goals for efficiency, environmental considerations, and economic payoff were met. The FPS has, at maximum cruise, 10.67 km (35,000 ft), M0.8, standard day, a 16.9 percent lower installed specific fuel consumption than a CF6-50C. It provides an 8.6 percent reduction in direct operating cost for a short haul domestic transport and a 16.2 percent reduction for an international long distance transport.

  15. Advanced space engine preliminary design. [liquid hydrogen/liquid oxygen upper stage engine for space tug application

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.

    1973-01-01

    Analysis and design of an optimum LO2/LH2, combustion topping cycle, 88,964 Newtons (20,000-pound) thrust, liquid rocket engine was conducted. The design selected is well suited to high-energy, upper-stage engine applications such as the Space Tug and embodies features directed toward optimization of vehicle performance. A configuration selection was conducted based on prior Air Force Contracts, and additional criteria for optimum stage performance. Following configuration selection, analyses and design of the major components and engine systems were conducted to sufficient depth to provide layout drawings suitable for subsequent detailing. In addition, engine packaging to a common interface and a retractable nozzle concept were defined. Alternative development plans and related costs were also established. The design embodies high-performance, low-weight, low NPSH requirements (saturated propellant inlet conditions at start), idle-mode operation, and autogenous pressurization. The design is the result of the significant past and current LO2/LH2 technology efforts of the NASA centers and the Air Force, as well as company-funded programs.

  16. Ares 1 First Stage Design, Development, Test, and Evaluation

    NASA Technical Reports Server (NTRS)

    Williams, Tom; Cannon, Scott

    2006-01-01

    The Ares I Crew Launch Vehicle (CLV) is an integral part of NASA s exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster (SRB) first stage derived from the current Space Shuttle SRB, a liquid oxygen/hydrogen fueled second stage utilizing a derivative of the Apollo upper stage engine for propulsion, and a Crew Exploration Vehicle (CEV) composed of command and service modules. This paper deals with current design, development, test, and evaluation planning for the CLV first stage SRB. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  17. Software Engineering for User Interfaces. Technical Report.

    ERIC Educational Resources Information Center

    Draper, Stephen W.; Norman, Donald A.

    The discipline of software engineering can be extended in a natural way to deal with the issues raised by a systematic approach to the design of human-machine interfaces. The user should be treated as part of the system being designed and projects should be organized to take into account the current lack of a priori knowledge of user interface…

  18. The Design of Transportation Equipment in Terms of Human Capabilities. The Role of Engineering Psychology in Transport Safety.

    ERIC Educational Resources Information Center

    McFarland, Ross A.

    Human factors engineering is considered with regard to the design of safety factors for aviation and highway transportation equipment. Current trends and problem areas are identified for jet air transportation and for highway transportation. Suggested solutions to transportation safety problems are developed by applying the techniques of human…

  19. The Design of Lightning Protection

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Engineering study guides design and monitoring of lightning protection. Design studies for project are collected in 150-page report, containing wealth of information on design of lightning protection systems and on instrumentation for monitoring current waveforms of lightning strokes.

  20. Truck Noise VIB : A Baseline Study of the Parameters Affecting Diesel Engine Intake and Exhaust Silencer Design

    DOT National Transportation Integrated Search

    1974-01-01

    A survey of diesel engine, truck, intake system, and exhaust system manufacturers was made for the purpose of compiling detailed information on all major mass-produced diesel engines currently used in the United States for trucks and buses, and on ex...

  1. Tissue engineering, stem cells, and cloning for the regeneration of urologic organs.

    PubMed

    Atala, Anthony

    2003-10-01

    Tissue engineering efforts are currently being undertaken for every type of tissue and organ within the urinary system. Most of the effort expended to engineer genitourinary tissues has occurred within the last decade. Tissue engineering techniques require a cell culture facility designed for human application. Personnel who have mastered the techniques of cell harvest, culture, and expansion as well as polymer design are essential for the successful application of this technology. Various engineered genitourinary tissues are at different stages of development, with some already being used clinically, a few in preclinical trials, and some in the discovery stage. Recent progress suggests that engineered urologic tissues may have an expanded clinical applicability in the future.

  2. A Segmented Ion-Propulsion Engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1992-01-01

    New design approach for high-power (100-kW class or greater) ion engines conceptually divides single engine into combination of smaller discharge chambers integrated to operate as single large engine. Analogous to multicylinder automobile engine, benefits include reduction in required accelerator system span-to-gap ratio for large-area engines, reduction in required hollow-cathode emission current, mitigation of plasma-uniformity problem, increased tolerance to accelerator system faults, and reduction in vacuum-system pumping speed.

  3. Proceedings of the 6th Annual Summer Conference: NASA/USRA University Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA/USRA University Advanced Design Program is a unique program that brings together NASA engineers, students, and faculty from United States engineering schools by integrating current and future NASA space/aeronautics engineering design projects into the university curriculum. The Program was conceived in the fall of 1984 as a pilot project to foster engineering design education in the universities and to supplement NASA's in-house efforts in advanced planning for space and aeronautics design. Nine universities and five NASA centers participated in the first year of the pilot project. The study topics cover a broad range of potential space and aeronautics projects that could be undertaken during a 20 to 30 year period beginning with the deployment of the Space Station Freedom scheduled for the mid-1990s. Both manned and unmanned endeavors are embraced, and the systems approach to the design problem is emphasized.

  4. Variable-cycle engines for supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Willis, E.

    1976-01-01

    Progress and the current status of the Variable Cycle Engine (VCE) study are reviewed with emphasis placed on the impact of technology advancements and design specifications. A large variety of VCE concepts are also examined.

  5. No Federal Programs are Designed Primarily to Support Engineering Education, but Many Do.

    ERIC Educational Resources Information Center

    General Accounting Office, Washington, DC.

    Federal civilian agency support for engineering education in 1980 is described. The support is placed in categories, current concerns about the supply of engineers and conditions of engineering schools are related to the support, and the changes made by the fiscal year 1982 budget are identified. It was found that 38 programs in 11 federal…

  6. Code JEF Facilities Engineering Home Page for the Internet

    NASA Technical Reports Server (NTRS)

    Mahaffey, Valerie A.; Harrison, Marla J. (Technical Monitor)

    1995-01-01

    There are always many activities going on in JEF. We work on and manage the Construction of Facilities (C of F) projects at NASA-Ames. We are constantly designing or analyzing a new facility or project, or a modification to an existing facility. Every day we answer numerous questions about engineering policy, codes and standards, we attend design reviews, we count dollars and we make sure that everything at the Center is designed and built according to good engineering judgment. In addition, we study literature and attend conferences to make sure that we keep current on new legislation and standards.

  7. On the design and structural analysis of jet engine fan blade structures

    NASA Astrophysics Data System (ADS)

    Amoo, Leye M.

    2013-07-01

    Progress in the design and structural analysis of commercial jet engine fan blades is reviewed and presented. This article is motivated by the key role fan blades play in the performance of advanced gas turbine jet engines. The fundamentals of the associated physics are emphasized. Recent developments and advancements have led to an increase and improvement in fan blade structural durability, stability and reliability. This article is intended as a high level review of the fan blade environment and current state of structural design to aid further research in developing new and innovative fan blade technologies.

  8. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  9. Current Launch Vehicle Practice and Data Base Assessment. Volume 1. Executive Summary and Report Body

    DTIC Science & Technology

    1989-06-01

    resulted in an increase of the intermediate seal purge pressure, revised redlines, and a design change from a lift-off seal to a labyrinth seal design. This...engine 0003 caused fa&i!ure of the primary lox seal and an uncontained engine fire. The redline cut was set by a HPOTP overspeed. This failure...occurred as a result of undetected internal HEX damage caused during arc welding which resulted in an engine fire. HEX coil leakage resulted in an

  10. Averting Denver Airports on a Chip

    NASA Technical Reports Server (NTRS)

    Sullivan, Kevin J.

    1995-01-01

    As a result of recent advances in software engineering capabilities, we are now in a more stable environment. De-facto hardware and software standards are emerging. Work on software architecture and design patterns signals a consensus on the importance of early system-level design decisions, and agreements on the uses of certain paradigmatic software structures. We now routinely build systems that would have been risky or infeasible a few years ago. Unfortunately, technological developments threaten to destabilize software design again. Systems designed around novel computing and peripheral devices will spark ambitious new projects that will stress current software design and engineering capabilities. Micro-electro-mechanical systems (MEMS) and related technologies provide the physical basis for new systems with the potential to produce this kind of destabilizing effect. One important response to anticipated software engineering and design difficulties is carefully directed engineering-scientific research. Two specific problems meriting substantial research attention are: A lack of sufficient means to build software systems by generating, extending, specializing, and integrating large-scale reusable components; and a lack of adequate computational and analytic tools to extend and aid engineers in maintaining intellectual control over complex software designs.

  11. Energy efficient engine flight propulsion system preliminary analysis and design report

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1979-01-01

    A flight propulsion system preliminary design was established that meets the program goals of at least a 12 percent reduction in thrust specific fuel consumption, at least a five percent reduction in direct operating cost, and one-half the performance deterioration rate of the most efficient current commercial engines. The engine provides a high probability of meeting the 1978 noise rule goal. Smoke and gaseous emissions defined by the EPA proposed standards for engines newly certified after 1 January 1981 are met with the exception of NOx, despite incorporation of all known NOx reduction technology.

  12. Building information modelling review with potential applications in tunnel engineering of China.

    PubMed

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  13. Building information modelling review with potential applications in tunnel engineering of China

    PubMed Central

    Zhou, Weihong; Qin, Haiyang; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-01-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance. PMID:28878970

  14. Building information modelling review with potential applications in tunnel engineering of China

    NASA Astrophysics Data System (ADS)

    Zhou, Weihong; Qin, Haiyang; Qiu, Junling; Fan, Haobo; Lai, Jinxing; Wang, Ke; Wang, Lixin

    2017-08-01

    Building information modelling (BIM) can be applied to tunnel engineering to address a number of problems, including complex structure, extensive design, long construction cycle and increased security risks. To promote the development of tunnel engineering in China, this paper combines actual cases, including the Xingu mountain tunnel and the Shigu Mountain tunnel, to systematically analyse BIM applications in tunnel engineering in China. The results indicate that BIM technology in tunnel engineering is currently mainly applied during the design stage rather than during construction and operation stages. The application of BIM technology in tunnel engineering covers many problems, such as a lack of standards, incompatibility of different software, disorganized management, complex combination with GIS (Geographic Information System), low utilization rate and poor awareness. In this study, through summary of related research results and engineering cases, suggestions are introduced and an outlook for the BIM application in tunnel engineering in China is presented, which provides guidance for design optimization, construction standards and later operation maintenance.

  15. 30 CFR 816.49 - Impoundments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...

  16. 30 CFR 816.49 - Impoundments.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...

  17. 30 CFR 816.49 - Impoundments.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...

  18. 30 CFR 816.49 - Impoundments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...

  19. 30 CFR 816.49 - Impoundments.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., prudent, engineering practices and any design criteria established by the regulatory authority. The... surrounding landowners for agricultural, industrial, recreational, or domestic uses. (6) The impoundment will... safely removed in accordance with current, prudent, engineering practices. Such an impoundment shall be...

  20. Potential of Diesel Engine, Emission Technology

    DOT National Transportation Integrated Search

    1980-03-01

    This report surveys diesel engine emission technologies applicable to passenger cars and light trucks. The general design and operating features are presented and discussed. Current and state-of-the-art concepts are reviewed with the focus on control...

  1. Measuring in situ mechanical properties of pavement subgrade soils

    DOT National Transportation Integrated Search

    1999-01-01

    This synthesis report will be of interest to pavement and geotechnical design and research engineers, geologists and engineering geologists, and similar laboratory personnel. It describes the current practice for measuring the in situ mechanical prop...

  2. QUICK - An interactive software environment for engineering design

    NASA Technical Reports Server (NTRS)

    Skinner, David L.

    1989-01-01

    QUICK, an interactive software environment for engineering design, provides a programmable FORTRAN-like calculator interface to a wide range of data structures as well as both built-in and user created functions. QUICK also provides direct access to the operating systems of eight different machine architectures. The evolution of QUICK and a brief overview of the current version are presented.

  3. Non-Toxic Orbital Maneuvering System Engine Development

    NASA Technical Reports Server (NTRS)

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John

    1999-01-01

    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  4. Advanced Subsonic Airplane Design and Economic Studies

    NASA Technical Reports Server (NTRS)

    Liebeck, Robert H.; Andrastek, Donald A.; Chau, Johnny; Girvin, Raquel; Lyon, Roger; Rawdon, Blaine K.; Scott, Paul W.; Wright, Robert A.

    1995-01-01

    A study was made to examine the effect of advanced technology engines on the performance of subsonic airplanes and provide a vision of the potential which these advanced engines offered. The year 2005 was selected as the entry-into-service (EIS) date for engine/airframe combination. A set of four airplane classes (passenger and design range combinations) that were envisioned to span the needs for the 2005 EIS period were defined. The airframes for all classes were designed and sized using 2005 EIS advanced technology. Two airplanes were designed and sized for each class: one using current technology (1995) engines to provide a baseline, and one using advanced technology (2005) engines. The resulting engine/airframe combinations were compared and evaluated on the basis on sensitivity to basic engine performance parameters (e.g. SFC and engine weight) as well as DOC+I. The advanced technology engines provided significant reductions in fuel burn, weight, and wing area. Average values were as follows: reduction in fuel burn = 18%, reduction in wing area = 7%, and reduction in TOGW = 9%. Average DOC+I reduction was 3.5% using the pricing model based on payload-range index and 5% using the pricing model based on airframe weight. Noise and emissions were not considered.

  5. Acoustic design of the QCSEE propulsion systems

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Smith, E. B.; Sowers, H. D.

    1976-01-01

    Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described. The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed. The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment); low fan and core pressure ratios; low fan tip speeds; gear-driven fans; high and low frequency stacked core noise treatment; multiple-thickness treatment; bulk absorber treatment; and treatment on the stator vanes. The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft.

  6. Study of Turbofan Engines Designed for Low Enery Consumption

    NASA Technical Reports Server (NTRS)

    Neitzel, R. E.; Hirschkron, R.; Johnston, R. P.

    1976-01-01

    Subsonic transport turbofan engine design and technology features which have promise of improving aircraft energy consumption are described. Task I addressed the selection and evaluation of features for the CF6 family of engines in current aircraft, and growth models of these aircraft. Task II involved cycle studies and the evaluation of technology features for advanced technology turbofans, consistent with initial service in 1985. Task III pursued the refined analysis of a specific design of an advanced technology turbofan engine selected as the result of Task II studies. In all of the above, the impact upon aircraft economics, as well as energy consumption, was evaluated. Task IV summarized recommendations for technology developments which would be necessary to achieve the improvements in energy consumption identified.

  7. Towards the design of 3D multiscale instructive tissue engineering constructs: Current approaches and trends.

    PubMed

    Oliveira, Sara M; Reis, Rui L; Mano, João F

    2015-11-01

    The design of 3D constructs with adequate properties to instruct and guide cells both in vitro and in vivo is one of the major focuses of tissue engineering. Successful tissue regeneration depends on the favorable crosstalk between the supporting structure, the cells and the host tissue so that a balanced matrix production and degradation are achieved. Herein, the major occurring events and players in normal and regenerative tissue are overviewed. These have been inspiring the selection or synthesis of instructive cues to include into the 3D constructs. We further highlight the importance of a multiscale perception of the range of features that can be included on the biomimetic structures. Lastly, we focus on the current and developing tissue-engineering approaches for the preparation of such 3D constructs: top-down, bottom-up and integrative. Bottom-up and integrative approaches present a higher potential for the design of tissue engineering devices with multiscale features and higher biochemical control than top-down strategies, and are the main focus of this review. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Integrating Multidisciplinary Engineering Knowledge

    ERIC Educational Resources Information Center

    Wolff, Karin; Luckett, Kathy

    2013-01-01

    In order to design two distinct engineering qualification levels for an existing University of Technology programme, empirical evidence based on the current diploma is necessary to illuminate the nature of and the relationship between the "contextual" and "conceptual" elements underpinning a multidisciplinary engineering…

  9. Enhancement and Extension of Porosity Model in the FDNS-500 Code to Provide Enhanced Simulations of Rocket Engine Components

    NASA Technical Reports Server (NTRS)

    Cheng, Gary

    2003-01-01

    In the past, the design of rocket engines has primarily relied on the cold flow/hot fire test, and the empirical correlations developed based on the database from previous designs. However, it is very costly to fabricate and test various hardware designs during the design cycle, whereas the empirical model becomes unreliable in designing the advanced rocket engine where its operating conditions exceed the range of the database. The main goal of the 2nd Generation Reusable Launching Vehicle (GEN-II RLV) is to reduce the cost per payload and to extend the life of the hardware, which poses a great challenge to the rocket engine design. Hence, understanding the flow characteristics in each engine components is thus critical to the engine design. In the last few decades, the methodology of computational fluid dynamics (CFD) has been advanced to be a mature tool of analyzing various engine components. Therefore, it is important for the CFD design tool to be able to properly simulate the hot flow environment near the liquid injector, and thus to accurately predict the heat load to the injector faceplate. However, to date it is still not feasible to conduct CFD simulations of the detailed flowfield with very complicated geometries such as fluid flow and heat transfer in an injector assembly and through a porous plate, which requires gigantic computer memories and power to resolve the detailed geometry. The rigimesh (a sintered metal material), utilized to reduce the heat load to the faceplate, is one of the design concepts for the injector faceplate of the GEN-II RLV. In addition, the injector assembly is designed to distribute propellants into the combustion chamber of the liquid rocket engine. A porosity mode thus becomes a necessity for the CFD code in order to efficiently simulate the flow and heat transfer in these porous media, and maintain good accuracy in describing the flow fields. Currently, the FDNS (Finite Difference Navier-Stakes) code is one of the CFD codes which are most widely used by research engineers at NASA Marshall Space Flight Center (MSFC) to simulate various flow problems related to rocket engines. The objective of this research work during the 10-week summer faculty fellowship program was to 1) debug the framework of the porosity model in the current FDNS code, and 2) validate the porosity model by simulating flows through various porous media such as tube banks and porous plate.

  10. A Study of Current Trends and Issues for Graphics Education: Results from a Five-Year Follow-Up Survey

    ERIC Educational Resources Information Center

    Clark, Aaron C.; Scales, Alice Y.

    2006-01-01

    During the 1998-1999 academic year, a survey was conducted to look at current trends and issues in the profession of graphics education (Clark & Scales, 1999). The survey solicited information from the membership of the Engineering Design Graphics Division of the American Society for Engineering Education related to their view of future areas of…

  11. A Framework of Working Across Disciplines in Early Design and R&D of Large Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Papalambros, Panos Y.; Baker, Wayne E.

    2015-01-01

    This paper examines four primary methods of working across disciplines during R&D and early design of large-scale complex engineered systems such as aerospace systems. A conceptualized framework, called the Combining System Elements framework, is presented to delineate several aspects of cross-discipline and system integration practice. The framework is derived from a theoretical and empirical analysis of current work practices in actual operational settings and is informed by theories from organization science and engineering. The explanatory framework may be used by teams to clarify assumptions and associated work practices, which may reduce ambiguity in understanding diverse approaches to early systems research, development and design. The framework also highlights that very different engineering results may be obtained depending on work practices, even when the goals for the engineered system are the same.

  12. The J-2X Fuel Turbopump - Design, Development, and Test

    NASA Technical Reports Server (NTRS)

    Tellier, James G.; Hawkins, Lakiesha V.; Shinguchi, Brian H.; Marsh, Matthew W.

    2011-01-01

    Pratt and Whitney Rocketdyne (PWR), a NASA subcontractor, is executing the design, development, test, and evaluation (DDT&E) of a liquid oxygen, liquid hydrogen two hundred ninety four thousand pound thrust rocket engine initially intended for the Upper Stage (US) and Earth Departure Stage (EDS) of the Constellation Program Ares-I Crew Launch Vehicle (CLV). A key element of the design approach was to base the new J-2X engine on the heritage J-2S engine with the intent of uprating the engine and incorporating SSME and RS-68 lessons learned. The J-2S engine was a design upgrade of the flight proven J-2 configuration used to put American astronauts on the moon. The J-2S Fuel Turbopump (FTP) was the first Rocketdyne-designed liquid hydrogen centrifugal pump and provided many of the early lessons learned for the Space Shuttle Main Engine High Pressure Fuel Turbopumps. This paper will discuss the design trades and analyses performed for the current J-2X FTP to increase turbine life; increase structural margins, facilitate component fabrication; expedite turbopump assembly; and increase rotordynamic stability margins. Risk mitigation tests including inducer water tests, whirligig turbine blade tests, turbine air rig tests, and workhorse gas generator tests characterized operating environments, drove design modifications, or identified performance impact. Engineering design, fabrication, analysis, and assembly activities support FTP readiness for the first J-2X engine test scheduled for July 2011.

  13. Intelligent Life-Extending Controls for Aircraft Engines Studied

    NASA Technical Reports Server (NTRS)

    Guo, Ten-Huei

    2005-01-01

    Current aircraft engine controllers are designed and operated to provide desired performance and stability margins. Except for the hard limits for extreme conditions, engine controllers do not usually take engine component life into consideration during the controller design and operation. The end result is that aircraft pilots regularly operate engines under unnecessarily harsh conditions to strive for optimum performance. The NASA Glenn Research Center and its industrial and academic partners have been working together toward an intelligent control concept that will include engine life as part of the controller design criteria. This research includes the study of the relationship between control action and engine component life as well as the design of an intelligent control algorithm to provide proper tradeoffs between performance and engine life. This approach is expected to maintain operating safety while minimizing overall operating costs. In this study, the thermomechanical fatigue (TMF) of a critical component was selected to demonstrate how an intelligent engine control algorithm can significantly extend engine life with only a very small sacrifice in performance. An intelligent engine control scheme based on modifying the high-pressure spool speed (NH) was proposed to reduce TMF damage from ground idle to takeoff. The NH acceleration schedule was optimized to minimize the TMF damage for a given rise-time constraint, which represents the performance requirement. The intelligent engine control scheme was used to simulate a commercial short-haul aircraft engine.

  14. Model building techniques for analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walther, Howard P.; McDaniel, Karen Lynn; Keener, Donald

    2009-09-01

    The practice of mechanical engineering for product development has evolved into a complex activity that requires a team of specialists for success. Sandia National Laboratories (SNL) has product engineers, mechanical designers, design engineers, manufacturing engineers, mechanical analysts and experimentalists, qualification engineers, and others that contribute through product realization teams to develop new mechanical hardware. The goal of SNL's Design Group is to change product development by enabling design teams to collaborate within a virtual model-based environment whereby analysis is used to guide design decisions. Computer-aided design (CAD) models using PTC's Pro/ENGINEER software tools are heavily relied upon in the productmore » definition stage of parts and assemblies at SNL. The three-dimensional CAD solid model acts as the design solid model that is filled with all of the detailed design definition needed to manufacture the parts. Analysis is an important part of the product development process. The CAD design solid model (DSM) is the foundation for the creation of the analysis solid model (ASM). Creating an ASM from the DSM currently is a time-consuming effort; the turnaround time for results of a design needs to be decreased to have an impact on the overall product development. This effort can be decreased immensely through simple Pro/ENGINEER modeling techniques that summarize to the method features are created in a part model. This document contains recommended modeling techniques that increase the efficiency of the creation of the ASM from the DSM.« less

  15. Designing under Constraints: Cell Phone Case Design Challenge

    ERIC Educational Resources Information Center

    Sutton, Kevin; Grubbs, Michael E.; Ernst, Jeremy

    2014-01-01

    Engineering design has been suggested as a viable instructional approach for Technology Education (TE) to intentionally provide students the opportunity to apply multidisciplinary concepts to solve ill-defined design challenges (Wells & Ernst, 2012; Sanders & Wells, 2010; Wicklein, 2006). Currently, the context for design challenges in TE…

  16. Interdisciplinary Interactions During R&D and Early Design of Large Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas

    2014-01-01

    Designing Large-Scale Complex Engineered Systems (LaCES) such as aircraft and submarines requires the input of thousands of engineers and scientists whose work is proximate in neither time nor space. Comprehensive knowledge of the system is dispersed among specialists whose expertise is in typically one system component or discipline. This study examined the interactive work practices among such specialists seeking to improve engineering practice through a rigorous and theoretical understanding of current practice. This research explored current interdisciplinary practices and perspectives during R&D and early LaCES design and identified why these practices and perspectives prevail and persist. The research design consisted of a three-fold, integrative approach that combined an open-ended survey, semi-structured interviews, and ethnography. Significant empirical data from experienced engineers and scientists in a large engineering organization were obtained and integrated with theories from organization science and engineering. Qualitative analysis was used to obtain a holistic, contextualized understanding. The over-arching finding is that issues related to cognition, organization, and social interrelations mostly dominate interactions across disciplines. Engineering issues, such as the integration of hardware or physics-based models, are not as significant. For example, organization culture is an important underlying factor that guided researchers more toward individual sovereignty over cross-disciplinarity. The organization structure and the engineered system architecture also serve as constraints to the engineering work. Many differences in work practices were observed, including frequency and depth of interactions, definition or co-construction of requirements, clarity or creation of the system architecture, work group proximity, and cognitive challenges. Practitioners are often unaware of these differences resulting in confusion and incorrect assumptions regarding work expectations. Cognitively, the enactment and coconstruction of knowledge are the fundamental tasks of the interdisciplinary interactions. Distributed and collective cognition represent most of the efforts. Argument, ignorance, learning, and creativity are interrelated aspects of the interactions that cause discomfort but yield benefits such as problem mitigation, broader understanding, and improved system design and performance. The quality and quantity of social interrelations are central to all work across disciplines with reciprocity, respectful engagement, and heedful interrelations being significant to the effectiveness of the engineering and scientific work.

  17. Status of the Magma Energy Project

    NASA Astrophysics Data System (ADS)

    Dunn, J. C.

    The current magma energy project is assessing the engineering feasibility of extracting thermal energy directly from crustal magma bodies. The estimated size of the U.S. resource (50,000 to 500,000 quads) suggests a considerable potential impact on future power generation. In a previous seven-year study, we concluded that there are no insurmountable barriers that would invalidate the magma energy concept. Several concepts for drilling, energy extraction, and materials survivability were successfully demonstrated in Kilauea Iki lava lake, Hawaii. The present program is addressing the engineering design problems associated with accessing magma bodies and extracting thermal energy for power generation. The normal stages for development of a geothermal resource are being investigated: exploration, drilling and completions, production, and surface power plant design. Current status of the engineering program and future plans are described.

  18. Integration of a NASA faculty fellowship project within an undergraduate engineering capstone design class

    NASA Astrophysics Data System (ADS)

    Carmen, C.

    2012-11-01

    The United States (US) National Aeronautics and Space Administration (NASA) Exploration Systems Mission Directorate (ESMD) provides university faculty fellowships that prepare the faculty to implement engineering design class projects that possess the potential to contribute to NASA ESMD objectives. The goal of the ESMD is to develop new capabilities, support technologies and research that will enable sustained and affordable human and robotic space exploration. In order to create a workforce that will have the desire and skills necessary to achieve these goals, the NASA ESMD faculty fellowship program enables university faculty to work on specific projects at a NASA field center and then implement the project within their capstone engineering design class. This allows the senior - or final year - undergraduate engineering design students, the opportunity to develop critical design experience using methods and design tools specified within NASA's Systems Engineering (SE) Handbook. The faculty fellowship projects focus upon four specific areas critical to the future of space exploration: spacecraft, propulsion, lunar and planetary surface systems and ground operations. As the result of a 2010 fellowship, whereby faculty research was conducted at Marshall Space Flight Center (MSFC) in Huntsville, Alabama (AL), senior design students in the Mechanical and Aerospace Engineering (MAE) department at the University of Alabama in Huntsville (UAH) had the opportunity to complete senior design projects that pertained to current work conducted to support ESMD objectives. Specifically, the UAH MAE students utilized X-TOOLSS (eXploration Toolset for the Optimization Of Launch and Space Systems), an Evolutionary Computing (EC) design optimization software, as well as design, analyze, fabricate and test a lunar regolith burrowing device - referred to as the Lunar Wormbot (LW) - that is aimed at exploring and retrieving samples of lunar regolith. These two projects were implemented during the 2010-2011 academic year at UAH and have proven to significantly motivate and enhance the students understanding of the design, development and optimization of space systems. The current paper provides an overview of the NASA ESMD faculty fellowship program, the 2010 fellowship projects, a detailed description of the means of integrating the X-TOOLSS and LW projects within the UAH MAE senior design class, the MAE student design project results, as well as the learning outcome and impact of the ESMD project had upon the engineering students.

  19. A review of turbine blade tip heat transfer.

    PubMed

    Bunker, R S

    2001-05-01

    This paper presents a review of the publicly available knowledge base concerning turbine blade tip heat transfer, from the early fundamental research which laid the foundations of our knowledge, to current experimental and numerical studies utilizing engine-scaled blade cascades and turbine rigs. Focus is placed on high-pressure, high-temperature axial-turbine blade tips, which are prevalent in the majority of today's aircraft engines and power generating turbines. The state of our current understanding of turbine blade tip heat transfer is in the transitional phase between fundamentals supported by engine-based experience, and the ability to a priori correctly predict and efficiently design blade tips for engine service.

  20. Design study of magnetic eddy-current vibration suppression dampers for application to cryogenic turbomachinery

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Humphris, R. R.; Severson, S. J.

    1983-01-01

    Cryogenic turbomachinery used to pump high pressure fuel (liquid H2) and oxidizer (liquid O2) to the main engines of the Space Shuttle have experienced rotor instabilities. Subsynchronous whirl, an extremely destructive instability, has caused bearing failures and severe rubs in the seals. These failures have resulted in premature engine shutdowns or, in many instances, have limited the power level to which the turbopumps could be operated. The feasibility of using an eddy current type of damping mechanism for the Space Shuttle Main Engine is outlined.

  1. Current development in selected stress and thermal analysis software interfaces with PRO-ENGINEER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulze, J.

    1993-06-01

    Ever since PRO-ENGINEER has become a dominating CAD package available to the public, some of us have been saying, ``Gee, if only I could export my geometry to a stress analysis program without having to recreate any of the details already created, wouldn`t that be spectacular?`` Well, much to the credit of the major stress and thermal analysis software vendors, some of them have been listening to design engineers like me badger them to furnish a seamless interface between PRO and their stress analysis programs. The down side of this problem is the fact that a lot of problems stillmore » exist with most of the vendors and their interfaces. I want to discuss the interfaces that I feel are currently ``State of the Art``, and how they are developing and the future for finally arriving at a transparent procedure that an engineer at a workstation can utilize in his or her design process. In years past, engineers would develop a design and changes would evolve based on intuition, or somebody else`s critical evaluation. Then the design would be forwarded to the production group, or the stress analysis group for further evaluation and analysis. Maybe data from a preliminary prototype would be collected and an evaluation report made. All of this took time and increased the cost of the item to be manufactured. Today, the engineer must assume responsibility for design and functional capability early on in the design process, if for no other reason than costs associated with diverse channels of critiquing. For that reason, one place to enhance the design process is to have the ability to do preliminary stress and thermal analysis during the initial design phase. This is both cost and time effective. But, as I am sure you are aware, this has been easier said than done.« less

  2. Collaborative engineering and design management for the Hobby-Eberly Telescope tracker upgrade

    NASA Astrophysics Data System (ADS)

    Mollison, Nicholas T.; Hayes, Richard J.; Good, John M.; Booth, John A.; Savage, Richard D.; Jackson, John R.; Rafal, Marc D.; Beno, Joseph H.

    2010-07-01

    The engineering and design of systems as complex as the Hobby-Eberly Telescope's* new tracker require that multiple tasks be executed in parallel and overlapping efforts. When the design of individual subsystems is distributed among multiple organizations, teams, and individuals, challenges can arise with respect to managing design productivity and coordinating successful collaborative exchanges. This paper focuses on design management issues and current practices for the tracker design portion of the Hobby-Eberly Telescope Wide Field Upgrade project. The scope of the tracker upgrade requires engineering contributions and input from numerous fields including optics, instrumentation, electromechanics, software controls engineering, and site-operations. Successful system-level integration of tracker subsystems and interfaces is critical to the telescope's ultimate performance in astronomical observation. Software and process controls for design information and workflow management have been implemented to assist the collaborative transfer of tracker design data. The tracker system architecture and selection of subsystem interfaces has also proven to be a determining factor in design task formulation and team communication needs. Interface controls and requirements change controls will be discussed, and critical team interactions are recounted (a group-participation Failure Modes and Effects Analysis [FMEA] is one of special interest). This paper will be of interest to engineers, designers, and managers engaging in multi-disciplinary and parallel engineering projects that require coordination among multiple individuals, teams, and organizations.

  3. Lateral support systems and underpinning, volume III : construction methods.

    DOT National Transportation Integrated Search

    1976-04-01

    This report provides current information and design guidelines on cut-and-cover tunneling for practicing engineers. The main emphasis is on the geotechnical aspects of engineering. Included in this volume is a state-of-the-art summary of displacement...

  4. The Curiosity Mars Rover's Fault Protection Engine

    NASA Technical Reports Server (NTRS)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  5. Skin Bioprinting: Impending Reality or Fantasy?

    PubMed

    Ng, Wei Long; Wang, Shuai; Yeong, Wai Yee; Naing, May Win

    2016-09-01

    Bioprinting provides a fully automated and advanced platform that facilitates the simultaneous and highly specific deposition of multiple types of skin cells and biomaterials, a process that is lacking in conventional skin tissue-engineering approaches. Here, we provide a realistic, current overview of skin bioprinting, distinguishing facts from myths. We present an in-depth analysis of both current skin bioprinting works and the cellular and matrix components of native human skin. We also highlight current limitations and achievements, followed by design considerations and a future outlook for skin bioprinting. The potential of bioprinting with converging opportunities in biology, material, and computational design will eventually facilitate the fabrication of improved tissue-engineered (TE) skin constructs, making bioprinting skin an impending reality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. A status report on the Energy Efficient Engine Project

    NASA Technical Reports Server (NTRS)

    Macioce, L. E.; Schaefer, J. W.; Saunders, N. T.

    1980-01-01

    The Energy Efficient Engine (E3) Project is directed at providing, by 1984, the advanced technologies which could be used for a new generation of fuel conservative turbofan engines. This paper summarizes the scope of the entire project and the current status of these efforts. Included is a description of the preliminary designs of the fully developed engines, the potential benefits of these advanced engines, and highlights of some of the component technology efforts conducted to date.

  7. Application of Optimization Techniques to Design of Unconventional Rocket Nozzle Configurations

    NASA Technical Reports Server (NTRS)

    Follett, W.; Ketchum, A.; Darian, A.; Hsu, Y.

    1996-01-01

    Several current rocket engine concepts such as the bell-annular tri-propellant engine, and the linear aerospike being proposed for the X-33 require unconventional three dimensional rocket nozzles which must conform to rectangular or sector shaped envelopes to meet integration constraints. These types of nozzles exist outside the current experience database, therefore, the application of efficient design methods for these propulsion concepts is critical to the success of launch vehicle programs. The objective of this work is to optimize several different nozzle configurations, including two- and three-dimensional geometries. Methodology includes coupling computational fluid dynamic (CFD) analysis to genetic algorithms and Taguchi methods as well as implementation of a streamline tracing technique. Results of applications are shown for several geometeries including: three dimensional thruster nozzles with round or super elliptic throats and rectangualar exits, two- and three-dimensional thrusters installed within a bell nozzle, and three dimensional thrusters with round throats and sector shaped exits. Due to the novel designs considered for this study, there is little experience which can be used to guide the effort and limit the design space. With a nearly infinite parameter space to explore, simple parametric design studies cannot possibly search the entire design space within the time frame required to impact the design cycle. For this reason, robust and efficient optimization methods are required to explore and exploit the design space to achieve high performance engine designs. Five case studies which examine the application of various techniques in the engineering environment are presented in this paper.

  8. Locomotive cab design development. Volume 1 : analysis of locomotive cab environment & development of cab design alternatives

    DOT National Transportation Integrated Search

    1976-10-01

    This report presents an analysis of the line haul freight : engineer's working and living environment, the resultant locomotive : cab design and design alternatives. The analysis is based on a : delineation of functional requirements found in current...

  9. An overview of the current technology relevant to the design and development of the Space Transportation Main Engine (STME)

    NASA Technical Reports Server (NTRS)

    Das, Digendra K.

    1991-01-01

    The objective of this project was to review the latest literature relevant to the Space Transportation Main Engine (STME). The search was focused on the following engine components: (1) gas generator; (2) hydrostatic/fluid bearings; (3) seals/clearances; (4) heat exchanges; (5) nozzles; (6) nozzle/main combustion chamber joint; (7) main injector face plate; and (8) rocket engine.

  10. A Review of Engine Seal Performance and Requirements for Current and Future Army Engine Platforms

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Proctor, Margaret P.

    2008-01-01

    Sand ingestion continues to impact combat ground and air vehicles in military operations in the Middle East. The T-700 engine used in Apache and Blackhawk helicopters has been subjected to increased overhauls due to sand and dust ingestion during desert operations. Engine component wear includes compressor and turbine blades/vanes resulting in decreased engine power and efficiency. Engine labyrinth seals have also been subjected to sand and dust erosion resulting in tooth tip wear, increased clearances, and loss in efficiency. For the current investigation, a brief overview is given of the history of the T-700 engine development with respect to sand and dust ingestion requirements. The operational condition of labyrinth seals taken out of service from 4 different locations of the T-700 engine during engine overhauls are examined. Collaborative efforts between the Army and NASA to improve turbine engine seal leakage and life capability are currently focused on noncontacting, low leakage, compliant designs. These new concepts should be evaluated for their tolerance to sand laden air. Future R&D efforts to improve seal erosion resistance and operation in desert environments are recommended

  11. The Role of Bioreactors in Ligament and Tendon Tissue Engineering.

    PubMed

    Mace, James; Wheelton, Andy; Khan, Wasim S; Anand, Sanj

    2016-01-01

    Bioreactors are pivotal to the emerging field of tissue engineering. The formation of neotissue from pluripotent cell lineages potentially offers a source of tissue for clinical use without the significant donor site morbidity associated with many contemporary surgical reconstructive procedures. Modern bioreactor design is becoming increasingly complex to provide a both an expandable source of readily available pluripotent cells and to facilitate their controlled differentiation into a clinically applicable ligament or tendon like neotissue. This review presents the need for such a method, challenges in the processes to engineer neotissue and the current designs and results of modern bioreactors in the pursuit of engineered tendon and ligament.

  12. Propulsion System Advances that Enable a Reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, Edward L.; Rothschild, William J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX / kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  13. Propulsion system advances that enable a reusable Liquid Fly Back Booster (LFBB)

    NASA Technical Reports Server (NTRS)

    Keith, E. L.; Rothschild, W. J.

    1998-01-01

    This paper provides an overview of the booster propulsion system for the Liquid Fly Back Booster (LFBB). This includes, system requirements, design approach, concept of operations, reliability, safety and cost assumptions. The paper summarizes the findings of the Boeing propulsion team that has been studying the LFBB feasibility as a booster replacement for the Space Shuttle. This paper will discuss recent advances including a new generation of kerosene and oxygen rich pre-burner staged combustion cycle main rocket engines. The engine reliability and safety is expected to be much higher than current standards by adding extra operating margins into the design and normally operating the engines at 75% of engine rated power. This allows for engine out capability. The new generation of main engines operates at significantly higher chamber pressure than the prior generation of gas generator cycle engines. The oxygen rich pre-burner engine cycle, unlike the fuel rich gas generator cycle, results in internally self-cleaning firings which facilitates reusability. Maintenance is further enhanced with integrated health monitoring to improve safety and turn-around efficiency. The maintainability of the LFBB LOX/kerosene engines is being improved by designing the vehicle/engine interfaces for easy access to key engine components.

  14. Turbo-Electric Compressor/Generator Using Halbach Arrays

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J. (Inventor)

    2016-01-01

    The present invention is a turbojet design that integrates power generation into the turbojet itself, rather than use separate generators attached to the turbojet for power generation. By integrating the power generation within the jet engine, the weight of the overall system is significantly reduced, increasing system efficiency. Also, by integrating the power generating elements of the system within the air flow of the jet engine, the present invention can use the heat generated by the power generating elements (which is simply expelled waste heat in current designs) to increase the engine performance.

  15. Ceramic thermal barrier coatings for commercial gas turbine engines

    NASA Technical Reports Server (NTRS)

    Meier, Susan Manning; Gupta, Dinesh K.; Sheffler, Keith D.

    1991-01-01

    The paper provides an overview of the short history, current status, and future prospects of ceramic thermal barrier coatings for gas turbine engines. Particular attention is given to plasma-sprayed and electron beam-physical vapor deposited yttria-stabilized (7 wt pct Y2O3) zirconia systems. Recent advances include improvements in the spallation life of thermal barrier coatings, improved bond coat composition and spraying techniques, and improved component design. The discussion also covers field experience, life prediction modeling, and future directions in ceramic coatings in relation to gas turbine engine design.

  16. Improving aircraft energy efficiency

    NASA Technical Reports Server (NTRS)

    Povinelli, F. P.; Klineberg, J. M.; Kramer, J. J.

    1976-01-01

    Investigations conducted by a NASA task force concerning the development of aeronautical fuel-conservation technology are considered. The task force estimated the fuel savings potential, prospects for implementation in the civil air-transport fleet, and the impact of the technology on air-transport fuel use. Propulsion advances are related to existing engines in the fleet, to new production of current engine types, and to new engine designs. Studies aimed at the evolutionary improvement of aerodynamic design and a laminar flow control program are discussed and possibilities concerning the use of composite structural materials are examined.

  17. Reducing the Time and Cost of Testing Engines

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Producing a new aircraft engine currently costs approximately $1 billion, with 3 years of development time for a commercial engine and 10 years for a military engine. The high development time and cost make it extremely difficult to transition advanced technologies for cleaner, quieter, and more efficient new engines. To reduce this time and cost, NASA created a vision for the future where designers would use high-fidelity computer simulations early in the design process in order to resolve critical design issues before building the expensive engine hardware. To accomplish this vision, NASA's Glenn Research Center initiated a collaborative effort with the aerospace industry and academia to develop its Numerical Propulsion System Simulation (NPSS), an advanced engineering environment for the analysis and design of aerospace propulsion systems and components. Partners estimate that using NPSS has the potential to dramatically reduce the time, effort, and expense necessary to design and test jet engines by generating sophisticated computer simulations of an aerospace object or system. These simulations will permit an engineer to test various design options without having to conduct costly and time-consuming real-life tests. By accelerating and streamlining the engine system design analysis and test phases, NPSS facilitates bringing the final product to market faster. NASA's NPSS Version (V)1.X effort was a task within the Agency s Computational Aerospace Sciences project of the High Performance Computing and Communication program, which had a mission to accelerate the availability of high-performance computing hardware and software to the U.S. aerospace community for its use in design processes. The technology brings value back to NASA by improving methods of analyzing and testing space transportation components.

  18. Proceedings of the Seventh Annual Summer Conference. NASA/USRA: University Advanced Design Program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Advanced Design Program (ADP) is a unique program that brings together students and faculty from U.S. engineering schools with engineers from the NASA centers through integration of current and future NASA space and aeronautics projects into university engineering design curriculum. The Advanced Space Design Program study topics cover a broad range of projects that could be undertaken during a 20-30 year period beginning with the deployment of the Space Station Freedom. The Advanced Aeronautics Design Program study topics typically focus on nearer-term projects of interest to NASA, covering from small, slow-speed vehicles through large, supersonic passenger transports and on through hypersonic research vehicles. Student work accomplished during the 1990-91 academic year and reported at the 7th Annual Summer Conference is presented.

  19. Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina

    2010-01-01

    The Advanced Stirling Radioisotope Generator (ASRG), a high efficiency generator, is being considered for space missions. An engineering unit, the ASRG engineering unit (EU), was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently under extended operation test at the NASA Glenn Research Center (GRC) to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for the ASRG EU. This paper summarizes details of the test facility design, including the mechanical mounting, heat-rejection system, argon system, control systems, and maintenance. The effort proceeded from requirements definition through design, analysis, build, and test. Initial testing and facility performance results are discussed.

  20. Turbine Design and Analysis for the J-2X Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Tran, Ken; Dorney, Daniel J.; Schmauch, Preston

    2008-01-01

    Pratt and Whitney Rocketdyne and NASA Marshall Space Flight Center are developing the advanced upper stage J-2X engine based on the legacy design of the J-2/J-2S family of engines which powered the Apollo missions. The cryogenic propellant turbopumps have been denoted as Mark72-F and Mark72-0 for the fuel and oxidizer side, respectively. Special attention is focused on preserving the essential flight-proven design features while adapting the design to the new turbopump configuration. Advanced 3-D CFD analysis has been employed to verify turbine aero performance at current flow regime boundary conditions and to mitigate risks associated with stresses. A limited amount of redesign and overall configuration modifications allow for a robust design with performance level matching or exceeding requirement.

  1. Design of an expert-system flight status monitor

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Duke, E. L.

    1985-01-01

    The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.

  2. Molecular Design and Device Application of Radical Polymers for Improved Charge Extraction in Organic Photovoltaic Cells

    DTIC Science & Technology

    2015-07-29

    a. “Engineering Optoelectronically-active Macromolecules for Polymer-based Photovoltaic and Thermoelectric Devices,” Boudouris, B. W. Current...Presentation. Oral Presentation. “Non-conjugated Radical Polymers as an Emerging Class of Transparent Conductors in Organic Photovoltaic and Thermoelectric ...for Polymer-based Photovoltaic and Thermoelectric Devices,” Boudouris, B. W. Current Opinion in Chemical Engineering 2013, 2, 294-301. 2. “Controlled

  3. CLV First Stage Design, Development, Test and Evaluation

    NASA Technical Reports Server (NTRS)

    Burt, Richard K.; Brasfield, F.

    2006-01-01

    The Crew Launch Vehicle (CLV) is an integral part of NASA's Exploration architecture that will provide crew and cargo access to the International Space Station as well as low earth orbit support for lunar missions. Currently in the system definition phase, the CLV is planned to replace the Space Shuttle for crew transport in the post 2010 time frame. It is comprised of a solid rocket booster first stage derived from the current Space Shuttle SRB, a LOX/hydrogen liquid fueled second stage utilizing a derivative of the Space Shuttle Main Engine (SSME) for propulsion, and a Crew Exploration Vehicle (GEV) composed of Command and Service Modules. This paper deals with current DDT&E planning for the CLV first stage solid rocket booster. Described are the current overall point-of-departure design and booster subsystems, systems engineering approach, and milestone schedule requirements.

  4. Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.

  5. Physics and engineering studies on the MITICA accelerator: comparison among possible design solutions

    NASA Astrophysics Data System (ADS)

    Agostinetti, P.; Antoni, V.; Cavenago, M.; Chitarin, G.; Pilan, N.; Marcuzzi, D.; Serianni, G.; Veltri, P.

    2011-09-01

    Consorzio RFX in Padova is currently using a comprehensive set of numerical and analytical codes, for the physics and engineering design of the SPIDER (Source for Production of Ion of Deuterium Extracted from RF plasma) and MITICA (Megavolt ITER Injector Concept Advancement) experiments, planned to be built at Consorzio RFX. This paper presents a set of studies on different possible geometries for the MITICA accelerator, with the objective to compare different design concepts and choose the most suitable one (or ones) to be further developed and possibly adopted in the experiment. Different design solutions have been discussed and compared, taking into account their advantages and drawbacks by both the physics and engineering points of view.

  6. Near term hybrid passenger vehicle development program, phase 1

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Missions for hybrid vehicles that promise to yield high petroleum impact were identified and a preliminary design, was developed that satisfies the mission requirements and performance specifications. Technologies that are critical to successful vehicle design, development and fabrication were determined. Trade-off studies to maximize fuel savings were used to develop initial design specifications of the near term hybrid vehicle. Various designs were "driven" through detailed computer simulations which calculate the petroleum consumption in standard driving cycles, the petroleum and electricity consumptions over the specified missions, and the vehicle's life cycle costs over a 10 year vehicle lifetime. Particular attention was given to the selection of the electric motor, heat engine, drivetrain, battery pack and control system. The preliminary design reflects a modified current compact car powered by a currently available turbocharged diesel engine and a 24 kW (peak) compound dc electric motor.

  7. Aircraft engine pollution reduction.

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  8. Nonlinear Dynamic Modeling and Controls Development for Supersonic Propulsion System Research

    NASA Technical Reports Server (NTRS)

    Connolly, Joseph W.; Kopasakis, George; Paxson, Daniel E.; Stuber, Eric; Woolwine, Kyle

    2012-01-01

    This paper covers the propulsion system component modeling and controls development of an integrated nonlinear dynamic simulation for an inlet and engine that can be used for an overall vehicle (APSE) model. The focus here is on developing a methodology for the propulsion model integration, which allows for controls design that prevents inlet instabilities and minimizes the thrust oscillation experienced by the vehicle. Limiting thrust oscillations will be critical to avoid exciting vehicle aeroelastic modes. Model development includes both inlet normal shock position control and engine rotor speed control for a potential supersonic commercial transport. A loop shaping control design process is used that has previously been developed for the engine and verified on linear models, while a simpler approach is used for the inlet control design. Verification of the modeling approach is conducted by simulating a two-dimensional bifurcated inlet and a representative J-85 jet engine previously used in a NASA supersonics project. Preliminary results are presented for the current supersonics project concept variable cycle turbofan engine design.

  9. Synthesis and evaluation of the service limit state of engineered fills for bridge support.

    DOT National Transportation Integrated Search

    2016-02-02

    This report synthesizes the current service limit state (SLS) design and analyses of engineered fills for bridge support used as shallow foundations. The SLS for settlement and deformations of bridge supports are summarized. Extensive literature revi...

  10. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-08-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  11. QCSEE UTW engine powered-lift acoustic performance

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Samanich, N. E.; Bloomer, H. E.

    1980-01-01

    Powered-lift acoustic test of the Quiet Clean Short Haul Experimental Engine (QCSEE) under the wing (UTW) engine are reported. Propulsion systems for two powered-lift concepts were designed, fabricated, and tested. In addition to low noise features, the designs included composite structures, gear-driven fans, digital control, and a variable pitch fan (UTW). The UTW engine was tested in a static ground test facility with wing and flap segments to simulate installation on a short haul transport aircraft of the future. Powered-lift acoustic performance of the UTW engine is compared with that of the previously tested and reported QCSEE over-the-wing (OTW) engine. Both engines were slightly above the noise goal but were significantly below current FAA and modern wide-body jet transport levels. The UTW system in the powered-lift mode was penalized by reflected engine noise from the wing and flap system, while the OTW system was benefitted by a wing noise shielding effect.

  12. Spray combustion experiments and numerical predictions

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey

    1993-01-01

    The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.

  13. The role of a creative "joint assignment" project in biomedical engineering bachelor degree education.

    PubMed

    Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.

  14. Toward scalable parts families for predictable design of biological circuits.

    PubMed

    Lucks, Julius B; Qi, Lei; Whitaker, Weston R; Arkin, Adam P

    2008-12-01

    Our current ability to engineer biological circuits is hindered by design cycles that are costly in terms of time and money, with constructs failing to operate as desired, or evolving away from the desired function once deployed. Synthetic biologists seek to understand biological design principles and use them to create technologies that increase the efficiency of the genetic engineering design cycle. Central to the approach is the creation of biological parts--encapsulated functions that can be composited together to create new pathways with predictable behaviors. We define five desirable characteristics of biological parts--independence, reliability, tunability, orthogonality and composability, and review studies of small natural and synthetic biological circuits that provide insights into each of these characteristics. We propose that the creation of appropriate sets of families of parts with these properties is a prerequisite for efficient, predictable engineering of new function in cells and will enable a large increase in the sophistication of genetic engineering applications.

  15. Human Modeling for Ground Processing Human Factors Engineering Analysis

    NASA Technical Reports Server (NTRS)

    Stambolian, Damon B.; Lawrence, Brad A.; Stelges, Katrine S.; Steady, Marie-Jeanne O.; Ridgwell, Lora C.; Mills, Robert E.; Henderson, Gena; Tran, Donald; Barth, Tim

    2011-01-01

    There have been many advancements and accomplishments over the last few years using human modeling for human factors engineering analysis for design of spacecraft. The key methods used for this are motion capture and computer generated human models. The focus of this paper is to explain the human modeling currently used at Kennedy Space Center (KSC), and to explain the future plans for human modeling for future spacecraft designs

  16. Deimos Methane-Oxygen Rocket Engine Test Results

    NASA Astrophysics Data System (ADS)

    Engelen, S.; Souverein, L. J.; Twigt, D. J.

    This paper presents the results of the first DEIMOS Liquid Methane/Oxygen rocket engine test campaign. DEIMOS is an acronym for `Delft Experimental Methane Oxygen propulsion System'. It is a project performed by students under the auspices of DARE (Delft Aerospace Rocket Engineering). The engine provides a theoretical design thrust of 1800 N and specific impulse of 287 s at a chamber pressure of 40 bar with a total mass flow of 637 g/s. It has links to sustainable development, as the propellants used are one of the most promising so-called `green propellants'-combinations, currently under scrutiny by the industry, and the engine is designed to be reusable. This paper reports results from the provisional tests, which had the aim of verifying the engine's ability to fire, and confirming some of the design assumptions to give confidence for further engine designs. Measurements before and after the tests are used to determine first estimates on feed pressures, propellant mass flows and achieved thrust. These results were rather disappointing from a performance point of view, with an average thrust of a mere 3.8% of the design thrust, but nonetheless were very helpful. The reliability of ignition and stability of combustion are discussed as well. An initial assessment as to the reusability, the flexibility and the adaptability of the engine was made. The data provides insight into (methane/oxygen) engine designs, leading to new ideas for a subsequent design. The ultimate goal of this project is to have an operational rocket and to attempt to set an amateur altitude record.

  17. On the Development of a Computing Infrastructure that Facilitates IPPD from a Decision-Based Design Perspective

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Integrated Product and Process Development (IPPD) embodies the simultaneous application of both system and quality engineering methods throughout an iterative design process. The use of IPPD results in the time-conscious, cost-saving development of engineering systems. Georgia Tech has proposed the development of an Integrated Design Engineering Simulator that will merge Integrated Product and Process Development with interdisciplinary analysis techniques and state-of-the-art computational technologies. To implement IPPD, a Decision-Based Design perspective is encapsulated in an approach that focuses on the role of the human designer in product development. The approach has two parts and is outlined in this paper. First, an architecture, called DREAMS, is being developed that facilitates design from a decision-based perspective. Second, a supporting computing infrastructure, called IMAGE, is being designed. The current status of development is given and future directions are outlined.

  18. Experimental Evaluation of Acoustic Engine Liner Models Developed with COMSOL Multiphysics

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Jones, Michael G.; Bertolucci, Brandon

    2017-01-01

    Accurate modeling tools are needed to design new engine liners capable of reducing aircraft noise. The purpose of this study is to determine if a commercially-available finite element package, COMSOL Multiphysics, can be used to accurately model a range of different acoustic engine liner designs, and in the process, collect and document a benchmark dataset that can be used in both current and future code evaluation activities. To achieve these goals, a variety of liner samples, ranging from conventional perforate-over-honeycomb to extended-reaction designs, were installed in one wall of the grazing flow impedance tube at the NASA Langley Research Center. The liners were exposed to high sound pressure levels and grazing flow, and the effect of the liner on the sound field in the flow duct was measured. These measurements were then compared with predictions. While this report only includes comparisons for a subset of the configurations, the full database of all measurements and predictions is available in electronic format upon request. The results demonstrate that both conventional perforate-over-honeycomb and extended-reaction liners can be accurately modeled using COMSOL. Therefore, this modeling tool can be used with confidence to supplement the current suite of acoustic propagation codes, and ultimately develop new acoustic engine liners designed to reduce aircraft noise.

  19. Training Program for Practical Engineering Design through the Collaboration with Regional Companies

    NASA Astrophysics Data System (ADS)

    Gofuku, Akio; Tabata, Nobuhisa; Tomita, Eiji; Funabiki, Nobuo

    An education program to bring up engineering design capabilities through long-term internship by the collaboration with regional companies has been put in practice for five years. The program is composed of two types of long-term internships and several lectures for patent systems and engineering ethics. This paper describes the outline of the program, educational effects, and our experiences. The program was improved into two educational programs in 2011. The one is a special course to educate engineers and scientists who can lead the technologies of their domains. The other is a long-term internship program for master students in engineering divisions of graduate school. This paper also describes the current activities of the latter program.

  20. Application of CFD codes to the design and development of propulsion systems

    NASA Technical Reports Server (NTRS)

    Lord, W. K.; Pickett, G. F.; Sturgess, G. J.; Weingold, H. D.

    1987-01-01

    The internal flows of aerospace propulsion engines have certain common features that are amenable to analysis through Computational Fluid Dynamics (CFD) computer codes. Although the application of CFD to engineering problems in engines was delayed by the complexities associated with internal flows, many codes with different capabilities are now being used as routine design tools. This is illustrated by examples taken from the aircraft gas turbine engine of flows calculated with potential flow, Euler flow, parabolized Navier-Stokes, and Navier-Stokes codes. Likely future directions of CFD applied to engine flows are described, and current barriers to continued progress are highlighted. The potential importance of the Numerical Aerodynamic Simulator (NAS) to resolution of these difficulties is suggested.

  1. Investigating students' view on STEM in learning about electrical current through STS approach

    NASA Astrophysics Data System (ADS)

    Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study aims to investigate Grade 11 students' views on Science Technology Engineering Mathematics (STEM) with the integration of learning about electrical current based on Science Technology Society (STS) approach [8]. The participants were 60 Grade 11 students in Demonstration Secondary School, Khon Kaen University, Khon Kaen Province, Thailand. The methodology is in the respect of interpretive paradigm. The teaching and learning about Electrical Current through STS approach carried out over 6 weeks. The Electrical Current unit through STS approach was developed based on framework[8] that consists of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision making, and (5) socialization stage. To start with, the question "what if this world is lack of electricity" was challenged in the class in order to move students to find the problem of how to design Electricity Generation from Clean Energy. Students were expected to apply scientific and other knowledge to design of Electricity Generation. Students' views on STEM were collected during their learning by participant' observation and students' tasks. Their views on STEM were categorized when they applied their knowledge for designing the Electricity Generation. The findings indicated that students cooperatively work to solve the problem when applying knowledge about the content of Science and Mathematics and processing skill of Technology and Engineering. It showed that students held the integration of science, technology, engineering and mathematics to design their possible solutions in learning about Electrical Current. The paper also discusses implications for science teaching and learning through STS in Thailand.

  2. Semi-active engine mount design using auxiliary magneto-rheological fluid compliance chamber

    NASA Astrophysics Data System (ADS)

    Mansour, H.; Arzanpour, S.; Golnaraghi, M. F.; Parameswaran, A. M.

    2011-03-01

    Engine mounts are used in the automotive industry to isolate engine and chassis by reducing the noise and vibration imposed from one to the other. This paper describes modelling, simulation and design of a semi-active engine mount that is designed specifically to address the complicated vibration pattern of variable displacement engines (VDE). The ideal isolation for VDE requires the stiffness to be switchable upon cylinder activation/deactivation operating modes. In order to have a modular design, the same hydraulic engine mount components are maintained and a novel auxiliary magneto-rheological (MR) fluid chamber is developed and retrofitted inside the pumping chamber. The new compliance chamber is a controllable pressure regulator, which can effectively alter the dynamic performance of the mount. Switching between different modes happens by turning the electrical current to the MR chamber magnetic coil on and off. A model has been developed for the passive hydraulic mount and then it is extended to include the MR auxiliary chamber as well. A proof-of-concept prototype of the design has been fabricated which validates the mathematical model. The results demonstrate unique capability of the developed semi-active mount to be used for VDE application.

  3. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review.

    PubMed

    Yousefi, Azizeh-Mitra; Hoque, Md Enamul; Prasad, Rangabhatala G S V; Uth, Nicholas

    2015-07-01

    The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article. © 2014 Wiley Periodicals, Inc.

  4. The complementarity of the technical tools of tissue engineering and the concepts of artificial organs for the design of functional bioartificial tissues.

    PubMed

    Lenas, Petros; Moreno, Angel; Ikonomou, Laertis; Mayer, Joerg; Honda, Hiroyuki; Novellino, Antonio; Pizarro, Camilo; Nicodemou-Lena, Eleni; Rodergas, Silvia; Pintor, Jesus

    2008-09-01

    Although tissue engineering uses powerful biological tools, it still has a weak conceptual foundation, which is restricted at the cell level. The design criteria at the cell level are not directly related with the tissue functions, and consequently, such functions cannot be implemented in bioartificial tissues with the currently used methods. On the contrary, the field of artificial organs focuses on the function of the artificial organs that are treated in the design as integral entities, instead of the optimization of the artificial organ components. The field of artificial organs has already developed and tested methodologies that are based on system concepts and mathematical-computational methods that connect the component properties with the desired global organ function. Such methodologies are needed in tissue engineering for the design of bioartificial tissues with tissue functions. Under the framework of biomedical engineering, artificial organs and tissue engineering do not present competitive approaches, but are rather complementary and should therefore design a common future for the benefit of patients.

  5. Current developments in optical engineering and commercial optics; Proceedings of the Meeting, San Diego, CA, Aug. 7-11, 1989

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Pollicove, Harvey M. (Editor); Smith, Warren J. (Editor)

    1989-01-01

    Various papers on current developments in optical engineering and commercial optics are presented. Individual topics addressed include: large optics fabrication technology drivers and new manufacturing techniques, new technology for beryllium mirror production, design examples of hybrid refractive-diffractive lenses, optical sensor designs for detecting cracks in optical materials, retroreflector field-of-view properties for open and solid cube corners, correction of misalignment-dependent aberrations of the HST via phase retrieval, basic radiometry review for seeker test set, radiation effects on visible optical elements, and nonlinear simulation of efficiency for large-orbit nonwiggler FELs.

  6. DARPA Emerging Technologies

    DTIC Science & Technology

    2016-01-01

    development requires wind tunnels and ranges that do not currently exist. Furthermore, continued technology matura- tion is needed for thermal management...designed with conceptual design engine model (at existing technology level), or existing propul- sion system, or modified propulsion system (e.g...internal cameras reading gauges and dials and switch positions , directly tapping into current or future avion- ics service buses and integrating

  7. Heat Transfer Principles in Thermal Calculation of Structures in Fire

    PubMed Central

    Zhang, Chao; Usmani, Asif

    2016-01-01

    Structural fire engineering (SFE) is a relatively new interdisciplinary subject, which requires a comprehensive knowledge of heat transfer, fire dynamics and structural analysis. It is predominantly the community of structural engineers who currently carry out most of the structural fire engineering research and design work. The structural engineering curriculum in universities and colleges do not usually include courses in heat transfer and fire dynamics. In some institutions of higher education, there are graduate courses for fire resistant design which focus on the design approaches in codes. As a result, structural engineers who are responsible for structural fire safety and are competent to do their jobs by following the rules specified in prescriptive codes may find it difficult to move toward performance-based fire safety design which requires a deep understanding of both fire and heat. Fire safety engineers, on the other hand, are usually focused on fire development and smoke control, and may not be familiar with the heat transfer principles used in structural fire analysis, or structural failure analysis. This paper discusses the fundamental heat transfer principles in thermal calculation of structures in fire, which might serve as an educational guide for students, engineers and researchers. Insights on problems which are commonly ignored in performance based fire safety design are also presented. PMID:26783379

  8. Developing Systems Engineering Skills Through NASA Summer Intern Project

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Barritt, Brian; Golden, Bert; Knoblock, Eric; Matthews, Seth; Warner, Joe

    2010-01-01

    During the Formulation phases of the NASA Project Life Cycle, communication systems engineers are responsible for designing space communication links and analyzing their performance to ensure that the proposed communication architecture is capable of satisfying high-level mission requirements. Senior engineers with extensive experience in communications systems perform these activities. However, the increasing complexity of space systems coupled with the current shortage of communications systems engineers has led to an urgent need for expedited training of new systems engineers. A pilot program, in which college-bound high school and undergraduate students studying various engineering disciplines are immersed in NASA s systems engineering practices, was conceived out of this need. This rapid summerlong training approach is feasible because of the availability of advanced software and technology tools and the students inherent ability to operate such tools. During this pilot internship program, a team of college-level and recently-hired engineers configured and utilized various software applications in the design and analysis of communication links for a plausible lunar sortie mission. The approach taken was to first design the direct-to-Earth communication links for the lunar mission elements, then to design the links between lunar surface and lunar orbital elements. Based on the data obtained from these software applications, an integrated communication system design was realized and the students gained valuable systems engineering knowledge. This paper describes this approach to rapidly training college-bound high school and undergraduate engineering students from various disciplines in NASA s systems engineering practices and tools. A summary of the potential use of NASA s emerging systems engineering internship program in broader applications is also described.

  9. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerle, Wayne; Rutland, Chris; Rohlfing, Eric

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accountsmore » for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will not suffice. Current market penetration of new engine technologies is simply too slow—it must be dramatically accelerated. These challenges present a unique opportunity to marshal U.S. leadership in science-based simulation to develop predictive computational design tools for use by the transportation industry. The use of predictive simulation tools for enhancing combustion engine performance will shrink engine development timescales, accelerate time to market, and reduce development costs, while ensuring the timely achievement of energy security and emissions targets and enhancing U.S. industrial competitiveness. In 2007 Cummins achieved a milestone in engine design by bringing a diesel engine to market solely with computer modeling and analysis tools. The only testing was after the fact to confirm performance. Cummins achieved a reduction in development time and cost. As important, they realized a more robust design, improved fuel economy, and met all environmental and customer constraints. This important first step demonstrates the potential for computational engine design. But, the daunting complexity of engine combustion and the revolutionary increases in efficiency needed require the development of simulation codes and computation platforms far more advanced than those available today. Based on these needs, a Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE) convened over 60 U.S. leaders in the engine combustion field from industry, academia, and national laboratories to focus on two critical areas of advanced simulation, as identified by the U.S. automotive and engine industries. First, modern engines require precise control of the injection of a broad variety of fuels that is far more subtle than achievable to date and that can be obtained only through predictive modeling and simulation. Second, the simulation, understanding, and control of these stochastic in-cylinder combustion processes lie on the critical path to realizing more efficient engines with greater power density. Fuel sprays set the initial conditions for combustion in essentially all future transportation engines; yet today designers primarily use empirical methods that limit the efficiency achievable. Three primary spray topics were identified as focus areas in the workshop: The fuel delivery system, which includes fuel manifolds and internal injector flow, The multi-phase fuel–air mixing in the combustion chamber of the engine, and The heat transfer and fluid interactions with cylinder walls. Current understanding and modeling capability of stochastic processes in engines remains limited and prevents designers from achieving significantly higher fuel economy. To improve this situation, the workshop participants identified three focus areas for stochastic processes: Improve fundamental understanding that will help to establish and characterize the physical causes of stochastic events, Develop physics-based simulation models that are accurate and sensitive enough to capture performance-limiting variability, and Quantify and manage uncertainty in model parameters and boundary conditions. Improved models and understanding in these areas will allow designers to develop engines with reduced design margins and that operate reliably in more efficient regimes. All of these areas require improved basic understanding, high-fidelity model development, and rigorous model validation. These advances will greatly reduce the uncertainties in current models and improve understanding of sprays and fuel–air mixture preparation that limit the investigation and development of advanced combustion technologies. The two strategic focus areas have distinctive characteristics but are inherently coupled. Coordinated activities in basic experiments, fundamental simulations, and engineering-level model development and validation can be used to successfully address all of the topics identified in the PreSICE workshop. The outcome will be: New and deeper understanding of the relevant fundamental physical and chemical processes in advanced combustion technologies, Implementation of this understanding into models and simulation tools appropriate for both exploration and design, and Sufficient validation with uncertainty quantification to provide confidence in the simulation results. These outcomes will provide the design tools for industry to reduce development time by up to 30% and improve engine efficiencies by 30% to 50%. The improved efficiencies applied to the national mix of transportation applications have the potential to save over 5 million barrels of oil per day, a current cost savings of $500 million per day.« less

  10. Aeronautical Engineering: A Continuing Bibliography with Indexes (Supplement 218)

    DTIC Science & Technology

    1987-10-01

    reviews the current situation and the history of development of cast turbine blades of Chinese aircraft engines for nearly three decades since 1956... aviation oils - Causes gas turbine engine p 592 N87-23577 MIDAIR COLLISIONS and consequences p 604 A87-40925 Aircraft Dynamic Response to Damaged and...numerical solution of the Navier-Stokes equations Numerical optimization design of transonic airfoils compressors of aircraft gas turbine engines p 553 A87

  11. Image Engine: an object-oriented multimedia database for storing, retrieving and sharing medical images and text.

    PubMed Central

    Lowe, H. J.

    1993-01-01

    This paper describes Image Engine, an object-oriented, microcomputer-based, multimedia database designed to facilitate the storage and retrieval of digitized biomedical still images, video, and text using inexpensive desktop computers. The current prototype runs on Apple Macintosh computers and allows network database access via peer to peer file sharing protocols. Image Engine supports both free text and controlled vocabulary indexing of multimedia objects. The latter is implemented using the TView thesaurus model developed by the author. The current prototype of Image Engine uses the National Library of Medicine's Medical Subject Headings (MeSH) vocabulary (with UMLS Meta-1 extensions) as its indexing thesaurus. PMID:8130596

  12. An Engineering Design STEM Project: T-Shirt Launcher

    ERIC Educational Resources Information Center

    Fantz, Todd D.; Grant, Melva R.

    2013-01-01

    The article offers information on making technology education students interested in science and mathematics through the use of a T-shirt launcher design project. This project was designed for junior and senior level high school students who have completed or are currently taking physics and precalculus. The project involves designing an…

  13. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  14. The potential for CMCs to replace superalloys in engine exhaust ducts

    NASA Astrophysics Data System (ADS)

    Roth, Richard; Clark, Joel P.; Field, Frank R.

    1994-01-01

    The Materials Systems Laboratory at the Massachusetts Institute of Technology has conducted research to develop decision tools that can facilitate materials selection and provide a deeper understanding of the design tradeoffs that occur when choosing among advanced aerospace materials for high-temperature applications. As an illustration of the use of these tools, this paper describes research done to evaluate the material alternatives currently under consideration for exhaust ducts in aircraft gas turbine engines. Although nickel-based superalloys currently prevail for this application, the increasing temperatures of modern engines are necessitating the usage of higher temperature materials.

  15. Esophageal tissue engineering: an in-depth review on scaffold design.

    PubMed

    Tan, J Y; Chua, C K; Leong, K F; Chian, K S; Leong, W S; Tan, L P

    2012-01-01

    Treatment of esophageal cancer often requires surgical procedures that involve removal. The current approaches to restore esophageal continuity however, are known to have limitations which may not result in full functional recovery. In theory, using a tissue engineered esophagus developed from the patient's own cells to replace the removed esophageal segment can be the ideal method of reconstruction. One of the key elements involved in the tissue engineering process is the scaffold which acts as a template for organization of cells and tissue development. While a number of scaffolds range from traditional non-biodegradable tubing to bioactive decellularized matrix have been proposed to engineer the esophagus in the past decade, results are still not yet favorable with many challenges relating to tissue quality need to be met improvements. The success of new esophageal tissue formation will ultimately depend on the success of the scaffold being able to meet the essential requirements specific to the esophageal tissue. Here, the design of the scaffold and its fabrication approaches are reviewed. In this paper, we review the current state of development in bioengineering the esophagus with particular emphasis on scaffold design. Copyright © 2011 Wiley Periodicals, Inc.

  16. Interrogation of possible imaging conditions for radiation sensitive metal organic frameworks in transmission electron microscopes

    NASA Astrophysics Data System (ADS)

    Patel, Harinkumar Rajendrabhai

    One of the main area of research currently in air-breathing propulsion is increasing the fuel efficiency of engines. Increasing fuel efficiency of an air-breathing engine will be advantageous for civil transport as well as military aircraft. This objective can be achieved in several ways. Present design models are developed based on their uses: commercial transport, high range rescue aircraft, military aircraft. One of the main property of military aircraft is possessing high thrust but increasing fuel efficiency will also be advantageous resulting in more time in combat. Today's engine design operates best at their design point and has reduced thrust and high fuel consumption values in off-design. The adaptive cycle engine concept was introduced to overcome this problem. The adaptive cycle engine is a variable cycle engine concept equipped with an extra bypass (3rd bypass) stream. This engine varies the bypass ratio and the fan pressure ratio, the two main parameters affecting thrust and fuel consumption values of the engine. In cruise, more flow will flow through the third stream resulting in the high bypass engine giving lower fuel consumption. on the other hand, the engine will act as a low bypass engine producing more thrust by allowing more air to flow through core while in combat. The simulation of this engine was carried out using the Numerical Propulsion System Simulation (NPSS) software. The effect of the bypass ratio and the fan pressure ratio along with Mach number were studied. After the parametric variation study, the mixture configuration was also studied. Once the effect of the parameters were understood, the best design operating point configuration was selected and then the engine performance for off-design was calculated. Optimum values of bypass ratio and fan pressure ratio were also obtained for each altitude selected for off-design performance.

  17. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  18. An integrated theoretical-experimental approach to accelerate translational tissue engineering.

    PubMed

    Coy, Rachel H; Evans, Owen R; Phillips, James B; Shipley, Rebecca J

    2018-01-01

    Implantable devices utilizing bioengineered tissue are increasingly showing promise as viable clinical solutions. The design of bioengineered constructs is currently directed according to the results of experiments that are used to test a wide range of different combinations and spatial arrangements of biomaterials, cells and chemical factors. There is an outstanding need to accelerate the design process and reduce financial costs, whilst minimizing the required number of animal-based experiments. These aims could be achieved through the incorporation of mathematical modelling as a preliminary design tool. Here we focus on tissue-engineered constructs for peripheral nerve repair, which are designed to aid nerve and blood vessel growth and repair after peripheral nerve injury. We offer insight into the role that mathematical modelling can play within tissue engineering, and motivate the use of modelling as a tool capable of improving and accelerating the design of nerve repair constructs in particular. Specific case studies are presented in order to illustrate the potential of mathematical modelling to direct construct design. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.

  19. The Design of a Primary Flight Trainer using Concurrent Engineering Concepts

    NASA Technical Reports Server (NTRS)

    Ladesic, James G.; Eastlake, Charles N.; Kietzmann, Nicholas H.

    1993-01-01

    Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.

  20. Orbital Transfer Vehicle (OTV) engine study. Phase A: Extension

    NASA Technical Reports Server (NTRS)

    Sobin, A. J.

    1980-01-01

    The current Phase A-Extension of the OTV engine study program aims to provide additional expander and staged combustion cycle data that will lead to design definition of the OTV engine. The proposed program effort seeks to optimize the expander cycle engine concept (consistent with identified OTV engine requirements), investigate the feasibility of kitting the staged combustion cycle engine to provide extended thrust operation, and conduct in-depth analysis of development risk, crew safety, and reliability for both cycles. Additional tasks address the costing of a 10/K thrust expander cycle engine and support of OTV systems study contractors.

  1. CIM's bridge from CADD to CAM: Data management requirements for manufacturing engineering

    NASA Technical Reports Server (NTRS)

    Ford, S. J.

    1984-01-01

    Manufacturing engineering represents the crossroads of technical data management in a Computer Integrated Manufacturing (CIM) environment. Process planning, numerical control programming and tool design are the key functions which translate information from as engineered to as assembled. In order to transition data from engineering to manufacturing, it is necessary to introduce a series of product interpretations which contain an interim introduction of technical parameters. The current automation of the product definition and the production process places manufacturing engineering in the center of CAD/CAM with the responsibility of communicating design data to the factory floor via a manufacturing model of the data. A close look at data management requirements for manufacturing engineering is necessary in order to establish the overall specifications for CADD output, CAM input, and CIM integration. The functions and issues associated with the orderly evolution of computer aided engineering and manufacturing are examined.

  2. Design of a high-speed digital processing element for parallel simulation

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Cwynar, D. S.

    1983-01-01

    A prototype of a custom designed computer to be used as a processing element in a multiprocessor based jet engine simulator is described. The purpose of the custom design was to give the computer the speed and versatility required to simulate a jet engine in real time. Real time simulations are needed for closed loop testing of digital electronic engine controls. The prototype computer has a microcycle time of 133 nanoseconds. This speed was achieved by: prefetching the next instruction while the current one is executing, transporting data using high speed data busses, and using state of the art components such as a very large scale integration (VLSI) multiplier. Included are discussions of processing element requirements, design philosophy, the architecture of the custom designed processing element, the comprehensive instruction set, the diagnostic support software, and the development status of the custom design.

  3. Leachate management design in Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, D.A.; Broscious, J.C.; Zullo, E.G.

    1996-02-01

    As part of a project to provide solid waste master plans for 25 cities in Mexico, an American engineering firm, Paul C. Rizzo Associates (Monroeville, Pa.), was contracted to design a comprehensive leachate management system for landfills in the chosen cities. The solid waste master plan project was administered by the Mexican federal government Secretaria de Desarrollo Social (SEDESOL) with funding from the World Bank. While Paul C. Rizzo was the prime contractor for the project, which was completed in 1994, work was also subcontracted to a local Mexican engineering firm. The lack of specific design criteria for leachate managementmore » in current Mexican regulations enabled the use of a creative design for the system based on experience and technical judgment. Important design considerations included the current, primitive open-dump/burning/scavenging method of disposal and recycling of wastes, and the need for a minimal-cost solution in this developing country. The economic situation made the need for minimal expenditures to upgrade infrastructure equally important. The purpose of the design effort was to use evaporation and recirculation methods of landfill leachate management to minimize the amount of leachate that required treatment. Engineers in the project sought an ultimate goal of achieving zero excess leachate at the landfill sites.« less

  4. Intelligent Systems and Advanced User Interfaces for Design, Operation, and Maintenance of Command Management Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1998-01-01

    Historically Command Management Systems (CMS) have been large, expensive, spacecraft-specific software systems that were costly to build, operate, and maintain. Current and emerging hardware, software, and user interface technologies may offer an opportunity to facilitate the initial formulation and design of a spacecraft-specific CMS as well as a to develop a more generic or a set of core components for CMS systems. Current MOC (mission operations center) hardware and software include Unix workstations, the C/C++ and Java programming languages, and X and Java window interfaces representations. This configuration provides the power and flexibility to support sophisticated systems and intelligent user interfaces that exploit state-of-the-art technologies in human-machine systems engineering, decision making, artificial intelligence, and software engineering. One of the goals of this research is to explore the extent to which technologies developed in the research laboratory can be productively applied in a complex system such as spacecraft command management. Initial examination of some of the issues in CMS design and operation suggests that application of technologies such as intelligent planning, case-based reasoning, design and analysis tools from a human-machine systems engineering point of view (e.g., operator and designer models) and human-computer interaction tools, (e.g., graphics, visualization, and animation), may provide significant savings in the design, operation, and maintenance of a spacecraft-specific CMS as well as continuity for CMS design and development across spacecraft with varying needs. The savings in this case is in software reuse at all stages of the software engineering process.

  5. Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1982-01-01

    A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.

  6. National Launch System Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III

    1991-01-01

    The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.

  7. Establishing a `Centre for Engineering Experimentation and Design Simulation': a step towards restructuring engineering education in India

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, P.

    2017-07-01

    Reforms in undergraduate engineering curriculum to produce engineers with entrepreneurial skills should address real-world problems relevant to industry and society with active industry support. Technology-assisted, hands-on projects involving experimentation, design simulation and prototyping will transform graduates into professionals with necessary skills to create and advance knowledge that meets global standards. To achieve this goal, this paper proposes establishing a central facility, 'Centre for Engineering Experimentation and Design Simulation' (CEEDS) in autonomous engineering colleges in India. The centre will be equipped with the most recent technology resources and computational facilities where students execute novel interdisciplinary product-oriented projects benefiting both industry and society. Students undertake two projects: a short-term project aimed at an engineering solution to a problem in energy, health and environment and the other a major industry-supported project devoted to a product that enhances innovation and creativity. The paper presents the current status, the theoretical and pedagogical foundation for the centre's relevance, an activity plan and its implementation in the centre for product-based learning with illustrative examples.

  8. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    NASA Astrophysics Data System (ADS)

    Berg, Thomas A.; Disney, Richard K.

    2004-02-01

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  9. Engineering and Fabrication Considerations for Cost-Effective Space Reactor Shield Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Thomas A.; Disney, Richard K.

    Investment in developing nuclear power for space missions cannot be made on the basis of a single mission. Current efforts in the design and fabrication of the reactor module, including the reactor shield, must be cost-effective and take into account scalability and fabricability for planned and future missions. Engineering considerations for the shield need to accommodate passive thermal management, varying radiation levels and effects, and structural/mechanical issues. Considering these challenges, design principles and cost drivers specific to the engineering and fabrication of the reactor shield are presented that contribute to lower recurring mission costs.

  10. Low-temperature Stirling Engine for Geothermal Electricity Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillman, Greg; Weaver, Samuel P.

    Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth's crust where this energy is concentrated (Huttrer, 2001). Of this potential, about half is considered to have temperatures high enough for conventional (steam-based) power production, while the other half requires unconventional power conversion approaches, such as organic Rankine cycle systems or Stirling engines. If captured and converted effectively, geothermal power generation could replace up to 100GW of fossil fuel electric power generation, leading to a significant reduction of USmore » power sector emissions. In addition, with the rapid growth of hydro-fracking in oil and gas production, there are smaller-scale distributed power generation opportunities in heated liquids that are co-produced with the main products. Since 2006, Cool Energy, Inc. (CEI) has designed, fabricated and tested four generations of low-temperature (100°C to 300°C) Stirling engine power conversion equipment. The electric power output of these engines has been demonstrated at over 2kWe and over 16% thermal conversion efficiency for an input temperature of 215°C and a rejection temperature of 15°C. Initial pilot units have been shipped to development partners for further testing and validation, and significantly larger engines (20+ kWe) have been shown to be feasible and conceptually designed. Originally intended for waste heat recovery (WHR) applications, these engines are easily adaptable to geothermal heat sources, as the heat supply temperatures are similar. Both the current and the 20+ kWe designs use novel approaches of self-lubricating, low-wear-rate bearing surfaces, non-metallic regenerators, and high-effectiveness heat exchangers. By extending CEI's current 3 kWe SolarHeart® Engine into the tens of kWe range, many additional applications are possible, as one 20 kWe design produces nearly seven times the power output of the 3 kWe unit but at only 2.5 times the estimated fabrication cost. Phase I of the proposed SBIR program will therefore study the feasibility of generating electricity with one or more 20 kWe or larger Stirling engines, powered by geothermal heat produced by current and possibly some forward-looking borehole extraction methods, and from producing oil and gas wells. The feasibility study will include full analysis of the thermodynamic and heat transfer processes within the engine (necessary to produce optimum theoretical designs and performance maps), the cost of pumping the geothermal heat recovery fluid, and how the system tradeoffs impact the overall system economics. The goal is a geothermal system design that could be demonstrated during a Phase II follow-on program at a field test site.« less

  11. Allison moving forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raflo, D.

    1994-07-01

    Allison has been on its own since December 1, when General Motors Corporation sold its former Allison Gas Turbine Division to Clayton, Dubilier & Rice Inc, a private New York investment firm, and a group of senior Allison managers for $318 million. Allison engine Company`s current product line includes large engines, small aircraft engines, and industrial engines. Over 140,000 engines have been produced since 1915, giving Allison a large stake in world leaderhsip. With strong cogeneration markets already established in Europe and Japan, Allison`s industrial engines are being positioned to compete in emerging markets in China, Indonesia and the Sovietmore » Union. Cogeneration market potential in the US improves despite the current popularity with abundant, low-cost natural gas because of the South Coast Air Control Management District`s push for reduced emissions. The new 7000-shp KB7 industrial engine is the latest addition to the 501K engine family, and adds increased power (by 1700 shp), with a boost compressor to the current core compressor increasing air flow, along with a new low-loss exhaust system. Allison`s new AE series of turboprop (AE 2100) and turbofan (AE 3007) engines, with engine cores derived from the T406 design, have been selected to power regional airliners. 2 figs.« less

  12. Compressor Research Facility F100 High Pressure Compressor Inlet Total Pressure and Swirl Profile Simulation.

    DTIC Science & Technology

    1984-10-01

    SECTION I INTRODUCTION 1. GENERAL -.The F100 gas turbine engine currently powers the Air Force F-15 and F-16 aircraft . The compression section of this... Aircraft in designing these vanes and screens to provide the measured engine profiles. lata acquisition system was defined and transported to Pratt and...WILLIAM W. COEHVRWALKER H. MITCHELL Compressor Test Group Chief, Technology Branch Technology Branch Turbine Engine Division Turbine Engine Division

  13. Bearings working group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The service life of the Space Shuttle Main Engine (SSME) turbomachinery bearings was a predominant factor in engine durability and maintenance problems. Recent data has indicated that bearing life is about one order of magnitude lower than the goal of seven and one-half hours particularly those in the High Pressure Oxidizer Turbopump (HPOTP). Bearing technology, primarily cryogenic turbomachinery bearing technology, is expanded by exploring the life and performance effects of design changes; design concept changes; materials changes; manufacturing technique changes; and lubrication system changes. Each variation is assessed against the current bearing design in full scale cryogenic tests.

  14. Leveling the Playing Field: Teacher Perception of Integrated STEM, Engineering, and Engineering Practices

    NASA Astrophysics Data System (ADS)

    Fincher, Bridgette Ann

    The purpose of this study was to describe the perceptions and approaches of 14 third-through-fifth grade Arkansan elementary teachers towards integrative engineering and engineering practices during 80 hours of integrated STEM professional development training in the summer and fall of 2014. This training was known as Project Flight. The purpose of the professional development was to learn integrated STEM content related to aviation and to write grade level curriculum units using Wiggins and McTighe's Understanding by Design curriculum framework. The current study builds upon on the original research. Using a mixed method exploratory, embedded QUAL[quan] case study design and a non-experimental convenience sample derived from original 20 participants of Project Flight, this research sought to answer the following question: Does professional development influence elementary teachers' perceptions of the curriculum and instruction of integrated STEM engineering and engineering practices in a 3-to-5 grade level setting? A series of six qualitative and one quantitative sub-questions informed the research of the mixed method question. Hermeneutic content analysis was applied to archival and current qualitative data sets while descriptive statistics, independent t-tests, and repeated measures ANOVA tests were performed on the quantitative data. Broad themes in the teachers' perceptions and understanding of the nature of integrated engineering and engineering practices emerged through triangulation. After the professional development and the teaching of the integrated STEM units, all 14 teachers sustained higher perceptions of personal self-efficacy in their understanding of Next Generation Science Standards (NGSS). The teachers gained understanding of engineering and engineering practices, excluding engineering habits of mind, throughout the professional development training and unit teaching. The research resulted in four major findings specific to elementary engineering, which included engineering as student social agency and empowerment and the emergence of the engineering design loop as a new heuristic, and three more general non-engineering specific findings. All seven, however, have implications for future elementary engineering professional development as teachers in adopting states start to transition into using the NGSS standards.

  15. Engineering and commercialization of human-device interfaces, from bone to brain.

    PubMed

    Knothe Tate, Melissa L; Detamore, Michael; Capadona, Jeffrey R; Woolley, Andrew; Knothe, Ulf

    2016-07-01

    Cutting edge developments in engineering of tissues, implants and devices allow for guidance and control of specific physiological structure-function relationships. Yet the engineering of functionally appropriate human-device interfaces represents an intractable challenge in the field. This leading opinion review outlines a set of current approaches as well as hurdles to design of interfaces that modulate transfer of information, i.a. forces, electrical potentials, chemical gradients and haptotactic paths, between endogenous and engineered body parts or tissues. The compendium is designed to bridge across currently separated disciplines by highlighting specific commonalities between seemingly disparate systems, e.g. musculoskeletal and nervous systems. We focus on specific examples from our own laboratories, demonstrating that the seemingly disparate musculoskeletal and nervous systems share common paradigms which can be harnessed to inspire innovative interface design solutions. Functional barrier interfaces that control molecular and biophysical traffic between tissue compartments of joints are addressed in an example of the knee. Furthermore, we describe the engineering of gradients for interfaces between endogenous and engineered tissues as well as between electrodes that physically and electrochemically couple the nervous and musculoskeletal systems. Finally, to promote translation of newly developed technologies into products, protocols, and treatments that benefit the patients who need them most, regulatory and technical challenges and opportunities are addressed on hand from an example of an implant cum delivery device that can be used to heal soft and hard tissues, from brain to bone. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Strategic Design and Fabrication of Engineered Scaffolds for Articular Cartilage Repair

    PubMed Central

    Izadifar, Zohreh; Chen, Xiongbiao; Kulyk, William

    2012-01-01

    Damage to articular cartilage can eventually lead to osteoarthritis (OA), a debilitating, degenerative joint disease that affects millions of people around the world. The limited natural healing ability of cartilage and the limitations of currently available therapies make treatment of cartilage defects a challenging clinical issue. Hopes have been raised for the repair of articular cartilage with the help of supportive structures, called scaffolds, created through tissue engineering (TE). Over the past two decades, different designs and fabrication techniques have been investigated for developing TE scaffolds suitable for the construction of transplantable artificial cartilage tissue substitutes. Advances in fabrication technologies now enable the strategic design of scaffolds with complex, biomimetic structures and properties. In particular, scaffolds with hybrid and/or biomimetic zonal designs have recently been developed for cartilage tissue engineering applications. This paper reviews critical aspects of the design of engineered scaffolds for articular cartilage repair as well as the available advanced fabrication techniques. In addition, recent studies on the design of hybrid and zonal scaffolds for use in cartilage tissue repair are highlighted. PMID:24955748

  17. Predictive Model Development for Aviation Black Carbon Mass Emissions from Alternative and Conventional Fuels at Ground and Cruise.

    PubMed

    Abrahamson, Joseph P; Zelina, Joseph; Andac, M Gurhan; Vander Wal, Randy L

    2016-11-01

    The first order approximation (FOA3) currently employed to estimate BC mass emissions underpredicts BC emissions due to inaccuracies in measuring low smoke numbers (SNs) produced by modern high bypass ratio engines. The recently developed Formation and Oxidation (FOX) method removes the need for and hence uncertainty associated with (SNs), instead relying upon engine conditions in order to predict BC mass. Using the true engine operating conditions from proprietary engine cycle data an improved FOX (ImFOX) predictive relation is developed. Still, the current methods are not optimized to estimate cruise emissions nor account for the use of alternative jet fuels with reduced aromatic content. Here improved correlations are developed to predict engine conditions and BC mass emissions at ground and cruise altitude. This new ImFOX is paired with a newly developed hydrogen relation to predict emissions from alternative fuels and fuel blends. The ImFOX is designed for rich-quench-lean style combustor technologies employed predominately in the current aviation fleet.

  18. Air Pollution and Industry.

    ERIC Educational Resources Information Center

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  19. Engine/vehicle integration for vertical takeoff and landing single stage to orbit vehicles

    NASA Astrophysics Data System (ADS)

    Weegar, R. K.

    1992-08-01

    SSTO vehicles design which is currently being developed under the Single Stage Rocket Technology program of the Strategic Defense Initiative Organization is discussed. Particular attention is given to engine optimization and integration of ascent, orbital, and landing propulsion requirements into a single system.

  20. The European Project Semester at ISEP: The Challenge of Educating Global Engineers

    ERIC Educational Resources Information Center

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-01-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European…

  1. Engineering at the Elementary Level

    ERIC Educational Resources Information Center

    McGrew, Cheryl

    2012-01-01

    Can engineering technology be taught at the elementary level? Designing and building trebuchets, catapults, solar cars, and mousetrap vehicles in a west central Florida elementary class was considered very unusual in recent years. After a review of current research on failing schools and poor curriculum, the author wondered what her school could…

  2. An Investigation of the Aerodynamics and Cooling of a Horizontally-Opposed Engine Installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.

    1977-01-01

    A research program to investigate the aerodynamics of reciprocating aircraft engine cooling installations is discussed. Current results from a flight test program are presented concerning installation flow measurement methods. The influence of different inlet designs on installation cooling effectiveness and efficiency are described.

  3. Human Factors and Robotics: Current Status and Future Prospects.

    ERIC Educational Resources Information Center

    Parsons, H. McIlvaine; Kearsley, Greg P.

    The principal human factors engineering issue in robotics is the division of labor between automation (robots) and human beings. This issue reflects a prime human factors engineering consideration in systems design--what equipment should do and what operators and maintainers should do. Understanding of capabilities and limitations of robots and…

  4. Some Current Issues in the Design of Flight Training Devices.

    ERIC Educational Resources Information Center

    Prophet, Wallace W.; And Others

    The rationale is developed that training equipment should be selected or designed to furnish what the student needs to know and to be able to do to perform successfully on the operational job. Several considerations relevant to training equipment design from the systems engineering standpoint are examined. Suggested design features based upon…

  5. Result Merging Strategies for a Current News Metasearcher.

    ERIC Educational Resources Information Center

    Rasolofo, Yves; Hawking, David; Savoy, Jacques

    2003-01-01

    Metasearching of online current news services is a potentially useful Web application of distributed information retrieval techniques. Reports experiences in building a metasearcher designed to provide up-to-date searching over a significant number of rapidly changing current news sites, focusing on how to merge results from the search engines at…

  6. Marshall Space Flight Center CFD overview

    NASA Technical Reports Server (NTRS)

    Schutzenhofer, Luke A.

    1989-01-01

    Computational Fluid Dynamics (CFD) activities at Marshall Space Flight Center (MSFC) have been focused on hardware specific and research applications with strong emphasis upon benchmark validation. The purpose here is to provide insight into the MSFC CFD related goals, objectives, current hardware related CFD activities, propulsion CFD research efforts and validation program, future near-term CFD hardware related programs, and CFD expectations. The current hardware programs where CFD has been successfully applied are the Space Shuttle Main Engines (SSME), Alternate Turbopump Development (ATD), and Aeroassist Flight Experiment (AFE). For the future near-term CFD hardware related activities, plans are being developed that address the implementation of CFD into the early design stages of the Space Transportation Main Engine (STME), Space Transportation Booster Engine (STBE), and the Environmental Control and Life Support System (ECLSS) for the Space Station. Finally, CFD expectations in the design environment will be delineated.

  7. The trajectories of Prevention through Design in construction.

    PubMed

    Toole, T Michael; Gambatese, John

    2008-01-01

    Construction Hazards Prevention through Design (CHPtD) is a process in which engineers and architects explicitly consider the safety of construction workers during the design process. Although articles on CHPtD have appeared in top construction journals, the literature has not addressed technical principles underlying CHPtD to help designers better perform CHPtD, to facilitate the development of additional CHPtD tools, and to predict the future path of CHPtD. This theoretical paper uses the existing literature on CHPtD and current action research associated with several CHPtD workgroups to analyze how CHPtD will likely evolve over the coming decades. There are four trajectories along which CHPtD will progress. (a) Designs will increasingly facilitate prefabricated construction; (b) designers will increasingly choose materials and systems that are inherently safer than alternatives; (c) designers will increasingly perform construction engineering; and (d) designers will increasingly apply spatial considerations to reduce worker hazards. By understanding how CHPtD may be manifested in the engineering-procurement-construction (EPC) industry, practitioners can better prepare for adopting CHPtD within their organizations and construction and engineering educators can better prepare their graduates to perform CHPtD.

  8. Conventional engine technology. Volume 2: Status of diesel engine technology

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1981-01-01

    The engines of diesel cars marketed in the United States were examined. Prominent design features, performance characteristics, fuel economy and emissions data were compared. Specific problems, in particular those of NO and smoke emissions, the effects of increasing dieselization on diesel fuel price and availability, current R&D work and advanced diesel concepts are discussed. Diesel cars currently have a fuel economy advantage over gasoline engine powered cars. Diesel drawbacks (noise and odor) were reduced to a less objectionable level. An equivalent gasoline engine driveability was obtained with turbocharging. Diesel manufacturers see a growth in the diesel market for the next ten years. Uncertainties regarding future emission regulation may inhibit future diesel production investments. With spark ignition engine technology advancing in the direction of high compression ratios, the fuel economy advantages of the diesel car is expected to diminish. To return its fuel economy lead, the diesel's potential for future improvement must be used.

  9. The energy efficient engine project

    NASA Technical Reports Server (NTRS)

    Macioce, L. E.; Schaefer, J. W.; Saunders, N. T.

    1980-01-01

    The Energy Efficient Engine Project is directed at providing, by 1984, the advanced technologies which could be used for a generation of fuel conservative turbofan engines. The project is conducted through contracts with the General Electric Company and Pratt and Whitney Aircraft. The scope of the entire project and the current status of these efforts are summarized. A description of the preliminary designs of the fully developed engines is included and the potential benefits of these advanced engines, as well as highlights of some of the component technology efforts conducted to date, are discussed.

  10. Underwater striling engine design with modified one-dimensional model

    NASA Astrophysics Data System (ADS)

    Li, Daijin; Qin, Kan; Luo, Kai

    2015-09-01

    Stirling engines are regarded as an efficient and promising power system for underwater devices. Currently, many researches on one-dimensional model is used to evaluate thermodynamic performance of Stirling engine, but in which there are still some aspects which cannot be modeled with proper mathematical models such as mechanical loss or auxiliary power. In this paper, a four-cylinder double-acting Stirling engine for Unmanned Underwater Vehicles (UUVs) is discussed. And a one-dimensional model incorporated with empirical equations of mechanical loss and auxiliary power obtained from experiments is derived while referring to the Stirling engine computer model of National Aeronautics and Space Administration (NASA). The P-40 Stirling engine with sufficient testing results from NASA is utilized to validate the accuracy of this one-dimensional model. It shows that the maximum error of output power of theoretical analysis results is less than 18% over testing results, and the maximum error of input power is no more than 9%. Finally, a Stirling engine for UUVs is designed with Schmidt analysis method and the modified one-dimensional model, and the results indicate this designed engine is capable of showing desired output power.

  11. Design of a 2000 lbf LOX/LCH4 Throttleable Rocket Engine for a Vertical Lander

    NASA Astrophysics Data System (ADS)

    Lopez, Israel

    Liquid oxygen (LOX) and liquid methane (LCH4) has been recognized as an attractive rocket propellant combination because of its in-situ resource utilization (ISRU) capabilities, namely in Mars. ISRU would allow launch vehicles to carry greater payloads and promote missions to Mars. This has led to an increasing interest to develop spacecraft technologies that employ this propellant combination. The UTEP Center for Space Exploration and Technology Research (cSETR) has focused part of its research efforts to developing LOX/LCH4 systems. One of those projects includes the development of a vertical takeoff and landing vehicle called JANUS. This vehicle will employ a LOX/LCH 4 propulsion system. The main propulsion engine is called CROME-X and is currently being developed as part of this project. This rocket engine will employ LOX/LCH4 propellants and is intended to operate from 2000-500 lbf thrust range. This thesis describes the design and development of CROME-X. Specifically, it describes the design process for the main engine components, the design criteria for each, and plans for future engine development.

  12. Current developments in the French engineering education system

    NASA Astrophysics Data System (ADS)

    Lemaître, Denis

    2017-03-01

    The French engineering education system has been established in quite a different way from others in Europe, such as the German and British systems, for instance. Due to both the whole state system and the private initiatives during the industrial revolution, the engineering education system today is composed of a large number (nearly 200) of rather small and specialised institutions, which have historically mostly developed outside universities. In the last decades, this system has had to face a powerful internationalisation movement. This has had major consequences on the curricula design, regarding foreign language teaching, international exchanges, and links with research. Currently, the French engineering education system is facing new challenges, regarding innovation and environmental and social issues, in a very competitive higher education context.

  13. Multi-Disciplinary Analysis for Future Launch Systems Using NASA's Advanced Engineering Environment (AEE)

    NASA Technical Reports Server (NTRS)

    Monell, D.; Mathias, D.; Reuther, J.; Garn, M.

    2003-01-01

    A new engineering environment constructed for the purposes of analyzing and designing Reusable Launch Vehicles (RLVs) is presented. The new environment has been developed to allow NASA to perform independent analysis and design of emerging RLV architectures and technologies. The new Advanced Engineering Environment (AEE) is both collaborative and distributed. It facilitates integration of the analyses by both vehicle performance disciplines and life-cycle disciplines. Current performance disciplines supported include: weights and sizing, aerodynamics, trajectories, propulsion, structural loads, and CAD-based geometries. Current life-cycle disciplines supported include: DDT&E cost, production costs, operations costs, flight rates, safety and reliability, and system economics. Involving six NASA centers (ARC, LaRC, MSFC, KSC, GRC and JSC), AEE has been tailored to serve as a web-accessed agency-wide source for all of NASA's future launch vehicle systems engineering functions. Thus, it is configured to facilitate (a) data management, (b) automated tool/process integration and execution, and (c) data visualization and presentation. The core components of the integrated framework are a customized PTC Windchill product data management server, a set of RLV analysis and design tools integrated using Phoenix Integration's Model Center, and an XML-based data capture and transfer protocol. The AEE system has seen production use during the Initial Architecture and Technology Review for the NASA 2nd Generation RLV program, and it continues to undergo development and enhancements in support of its current main customer, the NASA Next Generation Launch Technology (NGLT) program.

  14. Biomaterials for Tissue Engineering

    PubMed Central

    Lee, Esther J.; Kasper, F. Kurtis; Mikos, Antonios G.

    2013-01-01

    Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research. PMID:23820768

  15. Developmental Flight Instrumentation System for the Crew Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Crawford, Kevin; Thomas, John

    2006-01-01

    The National Aeronautics and Space Administration is developing a new launch vehicle to replace the Space Shuttle. The Crew Launch Vehicle (CLV) will be a combination of new design hardware and heritage Apollo and Space Shuttle hardware. The current CLV configuration is a 5 segment solid rocket booster first stage and a new upper stage design with a modified Apollo era J-2 engine. The current schedule has two test flights with a first stage and a structurally identical, but without engine, upper stage. Then there will be two more test flights with a full complement of flight hardware. After the completion of the test flights, the first manned flight to the International Space Station is scheduled for late 2012. To verify the CLV's design margins a developmental flight instrumentation (DFI) system is needed. The DFI system will collect environmental and health data from the various CLV subsystem's and either transmit it to the ground or store it onboard for later evaluation on the ground. The CLV consists of 4 major elements: the first stage, the upper stage, the upper stage engine and the integration of the first stage, upper stage and upper stage engine. It is anticipated that each of CLVs elements will have some version of DFI. This paper will discuss a conceptual DFI design for each element and also of an integrated CLV DFI system.

  16. Teaching physics using project-based engineering curriculum with a theme of alternative energy

    NASA Astrophysics Data System (ADS)

    Tasior, Bryan

    The Next Generation Science Standards (NGSS) provide a new set of science standards that, if adopted, shift the focus from content knowledge-based to skill-based education. Students will be expected to use science to investigate the natural world and solve problems using the engineering design process. The world also is facing an impending crisis related to climate, energy supply and use, and alternative energy development. Education has an opportunity to help provide the much needed paradigm shift from our current methods of providing the energy needs of society. The purpose of this research was to measure the effectiveness of a unit that accomplishes the following objectives: uses project-based learning to teach the engineering process and standards of the NGSS, addresses required content expectations of energy and electricity from the HSCE's, and provides students with scientific evidence behind issues (both environmental and social/economic) relating to the energy crisis and current dependence of fossil fuels as our primary energy source. The results of the research indicate that a physics unit can be designed to accomplish these objectives. The unit that was designed, implemented and reported here also shows that it was highly effective at improving students' science content knowledge, implementing the engineering design standards of the NGSS, while raising awareness, knowledge and motivations relating to climate and the energy crisis.

  17. Optical system design, analysis, and production; Proceedings of the Meeting, Geneva, Switzerland, April 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Rogers, P. J.; Fischer, R. E.

    1983-01-01

    Topics considered include: optical system requirements, analysis, and system engineering; optical system design using microcomputers and minicomputers; optical design theory and computer programs; optical design methods and computer programs; optical design methods and philosophy; unconventional optical design; diffractive and gradient index optical system design; optical production and system integration; and optical systems engineering. Particular attention is given to: stray light control as an integral part of optical design; current and future directions of lens design software; thin-film technology in the design and production of optical systems; aspherical lenses in optical scanning systems; the application of volume phase holograms to avionic displays; the effect of lens defects on thermal imager performance; and a wide angle zoom for the Space Shuttle.

  18. Engineering Antifragile Systems: A Change In Design Philosophy

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.

    2014-01-01

    While technology has made astounding advances in the last century, problems are confronting the engineering community that must be solved. Cost and schedule of producing large systems are increasing at an unsustainable rate and these systems often do not perform as intended. New systems are required that may not be achieved by current methods. To solve these problems, NASA is working to infuse concepts from Complexity Science into the engineering process. Some of these problems may be solved by a change in design philosophy. Instead of designing systems to meet known requirements that will always lead to fragile systems at some degree, systems should be designed wherever possible to be antifragile: designing cognitive cyberphysical systems that can learn from their experience, adapt to unforeseen events they face in their environment, and grow stronger in the face of adversity. Several examples are presented of on ongoing research efforts to employ this philosophy.

  19. The first of a series of high efficiency, high bmep, turbocharged two-stroke cycle diesel engines; the general motors EMD 645FB engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotlin, J.J.; Dunteman, N.R.; Scott, D.I.

    1983-01-01

    The current Electro-Motive Division 645 Series turbocharged engines are the Model FB and EC. The FB engine combines the highest thermal efficiency with the highest specific output of any EMD engine to date. The FB Series incorporates 16:1 compression ratio with a fire ring piston and an improved turbocharger design. Engine components included in the FB engine provide very high output levels with exceptional reliability. This paper also describes the performance of the lower rated Model EC engine series which feature high thermal efficiency and utilize many engine components well proven in service and basic to the Model FB Series.

  20. Guidelines for Implementing NCHRP 1-37A M-E Design Procedures in Ohio : Volume 3 -- Sensitivity Analysis

    DOT National Transportation Integrated Search

    2009-11-01

    The new Mechanistic-Empirical Pavement Design Guide (NCHRP 1-37A and 1-40D) is based on fundamental engineering principles and is far more comprehensive than the current empirical AASHTO Design Guide developed for conditions more than 40 years previo...

  1. The High Stability Engine Control (HISTEC) Program: Flight Demonstration Phase

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  2. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  3. Engineered Barrier System performance requirements systems study report. Revision 02

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balady, M.A.

    This study evaluates the current design concept for the Engineered Barrier System (EBS), in concert with the current understanding of the geologic setting to assess whether enhancements to the required performance of the EBS are necessary. The performance assessment calculations are performed by coupling the EBS with the geologic setting based on the models (some of which were updated for this study) and assumptions used for the 1995 Total System Performance Assessment (TSPA). The need for enhancements is determined by comparing the performance assessment results against the EBS related performance requirements. Subsystem quantitative performance requirements related to the EBS includemore » the requirement to allow no more than 1% of the waste packages (WPs) to fail before 1,000 years after permanent closure of the repository, as well as a requirement to control the release rate of radionuclides from the EBS. The EBS performance enhancements considered included additional engineered components as well as evaluating additional performance available from existing design features but for which no performance credit is currently being taken.« less

  4. Eddy current testing for blade edge micro cracks of aircraft engine

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-min; Xu, Min-dong; Gao, Xuan-yi; Jin, Xin; Qin, Feng

    2017-10-01

    Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.

  5. A 2.5 kW advanced technology ion thruster

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.

    1974-01-01

    A program has been conducted in order to improve the performance characteristics of 30 cm thrusters. This program was divided into three distinct, but related tasks: (1) the discharge chamber and component design modifications proposed for inclusion in the engineering model thruster were evaluated and engineering specifications were verified; (2) thrust losses which result from the contributions of double charged ions and nonaxial ion trajectories to the ion beam current were measured and (3) the specification and verification of power processor and control requirements of the engineering model thruster design were demonstrated. Proven design modifications which provide improved efficiencies are incorporated into the engineering model thruster during a structural re-design without introducing additional delay in schedule or new risks. In addition, a considerable amount of data is generated on the relation of double ion production and beam divergence to thruster parameters. Overall thruster efficiency is increased from 68% to 71% at full power, including corrections for double ion and beam divergence thrust losses.

  6. Design and implementation of a project-based active/cooperative engineering design course for freshmen

    NASA Astrophysics Data System (ADS)

    Abdulaal, R. M.; Al-Bahi, A. M.; Soliman, A. Y.; Iskanderani, F. I.

    2011-08-01

    A project-based active/cooperative design course is planned, implemented, assessed and evaluated to achieve several desired engineering outcomes. The course allows freshman-level students to gain professional hands-on engineering design experience through an opportunity to practise teamwork, quality principles, communication skills, life-long learning, realistic constraints and awareness of current domestic and global challenges. Throughout successive design reports and in-class assignments, the students are required by the end of the semester to communicate, clearly and concisely, the details of their design both orally and in writing through a functional artefact/prototype, a design notebook, an A0 project poster and a final oral presentation. In addition to these direct assessment tools, several indirect measures are used to ensure triangulation. Assignments are based on customer expectations using a detailed checklist. This paper shows the direct and indirect assessment tools that indicated a high level of achievement of course learning outcomes and a high level of student satisfaction.

  7. Design and analysis report for the flight weight 20-inch Columbium secondary nozzle for the RL10 engine

    NASA Technical Reports Server (NTRS)

    Castro, J. H.

    1989-01-01

    Pratt & Whitney (P and W) is currently under contract to NASA-LeRC for a multi-year program to evaluate the feasibility of the RL10-IIB/IIC engine models and the various improvements which broaden the engine capabilities and range of applications. The features being evaluated include the operation of the RL10 engine at low thrust levels and/or high mixture ratio levels and the addition of a high area ratio (250:1) translating nozzle to the engine to increase its specific impulse while shortening the installed engine length. The translating nozzle for the RL10-IIB/IIC engine is approximately 55 inches long with an exit plane diameter of 71 inches and an inlet plane diameter of 40 inches. This report documents the design and analysis work done investigating a small subscale Columbium nozzle which could be built and tested to provide findings which then could be incorporated into the high area ratio nozzle final design for the RL10-IIB/IIC engine. This report documents the design and analysis work done investigating a small subscale Columbium nozzle which could be built and tested to provide findings which then could be incorporated into the high area ratio nozzle final design for the RL10-IIB/IIC engine. The length of the subscale nozzle is 20 in.; its exit diameter is 46 in. With the nozzle in the stowed position, an RL10A-3-3A engine system is 70 inches long (Area Ratio = 61:1); with the nozzle deployed the engine length and area ratio are increased to 90 inches and 83:1 respectively. The increase in area ratio provides a calculated increase of 7 + or - 1 second of specific impulse.

  8. ISTAR: Project Status and Ground Test Engine Design

    NASA Technical Reports Server (NTRS)

    Quinn, Jason Eugene

    2003-01-01

    Review of the current technical and programmatic status of the Integrated System Test of an Airbreathing Rocket (ISTAR) project. November 2002 completed Phase 1 of this project: which worked the conceptual design of the X-43B demonstrator vehicle and Flight Test Engine (FTE) order to develop realistic requirements for the Ground Test Engine (GTE). The latest conceptual FTE and X-43B configuration is briefly reviewed. The project plan is to reduce risk to the GTE and FTE concepts through several tests: thruster, fuel endothermic characterization, engine structure/heat exchanger, injection characterization rig, and full scale direct connect combustion rig. Each of these will be discussed along with the project schedule. This discussion is limited due to ITAR restrictions on open literature papers.

  9. Systems Engineering Awareness

    NASA Technical Reports Server (NTRS)

    Lucero, John

    2016-01-01

    The presentation will provide an overview of the fundamentals and principles of Systems Engineering (SE). This includes understanding the processes that are used to assist the engineer in a successful design, build and implementation of solutions. The context of this presentation will be to describe the involvement of SE throughout the life-cycle of a project from cradle to grave. Due to the ever growing number of complex technical problems facing our world, a Systems Engineering approach is desirable for many reasons. The interdisciplinary technical structure of current systems, technical processes representing System Design, Technical Management and Product Realization are instrumental in the development and integration of new technologies into mainstream applications. This tutorial will demonstrate the application of SE tools to these types of problems..

  10. Mechanical design problems associated with turbopump fluid film bearings

    NASA Technical Reports Server (NTRS)

    Evces, Charles R.

    1990-01-01

    Most high speed cryogenic turbopumps for liquid propulsion rocket engines currently use ball or roller contact bearings for rotor support. The operating speeds, loads, clearances, and environments of these pumps combine to make bearing wear a limiting factor on turbopump life. An example is the high pressure oxygen turbopump (HPOTP) used in the Space Shuttle Main Engine (SSME). Although the HPOTP design life is 27,000 seconds at 30,000 rpms, or approximately 50 missions, bearings must currently be replaced after 2 missions. One solution to the bearing wear problem in the HPOTP, as well as in future turbopump designs, is the utilization of fluid film bearings in lieu of continuous contact bearings. Hydrostatic, hydrodynamic, and damping seal bearings are all replacement candidates for contact bearings in rocket engine high speed turbomachinery. These three types of fluid film bearings have different operating characteristics, but they share a common set of mechanical design opportunities and difficulties. Results of research to define some of the mechanical design issues are given. Problems considered include transient strat/stop rub, non-operational rotor support, bearing wear inspection and measurement, and bearing fluid supply route. Emphasis is given to the HPOTP preburner pump (PBP) bearing, but the results are pertinent to high-speed cryogenic turbomachinery in general.

  11. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  12. Propane-Fueled Jet Engine

    NASA Astrophysics Data System (ADS)

    Farwell, D. A.; Svenson, A. J.; Ramsier, R. D.

    2001-04-01

    We present our recent efforts to design, construct, and test a gas turbine, or jet, engine. Our design utilizes a turbocharger and ignition system from an automobile, and a flame tube/reaction chamber unit fabricated by hand from stainless steel. Once the engine is running, it is completely self-sustaining as long as there is a fuel supply, which in our case is propane. Air is forced into the intake where it is compressed and then injected into the combustion chamber where it is mixed with propane. The spark plugs ignite the air-propane mixture which burns to produce thrust at the exhaust. We have performed operational tests under different environmental conditions and with several turbochargers. We are currently working on adding a lubrication system to the engine, and will discuss our plan to experiment with the reaction chamber and flame tube design in an effort to improve performance and efficiency. *Corresponding author: rex@uakron.edu

  13. Cost-engineering modeling to support rapid concept development of an advanced infrared satellite system

    NASA Astrophysics Data System (ADS)

    Bell, Kevin D.; Dafesh, Philip A.; Hsu, L. A.; Tsuda, A. S.

    1995-12-01

    Current architectural and design trade techniques often carry unaffordable alternatives late into the decision process. Early decisions made during the concept exploration and development (CE&D) phase will drive the cost of a program more than any other phase of development; thus, designers must be able to assess both the performance and cost impacts of their early choices. The Space Based Infrared System (SBIRS) cost engineering model (CEM) described in this paper is an end-to-end process integrating engineering and cost expertise through commonly available spreadsheet software, allowing for concurrent design engineering and cost estimation to identify and balance system drives to reduce acquisition costs. The automated interconnectivity between subsystem models using spreadsheet software allows for the quick and consistent assessment of the system design impacts and relative cost impacts due to requirement changes. It is different from most CEM efforts attempted in the past as it incorporates more detailed spacecraft and sensor payload models, and has been applied to determine the cost drivers for an advanced infrared satellite system acquisition. The CEM is comprised of integrated detailed engineering and cost estimating relationships describing performance, design, and cost parameters. Detailed models have been developed to evaluate design parameters for the spacecraft bus and sensor; both step-starer and scanner sensor types incorporate models of focal plane array, optics, processing, thermal, communications, and mission performance. The current CEM effort has provided visibility to requirements, design, and cost drivers for system architects and decision makers to determine the configuration of an infrared satellite architecture that meets essential requirements cost effectively. In general, the methodology described in this paper consists of process building blocks that can be tailored to the needs of many applications. Descriptions of the spacecraft and payload subsystem models provide insight into The Aerospace Corporation expertise and scope of the SBIRS concept development effort.

  14. Energy consumption characteristics of transports using the prop-fan concept

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The fuel saving and economic potentials of the prop-fan high-speed propeller concept were evaluated for twin-engine commercial transport airplanes designed for 3333.6 km range, 180 passengers, and Mach 0.8 cruise. A fuel saving of 9.7% at the design range was estimated for a prop-fan airplane having wing-mounted engines, while a 5.8% saving was estimated for a design having the engines mounted on the aft body. The fuel savings and cost were found to be sensitive to the propeller noise level and to aerodynamic drag effects due to wing-slipstream interaction. Uncertainties in these effects could change the fuel savings as much as + or - 50%. A modest improvement in direct operating cost (DOC) was estimated for the wing-mounted prop-fan at current fuel prices. This improvement could become substantial in the event of further relative increases in the price of oil. The improvement in DOC requires the achievement of the nominal fuel saving and reductions in propeller and gearbox maintenance costs relative to current experience.

  15. Thermal management and mechanical structures for silicon detector systems

    NASA Astrophysics Data System (ADS)

    Viehhauser, G.

    2015-09-01

    Due to the size of current silicon tracking systems system aspects have become a major design driver. This article discusses requirements for the engineering of the mechanical structures and thermal management of such systems and reviews solutions developed to satisfy them. Modern materials and fabrication techniques have been instrumental in constructing these devices and will be discussed here. Finally, this paper will describe current and potential future developments in the engineering of silicon tracking systems which will shape the silicon tracking systems of the future.

  16. Refined Exploration of Turbofan Design Options for an Advanced Single-Aisle Transport

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2011-01-01

    A comprehensive exploration of the turbofan engine design space for an advanced technology single-aisle transport (737/A320 class aircraft) was conducted previously by the authors and is documented in a prior report. Through the course of that study and in a subsequent evaluation of the approach and results, a number of enhancements to the engine design ground rules and assumptions were identified. A follow-on effort was initiated to investigate the impacts of these changes on the original study results. The fundamental conclusions of the prior study were found to still be valid with the revised engine designs. The most significant impact of the design changes was a reduction in the aircraft weight and block fuel penalties incurred with low fan pressure ratio, ultra-high bypass ratio designs. This enables lower noise levels to be pursued (through lower fan pressure ratio) with minor negative impacts on aircraft weight and fuel efficiency. Regardless of the engine design selected, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  17. Low-Cost Approach to the Design and Fabrication of a LOX/RP-1 Injector

    NASA Technical Reports Server (NTRS)

    Shadoan, Michael D.; Sparks, Dave L.; Turner, James E. (Technical Monitor)

    2000-01-01

    NASA Marshall Space Flight Center (MSFC) has designed, built, and is currently testing Fastrac, a liquid oxygen (LOX)/RP-1 fueled 60K-lb thrust class rocket engine. One facet of Fastrac, which makes it unique is that it is the first large-scale engine designed and developed in accordance with the Agency's mandated "faster, better, cheaper" (FBC) program policy. The engine was developed under the auspices of MSFC's Low Cost Boost Technology office. Development work for the main injector actually began in 1993 in subscale form. In 1996, work began on the full-scale unit approximately 1 year prior to initiation of the engine development program. In order to achieve the value goals established by the FBC policy, a review of traditional design practices was necessary. This internal reevaluation would ultimately challenge more conventional methods of material selection. design process, and fabrication techniques. The effort was highly successful. This "new way" of thinking has resulted in an innovative injector design, one with reduced complexity and significantly lower cost. Application of lessons learned during this effort to new or existing designs can have a similar effect on costs and future program successes.

  18. DOE-OTM Tribology Program semiannual progress report, October 1992--March 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The OTM Tribology Program supports applied research and exploratory development which private enterprise will not or cannot pursue, in specifically identified industrial problem areas pertaining to energy conservation in the transportation sector. Under the current Annual Operating Plan (AOP) the tribology project is structured to conform with the ongoing and planned research activities in three program elements: (1) advanced lubrication--experimental investigations of lubrication phenomena and the development of improved or novel lubricants and lubricant-delivery systems for current and advanced engine systems; (2) engineered tribological interfaces--research and development on various coating processes to modify the microstructure and chemical composition of near-surfacemore » regions in order to improve their friction and wear properties for use in advanced engine designs; (3) advanced tribomaterials and components--tribomaterials evaluation of the friction and wear behavior of newly emerging materials, particularly those promising low friction and wealth at elevated temperatures in advanced engine designs: and tribocomponents evaluation which focuses on development of models, analysis/design tools to enable US transportation industry to employ a tribology-by-design approach and dissemination of program developments to the US transportation industry. Project Management encompasses the administrative and managerial duties of planning, including assessments of application areas with significant tribological energy losses and opportunities for tribological advances in the transportation sector; program implementation, including the review of proposals, organization and conduct of RFP and/or ROA solicitations, selection of R and D projects; and the issues of contracts grants and purchase orders; monitoring of project activities: reporting, information exchange and technology transfer. The current organization of the tribology project, the lead responsibilities for each program element and the present contractors are shown in Table 1. Brief summaries of progress made in this are included.« less

  19. Design of Intelligent Hydraulic Excavator Control System Based on PID Method

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Jiao, Shengjie; Liao, Xiaoming; Yin, Penglong; Wang, Yulin; Si, Kuimao; Zhang, Yi; Gu, Hairong

    Most of the domestic designed hydraulic excavators adopt the constant power design method and set 85%~90% of engine power as the hydraulic system adoption power, it causes high energy loss due to mismatching of power between the engine and the pump. While the variation of the rotational speed of engine could sense the power shift of the load, it provides a new method to adjust the power matching between engine and pump through engine speed. Based on negative flux hydraulic system, an intelligent hydraulic excavator control system was designed based on rotational speed sensing method to improve energy efficiency. The control system was consisted of engine control module, pump power adjusted module, engine idle module and system fault diagnosis module. Special PLC with CAN bus was used to acquired the sensors and adjusts the pump absorption power according to load variation. Four energy saving control strategies with constant power method were employed to improve the fuel utilization. Three power modes (H, S and L mode) were designed to meet different working status; Auto idle function was employed to save energy through two work status detected pressure switches, 1300rpm was setting as the idle speed according to the engine consumption fuel curve. Transient overload function was designed for deep digging within short time without spending extra fuel. An increasing PID method was employed to realize power matching between engine and pump, the rotational speed's variation was taken as the PID algorithm's input; the current of proportional valve of variable displacement pump was the PID's output. The result indicated that the auto idle could decrease fuel consumption by 33.33% compared to work in maximum speed of H mode, the PID control method could take full use of maximum engine power at each power mode and keep the engine speed at stable range. Application of rotational speed sensing method provides a reliable method to improve the excavator's energy efficiency and realize power match between pump and engine.

  20. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    NASA Astrophysics Data System (ADS)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design projects contained components of the indicators central to engineering education, although with varied degrees of success. In addition, each design project contained aspects important to the development of students' understanding of engineering and that promote important professional skills used by engineers. The implications of this work are discussed at the teacher, school, professional development, and policy levels.

  1. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor W. Wong; Tian Tian; Grant Smedley

    2003-08-28

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. A detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and concepts have been explored, and engine experiments will validate these concepts. An iterative process of experimentation, simulation and analysis, will be followed with the goal of demonstrating a complete optimized low-friction engine system. As planned, MIT has developed guidelinesmore » for an initial set of low-friction piston-ring-pack designs. Current recommendations focus on subtle top-piston-ring and oil-control-ring characteristics. A full-scale Waukesha F18 engine has been installed at Colorado State University and testing of the baseline configuration is in progress. Components for the first design iteration are being procured. Subsequent work includes examining the friction and engine performance data and extending the analyses to other areas to evaluate opportunities for further friction improvement and the impact on oil consumption/emission and wear, towards demonstrating an optimized reduced-friction engine system.« less

  2. Microbial Consortia Engineering for Cellular Factories: in vitro to in silico systems

    PubMed Central

    Bernstein, Hans C; Carlson, Ross P

    2012-01-01

    This mini-review discusses the current state of experimental and computational microbial consortia engineering with a focus on cellular factories. A discussion of promising ecological theories central to community resource usage is presented to facilitate interpretation of consortial designs. Recent case studies exemplifying different resource usage motifs and consortial assembly templates are presented. The review also highlights in silico approaches to design and to analyze consortia with an emphasis on stoichiometric modeling methods. The discipline of microbial consortia engineering possesses a widely accepted potential to generate highly novel and effective bio-catalysts for applications from biofuels to specialty chemicals to enhanced mineral recovery. PMID:24688677

  3. Design of electrical stimulation bioreactors for cardiac tissue engineering.

    PubMed

    Tandon, N; Marsano, A; Cannizzaro, C; Voldman, J; Vunjak-Novakovic, G

    2008-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering.

  4. Synthetic biology through biomolecular design and engineering.

    PubMed

    Channon, Kevin; Bromley, Elizabeth H C; Woolfson, Derek N

    2008-08-01

    Synthetic biology is a rapidly growing field that has emerged in a global, multidisciplinary effort among biologists, chemists, engineers, physicists, and mathematicians. Broadly, the field has two complementary goals: To improve understanding of biological systems through mimicry and to produce bio-orthogonal systems with new functions. Here we review the area specifically with reference to the concept of synthetic biology space, that is, a hierarchy of components for, and approaches to generating new synthetic and functional systems to test, advance, and apply our understanding of biological systems. In keeping with this issue of Current Opinion in Structural Biology, we focus largely on the design and engineering of biomolecule-based components and systems.

  5. On the Cultivation of Automation Majors' Research Innovation Ability Based on Scientific Research Projects

    ERIC Educational Resources Information Center

    Wang, Lipeng; Li, Mingqiu

    2012-01-01

    Currently, it has become a fundamental goal for the engineering major to cultivate high-quality engineering technicians with innovation ability in scientific research which is an important academic ability necessary for them. This paper mainly explores the development of comprehensive and designing experiments in automation based on scientific…

  6. NASA Earth-to-Orbit Engineering Design Challenges: Thermal Protection Systems

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration (NASA), 2010

    2010-01-01

    National Aeronautics and Space Administration (NASA) Engineers at Marshall Space Flight Center, Dryden Flight Research Center, and their partners at other NASA centers and in private industry are currently developing X-33, a prototype to test technologies for the next generation of space transportation. This single-stage-to-orbit reusable launch…

  7. Instructional Strategies to Promote Student Strategic Thinking When Using SolidWorks

    ERIC Educational Resources Information Center

    Toto, Roxanne; Colledge, Thomas; Frederick, David; Pung, Wik Hung

    2014-01-01

    Reflective of current trends in industry, engineering design professionals are expected to have knowledge of 3D modeling software. Responding to this need, engineering curricula seek to effectively prepare students for the workforce by requiring instruction in the use of 3D parametric solid modeling. Recent literature contains many examples that…

  8. Effective Design of Educational Virtual Reality Applications for Medicine Using Knowledge-Engineering Techniques

    ERIC Educational Resources Information Center

    Górski, Filip; Bun, Pawel; Wichniarek, Radoslaw; Zawadzki, Przemyslaw; Hamrol, Adam

    2017-01-01

    Effective medical and biomedical engineering education is an important problem. Traditional methods are difficult and costly. That is why Virtual Reality is often used for that purpose. Educational medical VR is a well-developed IT field, with many available hardware and software solutions. Current solutions are prepared without methodological…

  9. Where Are We Now? Statistics on Capstone Courses Nationwide

    ERIC Educational Resources Information Center

    Howe, Susannah

    2010-01-01

    Capstone design courses are an increasingly common component of engineering curricula nationwide, but how much do we really know about the current practices? How do capstone courses differ across departments and institutions? How have capstone courses changed in the past 10 years? This paper highlights data from a survey of engineering capstone…

  10. [The application of genetic engineering to the petroleum biodesulfurization].

    PubMed

    Tong, M Y; Fang, X C; Ma, T; Zhang, Q

    2001-11-01

    The developed course and reaction mechanisms of petroleum biodesulfurization were introduced. The recent development of genetic engineering technology, which used in desulfuration strain's construction, reconstruction and other fields, was summarized emphatically. Its current research situation internal and overseas and the developing prospect were simply analyzed, and our research designs were submitted.

  11. Elements of Design-Based Science Activities That Affect Students' Motivation

    ERIC Educational Resources Information Center

    Jones, Brett D.; Chittum, Jessica R.; Akalin, Sehmuz; Schram, Asta B.; Fink, Jonathan; Schnittka, Christine; Evans, Michael A.; Brandt, Carol

    2015-01-01

    The primary purpose of this study was to examine the ways in which a 12-week after-school science and engineering program affected middle school students' motivation to engage in science and engineering activities. We used current motivation research and theory as a conceptual framework to assess 14 students' motivation through questionnaires,…

  12. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    ERIC Educational Resources Information Center

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  13. High School Physics: An Interactive Instructional Approach That Meets the Next Generation Science Standards

    ERIC Educational Resources Information Center

    Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew

    2015-01-01

    Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…

  14. Design and Development of a Cross-Cultural Disposition Inventory

    ERIC Educational Resources Information Center

    Davies, Randall; Zaugg, Holt; Tateishi, Isaku

    2015-01-01

    Advances in technology have increased the likelihood that engineers will have to work in a global, culturally diverse setting. Many schools of engineering are currently revising their curricula to help students to develop cultural competence. However, our ability to measure cultural dispositions can be a challenge. The purpose of this project was…

  15. Computer Program for the Design and Off-Design Performance of Turbojet and Turbofan Engine Cycles

    NASA Technical Reports Server (NTRS)

    Morris, S. J.

    1978-01-01

    The rapid computer program is designed to be run in a stand-alone mode or operated within a larger program. The computation is based on a simplified one-dimensional gas turbine cycle. Each component in the engine is modeled thermo-dynamically. The component efficiencies used in the thermodynamic modeling are scaled for the off-design conditions from input design point values using empirical trends which are included in the computer code. The engine cycle program is capable of producing reasonable engine performance prediction with a minimum of computer execute time. The current computer execute time on the IBM 360/67 for one Mach number, one altitude, and one power setting is about 0.1 seconds. about 0.1 seconds. The principal assumption used in the calculation is that the compressor is operated along a line of maximum adiabatic efficiency on the compressor map. The fluid properties are computed for the combustion mixture, but dissociation is not included. The procedure included in the program is only for the combustion of JP-4, methane, or hydrogen.

  16. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; G. Smedley

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukeshamore » VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.« less

  17. Ceramic Composite Development for Gas Turbine Engine Hot Section Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; VANrOODE, mARK

    2006-01-01

    The development of ceramic materials for incorporation into the hot section of gas turbine engines has been ongoing for about fifty years. Researchers have designed, developed, and tested ceramic gas turbine components in rigs and engines for automotive, aero-propulsion, industrial, and utility power applications. Today, primarily because of materials limitations and/or economic factors, major challenges still remain for the implementation of ceramic components in gas turbines. For example, because of low fracture toughness, monolithic ceramics continue to suffer from the risk of failure due to unknown extrinsic damage events during engine service. On the other hand, ceramic matrix composites (CMC) with their ability to display much higher damage tolerance appear to be the materials of choice for current and future engine components. The objective of this paper is to briefly review the design and property status of CMC materials for implementation within the combustor and turbine sections for gas turbine engine applications. It is shown that although CMC systems have advanced significantly in thermo-structural performance within recent years, certain challenges still exist in terms of producibility, design, and affordability for commercial CMC turbine components. Nevertheless, there exist some recent successful efforts for prototype CMC components within different engine types.

  18. Cryostatless high temperature supercurrent bearings for rocket engine turbopumps

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Dill, James F.

    1989-01-01

    The rocket engine systems examined include SSME, ALS, and CTV systems. The liquid hydrogen turbopumps in the SSME and ALS vehicle systems are identified as potentially attractive candidates for development of Supercurrent Bearings since the temperatures around the bearings is about 30 K, which is considerably lower than the 95 K transition temperatures of HTS materials. At these temperatures, the current HTS materials are shown to be capable of developing significantly higher current densities. This higher current density capability makes the development of supercurrent bearings for rocket engines an attractive proposition. These supercurrent bearings are also shown to offer significant advantages over conventional bearings used in rocket engines. They can increase the life and reliability over rolling element bearings because of noncontact operation. They offer lower power loss over conventional fluid film bearings. Compared to conventional magnetic bearings, they can reduce the weight of controllers significantly, and require lower power because of the use of persistent currents. In addition, four technology areas that require further attention have been identified. These are: Supercurrent Bearing Conceptual Design Verification; HTS Magnet Fabrication and Testing; Cryosensors and Controller Development; and Rocket Engine Environmental Compatibility Testing.

  19. Uprated OMS Engine Status-Sea Level Testing Results

    NASA Technical Reports Server (NTRS)

    Bertolino, J. D.; Boyd, W. C.

    1990-01-01

    The current Space Shuttle Orbital Maneuvering Engine (OME) is pressure fed, utilizing storable propellants. Performance uprating of this engine, through the use of a gas generator driven turbopump to increase operating pressure, is being pursued by the NASA Johnson Space Center (JSC). Component level design, fabrication, and test activities for this engine system have been on-going since 1984. More recently, a complete engine designated the Integrated Component Test Bed (ICTB), was tested at sea level conditions by Aerojet. A description of the test hardware and results of the sea level test program are presented. These results, which include the test condition operating envelope and projected performance at altitude conditions, confirm the capability of the selected Uprated OME (UOME) configuration to meet or exceed performance and operational requirements. Engine flexibility, demonstrated through testing at two different operational mixture ratios, along with a summary of projected Space Shuttle performance enhancements using the UOME, are discussed. Planned future activities, including ICTB tests at simulated altitude conditions, and recommendations for further engine development, are also discussed.

  20. Genetic tool development and systemic regulation in biosynthetic technology.

    PubMed

    Dai, Zhongxue; Zhang, Shangjie; Yang, Qiao; Zhang, Wenming; Qian, Xiujuan; Dong, Weiliang; Jiang, Min; Xin, Fengxue

    2018-01-01

    With the increased development in research, innovation, and policy interest in recent years, biosynthetic technology has developed rapidly, which combines engineering, electronics, computer science, mathematics, and other disciplines based on classical genetic engineering and metabolic engineering. It gives a wider perspective and a deeper level to perceive the nature of life via cell mechanism, regulatory networks, or biological evolution. Currently, synthetic biology has made great breakthrough in energy, chemical industry, and medicine industries, particularly in the programmable genetic control at multiple levels of regulation to perform designed goals. In this review, the most advanced and comprehensive developments achieved in biosynthetic technology were represented, including genetic engineering as well as synthetic genomics. In addition, the superiority together with the limitations of the current genome-editing tools were summarized.

  1. 30 CFR 77.216-5 - Water, sediment or slurry impoundments and impounding structures; abandonment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are met: (1) A registered professional engineer, knowledgeable in the principles of dam design and in the design and construction of the structure, shall certify that it substantially conforms to the approved design plan and specifications and that there are no apparent defects. (2) The current owner or...

  2. 30 CFR 77.216-5 - Water, sediment or slurry impoundments and impounding structures; abandonment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are met: (1) A registered professional engineer, knowledgeable in the principles of dam design and in the design and construction of the structure, shall certify that it substantially conforms to the approved design plan and specifications and that there are no apparent defects. (2) The current owner or...

  3. A New Vision for Public Art and Functional Landscape Design

    ERIC Educational Resources Information Center

    Song, Young Imm Kang

    2014-01-01

    This article explores how Johanson's ecological public art and landscape design addresses current social issues and community necessities. It also examines how her designs may serve as a communication tool for the surrounding society, and how her public art may provide new perspectives for community members, scientists, artists, engineers,…

  4. Evaluation of an F100 multivariable control using a real-time engine simulation

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Soeder, J. F.; Skira, C.

    1977-01-01

    The control evaluated has been designed for the F100-PW-100 turbofan engine. The F100 engine represents the current state-of-the-art in aircraft gas turbine technology. The control makes use of a multivariable, linear quadratic regulator. The evaluation procedure employed utilized a real-time hybrid computer simulation of the F100 engine and an implementation of the control logic on the NASA LeRC digital computer/controller. The results of the evaluation indicated that the control logic and its implementation will be capable of controlling the engine throughout its operating range.

  5. GN&C Engineering Best Practices for Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2007-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  6. GN&C Engineering Best Practices for Human-Rated Spacecraft System

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2008-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  7. GN&C Engineering Best Practices For Human-Rated Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lebsock, Kenneth; West, John

    2007-01-01

    The NASA Engineering and Safety Center (NESC) recently completed an in-depth assessment to identify a comprehensive set of engineering considerations for the Design, Development, Test and Evaluation (DDT&E) of safe and reliable human-rated spacecraft systems. Reliability subject matter experts, discipline experts, and systems engineering experts were brought together to synthesize the current "best practices" both at the spacecraft system and subsystems levels. The objective of this paper is to summarize, for the larger Community of Practice, the initial set of Guidance, Navigation and Control (GN&C) engineering Best Practices as identified by this NESC assessment process.

  8. Proceedings of the Workshop on software tools for distributed intelligent control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herget, C.J.

    1990-09-01

    The Workshop on Software Tools for Distributed Intelligent Control Systems was organized by Lawrence Livermore National Laboratory for the United States Army Headquarters Training and Doctrine Command and the Defense Advanced Research Projects Agency. The goals of the workshop were to the identify the current state of the art in tools which support control systems engineering design and implementation, identify research issues associated with writing software tools which would provide a design environment to assist engineers in multidisciplinary control design and implementation, formulate a potential investment strategy to resolve the research issues and develop public domain code which can formmore » the core of more powerful engineering design tools, and recommend test cases to focus the software development process and test associated performance metrics. Recognizing that the development of software tools for distributed intelligent control systems will require a multidisciplinary effort, experts in systems engineering, control systems engineering, and compute science were invited to participate in the workshop. In particular, experts who could address the following topics were selected: operating systems, engineering data representation and manipulation, emerging standards for manufacturing data, mathematical foundations, coupling of symbolic and numerical computation, user interface, system identification, system representation at different levels of abstraction, system specification, system design, verification and validation, automatic code generation, and integration of modular, reusable code.« less

  9. Turning up the heat on aircraft structures. [design and analysis for high-temperature conditions

    NASA Technical Reports Server (NTRS)

    Dobyns, Alan; Saff, Charles; Johns, Robert

    1992-01-01

    An overview is presented of the current effort in design and development of aircraft structures to achieve the lowest cost for best performance. Enhancements in this area are focused on integrated design, improved design analysis tools, low-cost fabrication techniques, and more sophisticated test methods. 3D CAD/CAM data are becoming the method through which design, manufacturing, and engineering communicate.

  10. Industrial Design in Aerospace/Role of Aesthetics

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    2006-01-01

    Industrial design creates and develops concepts and specifications that seek to simultaneously and synergistically optimize function, production, value and appearance. The inclusion of appearance, or esthetics, as a major design metric represents both an augmentation of conventional engineering design and an intersection with artistic endeavor(s). Report surveys past and current industrial design practices and examples across aerospace including aircraft and spacecraft, both exterior and interior.

  11. User interface design principles for the SSM/PMAD automated power system

    NASA Technical Reports Server (NTRS)

    Jakstas, Laura M.; Myers, Chris J.

    1991-01-01

    Martin Marietta has developed a user interface for the space station module power management and distribution (SSM/PMAD) automated power system testbed which provides human access to the functionality of the power system, as well as exemplifying current techniques in user interface design. The testbed user interface was designed to enable an engineer to operate the system easily without having significant knowledge of computer systems, as well as provide an environment in which the engineer can monitor and interact with the SSM/PMAD system hardware. The design of the interface supports a global view of the most important data from the various hardware and software components, as well as enabling the user to obtain additional or more detailed data when needed. The components and representations of the SSM/PMAD testbed user interface are examined. An engineer's interactions with the system are also described.

  12. Aircraft gas turbine low-power emissions reduction technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Gleason, C. C.; Bahr, D. W.

    1978-01-01

    Advanced aircraft turbine engine combustor technology was used to reduce low-power emissions of carbon monoxide and unburned hydrocarbons to levels significantly lower than those which were achieved with current technology. Three combustor design concepts, which were designated as the hot-wall liner concept, the recuperative-cooled liner concept, and the catalyst converter concept, were evaluated in a series of CF6-50 engine size 40 degree-sector combustor rig tests. Twenty-one configurations were tested at operating conditions spanning the design condition which was an inlet temperature and pressure of 422 K and 304 kPa, a reference velocity of 23 m/s and a fuel-air-ration of 10.5 g/kg. At the design condition typical of aircraft turbine engine ground idle operation, the best configurations of all three concepts met the stringent emission goals which were 10, 1, and 4 g/kg for CO, HC, and Nox, respectively.

  13. Systems Engineering Model for ART Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendez Cruz, Carmen Margarita; Rochau, Gary E.; Wilson, Mollye C.

    The near-term objective of the EC team is to establish an operating, commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the NE - STEP demonstration system (demo) with the lowest risk possible. A systems engineering approach is recommended to ensure adequate requirements gathering, documentation, and mode ling that supports technology development relevant to advanced reactors while supporting crosscut interests in potential applications. A holistic systems engineering model was designed for the ART Energy Conversion program by leveraging Concurrent Engineering, Balance Model, Simplified V Model, and Project Management principles. The resulting model supports the identification and validation ofmore » lifecycle Brayton systems requirements, and allows designers to detail system-specific components relevant to the current stage in the lifecycle, while maintaining a holistic view of all system elements.« less

  14. High Misalignment Carbon Seals for the Fan Drive Gear System Technologies

    NASA Technical Reports Server (NTRS)

    Shaughnessy, Dennis; Dobek, Lou

    2006-01-01

    Aircraft engines of the future will require capability bearing compartment seals than found in current engines. Geared systems driving the fan will be subjected to inertia and gyroscopic forces resulting in extremely high angular and radial misalignments. Because of the high misalignment levels, compartment seals capable of accommodating angularities and eccentricities are required. Pratt & Whitney and Stein Seal Company selected the segmented circumferential carbon seal as the best candidate to operate at highly misaligned conditions. Initial seal tests established the misalignment limits of the current technology circumferential seal. From these results a more compliant seal configuration was conceived, designed, fabricated, and tested. Further improvements to the design are underway and plans are to conduct a durability test of the next phase configuration. A technical approach is presented, including design modification to a "baseline"seal, carbon grade selection, test rig configuration, test plan and results of analysis of seal testing.

  15. Renovation of a mechanical engineering senior design class to an industry-tied and team-oriented course

    NASA Astrophysics Data System (ADS)

    Liu, Yucheng

    2017-11-01

    In this work, an industry-based and team-oriented education model was established based on a traditional mechanical engineering (ME) senior design class in order to better prepare future engineers and leaders so as to meet the increasing demand for high-quality engineering graduates. In the renovated curriculum, industry-sponsored projects became the most important course component and critical assessment tool, from which problem-solving skills as well as employability skills of the ME students can be fully developed. Hands-on experiences in finite element analysis (FEA) modelling and simulation were also added into the renovated curriculum to promote the application of FEA on engineering design and assessment. Evaluation of the renovated course was conducted using two instruments and the results have shown that the course made the ME senior students more prepared for their future career and a win-win model was created between the industry partner and the ME programme through it. Impact of the renovated syllabus on Accreditation Board for Engineering Technology goals was discussed. Based on the current progress, a more substantial change is being planned to further improve the effectiveness and practicability of this design course. The renovated course was started to offer to the ME senior students at Mississippi State University.

  16. Tissue engineering: state of the art in oral rehabilitation

    PubMed Central

    SCHELLER, E. L.; KREBSBACH, P. H.; KOHN, D. H.

    2009-01-01

    SUMMARY More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering. PMID:19228277

  17. Tissue engineering: state of the art in oral rehabilitation.

    PubMed

    Scheller, E L; Krebsbach, P H; Kohn, D H

    2009-05-01

    More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.

  18. Computer tools for systems engineering at LaRC

    NASA Technical Reports Server (NTRS)

    Walters, J. Milam

    1994-01-01

    The Systems Engineering Office (SEO) has been established to provide life cycle systems engineering support to Langley research Center projects. over the last two years, the computing market has been reviewed for tools which could enhance the effectiveness and efficiency of activities directed towards this mission. A group of interrelated applications have been procured, or are under development including a requirements management tool, a system design and simulation tool, and project and engineering data base. This paper will review the current configuration of these tools and provide information on future milestones and directions.

  19. Progress of Stirling cycle analysis and loss mechanism characterization

    NASA Technical Reports Server (NTRS)

    Tew, R. C., Jr.

    1986-01-01

    An assessment of Stirling engine thermodynamic modeling and design codes shows a general deficiency; this deficiency is due to poor understanding of the fluid flow and heat transfer phenomena that occur in the oscillating flow and pressure level environment within the engines. Stirling engine thermodynamic loss mechanisms are listed. Several experimental and computational research efforts now underway to characterize various loss mechanisms are reviewed. The need for additional experimental rigs and rig upgrades is discussed. Recent developments and current efforts in Stirling engine thermodynamic modeling are also reviewed.

  20. Engineering knowledge requirements for sand and dust on Mars

    NASA Technical Reports Server (NTRS)

    Kaplan, D. I.

    1991-01-01

    The successful landing of human beings on Mars and the establishment of a permanent outpost there will require an understanding of the Martian environment by the engineers. A key feature of the Martian environment is the nearly ubiquitous presence of sand and dust. The process which the engineering community will undertake to determine the sensitivities of their designs to the current level of knowledge about Mars sand and dust is emphasized. The interaction of the engineering community with the space exploration initiative (SEI) mission planners and management is described.

  1. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Work to develop and demonstrate the technology of structural ceramics for automotive engines and similar applications is described. Long-range technology is being sought to produce gas turbine engines for automobiles with reduced fuel consumption and reduced environmental impact. The Advanced Turbine Technology Application Project (ATTAP) test bed engine is designed such that, when installed in a 3,000 pound inertia weight automobile, it will provide low emissions, 42 miles per gallon fuel economy on diesel fuel, multifuel capability, costs competitive with current spark ignition engines, and noise and safety characteristics that meet Federal standards.

  2. Automated inspection of turbine blades: Challenges and opportunities

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Marron, Joseph C.; Sampson, Robert E.; Peace, George M.

    1994-01-01

    Current inspection methods for complex shapes and contours exemplified by aircraft engine turbine blades are expensive, time-consuming and labor intensive. The logistics support of new manufacturing paradigms such as integrated product-process development (IPPD) for current and future engine technology development necessitates high speed, automated inspection of forged and cast jet engine blades, combined with a capability of retaining and retrieving metrology data for process improvements upstream (designer-level) and downstream (end-user facilities) at commercial and military installations. The paper presents the opportunities emerging from a feasibility study conducted using 3-D holographic laser radar in blade inspection. Requisite developments in computing technologies for systems integration of blade inspection in production are also discussed.

  3. Transient Response of a Second Order System Using State Variables.

    ERIC Educational Resources Information Center

    LePage, Wilbur R.

    This programed booklet is designed for the engineering student who is familiar with the techniques of integral calculus and electrical networks. The booklet teaches how to determine the current and voltages across a resistor, inductor, and capacitor after the switch in a network has been closed. This is a classical problem in engineering, the…

  4. Bionic Manufacturing: Towards Cyborg Cells and Sentient Microbots.

    PubMed

    Srivastava, Sarvesh Kumar; Yadav, Vikramaditya G

    2018-05-01

    Bio-inspired engineering applies biological design principles towards developing engineering solutions but is not practical as a manufacturing paradigm. We advocate 'bionic manufacturing', a synergistic fusion of biotic and abiotic components, to transition away from bio-inspiration toward bio-augmentation to address current limitations in bio-inspired manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Findings from a Pre-Kindergarten Classroom: Making the Case for STEM in Early Childhood Education

    ERIC Educational Resources Information Center

    Tippett, Christine D.; Milford, Todd M.

    2017-01-01

    Science, technology, engineering, and mathematics (STEM) in early childhood education is an area currently given little attention in the literature, which is unfortunate since young children are natural scientists and engineers. Here, we outline our mixed-methods design-based research investigation of a pre-kindergarten (Pre-K) classroom where two…

  6. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  7. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.

  8. An experimental investigation of the aerodynamics and cooling of a horizontally-opposed air-cooled aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Owens, J. K.; Lawrence, D. L.

    1981-01-01

    A flight-test based research program was performed to investigate the aerodynamics and cooling of a horizontally-opposed engine installation. Specific areas investigated were the internal aerodynamics and cooling mechanics of the installation, inlet aerodynamics, and exit aerodynamics. The applicable theory and current state of the art are discussed for each area. Flight-test and ground-test techniques for the development of the cooling installation and the solution of cooling problems are presented. The results show that much of the internal aerodynamics and cooling technology developed for radial engines are applicable to horizontally opposed engines. Correlation is established between engine manufacturer's cooling design data and flight measurements of the particular installation. Also, a flight-test method for the development of cooling requirements in terms of easily measurable parameters is presented. The impact of inlet and exit design on cooling and cooling drag is shown to be of major significance.

  9. NNEPEQ: Chemical equilibrium version of the Navy/NASA Engine Program

    NASA Technical Reports Server (NTRS)

    Fishbach, Laurence H.; Gordon, Sanford

    1988-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has bee used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  10. Service Modeling for Service Engineering

    NASA Astrophysics Data System (ADS)

    Shimomura, Yoshiki; Tomiyama, Tetsuo

    Intensification of service and knowledge contents within product life cycles is considered crucial for dematerialization, in particular, to design optimal product-service systems from the viewpoint of environmentally conscious design and manufacturing in advanced post industrial societies. In addition to the environmental limitations, we are facing social limitations which include limitations of markets to accept increasing numbers of mass-produced artifacts and such environmental and social limitations are restraining economic growth. To attack and remove these problems, we need to reconsider the current mass production paradigm and to make products have more added values largely from knowledge and service contents to compensate volume reduction under the concept of dematerialization. Namely, dematerialization of products needs to enrich service contents. However, service was mainly discussed within marketing and has been mostly neglected within traditional engineering. Therefore, we need new engineering methods to look at services, rather than just functions, called "Service Engineering." To establish service engineering, this paper proposes a modeling technique of service.

  11. NNEPEQ - Chemical equilibrium version of the Navy/NASA Engine Program

    NASA Technical Reports Server (NTRS)

    Fishbach, L. H.; Gordon, S.

    1989-01-01

    The Navy NASA Engine Program, NNEP, currently is in use at a large number of government agencies, commercial companies and universities. This computer code has been used extensively to calculate the design and off-design (matched) performance of a broad range of turbine engines, ranging from subsonic turboprops to variable cycle engines for supersonic transports. Recently, there has been increased interest in applications for which NNEP was not capable of simulating, namely, high Mach applications, alternate fuels including cryogenics, and cycles such as the gas generator air-turbo-rocker (ATR). In addition, there is interest in cycles employing ejectors such as for military fighters. New engine component models had to be created for incorporation into NNEP, and it was found necessary to include chemical dissociation effects of high temperature gases. The incorporation of these extended capabilities into NNEP is discussed and some of the effects of these changes are illustrated.

  12. Space Vehicle Terrestrial Environment Design Requirements Guidelines

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2006-01-01

    The terrestrial environment is an important driver of space vehicle structural, control, and thermal system design. NASA is currently in the process of producing an update to an earlier Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development Handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, and sea state. In addition, the respective engineering design elements are discussed relative to terrestrial environment inputs that require consideration. Specific lessons learned that have contributed to the advancements made in the application and awareness of terrestrial environment inputs for aerospace engineering applications are presented.

  13. Engineering hurdles in contact and intraocular lens lathe design: the view ahead

    NASA Astrophysics Data System (ADS)

    Bradley, Norman D.; Keller, John R.; Ball, Gary A.

    1994-05-01

    Current trends in and intraocular lens design suggest ever- increasing demand for aspheric lens geometries - multisurface and/or toric surfaces - in a variety of new materials. As computer numeric controls (CNC) lathes and mills continue to evolve with he ophthalmic market, engineering hurdles present themselves to designers: Can hardware based upon single-point diamond turning accommodate the demands of software-driven designs? What are the limits of CNC resolution and repeatability in high-throughput production? What are the controlling factors in lathed, polish-free surface production? Emerging technologies in the lathed biomedical optics field are discussed along with their limitations, including refined diamond tooling, vibrational control, automation, and advanced motion control systems.

  14. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  15. APPLICATION OF THE 3D MODEL OF RAILWAY VIADUCTS TO COST ESTIMATION AND CONSTRUCTION

    NASA Astrophysics Data System (ADS)

    Fujisawa, Yasuo; Yabuki, Nobuyoshi; Igarashi, Zenichi; Yoshino, Hiroyuki

    Three dimensional models of civil engineering structures are only partially used in either design or construction but not both. Research on integration of design, cost estimation and construction by 3Dmodels has not been heard in civil engineering domain yet. Using continuously a 3D product model of a structure from design to construction through estimation should improve the efficiency and decrease the occurrence of mistakes, hence enhancing the quality. In this research, we investigated the current practices of flow from design to construction, particularly focusing on cost estimation. Then, we identified advantages and issues on utilization of 3D design models to estimation and construction by applying 3D models to an actual railway construction project.

  16. Elementary students' engagement in failure-prone engineering design tasks

    NASA Astrophysics Data System (ADS)

    Andrews, Chelsea Joy

    Although engineering education has been practiced at the undergraduate level for over a century, only fairly recently has the field broadened to include the elementary level; the pre-college division of the American Society of Engineering Education was established in 2003. As a result, while recent education standards require engineering in elementary schools, current studies are still filling in basic research on how best to design and implement elementary engineering activities. One area in need of investigation is how students engage with physical failure in design tasks. In this dissertation, I explore how upper elementary students engage in failure-prone engineering design tasks in an out-of-school environment. In a series of three empirical case studies, I look closely at how students evaluate failed tests and decide on changes to their design constructions, how their reasoning evolves as they repeatedly encounter physical failure, and how students and facilitators co-construct testing norms where repetitive failure is manageable. I also briefly investigate how students' engagement differs in a task that features near-immediate success. By closely examining student groups' discourse and their interactions with their design constructions, I found that these students: are able to engage in iteration and see failure-as-feedback with minimal externally-imposed structure; seem to be designing in a more sophisticated manner, attending to multiple causal factors, after experiencing repetitive failure; and are able to manage the stress and frustration of repetitive failure, provided the co-constructed testing norms of the workshop environment are supportive of failure management. These results have both pedagogical implications, in terms of how to create and facilitate design tasks, and methodological implications--namely, I highlight the particular insights afforded by a case study approach for analyzing engagement in design tasks.

  17. Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering.

    PubMed

    Li, Jiao Jiao; Ebied, Mohamed; Xu, Jen; Zreiqat, Hala

    2018-03-01

    The successful regeneration of bone tissue to replace areas of bone loss in large defects or at load-bearing sites remains a significant clinical challenge. Over the past few decades, major progress is achieved in the field of bone tissue engineering to provide alternative therapies, particularly through approaches that are at the interface of biology and engineering. To satisfy the diverse regenerative requirements of bone tissue, the field moves toward highly integrated approaches incorporating the knowledge and techniques from multiple disciplines, and typically involves the use of biomaterials as an essential element for supporting or inducing bone regeneration. This review summarizes the types of approaches currently used in bone tissue engineering, beginning with those primarily based on biology or engineering, and moving into integrated approaches in the areas of biomaterial developments, biomimetic design, and scalable methods for treating large or load-bearing bone defects, while highlighting potential areas for collaboration and providing an outlook on future developments. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Supercruiser Arrow HS-8

    NASA Technical Reports Server (NTRS)

    Lord, Paul; Kao, Edward; Abobo, Joey B.; Collins, Todd A.; Ma, Leong; Murad, Adnan; Naran, Hitesh; Nguyen, Thuan P.; Nuon, Timithy I.; Thomas, Dimitri D.

    1992-01-01

    Technology in aeronautics has advanced dramatically since the last design of a production High Speed Civil Transport (HSCT) aircraft. Newly projected requirements call for a new High Speed Civil Transport aircraft with a range of approximately 550 nm and at least 275 passenger capacity. The aircraft must be affordable and marketable. The new HSCT must be able to sustain long-duration flights and to absorb the abuse of daily operation. The new aircraft must be safe and simple to fly and require a minimum amount of maintenance. This aircraft must meet FAA certification criteria of FAR Part 25 and environmental constraints. Several design configurations were examined and two designs were selected for further investigation. The first design employs the delta planform wings and conventional empennage layout. The other design uses a swing wing layout and conventional empennage. Other engineering challenges, including materials and propulsion are also discussed. At a cruise flight speed between Mach 2.2 and Mach 3.0, no current generation of materials can endure the thermal loading of supersonic flight and satisfy the stringent weight requirements. A new generation of lightweight composite materials must be developed for the HSCT. With the enforcement of stage 3 noise restrictions, these new engines must be able to propel the aircraft and satisfy the noise limit. The engine with the most promise is the variable cycle engine. At low subsonic speeds the engine operates like a turbofan engine, providing the most efficient performance. At higher speeds the variable cycle engine operates as a turbojet power plant. The two large engine manufacturers, General Electric and Pratt & Whitney in the United States, are combining forces to make the variable cycle engine a reality.

  19. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor W. Wong; Tian Tian; Grant Smedley

    2004-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston/ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and emissions. An iterative process of simulation, experimentation and analysis, are being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston/ring dynamic and friction models have been developed and applied that illustrated the fundamental relationships between design parameters and friction losses. Various low-friction strategies and ring-design concepts have been explored, and engine experiments have been done on a full-scalemore » Waukesha VGF F18 in-line 6 cylinder power generation engine rated at 370 kW at 1800 rpm. Current accomplishments include designing and testing ring-packs using a subtle top-compression-ring profile (skewed barrel design), lowering the tension of the oil-control ring, employing a negative twist to the scraper ring to control oil consumption. Initial test data indicate that piston ring-pack friction was reduced by 35% by lowering the oil-control ring tension alone, which corresponds to a 1.5% improvement in fuel efficiency. Although small in magnitude, this improvement represents a first step towards anticipated aggregate improvements from other strategies. Other ring-pack design strategies to lower friction have been identified, including reduced axial distance between the top two rings, tilted top-ring groove. Some of these configurations have been tested and some await further evaluation. Colorado State University performed the tests and Waukesha Engine Dresser, Inc. provided technical support. Key elements of the continuing work include optimizing the engine piston design, application of surface and material developments in conjunction with improved lubricant properties, system modeling and analysis, and continued technology demonstration in an actual full-sized reciprocating natural-gas engine.« less

  20. Biomaterial design for specific cellular interactions: Role of surface functionalization and geometric features

    NASA Astrophysics Data System (ADS)

    Kolhar, Poornima

    The areas of drug delivery and tissue engineering have experienced extraordinary growth in recent years with the application of engineering principles and their potential to support and improve the field of medicine. The tremendous progress in nanotechnology and biotechnology has lead to this explosion of research and development in biomedical applications. Biomaterials can now be engineered at a nanoscale and their specific interactions with the biological tissues can be modulated. Various design parameters are being established and researched for design of drug-delivery carriers and scaffolds to be implanted into humans. Nanoparticles made from versatile biomaterial can deliver both small-molecule drugs and various classes of bio-macromolecules, such as proteins and oligonucleotides. Similarly in the field of tissue engineering, current approaches emphasize nanoscale control of cell behavior by mimicking the natural extracellular matrix (ECM) unlike, traditional scaffolds. Drug delivery and tissue engineering are closely connected fields and both of these applications require materials with exceptional physical, chemical, biological, and biomechanical properties to provide superior therapy. In the current study the surface functionalization and the geometric features of the biomaterials has been explored. In particular, a synthetic surface for culture of human embryonic stem cells has been developed, demonstrating the importance of surface functionalization in maintaining the pluripotency of hESCs. In the second study, the geometric features of the drug delivery carriers are investigated and the polymeric nanoneedles mediated cellular permeabilization and direct cytoplasmic delivery is reported. In the third study, the combined effect of surface functionalization and geometric modification of carriers for vascular targeting is enunciated. These studies illustrate how the biomaterials can be designed to achieve various cellular behaviors and control the interactions with cells in vivo .

  1. Design of Electrical Stimulation Bioreactors for Cardiac Tissue Engineering

    PubMed Central

    Tandon, N.; Marsano, A.; Cannizzaro, C.; Voldman, J.; Vunjak-Novakovic, G.

    2009-01-01

    Electrical stimulation has been shown to improve functional assembly of cardiomyocytes in vitro for cardiac tissue engineering. Carbon electrodes were found in past studies to have the best current injection characteristics. The goal of this study was to develop rational experimental design principles for the electrodes and stimulation regime, in particular electrode configuration, electrode ageing, and stimulation amplitude. Carbon rod electrodes were compared via electrochemical impedance spectroscopy (EIS) and we identified a safety range of 0 to 8 V/cm by comparing excitation thresholds and maximum capture rates for neonatal rat cardiomyocytes cultured with electrical stimulation. We conclude with recommendations for studies involving carbon electrodes for cardiac tissue engineering. PMID:19163486

  2. Atomization characteristics of swirl injector sprays

    NASA Technical Reports Server (NTRS)

    Feikema, Douglas A.

    1996-01-01

    Stable combustion within rocket engines is a continuing concern for designers of rocket engine systems. The swirl-coaxial injector has demonstrated effectiveness in achieving atomization and mixing, and therefore stable combustion. Swirl-coaxial injector technology is being deployed in the American RL1OA rocket design and Russian engine systems already make wide spread use of this technology. The present requirement for swirl injector research is derived from NASA's current Reusable Launch Vehicle (RLV) technology program. This report describes some of the background and literature on this topic including drop size measurements, comparison with theoretical predictions, the effect of surface tension on the atomization process, and surface wave characteristics of liquid film at the exit of the injector.

  3. Solar powered Stirling cycle electrical generator

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  4. NASA Planetary Science Summer School: Longitudinal Study

    NASA Astrophysics Data System (ADS)

    Giron, Jennie M.; Sohus, A.

    2006-12-01

    NASA’s Planetary Science Summer School is a program designed to prepare the next generation of scientists and engineers to participate in future missions of solar system exploration. The opportunity is advertised to science and engineering post-doctoral and graduate students with a strong interest in careers in planetary exploration. Preference is given to U.S. citizens. The “school” consists of a one-week intensive team exercise learning the process of developing a robotic mission concept into reality through concurrent engineering, working with JPL’s Advanced Project Design Team (Team X). This program benefits the students by providing them with skills, knowledge and the experience of collaborating with a concept mission design. A longitudinal study was conducted to assess the impact of the program on the past participants of the program. Data collected included their current contact information, if they are currently part of the planetary exploration community, if participation in the program contributed to any career choices, if the program benefited their career paths, etc. Approximately 37% of 250 past participants responded to the online survey. Of these, 83% indicated that they are actively involved in planetary exploration or aerospace in general; 78% said they had been able to apply what they learned in the program to their current job or professional career; 100% said they would recommend this program to a colleague.

  5. Lightweight two-stroke cycle aircraft diesel engine technology enablement program, volume 1

    NASA Technical Reports Server (NTRS)

    Freen, P. D.; Berenyi, S. G.; Brouwers, A. P.; Moynihan, M. E.

    1985-01-01

    An experimental Single Cylinder Test Engine Program is conducted to confirm the analytically projected performance of a two-stroke cycle diesel engine for aircraft applications. The test engine delivered 78kW indicated power from 1007cc displacement, operating at 3500 RPM on Schnuerle loop scavenged two-stroke cycle. Testing confirms the ability of a proposed 4-cylinder version of such an engine to reach the target power at altitude, in a highly turbocharged configuration. The experimental program defines all necessary parameters to permit design of a multicylinder engine for eventual flight applications; including injection system requirement, turbocharging, heat rejection, breathing, scavenging, and structural requirements. The multicylinder engine concept is configured to operate with an augmented turbocharger, but with no primary scavenge blower. The test program is oriented to provide a balanced turbocharger compressor to turbine power balance without an auxiliary scavenging system. Engine cylinder heat rejection to the ambient air has been significantly reduced and the minimum overall turbocharger efficiency required is within the range of commercially available turbochargers. Analytical studies and finite element modeling is made of insulated configurations of the engines - including both ceramic and metallic versions. A second generation test engine is designed based on current test results.

  6. Drawbridge by Design: Civil Engineering for Middle School

    ERIC Educational Resources Information Center

    Hemming, James

    2018-01-01

    Teaching about drawbridges allows students to apply skills they have learned in math and science, while also being creative with design and the use of available materials. Students can be exposed to current and ancient designs. Today's drawbridges are beginning to look their age and are in need of updating and modernization. New bridges are being…

  7. Design for reliability: NASA reliability preferred practices for design and test

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R.

    1994-01-01

    This tutorial summarizes reliability experience from both NASA and industry and reflects engineering practices that support current and future civil space programs. These practices were collected from various NASA field centers and were reviewed by a committee of senior technical representatives from the participating centers (members are listed at the end). The material for this tutorial was taken from the publication issued by the NASA Reliability and Maintainability Steering Committee (NASA Reliability Preferred Practices for Design and Test. NASA TM-4322, 1991). Reliability must be an integral part of the systems engineering process. Although both disciplines must be weighed equally with other technical and programmatic demands, the application of sound reliability principles will be the key to the effectiveness and affordability of America's space program. Our space programs have shown that reliability efforts must focus on the design characteristics that affect the frequency of failure. Herein, we emphasize that these identified design characteristics must be controlled by applying conservative engineering principles.

  8. Automatic building information model query generation

    DOE PAGES

    Jiang, Yufei; Yu, Nan; Ming, Jiang; ...

    2015-12-01

    Energy efficient building design and construction calls for extensive collaboration between different subfields of the Architecture, Engineering and Construction (AEC) community. Performing building design and construction engineering raises challenges on data integration and software interoperability. Using Building Information Modeling (BIM) data hub to host and integrate building models is a promising solution to address those challenges, which can ease building design information management. However, the partial model query mechanism of current BIM data hub collaboration model has several limitations, which prevents designers and engineers to take advantage of BIM. To address this problem, we propose a general and effective approachmore » to generate query code based on a Model View Definition (MVD). This approach is demonstrated through a software prototype called QueryGenerator. In conclusion, by demonstrating a case study using multi-zone air flow analysis, we show how our approach and tool can help domain experts to use BIM to drive building design with less labour and lower overhead cost.« less

  9. Automatic building information model query generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yufei; Yu, Nan; Ming, Jiang

    Energy efficient building design and construction calls for extensive collaboration between different subfields of the Architecture, Engineering and Construction (AEC) community. Performing building design and construction engineering raises challenges on data integration and software interoperability. Using Building Information Modeling (BIM) data hub to host and integrate building models is a promising solution to address those challenges, which can ease building design information management. However, the partial model query mechanism of current BIM data hub collaboration model has several limitations, which prevents designers and engineers to take advantage of BIM. To address this problem, we propose a general and effective approachmore » to generate query code based on a Model View Definition (MVD). This approach is demonstrated through a software prototype called QueryGenerator. In conclusion, by demonstrating a case study using multi-zone air flow analysis, we show how our approach and tool can help domain experts to use BIM to drive building design with less labour and lower overhead cost.« less

  10. Integrating reliability and maintainability into a concurrent engineering environment

    NASA Astrophysics Data System (ADS)

    Phillips, Clifton B.; Peterson, Robert R.

    1993-02-01

    This paper describes the results of a reliability and maintainability study conducted at the University of California, San Diego and supported by private industry. Private industry thought the study was important and provided the university access to innovative tools under cooperative agreement. The current capability of reliability and maintainability tools and how they fit into the design process is investigated. The evolution of design methodologies leading up to today's capability is reviewed for ways to enhance the design process while keeping cost under control. A method for measuring the consequences of reliability and maintainability policy for design configurations in an electronic environment is provided. The interaction of selected modern computer tool sets is described for reliability, maintainability, operations, and other elements of the engineering design process. These tools provide a robust system evaluation capability that brings life cycle performance improvement information to engineers and their managers before systems are deployed, and allow them to monitor and track performance while it is in operation.

  11. Oxygen-hydrogen thrusters for Space Station auxiliary propulsion systems

    NASA Technical Reports Server (NTRS)

    Berkman, D. K.

    1984-01-01

    The feasibility and technology requirements of a low-thrust, high-performance, long-life, gaseous oxygen (GO2)/gaseous hydrogen (GH2) thruster were examined. Candidate engine concepts for auxiliary propulsion systems for space station applications were identified. The low-thrust engine (5 to 100 lb sub f) requires significant departure from current applications of oxygen/hydrogen propulsion technology. Selection of the thrust chamber material and cooling method needed or long life poses a major challenge. The use of a chamber material requiring a minimum amount of cooling or the incorporation of regenerative cooling were the only choices available with the potential of achieving very high performance. The design selection for the injector/igniter, the design and fabrication of a regeneratively cooled copper chamber, and the design of a high-temperature rhenium chamber were documented and the performance and heat transfer results obtained from the test program conducted at JPL using the above engine components presented. Approximately 115 engine firings were conducted in the JPL vacuum test facility, using 100:1 expansion ratio nozzles. Engine mixture ratio and fuel-film cooling percentages were parametrically investigated for each test configuration.

  12. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  13. Producibility Engineering and Planning (PEP)

    DTIC Science & Technology

    1977-01-01

    Materiel System, May 1976. c. Cesare Raimondi, "Estimating Drafting Time - Art , Science , Guess- work", Machine Design, 7 September 1972. d. Current Wage...Comprehensive 8 16 24 32 40 86 45 70 90 80 1/ Cesare Raimondi, "Estimating Drafting Time- Art , Science , Guesswork," Machine Design, September

  14. User Participation and Participatory Design: Topics in Computing Education.

    ERIC Educational Resources Information Center

    Kautz, Karlheinz

    1996-01-01

    Discusses user participation and participatory design in the context of formal education for computing professionals. Topics include the current curriculum debate; mathematical- and engineering-based education; traditional system-development training; and an example of a course program that includes computers and society, and prototyping. (53…

  15. Education, Technology, and Media: A Peak into My Summer Internship at NASA Glenn Research Center in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senor at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time sohare applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community.

  16. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    PubMed Central

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  17. Day one sustainability

    NASA Astrophysics Data System (ADS)

    Orr, John; Ibell, Timothy; Evernden, Mark; Darby, Antony

    2015-05-01

    Emissions reductions targets for the UK set out in the Climate Change Act for the period to 2050 will only be achieved with significant changes to the built environment, which is currently estimated to account for 50% of the UK's carbon emissions. The socio-technological nature of Civil Engineering means that this field is uniquely placed to lead the UK through such adaptations. This paper discusses the importance of interdisciplinary teaching to produce multi-faceted team approaches to sustainable design solutions. Methods for measuring success in education are often not fit for purpose, producing good students but poor engineers. Real-world failures to apply sustainable design present a serious, difficult to detect, and ultimately economically negative situation. Techniques to replace summative examinations are presented and discussed, with the aim of enhancing core technical skills alongside those required for sustainable design. Finally, the role of our future engineers in policy-making is discussed. In addition to carbon, the provision of water and food will heavily influence the work of civil engineers in the coming decades. Leadership from civil engineers with the technical knowledge and social awareness to tackle these issues will be required. This provides both opportunities and challenges for engineering education in the UK.

  18. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    PubMed

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-10-11

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  19. Optimization of monopiles for offshore wind turbines.

    PubMed

    Kallehave, Dan; Byrne, Byron W; LeBlanc Thilsted, Christian; Mikkelsen, Kristian Kousgaard

    2015-02-28

    The offshore wind industry currently relies on subsidy schemes to be competitive with fossil-fuel-based energy sources. For the wind industry to survive, it is vital that costs are significantly reduced for future projects. This can be partly achieved by introducing new technologies and partly through optimization of existing technologies and design methods. One of the areas where costs can be reduced is in the support structure, where better designs, cheaper fabrication and quicker installation might all be possible. The prevailing support structure design is the monopile structure, where the simple design is well suited to mass-fabrication, and the installation approach, based on conventional impact driving, is relatively low-risk and robust for most soil conditions. The range of application of the monopile for future wind farms can be extended by using more accurate engineering design methods, specifically tailored to offshore wind industry design. This paper describes how state-of-the-art optimization approaches are applied to the design of current wind farms and monopile support structures and identifies the main drivers where more accurate engineering methods could impact on a next generation of highly optimized monopiles. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. Opportunities for research in aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1983-01-01

    "Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.

  1. Structurally compliant rocket engine combustion chamber: Experimental and analytical validation

    NASA Technical Reports Server (NTRS)

    Jankovsky, Robert S.; Arya, Vinod K.; Kazaroff, John M.; Halford, Gary R.

    1994-01-01

    A new, structurally compliant rocket engine combustion chamber design has been validated through analysis and experiment. Subscale, tubular channel chambers have been cyclically tested and analytically evaluated. Cyclic lives were determined to have a potential for 1000 percent increase over those of rectangular channel designs, the current state of the art. Greater structural compliance in the circumferential direction gave rise to lower thermal strains during hot firing, resulting in lower thermal strain ratcheting and longer predicted fatigue lives. Thermal, structural, and durability analyses of the combustion chamber design, involving cyclic temperatures, strains, and low-cycle fatigue lives, have corroborated the experimental observations.

  2. The NDCX-II engineering design

    NASA Astrophysics Data System (ADS)

    Waldron, W. L.; Abraham, W. J.; Arbelaez, D.; Friedman, A.; Galvin, J. E.; Gilson, E. P.; Greenway, W. G.; Grote, D. P.; Jung, J.-Y.; Kwan, J. W.; Leitner, M.; Lidia, S. M.; Lipton, T. M.; Reginato, L. L.; Regis, M. J.; Roy, P. K.; Sharp, W. M.; Stettler, M. W.; Takakuwa, J. H.; Volmering, J.; Vytla, V. K.

    2014-01-01

    The Neutralized Drift Compression Experiment (NDCX-II) is a user facility located at Lawrence Berkeley National Laboratory which is uniquely designed for ion-beam-driven high energy density laboratory physics and heavy ion fusion research. Construction was completed in March 2012 and the facility is now in the commissioning phase. A significant amount of engineering was carried out in order to meet the performance parameters required for a wide range of target heating experiments while making the most cost-effective use of high-value hardware available from a decommissioned high current electron induction accelerator. The technical challenges and design of this new ion induction accelerator facility are described.

  3. High power, high frequency helix TWT's

    NASA Astrophysics Data System (ADS)

    Sloley, H. J.; Willard, J.; Paatz, S. R.; Keat, M. J.

    The design and performance characteristics of a 34-GHz pulse tube capable of 75 W peak power output at 30 percent duty cycle and a broadband CW tube are presented. Particular attention is given to the engineering problems encountered during the development of the tubes, including the suppression of backward wave oscillation, the design of electron guns for small-diameter high-current beams, and the thermal capability of small helix structures. The discussion also covers the effects of various design parameters and choice of engineering materials on the ultimate practical limit of power and gain at the operating frequencies. Measurements are presented for advanced experimental tubes.

  4. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  5. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  6. Enabling functional genomics with genome engineering

    PubMed Central

    Hilton, Isaac B.; Gersbach, Charles A.

    2015-01-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. PMID:26430154

  7. Design of the NASA Lewis 4-Port Wave Rotor Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Jack

    1997-01-01

    Pressure exchange wave rotors, used in a topping stage, are currently being considered as a possible means of increasing the specific power, and reducing the specific fuel consumption of gas turbine engines. Despite this interest, there is very little information on the performance of a wave rotor operating on the cycle (i.e., set of waves) appropriate for use in a topping stage. One such cycle, which has the advantage of being relatively easy to incorporate into an engine, is the four-port cycle. Consequently, an experiment to measure the performance of a four-port wave rotor for temperature ratios relevant to application as a topping cycle for a gas turbine engine has been designed and built at NASA Lewis. The design of the wave rotor is described, together with the constraints on the experiment.

  8. Solar thermal power systems point-focusing distributed receiver technology project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The accomplishments of the Point-Focusing Distributed Receiver Technology Project during fiscal year 1979 are detailed. Present studies involve designs of modular units that collect and concentrate solar energy via highly reflective, parabolic-shaped dishes. The concentrated energy is then converted to heat in a working fluid, such as hot gas. In modules designed to produce heat for industrial applications, a flexible line conveys the heated fluid from the module to a heat transfer network. In modules designed to produce electricity the fluid carries the heat directly to an engine in a power conversion unit located at the focus of the concentrator. The engine is mechanically linked to an electric generator. A Brayton-cycle engine is currently being developed as the most promising electrical energy converter to meet near-future needs.

  9. Fiberoptics technology and its application to propulsion control systems

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1983-01-01

    Current work on optical sensors and optically controlled actuators for use in air-breathing engine control systems is reviewed with particular reference to the design and operation of several new fiber-optic devices. These include a tachometer, a rotary position encoder, a Fabry-Perot interferometer and a rare-earth sensor for measuring engine gas temperatures, a high-temperature photoswitch designed for the range -55 to 260 C, and optical cables and connectors. The advantages of optics over conventional wire systems used for sensing and actuator control are briefly discussed.

  10. Application of probabilistic analysis/design methods in space programs - The approaches, the status, and the needs

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.; Townsend, John S.

    1993-01-01

    The prospective improvement of probabilistic methods for space program analysis/design entails the further development of theories, codes, and tools which match specific areas of application, the drawing of lessons from previous uses of probability and statistics data bases, the enlargement of data bases (especially in the field of structural failures), and the education of engineers and managers on the advantages of these methods. An evaluation is presently made of the current limitations of probabilistic engineering methods. Recommendations are made for specific applications.

  11. Materials technology assessment for a 1050 K Stirling space engine design

    NASA Technical Reports Server (NTRS)

    Scheuermann, Coulson M.; Dreshfield, Robert L.; Gaydosh, Darrell J.; Kiser, James D.; Mackay, Rebecca A.; Mcdaniels, David L.; Petrasek, Donald W.; Vannucci, Raymond D.; Bowles, Kenneth J.; Watson, Gordon K.

    1988-01-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor. However, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  12. Energy Efficient Engine program advanced turbofan nacelle definition study

    NASA Technical Reports Server (NTRS)

    Howe, David C.; Wynosky, T. A.

    1985-01-01

    Advanced, low drag, nacelle configurations were defined for some of the more promising propulsion systems identified in the earlier Benefit/Cost Study, to assess the benefits associated with these advanced technology nacelles and formulate programs for developing these nacelles and low volume thrust reversers/spoilers to a state of technology readiness in the early 1990's. The study results established the design feasibility of advanced technology, slim line nacelles applicable to advanced technology, high bypass ratio turbofan engines. Design feasibility was also established for two low volume thrust reverse/spoiler concepts that meet or exceed the required effectiveness for these engines. These nacelle and thrust reverse/spoiler designs were shown to be applicable in engines with takeoff thrust sizes ranging from 24,000 to 60,000 pounds. The reduced weight, drag, and cost of the advanced technology nacelle installations relative to current technology nacelles offer a mission fuel burn savings ranging from 3.0 to 4.5 percent and direct operating cost plus interest improvements from 1.6 to 2.2 percent.

  13. Further Investigations of Hypersonic Engine Seals

    NASA Technical Reports Server (NTRS)

    Dunlap, Patrick H., Jr.; Steinetz, Bruce M.; DeMange, Jeffrey J.

    2004-01-01

    Durable, flexible sliding seals are required in advanced hypersonic engines to seal the perimeters of movable engine ramps for efficient, safe operation in high heat flux environments at temperatures of 2000 to 2500 F. Current seal designs do not meet the demanding requirements for future engines, so NASA's Glenn Research Center is developing advanced seals and preloading devices to overcome these shortfalls. An advanced ceramic wafer seal design and two silicon nitride compression spring designs were evaluated in a series of compression, scrub, and flow tests. Silicon nitride wafer seals survived 2000 in. (50.8 m) of scrubbing at 2000 F against a silicon carbide rub surface with no chips or signs of damage. Flow rates measured for the wafers before and after scrubbing were almost identical and were up to 32 times lower than those recorded for the best braided rope seal flow blockers. Silicon nitride compression springs showed promise conceptually as potential seal preload devices to help maintain seal resiliency.

  14. Optical and system engineering in the development of a high-quality student telescope kit

    NASA Astrophysics Data System (ADS)

    Pompea, Stephen M.; Pfisterer, Richard N.; Ellis, Scott; Arion, Douglas N.; Fienberg, Richard Tresch; Smith, Thomas C.

    2010-07-01

    The Galileoscope student telescope kit was developed by a volunteer team of astronomers, science education experts, and optical engineers in conjunction with the International Year of Astronomy 2009. This refracting telescope is in production with over 180,000 units produced and distributed with 25,000 units in production. The telescope was designed to be able to resolve the rings of Saturn and to be used in urban areas. The telescope system requirements, performance metrics, and architecture were established after an analysis of current inexpensive telescopes and student telescope kits. The optical design approaches used in the various prototypes and the optical system engineering tradeoffs will be described. Risk analysis, risk management, and change management were critical as was cost management since the final product was to cost around 15 (but had to perform as well as 100 telescopes). In the system engineering of the Galileoscope a variety of analysis and testing approaches were used, including stray light design and analysis using the powerful optical analysis program FRED.

  15. Consultant management estimating tool.

    DOT National Transportation Integrated Search

    2012-04-01

    The New York State Department of Transportation (NYSDOT) Consultant Management Bureaus primary responsibilities are to negotiate staffing hours/resources with : engineering design consultants, and to monitor the consultant's costs. Currently the C...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Synthetic Biology Research Program, National University of Singapore, Singapore

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fattymore » acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes.« less

  17. Production of Fatty Acid-Derived Valuable Chemicals in Synthetic Microbes

    PubMed Central

    Yu, Ai-Qun; Pratomo Juwono, Nina Kurniasih; Leong, Susanna Su Jan; Chang, Matthew Wook

    2014-01-01

    Fatty acid derivatives, such as hydroxy fatty acids, fatty alcohols, fatty acid methyl/ethyl esters, and fatty alka(e)nes, have a wide range of industrial applications including plastics, lubricants, and fuels. Currently, these chemicals are obtained mainly through chemical synthesis, which is complex and costly, and their availability from natural biological sources is extremely limited. Metabolic engineering of microorganisms has provided a platform for effective production of these valuable biochemicals. Notably, synthetic biology-based metabolic engineering strategies have been extensively applied to refactor microorganisms for improved biochemical production. Here, we reviewed: (i) the current status of metabolic engineering of microbes that produce fatty acid-derived valuable chemicals, and (ii) the recent progress of synthetic biology approaches that assist metabolic engineering, such as mRNA secondary structure engineering, sensor-regulator system, regulatable expression system, ultrasensitive input/output control system, and computer science-based design of complex gene circuits. Furthermore, key challenges and strategies were discussed. Finally, we concluded that synthetic biology provides useful metabolic engineering strategies for economically viable production of fatty acid-derived valuable chemicals in engineered microbes. PMID:25566540

  18. Design of Accelerator Online Simulator Server Using Structured Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Guobao; /Brookhaven; Chu, Chungming

    2012-07-06

    Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describesmore » the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.« less

  19. Multidisciplinary design integration system for a supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Dovi, A. R.; Wrenn, G. A.; Barthelemy, J.-F. M.; Coen, P. G.; Hall, L. E.

    1992-01-01

    An aircraft preliminary design system which provides the multidisciplinary communications and couplings between several engineering disciplines is described. A primary benefit of this system is to demonstrate advanced technology multidisciplinary design integration methodologies. The current version includes the disciplines of aerodynamics and structures. Contributing engineering disciplines are coupled using the Global Sensitivity Equation approach to influence the global design optimization problem. A high speed civil transport configuration is used for configuration trade studies. Forty four independent design variables are used to control the cross-sectional areas of wing rib and spar caps and the thicknesses of wingskincover panels. A total of 300 stress, strain, buckling and displacement behavioral constraints and minimum gages on the design variables were used to optimize the idealized wing structure. The goal of the designs to resize the wing cover panels and internal structure for minimum mass.

  20. System 80+{trademark} standard design incorporates radiation protection lessons learned

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crom, T.D.; Naugle, C.L.; Turk, R.S.

    1995-03-01

    Many lessons have been learned from the current generation of nuclear plants in the area of radiation protection. The following paper will outline how the lessons learned have been incorporated into the design and operational philosophy of the System 80+{trademark} Standard Design currently under development by ABB Combustion Engineering (ABB-CE) with support from Duke Engineering and Services, Inc. and Stone and Webster Engineering Corporation in the Balance-of-Plant design. The System 80+{trademark} Standard Design is a complete nuclear power plant for national and international markets, designed in direct response to utility needs for the 1990`s, and scheduled for Nuclear Regulatory Commissionmore » (NRC) Design Certification under the new standardization rule (10 CFR Part 52). System 80+{trademark} is a natural extension of System 80{sup R} technology, an evolutionary change based on proven Nuclear Steam Supply System (NSSS) in operation at Palo Verde in Arizona and under construction at Yonggwang in the Republic of Korea. The System 80+{trademark} Containment and much of the Balance of Plant design is based upon Duke Power Company`s Cherokee Plant, which was partially constructed in the late 1970`s, but, was later canceled (due to rapid declined in electrical load growth). The System 80+{trademark} Standard Design meets the requirements given in the Electric Power Research Institute (EPRI) Advanced Light Water Reactor (ALWR) Requirements Document. One of these requirements is to limit the occupational exposure to 100 person-rem/yr. This paper illustrates how this goal can be achieved through the incorporation of lessons learned, innovative design, and the implementation of a common sense approach to operation and maintenances practices.« less

  1. Dual-fuel natural gas/diesel engines: Technology, performance, and emissions

    NASA Astrophysics Data System (ADS)

    Turner, S. H.; Weaver, C. S.

    1994-11-01

    An investigation of current dual-fuel natural gas/diesel engine design, performance, and emissions was conducted. The most pressing technological problems associated with dual-fuel engine use were identified along with potential solutions. It was concluded that dual-fuel engines can achieve low NO(sub x) and particulate emissions while retaining fuel-efficiency and BMEP levels comparable to those of diesel engines. The investigation also examined the potential economic impact of dual-fuel engines in diesel-electric locomotives, marine vessels, farm equipment, construction, mining, and industrial equipment, and stand-alone electricity generation systems. Recommendations for further additional funding to support research, development, and demonstration in these applications were then presented.

  2. University of Wyoming, College of Engineering, undergraduate design projects to aid Wyoming persons with disabilities.

    PubMed

    Barrett, Steven F; Laurin, Kathy M; Bloom, Janet K Chidester

    2003-01-01

    In Spring 2002 the University of Wyoming received NSF funding from the Division of Bioengineering and Environmental Systems to provide a meaningful design experience for University of Wyoming, College of Engineering students that will directly aid individuals with disabilities within the state of Wyoming. Other universities have participated in this very worthwhile program [1, 2, 3]. To achieve the program purpose, the following objectives were established: Provide engineering students multi-disciplinary, meaningful, community service design projects, Provide persons with disabilities assistive devices to empower them to achieve the maximum individual growth and development and afford them the opportunity to participate in all aspects of life as they choose, Provide engineering students education and awareness on the special needs and challenges of persons with disabilities, and Provide undergraduate engineering students exposure to the biomedical field of engineering. To accomplish these objectives the College of Engineering partnered with three organizations that provide education and service related to disability. Specifically, the college has joined with the Wyoming Institute for Disabilities (WIND) assistive technology program, Wyoming New Options in Technology (WYNOT) and their Sports and Outdoor Assistive Recreation (SOAR) project along with the university's Special Education program. In this paper we will describe how the program was created, developed, and its current status.

  3. Engineering Research and Technology Development on the Space Station

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report identifies and assesses the kinds of engineering research and technology development applicable to national, NASA, and commercial needs that can appropriately be performed on the space station. It also identifies the types of instrumentation that should be included in the space station design to support engineering research. The report contains a preliminary assessment of the potential benefits to U.S. competitiveness of engineering research that might be conducted on a space station, reviews NASA's current approach to jointly funded or cooperative experiments, and suggests modifications that might facilitate university and industry participation in engineering research and technology development activities on the space station.

  4. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    NASA Technical Reports Server (NTRS)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  5. Alternative Assessment in Engineering Language Education: The Case of the Technical University of Madrid

    ERIC Educational Resources Information Center

    Pierce, Joana; Duran, Pilar; Ubeda, Paloma

    2011-01-01

    Engineering institutions across Europe are currently involved in a major process of reform and restructuring as a part of the Bologna Process, which stresses the role of competencies and outcomes in curriculum design. In the field of languages, the Council of Europe has developed the CEFR (Common European Framework of References) for languages,…

  6. An Investigation of Science, Technology, Engineering and Mathematics (STEM) Focused High Schools in the U.S.

    ERIC Educational Resources Information Center

    Scott, Catherine

    2012-01-01

    This study examined the characteristics of 10 science, technology, engineering and mathematics (STEM) focused high schools that were selected from various regions across the United States. In an effort to better prepare students for careers in STEM fields, many schools have been designed and are currently operational, while even more are in the…

  7. Development and testing of CMC components for automotive gas turbine engines

    NASA Technical Reports Server (NTRS)

    Khandelwal, Pramod K.

    1991-01-01

    Ceramic matrix composite (CMC) materials are currently being developed and evaluated for advanced gas turbine engine components because of their high specific strength and resistance to catastrophic failure. Components with 2D and 3D composite architectures have been successfully designed and fabricated. This is an overview of the test results for a backplate, combustor, and a rotor.

  8. Enterprise Architecture Tradespace Analysis

    DTIC Science & Technology

    2014-02-21

    EXECUTIVE SUMMARY The Department of Defense (DoD)’s Science & Technology (S&T) priority for Engineered Resilient Systems (ERS) calls for...Science & Technology (S&T) priority for Engineered Resilient Systems (ERS) calls for adaptable designs with diverse systems models that can easily be...Department of Defense [Holland, 2012]. Some explicit goals are: • Establish baseline resiliency of current capabilities • More complete and robust

  9. Life with Four Billion Atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, Thomas

    2013-04-10

    Today it is commonplace to design and construct single silicon chips with billions of transistors. These are complex systems, difficult (but possible) to design, test, and fabricate. Remarkably, simple living systems can be assembled from a similar number of atoms, most of them in water molecules. In this talk I will present the current status of our attempts at full understanding and complexity reduction of one of the simplest living systems, the free-living bacterial species Mesoplasma florum. This 400 nm diameter cell thrives and replicates every 40 minutes with a genome of only 800 kilobases. Our recent experiments using transposonmore » gene knockouts identified 354 of 683 annotated genes as inessential in laboratory culture when inactivated individually. While a functional redesigned genome will certainly not remove all of those genes, this suggests that roughly half the genome can be removed in an intentional redesign. I will discuss our recent knockout results and methodology, and our future plans for Genome re-engineering using targeted knock-in/knock-out double recombination; whole cell metabolic models; comprehensive whole cell metabolite measurement techniques; creation of plug-and-play metabolic modules for the simplified organism; inherent and engineered biosafety control mechanisms. This redesign is part of a comprehensive plan to lay the foundations for a new discipline of engineering biology. Engineering biological systems requires a fundamentally different viewpoint from that taken by the science of biology. Key engineering principles of modularity, simplicity, separation of concerns, abstraction, flexibility, hierarchical design, isolation, and standardization are of critical importance. The essence of engineering is the ability to imagine, design, model, build, and characterize novel systems to achieve specific goals. Current tools and components for these tasks are primitive. Our approach is to create and distribute standard biological parts, organisms, assembly techniques, and measurement techniques as a way of enabling this new field.« less

  10. Perspectives on knowledge in engineering design

    NASA Technical Reports Server (NTRS)

    Rasdorf, W. J.

    1985-01-01

    Various perspectives are given of the knowledge currently used in engineering design, specifically dealing with knowledge-based expert systems (KBES). Constructing an expert system often reveals inconsistencies in domain knowledge while formalizing it. The types of domain knowledge (facts, procedures, judgments, and control) differ from the classes of that knowledge (creative, innovative, and routine). The feasible tasks for expert systems can be determined based on these types and classes of knowledge. Interpretive tasks require reasoning about a task in light of the knowledge available, where generative tasks create potential solutions to be tested against constraints. Only after classifying the domain by type and level can the engineer select a knowledge-engineering tool for the domain being considered. The critical features to be weighed after classification are knowledge representation techniques, control strategies, interface requirements, compatibility with traditional systems, and economic considerations.

  11. Bridging Water Resources Policy and Environmental Engineering in the Classroom at Cornell University

    NASA Astrophysics Data System (ADS)

    Walter, M. T.; Shaw, S. B.; Seifert, S.; Schwarz, T.

    2006-12-01

    Current university undergraduate students in environmental sciences and engineering are the next generation of environmental protection practitioners. Recognizing this, Cornell's Biological and Environmental Engineering department has developed a popular class, Watershed Engineering (BEE 473), specifically designed to bridge the too-common gap between water resources policy and state-of-art science and technology. Weekly homework assignments are to design real-life solutions to actual water resources problems, often with the objective of applying storm water policies to local situations. Where appropriate, usually in conjunction with recent amendments to the Federal Clean Water Act, this course introduces water resource protection tools and concepts developed in the Cornell Soil and Water Lab. Here we present several examples of how we build bridges between university classrooms and the complex world of water resources policy.

  12. Energy efficient engine: Flight propulsion system preliminary analysis and design

    NASA Technical Reports Server (NTRS)

    Johnston, R. P.; Beitler, R. S.; Bobinger, R. O.; Broman, C. L.; Gravitt, R. D.; Heineke, H.; Holloway, P. R.; Klem, J. S.; Nash, D. O.; Ortiz, P.

    1980-01-01

    The characteristics of an advanced flight propulsion system (FPS), suitable for introduction in the late 1980's to early 1990's, was more fully defined. It was determined that all goals for efficiency, environmental considerations, and economics could be met or exceeded with the possible exception of NOx emission. In evaluating the FPS, all aspects were considered including component design, performance, weight, initial cost, maintenance cost, engine system integration (including nacelle), and aircraft integration considerations. The current FPS installed specific fuel consumption was reduced 14.2% from that of the CF6-50C reference engine. When integrated into an advanced, subsonic, study transport, the FPS produced a fuel burn savings of 15 to 23% and a direct operating cost reduction of 5 to 12% depending on the mission and study aircraft characteristics relative to the reference engine.

  13. Development of Advanced High Strength Cast Alloys for Heavy Duty Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, James

    Gray iron has been the primary alloy for heavy duty diesel engine core castings for decades. During recent decades the limitations of gray iron have been reached in some applications, leading to the use of compacted graphite iron in engine blocks and heads. Caterpillar has had compacted graphite designs in continuous production since the late 1980’s. Due to the drive for higher power density, decreased emissions and increased fuel economy, cylinder pressures and temperatures continue to increase. Currently no viable replacement for today’s compacted graphite irons exist at an acceptable cost level. This project explored methods to develop the nextmore » generation of heavy duty diesel engine materials as well as demonstrated some results on new alloy designs although cost targets will likely not be met.« less

  14. Combustion Instability Phenomena of Importance to Liquid Propellant Engines

    DTIC Science & Technology

    1993-07-31

    July 31, 1993 !Annual 01 July 92-30 June 93 4 TITLE AND SUBTITLE s . FUNDING NUMBERS (U) Combustion Instability Phenomena of Importance to Liquid...Propellant Engines PE - 61102F IPR- 2308 6. AUTHOR( S ) SA - Al G - AFOSR-91-0336 R. J. Santoro and W. E. Anderson 7. PERFORMING ORGANIZATION NAME( S ) AND...technology are not being used; instead, current engines are essentially being built with the same injector designs that were developed in the 1960’ s . I e The

  15. Engineering and Technical Efforts to Design and Construct a 10 MW gyrotron Laboratory

    DTIC Science & Technology

    1989-01-18

    coupling coefficients are proptional to the square of the effective electric field at the beam. The effective electric field, Es, is given in...develop- ed to alleviate shorts in the body current beam diagnostic and baking constraints that previous o-ring designs have experienced. The prototype

  16. Engineering design of a high-temperature superconductor current lead

    NASA Astrophysics Data System (ADS)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Daugherty, M. A.; Buckles, W. E.

    As part of the US Department of Energy's Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suitable for application to superconducting magnetic energy storage systems. The principal objective of the development program is to design, construct, and evaluate the performance of HTS current leads suitable for near-term applications. Supporting objectives are to (1) develop performance criteria; (2) develop a detailed design; (3) analyze performance; (4) gain manufacturing experience in the areas of materials and components procurement, fabrication and assembly, quality assurance, and cost; (5) measure performance of critical components and the overall assembly; (6) identify design uncertainties and develop a program for their study; and (7) develop application-acceptance criteria.

  17. An Overview of NASA's Integrated Design and Engineering Analysis (IDEA) Environment

    NASA Technical Reports Server (NTRS)

    Robinson, Jeffrey S.

    2011-01-01

    Historically, the design of subsonic and supersonic aircraft has been divided into separate technical disciplines (such as propulsion, aerodynamics and structures), each of which performs design and analysis in relative isolation from others. This is possible, in most cases, either because the amount of interdisciplinary coupling is minimal, or because the interactions can be treated as linear. The design of hypersonic airbreathing vehicles, like NASA's X-43, is quite the opposite. Such systems are dominated by strong non-linear interactions between disciplines. The design of these systems demands that a multi-disciplinary approach be taken. Furthermore, increased analytical fidelity at the conceptual design phase is highly desirable, as many of the non-linearities are not captured by lower fidelity tools. Only when these systems are designed from a true multi-disciplinary perspective, can the real performance benefits be achieved and complete vehicle systems be fielded. Toward this end, the Vehicle Analysis Branch at NASA Langley Research Center has been developing the Integrated Design and Engineering Analysis (IDEA) Environment. IDEA is a collaborative environment for parametrically modeling conceptual and preliminary designs for launch vehicle and high speed atmospheric flight configurations using the Adaptive Modeling Language (AML) as the underlying framework. The environment integrates geometry, packaging, propulsion, trajectory, aerodynamics, aerothermodynamics, engine and airframe subsystem design, thermal and structural analysis, and vehicle closure into a generative, parametric, unified computational model where data is shared seamlessly between the different disciplines. Plans are also in place to incorporate life cycle analysis tools into the environment which will estimate vehicle operability, reliability and cost. IDEA is currently being funded by NASA?s Hypersonics Project, a part of the Fundamental Aeronautics Program within the Aeronautics Research Mission Directorate. The environment is currently focused around a two-stage-to-orbit configuration with a turbine-based combined cycle (TBCC) first stage and a reusable rocket second stage. IDEA will be rolled out in generations, with each successive generation providing a significant increase in capability, either through increased analytic fidelity, expansion of vehicle classes considered, or by the inclusion of advanced modeling techniques. This paper provides the motivation behind the current effort, an overview of the development of the IDEA environment (including the contents and capabilities to be included in Generation 1 and Generation 2), and a description of the current status and detail of future plans.

  18. High Stability Engine Control (HISTEC): Flight Demonstration Results

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  19. Advanced Turbine Technology Applications Project (ATTAP)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Reports technical effort by AlliedSignal Engines in sixth year of DOE/NASA funded project. Topics include: gas turbine engine design modifications of production APU to incorporate ceramic components; fabrication and processing of silicon nitride blades and nozzles; component and engine testing; and refinement and development of critical ceramics technologies, including: hot corrosion testing and environmental life predictive model; advanced NDE methods for internal flaws in ceramic components; and improved carbon pulverization modeling during impact. ATTAP project is oriented toward developing high-risk technology of ceramic structural component design and fabrication to carry forward to commercial production by 'bridging the gap' between structural ceramics in the laboratory and near-term commercial heat engine application. Current ATTAP project goal is to support accelerated commercialization of advanced, high-temperature engines for hybrid vehicles and other applications. Project objectives are to provide essential and substantial early field experience demonstrating ceramic component reliability and durability in modified, available, gas turbine engine applications; and to scale-up and improve manufacturing processes of ceramic turbine engine components and demonstrate application of these processes in the production environment.

  20. Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.

  1. Systems Modeling of a Hypothetical SSME Channel-Wall Nozzle

    NASA Technical Reports Server (NTRS)

    Greene, William D.; Thames, Mignon P.; Polsgrove, Robert H.

    2003-01-01

    A future upgrade to the Space Shuttle Main Engine (SSME) may be the replacement of the current regenerative cooled tube-wall nozzle with a nozzle using a regeneratively-cooled channel-wall design. The current tube-wall design represents the only major piece of SSME hardware that has not been dramatically updated throughout thc long history of the engine. There are a number of advantages to a channel-wall design including the promise of faster and lower cost fabrication and greater reliability in the field. The technical obstacles in the path of making this happen are many, particularly in the realms of metallurgy and manufacturing techniques. However, one technical area that can and should be addressed in the near term as part of the development of detailed component requirements is a systems type model of the fluid flow and heat transfer processes to which the new design will be exposed. This paper presents the results of an effort to develop a mathematical model of the internal flow for a generic channel-wall nozzle functioning as a direct replacement for the current tube-wall nozzle with a minimum of systems-level changes. Comparisons will be made to mathematical modeling results for the current tube-wall design and the results of various geometrical trade studies will be presented. It is the intent of this work to examine the feasibility of the concept of a direct replacement component with minimum systems-!eve impacts and to highlight potential areas of concern requiring further work in the future.

  2. X-34 Main Propulsion System-Selected Subsystem Analyses

    NASA Technical Reports Server (NTRS)

    Brown, T. M.; McDonald, J. P.; Knight, K. C.; Champion, R. H., Jr.

    1998-01-01

    The X-34 hypersonic flight vehicle is currently under development by Orbital Sciences Corporation (Orbital). The Main Propulsion System (MPS) has been designed around the liquid propellant Fastrac rocket engine currently under development at NASA Marshall Space Flight Center. This paper presents selected analyses of MPS subsystems and components. Topics include the integration of component and system level modeling of the LOX dump subsystem and a simple terminal bubble velocity analysis conducted to guide propellant feed line design.

  3. Phase-coherent engineering of electronic heat currents with a Josephson modulator

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Blanc, Christophe; Bosisio, Riccardo; D'Ambrosio, Sophie; Giazotto, Francesco

    In this contribution we report the realization of the first balanced Josephson heat modulator designed to offer full control at the nanoscale over the phase-coherent component of electronic thermal currents. The ability to master the amount of heat transferred through two tunnel-coupled superconductors by tuning their phase difference is the core of coherent caloritronics, and is expected to be a key tool in a number of nanoscience fields, including solid state cooling, thermal isolation, radiation detection, quantum information and thermal logic. Our device provides magnetic-flux-dependent temperature modulations up to 40 mK in amplitude with a maximum of the flux-to-temperature transfer coefficient reaching 200 mK per flux quantum at a bath temperature of 25 mK. Foremost, it demonstrates the exact correspondence in the phase-engineering of charge and heat currents, breaking ground for advanced caloritronic nanodevices such as thermal splitters, heat pumps and time-dependent electronic engines.

  4. Perspective on thermal barrier coatings for industrial gas turbine applications

    NASA Technical Reports Server (NTRS)

    Mutasim, Zaher; Brentnall, William

    1995-01-01

    Thermal barrier coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in providing thermal protection and increasing engine efficiencies. TBC life requirements for aircraft engines are typically less than those required for industrial gas turbines. This paper describes current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's is reviewed. Areas of concern from the engine designer's and materials engineer's perspective are identified and evaluated. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and highly effective coating systems will be produced that will ultimately improve engine efficiency and performance.

  5. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  6. The Role of Probabilistic Design Analysis Methods in Safety and Affordability

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.

    2016-01-01

    For the last several years, NASA and its contractors have been working together to build space launch systems to commercialize space. Developing commercial affordable and safe launch systems becomes very important and requires a paradigm shift. This paradigm shift enforces the need for an integrated systems engineering environment where cost, safety, reliability, and performance need to be considered to optimize the launch system design. In such an environment, rule based and deterministic engineering design practices alone may not be sufficient to optimize margins and fault tolerance to reduce cost. As a result, introduction of Probabilistic Design Analysis (PDA) methods to support the current deterministic engineering design practices becomes a necessity to reduce cost without compromising reliability and safety. This paper discusses the importance of PDA methods in NASA's new commercial environment, their applications, and the key role they can play in designing reliable, safe, and affordable launch systems. More specifically, this paper discusses: 1) The involvement of NASA in PDA 2) Why PDA is needed 3) A PDA model structure 4) A PDA example application 5) PDA link to safety and affordability.

  7. Learning from real and tissue-engineered jellyfish: How to design and build a muscle-powered pump at intermediate Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit

    2012-11-01

    Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.

  8. Design and optimization of a novel bio-loom to weave melt-spun absorbable polymers for bone tissue engineering.

    PubMed

    Gilmore, Jordon; Burg, Timothy; Groff, Richard E; Burg, Karen J L

    2017-08-01

    Bone graft procedures are currently among the most common surgical procedures performed worldwide, but due to high risk of complication and lack of viable donor tissue, there exists a need to develop alternatives for bone defect healing. Tissue engineering, for example, combining biocompatible scaffolds with mesenchymal stem cells to achieve new bone growth, is a possible solution. Recent work has highlighted the potential for woven polymer meshes to serve as bone tissue engineering scaffolds; since, scaffolds can be iteratively designed by adjusting weave settings, material types, and mesh parameters. However, there are a number of material and system challenges preventing the implementation of such a tissue engineering strategy. Fiber compliance, tensile strength, brittleness, cross-sectional geometry, and size present specific challenges for using traditional textile weaving methods. In the current work, two potential scaffold materials, melt-spun poly-l-lactide, and poly-l-lactide-co-ε-caprolactone, were investigated. An automated bio-loom was engineered and built to weave these materials. The bio-loom was used to successfully demonstrate the weaving of these difficult-to-handle fiber types into various mesh configurations and material combinations. The dobby-loom design, adapted with an air jet weft placement system, warp tension control system, and automated collection spool, provides minimal damage to the polymer fibers while overcoming the physical constraints presented by the inherent material structure. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1342-1351, 2017. © 2016 Wiley Periodicals, Inc.

  9. Standardized Radiation Shield Design Methods: 2005 HZETRN

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Tripathi, Ram K.; Badavi, Francis F.; Cucinotta, Francis A.

    2006-01-01

    Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.

  10. Knowledge, attitude and practices for design for safety: A study on civil & structural engineers.

    PubMed

    Goh, Yang Miang; Chua, Sijie

    2016-08-01

    Design for safety (DfS) (also known as prevention through design, safe design and Construction (Design and Management)) promotes early consideration of safety and health hazards during the design phase of a construction project. With early intervention, hazards can be more effectively eliminated or controlled leading to safer worksites and construction processes. DfS is practiced in many countries, including Australia, the UK, and Singapore. In Singapore, the Manpower Ministry enacted the DfS Regulations in July 2015, which will be enforced from August 2016 onwards. Due to the critical role of civil and structural (C&S) engineers during design and construction, the DfS knowledge, attitude and practices (KAP) of C&S engineers have significant impact on the successful implementation of DfS. Thus, this study aims to explore the DfS KAP of C&S engineers so as to guide further research in measuring and improving DfS KAP of designers. During the study, it was found that there is a lack of KAP studies in construction management. Therefore, this study also aims to provide useful lessons for future applications of the KAP framework in construction management research. A questionnaire was developed to assess the DfS KAP of C&S engineers. The responses provided by 43 C&S engineers were analyzed. In addition, interviews with experienced construction professionals were carried out to further understand perceptions of DfS and related issues. The results suggest that C&S engineers are supportive of DfS, but the level of DfS knowledge and practices need to be improved. More DfS guidelines and training should be made available to the engineers. To ensure that DfS can be implemented successfully, there is a need to study the contractual arrangements between clients and designers and the effectiveness of different implementation approaches for the DfS process. The questionnaire and findings in this study provided the foundation for a baseline survey with larger sample size, which is currently being planned. In contrast to earlier studies, the study showed that the responding C&S engineers were supportive of the DfS. The study showed that the key to improving the DfS KAP of C&S engineers is by improving clients' motivation for DfS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nanofibers and their applications in tissue engineering

    PubMed Central

    Vasita, Rajesh; Katti, Dhirendra S

    2006-01-01

    Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259

  12. Using CFD as Rocket Injector Design Tool: Recent Progress at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Tucker, Kevin; West, Jeff; Williams, Robert; Lin, Jeff; Rocker, Marvin; Canabal, Francisco; Robles, Bryan; Garcia, Robert; Chenoweth, James

    2003-01-01

    The choice of tools used for injector design is in a transitional phase between exclusive reliance on the empirically based correlations and extensive use of computational fluid dynamics (CFD). The Next Generation Launch Technology (NGLT) Program goals emphasizing lower costs and increased reliability have produced a need to enable CFD as an injector design tool in a shorter time frame. This is the primary objective of the Staged Combustor Injector Technology Task currently under way at Marshall Space Flight Center (MSFC). The documentation of this effort begins with a very brief status of current injector design tools. MSFC's vision for use of CFD as a tool for combustion devices design is stated and discussed with emphasis on the injector. The concept of the Simulation Readiness Level (SRL), comprised of solution fidelity, robustness and accuracy, is introduced and discussed. This quantitative measurement is used to establish the gap between the current state of demonstrated capability and that necessary for regular use in the design process. MSFC's view of the validation process is presented and issues associated with obtaining the necessary data are noted and discussed. Three current experimental efforts aimed at generating validation data are presented. The importance of uncertainty analysis to understand the data quality is also demonstrated. First, a brief status of current injector design tools is provided as context for the current effort. Next, the MSFC vision for using CFD as an injector design tool is stated. A generic CFD-based injector design methodology is also outlined and briefly discussed. Three areas where MSFC is using injector CFD analyses for program support will be discussed. These include the Integrated Powerhead Development (IPD) engine which uses hydrogen and oxygen propellants in a full flow staged combustion (FFSC) cycle and the TR-107 and the RS84 engine both of which use RP-1 and oxygen in an ORSC cycle. Finally, an attempt is made to objectively summarize what progress has been made at MSFC in enabling CFD as an injector design tool.

  13. Engineering properties of resin modified pavement (RMP) for mechanistic design

    NASA Astrophysics Data System (ADS)

    Anderton, Gary Lee

    1997-11-01

    The research study described in this report focuses on determining the engineering properties of the resin modified pavement (RMP) material relating to pavement performance, and then developing a rational mechanistic design procedure to replace the current empirical design procedure. A detailed description of RMP is provided, including a review of the available literature on this relatively new pavement technology. Field evaluations of four existing and two new RMP project sites were made to assess critical failure modes and to obtain pavement samples for subsequent laboratory testing. Various engineering properties of laboratory-produced and field-recovered samples of RMP were measured and analyzed. The engineering properties evaluated included those relating to the material's stiffness, strength, thermal properties, and traffic-related properties. Comparisons of these data to typical values for asphalt concrete and portland cement concrete were made to relate the physical nature of RMP to more common pavement surfacing materials. A mechanistic design procedure was developed to determine appropriate thickness profiles of RMP, using stiffness and fatigue properties determined by this study. The design procedure is based on the U.S. Army Corps of Engineers layered elastic method for airfield flexible pavements. The WESPAVE computer program was used to demonstrate the new design procedure for a hypothetical airfield apron design. The results of the study indicated that RMP is a relatively stiff, viscoelastic pavement surfacing material with many of its strength and stiffness properties falling between those of typical asphalt concrete and portland cement concrete. The RMP's thermal and traffic-related properties indicated favorable field performance. The layered elastic design approach appeared to be a reasonable and practical method for RMP mechanistic pavement design, and this design procedure was recommended for future use and development.

  14. NASA's hypersonic propulsion program: History and direction

    NASA Technical Reports Server (NTRS)

    Wander, Steve

    1992-01-01

    Research into hypersonic propulsion; i.e., supersonic combustion, was seriously initiated at the Langley Research Center in the 1960's with the Hypersonic Research Engine (HRE) project. This project was designed to demonstrate supersonic combustion within the context of an engine module consisting of an inlet, combustor, and nozzle. In addition, the HRE utilized both subsonic and supersonic combustion (dual-mode) to demonstrate smooth operation over a Mach 4 to 7 speed range. The propulsion program thus concentrated on fundamental supersonic combustion studies and free jet propulsion tests for the three dimensional fixed geometry engine design to demonstrate inlet and combustor integration and installed performance potential. The developmental history of the program is presented. Additionally, the HRE program's effect on the current state of hypersonic propulsion is discussed.

  15. Aquantis C-Plane Ocean Current Turbine Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Alex

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from amore » source of renewable energy not before possible in this scale or form.« less

  16. Series hybrid vehicles and optimized hydrogen engine design

    NASA Astrophysics Data System (ADS)

    Smith, J. R.; Aceves, S.; Vanblarigan, P.

    1995-05-01

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO(x) emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO(x) concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier-2 emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  17. Liquid Rocket Engine Turbopump Rotating-shaft Seals

    NASA Technical Reports Server (NTRS)

    Burcham, R. E.; Keller, R. B., Jr. (Editor)

    1978-01-01

    A monograph is organized and presents, for effective use in design, the significant experience and knowledge accumulated in development and operational programs to date. It reviews and assesses current practices, and from them establishes firm guidance for achieving greater consistency in design, increased reliability in the end product, and greater efficiency in the design effort. The monograph is divided into two major sections: state of the art and design criteria.

  18. An overview of NASA research on positive displacement general-aviation engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1980-01-01

    The research and technology program related to improved and advanced general aviation engines is described. Current research is directed at the near-term improvement of conventional air-cooled spark-ignition piston engines and at future alternative engine systems based on all-new spark-ignition piston engines, lightweight diesels, and rotary combustion engines that show potential for meeting program goals in the midterm and long-term future. The conventional piston engine activities involve efforts on applying existing technology to improve fuel economy, investigation of key processes to permit leaner operation and reduce drag, and the development of cost effective technology to permit flight at high-altitudes where fuel economy and safety are improved. The advanced engine concepts activities include engine conceptual design studies and enabling technology efforts on the critical or key technology items.

  19. Palm Power Free-Piston Stirling Engine Control Electronics

    NASA Astrophysics Data System (ADS)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  20. Enabling functional genomics with genome engineering.

    PubMed

    Hilton, Isaac B; Gersbach, Charles A

    2015-10-01

    Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances. © 2015 Hilton and Gersbach; Published by Cold Spring Harbor Laboratory Press.

  1. System Noise Assessment of Blended-Wing-Body Aircraft With Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Thomas, Russell H.

    2015-01-01

    An aircraft system noise study is presented for the Blended-Wing-Body (BWB) aircraft concept with three open rotor engines mounted on the upper surface of the airframe. It is shown that for such an aircraft, the cumulative Effective Perceived Noise Level (EPNL) is about 24 dB below the current aircraft noise regulations of Stage 4. While this makes the design acoustically viable in meeting the regulatory requirements, even with the consideration of more stringent noise regulations of a possible Stage 5 in the next decade or so, the design will likely meet stiff competitions from aircraft with turbofan engines. It is shown that the noise levels of the BWB design are held up by the inherently high noise levels of the open rotor engines and the limitation on the shielding benefit due to the practical design constraint on the engine location. Furthermore, it is shown that the BWB design has high levels of noise from the main landing gear, due to their exposure to high speed flow at the junction between the center body and outer wing. These are also the reasons why this baseline BWB design does not meet the NASA N+2 noise goal of 42 dB below Stage 4. To identify approaches that may further reduce noise, parametric studies are also presented, including variations in engine location, vertical tail and elevon variations, and airframe surface acoustic liner treatment effect. These have the potential to further reduce noise but they are only at the conceptual stage.

  2. Sharing best practices in teaching biomedical engineering design.

    PubMed

    Allen, R H; Acharya, S; Jancuk, C; Shoukas, A A

    2013-09-01

    In an effort to share best practices in undergraduate engineering design education, we describe the origin, evolution and the current status of the undergraduate biomedical engineering design team program at Johns Hopkins University. Specifically, we describe the program and judge the quality of the pedagogy by relating it to sponsor feedback, project outcomes, external recognition and student satisfaction. The general pedagogic practices, some of which are unique to Hopkins, that have worked best include: (1) having a hierarchical team structure, selecting team leaders the Spring semester prior to the academic year, and empowering them to develop and manage their teams, (2) incorporating a longitudinal component that incudes freshmen as part of the team, (3) having each team choose from among pre-screened clinical problems, (4) developing relationships and fostering medical faculty, industry and government to allow students access to engineers, clinicians and clinical environments as needed, (5) providing didactic sessions on topics related to requirements for the next presentation, (6) employing judges from engineering, medicine, industry and government to evaluate designs and provide constructive criticisms approximately once every 3-4 weeks and (7) requiring students to test the efficacy of their designs. Institutional support and resources are crucial for the design program to flourish. Most importantly, our willingness and flexibility to change the program each year based on feedback from students, sponsors, outcomes and judges provides a mechanism for us to test new approaches and continue or modify those that work well, and eliminate those that did not.

  3. Teaching the Next Generation of Scientists and Engineers the NASA Design Process

    NASA Technical Reports Server (NTRS)

    Caruso, Pamela W.; Benfield, Michael P. J.; Justice, Stefanie H.

    2011-01-01

    The Integrated Product Team (IPT) program, led by The University of Alabama in Huntsville (UAH), is a multidisciplinary, multi-university, multi-level program whose goal is to provide opportunities for high school and undergraduate scientists and engineers to translate stakeholder needs and requirements into viable engineering design solutions via a distributed multidisciplinary team environment. The current program supports three projects. The core of the program is the two-semester senior design experience where science, engineering, and liberal arts undergraduate students from UAH, the College of Charleston, Southern University at Baton Rouge, and Ecole Suprieure des Techniques Aronautiques et de Construction Automobile (ESTACA) in Paris, France form multidisciplinary competitive teams to develop system concepts of interest to the local aerospace community. External review boards form to provide guidance and feedback throughout the semester and to ultimately choose a winner from the competing teams. The other two projects, the Innovative Student Project for the Increased Recruitment of Engineering and Science Students (InSPIRESS) Level I and Level II focus exclusively on high school students. InSPIRESS Level I allows high schools to develop a payload to be accommodated on the system being developed by senior design experience teams. InSPIRESS Level II provides local high school students first-hand experience in the senior design experience by allowing them to develop a subsystem or component of the UAH-led system over the two semesters. This program provides a model for NASA centers to engage the local community to become more involved in design projects.

  4. Exploring the relationship between time management skills and the academic achievement of African engineering students - a case study

    NASA Astrophysics Data System (ADS)

    Swart, Arthur James; Lombard, Kobus; de Jager, Henk

    2010-03-01

    Poor academic success by African engineering students is currently experienced in many higher educational institutions, contributing to lower financial subsidies by local governments. One of the contributing factors to this low academic success may be the poor time management skills of these students. This article endeavours to explore this relationship by means of a theoretical literature review and an empirical study. Numerous studies have been conducted in this regard, but with mixed results. The case study of this article involves a design module termed Design Projects III, where the empirical study incorporated an ex post facto study involving a pre-experimental/exploratory design using descriptive statistics. The results of this study were applied to various tests, which indicated no statistically significant relationship between time management skills and the academic achievement of African engineering students.

  5. Engineering risk reduction in satellite programs

    NASA Technical Reports Server (NTRS)

    Dean, E. S., Jr.

    1979-01-01

    Methods developed in planning and executing system safety engineering programs for Lockheed satellite integration contracts are presented. These procedures establish the applicable safety design criteria, document design compliance and assess the residual risks where non-compliant design is proposed, and provide for hazard analysis of system level test, handling and launch preparations. Operations hazard analysis identifies product protection and product liability hazards prior to the preparation of operational procedures and provides safety requirements for inclusion in them. The method developed for documenting all residual hazards for the attention of program management assures an acceptable minimum level of risk prior to program deployment. The results are significant for persons responsible for managing or engineering the deployment and production of complex high cost equipment under current product liability law and cost/time constraints, have a responsibility to minimize the possibility of an accident, and should have documentation to provide a defense in a product liability suit.

  6. Current And Future Directions Of Lens Design Software

    NASA Astrophysics Data System (ADS)

    Gustafson, Darryl E.

    1983-10-01

    The most effective environment for doing lens design continues to evolve as new computer hardware and software tools become available. Important recent hardware developments include: Low-cost but powerful interactive multi-user 32 bit computers with virtual memory that are totally software-compatible with prior larger and more expensive members of the family. A rapidly growing variety of graphics devices for both hard-copy and screen graphics, including many with color capability. In addition, with optical design software readily accessible in many forms, optical design has become a part-time activity for a large number of engineers instead of being restricted to a small number of full-time specialists. A designer interface that is friendly for the part-time user while remaining efficient for the full-time designer is thus becoming more important as well as more practical. Along with these developments, software tools in other scientific and engineering disciplines are proliferating. Thus, the optical designer is less and less unique in his use of computer-aided techniques and faces the challenge and opportunity of efficiently communicating his designs to other computer-aided-design (CAD), computer-aided-manufacturing (CAM), structural, thermal, and mechanical software tools. This paper will address the impact of these developments on the current and future directions of the CODE VTM optical design software package, its implementation, and the resulting lens design environment.

  7. Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications

    NASA Technical Reports Server (NTRS)

    OKeefe, Matthew (Editor); Kerr, Christopher L. (Editor)

    1998-01-01

    This report contains the abstracts and technical papers from the Second International Workshop on Software Engineering and Code Design in Parallel Meteorological and Oceanographic Applications, held June 15-18, 1998, in Scottsdale, Arizona. The purpose of the workshop is to bring together software developers in meteorology and oceanography to discuss software engineering and code design issues for parallel architectures, including Massively Parallel Processors (MPP's), Parallel Vector Processors (PVP's), Symmetric Multi-Processors (SMP's), Distributed Shared Memory (DSM) multi-processors, and clusters. Issues to be discussed include: (1) code architectures for current parallel models, including basic data structures, storage allocation, variable naming conventions, coding rules and styles, i/o and pre/post-processing of data; (2) designing modular code; (3) load balancing and domain decomposition; (4) techniques that exploit parallelism efficiently yet hide the machine-related details from the programmer; (5) tools for making the programmer more productive; and (6) the proliferation of programming models (F--, OpenMP, MPI, and HPF).

  8. Advanced Propfan Engine Technology (APET) definition study, single and counter-rotation gearbox/pitch change mechanism design

    NASA Technical Reports Server (NTRS)

    Anderson, R. D.

    1985-01-01

    Single-rotation propfan-powered regional transport aircraft were studied to identify key technology development issues and programs. The need for improved thrust specific fuel consumption to reduce fuel burned and aircraft direct operating cost is the dominant factor. Typical cycle trends for minimizing fuel consumption are reviewed, and two 10,000 shp class engine configurations for propfan propulsion systems for the 1990's are presented. Recommended engine configurations are both three-spool design with dual spool compressors and free power turbines. The benefits of these new propulsion system concepts were evaluated using an advanced airframe, and results are compared for single-rotation propfan and turbofan advanced technology propulsion systems. The single-rotation gearbox is compared to a similar design with current technology to establish the benefits of the advanced gearbox technology. The conceptual design of the advanced pitch change mechanism identified a high pressure hydraulic system that is superior to the other contenders and completely external to the gearboxes.

  9. Engineering innovation to reduce wind power COE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammerman, Curtt Nelson

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  10. Engineering design knowledge recycling in near-real-time

    NASA Technical Reports Server (NTRS)

    Leifer, Larry; Baya, Vinod; Toye, George; Baudin, Catherine; Underwood, Jody Gevins

    1994-01-01

    It is hypothesized that the capture and reuse of machine readable design records is cost beneficial. This informal engineering notebook design knowledge can be used to model the artifact and the design process. Design rationale is, in part, preserved and available for examination. Redesign cycle time is significantly reduced (Baya et al, 1992). These factors contribute to making it less costly to capture and reuse knowledge than to recreate comparable knowledge (current practice). To test the hypothesis, we have focused on validation of the concept and tools in two 'real design' projects this past year: (1) a short (8 month) turnaround project for NASA life science bioreactor researchers was done by a team of three mechanical engineering graduate students at Stanford University (in a class, ME210abc 'Mechatronic Systems Design and Methodology' taught by one of the authors, Leifer); and (2) a long range (8 to 20 year) international consortium project for NASA's Space Science program (STEP: satellite test of the equivalence principle). Design knowledge capture was supported this year by assigning the use of a Team-Design PowerBook. Design records were cataloged in near-real time. These records were used to qualitatively model the artifact design as it evolved. Dedal, an 'intelligent librarian' developed at NASA-ARC, was used to navigate and retrieve captured knowledge for reuse.

  11. Detailed Post-Soft Impact Progressive Damage Assessment for Hybrid Structure Jet Engines

    NASA Technical Reports Server (NTRS)

    Siddens, Aaron; Bayandor, Javid; Celestina, Mark L.

    2014-01-01

    Currently, certification of engine designs for resistance to bird strike is reliant on physical tests. Predictive modeling of engine structural damage has mostly been limited to evaluation of individual forward section components, such as fan blades within a fixed frame of reference, to direct impact with a bird. Such models must be extended to include interactions among engine components under operating conditions to evaluate the full extent of engine damage. This paper presents the results of a study aim to develop a methodology for evaluating bird strike damage in advanced propulsion systems incorporating hybrid composite/metal structures. The initial degradation and failure of individual fan blades struck by a bird were investigated. Subsequent damage to other fan blades and engine components due to resultant violent fan assembly vibrations and fragmentation was further evaluated. Various modeling parameters for the bird and engine components were investigated to determine guidelines for accurately capturing initial damage and progressive failure of engine components. Then, a novel hybrid structure modeling approach was investigated and incorporated into the crashworthiness methodology. Such a tool is invaluable to the process of design, development, and certification of future advanced propulsion systems.

  12. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  13. A Stirling engine for use with lower quality fuels

    NASA Astrophysics Data System (ADS)

    Paul, Christopher J.

    There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.

  14. Trends in the design of nerve guidance channels in peripheral nerve tissue engineering.

    PubMed

    Chiono, Valeria; Tonda-Turo, Chiara

    2015-08-01

    The current trend of peripheral nerve tissue engineering is the design of advanced nerve guidance channels (NGCs) acting as physical guidance for regeneration of nerves across lesions. NGCs should present multifunctional properties aiming to direct the sprouting of axons from the proximal nerve end, to concentrate growth factors secreted by the injured nerve ends, and to reduce the ingrowth of scar tissue into the injury site. A critical aspect in the design of NGCs is conferring them the ability to provide topographic, chemotactic and haptotactic cues that lead to functional nerve regeneration thus increasing the axon growth rate and avoiding or minimizing end-organ (e.g. muscle) atrophy. The present work reviews the recent state of the art in NGCs engineering and defines the external guide and internal fillers structural and compositional requirements that should be satisfied to improve nerve regeneration, especially in the case of large gaps (>2 cm). Techniques for NGCs fabrication were described highlighting the innovative approaches direct to enhance the regeneration of axon stumps compared to current clinical treatments. Furthermore, the possibility to apply stem cells as internal cues to the NGCs was discussed focusing on scaffold properties necessary to ensure cell survival. Finally, the optimized features for NGCs design were summarized showing as multifunctional cues are needed to produce NGCs having improved results in clinics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The systems engineering upgrade intiative at NASA's Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2005-01-01

    JPL is implementing an initiative to significantly upgrade our systems engineering capabilities. This Systems Engineering Upgrade Initiative [SUI] has been authorized by the highest level technical management body of JPL and is sponsored with internal funds. The SUI objective is to upgrade system engineering at JPL to a level that is world class, professional and efficient compared to the FY04/05 baseline. JPL system engineering, along with the other engineering disciplines, is intended to support optimum designs; controlled and efficient implementations; and high quality, reliable, cost effective products. SUI technical activities are categorized into those dealing with people, process and tools. The purpose of this paper is to describe the rationale, objectives/plans and current status of the JPL SUI.

  16. Cell Patterning for Liver Tissue Engineering via Dielectrophoretic Mechanisms

    PubMed Central

    Yahya, Wan Nurlina Wan; Kadri, Nahrizul Adib; Ibrahim, Fatimah

    2014-01-01

    Liver transplantation is the most common treatment for patients with end-stage liver failure. However, liver transplantation is greatly limited by a shortage of donors. Liver tissue engineering may offer an alternative by providing an implantable engineered liver. Currently, diverse types of engineering approaches for in vitro liver cell culture are available, including scaffold-based methods, microfluidic platforms, and micropatterning techniques. Active cell patterning via dielectrophoretic (DEP) force showed some advantages over other methods, including high speed, ease of handling, high precision and being label-free. This article summarizes liver function and regenerative mechanisms for better understanding in developing engineered liver. We then review recent advances in liver tissue engineering techniques and focus on DEP-based cell patterning, including microelectrode design and patterning configuration. PMID:24991941

  17. Lessons learned for composite structures

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.

    1991-01-01

    Lessons learned for composite structures are presented in three technology areas: materials, manufacturing, and design. In addition, future challenges for composite structures are presented. Composite materials have long gestation periods from the developmental stage to fully matured production status. Many examples exist of unsuccessful attempts to accelerate this gestation period. Experience has shown that technology transition of a new material system to fully matured production status is time consuming, involves risk, is expensive and should not be undertaken lightly. The future challenges for composite materials require an intensification of the science based approach to material development, extension of the vendor/customer interaction process to include all engineering disciplines of the end user, reduced material costs because they are a significant factor in overall part cost, and improved batch-to-batch pre-preg physical property control. Historical manufacturing lessons learned are presented using current in-service production structure as examples. Most producibility problems for these structures can be traced to their sequential engineering design. This caused an excessive emphasis on design-to-weight and schedule at the expense of design-to-cost. This resulted in expensive performance originated designs, which required costly tooling and led to non-producible parts. Historically these problems have been allowed to persist throughout the production run. The current/future approach for the production of affordable composite structures mandates concurrent engineering design where equal emphasis is placed on product and process design. Design for simplified assembly is also emphasized, since assembly costs account for a major portion of total airframe costs. The future challenge for composite manufacturing is, therefore, to utilize concurrent engineering in conjunction with automated manufacturing techniques to build affordable composite structures. Composite design experience has shown that significant weight savings have been achieved, outstanding fatigue and corrosion resistance have been demonstrated, and in-service performance has been very successful. Currently no structural design show stoppers exist for composite structures. A major lesson learned is that the full scale static test is the key test for composites, since it is the primary structural 'hot spot' indicator. The major durability issue is supportability of thin skinned structure. Impact damage has been identified as the most significant issue for the damage tolerance control of composite structures. However, delaminations induced during assembly operations have demonstrated a significant nuisance value. The future challenges for composite structures are threefold. Firstly, composite airframe weight fraction should increase to 60 percent. At the same time, the cost of composite structures must be reduced by 50 percent to attain the goal of affordability. To support these challenges it is essential to develop lower cost materials and processes.

  18. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farina, D.; Figini, L.; Henderson, M.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power depositionmore » was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.« less

  19. Perceived Uncertainty Sources in Wind Power Plant Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiani, Rick R

    This presentation for the Fourth Wind Energy Systems Engineering Workshop covers some of the uncertainties that still impact turbulent wind operation and how these affect design and structural reliability; identifies key sources and prioritization for R and D; and summarizes an analysis of current procedures, industry best practice, standards, and expert opinions.

  20. A requirements engineering approach for improving the quality of diabetes education websites.

    PubMed

    Shabestari, Omid; Roudsari, Abdul

    2011-01-01

    Diabetes Mellitus is a major chronic disease with multi-organ involvement and high-cost complications. Although it has been proved that structured education can control the risk of developing these complications, there is big room for improvement in the educational services for these patients. e-learning can be a good solution to fill this gap. Most of the current e-learning solutions for diabetes were designed by computer experts and healthcare professionals but the patients, as end-users of these systems, haven't been deeply involved in the design process. Considering the expectations of the patients, this article investigates a requirement engineering process comparing the level of importance given to different attributes of the e-learning by patients and healthcare professionals. The results of this comparison can be used for improving the currently developed online diabetes education systems.

  1. Comparison of the Standard of Air Leakage in Current Metal Duct Systems in the World

    NASA Astrophysics Data System (ADS)

    Di, Yuhui; Wang, Jiqian; Feng, Lu; Li, Xingwu; Hu, Chunlin; Shi, Junshe; Xu, Qingsong; Qiao, Leilei

    2018-01-01

    Based on the requirements of air leakage of metal ducts in Chinese design standards, technical measures and construction standards, this paper compares the development history, the classification of air pressure levels and the air tightness levels of air leakage standards of current Chinese and international metal ducts, sums up the differences, finds shortage by investigating the design and construction status and access to information, and makes recommendations, hoping to help the majority of engineering and technical personnel.

  2. Building a Genome Engineering Toolbox in Non-Model Prokaryotic Microbes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckert, Carrie A; Freed, Emily; Smolinski, Sharon

    The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g. sunlight, CO2, non-food biomass) to biofuels and bioproducts at sufficient titers and costs. For model microbes such as E. coli, advances in DNA reading and writing technologies are driving adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks such as photosynthesis, autotrophic growth, and cellulose degradation have very few, if any, genetic tools for metabolicmore » engineering. Therefore, it is important to begin to develop 'design rules' for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and available genetic tools to expand our ability to genetically engineer non-model systems.« less

  3. Building a genome engineering toolbox in nonmodel prokaryotic microbes.

    PubMed

    Freed, Emily; Fenster, Jacob; Smolinski, Sharon L; Walker, Julie; Henard, Calvin A; Gill, Ryan; Eckert, Carrie A

    2018-05-11

    The realization of a sustainable bioeconomy requires our ability to understand and engineer complex design principles for the development of platform organisms capable of efficient conversion of cheap and sustainable feedstocks (e.g., sunlight, CO 2 , and nonfood biomass) into biofuels and bioproducts at sufficient titers and costs. For model microbes, such as Escherichia coli, advances in DNA reading and writing technologies are driving the adoption of new paradigms for engineering biological systems. Unfortunately, microbes with properties of interest for the utilization of cheap and renewable feedstocks, such as photosynthesis, autotrophic growth, and cellulose degradation, have very few, if any, genetic tools for metabolic engineering. Therefore, it is important to develop "design rules" for building a genetic toolbox for novel microbes. Here, we present an overview of our current understanding of these rules for the genetic manipulation of prokaryotic microbes and the available genetic tools to expand our ability to genetically engineer nonmodel systems. © 2018 Wiley Periodicals, Inc.

  4. Preliminary Report on Mission Design and Operations for Critical Events

    NASA Technical Reports Server (NTRS)

    Hayden, Sandra C.; Tumer, Irem

    2005-01-01

    Mission-critical events are defined in the Jet Propulsion Laboratory s Flight Project Practices as those sequences of events which must succeed in order to attain mission goals. These are dependent on the particular operational concept and design reference mission, and are especially important when committing to irreversible events. Critical events include main engine cutoff (MECO) after launch; engine cutoff or parachute deployment on entry, descent, and landing (EDL); orbital insertion; separation of payload from vehicle or separation of booster segments; maintenance of pointing accuracy for power and communication; and deployment of solar arrays and communication antennas. The purpose of this paper is to report on the current practices in handling mission-critical events in design and operations at major NASA spaceflight centers. The scope of this report includes NASA Johnson Space Center (JSC), NASA Goddard Space Flight Center (GSFC), and NASA Jet Propulsion Laboratory (JPL), with staff at each center consulted on their current practices, processes, and procedures.

  5. Gas engine heat pump cycle analysis. Volume 1: Model description and generic analysis

    NASA Astrophysics Data System (ADS)

    Fischer, R. D.

    1986-10-01

    The task has prepared performance and cost information to assist in evaluating the selection of high voltage alternating current components, values for component design variables, and system configurations and operating strategy. A steady-state computer model for performance simulation of engine-driven and electrically driven heat pumps was prepared and effectively used for parametric and seasonal performance analyses. Parametric analysis showed the effect of variables associated with design of recuperators, brine coils, domestic hot water heat exchanger, compressor size, engine efficiency, insulation on exhaust and brine piping. Seasonal performance data were prepared for residential and commercial units in six cities with system configurations closely related to existing or contemplated hardware of the five GRI engine contractors. Similar data were prepared for an advanced variable-speed electric unit for comparison purposes. The effect of domestic hot water production on operating costs was determined. Four fan-operating strategies and two brine loop configurations were explored.

  6. Optimization of thermoacoustic engine driven thermoacoustic refrigerator using response surface methodology

    NASA Astrophysics Data System (ADS)

    Desai, A. B.; Desai, K. P.; Naik, H. B.; Atrey, M. D.

    2017-02-01

    Thermoacoustic engines (TAEs) are devices which convert heat energy into useful acoustic work whereas thermoacoustic refrigerators (TARs) convert acoustic work into temperature gradient. These devices work without any moving component. Study presented here comprises of a combination system i.e. thermoacoustic engine driven thermoacoustic refrigerator (TADTAR). This system has no moving component and hence it is easy to fabricate but at the same time it is very challenging to design and construct optimized system with comparable performance. The work presented here aims to apply optimization technique to TADTAR in the form of response surface methodology (RSM). Significance of stack position and stack length for engine stack, stack position and stack length for refrigerator stack are investigated in current work. Results from RSM are compared with results from simulations using Design Environment for Low-amplitude Thermoacoustic Energy conversion (DeltaEC) for compliance.

  7. Reusable rocket engine turbopump condition monitoring

    NASA Technical Reports Server (NTRS)

    Hampson, M. E.; Barkhoudarian, S.

    1985-01-01

    Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.

  8. Status of the NEXT Ion Engine Wear Test

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Domonkos, Matthew T.; Kamhawi, Hani; Patterson, Michael J.; Gardner, Michael M.

    2003-01-01

    The status of the NEXT 2000 hour wear test is presented. This test is being conducted with a 40 cm engineering model ion engine, designated EM1, at a beam current higher than listed on the NEXT throttle table. Pretest performance assessments demonstrated that EM1 satisfies all thruster performance requirements. As of 7/3/03, the ion engine has accumulated 406 hours of operation at a thruster input power of 6.9 kW. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with no indications of performance degradation. Images of the downstream discharge cathode, neutralizer, and accelerator aperture surfaces have exhibited no significant erosion to date.

  9. Design and analysis of a fuel-efficient single-engine, turboprop-powered, business airplane

    NASA Technical Reports Server (NTRS)

    Martin, G. L.; Everest, D. E., Jr.; Lovell, W. A.; Price, J. E.; Walkley, K. B.; Washburn, G. F.

    1981-01-01

    The speed, range, payload, and fuel efficiency of a general aviation airplane powered by one turboprop engine was determined and compared to a twin engine turboprop aircraft. An airplane configuration was developed which can carry six people for a noreserve range of 2,408 km at a cruise speed above 154 m/s, and a cruise altitude of about 9,144 m. The cruise speed is comparable to that of the fastest of the current twin turboprop powered airplanes. It is found that the airplane has a cruise specific range greater than all twin turboprop engine airplanes flying in its speed range and most twin piston engine airplanes flying at considerably slower cruise airspeeds.

  10. Biomimetics: determining engineering opportunities from nature

    NASA Astrophysics Data System (ADS)

    Fish, Frank E.

    2009-08-01

    The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. For biologists, an adaptationist program has allowed for the identification of novel features of organisms based on engineering principles; whereas for engineers, identification of such novel features is necessary to exploit them for biomimetic development. Adaptations (leading edge tubercles to passively modify flow and high efficiency oscillatory propulsive systems) from marine animals demonstrate potential utility in the development of biomimetic products. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.

  11. Recent progress in inverse methods in France

    NASA Technical Reports Server (NTRS)

    Bry, Pierre-Francois; Jacquotte, Olivier-Pierre; Lepape, Marie-Claire

    1991-01-01

    Given the current level of jet engine performance, improvement of the various turbomachinery components requires the use of advanced methods in aerodynamics, heat transfer, and aeromechanics. In particular, successful blade design can only be achieved via numerical design methods which make it possible to reach optimized solutions in a much shorter time than ever before. Two design methods which are currently being used throughout the French turbomachinery industry to obtain optimized blade geometries are presented. Examples are presented for compressor and turbine applications. The status of these methods as far as improvement and extension to new fields of applications is also reported.

  12. Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface

    PubMed Central

    Ilie, Ioana; Ilie, Razvan; Mocan, Teodora; Bartos, Dana; Mocan, Lucian

    2012-01-01

    During the last decade, due to advances in functionalization chemistry, novel nanobiomaterials with applications in tissue engineering and regenerative medicine have been developed. These novel materials with their unique physical and chemical properties are bioactive hierarchical structures that hold great promise for future development of human tissues. Thus, various nanomaterials are currently being intensively explored in the directed differentiation of stem cells, the design of novel bioactive scaffolds, and new research avenues towards tissue regeneration. This paper illustrates the latest achievements in the applications of nanotechnology in tissue engineering in the field of regenerative medicine. PMID:22619557

  13. Engineering the Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Couch, Richard H.; Moore, Chris L.

    1992-01-01

    The Lidar In-space Technology Experiment (LITE) is being developed by NASA for flight on the Space Shuttle in early 1994. A discussion of the NASA four-phase design process is followed by a short history of the experiment heritage. The instrument is then described at the subsystem level from an engineering point of view, with special emphasis on the laser and the receiver. Some aspects of designing for the space environment are discussed, as well as the importance of contamination control, and product assurance. Finally, the instrument integration and test process is described and the current status of the instrument development is given.

  14. Navy Columbia Class (Ohio Replacement) Ballistic Missile Submarine (SSBN[X]) Program: Background and Issues for Congress

    DTIC Science & Technology

    2016-10-25

    program, a program to design and build a new class of 12 ballistic missile submarines (SSBNs) to replace the Navy’s current force of 14 Ohio-class SSBNs...billion in detailed design and nonrecurring engineering (DD/NRE) costs for the entire class, and $8.8 billion in construction costs for the ship... Design ................................................................................................................. 8 Program Cost

  15. Performance-based seismic design of nonstructural building components: The next frontier of earthquake engineering

    NASA Astrophysics Data System (ADS)

    Filiatrault, Andre; Sullivan, Timothy

    2014-08-01

    With the development and implementation of performance-based earthquake engineering, harmonization of performance levels between structural and nonstructural components becomes vital. Even if the structural components of a building achieve a continuous or immediate occupancy performance level after a seismic event, failure of architectural, mechanical or electrical components can lower the performance level of the entire building system. This reduction in performance caused by the vulnerability of nonstructural components has been observed during recent earthquakes worldwide. Moreover, nonstructural damage has limited the functionality of critical facilities, such as hospitals, following major seismic events. The investment in nonstructural components and building contents is far greater than that of structural components and framing. Therefore, it is not surprising that in many past earthquakes, losses from damage to nonstructural components have exceeded losses from structural damage. Furthermore, the failure of nonstructural components can become a safety hazard or can hamper the safe movement of occupants evacuating buildings, or of rescue workers entering buildings. In comparison to structural components and systems, there is relatively limited information on the seismic design of nonstructural components. Basic research work in this area has been sparse, and the available codes and guidelines are usually, for the most part, based on past experiences, engineering judgment and intuition, rather than on objective experimental and analytical results. Often, design engineers are forced to start almost from square one after each earthquake event: to observe what went wrong and to try to prevent repetitions. This is a consequence of the empirical nature of current seismic regulations and guidelines for nonstructural components. This review paper summarizes current knowledge on the seismic design and analysis of nonstructural building components, identifying major knowledge gaps that will need to be filled by future research. Furthermore, considering recent trends in earthquake engineering, the paper explores how performance-based seismic design might be conceived for nonstructural components, drawing on recent developments made in the field of seismic design and hinting at the specific considerations required for nonstructural components.

  16. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 31: The information-seeking behavior of engineers

    NASA Technical Reports Server (NTRS)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    Engineers are an extraordinarily diverse group of professionals, but an attribute common to all engineers is their use of information. Engineering can be conceptualized as an information processing system that must deal with work-related uncertainty through patterns of technical communications. Throughout the process, data, information, and tacit knowledge are being acquired, produced, transferred, and utilized. While acknowledging that other models exist, we have chosen to view the information-seeking behavior of engineers within a conceptual framework of the engineer as an information processor. This article uses the chosen framework to discuss information-seeking behavior of engineers, reviewing selected literature and empirical studies from library and information science, management, communications, and sociology. The article concludes by proposing a research agenda designed to extend our current, limited knowledge of the way engineers process information.

  17. Centrifugal Compressor Aeroelastic Analysis Code

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Centrifugal compressors are very widely used in the turbomachine industry where low mass flow rates are required. Gas turbine engines for tanks, rotorcraft and small jets rely extensively on centrifugal compressors for rugged and compact design. These compressors experience problems related with unsteadiness of flowfields, such as stall flutter, separation at the trailing edge over diffuser guide vanes, tip vortex unsteadiness, etc., leading to rotating stall and surge. Considerable interest exists in small gas turbine engine manufacturers to understand and eventually eliminate the problems related to centrifugal compressors. The geometric complexity of centrifugal compressor blades and the twisting of the blade passages makes the linear methods inapplicable. Advanced computational fluid dynamics (CFD) methods are needed for accurate unsteady aerodynamic and aeroelastic analysis of centrifugal compressors. Most of the current day industrial turbomachines and small aircraft engines are designed with a centrifugal compressor. With such a large customer base and NASA Glenn Research Center being, the lead center for turbomachines, it is important that adequate emphasis be placed on this area as well. Currently, this activity is not supported under any project at NASA Glenn.

  18. Design, Activation, and Operation of the J2-X Subscale Simulator (JSS)

    NASA Technical Reports Server (NTRS)

    Saunders, Grady P.; Raines, Nickey G.; Varner, Darrel G.

    2009-01-01

    The purpose of this paper is to give a detailed description of the design, activation, and operation of the J2-X Subscale Simulator (JSS) installed in Cell 1 of the E3 test facility at Stennis Space Center, MS (SSC). The primary purpose of the JSS is to simulate the installation of the J2-X engine in the A3 Subscale Rocket Altitude Test Facility at SSC. The JSS is designed to give aerodynamically and thermodynamically similar plume properties as the J2-X engine currently under development for use as the upper stage engine on the ARES I and ARES V spacecraft. The JSS is a scale pressure fed, LOX/GH fueled rocket that is geometrically similar to the J2-X from the throat to the nozzle exit plane (NEP) and is operated at the same oxidizer to fuel ratios and chamber pressures. This paper describes the heritage hardware used as the basis of the JSS design, the newly designed rocket hardware, igniter systems used, and the activation and operation of the JSS.

  19. Conceptual Design of the Nuclear Electronic Xenon Ion System (NEXIS)

    NASA Technical Reports Server (NTRS)

    Monheiser, Jeff; Polk, Jay; Randolph, Tom

    2004-01-01

    In support of the NEXIS program, Aerojet-Redmond Operations, with review and input from the JPL and Boeing, has completed the design for a development model (DM) discharge chamber assembly and main discharge cathode assembly. These efforts along with the work by JPL to develop the carbon-carbon-composite ion optics assembly have resulted in a complete ion engine design. The goal of the NEXIS program is to significantly advance the current state of the art by developing an ion engine capable of operating at an input power of 20kW, an Isp of 7500 sec and have a total xenon through put capability of 2000 kg. In this paper we will describe the methodology used to design the discharge chamber and cathode assemblies and describe the resulting final design. Specifics will include the concepts used for the mounting of the ion optics along with the concepts used for the gimbal mounts. In addition, we will present results of a vibrational analysis showing how the engine will respond to a typical Delta IV heavy vibration spectrum.

  20. New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds.

    PubMed

    Yoo, Dongjin

    2012-07-01

    Advanced additive manufacture (AM) techniques are now being developed to fabricate scaffolds with controlled internal pore architectures in the field of tissue engineering. In general, these techniques use a hybrid method which combines computer-aided design (CAD) with computer-aided manufacturing (CAM) tools to design and fabricate complicated three-dimensional (3D) scaffold models. The mathematical descriptions of micro-architectures along with the macro-structures of the 3D scaffold models are limited by current CAD technologies as well as by the difficulty of transferring the designed digital models to standard formats for fabrication. To overcome these difficulties, we have developed an efficient internal pore architecture design system based on triply periodic minimal surface (TPMS) unit cell libraries and associated computational methods to assemble TPMS unit cells into an entire scaffold model. In addition, we have developed a process planning technique based on TPMS internal architecture pattern of unit cells to generate tool paths for freeform fabrication of tissue engineering porous scaffolds. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Expert systems for superalloy studies

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.

    1990-01-01

    There are many areas in science and engineering which require knowledge of an extremely complex foundation of experimental results in order to design methodologies for developing new materials or products. Superalloys are an area which fit well into this discussion in the sense that they are complex combinations of elements which exhibit certain characteristics. Obviously the use of superalloys in high performance, high temperature systems such as the Space Shuttle Main Engine is of interest to NASA. The superalloy manufacturing process is complex and the implementation of an expert system within the design process requires some thought as to how and where it should be implemented. A major motivation is to develop a methodology to assist metallurgists in the design of superalloy materials using current expert systems technology. Hydrogen embrittlement is disasterous to rocket engines and the heuristics can be very complex. Attacking this problem as one module in the overall design process represents a significant step forward. In order to describe the objectives of the first phase implementation, the expert system was designated Hydrogen Environment Embrittlement Expert System (HEEES).

  2. Facilitating the learning process in design-based learning practices: an investigation of teachers' actions in supervising students

    NASA Astrophysics Data System (ADS)

    Gómez Puente, S. M.; van Eijck, M.; Jochems, W.

    2013-11-01

    Background: In research on design-based learning (DBL), inadequate attention is paid to the role the teacher plays in supervising students in gathering and applying knowledge to design artifacts, systems, and innovative solutions in higher education. Purpose: In this study, we examine whether teacher actions we previously identified in the DBL literature as important in facilitating learning processes and student supervision are present in current DBL engineering practices. Sample: The sample (N=16) consisted of teachers and supervisors in two engineering study programs at a university of technology: mechanical and electrical engineering. We selected randomly teachers from freshman and second-year bachelor DBL projects responsible for student supervision and assessment. Design and method: Interviews with teachers, and interviews and observations of supervisors were used to examine how supervision and facilitation actions are applied according to the DBL framework. Results: Major findings indicate that formulating questions is the most common practice seen in facilitating learning in open-ended engineering design environments. Furthermore, other DBL actions we expected to see based upon the literature were seldom observed in the coaching practices within these two programs. Conclusions: Professionalization of teachers in supervising students need to include methods to scaffold learning by supporting students in reflecting and in providing formative feedback.

  3. Rectifying full-counting statistics in a spin Seebeck engine

    NASA Astrophysics Data System (ADS)

    Tang, Gaomin; Chen, Xiaobin; Ren, Jie; Wang, Jian

    2018-02-01

    In terms of the nonequilibrium Green's function framework, we formulate the full-counting statistics of conjugate thermal spin transport in a spin Seebeck engine, which is made by a metal-ferromagnet insulator interface driven by a temperature bias. We obtain general expressions of scaled cumulant generating functions of both heat and spin currents that hold special fluctuation symmetry relations, and demonstrate intriguing properties, such as rectification and negative differential effects of high-order fluctuations of thermal excited spin current, maximum output spin power, and efficiency. The transport and noise depend on the strongly fluctuating electron density of states at the interface. The results are relevant for designing an efficient spin Seebeck engine and can broaden our view in nonequilibrium thermodynamics and the nonlinear phenomenon in quantum transport systems.

  4. Thermal barrier coatings for aircraft engines: History and directions

    NASA Technical Reports Server (NTRS)

    Miller, R. A.

    1995-01-01

    Thin thermal barrier coatings for protecting aircraft turbine section airfoils are examined. The discussion focuses on those advances that led first to their use for component life extension and more recently as an integral part of airfoil design. It is noted that development has been driven by laboratory rig and furnace testing corroborated by engine testing and engine field experience. The technology has also been supported by performance modeling to demonstrate benefits and life modeling for mission analysis. Factors which have led to the selection of the current state-of-the-art plasma sprayed and physical vapor deposited zirconia-yttria/MCrAlY TBC's is emphasized in addition to observations fundamentally related to their behavior. Current directions in research into thermal barrier coatings and recent progress at NASA is also noted.

  5. The role of modern control theory in the design of controls for aircraft turbine engines

    NASA Technical Reports Server (NTRS)

    Zeller, J.; Lehtinen, B.; Merrill, W.

    1982-01-01

    The development, applications, and current research in modern control theory (MCT) are reviewed, noting the importance for fuel-efficient operation of turbines with variable inlet guide vanes, compressor stators, and exhaust nozzle area. The evolution of multivariable propulsion control design is examined, noting a basis in a matrix formulation of the differential equations defining the process, leading to state space formulations. Reports and papers which appeared from 1970-1982 which dealt with problems in MCT applications to turbine engine control design are outlined, including works on linear quadratic regulator methods, frequency domain methods, identification, estimation, and model reduction, detection, isolation, and accommodation, and state space control, adaptive control, and optimization approaches. Finally, NASA programs in frequency domain design, sensor failure detection, computer-aided control design, and plant modeling are explored

  6. Automotive Stirling engine development program - Overview and status report

    NASA Technical Reports Server (NTRS)

    Nightingale, N. P.

    1983-01-01

    The current status of the automotive-Stirling-engine development program being undertaken by DOE and NASA Lewis is reviewed. The program goals and the reference-engine design are explained, and the modifications introduced to improve performance and lower manufacturing costs are discussed and illustrated, including part-power optimization; increased operating temperature (from 720 to 820 C); 45.4-kg weight reduction; elimination of Co and reduction of Cr used; and improved seals, ceramic components, and high-temperature alloys. The test program, some difficulties encountered, and results after 2042 h are summarized.

  7. Genetically engineered mouse models of melanoma.

    PubMed

    Pérez-Guijarro, Eva; Day, Chi-Ping; Merlino, Glenn; Zaidi, M Raza

    2017-06-01

    Melanoma is a complex disease that exhibits highly heterogeneous etiological, histopathological, and genetic features, as well as therapeutic responses. Genetically engineered mouse (GEM) models provide powerful tools to unravel the molecular mechanisms critical for melanoma development and drug resistance. Here, we expound briefly the basis of the mouse modeling design, the available technology for genetic engineering, and the aspects influencing the use of GEMs to model melanoma. Furthermore, we describe in detail the currently available GEM models of melanoma. Cancer 2017;123:2089-103. © 2017 American Cancer Society. © 2017 American Cancer Society.

  8. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  9. Orbital Maneuvering system design evolution

    NASA Technical Reports Server (NTRS)

    Gibson, C.; Humphries, C.

    1985-01-01

    Preliminary design considerations and changes made in the baseline space shuttle orbital maneuvering system (OMS) to reduce cost and weight are detailed. The definition of initial subsystem requirements, trade studies, and design approaches are considered. Design features of the engine, its injector, combustion chamber, nozzle extension and bipropellant valve are illustrated and discussed. The current OMS consists of two identical pods that use nitrogen tetroxide (NTO) and monomethylhydrazine (MMH) propellants to provide 1000 ft/sec of delta velocity for a payload of 65,000 pounds. Major systems are pressurant gas storage and control, propellant storage supply and quantity measurement, and the rocket engine, which includes a bipropellant valve, an injector/thrust chamber, and a nozzle. The subsystem provides orbit insertion, circularization, and on orbit and deorbit capability for the shuttle orbiter.

  10. Advanced Engine Cycles Analyzed for Turbofans With Variable-Area Fan Nozzles Actuated by a Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2002-01-01

    Advanced, large commercial turbofan engines using low-fan-pressure-ratio, very high bypass ratio thermodynamic cycles can offer significant fuel savings over engines currently in operation. Several technological challenges must be addressed, however, before these engines can be designed. To name a few, the high-diameter fans associated with these engines pose a significant packaging and aircraft installation challenge, and a large, heavy gearbox is often necessary to address the differences in ideal operating speeds between the fan and the low-pressure turbine. Also, the large nacelles contribute aerodynamic drag penalties and require long, heavy landing gear when mounted on conventional, low wing aircraft. Nevertheless, the reduced fuel consumption rates of these engines are a compelling economic incentive, and fans designed with low pressure ratios and low tip speeds offer attractive noise-reduction benefits. Another complication associated with low-pressure-ratio fans is their need for variable flow-path geometry. As the design fan pressure ratio is reduced below about 1.4, an operational disparity is set up in the fan between high and low flight speeds. In other words, between takeoff and cruise there is too large a swing in several key fan parameters-- such as speed, flow, and pressure--for a fan to accommodate. One solution to this problem is to make use of a variable-area fan nozzle (VAFN). However, conventional, hydraulically actuated variable nozzles have weight, cost, maintenance, and reliability issues that discourage their use with low-fan-pressure-ratio engine cycles. United Technologies Research, in cooperation with NASA, is developing a revolutionary, lightweight, and reliable shape memory alloy actuator system that can change the on-demand nozzle exit area by up to 20 percent. This "smart material" actuation technology, being studied under NASA's Ultra-Efficient Engine Technology (UEET) Program and Revolutionary Concepts in Aeronautics (RevCon) Program, has the potential to enable the next generation of efficient, quiet, very high bypass ratio turbofans. NASA Glenn Research Center's Propulsion Systems Analysis Office, along with NASA Langley Research Center's Systems Analysis Branch, conducted an independent analytical assessment of this new technology to provide strategic guidance to UEET and RevCon. A 2010-technology-level high-spool engine core was designed for this evaluation. Two families of low-spool components, one with and one without VAFN's, were designed to operate with the core. This "constant core" approach was used to hold most design parameters constant so that any performance differences between the VAFN and fixed nozzle cycles could be attributed to the VAFN technology alone. In this manner, the cycle design regimes that offer a performance payoff when VAFN's are used could be identified. The NASA analytical model of a performance-optimized VAFN turbofan with a fan pressure ratio of 1.28 is shown. Mission analyses of the engines were conducted using the notional, long-haul, advanced commercial twinjet shown. A high wing design was used to accommodate the large high-bypassratio engines. The mission fuel reduction benefit of very high bypass shape-memory-alloy VAFN aircraft was calculated to be 8.3 percent lower than a moderate bypass cycle using a conventional fixed nozzle. Shape-memory-alloy VAFN technology is currently under development in NASA's UEET and RevCon Programs.

  11. THE DEFINITION AND INTERPRETATION OF TERRESTRIAL ENVIRONMENT DESIGN INPUTS FOR VEHICLE DESIGN CONSIDERATIONS

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Keller, Vernon W.; Vaughan, William W.

    2005-01-01

    The description and interpretation of the terrestrial environment (0-90 km altitude) is an important driver of aerospace vehicle structural, control, and thermal system design. NASA is currently in the process of reviewing the meteorological information acquired over the past decade and producing an update to the 1993 Terrestrial Environment Guidelines for Aerospace Vehicle Design and Development handbook. This paper addresses the contents of this updated handbook, with special emphasis on new material being included in the areas of atmospheric thermodynamic models, wind dynamics, atmospheric composition, atmospheric electricity, cloud phenomena, atmospheric extremes, sea state, etc. In addition, the respective engineering design elements will be discussed relative to the importance and influence of terrestrial environment inputs that require consideration and interpretation for design applications. Specific lessons learned that have contributed to the advancements made in the acquisition, interpretation, application and awareness of terrestrial environment inputs for aerospace engineering applications are discussed.

  12. Alternatives for Jet Engine Control

    NASA Technical Reports Server (NTRS)

    Leake, R. J.; Sain, M. K.

    1976-01-01

    Approaches are developed as alternatives to current design methods which rely heavily on linear quadratic and Riccati equation methods. The main alternatives are discussed in two broad categories, local multivariable frequency domain methods and global nonlinear optimal methods.

  13. Overview of NASA/OAST efforts related to manufacturing technology

    NASA Technical Reports Server (NTRS)

    Saunders, N. T.

    1976-01-01

    An overview of some of NASA's current efforts related to manufacturing technology and some possible directions for the future are presented. The topics discussed are: computer-aided design, composite structures, and turbine engine components.

  14. Nonlinear Dynamic Analysis of Disordered Bladed-Disk Assemblies

    NASA Technical Reports Server (NTRS)

    McGee, Oliver G., III

    1997-01-01

    In a effort to address current needs for efficient, air propulsion systems, we have developed some new analytical predictive tools for understanding and alleviating aircraft engine instabilities which have led to accelerated high cycle fatigue and catastrophic failures of these machines during flight. A frequent cause of failure in Jets engines is excessive resonant vibrations and stall flutter instabilities. The likelihood of these phenomena is reduced when designers employ the analytical models we have developed. These prediction models will ultimately increase the nation's competitiveness in producing high performance Jets engines with enhanced operability, energy economy, and safety. The objectives of our current threads of research in the final year are directed along two lines. First, we want to improve the current state of blade stress and aeromechanical reduced-ordered modeling of high bypass engine fans, Specifically, a new reduced-order iterative redesign tool for passively controlling the mechanical authority of shroudless, wide chord, laminated composite transonic bypass engine fans has been developed. Second, we aim to advance current understanding of aeromechanical feedback control of dynamic flow instabilities in axial flow compressors. A systematic theoretical evaluation of several approaches to aeromechanical feedback control of rotating stall in axial compressors has been conducted. Attached are abstracts of two .papers under preparation for the 1998 ASME Turbo Expo in Stockholm, Sweden sponsored under Grant No. NAG3-1571. Our goals during the final year under Grant No. NAG3-1571 is to enhance NASA's capabilities of forced response of turbomachines (such as NASA FREPS). We with continue our development of the reduced-ordered, three-dimensional component synthesis models for aeromechanical evaluation of integrated bladeddisk assemblies (i.e., the disk, non-identical bladeing etc.). We will complete our development of component systems design optimization strategies for specified vibratory stresses and increased fatigue life prediction of assembly components, and for specified frequency margins on the Campbell diagrams of turbomachines. Finally, we will integrate the developed codes with NASA's turbomachinery aeromechanics prediction capability (such as NASA FREPS).

  15. Weibull-Based Design Methodology for Rotating Aircraft Engine Structures

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin; Hendricks, Robert C.; Soditus, Sherry

    2002-01-01

    The NASA Energy Efficient Engine (E(sup 3)-Engine) is used as the basis of a Weibull-based life and reliability analysis. Each component's life and thus the engine's life is defined by high-cycle fatigue (HCF) or low-cycle fatigue (LCF). Knowing the cumulative life distribution of each of the components making up the engine as represented by a Weibull slope is a prerequisite to predicting the life and reliability of the entire engine. As the engine Weibull slope increases, the predicted lives decrease. The predicted engine lives L(sub 5) (95 % probability of survival) of approximately 17,000 and 32,000 hr do correlate with current engine maintenance practices without and with refurbishment. respectively. The individual high pressure turbine (HPT) blade lives necessary to obtain a blade system life L(sub 0.1) (99.9 % probability of survival) of 9000 hr for Weibull slopes of 3, 6 and 9, are 47,391 and 20,652 and 15,658 hr, respectively. For a design life of the HPT disks having probable points of failure equal to or greater than 36,000 hr at a probability of survival of 99.9 %, the predicted disk system life L(sub 0.1) can vary from 9,408 to 24,911 hr.

  16. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.

  17. SAGA: A project to automate the management of software production systems

    NASA Technical Reports Server (NTRS)

    Campbell, Roy H.; Beckman-Davies, C. S.; Benzinger, L.; Beshers, G.; Laliberte, D.; Render, H.; Sum, R.; Smith, W.; Terwilliger, R.

    1986-01-01

    Research into software development is required to reduce its production cost and to improve its quality. Modern software systems, such as the embedded software required for NASA's space station initiative, stretch current software engineering techniques. The requirements to build large, reliable, and maintainable software systems increases with time. Much theoretical and practical research is in progress to improve software engineering techniques. One such technique is to build a software system or environment which directly supports the software engineering process, i.e., the SAGA project, comprising the research necessary to design and build a software development which automates the software engineering process. Progress under SAGA is described.

  18. Molecular Structure of Photosynthetic Microbial Biofuels for Improved Engine Combustion and Emissions Characteristics

    PubMed Central

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes. PMID:25941673

  19. Molecular structure of photosynthetic microbial biofuels for improved engine combustion and emissions characteristics.

    PubMed

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.

  20. A forward-design approach to increase the production of poly-3-hydroxybutyrate in genetically engineered Escherichia coli.

    PubMed

    Kelwick, Richard; Kopniczky, Margarita; Bower, Iain; Chi, Wenqiang; Chin, Matthew Ho Wai; Fan, Sisi; Pilcher, Jemma; Strutt, James; Webb, Alexander J; Jensen, Kirsten; Stan, Guy-Bart; Kitney, Richard; Freemont, Paul

    2015-01-01

    Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB).

Top